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Abstract

The convergence of legacy power system components with advanced information and
communication facilities has led to the emergence of smart grids. Smart grids are
envisioned to be the next generation of innovative power systems, guaranteeing re-
silience, reliability and sustainability, and facilitating energy production, distribution
and management. Nonetheless, the development of such systems entails challenges
covering a broad spectrum, ranging from operational management to data-driven
power accounting and network security. Given the highly distributed properties of
the modern grid, energy theft attacks can now be observed at various transmission
and distribution levels. Apart from the financial gains for malicious actors, energy
theft can also affect critical grid processes and have a direct impact on the grid’s
overall resilience and safety. Conventional energy theft detection approaches rely
on physically inspections, which are time-consuming, inaccurate, costly and require
substantial human labour. By virtue of the smart grid paradigm, these inspections
are now conducted more efficiently using modern data-driven and machine learning-
based detection approaches. Therefore, the major focus of this thesis is on designing
a data-driven energy theft detection framework, taking advantage of the unique
characteristics of modern smart grids. In particular, this thesis investigates and
surveys the advances in energy theft strategies, as well as detection methods, from
different perspectives on the smart grid, revolving around energy data manipulation of
all three functions of demand, supply and generation. In addition, this thesis proposes
a supervisory control and data acquisition (SCADA)-agnostic power modelling
scheme for distributed renewable energy sources (DRES). Through this study, it
is demonstrated that a viable and exogenous profiling solution achieving similar
accuracy to SCADA-based schemes but under much lower computational time is
required to produce a reliable regression model for DRES generation energy. Building
on this work on SCADA-agnostic DRES power modelling, this thesis also describes
a predictive energy theft detection approach for DRES. Evidently, the proposed
approach yields a high DRES-based energy theft detection accuracy rate of over 95%,
with low computational time required to produce DRES theft classification. Thus,
it reasonably addresses the highly demanding requirements of low-cost and accurate
real-time energy theft detection in modern power grids. Finally, this thesis introduces
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a self-learning theft detection system capable of distinguishing the properties of power
consumption and generation theft with possible misconfigurations caused by non-
malicious intent. The proposed approach is adaptive through a self-learning operation
that is continuously updated as new measurements become available. The results
obtained indicate that this scheme can achieve over 90% accuracy in identifying theft
with optimal over-streamed data measurements. Thus, it offers low computational
time being required to classify consumption and generation meters, and its properties
can be exploited for next-generation cross-batch energy theft detection.
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Chapter 1

Introduction

Energy1 is broadly regarded as a fundamental element contributing to both social well-
being and sustainable development. Electrical energy grids have grown considerably
with the shift from agrarian societies to industrial and information-based societies
(Amin and Stringer, 2008). They have expanded in an unprecedented manner,
reaching practically every residence, factory and institution in developed countries,
while also rapidly expanding in the developing world.

Conventional electric grids, predating the smart grid paradigm, typically include a
collection of independent and enormous current networks. They consist of thousands
of central generation plants that produce electricity resources, such as uranium for
nuclear power and coal as fossil fuel for traditional thermal power generation. Energy
is transmitted from these central plants through high-voltage transmission networks
to distributed load centres, and then delivered via low-voltage networks to energy
consumers. This process is entirely centralised and managed by monopoly utility
providers (Collier, 2017). Nevertheless, in order to contribute to the global net-zero
initiative, the energy sector has sought to fully exploit a combination of distributed
energy sources (DRES), nuclear generators and fossil-fuel facilities (Ekanayake et al.,
2012). However, the management of this combination of energy resources is
challenging in conventional grids. The monitoring and control requirements necessary
for the cost-effective operation of such a system are unavailable in conventional grid
underpinnings (Farhangi, 2009; Goudarzi et al., 2022).

This deficiency of conventional grids is being addressed by the development of next-
generation energy grids, known as smart grids (Tuballa and Abundo, 2016). Smart
grids provide an opportunity to leverage advanced information and communication
technology and modernise electrical energy systems (Ekanayake et al., 2012). To put
it simply, a smart grid is a cyber-physical system that comprises a cyber infrastructure
(i.e. data-collection infrastructure) tightly integrated with a conventional energy

1This thesis focuses on energy delivered by electricity networks and not gas.
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Chapter 1. Introduction

system to enable stakeholders to exchange both energy and information (Judge et al.,
2022). By virtue of smart grids, data and measurements are continuously collected
and processed at various levels of smart grid infrastructures; these are categorised
as energy generation, transmission and distribution (T&D) and end-user. This data-
collection infrastructure facilitates the monitoring, protection and control of energy
systems effectively and reliably, and it offers significant opportunities for decarbonising
the energy sector at a realistic cost (Ekanayake et al., 2012; Farhangi, 2009).

Nevertheless, the introduction of the smart grid paradigm has contributed to the
expansion of security threats in energy systems. For instance, the infamous cyber-
attack on Ukraine’s energy sector resulted in power outages that affected around
225, 000 consumers for several hours (Lu et al., 2019). Another similar attack targeted
the main electricity supplier in Johannesburg, South Africa; it caused major disruption
of the electricity supply in some residential areas, leaving them without electricity
(BBC News, 2019). In addition, there have been unconfirmed attempts at cyber-
attacks on the national grid infrastructure of the US and the UK, wherein the potential
hackers tried to break into the utilities’ networks to disrupt their services (Sobczak,
2019; Pfeifer, Fildes, and Ram, 2018). Such a scenario could allow malicious entities
to further orchestrate energy theft activities without being detected, causing major
losses to the utility (McLaughlin, Holbert, et al., 2013; Mahmoud et al., 2020; Yan
and H. Wen, 2021). In this regard, the diversity of hardware and software technologies
employed within smart grids and the lack of holistic grid-specific security practices
facilitate the development of new energy theft techniques (Jiang et al., 2014a; Yao
et al., 2019; Qi et al., 2016).

Considering that the attack vectors underpinning energy theft span numerous
smart-grid vulnerabilities, there is no single globally accepted definition of the energy
theft threat. The intentional tapping of energy from distribution networks to
physically steal energy is theft (Bihl and Hajjar, 2017; W. Han and Xiao, 2016;
Weslowski, 1976). Tampering with metering systems to lower energy bills (e.g.
(Z. Zheng et al., 2018; Jindal, Dua, et al., 2016; McLaughlin, Podkuiko, and McDaniel,
2009; Ngamchuen and Pirak, 2013; Yip, Wong, et al., 2017a; Sharma and Majumdar,
2020; Zanetti et al., 2017)) and the fraudulent maximisation of generated energy
measurements (e.g. (Mahmoud et al., 2020; Shaaban et al., 2021; Yuan, M.-g. Shi,
and Sun, 2015; Yuan, M. Shi, and Sun, 2015; Krishna, Gunter, and Sanders, 2018))
also constitute energy theft. Manipulating the measurements of the T&D system
is also financially profitable misconduct in energy systems (Tajer, 2017; Xie, Mo,
and Sinopoli, 2010; Goudarzi et al., 2022; G. Cheng et al., 2022). Therefore, we
can define energy theft as the illegitimate exploitation of energy grid infrastructures,
components, communication networks, applications and management systems for the
purpose of manipulating the business model and gaining monetary profits.

Globally, energy theft has reportedly caused significant losses of electric energy for
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utility providers. These non-technical losses amounted to £1.4 billion per annum in
Brazil, and for a single energy provider in Canada, they resulted in an average annual
loss of 850 GWh (£55 million of monetary loss) (Raggi et al., 2020). Each year in
the UK alone, energy worth £400 million is stolen, leading to inflated customer bills
(Yorukoglu et al., 2016). As reported in (Yao et al., 2019), energy theft causes utility
companies worldwide to lose more than £19 billion annually. Regardless of whether
such theft attacks are executed by a single consumer or on a large scale, the losses
incurred by providers due to energy theft are undesirable and highly significant.

In addition to monetary and energy losses, the literature highlights a variety
of other consequences of energy theft. For example, theft-related activities have a
negative impact on the reliability of energy grids. Because of the energy lost in theft-
related activities, the supply system may be overloaded by customer demand, causing
its reliability to deteriorate (i.e. sometimes individuals experience power outages)
(Rouzbahani, Karimipour, and Lei, 2020). Furthermore, when utility providers
operate at a monetary loss, they must raise the entire billing amount, requiring
legitimate users to pay more for their energy (Ahmed et al., 2022). Several studies
conducted in 2019 indicated that almost 80% of 2, 000 UK residents were unaware
that energy theft directly affected them (Safe, 2018). These studies also revealed that
due to energy thefts, £20 per annum was added, on average, to household bills. Thus,
millions of consumers pay for energy that they have not used and, most importantly,
not stolen.

1.1 Problem statement

Energy providers around the world have reduced their monetary and energy losses
by detecting energy theft. Conventional methods for detecting energy theft primarily
rely on physical inspections of areas where energy thefts are anticipated to increase.
However, these conventional methods are time-consuming, inaccurate, costly and
labour-intensive, thereby decreasing the return on investment in anti-energy theft
initiatives (Jindal, Dua, et al., 2016; Aldegheishem et al., 2021; Gao, Foggo, and
Yu, 2019a). Advanced data-driven detection approaches fostered by machine learning
techniques leverage the integrated cyber infrastructure of smart grids to enable these
inspections to be conducted more effectively (Gao, Foggo, and Yu, 2019b; K. Zheng
et al., 2018).

Nonetheless, the majority of these approaches have been limited in their detection
scope due to their explicit focus on particular types of measurements or properties of
the overall smart grid ecosystem. Hence, numerous schemes exist for detecting energy
theft through consumption-related readings ((Messinis, Rigas, and Hatziargyriou,
2019a; Zanetti et al., 2017; Sharma and Majumdar, 2020; M. Wen et al., 2021;
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Gunturi and Sarkar, 2021; Messinis, Rigas, and Hatziargyriou, 2019b; Yao et al.,
2019; Z. Zheng et al., 2018; Gao, Foggo, and Yu, 2019b; Cody, Ford, and Siraj,
2015; Jindal, Dua, et al., 2016)), or T&D measurements (e.g., (Buzau et al., 2018;
Ashrafuzzaman, Das, et al., 2020; Esmalifalak et al., 2017; Ying Zhang, J. Wang,
and B. Chen, 2020; Mukherjee, Chakraborty, and Ghosh, 2022; Hegazy et al., 2022)).
However, only a limited number of detection solutions focus on the detection of theft-
related DRES generation measurements (Yuan, M. Shi, and Sun, 2015; Mahmoud
et al., 2020; Shaaban et al., 2021; Krishna, Gunter, and Sanders, 2018).

Furthermore, the deployment and synchronisation of the aforementioned monolith
in practice by providers at different levels of aggregation would be ineffective, as
they pose highly demanding computational requirements. Moreover, the algorithmic
properties involved in such approaches have been proven to be unable to sufficiently
distinguish theft-related activities from anomalous events that could be caused by non-
malicious intent (e.g. grid equipment misconfiguration) (Messinis and Hatziargyriou,
2018; Maamar and Benahmed, 2018). Finally, the vast majority of theft detection
solutions fail to effectively adapt and re-optimise their detection thresholds; hence,
consideration should be given to how these need to change in response to the addition
of new types of grid components and the adoption of new technologies.

1.2 Motivation and objectives

Keeping these issues in mind, this thesis focuses on delivering a practical data-driven
framework to address these challenges to a considerable degree, in order to help
minimise the losses caused by energy theft activities. To achieve this ambitious aim,
several algorithmic–technical objectives have been established, as listed below:

1. To investigate the impact of the introduction of the smart grid paradigm on the
security of energy systems against energy theft attacks.

2. To identify and assess the weaknesses of current energy theft detection schemes.

3. To design and implement a theft detection framework utilising diverse sources
of measurements and considering the highly distributed nature of DRES.

4. To design and implement a practical, holistic and adaptive system for energy
theft detection in consumption and generation measurements.

To achieve the aims and objectives of this thesis, the following research questions
need to be addressed:

1. How does the introduction of smart grids enable larger attack vectors that
provide a basis for energy theft?
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2. How do we design a data-driven framework for detecting energy theft?

The latter question can be divided into the following sub-questions:

a How can we leverage diverse sources of measurement to identify energy theft
attacks in DRES?

b How do we devise a generic method to accurately detect energy theft in scalable
smart grids?

1.3 Research contributions

To answer these questions, this thesis explicitly contributes to the wider research
community by developing the following:

1. An investigation and survey of advances in energy theft from different perspec-
tives of the smart grid ecosystem. It revolves around energy data manipulation,
considering the three functions of demand, supply and generation. A variety
of vulnerabilities enable adversaries to exploit grid infrastructure components,
communication networks and managements systems, with the intention of
achieving monetary benefit. This review provides an overview of the different
types of energy theft attacks in smart grids. It reviews the latest research studies
on attack strategies that enable energy theft, and it outlines their key findings.
Moreover, it discusses existing energy theft detection schemes and summarises
the outstanding challenges. This work serves as a first stop for both general
audiences and domain specialists looking for information regarding energy theft
in present-day smart grid systems and markets.

2. A generically applicable theoretical framework for a data and machine learning
based energy theft detection process. In general, data-driven energy theft
detection solutions in industrial applications rely on a variety of measurements
collected by the data-collection infrastructure integrated into modern energy
ecosystems. They leverage a wide range of techniques and algorithms from
a broad spectrum of knowledge, machine learning being the most prevalent.
Therefore, we intend to take a step beyond the current literature by developing a
structured, generically applicable framework for energy theft detection in smart
grids. The proposed theoretical framework reviews existing theories and serves
as a road map for constructing a data-driven strategy for energy theft detection
in different scenarios.

3. A generic SCADA-agnostic DRES power profiling scheme. In general, this
DRES profiling system enables automated feature selection and the fine-
tuning of machine-learning-based regression models, and it can also adapt to
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diverse measurement feeds. Through a proof-of-concept study of wind turbine
deployments, this work demonstrates that the proposed system can operate
adequately by using freely available third-party weather measurements. Thus,
it introduces a SCADA-agnostic approach that can sufficiently serve a range of
envisaged smart grid applications, such as malicious actor detection.

4. A novel and low computational cost DRES-based energy theft detection
approach. This approach builds upon the previous contribution to provide a
predictive data-driven detection solution that considers weather dynamics. It
goes a step beyond current solutions by removing any dependence on SCADA
measurements and by largely focusing on third-party and freely available
measurements. Thus, it intends to tailor theft detection accuracy based on
the explicit properties of the generation of individual DRES deployments.

5. An adaptive energy theft detection system capable of distinguishing the
properties of energy consumption and generation theft as opposed to possible
misconfigurations caused by non-malicious intent. The proposed system self-
adapts through a self-learning mode of operation that is continuously updated
as new measurements become available. Thus, it promotes low computational
costs and its architecture can be easily integrated with smart grid infrastructures
to realize next-generation cross-batch energy theft detection schemes.

1.4 Thesis outline

Chapter 2 is a review of energy theft data-driven attack strategies and detection
methods. By considering various operational and functional layers in modern smart
grids, this chapter critically assesses how energy theft can be formulated. Moreover,
this chapter provides an overview of the grid demand, supply and control chain, with a
focus on energy theft and the associated security flaws that currently exist in the smart
grid ecosystem. Different models for theft detection in smart grids are categorised.
Finally, the chapter discusses various open issues in the scope of data-driven energy
theft detection methods, and it suggests solutions in this field.
Chapter 3 proposes a generically applicable theoretical framework of data-driven
energy theft detection methodologies in smart energy grids. Moreover, in order to
present case studies of the application of the proposed theoretical model to generate
data-driven theft detection methodologies, this chapter provides an overview of the
data-driven detection approaches designed, implemented and evaluated in this thesis.
Chapter 4 describes a SCADA-agnostic approach that uses freely available weather
measurements to explicitly profile and forecast power generation, as produced in real
wind turbine deployments. For this purpose, the chapter leverages various machine
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learning libraries to demonstrate the applicability of our system and further compares
it with forecasting outputs obtained when using SCADA measurements.
Chapter 5 introduces a predictive data-driven, SCADA-agnostic energy theft
detection approach explicit to DRES-based scenarios. This chapter comprehensive
formalises a DRES-based theft attack model, and it further assesses the performance
of our framework by using freely available third-party weather measurements and
relating them to real solar and wind turbine deployments in Australia and France.
Chapter 6 proposes a self-learning system that can detect theft activity and miscon-
figuration events in consumption and generation measurements, while continuously
learning from a stream of incoming measurements without human interference. In
this chapter, a comprehensive formalisation of an adversary model that highlights the
properties of smart meter misconfiguration and theft-related activities is provided.
Furthermore, extensive data-driven experiments are conducted to demonstrate the
proposed system’s efficacy using real-world energy measurements.
Chapter 7 concludes the thesis by focusing on the contributions made to the proposed
study domain. In addition, this chapter suggests future research directions to build
on the work presented in this thesis.
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Chapter 2

Energy Theft in Smart Grids: A
Survey on Attack Strategies and
Detection Methods

Cyber-physical attacks on power grids aiming explicitly at energy theft are the most
prominent and they have been reported to cause significant financial as well as
functional losses to energy utility companies at a global scale (Jindal, Dua, et al.,
2016). Hence, energy theft attacks cause major concerns to both providers and
consumers. In order to prevent such energy and revenue losses, utility companies
typically conduct physical inspections in the locations where energy theft is due
to intensify (Jindal, Dua, et al., 2016). Nonetheless, such conventional energy
theft detection tracking is time-consuming, inaccurate, costly, and labour-intensive
(Aldegheishem et al., 2021; Gao, Foggo, and Yu, 2019a). Therefore, to deploy more
effective theft countermeasures, providers need to make use of the present electricity
market driven by the need to collect and analyze data. The facilitation of data-driven
operation drives utility providers to embed smart metering equipment in various levels
of the electricity flow within smart grids (Angelos K Marnerides et al., 2014).

The entire life cycle of gathering energy data runs through smart grid infrastruc-
tures which are categorized into electricity generation, transmission and distribution
(T&D), and end-user infrastructure. This data collection infrastructure leads to the
emergence of an advanced line of detection method driven by measurement-based
data providing opportunities to address energy theft. Data-driven detection is able
to reduce the risk of lateral attacks leading to energy theft and recognize anomalous
system behaviours arising from such events. Thus, reduce revenue losses for service
utilities (Zanetti et al., 2017; Messinis, Rigas, and Hatziargyriou, 2019a).

Although, a variety of data-driven detection methods have been developed,
malicious actors continue to discover innovative strategies in an attempt to perpetrate
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energy thefts across smart-grid infrastructures (Aydin and Gungor, 2018). In this
regard, the smart grid data measurements and monitoring infrastructure can pave the
way for more approaches to fabricate next generation data-driven theft attacks, thus
increasing relative energy and financial losses. Authors in (McLaughlin, Podkuiko,
and McDaniel, 2009) and (Jiang et al., 2014b) review these data-driven theft attacks
from the perspective of power-system communication-layer architectures, based on
adversary strategies targeting the integrity of the power system by manipulating power
demand data. Moreover, authors in (Messinis and Hatziargyriou, 2018; Saeed et al.,
2020) and (Yan and H. Wen, 2021) provide an overview of energy theft detection,
including features employed, methodology and procedures, evaluation metrics, and
a comparison of the performance of each detection method. However, these surveys
were not focused on energy theft and do not consider recent advances in modern
smart grids, as the nature of vulnerabilities and threats related to energy theft are
constantly changing due to the increasing intersection of power grids with Internet-
enabled cyber-physical systems (Mahmoud et al., 2020).

Motivated by these observations, we investigate and survey the advances in
energy theft from different perspectives within the smart grid ecosystem revolving
around energy data manipulation from all the three functions of demand, supply, and
generation. We explicitly contribute in the wider research community for modern
energy grids by providing:

1. The first survey work covering the largest spectrum of attack strategies available
in the literature used for carrying out energy theft in the modern electricity
market.

2. Introduction of an energy theft categorisation model which provides a compre-
hensive perspective on defining energy theft from various smart-grid data flows.

3. A critical assessment of lessons learned from the application of various ap-
proaches presently used for detecting energy theft.

4. Recommendations for suggested solutions with respect to the design of energy
theft detection schemes as tailored with an extensive analysis of open issues.

The remainder of this chapter is organized as follows: Section 2.1 focuses on the
key infrastructures consisting the modern power grids such as to relate attack vectors
associated with energy theft. Section 2.2 provides a comprehensive analysis on energy
theft attacks. In Section 2.3, we categorize and discuss algorithms used in energy theft
detection systems. Section 2.4 presents the existing gaps in research for energy theft
detection and recommends suggested solutions. Finally, in Section 2.5, we conclude
and summarise this chapter.
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2.1 Smart grid components

Energy theft may span over multiple logical or physical entities and can be
instrumented via numerous attack vectors affecting one or more of the systems
consisting the modern smart grid. Within this work, the various properties of
energy theft are discussed in terms of the intrinsic characteristics of each of these
infrastructures. Therefore this section is dedicated at presenting an overview of the
infrastructure of the smart grid with its core components.

One of the main goals within the modern smart grid is to ensure the optimal
operation of the electricity supply chain. As shown in Fig. 2.1, the end-to-end energy
supply chain is decomposed into three distinct phases; i) generation , ii) transmission
and distribution (i.e. T&D) and, iii) end user consumption. All three phases are
directly dependent on explicit technologies, administrative domains and networked
power system infrastructures. Each of these entities pose unique vulnerabilities that
can enable energy theft (Otuoze, Mustafa, and Larik, 2018; Jindal, Schaeffer-Filho,
et al., 2020; Messinis, Rigas, and Hatziargyriou, 2019a; Shaaban et al., 2021).

Figure 2.1: Phases and components of the energy supply chain in the smart grid.
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The energy generation phase is achieved within large, centralised power stations
that nowadays are interfaced with power generation DRES deployments and are
commonly owned by the national transmission energy network controlled by one
or a set of transmission system operators (TSOs). Each TSO is engaged through
a competitive energy trading market scheme with a number of distribution system
operators (DSOs) in order to supply them with electricity to be distributed to end-
consumers 1. DSOs may also have a direct interface and own DRES deployments or
they frequently have an energy trading contract with end-consumers or third-party
DRES owners that contribute directly in the energy generation phase.

In general, any control and management (sub)systems alongside the electro-
mechanical set of power systems enabling data and energy flows spanning the
energy supply chain are underpinned by diverse and ubiquitous data communication
technologies. Fig. 2.1, indicatively illustrates a variety of potential networking
technologies and deployment setups that could be employed in smart grids. Similarly
with the energy trading market, the business model behind the ownership of these
deployments depends on a number of aspects related to country-level legislation and
policies (Burke and Stephens, 2018) and it is out of the interest within this thesis.

2.1.1 Energy generation

2.1.1.1 Centralised generation

Generation systems are categorised to operate either in a centralised or a decentralised
fashion. Centralised generation produce large-scale electricity at power stations,
utilising fossil fuels and nuclear plants or renewable resources such as hydroelectric
power plants, wind and solar farms. These centralised systems are usually placed
in remote areas that are distant from the end users. They are linked to distributed
stations owned by a given DSO via a network of HV transmission lines operated by
a TSO (EPA, 2018). The DSO stations are responsible for transmitting electricity
through the medium and low-voltage grids to multiple end users (Yip, W.-N. Tan,
et al., 2018).

2.1.1.2 Distributed Renewable Energy Sources (DRES)

DRES have evolved to act as an integral element of the electricity generation
infrastructure aiding the needs of the backbone grid in terms of critical ancillary
services (e.g., frequency regulation, reactive power) enabling grid stabilisation, diver-
sifying energy trading and most importantly matching the peak during overloaded
periods (C. Li and Shen, 2019; Shilay et al., 2017; Banshwar et al., 2017). Moreover,

1In the USA a TSO may be referred to as an independent system operator (ISO) and a DSO as
a regional transmission operator (RTO).
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DRES deployments are currently considered as the most suitable components for
contributing towards the reduction of global carbon emissions (Shilay et al., 2017).
According to the international energy agency (IEA), DRES deployments have
contributed to 40% of the total primary energy supply globally in 2020 (IEA, 2020).

Energy generation billing and trading for DRES is currently achieved via two
distinct systems; i) net metering and, ii) feed in tariffs (FIT). Net metering operates
with a single meter and employs a model where prosumers use their own DRES-
based generated power on-site and any surplus is considered as a future credit on
their billing issued by their DSO. On the other hand, FIT operates based on two
smart meters residing at the prosumer end dealing with the capturing of energy
generation and consumption rates independently. By contrast to net metering, FIT
decouples the monitoring process and facilitates a simpler data processing framework
for energy trading as well as billing, thus it was extensively adopted in a number
of developed countries such as the United Kingdom, Canada, Japan, China, and
Australia (Mahmoud et al., 2020).

Despite of the various benefits offered by DRES deployments, their direct
dependency on natural resources (e.g., wind, solar radiation) that are in some cases
unpredictable to fully forecast may cause challenges and higher complexity within
the overall grid optimisation process. Thus increasing risks related to aspects of
management of congestion, regulation of voltage, and grid stability (B. Zhao et al.,
2018; X. Han et al., 2018). In parallel, the integration of DRES involves diverse
types of data communication and system-on-chip technologies that are commonly
manufactured with minimal security (Bor et al., 2019; Jindal, Angelos K. Marnerides,
et al., 2019). Hence, enlarging the spectrum of cyber attacks that could be initiated
such as to support potential energy theft acts (Krishna, Gunter, and Sanders, 2018).

2.1.2 Energy Transmission & Distribution (T&D)

2.1.2.1 T&D energy flow

The T&D infrastructure is responsible for enabling the transmission of power and
further distribution of electricity to the consumers. As depicted in Fig. 2.1,
T&D infrastructures may be categorised into the low-voltage (LV), high voltage
(HV) and medium voltage (MV) power networks. Throughout the years, the
topology for these power networks has evolved from an ordinary radial structure
to interconnected or consistent networks, which has guaranteed higher reliability,
operational economy, and best equipment use. Primarily, the electricity produced by
the centralized electricity generation systems is transported to different distribution
stations over HV transmission lines, which is then supplied to the end users through
the widespread transmission lines of MV and LV networks. In parallel, modern T&D
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infrastructures also distribute energy generated at DRES deployments through MV-
LV substations (C. Wang et al., 2017).

2.1.2.2 T&D data communication

The data communication network underpinning the operations of T&D infrastructures
commonly consists of two types of networked deployments that interact with the end-
consumer home area network (HAN). As demonstrated in Fig. 2.2, end-to-end data
communication between the T&D infrastructure and a HAN is achieved via a wide
area network (WAN) interacting with a set of neighbourhood area networks (NANs).

Figure 2.2: Exemplar smart grid network architecture highlighting some of the main
data communication standards.

A WAN typically represents the aggregation of NANs and it is mapped at the
scale of a city-wide network considering data flows related to energy distributed by
multiple micro-grids where each micro-grid is linked with a particular NAN. In real
deployments, the structure of a WAN is quite diverse since it may consist of multiple
networking technologies with varying physical, logical and software components
dealing with network control and management (Ogbodo, Dorrell, and Abu-Mahfouz,
2017; Yang Zhang, T. Huang, and Bompard, 2018). On the other hand, NANs can
be considered as a subset of a WAN since they support smaller geographical regions
and they act as proxies of a given WAN for functions related to connectivity and
data aggregation of HANs with the main WAN. In general, a WAN or a set of WANs
alongside related NANs and HANs are not necessarily always owned by corresponding
TSOs or DSOs as they could be managed and maintained by third-party network
providers (e.g., Internet Service Providers) or community entities (e.g., municipality).
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2.1.2.3 Data acquisition & management

The actual interface of data communication with data-driven control and management
of the processes explicit to reliable and resilience distribution of energy is achieved
via network-enabled cyber-physical systems such as supervisory control and data
acquisition (SCADA) systems. These systems are nowadays the most frequently
used systems within modern T&D infrastructures. SCADA systems provide native
integration of data communication technologies and system components such as
remote terminal units (RTUs) and intelligent electronic devices (IEDs) (T. Liu
et al., 2017; S. Tan et al., 2017). The data communication reliability offered by
SCADA systems enables TSO/DSO control centres to develop close to real-time
state estimation algorithms in order to optimise the grid’s performance and increase
situation-awareness (Sundararajan et al., 2019; Prado et al., 2019).

A relatively recent alternative approach to SCADA are wide area measurement
systems (WAMS) (RB and GM, 2015). WAMS are embedded with new data
acquisition technologies facilitating synchronised measurements between remote T&D
deployments (e.g, micro-grids, substations) and facilitate the basis for monitoring,
operation and control (Rezaee and Moghaddam, 2019). In practise, WAMS may be
decomposed by a set of distributed Phasor measurement units (PMUs) and phasor
data concentrators (PDCs) that sample data related to the waveform and the analog
voltage of remote sites through a global positioning system (GPS) clock (RB and
GM, 2015; Tian and Sansavini, 2016).

2.1.3 End user infrastructure

2.1.3.1 Advanced Metering Infrastructure (AMI)

AMIs are considered one of the fundamental components within the smart func-
tionalities of the smart grid. The operation of such infrastructures achieves end-
to-end metering in order to support the billing and trading processes between an
end-consumer or prosumer and a DSO/TSO. A core innovation behind AMIs lies with
the integration of smart meters within residential households or business buildings. In
most developed and many of the developing countries, smart meters have replaced the
traditional mechanical and analogue meters and they enable various services. Apart
from the real-time logging of measurements related to end user energy consumption
(i.e. demand data), smart meters also assess other features such as voltage levels as
well as real-time monitoring (Lighari, Jensen, Shaikh, et al., 2014).

As already mentioned, data captured by smart meters contribute to the overall
demand response (DR) model and they are transmitted through low-powered com-
munication and automation protocols (e.g., ZigBee, Z-Wave) in synergy with upper
layer application protocols (e.g., HTTP/HTTPS) supported by their corresponding
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HAN. Fig. 2.2 provides an exemplar illustration in which smart meter measurements
are locally aggregated within a HAN and are further distributed to the corresponding
T&D infrastructure through an adjacent NAN interacting with a WAN. The sampling
rate for measurements gathered by individual smart meters falls with a pre-defined
schedule agreed between the end-consumer or prosumer with its corresponding
DSO. Normally, measurements are agreed to be sent in 5, 15, 30, or 60 minute
intervals (Mohammad, 2018; Lighari, Jensen, Shaikh, et al., 2014; Ghosal and Conti,
2019; Ikpehai, Adebisi, and Rabie, 2016).

2.1.3.2 Energy Management System (EMS)

The adequate management and reactive control of energy usage and production in
end user deployments is achieved through the installation of EMS instances. Such
instances may be directly interfacing with a given DSO or through proxy third-
party stakeholders maintaining and supporting large-scale EMS deployments. From
the end user perspective, there is a variety of EMS types coming with specific
functionalities such as home energy management systems (HEMSs) and building
management systems (BMSs)2. In parallel, EMS can also be present at a larger scale
deployed either at a centralised or a distributed topology aggregating measurements
for the T&D insfrastructure (Arcos-Aviles et al., 2016; Solanki, Bhattacharya, and
Canizares, 2017; Venayagamoorthy et al., 2016). Nonetheless, the main role of
an EMS instance at the end user infrastructure is to optimise energy consumption
for an individual or a set of individuals through controlling the various appliances
residing within a given building or household (Jindal, Bhambu, et al., 2020). Hence,
EMS software instances are usually composed of a controller instructed by advanced
energy optimisation algorithmic components coupled with rule-based control functions
orchestrating the operations of appliances (Angelos K Marnerides et al., 2014; Din,
Mauthe, and Angelos K Marnerides, 2018).

2.1.4 Grid effectiveness pillars

The effectiveness of the grid in all levels depends on the performance of both
quantitative as well as qualitative indicators. For instance, the reliable operation of
the energy grid directly affects the well-being and safety of consumers whereas well-
being is not a fully quantifiable parameter and, in parallel, grid reliability depends
on quantifiable performance metrics (e.g., demand-supply rate) (Shokoya and Raji,
2019). Moreover, cyber-physical challenges, such as attacks enabling energy theft
may affect directly grid optimisation processes, thus impacting grid reliability with
a cascading impact over user safety since some power system machinery could be

2Discussion of EMS variations is out of scope for this chapter.
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affected and malfunctioning (S. A. Salinas and P. Li, 2016; Czechowski and Kosek,
2016). The latter example has a number of parameters that are not necessarily
quantifiable (e.g., grid security level, safety impact on consumers/prosumers), hence
a holistic correlation scheme between the aforementioned pillars is an extremely
challenging task.

As evidenced in Fig. 2.3 this work relates grid effectiveness with the three broad
domains of reliability, resilience and safety that we refer to as pillars. We exploit
definitions developed throughout the years and summarise the definitions of the three
inter-related pillars in order to structurally assess the energy theft impact in the overall
grid effectiveness (Kawann, 2002; Jufri, Widiputra, and Jung, 2019; Czechowski and
Kosek, 2016):

1. Grid reliability: preservation of continuous energy supply to end consumers.

2. Grid resilience: preservation of continuous energy supply to end users with an
acceptable level of energy quality while under stress or faults.

3. User safety: ensure that an individual or a group of individuals utilising or
maintaining the grid and its services are not physically affected.

Figure 2.3: Grid effectiveness pillars.

This survey acknowledges that the highlighted pillars are considered widely
as independent research domains themselves. Hence, deeper investigation on the
structure and properties of these pillars is out of the context within this chapter.

2.2 Energy theft

Energy theft can be broadly defined as a case where individuals manipulate their
consumption measurements in various ways, such as physically tapping (hooking) into
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distribution lines or paying less than they should due to tampering with or bypassing
their meters (Czechowski and Kosek, 2016). However, attack vectors underpinning
energy theft span numerous vulnerability domains due to the emergence of a plethora
of smart grid applications (e.g., energy trading) that rely on inherently vulnerable
networked environments as a result of the convergence of diverse legacy power systems
with Internet technologies (e.g., ICS deployments, metering). In general, energy theft
can be instrumented through a variety of techniques exploiting both physical as well
as data or communication-oriented properties of the current grid (Bihl and Hajjar,
2017; Smith, 2004; Jindal, Dua, et al., 2016; Mahmoud et al., 2020). Hence, the
adequate categorisation of energy theft types is a highly challenging task.

In order to address the aforementioned challenge and appropriately structure the
focus within this work, we identify two distinct classes of energy theft:

1. Data-agnostic energy theft : the act of physical tampering of power components
through techniques such as obstruction of electro-mechanical meters, cable
tapping, bypassing meters as well as energy harvesting.

2. Data-driven energy theft : the act of manipulating and altering communication
and/or energy measurement-related data generated and/or logged at any
networked metering (e.g., smart-meter), management (e.g., SCADA system)
and control device (e.g., PLC) as well as billing software (e.g., utility mobile
apps) aiming at reporting false energy information to the power distribution
authority (e.g., a DSO).

Both classes target either of the bidirectional energy or data flow between different
grid aggregation points (e.g., T&D, end user, generation) and they have seen a
considerable level of attention from the research community as well as the society
in general (Mahmoud et al., 2020; Jindal, Schaeffer-Filho, et al., 2020). Moreover,
both types have shown to be applicable in all three levels of aggregation within a smart
grid. Hence, energy theft can be deployed in the power generation infrastructure, the
T&D network as well as the end-consumer level.

This work argues that the main concept of a given theft attack can be abstracted
by a discrete function in which inter-dependent variables are tailored based on
the targeted infrastructures composing a complete smart grid deployment. Hence,
the function may vary depending on the variable-specific adjustments conducted
by a malicious actor based on the intrinsic properties of a given smart grid
(sub)infrastructure (e.g., communication, power). Commonly, malicious actors
attempt to target a set of diverse vulnerabilities of both system and network
components from all three infrastructures described herein. Evidently, energy theft
in all three infrastructures has considerably increased due to the data-oriented
functioning of the business layer as envisaged in the current smart grid reference
architectures (e.g., SGAM (CEN-CENELEC-ETSI, 2012)).
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2.2.1 Energy theft model

Energy theft in the context of the smart grid can be abstracted using various
generalised approaches such as (Mahmoud et al., 2020; Esmalifalak et al., 2017;
Punmiya and Choe, 2019). We indicate ways in which energy theft can be
modeled from the perspective of manipulating generation, supply and demand data
respectively. The proposed approaches rely on the notation denoted in Table 2.1.

Table 2.1: Energy theft model notation.
Ec Demand node energy consumption
Er Prosumer node energy generation
Es Energy supply by T&D control nodes

NTL Cumulative non-technical energy loss
TL Technical energy loss
G T&D grid
S Number of grid supply nodes
M Number of energy distribution buses
N Number of total nodes
P Number of prosumer nodes
Q Number of consumer nodes
α Theft coefficient on generation data
β Theft coefficient on supply data
γ Theft coefficient on demand data

As depicted in Fig. 2.4, we consider a grid G in a NAN to be defined by a set of N
connected nodes and M connecting energy buses. A node is indicated as a prosumer
node if it has a local DRES; otherwise, the node is indicated as a demand node.

Figure 2.4: Energy grid model consisting of supply and demand nodes.

Let TLj(t) denote technical energy losses caused by wires and equipment resistance
under the normal, theft-free condition in the jth bus, where j ∈ M . We also consider
the cumulative non-technical energy loss, NTL in G expressed as:
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NTL(t) =
S∑

i=1

Esi(t) +
P∑

k=1

Erk(t)−
Q∑

h=1

Ech(t) +
M∑
j=1

TLj(t) (2.1)

Here, we characterise NTL in energy system G as it is essential to understanding
the overall energy dynamics within the system. It can be broken down into four
primary elements: the first two terms in Equation 2.1 represent the total energy
supplied to the system. The summation

∑S
i=1Esi(t) represents the energy supplied

via T&D supply nodes, where i ∈ S. These nodes are responsible for delivering
electrical energy from various sources owned by providers. The following term,∑P

k=1 Erk(t), represents the total energy generated within G using DRES owned by

presumers, where k ∈ P . The third term in Equation 2.1, −
∑Q

h=1 Ech(t), is the
total energy consumed by consumer nodes, where h ∈ Q. Consumer nodes represent
residential, commercial and industrial consumers of energy within G. The final term,∑M

j=1 TLj(t), aggregates the technical losses incurred during energy transmission over
buses j ∈ M . These losses occur due to inherent resistance in wires and equipment
and are an intrinsic aspect of energy transmission. The range of values for these
technical losses is well-documented in the literature and is typically between 6% and
8% of the energy transmitted via the T&D infrastructure (EIA, 2016).

2.2.1.1 Generation data-oriented theft

We consider that various data manipulation attacks may be conducted on DRES
generation data (Yuan, M. Shi, and Sun, 2015) and two-metering end-user deploy-
ments (Mahmoud et al., 2020) on the prosumer site. Alongside the inability to
accurately predict weather fluctuations affecting energy generation, we abstract the
total electrical energy injected to the power grid by the k ∈ P supply nodes during
an energy theft attempt to be:

P∑
k=1

Erk(t) =
P∑

k=1

αkErk(t) (2.2)

where αk(t) ∈ R+ is the theft coefficient for each supply node and two outcomes for
this coefficient are possible being:{

1 < αk(t) < ∞, malicious prosumers

αk(t) = 1, honest prosumers

Each supply node k ∈ P has a theft coefficient α at time t. In the legitimate
case where no attack is present, the theft coefficient αk(t) equals 1; meaning that
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there are no discrepancies in the DRES generation measurement at node k, since
Erk(t) = αkErk(t). However, in the generation data-oriented theft scenarios, the
DRES generation measurements entailed within Erk(t) are scaled by an attacker based
on an arbitrarily selected percentage, represented by αk(t). For instance, the attacker
in such a scenario may report 200% of the actual measurements when αk(t) = 2.
Hence, we abstract malicious prosumers that report falsified metering for their DRES
generation process. Consequently, the non-technical energy loss, NTL, will be greater
or equal than that for the normal case (i.e. equation 2.1); since

∑P
k=1 αkErk(t) ≥∑P

k=1Erk(t).

2.2.1.2 Supply data-oriented theft

Let assume the generalised direct current (DC) model described in (Yao Liu, Ning,
and Reiter, 2011; Esmalifalak et al., 2017) such as the energy supply in our grid G
by S supply nodes to be defined as:

S∑
i=1

Esi(t) = J

(
M∑
j=1

θj(t)

)
+

S∑
i=1

ei(t) (2.3)

where J
(∑M

j=1 θj(t)
)
are the state variables composed of the voltages phase angles

within a Jacobian matrix J and
∑S

i=1 ei(t) is the measurement error from supply
nodes assumed to adhere to Gaussian noise e.

In energy theft, malicious actors normally manipulate a subset of measurement
data to alter metering. Hence, the aggregation of energy supply Es from all supply
nodes can be defined as:

S∑
i=1

Esi(t) = J

(
M∑
j=1

θj(t)

)
+

S∑
i=1

ei(t) + βi(t) (2.4)

where βi(t) is a vector representing maliciously injected data within the legitimate
measurements captured by a given T&D control center. Essentially, βi(t) can be
mapped as a False Data Injection (FDI) attack instrumented at various levels (e.g.,
communication protocol, metering protocol etc.).

2.2.1.3 Demand data-oriented theft

Consumers and/or prosumers are also capable to lie on their demand data by utilising
FDI techniques to cause under-reporting of energy consumption (Kim et al., 2019;
S. K. Singh, Bose, and Joshi, 2019; Gao, Foggo, and Yu, 2019b; Sharma and
Majumdar, 2020; Bor et al., 2019). We denote as γi(t) to be the theft coefficient
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of node i at time t. Considering a demand data-oriented theft the non-technical loss
NTL can be represented as (Punmiya and Choe, 2019):

NTL =

Q∑
i=1

γiEci(t) (2.5)

In this case, the NTL should be greater than that for the normal case; since∑Q
i=1 γiEci(t) <

∑Q
i=1Eci(t). Hence, the two possibilities for γi(t) would be:{
0 ≤ γi(t) < 1, malicious consumer/prosumer

γi(t) = 1, honest consumer/prosumer

In more detail, each consumer and/or prosumer i ∈ Q has a theft coefficient γ
at time t. In the legitimate case assuming no attack enabling energy theft, there are
no discrepancies in the demand measurements denoted by Eci(t), since the relative
theft coefficients γi(t) = 1 and Eci(t) = γi(t)Eci(t). However, in the demand data-
oriented theft, the attacker manipulates the demand measurement signal Eci at time
t by enforcing an arbitrarily selected percentage entailed within γi(t). Therefore, the
attacker under reports demand measurements and just reports a small portion of
measurements on a regular basis. For instance, an attacker could potentially report
50% of the actual demand data, when γ = 0.5.

2.2.2 Data-agnostic energy theft strategies

The most prevalent approach to data-agnostic theft is the direct tapping of LV
infrastructures to consume free energy. In order to steal electricity, these attacks entail
constructing an unauthorised overhead or buried line connection to the distribution
transformer’s line side. With this approach, a property or appliance that was not
previously connected to the power grid can be connected. In the US, tapping has
been used to steal energy since at least the 1890s (Bihl and Hajjar, 2017). Another
data-agnostic energy theft strategy to reduce demand measurements is bypassing
metering systems. It is an extension of the notion of tapping; however, in this case,
prior electric energy is obtained by directly connecting the property wiring to the
wires entering the meter wiring (Bihl and Hajjar, 2017). This theft strategy can
either completely disconnect the metre or leave it connected with a bypass so that
the metre continues to record some consumption (W. Han and Xiao, 2016).

For non-smart metres, a data-agnostic technique for energy theft involves at-
tempting to interrupt meter measurements. This practice prevents metres from
properly measuring consumption readings. Various mechanisms can be used here,
such as reducing the counting wheel’s speed by influencing a metre with an effective
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electromagnetic field and preventing the counting wheel from moving by inserting
photographic film between a metre’s back housing and its glass front cover or by
drilling a discrete hole in the metre’s housing (Czechowski and Kosek, 2016). In solar
energy generation, the use of a solar array simulator is a well-defined data-agnostic
strategy for energy theft. It is capable of mimicking the output characteristics of
the vast majority of photovoltaic cells (Yuan, M.-g. Shi, and Sun, 2015). A solar
array simulator and a real solar energy generator are connected in parallel, with their
respective outputs feeding the generation metre. Hence, the value of the generation
metre exceeds the value of the generation from the actual generator, and in the worst-
case scenario, fraudulent prosumers can obtain monetary gains without even installing
a solar energy generator (Yuan, M. Shi, and Sun, 2015).

With energy harvesting methods, all voltage levels including high, medium and low
networks, are vulnerable to data-agnostic energy theft attacks. There are legitimate
instances of this activity, such as legitimately powering smart-grid sensors (Chang et
al., 2012; Cetinkaya and Akan, 2017b; Cetinkaya and Akan, 2017a; Ozger, Cetinkaya,
and Akan, 2018), and perhaps both legal and illegal instances of powering personal
equipment without utility approval (Bihl and Hajjar, 2017). Siegel has just devised a
technique for illegally harvesting energy from T&D infrastructure. Siegel has received
numerous accolades for this method, including one from the Bremen University of the
Arts (Bihl and Hajjar, 2017). These devices are revealed as free electricity sources and
are widely regarded as a technologically advanced innovation; it is also anticipated
that they will be widely utilised (Siegel, 2012; dansie, 2013; Moghe et al., 2009).
However, this method of energy consumption may be viewed as an unauthorised
method and an attack related to energy theft. It can strain the T&D system of any
given utility. Although it is doubtful that a large amount of energy would be taken by
a single energy harvesting device designed by Siegel, the total amount of energy stolen
could be substantial in the future if these devices become more widespread (Bihl and
Hajjar, 2017).

In view of the discussed data-agnostic attack vectors that may be employed to
steal energy, this research categorises the different attack approaches in Table 2.2.
As shown, these attacks may be conducted at any level of aggregation and can use
a diverse range of resources (e.g., LV networks, and PV panels). Intriguingly, the
stated pillars of grid efficiency indicated in Section 2.1 are vulnerable to a variety of
data-agnostic theft attacks.

2.2.3 Data-driven energy theft strategies

Data-driven energy theft is orchestrated either through targeted or random meth-
ods (Jinping Hao et al., 2015; Shilay et al., 2017). Targeted theft refers to instances
in which a malicious actor has full awareness of the vulnerability spectrum for a given

22



Chapter 2. Energy Theft in Smart Grids: A Survey on Attack Strategies and
Detection Methods

Table 2.2: Overview of the data-agnostic energy theft attacks.

Ref. Strategies Infrastructure Resource
Attack
Effect

Remarks

(Bihl and
Hajjar, 2017)

Consumption
meter

manipulation,
Direct stealing
from T&D
systems

Consumption
T&D

Electro-
mechanical

meter,
T&D

networks

User safety
and grid
reliability

Explains thefts in
relation to

sophisticated energy
applications, such as
energy harvesting and

the smart grid.

(Yuan,
M.-g. Shi, and
Sun, 2015;

Yuan, M. Shi,
and Sun,
2015)

Generation
meter

manipulation

Generation PVs Grid
reliability

Introduces physical
attack applied to

inject energy into PV
power systems which
make the generation
meter reading larger

than normal.

(Czechowski
and Kosek,

2016)

Consumption
meter

interruption,
Direct stealing
from T&D
systems

Consumption
T&D

Electro-
mechanical

meters

User safety Assumes that the
majority of electric
energy theft is not
perpetrated by

wealthy and educated
individuals, but by
those with low to
moderate wealth.

(Moghe et al.,
2009; Chang
et al., 2012;

Cetinkaya and
Akan, 2017b;
Cetinkaya and
Akan, 2017a;

Ozger,
Cetinkaya,
and Akan,

2018)

Direct stealing
from T&D
systems

T&D T&D
networks

Grid
reliability

Investigates the
present technology for
energy harvesting.

system consisting of a node set (e.g., DRES deployment), and purposely injects data
such as to compromise its operation. Random methods usually refer to scenarios
where a malicious actor disturbs the operation of individual nodes (e.g., a single
DRES) by randomly flooding the application protocol dealing with metering data
or by injecting corrupted measurement values while a node communicates with a
centralised monitoring component (e.g., a SCADA system). Generally, theft triggered
by random methods is detected with higher precision (Lore, Shila, and L. Ren, 2018).

Both targeted or random methods for energy theft may be triggered by a number
of cyber-physical attack techniques. The most common technique employed in the
context of energy theft is the combination of man in the middle (MITM) with false
data injection (FDI) (El Mrabet et al., 2018). These attempts refer to cases where
an individual with malicious intent intercepts and redirects communication traffic
between a smart meter and an energy monitoring entity (e.g., SCADA instance in
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a NAN) to its own hardware. Traffic is redirected to the malicious actor such as to
modify legitimate measurements and further inject falsifying metering information
and re-transmit it to the monitoring component in order to affect the energy billing
process. Regardless of the attack scenario underpinning energy theft, there are always
some necessary steps to be undertaken by a malicious actor. Fig. 2.5 briefly provides
some core steps that are frequently practised.

Figure 2.5: Steps and associated activities in cyber-physical attacks enabling energy
theft.

We highlight four steps that in many cases are used concurrently in a given attack;
i) reconnaissance, ii) scanning, iii) exploitation, and iv) access. Hence, there exists a
number of variations of how the aforementioned synergistic use of MITM and FDI can
be instrumented (C. Peng et al., 2019; Engebretson, 2013; El Mrabet et al., 2018).
For instance, malicious actors could intercept general traffic at specific data recording
entities (e.g., microgrid backend server) that they were aware of due to either scanning
or reconnaissance such as to jeopardise the final data writing process with crafted,
falsified measurements (McLaughlin, Podkuiko, and McDaniel, 2009).

Other examples, include a combination of physical tampering of meters at various
power grid levels (e.g., T&D, end user smart-meters) where an attacker could identify
through simple social engineering and bypassing of authentication protocols through
ANSI optical ports with software such as Terminator that enables access (Mahmoud
et al., 2020). In parallel, sophisticated MITM and FDI techniques may also consider
the overall topology of a given grid deployment (Xie, Mo, and Sinopoli, 2010) in
order to bypass any detection mechanisms whereas other utilise adversarial machine
learning in order to game optimisation, scheduling and control processes within the
EMS (Shilay et al., 2017; Bor et al., 2019). The aforementioned technique is relatively
new and exploits the deficiencies of automated management functions by manipulating
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and crafting falsified training data to machine learning-based processes that profile
several measurements (e.g., ramp rate, power factor, reactive power) (Bor et al., 2019).

Given the diversity of the cyber-physical attack vectors enabling energy theft
(Jindal, Angelos K. Marnerides, et al., 2019; Jindal, Schaeffer-Filho, et al., 2020),
this work organises the various attack strategies based on their instrumentation and
further impact in Table 2.3 and Table 2.4. As depicted, there has been a large
volume in literature identifying, studying and further demonstrating that such attacks
can be initiated at various aggregation levels by utilising different types of resources
(e.g., SCADA, PV panels). Interestingly different types of attacks affect explicit grid
efficiency pillars that we introduced in Section 2.1.

Table 2.3: Overview of the data-driven energy theft attacks.

Ref. Strategies Infrastructure Resource
Attack
Effect

Remarks

(Mahmoud
et al., 2020)

Generation
meter

manipulation

Generation PVs Grid
reliability

Introduces attack func-
tions applied to manipu-
late the reported energy
generation profile of PV
power systems.

(Shaaban
et al., 2021)

Generation
meter

manipulation

Generation PVs Grid
reliability

Synthesizes a new pre-
sumer behaviour in an
attack function (adding
a fixed attack coefficient
to the actual genera-
tion).

(Krishna,
Gunter, and
Sanders,
2018)

Generation
meter

manipulation

Generation PVs and
Wind

turbines

Grid
reliability

Assumes attacks manip-
ulating the average of
net generation while the
detection mechanism is
perceptible.

(Sundararajan
et al., 2019)

Monitoring
and control
systems

manipulation

T&D PMU Grid
resilience

Summarizes different
methods applied to
commit data-driven
theft against the grid
measurements through
WAMS manipulation.

(Pal, Sikdar,
and Chow,

2017)

Monitoring
and control
systems

manipulation

T&D PMU and
PDC

Grid
resilience

Assumes attackers com-
promise one or more of
the PMUs, PDCs, com-
munication links or/and
routers.

(Ashok,
Govindarasu,
and Ajjarapu,

2018)

Monitoring
and control
systems

manipulation

T&D SCADA Grid
resilience

Makes various assump-
tions about the attacks
in the context of the
current security mecha-
nisms in SCADA net-
works.

(Punmiya and
Choe, 2019)

Consumption
meter

manipulation

End user Smart
meter

User safety Generates and labels
real-time attack patterns
for use with supervised
detection algorithms.
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Table 2.4: Overview of the data-driven energy theft attacks (Con.).

Ref. Strategies Infrastructure Resource
Attack
Effect

Remarks

(Basumallik
et al., 2017)

Monitoring
and control
systems

manipulation

T&D PMU Grid
resilience

Assumes the attacker
has access to only the
PMU measurements at
buses where the PMU
has been compromised.

(S. K. Singh,
Khanna,

et al., 2017)

Monitoring
and control
systems

manipulation

T&D SCADA
and PMU

Grid
resilience

Assumes the attacker
only compromises a sin-
gle state variable. The
attacker alters all the
measurements to project
the desired changed state
variable.

(Xie, Mo, and
Sinopoli,
2010)

Monitoring
and control
systems

manipulation

T&D SCADA Grid
resilience

Assumes the attacker
can access several
SCADA’s sensors to
compromise several
measurements.

(Tajer, 2017) Monitoring
and control
systems

manipulation

T&D SCADA Grid
resilience

Introduces a more real-
istic attack where the
attackers have only in-
accurate and incomplete
information because of
their restricted access to
the grid.

(K. Zheng
et al., 2018)

Consumption
meter

manipulation

End user Smart
meter

User safety Introduces data-driven
attacks enabling time-
variant modifications on
load profiles of the end
users.

(Kim et al.,
2019)

Consumption
meter

manipulation

End user Smart
meter

User safety Models the energy loss
resulting from meter ma-
nipulating, meter mal-
functioning, and illegal
bypassing.

(S. K. Singh,
Bose, and

Joshi, 2019)

Consumption
data

manipulation

End user Smart
meter

User safety Introduces theft attacks
based on the manipu-
lation of appliance load
profiles and the exclu-
sion of heavy appliances
from the actual measure-
ments.

(Gao, Foggo,
and Yu,
2019b)

Consumption
meter

manipulation

End user Smart
meter

User safety Presents theft attack as-
suming the customer has
DRES installation.

(Sharma and
Majumdar,

2020)

Consumption
meter

manipulation

End user Smart
meter

User safety Introduces a theft attack
designed by a fraudulent
employee, as such an em-
ployee fabricates the en-
ergy consumption read-
ings based on past mea-
surements, rather than
reading the current ac-
tual measurements from
the smart meter.
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2.3 Energy theft detection methods

As briefly discussed in Section 2.2, energy theft can be data-agnostic and resulted
purely from physical tampering of various grid components, or data-driven via
manipulating, destroying or corrupting software processes with the goal to modify
any data related to energy demand, generation or consumption. Throughout the
years, both the industry and the research community have developed and employed
techniques in aiming to detect any energy theft-related activities. In general, energy
theft detection methods are structured under two main categories; i) hardware-based
detection and ii) data-driven detection.

2.3.1 Hardware-based detection methods

Hardware-based solutions emphasise the installation of specialised metering equip-
ment in order to identify and/or prevent electricity theft. For example, in (Khoo and
Y. Cheng, 2011), the authors propose using radio-frequency identification (RFID)
technology to assist energy providers in detecting energy theft. A case study
demonstrates that a Chinese supplier who installed an RFID system obtained a
positive return on their investment: more than 14, 000 dollars in savings when
the RFID technology was implemented. Using a single-chip solution, the proposed
approach of (Ngamchuen and Pirak, 2013) applies a smart anti-tampering algorithm
for a single-phase smart meter. The findings demonstrate that the proposed approach
provides a wide dynamic range of theft event detection, low false detection probability
and rapid tampering detection. Moreover, the proposed algorithm still yields accurate
tampering detection capabilities in the case of small energy measurements. Moreover,
a study by (Dineshkumar, Ramanathan, and Ramasamy, 2015) presents an automatic
meter-reading processor-based detecting system. When such a meter identifies a theft
attempt, it sends a signal to the supplier via a global system for mobile networks.
The results indicate that the proposed system is more efficient than 90%.

In general, hardware-based energy theft detection methods have numerous
drawbacks, including the expense of deploying equipment, their vulnerability to failure
and the complexity of maintaining devices. These constraints limit the development
of these detection methods and have led to the emergence of data-driven approaches
(Z. Zheng et al., 2018).

2.3.2 Data-driven detection methods

Generally, the data-driven energy theft detection is achieved through the algorithmic
solution composition focusing on deviations of data related to aspects such as metering
and billing. Hence, such detection schemes place a strong emphasis on analysing
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data patterns through a variety of statistical tools and the majority utilises machine
learning techniques. This chapter stratifies and discusses data-driven energy theft
detection with respect to three main categories; i) classification-based, ii) regression-
based and, iii) clustering-based detection.

Given the diversity of theft scenarios and associated attack vectors over different
data aggregation levels on the smart grid infrastructure, detection methods have been
employed either at a centralised or a distributed fashion. Table 2.5, Table 2.6 and
Table 2.7 provide a comprehensive summary of methods introduced in past literature
over the last decade. Evidently, the majority of methods consider a combinatorial use
of algorithmic techniques in order to address specific challenges ranging from data
pre-processing and filtering up to statistical correlation analysis. Furthermore, some
formulations are broadly used (e.g., artificial neural networks -ANNs and support
vector machines - SVMs) over different types of attacks operating under diverse data
types gathered at various smart grid data aggregation components.

Complementary, Table 2.8, Table 2.9 and Table 2.10 illustrate the experimental
approach underpinning the methods summarised in Table 2.5, Table 2.6 and Table 2.7
further provide their outcomes. As depicted, each method was employed over energy
theft use cases involving a number of nodes within the actual grid and utilised specific
statistical features. In summary, we identify a range of raw as well as post-processing
features that are utilised within the listed methods. Thus, there exist techniques
involving one or more of basic statistical features (e.g., mean, min/max), frequency
and temporal domain features (e.g., signal periodicity frequency components), scaling
on independently distributed raw data, clustering or probability-based similarity
metrics as well as locality (e.g, geolocation coordinates), auxiliary (e.g., number of
energy appliances) and environmental features (e.g., temperature, humidity).

2.3.2.1 Classification-based detection

The study of (Messinis, Rigas, and Hatziargyriou, 2019b) proposed a classification
system to detect energy theft conducted at the end user infrastructure. The
introduced solution was assessed over simulations replaying the Irish Smart Energy
Trail dataset and its operation relied on the synergistic use of an SVM classifier, a
power optimization scheme and a voltage sensitivity analysis component. However,
this system required the utilization of additional features such as voltage and active
energy data to detect theft. The problem with utilizing such sensitive measures is
that it can expose customer data to privacy violations. Moreover, features associated
to real-time ancillary services (e.g., active/reactive energy require adequate signal
smoothing techniques for complete conversion over the time-frequency domain; an
element missing from this piece of work as it is not encapsulated within SVM
formulations or the proposed pre-processing stage.
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Table 2.5: Overview of the data-driven energy theft detection methods.

Ref. Technique
Nature Attack

Infrastructure
Attack
Type

Data
TypeCentred Distributed

(Fernandes
et al., 2018)

OPF, SVM,
Bayesian
Classifier,
Logistic

Regression

√
T&D and
end user

Demand data
manipulation

(Direct
tapping)

Consumption

(Y. Peng et al.,
2021)

Local Outlier
Factor,

K-means,
Maximal

Information
Coefficient,

Clustering by
Fast Search
and Find of

Density Peaks

√
End user Demand data

manipulation
Consumption

(Messinis,
Rigas, and

Hatziargyriou,
2019b)

SVM, Voltage
Sensitivity
Analysis,
Breakout
Detection
Package

√
End user Demand data

manipulation
Consumption

(Meira et al.,
2017)

Random
Forest, Logistic
Regression,

SVM, K-means

√
T&D and
end user

Demand data
manipulation

(Direct
tapping)

Consumption

(Glauner,
Meira, Dolberg,
et al., 2017)

SVM, K-NN,
Random

Forest, Logistic
Regression

√
T&D and
end user

Demand data
manipulation

(Direct
tapping)

Consumption

(Aydin and
Gungor, 2018)

Logistic
Regression,

K-NN, Fourier
Transform,

Random Forest

√
T&D and
end user

Demand data
manipulation

(Direct
tapping)

Consumption

(Gunturi and
Sarkar, 2021)

CatGBM,
Random
Forest,

AdaBoost,
LightGBM,
Extra Trees,
XGBoost,

Near-
miss,SMOTE,

√
end user Demand data

manipulation
Consumption

(Z. Zheng
et al., 2018)

Wide & Deep
CNN,

Three-Sigma
Rule, Random
Forest, CNN,
SVM, Logistic
Regression

√
End user Demand data

manipulation
Consumption

(Ying Zhang,
J. Wang, and
B. Chen, 2020)

Autoencoders,
Generative
Adversarial
Networks,

SVM, K-NN

√
T&D SCADA data

manipulation Network
measurements
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Table 2.6: Overview of the data-driven energy theft detection methods (Con.).

Ref. Technique
Nature Attack

Infrastructure
Attack
Type

Data
TypeCentred Distributed

(Yao et al.,
2019)

Convolutional
ANN, Paillier

Algorithm, SVM,
Random Forest,

Logistic
Regression

√
End user Demand data

manipulation
Consumption

(Ashrafuzzaman,
Das, et al.,

2020)

Logistic
Regression, DT,
ANN,SVM, Naive

Baye, LOF,
Isolation Fores,
Elliptic Envelope

√
T&D SCADA data

manipulation Network
measurements

(Punmiya and
Choe, 2019)

XGBoost,
CatGBM,
LightGBM

√
End user Demand data

manipulation
Consumption

(Shaaban et al.,
2021)

Linear Regression,
SVM, DT

√
Generation Generation

data
manipulation

PV
measurements

(W. Li et al.,
2019)

MLPNN, RNN,
LSTM, GRU,
Simple Moving

Average

√
T&D and
end user

Demand data
manipulation

(Direct
tapping)

Home
appliances

data

(Gao, Foggo,
and Yu, 2019b)

Linear regression,
SVR, ANN,
Radial Basis

Function Network

√
End user Demand data

manipulation
Consumption

(Razavi,
Gharipour,
et al., 2019)

Finite Mixture
Clustering,
Genetic

Programming,
ANN, Random
Forest, SVM,
K-NN, GBM

√
End user Demand data

manipulation
Consumption

(Buzau et al.,
2018)

XGBoost,
K-means, K-NN,
SVM, Logistic
Regression

√
Generation
and T&D

and end user

Attacks caused
NTL

Consumption

(Hegazy et al.,
2022)

Temporal CNN,
LSTM, CNN

√
T&D SCADA data

manipulation Network
measurements

(K. Zheng
et al., 2018)

Maximum
Information
Coefficient,

CFSFDP, Pearson
Correlation
Coefficient,
Kraskov’s

Estimator, LOF,
FCM

√
End user Demand data

manipulation
Consumption

(Ashrafuzzaman,
Chakhchoukh,
et al., 2018)

Deep Learning,
Generalized

Linear Modeling,
Random Forest,

GBM

√
T&D SCADA data

manipulation Network
measurements
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Table 2.7: Overview of the data-driven energy theft detection methods (Con.).

Ref. Technique
Nature Attack

Infrastructure
Attack
Type

Data
TypeCentred Distributed

(Esmalifalak
et al., 2017)

SVM, Density
based anomaly

detection,
PCA

√
T&D SCADA data

manipulation Network
measurements

(Mahmoud
et al., 2020)

Deep Feed
Forward ANN,

Deep
Recurrent
ANN, Deep

Convolutional
Recurrent

ANN, SVM,
ARIMA

√
Generation Generation

data
manipulation

PV
measurements

(Nallathambi,
2017)

Random
Forest, DT

√
T&D and
end user

Demand data
manipulation

(Direct
tapping)

Consumption

(M. Wen et al.,
2021)

CNN
√

End user Demand data
manipulation

Consumption

(Mukherjee,
Chakraborty,
and Ghosh,

2022)

CNN, SVM,
LightGBM,

ANN

√
T&D SCADA data

manipulation Network
measurements

(Jindal, Dua,
et al., 2016)

DT, SVM
√

T&D and
end user

Attacks caused
NTL

Consumption

(Cody, Ford,
and Siraj, 2015)

DT
√

T&D and
end user

Demand data
manipulation

(Direct
tapping)

Consumption

(Jokar,
Arianpoo, and
Leung, 2016)

SVM, K-means
√

End user Demand data
manipulation

Consumption

Table 2.8: Experimental approaches of surveyed studies on data-driven energy theft
detection.

Ref.
Number of

Nodes
(≈)

Features
Evaluation Metrics
(Best algorithm)

(%)

Experimental
Evaluation

Percent of
Attacked
Samples
(≈) (%)

Simulation Testbed

(Gunturi and
Sarkar, 2021)

— Statistical AUC = 90,PR =
99,RE = 98,F1 =

75

√
10− 50

(Glauner,
Meira, Dolberg,
et al., 2017)

700k Locality,
Auxiliary

AUC = 62.8
√

1− 90

(Jokar,
Arianpoo, and
Leung, 2016)

5K Auxiliary,
Similarity

FPR = 0.1, TPR
= 94

√
–

(Punmiya and
Choe, 2019)

5k Statistical FPR = 4, TPR =
97

√
50
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Table 2.9: Experimental approaches of surveyed studies on data-driven energy theft
detection (Con.).

Ref.
Number of

Nodes
(≈)

Features
Evaluation Metrics
(Best algorithm)

(%)

Experimental
Evaluation

Percent of
Attacked
Samples
(≈) (%)

Simulation Testbed

(Messinis,
Rigas, and

Hatziargyriou,
2019b)

5K Statistical,
Auxiliary,
Scaling,

Frequency

ACC = 99.4, FPR
= 0 TPR = 98.9,

AUC = 99.9

√ √
50

(Yao et al.,
2019)

42k Similarity ACC = 92.67
√

—

(Z. Zheng
et al., 2018)

42k Statistical,
Scaling

AUC = 96.86
√

9

(Nallathambi,
2017)

1 Auxiliary, En-
vironmental,
Temporal

ACC = 95.78,
AUC = 100

√
–

(Shaaban et al.,
2021)

400 Environmental,
Scaling

ACC = 91.50,
FPR = 11.5,
PRE= 89.15

√
–

(Razavi,
Gharipour,
et al., 2019)

4k Statistical,
Similarity

ACC = 99, AUC
= 99.8

√
–

(Y. Peng et al.,
2021)

3.5k Statistical,
Similarity

AUC = 91.84
√

12

(K. Zheng
et al., 2018)

391 Statistical,
Auxiliary

AUC = 81.6
√

12.8

(Mukherjee,
Chakraborty,
and Ghosh,

2022)

180 Statistical,
Scaling

ACC = 97, PRE =
99.53, RE = 99.79,

F1 = 99.64

√
9

(Hegazy et al.,
2022)

180 Statistical,
Scaling

PRE = 99.83, RE
= 99.92, F1 =

99.87

√
—

(M. Wen et al.,
2021)

42k Statistical,
Scaling

ACC = 91.9,
AUC=79.1

√
—

(Ying Zhang,
J. Wang, and
B. Chen, 2020)

119 Statistical,
Scaling

ACC = 97.85,
PRE = 92.68, RE

= 90.49

√
50

(Ashrafuzzaman,
Chakhchoukh,
et al., 2018)

100k Auxiliary ACC = 97.7,
F-score = 98.78
AUC = 98.53

√
—

(Mahmoud
et al., 2020)

71 Auxiliary TPR = 99.3, FPR
= 0.22 F-score =

99.55

√
—

(Cody, Ford,
and Siraj, 2015)

5k Temporal –
√

–

(Meira et al.,
2017)

3.5M Similarity,
Temporal,
Locality,
Auxiliary

AUC = 75.03
√

10− 90

(Aydin and
Gungor, 2018)

425 Statistical,
Frequency,
Scaling

ACC = 98.37,
FPR = 0 F-score

= 87.50

√
16

(Buzau et al.,
2018)

57k Statistical,
Similarity,
Auxiliary

AUC = 91
√

5.38− 8.37
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Table 2.10: Experimental approaches of surveyed studies on data-driven energy theft
detection (Con.).

Ref.
Number of

Nodes
(≈)

Features
Evaluation Metrics
(Best algorithm)

(%)

Experimental
Evaluation

Percent of
Attacked
Samples
(≈) (%)

Simulation Testbed

(Esmalifalak
et al., 2017)

1k Similarity,
Auxiliary

F-score = 95
√

—

(Ashrafuzzaman,
Das, et al.,

2020)

100k Statistical F1=84, ACC
=89,PR=99,
FPR= 0.03,
AUC=86,
TPR=73

√
–

(W. Li et al.,
2019)

1 Statistical ACC = 99.96
√

—

(Gao, Foggo,
and Yu, 2019b)

980 Auxiliary –
√

–

(Fernandes
et al., 2018)

42k Statistical,
Auxiliary

ACC = 83, F-score
= 80.9

√
—

(Jindal, Dua,
et al., 2016)

1k Scaling,
Auxiliary, En-
vironmental,
Temporal

ACC = 92.5, FPR
= 5.12

√
20

Variations of the conventional SVM formulation in synergy with principal
component analysis (PCA) was also the basis behind the work (Esmalifalak et al.,
2017). The evaluation of SVM-based formulations was based on labelling load data
that were simulated as stochastic processes such as to comply with pragmatic power
system behaviour in the T&D system infrastructure. PCA was initially employed
in order to reduce the high dimensionality of the simulated measurements and they
were firstly labelled within the training process of a supervised SVM formulation.
Subsequently, newly generated measurements were tested over the supervised model
and the identification of outliers implying theft detection was feasible with 95%
accuracy. However, due to the dependence of the proposed scheme on PCA, there
exists a high likelihood of a trade-off between the loss of important information
included in the simulated measurements and the dimensionality reduction process.

Recent developments in the area of deep learning enabled the composition of
adequate energy theft detection schemes. In (Yao et al., 2019) a novel synergy
of convolutional neural networks (CNN) and the Paillier cryptosystem in order
to maintain user privacy but also detect energy theft was demonstrated. Under
a similar mindset, a modified wide and deep CNN was proposed in (Z. Zheng
et al., 2018) in which the wide component of the customised CNN deals with global
consumption features whereas the deep CNN component was more focused on profiling
the consumer’s consumption periodicity such as to detect deviations implying energy
theft at end user level. In (M. Wen et al., 2021), a novel privacy-preserving energy
theft-detection framework utilising federated learning-based CNN was introduced to
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detect theft in consumption measurements. Nonetheless, the use of federated learning
requires local detection points and the addition of new components, or customers in
the grid would negatively affect both scalability and accuracy performance.

Nevertheless, a deep learning-based approach was also proposed to detect theft
activities in T&D infrastructure in (Ying Zhang, J. Wang, and B. Chen, 2020). The
proposed method utilizes autoencoders to efficiently reduce the data set’s dimensions
and extract features. It also incorporates autoencoders into generative adversarial
networks, which construct an adversarial game between two ANNs. The proposed
approach effectively achieves a detection accuracy of greater than 94%. In (Mukherjee,
Chakraborty, and Ghosh, 2022) a CNN-based multi-category classifier was proposed
to capture discrepancies in energy-flow measurements caused by possible theft attacks.
The method proposed in this study was successful in achieving a high detection
accuracy of 97%. A similar combination was adopted in (Hegazy et al., 2022), where
a parallel approach based on the LSTM with temporal CNN is proposed. With an
F1 score of 99.87%, exhaustive simulations indicate that the suggested method can
detect the presence and location of theft attacks in T&D systems.

The superiority of deep learning-based energy theft detectors was also illustrated
at the work in (Ashrafuzzaman, Chakhchoukh, et al., 2018) where a number of
traditional and ensemble classifiers such as random forests, and gradient boosting
machines (GBM) were compared with a CNN-based classifier using T&D infras-
tructure measurements. Similarly in (Mahmoud et al., 2020) the applicability of
a deep learning-based detection solution based on measurements that are captured at
DRES deployments was demonstrates. However, such theft detection methods entail
enormous computational costs due to the large amount of data required to effectively
train fully supervised deep learning-based detectors.

Several studies have also provided insightful comparisons of various classification-
based energy theft detection schemes and insights on the performance of particular
statistical features. For instance, the work in (Fernandes et al., 2018) introduces
the use of a customised optimum path forest (OPF)-based detection scheme for
attacks that target explicitly energy theft. In evaluations of industrial and end
user consumption data the proposed scheme outperformed conventional classifiers
such as SVM and Bayesian classifiers with respect to detection accuracy. However,
with respect to log loss function, SVM achieved the best value, outperforming
the customised OPF-based detection scheme. In (Meira et al., 2017), examine
a diverse set of spatiotemporal and exogenous features based on four criteria,
namely, auxiliary, similarity, locality and temporal. The performance of the selected
features was investigated through the classification processes of customised SVM,
logistic regression and random forest formulations. It was clearly revealed that
features derived only from consumption measurements (such as similarity features)
are adequate for the accurate detection of energy theft attacks. However, such a
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detection study entails computational processes on further features from historical
consumption measurements, which limits the application of this method in large-scale
detection scenarios.

In parallel, the study in (Glauner, Meira, Dolberg, et al., 2017) demonstrates that
the classification process under various algorithms (e.g., SVMs) reveals that features
related to aggregated neighbourhood consumption alongside locality parameters
outperformed individual meter time series distributions. However, we argue that
energy theft detection based on the utilization of features related to neighbourhood
consumption and locality parameters may not be generic enough, due to the fact that
the consumption patterns of those who belong to the same geographical domain differ
from one another. The assessment of features pointing to energy theft in synergy
with classification performance were also one of the main focus areas in the studies
conducted in (Aydin and Gungor, 2018; Buzau et al., 2018; Gunturi and Sarkar,
2021) and (Punmiya and Choe, 2019). These analyses demonstrated that combining a
detection classifier with feature engineering not only enhanced detection performance
but also decreased data sorage space and processing time for the detection process.

Through the application and comparison of classification-based ensemble methods
(e.g., XGBoost, CatGBM, LightGBM) with conventional classifiers (e.g., ANNs,
SVMs) over simulated attack scenarios it was revealed that ensemble methods
contribute significantly towards computationally-efficient and more accurate theft
detection (Punmiya and Choe, 2019). An ensemble learning-based approach was also
proposed to detect theft attacks on T&D infrastructures in (Ashrafuzzaman, Das,
et al., 2020). In this study, classification-based models (e.g. SVM, ANN, decision
tree (DT)) are used in one ensemble, while anomaly-detection models are used in
the other (e.g. LOF and one-class SVM). In each scenario, the ensemble scheme’s
results were compared to those of corresponding individual models. The performance
of a single classification-based model is equivalent to that of ensemble models. For
models based on anomaly detection, however, ensemble performance was superior to
that of individual models. However, ensemble-based detection methods pose some
instability since a slight variation in the training data would unavoidably entail
substantial restructuring of the main tree-based detection model. Thus, imposing
higher computational costs. Nonetheless, the work in (Ashrafuzzaman, Chakhchoukh,
et al., 2018) demonstrates the superiority of deep learning-based theft detection
schemes over any ensemble-based approaches compared, where the detection accuracy
based on the deep learning technique was 97.7%.

Despite the relatively high accuracy performance and reliability of classification-
based techniques, the aforementioned detection methods require labelled data from
malicious and energy theft-free behaviours. Obtaining such data is either challenging
in a real scenario or, even if they exist, they do not cover all possible theft-attack
behaviours (Messinis and Hatziargyriou, 2018). Theft-free data can be collected from
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historical grid measurements, however, malicious data (i.e., theft samples) covering
the spectrum of theft behaviours for a particular node hardly exist. In such cases, the
performance of the detection method is limited due to malicious sample unavailability.
These methods may remain unsuccessful in detecting more advanced and stealthy
attacks that are not available in training data, which directly affects the overall
detection performance (Júnior et al., 2016).

2.3.2.2 Regression-based detection

The study in (W. Li et al., 2019) proposed a modular energy theft detection system
consisting of a three-stage decision making process achieving 99.96% on theft detection
accuracy. The first stage relies on a multi-model power consumption prediction system
based on multi layer perceptron neural network (MLPNN), Long short term memory
(LSTM) ANN, recurrent neural network (RNN) and gated recurrent unit (GRU).
The second stage deals with monitoring a moving average whereas the third stage
employs a customer’s historical measurements to determine occasional maximum
energy consumption in order to make a final decision on a theft attack. Although
interesting results are achieved, the proposed method is undynamic for any future
changes in consumption patterns, since the main focus of such a system is the
utilization of historical consumption measurements in the detection process.

The behavioral profile of normal energy consumption was assessed in (Cody, Ford,
and Siraj, 2015) in order to detect deviations implying energy theft. The conducted
experiments revealed that consumption values can be predicted using DT learning and
they can be categorised into normal or fraudulent based on the threshold root mean
squared error value. Any value exceeding this threshold indicates a possible energy
theft attack. However, the prediction formulation proposed in this study can be
improved through the utilization of further comprehensive features, such as numbers
of appliances and providing the prediction model with additional details to determine
consumers’ energy consumption patterns.

A synergistic use of SVMs and DT for theft detection in end user infrastructure
was proposed in (Jindal, Dua, et al., 2016). Decision-tree formulation operates
on various features, including the numbers of heavy appliances and persons, to
generate the predicted consumption of each consumer. Then, an SVM-based classifier
is used to detect malicious consumers. Results show that the proposed method
can be implemented in real-time scenarios as the false positive rate is significantly
reduced to 5.12%. Complementary work in (Nallathambi, 2017) achieves regression
based on random forests to predict the expected energy consumption over the
US-wide consumption profiles for 2014. Through the use of various performance
metrics (e.g., prediction accuracy, classification error rate) forecasting through
random forests achieved 95.78% of prediction accuracy and outperformed a DT-based
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approach that reached 91.6% accuracy. Thus, providing a quite effective energy
theft prediction scheme. However, such a scheme cannot be considered as generic
since energy consumption is usually characterized by invariable variance or non-
stationary behaviour. Therefore, the fundamental principles underpinning random
forests model could become inappropriate for identifying short-term irregularities in
energy consumption.

Nevertheless, an anomaly detection-based approach entailing a regression tree
model and probability density function is developed in (Shaaban et al., 2021). In
the training phase of the detector, historical records of solar irradiance, temperature,
and smart meter readings are employed. As a metric for detecting suspicious data,
the probability density function of the difference between the actual readings from
DRES meters and the anticipated generation by the regression model is applied.

A data-driven regression model was proposed in (Gao, Foggo, and Yu, 2019b)
for energy theft detection. Instead of using unreliable topology information and
parameters from secondary network, this method was based on modified linear
regression algorithm. It uses only the voltage data and consumer’s consumption
data making it more feasible to adopt. Finally, the training data from real world
smart meter was used to validate proposed method and results illustrate effective
identification of cases related to energy theft. However, customers’ data may be
vulnerable to privacy breaches due to the dependence upon voltage measurements.

Overall, despite the applicability of the aforementioned methods to identify
advanced energy-theft attacks, regression-based methods regularly demonstrate longer
detection times than other detection categories. In such cases, regression techniques
are principally employed in the first stage of theft-detection methods and require
additional procedures to reach a final decision during the detection process. This
in turn is a time-consuming task and limits the applicability of such methods in a
real-time energy trading scenario, where the time required to detect theft activities is
influential in preventing any losses.

2.3.2.3 Clustering-based detection

A clustering-based theft detector utilising consumption patterns was also proposed
in (Jokar, Arianpoo, and Leung, 2016). In order to improve classification accuracy,
the number of clusters in the examined dataset was filtered through Silhouette plots
and subsequently clusters were hierarchically labelled across various consumption
profiles. The resulted outcomes of this approach demonstrate that even with low
measurement sampling intervals, the algorithm is scalable and achieves a detection
rate of 94%. However, the proposed technique required the installation of transformer
meters, which increased the monetary cost of such systems.

An alternative approach based on genetic algorithms and finite mixture modeling
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for composing clusters of consumption in order to identify customer segmentation
and potential outliers was presented in (Razavi, Gharipour, et al., 2019). In fact, the
proposed method outperforms a number of classification-based approaches such as
k-nearest neighbours ( K-NN), ANN and SVM by 99.8% in the area under the curve
for theft detection. However, such a detection system cannot be applied in a real-time
scenario, since the results achieved indicate that there is an increase in the relative to
physical inspection.

An outlier-based detector of three modules was presented in (Y. Peng et al.,
2021). The proposed method applied local outlier factor (LOF) and the K-means
algorithm as the basis to detect theft at the end user infrastructure. Firstly,
consumption profiles were analysed with k-means and subsequently outlier candidates
were selected based on the deviation of each consumer from the relative cluster centers.
Finally, the anomaly ranking of the selected candidates was calculated using the
LOF algorithm. Although the proposed detector achieves reasonably high detection
accuracy of 91.84%, it still fails to detect linear theft, where an attacker manipulates
the consumption profile to reduce it at a constant rate.

In addition to consumption measurements, the authors in (K. Zheng et al.,
2018) employed the measurements recorded by an observer smart meter, installed
to aggregate the sum of the consumption measurements of a group of consumers
over a certain period. The proposed approach in (K. Zheng et al., 2018) combined
two data-driven techniques, i.e. a maximum-information coefficient and a clustering
technique by fast search and finding density peaks (CFSFDP), to detect these thefts.

Despite the fact that clustering-based methods can be used in scenarios of scarcity,
minimal or zero availability of malicious intent, these methods will normally produce
an end result with a high false-positive rate. To construct a clustering-based model, no
assumptions of labelled data from malicious and theft-free behaviours are made. As a
result, the detection model can identify any abnormal patterns as malicious behaviours
(Messinis and Hatziargyriou, 2018). In general, abnormalities may occur due to non-
malicious activities (e.g., smart-meter misconfigurations), leading to an increase of
false-positive rates resulted by clustering-based theft detection mechanisms.

2.3.2.4 Comprehensive analysis

Undoubtedly, malicious actors continue to target a diverse set of vulnerabilities
present over various system, network and algorithmic components serving the
(sub)infrastructures composing a smart grid deployment. Hence, attackers intend
to launch energy theft attacks through a variety of techniques that target the evasion
from current detection schemes. Evidently, data-driven methods for detecting energy
theft distilled by learning, profiling and detecting abnormalities are considered as a
means to adaptively engage with new attack vectors.
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In general, data-driven energy theft detection schemes leverage three conceptual
and data-driven procedures; (i) data-processing and model-selection stages covering
aspects of data sanitisation and feature selection, (ii) model-training procedure which
varies across classification, clustering and regression detection methods and (iii)
decision-making procedure which includes applying a model trained on new data such
as to pinpoint anomalies that could relate with malicious activity.

Given the ”ad-hoc” employment of most of the detection methods presented herein
over specific use cases, we argue that there is no universal data-driven methodology
covering all aggregation levels in a given smart grid deployment. In general, the
aforementioned three levels, categorized into energy generation, T&D, and end user
infrastructures have different probabilities for the deployment of theft and different
vulnerabilities exploited by malicious actors. Such factors should be taken into
consideration when a method is designed to detect energy-theft attacks.

However, the utilization of a hybrid data-driven model has proven to be more
robust than adopting a single model in detecting attack vectors underpinning energy
theft. Such hybrid methods are considered to make combinatorial use of two or more
data-driven models. In such methods, the entire theft detection method leverages the
analytic process of each candidate model to achieve a specific action. All achieved
actions are subsequently integrated into one detection system in order to complement
each other and mitigate the limitations of the others.

Furthermore, the utilization of data from multiple and diverse sources can
create a more reliable method for detecting energy-theft attacks over smart-grid
infrastructures. Detection methods utilizing a single data source are constrained to
build a candidate model fitting specific data measurements, thus its suitability is not
generic. Moreover, the candidate model is sensitive to the samples it was trained with,
which may potentially have been manipulated to falsify the detection method to cope
with new adversarial objectives. However, by acquiring the data from various sources
which have less likelihood to be accessible to adversaries can significantly increase the
reliability and performance of the detection method.

The adoption of data-driven methods that utilise multiple and diverse data
feeds would unavoidably invoke trade-offs spanning across performance, privacy and
computational complexity. For instance, data-driven theft detection at the end user
infrastructure method would require a privacy-aware data processing and aggregation
scheme. Hence, in order to detect theft in DRES infrastructure, the detection method
should not rely on data that are not available to utility providers such as EMS
measurements. Such measurements are usually maintained by the DRES owner
and not accessible to any third party. Thus, there could be some limitations in
terms of the granularity of the anomaly detection process employed by the theft
detection scheme. On the other hand, energy theft-detection process in the T&D
infrastructure inherently requires the utilization of high volume of network and system
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log measurements. Therefore, an anticipated high computational cost would be
implied and thus limit the real-time capabilities of a given theft detection scheme.

2.4 Present challenges and suggested solutions

Despite the various solutions proposed in terms of energy theft detection, there
exist various gaps and open issues thus requiring further attention within suggested
solutions. Within this section, we highlight and discuss some of the challenges and
we further summarize potential suggested solutions. As depicted in Fig. 2.6 we
decompose the gaps spectrum into (i) measurement-driven, (ii) machine learning and
(iii) security-related challenges.

Figure 2.6: Present gaps in energy theft detection.

2.4.1 Measurement-driven challenges

2.4.1.1 Testbed scenarios and datasets

Diverse energy-related data sets, different network infrastructures, and multi-faceted
energy theft-related attacks are studied in most of the presented works as discussed
in this study. However, there is a notable lack of commonly available (and applied)
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prototype implementation on realistic large-scale testbed as well as datasets such as
to enable extensive experimental verification nor experimental reproducibility tailored
for energy theft detection (Messinis and Hatziargyriou, 2018). Most testbeds and
their corresponding datasets are principally designed in an ad-hoc fashion for specific
projects limiting the generalisation of findings (Cintuglu et al., 2016). Therefore,
we argue that it is of crucial importance to build benchmark testbeds and properly
designed platforms such as to test connections and security features of a system and
maintain alignment with the pragmatic and rapidly emerging design requirements of
current and future smart grid deployments.

2.4.1.2 Measurements and big data

Volume, velocity, and variety are the traditional traits and they naturally challenge
any analysis domain within the smartgrid ecosystem (J. Hu and Vasilakos, 2016).
Hence, the adequate comprehension and optimisation of these diverse traits during
data collection, processing and analysis over particular smartgrid scenarios such as
energy theft detection is of vital importance. For instance, there are 27 million
consumers that consume domestic electricity in the United Kingdom alone. These
consumers have more than 100 million data points that are collected either quarterly
or half-yearly. These points are used by the energy suppliers to store, record and use
in the billing system and identifying abnormal conditions that could relate to specific
energy theft-related attacks. However, with smart metering, to collect the data from
these many data points, at a thirty-minute sampling rate, will require a substantial
amount of resources. For example, at least 4500 to 9000 times more of the present
data size will be required to be processed by the energy suppliers, and therefore this
leads to a significant augmentation in data size (Wilcox et al., 2019). Thus, there is a
strong requirement for efficiently coupling the measurement requirements for granular
energy monitoring with optimised storage as well as data processing solutions.

2.4.2 Machine Learning challenges

2.4.2.1 Class imbalance

Class imbalance problem is a traditional problem existing for supervised or semi-
supervised learning having direct implications on energy theft detection. In particular,
this problem occurs when one of the classes (in a multi-class problem) has significantly
more number of samples than the other classes, thus the training model is biased
leading the testing phase to classify events towards the majority class label (Gunturi
and Sarkar, 2021). Hence, in the case of learning for theft instances in which are by far
less than legitimate instances, the class imbalance problem would result on a classifier
to incorrectly label malicious instances to the majority of normal behaviour. It is
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therefore important to establish adequate ground truth datasets with correct scaling
factors through the training phase of learning processes by assigning correct weight
parameters to malicious samples. Thus, addressing the limitations from the class
imbalance problem (Maamar and Benahmed, 2018). Nonetheless, the composition of
concrete ground truth labels for theft instances is also a topic aligned with the needs
of optimised feature engineering and selection as we discuss next.

2.4.2.2 Feature engineering and selection

Feature engineering accompanied by efficient feature selection is a powerful foundation
for addressing the aforementioned class imbalance problem as well as tailoring a
learning procedure to identify energy theft instances. Evidently, it is common in many
energy theft detection processes to operate over insufficient or incomplete feature
vectors and experience class imbalance as well as model over-fitting (i.e., learn the
only specific pattern in a given dataset), thus affecting significantly detection accuracy.
Therefore, designing and engineering new features can improve the performance of
machine learning detection methods (Glauner, Meira, Valtchev, et al., 2016; Maamar
and Benahmed, 2018).

2.4.2.3 Non-malicious abnormal activities

A classical problem within anomaly detection is the distinction of classes between
anomalous events. Energy theft-related attacks could relate to statistical abnormal-
ities and have similar properties as anomalous events that are caused by legitimate
intent (e.g., smart meter misconfiguration). A great challenge is to compose adequate
classification and clustering schemes that are able to pinpoint the differences between
malicious and legitimate processes and further highlight the specific properties
entailed within an energy theft incident. There can be many reasons that the
ambiguities in electrical node output patterns may occur. These can happen owing
to several altered causes such as new device installation (for example, a new DRES)
or changing in the electricity usage habit of the residential end users (Messinis and
Hatziargyriou, 2018). This, in turn, increases the overall inspection cost (Jindal, Dua,
et al., 2016) as once the model classifies an energy theft attack, physical inspection
is essential for final verification and that is a costly procedure (Jokar, Arianpoo, and
Leung, 2016). It can, therefore, be argued that there is a requirement for more research
in the improvement of the proposed detection methods in terms of reconsigning
the theft detection activities and reducing the false positive alarms (Maamar and
Benahmed, 2018).
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2.4.2.4 Adversarial machine learning

As already described, it is feasible for an adversary to manipulate end user data
or game the algorithmic learning procedure in a targeted manner. These particular
types of attacks are called adversarial machine learning attacks which are carried out
for the purpose of theft detection. For example, carrying out an attack where input
data is made to look like normal electrical data, i.e., crafting an attack that seems
normal to the machine learning algorithm or changing the weights of the trained
machine learning model (Jokar, Arianpoo, and Leung, 2016). These scenarios can
maximize the predicted loss or falsify trained models to new adversarial objectives
(Bor et al., 2019; L. Huang et al., 2011; Y. Chen, Y. Tan, and Deka, 2018). Moreover,
handcrafted rule-based attacks are more sophisticated (than automated attacks) and
proposes different challenges, and therefore a generalized detection model will not
provide promising results (Bor et al., 2019). Thus, more studies are required to
investigate the capabilities and the limitations of existing machine learning detection
algorithms with respect to adversarial machine learning.

2.4.3 Privacy challenges

2.4.3.1 Data breach

Most of the energy theft attack detection schemes utilize (some of) the pri-
vate information of consumers/prosumers, such as smart meter readings and user
load/generation profiles. While this information can help to detect the theft attacks
to a certain extent, it should still be kept in mind that disclosing such private data
may raise concerns about the user’s safety and breach his/her privacy. These data
breach threats can occur in different stages of the theft detection process, including
data collection, transmission and storage. Such sensitive breached information might
be purchased by interested third parties such as marketing companies which can use
this data to sell their products to possible customers. Apart from this, if criminals get
their hands on this sensitive data, the daily routine of a household can be analyzed
from electricity usage/generation pattern to carry out crimes. Therefore, detecting
energy theft attacks while maintaining privacy of information is a challenging task,
but there is a notable lacking of intelligent privacy-preserving detection schemes in
the works of the energy theft (S. Salinas, Ming Li, and P. Li, 2012).
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2.4.4 Measurement-driven solutions

2.4.4.1 Testbed simulation, emulation and hardware

Future works should consider the measurement-driven challenges that affect energy
theft detection frameworks. The energy theft activities should be ratified by
experimental environments and for this to happen, there is a strong need to include
testbed software simulation, emulation and hardware for carrying out energy theft
analysis. For instance, a cloud-based environment can be created to store smart
grid data which can be used in these testbeds to conduct energy theft analysis
(S. Tan et al., 2017). With simulation software and emulation hardware, a quick
verification of new concepts can be achieved efficiently which can then be easily
transferred to power system industry and for more extensive public use. Moreover,
these testbeds create interesting educational platforms to understudies which would
spur the research interests to conduct multi-user experimental facilities for several
smart grid applications (Cintuglu et al., 2016).

2.4.4.2 Big data schemes

To collect, store, and process monitoring data various diverse data sources in smart
grid results to the big data challenges as discussed earlier. To cater to these challenges
the two important present challenges include the creation on big data analysis
platforms and reducing the complexity of such data. For the former, cloud computing
technology has been used to create big data platforms by the many industries since
this technology is scalable, self-organizing, and adaptive. Therefore, platforms such
as Hadoop, Cassandra, and Hive in conjunction with cloud computing can be used
by utility providers for smart grid big data analysis (Bhattarai et al., 2019). For the
latter (to reduce the data complexity), different techniques such as dimensionality
reduction, distributed optimization algorithms, and active learning can be useful to
analyze big data efficiently (Meng Li et al., 2020). Different studies reported that the
computational process of the summarized and produced data rather than the original
data stream can result in an acceptable relative error (Jindal, Kumar, and M. Singh,
2020a). Therefore, these dimensionality reduction techniques are useful for reducing
the communication cost, computing complexity, and storage resource utilization for
smart grid big data analysis (Diamantoulakis, Kapinas, and Karagiannidis, 2015).

2.4.5 Machine learning solutions

2.4.5.1 Class imbalance

Class imbalances happen when there are less samples in one of the target classes
for machine learning algorithms or a close similarity in the number of samples in
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considered classes. To enhance the learning results associated with imbalanced data
classes (and improve on their bias), three primary methods can be utilized: data-level,
algorithm-level and hybrid techniques (Krawczyk, 2016). In the data-level techniques,
the concentration is on the modification of training set to allow more balanced
distributions for oversampling (more minority groups’ samples) and undersampling
(fewer majority groups’ samples). The algorithm-level techniques modify the learners
that already exist to eliminate their bias for majority groups. However, good insight is
required into the modified learning algorithm and real discovery of reason for skewed
mining distributions. Some popular algorithmic techniques include cost-sensitive
approach (to insert different penalties for every group of samples) and one-class
learning (concentrating on the specific target groups). The hybrid techniques use
the combination of methods as mentioned above, by reducing their weaknesses and
making use of their strengths (Krawczyk, 2016).

2.4.5.2 Feature engineering and selection schemes

We argue that future research directions could place stronger focus on particularly
exploring algorithmic and system-wide principles to facilitate automated feature
engineering and selection methods. The feature engineering process can extend
the original detection model’s feature vector by adding new features that are
calculated based on other input features. These engineered features may be the
differences, averages, or other statistical transformations of the original feature vector,
helping in better understanding of the interactions amongst these features. This
process is similar to the statistical transformations performed by human analysts
for constructing an engineered feature formulas. The task of feature engineering and
selection is mainly a time-consuming task and each model type will respond in different
manner to different engineered feature types (Heaton, 2016). However, in general, the
selected and engineered featured would help in achieving the maximum probability of
success for the machine learning algorithms to detect energy theft (Jundong Li et al.,
2018). Typically for feature engineering and selection, many methods can be used such
as mathematical functions, deep feature synthesis components, expansion reduction,
evolution-centric, multi layer neural networks and hyper parameter optimization
(Heaton, 2016; Khurana, Samulowitz, and Turaga, 2018).

2.4.5.3 False positive rate-reduction schemes

A meta-learning scheme can be helpful to reduce the false positive rates resulting
from non-malicious activities in the process of energy-theft attack detection. Meta-
learning can be defined as a learning process involving the collection of knowledge from
past experience in order to use it in future learning (Jinghang Li and M. Hu, 2020).
Meta-learning is required by the theft-attack detection system to combine various
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classifiers (by taking note of their behaviours) and adopting an integration rule to
reduce false positives. In the literature, the main meta-learning techniques include
stacking, bagging, voting and boosting. In the voting approach, each classifier has one
vote, and the classification that has the highest votes determines the final prediction.
In stacking learning, the process adopts a layered architecture wherein each layer has
one or more classification techniques. A layer’s projection is applied to extend the
original vector of the feature with the closest instance. The bagging approach creates
a combination of classifiers through the manipulation of training samples in a base
classifier. It selects one base classifier and invokes it many times using several training
samples. Boosting, in contrast to bagging learning, generates various basic classifiers
through a procedure in which examples of data sets receive new weights in sequence
(Possebon et al., 2019).

2.4.5.4 Adversarial machine learning schemes

With respect to adversarial machine learning, a binary classifier-based intrusion
detection system trained on available device behaviour logs is imperative (Bor et al.,
2019). This system can attempt to tag approaching instances as either malicious or
benign, using features which are generated in real-time from streams of energy data.
Through gradual training instances expansion and feature generation refinement, this
system can produce a confidence score that can be utilized to set recall/precision.
This will allow having low maintenance overheads and fewer false alerts as compared
to a manual system. The underlying intrusion detection system can employ a broader
range of features including outgoing data from the control algorithm (Bor et al., 2019).
As also discussed in (Bor et al., 2019; Jindal, Angelos K. Marnerides, et al., 2019)
malicious behaviours can be detected using other associated features such as network
properties (e.g. packet size, packet arrival time) and communication security (e.g.
certificate fingerprints, negotiated cyber suite).

2.4.6 Privacy preserving schemes

Privacy-preserving schemes can be used in two ways to detect energy theft attacks;
one, focusing on protecting the identities of users, and the other, emphasising
protecting the data of users (Guan et al., 2018). For the first aspect, pseudonym,
anonymization, and virtual ring have been used. Pseudonym is considered to be a
common user identity protection approach. The registration process for a pseudonym
often involves many data protection methods, such as ring signature and zero-
knowledge proof (Guan et al., 2018). Anonymizing smart-grid data is one of the
methods approved by the National Institute of Standards and Technology (Afrin and
Mishra, 2016). The main goal of anonymization is to enable smart grids’ nodes to
communicate in an anonymous manner with various smart-grid service providers by
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using different pseudonyms. Another common method for user-identity preservation
is a virtual ring, where a ring signature is used to validate the identity of users,
without knowing their actual identity, by a control centre (Alladi et al., 2019). On
the other hand, for the second aspect, emphasising protecting users’ data, many
methods can be used, such as data aggregation or authentication methods. Data
aggregation is a well-known scheme which is used to protect the data of smart-grid
users. It generally includes data obfuscation algorithms and homomorphic encryption
(Guan et al., 2018; S. Salinas, Ming Li, and P. Li, 2012). Authentication methods
are efficient countermeasures for privacy-related attacks and are usually based on key
public infrastructure (Chin, Lin, and H.-H. Chen, 2016).

2.5 Summary

Smart power grids aim towards resilient, reliable and sustainable operation of legacy
power systems and also the integration of smart business models for the optimised
use of energy by consumers. Nonetheless, their complex system architecture in which
diverse and heterogeneous infrastructures interconnect, facilitates the basis for a
number of attacks that enable energy theft. Energy theft attacks affect critical grid
processes and facilitate financial gain for malicious actors. To present the overall
overview of such actors and their energy theft activities, we conduct a through study
of different energy theft attacks and detection techniques in this chapter for smart
grid systems.

In this regard, we firstly present the smart grid components in the energy supply
chain with a focus on their data communication along with the pillars to access grid
effectiveness. The impact of energy theft in the smart grid is then discussed by
critically assessing how energy theft can be formulated by manipulating demand,
supply, and generation data. The data-driven and data-agnostic energy theft attack
examples are then discussed along with their enabling activities. Furthermore, we
categorize extensive studies addressing the data-driven aspect of energy theft detection
and summarizing the experimental approaches for such studies. Lastly, we highlight
various open issues and challenges still persisting in the area of energy theft detection.
We summarise and further indicate research directions for energy theft.

According to the study conducted in this chapter, there are still some uncertainties
over the strategies and techniques used by malicious actors to perpetrate energy theft
activities and manipulate the business model of modern energy sectors to gain financial
benefits. Such uncertainties are extended to cover aspects related to the architecture,
components, and resources of energy theft detection strategies. Therefore, it is crucial
to utilise the current electricity market, which is driven by a demand for data collection
and analysis, to design an overarching data-driven detection framework that enables
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utility providers to develop energy theft detection methods based on a variety of theft
attack scenarios. Motivated by this observation, the subsequent chapter tackles the
aforementioned scenario and proposes a general theoretical framework for the data-
driven process of detecting energy theft activities across smart grid infrastructures.
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Energy Theft Detection Framework

The smart grid is an automated, geographically diverse energy delivery network
that integrates information and communication technologies to provide real-time
information and enable instantaneous supply and demand balancing (Gellings et al.,
2011). However, this system also exposes energy providers to new types of theft
attacks, increasing financial losses (Qi et al., 2016; Sanjab et al., 2016). For instance,
a Puerto Rico energy provider experienced systematic energy theft, costing around
$400 million annually (Krebs, 2012).

Energy providers worldwide are reducing losses by detecting energy theft activities.
Conventional detection methods, which involve physically inspecting locations where
theft is expected to intensify, are time-consuming, inaccurate, costly and require
significant human effort (Jindal, Dua, et al., 2016; Aldegheishem et al., 2021; Gao,
Foggo, and Yu, 2019a). The smart grid paradigm offers data-driven detection
approaches to conduct these inspections more efficiently (Gao, Foggo, and Yu,
2019b; K. Zheng et al., 2018). These data-driven techniques are distributed across
various smart grid infrastructures, including generation, end-user infrastructures and
transmission and distribution (T&D), and they can identify energy thefts perpetrated
through various strategies, such as clandestine cyber connections or physical meter
tampering (Jindal, Schaeffer-Filho, et al., 2020).

An analysis of studies on smart energy system security reveals that there is no
standard data-driven method for detecting energy theft activities. In general, these
methods employ various measurements gathered from the integrated data-collection
infrastructure of modern energy grids. They adopt various approaches and algorithms
from a broad spectrum of knowledge, with machine learning being the most prevalent
(Messinis and Hatziargyriou, 2018). Therefore, in this chapter, we aim to take
a significant step forward and abstract the energy theft detection process into a
generically applicable theoretical framework from a data-driven perspective. The
proposed theoretical framework provides a review of existing theories that serve as a
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road map for developing a data-driven approach to the detection of energy theft in
modern energy grids, commonly referred to as smart grids. As case studies for the
application of the proposed theoretical framework to derive data-driven theft detection
approaches, we also provide an overview of the data-driven detection approaches
developed in this thesis. In summary, the contribution of this chapter is two-fold
by providing:

1. An abstraction of the data-driven process of detecting energy theft activities in
a general theoretical framework. From a data-driven perspective, this founda-
tional model reflects commonalities in the phases, domains and dimensions that
are involved in the energy theft detection process.

2. An overview of the two data-driven detection contributions made by this thesis,
which are: i) a predictive energy theft detection approach for distributed
renewable energy sources (DRES); and ii) an adaptive energy theft detection
approach for consumption and DRES generation smart meters. Although the
issue of energy theft in non-renewable energy sources is acknowledged, it lies
outside the scope of this thesis.

The rest of this chapter is organized as follows: Section 3.2 discusses the proposed
theoretical framework, while 3.3 discusses the operation dimension, which is the
underpinning of our theoretical framework. Section 3.4 provides the overarching data
flow of the energy theft detection approaches that contributed to this research, and
Section 3.5 summarizes and concludes this chapter.

3.1 Energy theft detection requirements

Energy theft is a multidimensional problem, and multiple specific, tangible require-
ments should be considered when developing a data-driven detection strategy. These
requirements identify the functionality required by a detection approach in order to
maximise the return on investment in anti-energy theft initiatives. Fig. 3.1 illustrates
these requirements. As depicted in this figure, the data-driven energy theft detection
requirements are grouped into three main categories: must have, should have and
could have. The requirements solicitation we conducted here was distilled using the
MoSCoW method. It is adopted because it provides a consistent, high-confidence,
low-complexity prioritisation process capable of managing multiple alternative inputs
(Khan et al., 2015; Burgess and Sunmola, 2021).

The “must have” requirements specify the critical properties that a detection
approach is required to possess, such as being independent of the functional
components invoked. These properties are typically influenced by the nature of energy
theft attacks and the constraints imposed by anti-theft initiatives. The “should have”
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Figure 3.1: Requirements for data-driven energy theft detection.

requirements indicate the crucial, but not vital, properties of a detection strategy.
Depending on how the detection method operates, these specifications might need
to be satisfied or they might not. Hence, in the context of data-driven energy theft
detection, the meeting of “should have” properties can be negotiated, whereas ”must
have” properties must be met. The properties labelled “could have” are not critical
to the core functionality of the detection strategy. Hence, in comparison to the
“should have” specifications, a failure to meet these requirements has less effect on
the detection outcomes.

The requirements categorised as “must have” include high performance and
measurement integrity. In this regard, the algorithmic properties of the detection
solution should achieve a high level of accuracy and precision in identifying theft from
streamed measurements from prosumers and consumers, with minimal computational
requirements required to obtain classification decisions. In addition, because data-
driven detectors rely on the energy measurements of grid users, which are vulnerable
to adversarial attacks, the integrity of these measurements must be retained.
Unfortunately, these adversarial attacks can compromise the robustness of energy
theft detectors, such as a 17% drop in the detection rate (Takiddin, Ismail, and
Serpedin, 2022; Takiddin, Ismail, Zafar, et al., 2020; Jingbo Hao and Tao, 2022).

The requirements categorised as “should have” involve detector interoperability,
hardware independence and detector scalability. As the smart grid environment
entails highly distributed domains, technologies, components, and infrastructures,
the detection strategy should leverage a sufficient number of data sources to create a
synergistic detection effect. Hence, obtaining data from multiple sources can generate
a synergistic detection effect that maximises detection performance while being
invulnerable to adversarial attacks (Krishna, Gunter, and Sanders, 2018; Glauner,
Meira, Dolberg, et al., 2017; W. Li et al., 2019; Cody, Ford, and Siraj, 2015). In
addition, the detection strategy should avoid dependence on the use of additional grid
equipment. Many theft detectors (such as (Jindal, Dua, et al., 2016; Kim et al., 2019))
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rely on additional hardware (such as observer metres) to detect theft. Nonetheless,
deploying such additional resources imposes unnecessary costs. Finally, the detection
strategy should be able to process large volumes of data in near real time in order to
identify energy threats (S. Tan et al., 2017).

We also specify the “could have” requirements for the energy theft detection ap-
proach; these include user privacy, adaptability, and the detection of misconfiguration.
Hence, the approach for detecting energy theft should maintain the confidentiality of
user information, because the disclosure of private data could raise safety concerns and
violate the users’ privacy (e.g., if criminals gain access to this sensitive data, energy
usage/generation patterns could be used to determine the daily routine of a household
in order to commit crimes) (S. Salinas, Ming Li, and P. Li, 2012). In addition, the
detection solution should be able to adapt and re-optimize its detection thresholds in
response to the inclusion of new types of grid components and the installation of new
technologies (e.g., the installation of energy-efficient (Fekri et al., 2021; Xia et al.,
2022)). Typically, the deployment scenario for energy theft detection depends on the
continuous arrival of energy readings. Hence, a theft detector could be incrementally
adjusted by analysing energy instances as they become available in order to adapt
to newly arriving energy patterns (Alkhresheh, Al-Tarawneh, and Alnawayseh, 2022).
Finally, as a “could have” requirement, the algorithmic attributes of the detector could
be developed so as to differentiate between theft-related behaviours and anomalous
events that may have been caused by non-malicious intent (Yip, Wong, et al., 2017a;
Jokar, Arianpoo, and Leung, 2016).

3.2 Theoretical framework of data-driven energy

theft detection

In this section, we propose a framework that is tailored to serve the notion of energy
theft detection and considers the requirements highlighted in Fig. 3.1. As shown in
Fig. 3.2, the proposed theoretical framework for identifying energy theft activities
in a smart energy system is a complementary four-dimensional structure. These four
dimensions are infrastructure, measurement monitoring control (MMC), operation
and end-user. These dimensions collectively constitute a dynamic structure that
provides utility operators with continual updates on potential threats. By optimising
data-driven detection procedures, utility providers can respond promptly, thereby
minimising energy and monetary losses caused by energy theft threat. The framework
essentially provides a proactive and resilient approach to securing intelligent energy
systems to counter the constantly evolving attacks posed by energy theft.

The infrastructure dimension represents the endpoints utilised for energy theft
activities. It comprises the physical deployment of energy grids, including generation
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Figure 3.2: Theoretical framework for data-driven energy theft detection in smart
energy systems.

facilities and T&D networks. The generation facilities involve centralised deployments
(such as hydroelectric dams, wind farms, solar farms and fossil fuel power plants) and
on-site renewables (i.e., DRES) such as wind and solar, and waste-to-energy. The
T&D networks consists of all the electrical energy systems (low-voltage, high-voltage
and medium-voltage), T&D stations, and transformers.

The MMC dimension of the proposed theoretical framework manages the data
collection infrastructure integrated into modern energy grids. Therefore, it contributes
in two distinct ways to the data-driven energy theft detection process. On
the positive side, this process relies solely on the measurements collected by
this dimension across energy systems. Nevertheless, this dimension creates more
vulnerable endpoints that can be used to launch energy theft attacks. Essentially,
it has three functions (measuring, reporting and balancing) that are governed
by two standards (communication network standards and electric power system
standards). These components rely on networked environments that inherently lack
security procedures. Malicious actors exploit these vulnerabilities by manipulating
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communication and energy measurement data produced and stored by networked
measuring, reporting and balancing elements. By tampering with data integrity
and energy measurement accuracy, these entities can present erroneous information,
leading to financial gains through energy theft or fraudulent trading (Mahmoud et al.,
2020; Jindal, Dua, et al., 2016; Messinis and Hatziargyriou, 2018).

However, the actual process of data-driven energy theft detection is conducted
by utility providers in the operation dimension. This dimension obtains data and
measurements from the MMC dimension that are used for detecting theft-related
activities. As Fig. 3.2 illustrates, the actual process of theft detection is one
component of a larger operation-level process: energy theft diagnosis. The output
of this process is used by the theft management unit, which is responsible for utilising
the detection process to reduce utility providers’ financial and energy losses and to
maintain the effectiveness pillars of the energy system.

The fourth and final dimension of the theoretical framework for energy theft is
the end user dimension, which penetrates the previous three dimensions. As shown in
Fig. 3.2, the infrastructure and MMC dimensions include residential, commercial,
industrial and transportation energy consumers and prosumers. Their physical
deployments are a crucial component of the energy system infrastructures, and their
energy measurements represent the main part of the MMC. Furthermore, malicious
grid users (prosumers and/or consumers) are the intrinsic actors involved in energy
theft activities; their goal is to manipulate the business model and profit financially.
Therefore, they represent an essential component of the operation dimension of the
proposed theoretical framework for energy theft detection.

The operation dimension is discussed in greater depth in the following subsections
as it is the central pillar of the proposed theoretical framework and contains the actual
energy theft detection process.

3.3 Operation dimension

3.3.1 Energy theft diagnosis

The energy theft diagnosis process is essentially a cyclical process comprising
four sub-processes: theft profiling, detector construction, theft detection and theft
classification.

3.3.1.1 Theft profiling

During the theft profiling process, energy theft attacks are conceptualized. Essentially,
the aim of the profiling process is to simulate energy theft events over smart grid
components. It synthesises theft observations and feeds them into the detectors by
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developing energy theft functions associated with fraudulent user behaviours and
energy-measurement patterns. In this regard, the energy theft function accurately
simulates various electrical configurations associated with energy theft. It does this
by mimicking strategies and attack vectors that have a physical basis for their effects
on energy-measurement patterns.

Primarily, there is a noteworthy absence of accessible (and applied) prototype
implementation in practical theft situations, as well as a lack of data sets that allow
thorough experimental analysis and are specifically suited to energy theft detection
(Messinis and Hatziargyriou, 2018). Although there are a multitude of studies on
energy theft attack detection (e.g. (W. Hu et al., 2020; Ramos et al., 2011; Meira
et al., 2017; Jeyaraj et al., 2020; Massaferro, Martino, and Fernández, 2022)), their
development is based on instances of historic theft. While they therefore do not need
to fabricate theft observations, these studies are incapable of detecting new advanced
and stealthy attacks that have no previous examples.

This is an issue because malicious actors continue to investigate new strategies and
resources for perpetrating energy thefts across smart grid infrastructures (Krishna,
Gunter, and Sanders, 2018). In turn, this has a negative effect on the overall detection
performance of these approaches (Júnior et al., 2016; Aydin and Gungor, 2018). The
majority of historical theft observations and their associated data sets are mostly
prepared for specialised projects, limiting the generalisation of findings (Cintuglu
et al., 2016). By profiling energy theft attacks, defenders obtain deeper insights into
attackers’ behaviours, enabling them to anticipate a spectrum of theft-related events
and to develop effective and generic data-driven detection approaches.

The theft profiling process includes the following four procedures:

1. Endpoint assessments: this procedure identifies vulnerabilities in smart energy
systems that can be exploited in theft attempts. The assessments entail scanning
smart energy systems’ cyber and physical resources to evaluate the likelihood
of these resources being exploited by malicious actors for financial gain. Put
simply, this procedure identifies vulnerabilities that enable adversaries to exploit
grid infrastructure components, communication networks and applications, with
the intention of stealing money.

2. Strategy identification: this procedure tackles the question of how vulnerabilities
are utilized to perpetrate thefts. Understanding this entails identifying
the methods, techniques and attack vectors that thieves use against each
vulnerability to achieve their goals.

3. Data acquisition: the purpose of this procedure is to use the MMC dimension to
gather measurements from the identified vulnerabilities. As Fig. 3.2 illustrates,
the MMC dimension employs different communication standards and protocols
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for data acquisition. For instance, proprietary protocols (Z-wave, ZigBee) gather
measurements from home area networks, while WiMax and IEEE 802 series
gather data from T&D sectors (Ma et al., 2013).

4. Theft fabrication: this procedure uses the findings from the endpoint assess-
ments and strategy identification to generate profitable energy theft attack
functions. These can be applied to the findings from the data acquisition
procedure to produce realistic synthetic fraudulent behaviour patterns. These
are injected into legitimate measurements to explore and greatly enhance the
energy theft detection process.

3.3.1.2 Detector construction

The detector construction process adopts a methodology capable of learning the
complex, non-linear patterns within the data prepared in the theft profiling process.
This acquired knowledge can be subsequently employed to distinguish between
legitimate observations and theft attempts. Primarily, this process generates a
detector, which comprises a variety of algorithms and methods that are trained to
detect theft by identifying patterns in the data from the profiling process (i.e. the
synthetic theft observations and acquired legitimate measurements). The detector
implements a set of instructions to provide data-driven predictions and decisions
regarding the presence or absence of energy theft attacks in smart grid infrastructures.

The diverse algorithmic proprieties within the detector construction process
can address the challenges of learning energy patterns and identifying possible
fraudulent actors over smart grid infrastructures. For instance, data-level machine
learning techniques (e.g. SMOTE and condensed nearest neighbour rule) are used
to address the challenges of an imbalanced data category, which occurs when one
category (either fraudulent or legit instances) contains significantly more samples
than others (Krawczyk, 2016). Moreover, the differences, averages or other statistical
transformations of the original feature vector can be used to construct and refine
additional features that enhance the effectiveness of the theft detection methodologies
(Glauner, Meira, Valtchev, et al., 2016; Maamar and Benahmed, 2018; Jundong Li
et al., 2018). In addition, a meta-learning scheme (i.e., a learning process involving the
collection of information from previous experiences, to be utilised for future learning)
might reduce the false positive rates caused by non-malicious activity (Jinghang Li and
M. Hu, 2020). Finally, a binary classifier-based intrusion detection system trained on
energy device behaviour logs can be employed to combat adversarial machine learning
(Bor et al., 2019). On the other hand, to preserve the security and privacy of the
collected energy measurements, a federated learning-based technique can be employed
(M. Wen et al., 2021; Ashraf et al., 2022).

As depicted in Fig. 3.2, the detector construction process entails two intrinsic
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procedures: training and evaluation. During the training procedure, the selected
model learns patterns within the data that were prepared during the theft profiling
procedure, in order to acquire knowledge that can be used to detect energy theft. The
training procedure entails four processes: data cleaning, feature selection, dimension
reduction, and model selection and tuning.

During the data cleaning process, duplicate, erroneous or otherwise improper data
are eliminated prior to the training procedure. Despite their similarities, feature
selection and dimension reduction affect the input variables of the training procedure
in a completely distinct manner. Feature selection is the process of selecting what
characteristics to include or omit from consideration without modifying them, while
dimension reduction transforms the input variables into a lower dimension. The model
selection process involves choosing the most appropriate model for the energy theft
detection process from a set of machine learning candidates. Finally, model tuning
attempts to find the optimal values of the hyperparameters of the selected machine
learning model, as the detection performance is maximized.

During the evaluation procedure, the learned model predicts categories (labels)
of instances that were not introduced in the training procedure. The model
outputs tagged data that predict whether the instances are malicious or legitimate.
Consequently, in this research, the prediction outputs were compared with the correct
categories of these examples, thereby quantifying the detection approach’s overall
performance.

In this regard, the evaluation performance metrics of the classifications are applied;
these include the confusion matrix, accuracy (ACC), area under the curve (AUC),
precision (PR), recall (RE), sensitivity and F1-score (F1). When the real category
(malicious or legitimate) is known, the performance of the detection model can be
described using a table called the confusion matrix. ACC measures how reliably
the trained model can distinguish between malicious and legitimate instances. The
model’s ability to determine whether an instance is malicious is quantified by its
AUC. PR is the proportion of malicious incidents correctly identified as malicious
from all maliciously predicted observations, whereas RE is the proportion of malicious
activities correctly identified as malicious from actual malicious samples. F1 provides
a holistic perspective of PR and RE.

Generally, understanding the energy dynamics of data-driven algorithm and
machine learning training within the detector constriction process involves examining
multiple influencing factors, including the size of the data set and the complexity of the
detection model. Without specific implementation details, the precise quantification
of energy consumption remains challenging, but existing studies (such as (Yang Liu
and S. Hu, 2015; Gunturi and Sarkar, 2021)) highlight the promise of optimised
machine learning models with relatively low energy consumption for energy theft
detection.
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Despite the energy consumed by machine learning in the detector construction
process, energy theft causes substantial MWh losses. For a single energy provider in
Canada, such thefts result in an average annual loss of 850000 MWh, which converts
to a monetary loss of $55 million (Raggi et al., 2020). Moreover, a Brazilian electricity
regulatory agency estimates that 5% of the energy injected into distribution grids is
lost due to theft activities (Carr and Thomson, 2022). A recent study reveals that
nearly 20% of India’s total generation of electricity is lost due to theft instances
(Razavi and Fleury, 2019).

While acknowledging the energy consumption associated with machine learning,
the potential benefits, such as reducing the need for physical inspections to detect
potential energy theft in locations where energy theft is expected to increase, suggest
that employing data-driven detection techniques facilitated by machine learning
techniques may be a worthwhile investment to reduce the significant MWh losses
caused by energy theft attacks.

3.3.1.3 Theft detection

After completion of the detector contracting procedure, the constructed detector
is ready for theft classification. The detector will be used to detect real-world
energy theft attacks across smart grid systems. This makes the detector’s predictions
of the legitimacy of prosumer and/or consumer energy measurements available to
utility providers, allowing them to make data-driven decisions over energy theft
activities. Consequently, the theft detection process is the culmination of the
measurements collected from the infrastructure and end user dimensions through the
MMC dimension, and profiled in the operation dimension for use in the detector also
constructed in the operation dimension.

3.3.1.4 Theft classification

It is important to note that the outcome of the theft detection process correlates
with predictions of anomalies that may be caused by non-malicious activities (e.g.,
smart-meter misconfigurations). In fact, this is a classic issue within the data-driven
energy theft detection process. These non-malicious anomalies reduce the efficiency of
the theft detection process. When these variables are not effectively addressed, they
can cause a significant number of false positives, in which consumers and/or prosumers
who were identified to be malicious were actually legitimate (Jokar, Arianpoo, and
Leung, 2016). Such detection outcomes are expensive for utility providers, as they
need costly, time-consuming, and labour-intensive on-site inspections.

The theft classification process aims to resolve this issue by classifying the
anomalous events into various categories. During this procedure, the distinctions
between malicious and legitimate processes are identified, and the specific properties
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of energy theft incidents and misconfiguration events are highlighted for use in the
subsequent theft profiling process. This then generates adequate synthetic theft and
misconfiguration observations.

This step entails establishing an accurate profile of energy theft and misconfigu-
rations within the energy system. It entails all processes of theft profiling in Section
3.3.1.1, including endpoint assessments, strategy identification, data acquisition and
theft/ misconfiguration fabrication, with a focus on identifying patterns or anomalies
associated with theft attacks or system misconfigurations.

Once we have a comprehensive understanding of these patterns, we can use
them to generate synthetic theft and misconfiguration observations. In other words,
based on the characteristics identified, we can generate simulated instances that
mimic real-world incidents. These synthetic observations are indispensable for testing
and refining detection algorithms and security measures, thereby ensuring that the
effectiveness pillars of the energy system are maintained.

3.3.2 Theft management

Within the proposed theoretical framework for energy theft, the theft management
unit leverages the output of the energy diagnosis process to mitigate the cascade
impacts resulting from theft attacks on energy systems. The attacks underpinning
energy theft have a negative impact on system optimization procedures. In this
regard, the energy diagnosis procedure is performed cyclically to support the energy
management unit in mitigating the negative impact of a theft attack on the smart
grid efficiency and business model.

By virtue of the theft management unit within the operational dimension, on-site
inspections are only required for final verification after an energy theft attack has
been identified, and they thus improve the overall grid forensics (Jokar, Arianpoo,
and Leung, 2016; K. Zheng et al., 2018). Furthermore, the diagnosis of energy theft
maintains grid reliability. When energy theft occurs, the power supply system is
overloaded and unable to meet customer demands (Ahmed et al., 2022). Consequently,
this overloading is mitigated and the demand-supply imbalance is managed by
detecting energy theft activities.

Moreover, energy-theft-related attacks against T&D systems can cause state
estimation deviation. This misguides decisions, potentially negatively affecting the
resilience of the smart grid (Xue, Jing, and H. Liu, 2019). Such detrimental impacts
can be avoided by detecting theft attacks. Finally, grid user safety can be preserved
as a result of the energy diagnosis output because theft-related manipulation of
grid components, which that can cause electrocution or fires, leading to property
destruction and even death, can be detected and mitigated (Czechowski and Kosek,
2016).
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3.4 Energy theft detection data flow

This thesis proposes two principal data-driven energy theft approaches as case studies
derived from the theoretical data-driven energy theft detection presented in Section
3.2. Note that the implementation of both proposed strategies for energy theft is
entirely dependent on Python. We utilised established built-in libraries such as
TensorFlow and Scikit-Learn, but made all necessary modifications to ensure they
meet the requirements of our proposed energy theft detection methods. These
modifications required extensive adjustments and adaptations to the functions and
classes within these libraries, allowing for their complete incorporation into our
codebase. An overview of data flow in these detection approaches is presented in
Fig.3.3.

Figure 3.3: Overview structure of the proposed data-driven energy theft detection
approaches.

As depicted in Fig. 3.3, the first approach, predictive energy theft detection,
explicitly detects energy theft in DRES-based infrastructure. Keep in mind that
energy theft detection in non-renewable energy sources is beyond the scope of interest
of this thesis. The second approach, adaptive energy theft detection in smart
grids, is a generic approach that detects theft in DRES generation and end-user
consumption infrastructures. The development of these detection methods begins with
the operation dimension of the proposed theoretical framework, specifically within the
theft profiling sub-process of the energy theft diagnosis process, depicted in Fig. 3.2.
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According to the theft profiling sub-process of the proposed theoretical framework,
vulnerabilities in smart energy systems that could be exploited in energy theft
attempts should be identified initially. Hence, in the development of our first proposed
detection method, we demonstrated that the DRES installations owned by prosumers
who are not operators of power transmission or distribution networks represent
vulnerabilities that are exploited for financial gain by malicious actors. DRES
operating costs are approximately US$15/MWh, which exceeds the range of US$0
to US$45/MWh paid to DERS owners (Krishna, Gunter, and Sanders, 2018). This
creates a motivation for malicious prosumers to maximise their reported generation
fraudulently in order to maximise their profits (Mahmoud et al., 2020).

Such energy theft can be perpetrated using a variety of methods identified during
the strategy identification procedure within the theft profiling sub-process of the
proposed theoretical framework. To maximise the reading of DRES smart metres,
the identified DRES-related theft method includes a physical scenario (i.e., the use
of a solar array simulator) or a cyber scenario (e.g., accessing the firmware of the
measuring systems) (Shaaban et al., 2021; Yuan, M.-g. Shi, and Sun, 2015).

The MMC dimension of the proposed theoretical framework is then employed to
collect generation measurements from legitimate DRES deployments for use in the
theft fabrication procedure within the theft profiling sub-process. Four functions
of theft scenarios were identified during the development of our first detection
approach. These four functions mimic actual fraudulent patterns in terms of reporting
erroneously generated energy. Then, by developing the proposed energy theft
functions, synthetic anomalies are injected into the legitimate datasets to create a
dataset containing both legitimate and fraudulent patterns.

The resulted dataset is then used in the detector construction sub-process of the
operation dimension of the proposed theoretical framework. As depicted in Fig. 3.3,
two data-driven algorithms are adopted here to accomplish the theft detection process:
i) a supervisory control and data acquisition (SCADA)-agnostic DRES profiling
approach working solely on third-party and widely available weather observations;
and ii) a classification scheme relying on DRES profiling that is capable of classifying
theft detection activities. After completion of the contracting process, this detector
is ready for theft detection. The output of our first theft detector is a label for each
smart meter of each DRES, indicating whether it belongs to a legitimate or malicious
prosumer. In Chapters 4 and 5, we describe the development of our first proposed
detection method, titled adaptive energy theft detection in smart grids, in detail.

As the energy theft diagnosis process within the operation dimension is a cyclical
process that can be continually optimised, we use the feedback from our first approach,
predictive energy theft detection, to develop our second approach, adaptive energy
theft detection for generation and consumption smart meters. Although our first
detection strategy yielded a satisfactory performance, it was limited in its scope as
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it considered energy theft in DRES supply measurements only. Hence, it is unable
simultaneously detect theft activities in generation and consumption measurements.

This strategy imposes a significant computational expense on the utility provider,
as it requires them to simultaneously apply two distinct approaches for detecting
theft in both measurements. Consequently, it necessitates additional computational
resources for training, evaluating, and deploying these distinct approaches. In parallel,
although our first detection method focuses on a single measurement, it is incapable
of distinguishing energy theft from anomalous events caused by legitimate incidents
(i.e., smart metre misconfiguration). Finally, our proposed first detection approach
fails to adapt and re-optimize its detection thresholds as it should, in light of the
addition of further grid components and the implementation of new technologies. In
fact, the majority of studies on data-driven energy theft contain all of these gaps and
challenges.

Therefore, during the development of our second detection approach, we extend
the theft profiling sub-process of the proposed theoretical framework and propose a
general adversary model applicable to stealthy energy theft and abnormalities caused
by legitimate events in consumption and generation measures. Hence, during the
procedure of strategy identification, we identify a number of methods that malicious
actors can utilise to maximise the readings of their DRES generation and/or to
reduce the readings of their consumption. In parallel, we differentiate the patterns
of these malicious methods on the consumption and generation measurements from
anomalies that result from grid component misconfigurations. As a result of these
procedures, we introduces a taxonomy of smart metre anomaly functions based on
energy consumption and generation measurements that can be used to fabricate theft
and misconfiguration samples.

Consequently, we employed the output of this round of the theft profiling and
continue the detector construction sub-process within the operation dimension of
the proposed theoretical framework. In this regard, we propose a combination of
an adaptive feature constriction method and a smart energy meter classification
component for constricting theft attack detectors. The proposed approach evolves
from an aggregation of weather observations, and theft and misconfiguration events
across DRES and consumption installations. In addition, it can self-optimize based on
incoming measurement stream properties without human intervention. The output
of our second theft detector is a label for each smart meter of each prosumer
and/or consumer that indicates whether the smart meter is legitimate, malicious, or
misconfigured. In Chapter 6, we describe in detail the implementation of our second
proposed detection method, titled adaptive energy theft detection for generation and
consumption smart meters.
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3.5 Summary

This chapter presents a generally applicable theoretical framework of a data-driven
process for the detection of energy theft. The framework is developed based
on understanding the energy theft problem in the depth through an appropriate
requirement for use with modern energy grids. Since there is currently no standard
data-driven approach for identifying energy theft activities, this chapter aims to
make a significant advance and abstract the process of detecting energy theft into
a theoretical framework that is generically applicable from a data-driven perspective.
We also provide an overview for the data-driven detection approaches developed,
implemented and evaluated in the following three chapters (i.e., Chapter 4, Chapter
5 and Chapter 6) as case studies of the proposed theoretical framework’s application,
with the aim of developing data-driven theft detection techniques.
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Chapter 4

SCADA-agnostic Energy Modelling
for Distributed Renewable Energy
Sources

The use of fossil fuels for power generation has led to alarming air pollution and
carbon emission levels that consequently impact negatively to climate change and
global warming. According to the international energy agency (IEA), there was a
2.3% rise in energy consumption just in 2018, which caused CO2 emissions to rise
by 1.7% leading to an alarming value of 33.1 Gt of CO2 in the air (IEA, 2018).
Hence, modern smart grid deployments adopt greener power generation solutions
based on distributed renewable energy sources (DRES) including Photo Voltaic (PV)
solar panels, wind turbines and bio fuel. DRES deployments are expected to take
a significant portion of the global energy generation reaching 40% of the smartgrid
ecosystem by the year 2020 (IEA, 2020).

Nonetheless, as the DRES generated power output depends solely on intermittent
environmental conditions (e.g., ample solar radiation, wind speed), there is always
a level of uncertainty in terms of the power contribution that such deployments
offer back to the main power grid. Under the objectives of a sustainable grid, it is
therefore crucial to adequately profile and further forecast DRES power production.
Grid optimisation routines rely on accurate DRES profiling, thus inaccurate and
unavailable DRES profiling is highly likely to trigger resilience havoc with a number
of severe consequences.

Power generation profiling for DRES has been the subject of investigation in a
number of studies (e.g., (Janssens et al., 2016; Pelletier, Masson, and Tahan, 2016)).
The majority of these studies engage with the assumption that measurements from
Supervisory Control and Data Acquisition (SCADA) systems are always available
and the various modelling components are restricted on explicitly utilising power
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generation values from such systems. For instance, (Y. Wang et al., 2018) relies on
wind speed timeseries and employ a spline regression model to model power generation
of wind turbine deployments for power forecasting. The work in (Abedinia et al., 2020)
suggested a hybrid framework dedicated at wind power profiling based on empirical
mode decomposition in conjunction with a bagging neural network, and a stochastic
optimization algorithm. However, the complex business and operational processes
within large-scale power grids involve a diversity of ownership in terms of machinery
(e.g., wind turbines) as well as control and measurement components (e.g., PLCs,
SCADA) (Leahy et al., 2019; Ahmed et al., 2022; X. Cheng et al., 2022). Thus,
the acquisition of SCADA-based measurements is not always available, particularly
for DRES installation owners that are not operators of either power transmission or
distribution networks.

In this piece of work, we tackle the aforementioned scenario and propose a generic
SCADA-agnostic DRES power profiling scheme. To the best of our knowledge, no
other studies have considered the pragmatic assumption that SCADA measurements
and sensor components are not present or available in all DRES deployments. The
proposed DRES profiling system is an instantiation of the data-driven theoretical
framework presented in Chapter 3, paving the way for the independent detection of
fraudulent activities underlying energy theft. It makes use of freely available weather
measurements through the MMC dimension of the proposed theoretical framework in
order to explicitly profile and predict the power generation produced by actual wind
turbine deployments across the infrastructure dimension. Then, in the operation
dimension of the proposed theoretical framework, the proposed generation profiling
approach enables the automated feature selection and tuning of machine-learning-
based regression models. These models are capable of operating adequately with
freely available third-party weather measurements for developing a SCADA-agnostic
detection process explicitly for DRES-based theft scenarios.

In general, the main contributions of this chapter are two-fold and summarised as
follows:

• A generic DRES profiling system enabling adaptive feature selection as well
as automated best-fit machine learning model tuning under low computational
costs.

• A SCADA-agnostic cost-efficient approach relying strictly on freely available
third-party weather measurements to model DRES deployments with a proof-
of-concept evidence over real wind turbine deployment profiling.

The rest of this chapter is organised as follows. Section 4.1 describes the datasets
and the methodology of the proposed approach whereas Section 4.2 discusses the
evaluation conducted. Finally, Section 4.3 concludes and summarises this chapter.
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4.1 Data Description and methodology

4.1.1 Data description

The herein reported proof-of-concept study focuses explicitly on profiling wind turbine
deployments using third-party, freely available weather measurements under the
assumption that SCADA or locally placed sensor-based measurement data is not
available. However, in order to validate the performance of our exogenous-based wind
power modelling, we utilise SCADA measurements gathered from a real deployment.

The used SCADA-based dataset was captured at the La Haute Borne wind farm,
located in Meuse, France1 and represents daily measurements gathered for the whole
year of 20172. The La Haute Borne wind farm consists of 4 Senvion MM82 wind
turbines where measurements are obtained on 10-minute samples. Within each 10-
minute sampling bin, there are 34 features related to various electro-mechanical (e.g.,
torque, rotor speed), power (e.g., apparent power, grid voltage) and environmental
parameters (e.g., wind speed, outdoor temperature) explicit to a given wind turbine.

As already mentioned, our SCADA-agnostic scheme depends solely on third-party
weather measurements that are freely available. For this purpose, we have extracted
environmental measurements (e.g., wind direction) from the Dark Sky API3 and
Weather Online API4 over the same observational period in which ground truth
SCADA measurements were obtained for the La Haute installation. Moreover, we
acquired wind and output temperature measurements from Weathernews5 as observed
by the Nancy-Ochey weather station which is geographically adjacent to the La Haute
Borne wind farm. In total, our SCADA-agnostic dataset has 42 weather features
including numerical and categorical data with in 1-hour sampling bin.

In order to achieve data synchronisation and maintain consistency, we organised
SCADA-based measurements and third-party weather measurements on an hourly
basis. The synchronised datasets were then merged into two consolidated data
frames, one for the SCADA-based measurements and the other for the environmental
measurements collected by third parties. Each data point in these data frames is
identified by a distinct timestamp. Both the third-party weather measurements as
well as the SCADA-based measurements were processed within our generic DRES
profiling system that we explain next.

1Explore – ENGIE France Renewable Energy Open Data, Available: https:

//opendata-renewables.engie.com/pages/home/
2The 2017 dataset is the most complete in comparison with all datasets for other years provided

by ENGIE.
3Explore – Dark Sky API, Available: https://darksky.net/dev
4Explore – World Weather Online API, Available: https://www.worldweatheronline.com/

developer/api/
5Explore – Weathernews, Available: www.weathernews.fr
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4.1.2 DRES profiling system

This study relies on a system built to efficiently pre- and post-process DRES
measurements such as to automatically identify the most suitable features within
a best-fit machine learning model. The generic properties contained within our
implemented system can serve the basis for close-to-real-time profiling of any type
of DRES deployment (e.g., wind turbine/farm, solar PV panels etc.).

Figure 4.1: Measurement-based DRES profiling system.

As depicted in Fig 4.1, the first process within the implemented system is to
pre-process diverse DRES measurements gathered either by conventional SCADA
or sensor-based data acquisition deployments. Hence, the pre-processing module
ensures that raw timeseries measurements of various features (e.g., wind speed,
humidity, output power, etc.) are refined in terms of missing values, noisy timeseries
and (re)sampling. Subsequently, the system normalises the pre-processed timeseries
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and feeds them directly to a feature selection software component that works in
synergy with a machine learning component. Ultimately, the combination of the best
statistical features alongside the best-fit model is chosen based on a repetitive auto-
tuning process. We describe the mechanics of each individual stage and component
by focusing on the proof-of-concept wind power modelling scenario as follows.

4.1.2.1 Data pre-processing

The missing, duplicated and inconsistent samples caused by turbine unavailability,
electrical shut-down, icing events, etc. can affect the accuracy of power measurement
estimation. Therefore, the third party weather measurements and the power
generation measurements are subjected to a filtering so as to remove all possible
duplicated, missing and inconsistent (out-of-range) data samples. During the
pre-processing stage, analysis on power measurements is performed through the
autocorrelation function (ACF) and partial autocorrelation function (PACF) in order
to build an underlying statistical ground-truth of the assessed timeseries (i.e., to
extract the optimal lags (historical) features, denoted by Lagn). Essentially, lags
express the similarity of frequency components whilst treating power measurements
as a signal in the function of time. Hence, the ACF represents the correlation between
the P avg

t (average generated power) measurement in t ∈ T and the measurements at
previous time lags. The PACF is the correlation between P avg

t and P avg
t+k after removing

the influence of the confounding variable:

P avg
t−1 , P

avg
t−2 , ..., P

avg
t−k+1 (4.1)

4.1.2.2 Data normalization

Our DRES profiling system employs a min-max normalisation scheme such as to
reconstruct the assessed timeseries in the range [0, 1] with n×m vectors as given in
Eq. (4.2). In this case, n is the number of the samples, m is the number of feature
vectors and t ∈ T is a time interval.

x̄t =
xt − xmin

xmax − xmin
(4.2)

where x̄t represents the normalized value of xt, xmin and xmax are the minimum
and maximum value in each feature vector z ∈ m respectively. The normalization
procedure is only applicable to the numerical features. As the dataset consists of a
mixture of numerical and categorical features, the latter are encoded using the binary
encoder function as follows: An integer value is assigned to every unique category for
a given categorical feature. A new binary feature is created for each integer-encoded
category and new columns are created based on the majority of the bit encoding. As
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binary encoded features only take binary values of 0 or 1, they are not needed to be
re-scaled or normalized.

4.1.2.3 Feature selection

The proposed DRES profiling system employs an automated feature selection process
such as to obtain an adequate and effective set of attributes. Hence, the feature
selection component is in charge of assessing the importance of the raw SCADA or
third-party weather measurements. As evidenced in Fig. 4.1, the feature selection
component works in synergy with the machine learning component such as to identify
the optimal set of features producing the best-fit machine learning-based power
regression model. In more detail, the current prototype supports: i) filter-based
univariate feature selection (UFS), ii) wrapper-based recursive feature elimination
(RFE) and iii) ranking-based feature importance (FI).

The UFS technique is used to assign the importance scoring of each feature. Thus,
each feature is linearly regressed and produces an estimated value that is scored
against the original value under the F-score metric. Essentially, the F-score denotes
how the regressed value of a given input behaves in terms of the averaged accuracy
precision. Our current prototype supports both the univariate linear regression
filtering of features as well as filtering through the ranking of correlations based on the
Pearson correlation metric. Both filtering mechanisms are used interchangeably. By
contrast with UFS, the RFE method recursively selects features by removing the less
important features from the feature set using importance-based rankings. Our current
prototype utilizes the random forest (RF) estimator for importance-based rankings.
Within the FI approach, a similar RF-based feature reduction is performed such as
to isolate the most significant attributes. It is to be noted that both RFE and FI use
RF to remove the least significant features; however the FI in contrast with the RFE
is less robust as it is just based on a given threshold value and a single iteration.

4.1.2.4 Machine learning component

The implemented DRES profiling system depends heavily on the collaborative
functioning between the feature selection component and the machine learning
component. The machine learning component is implemented under a pluggable
fashion in which off-the-shelf or customised machine learning algorithms can inter-
operate with the algorithms residing within the feature selection process. The synergy
between the aforementioned components is orchestrated under a repetitive feedback
mechanism such as to identify the most optimal combination of features with an
identified machine learning-based profiling model.

Moreover, optimal hyper-parameters for the machine learning-based techniques
employed are found by using a grid search technique with a k-fold cross-validation
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method. In detail:

1. Specify the hyper-parameters along with the value range for each model.

2. For each combination of hyper-parameter values in the specified grid:

• Train the model with k-fold cross-validation. In this chapter, k is set to 10,
and the model is trained and validated k times. Each time, a different fold
is used as the validation set, and the remaining folds are used for training.

• Calculate the average performance for each fold.

3. Identify the set of hyper-parameters that achieved the highest average perfor-
mance in the grid search.

4. Train the final model using the entire training dataset and the optimal hyper-
parameter values.

5. Evaluate the final model’s performance on the test set.

This approach provides a systematic and efficient method for investigating a
number of hyper-parameter combinations, ensuring that the performance of the model
is systematically evaluated across multiple subsets of the data sources (Jindal, Kumar,
and M. Singh, 2020b).

In order to address aspects of non-linearity in the examined features as well
as properties of non-stationary DRES measurements, we have implemented both
supervised as well as unsupervised machine learning-based regression algorithms. In
particular, the current prototype supports: i) K-nearest keighbours regression (KNR),
ii) support vector regressor (SVR), iii) gradient boosting regressor (XGBoostR) and,
iv) multi-layer perceptron neural network (MLPNN). We next describe the basic
properties of each implemented algorithm.

KNR: The KNR model utilises feature vector similarity (or neighborhood) and
predicts the value of new input samples. Thus, the value assigned to new input
samples is based on the resemblance with training samples. In summary, KNR is
decomposed into three main stages;

1. Calculation of the Euclidean distance between the new input data instance with
each training samples given by:

Dt =
√∑

| xtrain
t − xnew

t |2 (4.3)

where xtrain
t and xnew

t represent the values of training sample and the new input
data respectively.
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2. k nearest samples are selected based on the closest Euclidean distance values.

3. Inserting the average of the k-nearest points as the predicted value of the new
input instance.

SVR: The SVR model is a supervised scheme enabling the estimation of a fit
function based on pre-computed training samples such as to map high-dimensional
model inputs to the target output. Unlike other regression algorithms focusing on
prediction error rate reduction, SVR fits any prediction errors within a a tolerable
error (ϵ). Hence, describing the highest deviation from the targets, while keeping the
fit function as flat as possible.

XGBoostR: The XGBoostR algorithm relies on the boosting idea is aiming
to improve the regression stability of a weak learner that promote weak statistical
hypotheses related to their input data instances. In general, a weak learner represents
models holding slightly better performance than a random chance with respect to
prediction error rates. XGBoostR depends on three components performing: i) loss
function optimisation with respect to regression errors, ii) weak learner prediction for
one decision at a time and, iii) weak learner additive model minimising the total loss
function.

MLPNN: The MLPNN algorithm belongs in the category of supervised feed-
forward artificial neural network (ANN) formulations and consists of more than one
perceptrons. The input layer in MLPNN is used to receive input data, whereas
the output layer is responsible for predicting the output value of a given input.
Internally, the composition of the training model within MLPNN is performed by
a back-propagation scheme. As within a traditional artificial neural network, hidden
layers reside between input and output layers which work as computational engines.

In particular, MPLNN exploits the correlation or dependencies between the
variables used in the computed training to model the output value by tuning weight
parameters such as to reduce prediction errors. The number of the hidden layers is
determined by applying the Hecht-Nelson method meaning that the size of the hidden
layer = 2n+ 1, where n is the size of the input layer (C. Ren et al., 2014).

4.1.3 Evaluation methodology

We conduct a thorough evaluation in order to assess the performance of the exogenous
SCADA-agnostic wind power modelling in comparison with modelling performed
using SCADA-based measurements. Our evaluation methodology is diagrammatically
depicted in Fig. 4.2.
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Figure 4.2: Evaluation methodology.

Both SCADA and SCADA-agnostic data streams are passed through our DRES
profiling system prototype to obtain the most optimal features with the best-fit
regression models. Prior to the modelling as well as the feature selection phase,
the correlation of individual generated power with its past measurements is extracted
and integrated to the input measurements of the designed system. Subsequently, we
perform a seasonality grouping for every type of measurements for better classification.
Hence, we split our datasets in the four seasons of the year (i.e. spring, summer,
autumn, and winter) for each wind turbine and re-sample the measurements to behave
under hourly bins. The DRES profiling system assigns 70% of the feature samples to
be used for training for any of the algorithms within the machine learning component
and 30% for testing.

Subsequently, the repetitive process between the feature selection component and
the machine learning-library component takes places such as to identify the most
optimal features for the best-fit model. The resulted models are assessed based on two
error and one computational cost metric. The indices considered in this work in terms
of prediction error are the mean absolute error (MAE) and the mean squared error
(MSE), whereas for computation, we account the time taken to obtain a prediction.
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We briefly describe each metric as follows.

1. MAE: The mean of all absolute values of the difference between the actual and
predicted power values defined as:

MAE = m−1
m∑
t=1

| xt − x̂t | (4.4)

where t ∈ T , m is the test set length, xt, x̂t represent the actual power
measurements and the estimated power measurements, respectively.

2. MSE: The mean of the squares of all differences between the actual and
predicted powers defined as:

MSE = m−1
m∑
t=1

(xt − x̂t)
2 (4.5)

3. Computational complexity: Time taken by the machine learning-based
model within the DRES profiling system to produce prediction for the output
power of a given wind turbine.

The implementation of the machine learning component and feature selection
algorithms in our entire integrated system relies entirely on Python. We utilised
standard built-in libraries such as TensorFlow and Scikit-Learn, but with significant
customization and adaptation to align them with the requirements of our proposed
energy profiling system. These adaptations involved considerable modifications and
tailoring to the functions and classes of the libraries, allowing for their smooth
incorporation into our codebase. This collaborative strategy allowed us to effectively
execute the essential components of the DRES generation profiling system, including
data synchronisation, hyper-parameter optimisation, model training and evaluations.

4.2 Evaluation

4.2.1 ACF and PACF analysis

As a part of our pre-processing software component presented in Section 4.1.2.1, we
utilize ACF and PACF analysis to test the correlation structure of the generated power
measurements. Fig. 4.3 presents the result of ACF analysis. It can be observed that
there is a high positive correlation with the lags outside of the 95% confidence interval.

We observe a high inter-correlation among the historical components of the
generated power measurements from the ACF plot. In Fig. 4.3, each point on
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Figure 4.3: ACF of the generated power.

the ACF plot represents the correlation between the power generated at a specific
time point and the power at a certain number of time steps back. The significant
inter-correlation observed in this figure indicates that the power measurements are
highly correlated at various lags. This can lead to unreliable statistical inferences
due to multi-collinearity. Multi-collinearity occurs when independent variables in a
statistical model are highly correlated, making it difficult to discern their individual
effects.

Figure 4.4: PACF of the generated power.

Therefore, we utilize PACF plots to retain only relevant lags, as opposed to the
complete ACF plot, and to remove those that yield indirect correlations. The PACF
plot is a useful tool for identifying direct correlations between the current observation
and past observations, while controlling for indirect correlations through intervening
time steps. In other words, it helps us isolate the unique influence of each lag on the
current measurement, excluding the influence mediated through other lags. In Fig.
4.4, the PACF plot shows that lag1 has the highest positive correlation after it first
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intersects the confidence interval. Consequently, we use the values of lag1 from the
generated power as a feature input for the learning techniques in this study.

4.2.2 SCADA-based wind power modelling

As discussed in Section 4.1.3, our evaluation methodology firstly targets to compose a
ground truth profiling model using SCADA-based measurements from the La Haute
Borne wind farm. Hence, a total of 27 year-wide SCADA-based features were initially
scrutinised by the feature selection component within the DRES profiling system
presented in Section 4.1.2. The iterative feature selection process within the DRES
profiling system has demonstrated that the RFE technique produced the best set with
a total of 13 SCADA-based features for SVR, 6 features for KNNR and XGBoostR, 10
for UFS under the MLPNN models. In general, the filtered set of features is composed
by a range of mechanical (e.g., pitch angle and generator converter speed), power (i.e.,
apparent power and the lag1 feature) and weather (i.e., wind speed) features. Hence,
these machine learning techniques covered all exogenous as well as intrinsic factors
related to the wind-turbines behaviour in terms of power generation.

Under the combination of the selected features with the various machine learning-
based regression components of the DRES profiling system, we have witnessed
improved regression models in all of the machine learning-based algorithms. As
illustrated by Fig. 4.5, the designed feature selection schemes positively impacts the
performance of KNNR, SVR, XGBoostR and MLPNN, by reducing their MAE errors.
Similar trends are also observed for the MSE. Overall, the SVR model under the RFE-
based feature selection produced an extremely low MAE and MSE; MAE=0.000326
kW and MSE ≈ 0 kW 2.

4.2.3 SCADA-agnostic wind power modelling

Following the same pre-processing, normalization and feature selection performed
within the DRES profiling system (as with the SCADA-based profiling), we have
produced regression models using third-party weather features. The feature selection
process identified 37 features from the three third-party data providers including
measurements such as output temperature, pressure and wind direction, gust and
speed. Subsequently these features were utilised within the core learning process for
the XGBoostR, and 9 out of the 42 were employed within the SVM, KNNR and
MLPNN models.

We observe that the prediction results for wind power regression based on the
freely available third-party weather features varied slightly from the SCADA-based
profiling. Nonetheless, the conducted experiments indicate no major difference in the
obvious pattern for the estimated power curves as depicted in Fig. 4.6. Moreover,
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Figure 4.5: Errors between the actual and predicted power values based on SCADA
measurements.

the performance analysis of the resulted machine learning-based regression models in
relation to the MAE and MSE respectively shows that SVR outperforms the rest of
formulations.

As evident, the SVR technique has a minimum MAE and MSE, where MAE is
0.003595 kW and MSE ≈ 0.0 kW 2. Meanwhile, the MAE for KNNR, XGBoostR and
MLPNN are 0.027937, 0.004106 and 0.008734 kW , and MSE are 0.001533, 0.000038
and 0.000148 kW 2 respectively. Hence, the error performance shows a slightly higher
error rate than SCADA-based but arguably to be of minimal importance for large-
scale accounting and optimisation processes as required by the main grid. In parallel,
under the scenario of a windfarm owner or third-party company with no access to
SCADA measurements, we highlight that the approximate generation and potentially
financial forecasting is not necessarily affected on a macroscopic scale. In addition,
the actual SCADA-agnostic estimation is of minimal financial cost in comparison with
a subscription-based SCADA-based approach as it usually happens.

As depicted in Fig. 4.7, the computational cost for producing a reasonable
regression model is far smaller using a SCADA-agnostic approach in comparison to
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Figure 4.6: SCADA-based and SCADA-agnostic power curve. The y-axis represents
the generated power in kW.

SCADA-based6 approach. We also witness that the MLPNN model can act as a
good approach for real-time use, however with some minimal trade-off with respect to
their error rate performance. For long-term estimation processes, we observe that the
XGBoostR alongside the SVR formulation promotes slightly more accurate SCADA-
agnostic wind power profiling.

In general, the simplicity of utilising just three freely available features in
comparison to expensive SCADA-based monitoring and measurement components
could effectively pave the path towards new directions on real-time and low-cost DRES
power profiling.

4.3 Summary

The increasing utilisation of DRES in the modern smart grid engages a complex energy
trading model with vague policies in terms of hardware and software ownership in
DRES deployments. Hence, it is not uncommon for independent DRES deployment
owners to not have a complete control or access of their installations through SCADA
systems managed by third-party providers or main grid operators. In this work,

6On a 64-bit Windows operating system with Intel Core i7 (7th Gen) CPU with 2.70 GHz clock
cycle and 12 GB RAM.
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Figure 4.7: Computational time comparison.

we propose a SCADA-agnostic DRES profiling system and exhibit its applicability
on a proof-of-concept study over a real wind turbine installation. We demonstrate
that by simply utilising freely available third-party weather data with available
regression models, we can reasonably match up to a great scale the regression accuracy
performance of models utilising SCADA measurements. Moreover, the proposed
SCADA-agnostic profiling is achieved with a minimal set of weather features in
contrast to the SCADA-based approach and under a lower computational cost. Thus,
paving the path towards independent and cost-efficient power generation profiling
serving a range of envisaged smart grid applications such as virtual power plant design
and malicious actor detection.
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Chapter 5

Predictive Energy Theft Detection
for Distributed Renewable Energy
Sources

By virtue of global climate challenges, we witness a drastic shift by regulators and
grid operators towards the full integration of distributed renewable energy sources
(DRES) within modern smart grids with intriguing applications (e.g., virtual power
plants). In fact, a number of developed and developing nations target 100% of energy
generation to be resulted by DRES by 2040 (e.g., Sweden) and a 32% proportion to be
achieved on average in the EU by 2030 (Vaughan, 2018). Nonetheless, the practical
operation of such deployments entails a number of cybersecurity challenges that also
transform the way in which energy theft could be manifested. Energy theft has been
a traditional challenge, however, the refinement of the grid’s business model and the
relatively recent interconnection of DRES deployments with the main grid has enabled
the composition of energy theft (Krishna, Gunter, and Sanders, 2018).

Numerous energy theft events are reported daily on a global scale affecting a range
of operational factors for our society including safety and economy. For instance, non-
technical losses caused by energy theft amount to £1.4B per annum in Brazil and for
a single energy provider in Canada such thefts cause an average annual loss of 850
GWh converted as £55M of financial loss (Raggi et al., 2020). Evidently, both energy
and monetary losses from energy theft are of paramount and timely importance, with
direct implications to the general public’s well-being as well as economy. Furthermore,
the continuous and evolving manifestation of such events justifies the fact that current
theft detection schemes employed by energy providers are inadequate.

As energy theft attacks increase, a momentum on the development of data-driven
detection has been observed within the wider research community. However, a
significantly small portion of detection solutions such as in (Yuan, M.-g. Shi, and
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Sun, 2015; Krishna, Gunter, and Sanders, 2018; Mahmoud et al., 2020) considers
the manifestation of energy theft from individual DRES owners. Moreover, the
dependence on data that can be tampered with by adversaries (Krishna, Gunter,
and Sanders, 2018; Yuan, M.-g. Shi, and Sun, 2015) or unavailable data in terms of
supervisory control and data acquisition (SCADA) (Mahmoud et al., 2020) further
restricts the reliability of these approaches in practical scenarios. In parallel, the
aforementioned dependence on aggregated consumption SCADA measurements is
unable to capture the intrinsic environmental dynamics such as to relate generation
values with the actual weather conditions in a given DRES deployment, as we
discussed in Chapter 4.

Therefore, in this work we take a practical approach by firstly proposing a
generalised DRES-based adversary model and by secondly providing a predictive data-
driven detection solution considering weather dynamics. This predictive energy theft
detection approach is also an instantiation of our coherent framework proposed in
Chapter 3. Utilizing the MMC dimension of the proposed theoretical framework, our
predictive detection approach collects generation measurements from large-scale wind
turbine and solar panel installations deployed across the infrastructure dimension
and managed by DRES owners within the end-user dimension. The collected data
are then utilised within the theft profiling sub-process of the proposed theoretical
framework to propose adversaries who intend to launch an energy theft attack against
DRES installations. The output of this round of theft profiling is then employed
in the detector construction and theft detection sub-processes within the operation
dimension of the proposed theoretical framework.

In general, the contribution of this work is two-fold by providing:

1. A formalised approach on describing DRES-based adversaries with the objective
of energy theft. We demonstrate the efficacy in which DRES owners (i.e.,
prosumers) can take advantage of the current business model and gain financial
benefits.

2. A novel, low-cost and generic energy theft detection framework comprising of
two algorithms; i) a SCADA-agnostic DRES profiling method operating purely
on third-party and widely available weather measurements and ii) a classification
scheme relying on DRES profiling and able to classify theft detection events.
Evidently, the synergy of the two components enables adaptive and highly
accurate detection with low computational overheads and aiding significantly
on reducing monetary loss.

The rest of this chapter is structured as follows: Section 5.1 provides a description
of the system and Section 5.2 presents the adversary model for DRES-based energy
theft attacks. Section 5.3 describes the methodology underpinning the proposed
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detection framework, while Section 5.4 discusses the datasets used within this work.
Section 5.5 depicts the evaluation methodology followed within our experimentation
and Section 5.6 discusses the results obtained. Finally, Section 5.7 concludes and
summarises this chapter.

5.1 System description

We consider an end-to-end energy system consisting of a single Transmission System
Operator (TSO) connected with one or more Distribution System Operators (DSOs)
consisting of nodes equipped with smart control, management, monitoring and
metering technologies. The TSO is abstracted to a set of supply nodes R including
DRES deployments and a set of high-voltage transmission buses denoted as Q. It is
assumed that one or more DSOs of the set P = {p1, .., pn} interact with the TSO
in discrete time intervals and the energy supplied from the TSO to a given DSO
on a discrete time interval is denoted as the function Es(t). Energy transmission
and distribution is achieved via bidirectional power and data communication flows
through corresponding power system and communication control and management
components (e.g., actuators, SCADA).

Each DSO in P is defined by a total number of nodes N and a set M of
medium/low-voltage distribution buses. Nodes are categorised into A supply nodes
and B demand nodes which we refer to as prosumers and consumers respectively,
where A ⊂ N and B ⊂ N . The energy produced by a single prosumer of A in the
ith DSO at a given discrete time interval t is mapped as the function Er(t) whereas
the energy consumed by a single consumer over a time period t in the ith DSO is
represented by Ec(t). A prosumer is assumed to be an individual or a group of
individuals owning and managing a DRES deployment (e.g., domestic solar panels)
and can act both as a consumer and a supplier of energy back to the DSO.

As discussed in (Z. Zheng et al., 2018; Bihl and Hajjar, 2017), energy theft events
cause energy losses that can be described as the difference between the generated
energy and the energy consumed under normal conditions. Thus, we express the
cumulative energy loss experienced for a single DSO in time t as:

L = ∆Es(t) + ∆

|A|∑
a=1

Era(t)−∆

|B|∑
b=1

Ecb(t) +

|M |∑
m=1

TLm(t) (5.1)

where ∆ is the discrepancy including the scaling discrepancy in meter readings
for reported and actual measurements as caused by a single or more theft events
at time t and TL refers to technical losses occurred due to physical constraints on
transmission lines. Consequently, from a TSO perspective the total energy loss in
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time t is expressed as:

LTSO =

|P |∑
i=1

Li(t) (5.2)

where P is the total number of DSOs connected to the TSO.

5.2 Adversary model

The adversary model has an explicit focus on energy theft initiated by generation
meters installed on DRES deployments and managed by prosumers. Thus, the pri-
mary assumption is that prosumers tamper generation meters and report erroneously
back to their corresponding DSO. In order to reduce the complexity invoked within
our adversary model, we consider the DSO meters interacting with edge DRES
deployments to be secure. Thus, we rule out any discrepancy in the measurement
function for energy supplied from a TSO to a DSO having ∆Es(t) = 0.

In addition, we assume that smart-meters strictly reporting energy consumption
by a given consumer to the DSO are not tampered. Therefore, discrepancies
on the consumption reporting by all consumers in a given DSO complies with:
∆
∑|B|

b=1Ecb(t) = 0.
As mentioned, we particularly focus on tampering conducted on individual meters

reporting energy generation for a given DRES deployment. Hence, we deduce that:
∆
∑|A|

a=1 Era(t) ≥ 0.
Given the above assumptions we re-express the DSO energy loss as:

L = ∆

|A|∑
a=1

Era(t) +

|M |∑
m=1

TLm(t) (5.3)

Based on Equation (5.2), which represents the total energy loss of a TSO, and
Equation (5.3), which represents the non-technical energy loss caused by discrepancies
DRES in a DSO, the energy loss for the TSO can be approximated as follows:

LTSO = ∆

{ |P |∑
i=1

|A|∑
a=1

Eri,a(t)

}
+

|P |∑
i=1

|M |∑
m=1

TLi,m(t) (5.4)

In order to cover a spectrum of tampering behaviour by a prosumer, we define
four types of theft functions. All four functions mimic practical fraudulent patterns
in terms of reporting erroneous generated energy back to the DSO. Many possibilities
of such theft functions exist and the herein models are distilled by observations in
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literature (Mahmoud et al., 2020; Yip, Wong, et al., 2017b; K. Zheng et al., 2018;
Shaaban et al., 2021). Through our work, we emulate attackers that attempt to create
manipulated reports either by retaining original curve fluctuations and features or
by generating new patterns. From a modeling perspective, these are variables that
partially or completely amplify the reported energy timeseries signal as we show next.

1. Total Scaling Theft:
∆Er(t) = η(t)Er(t) (5.5)

where η(t) ∈ R and 1 < η(t) < ∞.

2. Partial Scaling Theft:

∆Er(t) =

{
Er(t), Er(t) ≥ β

β, Er(t) < β
(5.6)

where β ∈ R, β > min
(
Er(1), Er(2), ..., Er(D)) and D is time period equaling

to one day.

3. Off-Peak Theft:

∆E(t) = γE(t) (5.7)

where

γ =

{
η, t ∈ [tstart, tend]

1, otherwise

where [tstart, tend] is the off-peak period, that is the peak operating weather
conditions for DRES.

4. Replay Theft:
∆Er(t) = max

(
Er(1), Er(2), ..., Er(D)

)
(5.8)

where D is a discrete time period that equals to one day (24 hours).

In more detail, the total scaling theft in Equation 5.5 considers the scenario in
which the aggregated generation measurements on time t are tampered by an attacker.
Tampering is based on an arbitrary percentage denoted by η, which is adjustable
(i.e., random rate percentage). For instance, the attacker reports 150% of the actual
measurements when η = 1.5. The partial scaling theft scenario in Equation 5.6
considers the case where an adversarial prosumer tampers generation measurements
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whilst a particular threshold is met. Hence, the prosumer sets a minimum reporting
value (i.e., β) for the DRES-based generation measurements sent to the DSO.

We also consider the case in which theft could be temporally sporadic. Thus having
discontinuous reporting of erroneous generation measurements during an off-peak
period that relates with the peak weather conditions in which the DRES operates.
For instance, the fraudulent prosumer reports 40% more power for a given time period
than what was actually generated during the off-peak solar radiation of that period.
Therefore, only measurements generated during the off-peak operating conditions of
DRES are scaled as shown in Equation 5.7. Finally, in the replay attack, the attacker
only reports the highest actual generation for the whole time duration T .

5.3 Methodology

The data flow underpinning the proposed framework is depicted by the flowchart in
Fig. 5.1. Building upon the work in Chapter 4 where concrete profiling and prediction
of energy generation using purely geo-located weather features is achieved, we profile
DRES installations using third-party and widely available weather measurements.
The incentive behind this approach is to remove the full dependency on SCADA-
based measurements. Hence, we align with the realistic scenario where no available
measurements gathered by locally placed sensors or the DRES SCADA systems
exist. As depicted, the SCADA-agnostic profiling component works in synergy
with a classification component that considers reported DRES energy generation
measurements as seen at the DSO level. Thus, tailor theft detection over individual
DRES installations and back-track potential fraudulent prosumers.

5.3.1 SCADA-agnostic DRES energy profiling

As shown in Fig. 5.1, the implemented DRES energy profiling component accepts
third-party weather measurements and it first employs an automated pre-processing
procedure. Following a series of data-oriented tasks dealing with noisy and incomplete
measurements, the profiling component conducts an automated feature selection
process in which the most suitable statistical features are chosen to compose a DRES
energy generation profile. The trained model based on the selected subset of features
of the source DRES is then used for all DRESs to profile their generated energy
measurements. Details of all the processes involved in the aforementioned description
in terms of profiling are discussed next.
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Figure 5.1: Data flows defining the proposed energy theft detection framework.

5.3.1.1 Data pre-processing

Within the pre-processing stage we filter our raw measurements by removing all
the possible missing, duplicated and inconsistent samples. Usually, third-party
measurements are largely inconsistent (out-of-range) due to various factors ranging
from environmental sensor reading and reporting errors as well as REST-API pull
failures. In this context, we include common data sanitisation and normalisation
approaches within an automated pipeline in our prototype.

5.3.1.2 Data encoding

The encoding process enables granular representations from aggregated third-party
time series. Given that aggregated measurements contain categorical time series,
we encode them into numerical data via a binary encoder. In more detail, we
assign an integer value to each unique category of the original categorical vector.
Subsequently, for each integer-encoded category we generate a binary vector and
based on the majority of bit coding, we generate an additional measurement vector.
Finally, we construct temporal views of our categorical measurements using the
measurement timestamps having hourly, daily and monthly observations mapped with
the aforementioned binary encoded measurement vector.
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5.3.1.3 Data selection

The developed data selection component is underpinned by an automated feature
selection mechanism such as to identify an appropriate set of features from the
encoded timeseries described earlier. As shown in Fig. 5.1, our component works
in coordination with the model trained on the source DRES component to obtain the
optimal feature set, producing the best-fit prediction model of the DRES generated
power. In detail, the selection process utilises i) univariate feature selection (UFS),
ii) ranking-based feature importance (FI) and iii) wrapper-based recursive feature
elimination (RFE). The reason of using three feature selection algorithms is to ensure
that we compile the best combination of meta-features. The importance of each of
the features is compared and chosen based on the F-score and the Pearson correlation
coefficient as well as a random forest estimator.

5.3.1.4 Model training

The base DRES profiling model strongly depends on the aforementioned feature
selection process. Most importantly, it is dynamically updated whilst new and
improved data feature combinations are provided by the selection process. Through
a repetitive feedback mechanism and the continuous update of a boosting regressor
we achieve an adaptive DRES energy generation base profile.

Due to its scalability in several measurement distributions, we utilise the
XGBoostR algorithm proposed by Chen and Guestrin (T. Chen and Guestrin, 2016).
This algorithm is composed of a classification and regression tree (CART) ensemble
model using K additive functions. Thus, enabling prediction of the generated power
measurements of the DRES installations at DSO. The proposed prototype minimises
the regularised objective of the XGBoostR model as defined in (T. Chen and Guestrin,
2016):

L =

|T |∑
t=1

l
(
y(t), ŷ(t)

)
+

|K|∑
k=1

Ω(fk) (5.9)

where y(t) and ŷ(t) denote the actual and predicted power measurements at time
t respectively, l is the loss function measuring the difference between ŷ(t) and y(t),
fk refers to the kth tree structure and Ω denotes the model complexity for avoiding
over-fitting which can be expressed as:

Ω(f) = ζJ +
1

2
λ || w ||2 (5.10)

where J is the number of leaves in the tree, w is the leaf weight, and ζ and λ are
constants controlling the regularisation degree.
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Since the XGBoostR model is trained in an additive fashion, Equation 5.9 at the
jth iteration can be expressed as:

L(j) =

|T |∑
t=1

l
(
y(t), ŷ(t)(j−1) + fj

(
x(t)

))
+ Ω(fj) (5.11)

where x(t) is the input vector at t and ŷ(t)j represents the power measurement
prediction of the tth observation at the jth iteration.

Following (T. Chen and Guestrin, 2016) within our implementation, we used
second-order approximation to optimise the objective, which can be simplified as
follows:

L(j) =

|T |∑
t=1

(
g(t)fj

(
x(t)

)
+

1

2
h(t)f 2

j

(
x(t)

))
+ Ω(fj) (5.12)

where

g(t) = ∂ŷ(j−1)l
(
y(t), ŷ(t)(j−1)

)
(5.13)

and

h(t) = ∂2
ŷ(j−1)l

(
y(t), ŷ(t)(j−1)

)
(5.14)

The optimal hyper-parameters for the employed XGBoostR model training process
were obtained using a grid search-based cross-validation technique returning the
appropriate values with the lowest prediction error.

5.3.1.5 Generated energy profiling

The generated energy measurements of all DRES at the DSO are predicted using the
trained XGBoostR as follows:

ŷ(t) =

|K|∑
k=1

fk
(
x(t)

)
(5.15)

where fk denotes the kth tree structure.
Accordingly and due to the cumulative nature of the utilised XGBoostR, the

predicted power measurements of the source DRES at step j can be calculated as
follows:

ŷ(t) = ŷ(t)(j−1) + fj
(
x(t)

)
(5.16)

As discussed next, the resulted features are utilised within the SVM-based
classification process in order to detect fraudulent prosumers.
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5.3.2 SVM-based classification

Due to its optimal performance in terms of memory efficiency (Jindal, Dua,
et al., 2016), a supervised SVM classifier is trained based on the predicted energy
measurements calculated using Equation (5.15) such as to provide a binary prediction
class for each of the prosumers in a given DSO (i.e., fraudulent or not).

As shown in Fig 5.1, the first process within the implemented SVM-based
classification prototype deals with normalisation of the DRES profiling output, which
is subsequently used as input to the DSO’s SVM training model. As explained
next, the classification phase is decomposed into specific processes in order to ensure
unbiased detection of fraudulent prosumers.

5.3.2.1 Data normalisation

Prior the training and classification stage we employ a min-max normalisation tech-
nique to reconstruct the processed measurements in the range of [0, 1]. Normalisation
is a crucial component within any statistical representation process and particularly in
our case we achieve to ensure testing and not neglecting extremely small measurement
values.

5.3.2.2 Model training

Following data normalisation, a model classifier is resulted by processing the training
set to detect fraudulent prosumers. Thus, the predicted energy measurements from
Equation (5.15) are the input to a trained SVM model in such a way to accommodate
an optimal decision boundary for classifying DSO prosumers. The optimal SVM
hyperplane boundaries can be obtained by solving the following soft optimisation
problem:

min
(1
2
|| w ||2 +C

|T |∑
t=1

ξ(t)
)

(5.17)

where w denotes the weight vector, C denotes the regularisation parameter used to
quantify the trade-off between the model’s complexity and the classification error.
Also, ξ represents a slack variable.

In order to select the most appropriate hyper-parameter values with the highest
training accuracy for the SVM model we employ a synergetic use of grid search and
cross-validation algorithms.

5.3.2.3 Theft detection

Once the SVM-based training model is achieved, the binary classification of DSO
prosumers to either being legit or fraudulent is conducted.
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The decision boundary function in our proposed implementation is defined as:

f(x) =

|S|∑
t=1

(
α(t)− β(t)

)
K
(
x(t), y(t)

)
+ b (5.18)

where S is the set of support vectors, x(t) ∈ S is the support vector, y(t) is the
assessed power measurement, K is the kernel function. The α(t) and β(t) variables
are the Lagrange multipliers and b is the regularisation parameter.

Due to the fact that all energy measurements have a non-linear distribution, we
employ a radial basis function (RBF) kernel defined as:

K
(
x(t), y(t)

)
= exp

(
− γ || x(t)− y(t) ||2

)
(5.19)

where γ is the kernel function parameter.

5.4 Dataset description

Our evaluation is based on real measurements gathered by wind turbine and solar
panel installations in Australia and France. In particular, we utilise a 10-fold cross-
validation by the mean technique on a dataset acquired from the La Haute Borne wind
farm located in Meuse, France 1 and a solar power dataset captured at the Ausgrid
power network located in Sydney, Australia 2.

Table 5.1 depicts a summary of the aforementioned datasets. As shown, the Engie
wind datasets represents the daily generated power measurements captured at a real
installation of 4 wind turbines for a duration of 11 months in 2017. In addition, the
Ausgrid solar data provides daily measurements captured for a period of 11 months
from rooftop solar panel installations.

Table 5.1: Datasets overview.

Dataset
Time

Window
Location DRES

Capacity
Start End Longitude Latitude

Engie
Wind

Jan
2017

Dec
2017

5.6013 E 48.4503 N 2050 kW

Ausgrid
Solar

Jul
2012

Jun
2013

151.2093 E 33.8688 S 1 kW

1Explore – ENGIE France Renewable Energy Open Data, Available: https:

//opendata-renewables.engie.com/pages/home/
2Explore – Ausgrid Solar Home Electricity Data, Available:https://www.ausgrid.com.au/

Industry/Our-Research/Data-to-share/Solar-home-electricity-data
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Within Table 5.1, we highlight longitude and latitude values since they were
critical for mining weather and environmental information explicit to those areas.
Hence, we extracted available measurements such as output temperature, wind speed,
humidity and pressure and assessed their ground truth by cross-validating across
multiple third-party and freely available APIs. In order to do that, we collected
data from the Dark Sky API3, Weather Online4 and Open Weather API5 aligning
with the same observational period as that of the generation measurements at the
Engie and Asugrid installations. Complementary to the aforementioned, we acquired
additional output temperature and wind-related measurements from Weathernews6

as observed by the Nancy-Ochey weather station, which is geographically adjacent
to the La Haute Borne wind farm. In total, our third-party weather data, i.e., the
obtained weather measurements from freely available APIs, comprised of 52 weather
and environmental measurements, including numerical and categorical readings such
as wind measurements, humidity, pressure and cloud cover within hourly sampling
bins. For our evaluation group, measurements are considered seasonally (i.e., summer,
autumn, spring, and winter).

5.5 Evaluation Methodology

The evaluation methodology employed within this work aims at determining the
suitability of the integrated data-driven theft detection solution over diverse DRES
deployments. The main focus was placed on quantifying the detection performance
and also relating it with the corresponding computational costs. Moreover, we conduct
a monetary meta-analysis assessing the potential impact of the various synthetic thefts
as well as the theft detection gains from the DSO perspective.

5.5.1 Detection performance

A thorough analysis was conducted such as to evaluate the detection performed using
the synergy of the SCADA-agnostic DRES energy profiling and the SVM classifier
discussed in Section 5.1. The first phase consists of the SVM classifier training
with input from the SCADA-agnostic DRES power profiling output to compute final
predicted power for all DRES installations. In parallel, an instance of the SVM
component is trained based on the third-party weather data measurements. Within

3Explore – Dark Sky API, Available: https://darksky.net/dev
4Explore – World Weather Online API, Available: https://www.worldweatheronline.com/

developer/api/
5Explore – Open Weather API, Available: https://openweathermap.org/api
6Explore – Weathernews, Available: www.weathernews.fr
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our classification procedure, we distributed the dataset so that 70% of it is for training
and 30% from each season as testing (Jindal, Dua, et al., 2016).

As already described in Section 5.1, we reach a binary detection decision (i.e.,
fraudulent or legit) through comparing the two outcomes of the aforementioned
classification processes. Two classification errors and one computational cost metric
were also utilised to assess the resulting classification models. The classification error
metrics are accuracy (ACC) and binary classification area under the curve (BAUC)
(related to receiver operating characteristic (ROC) curve), while we consider the time
taken to obtain a decision as the computational cost. The definitions of which are
provided as follows.

1. ACC: the ability to correctly differentiate fraudulent and legit measurements,
defined as:

ACC =
TP + TN

TP + TN + FP + FN
(5.20)

where TP , TN , FP and FN represent the true positives, true negatives, false
positives and false negatives, respectively. TP is the number of measurements
correctly identified as fraudulent, TN is the number of measurements correctly
identified as legit, FP is the number of measurements incorrectly identified as
fraudulent, and FN is the number of measurements incorrectly identified as
legit.

2. BAUC: the degree of the capability of distinguishing between fraudulent and
legit measurements and is defined as:

BAUC =

∑
Rank(+) − NF (1+NF )

2

NF ×NL
(5.21)

where
∑

Rank(+) represents the sum of the ranks from fraudulent measure-
ments, NF is the number of the fraudulent measurements, and NL is the
number of legitimate measurements. Following (Z. Zheng et al., 2018; Hand
and Till, 2001), we have arranged the measurements in ascending order based
on the prediction of fraudulent measurements for ranking.

3. Computation time complexity: the time required by the SVM prototype to
produce a DRES classification of a given DSOi.

5.5.2 Theft scenarios

Due to the fact that the acquired datasets were the result of prosumers that
volunteered to provide their data, we assume that all measurements were legit and
no fraudulent behaviour is present. Hence, prosumers reported genuine generation
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measurements therefore the original data are considered as the ground truth. As
presented in Section 5.3, we inject synthetic anomalies in our datasets that conform
to specific theft scenarios discussed in the literature. Hence, we employ our developed
energy theft functions, i.e., (definitions 5.5), ((5.6)), (5.7) and (5.8) in order to
compose a dataset consisting of both legitimate as well as fraudulent patterns.
As depicted by Table 5.2, the conducted evaluation methodology considers varying
theft proportions (i.e., fraudulent measurements) injected within the actual dataset
across a given DSO. We stretch the scaling parameters for both total and partial
thefts within particular boundaries to ensure that we create the most representative
realistic scenarios. The mix theft scenario focuses on a randomly chosen subset
of measurements to simulate one of the four main scenarios. As discussed in the
literature, there exist many cases in which fraudulent prosumers might apply different
theft scenarios over different time-periods to manipulate with their measurements
(K. Zheng et al., 2018).

Table 5.2: Simulation parameters used in theft scenarios.
Dataset Theft Scenario Parameter

Engie Wind

Total Scaling Theft 1.4 ≤ η ≤ 7
Partial Scaling Theft 50 kW ≤ β ≤ 100 kW

Off-Peak Theft rated wind speed = 15 m/s
Reply Theft D = 24

Asugrid Solar

Total Scaling Theft 1.4 ≤ α ≤ 7
Partial Scaling Theft 0.005 kW ≤ β ≤ 0.4 kW

Off-Peak Theft 11 am ≤ t ≤ 3 pm
Reply Theft D = 24

5.6 Results

5.6.1 Theft detection performance

The results of the theft detection framework proposed in Section 5.3 are illustrated
in this section, while considering the discussed evaluation methodology in Section 5.5
on the datasets specified in Section 5.4.

Using the SVM-based classification system proposed in Section 5.3.2, we witness
that the SVM-based classifier trained on the energy profiling outperformed the
classifier based on the third-party weather data for with regard to the ACC and
BAUC scores in Engie wind data as shown in Figs. 5.2 and 5.3. In this case, total
scaling theft results in 5.9% higher score when we use predicted wind energy output
as a feature to train the SVM classifier, as compared to using the third-party weather
data. In addition, the performance of the model based on third-party weather data
significantly drops on the partial scaling theft scenario, with a margin of more than
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13.16% compared to the first case when it was trained on the energy profiling output.
Nonetheless, under the replay theft scenario, both classifiers achieved high ACC
score of 97.2% and BAUC 99.6%. In the replay theft scenario, fraudulent prosumers
over-report the maximum of the actual generation of the installed DRES. This theft
behavior shows a steady and repetitive distribution throughout the fraudulent energy
measurements, that can be unambiguously detected by the proposed SVM-based
classification prototype in both cases, i.e., either it is trained using the third-party
weather data, or energy profiling.

Figure 5.2: ACC values of the Engie wind power data.

Figure 5.3: BAUC values of the Engie wind power data.

With respect to the Asugrid solar power measurements, the SVM-based classi-
fication prototype trained on the energy profiling output provided higher scores in
detecting several theft scenarios, as shown in Figs. 5.4 and 5.5. As evident from
these figures, in the case where the energy profiling output was used as an input
feature, the SVM-based classification prototype obtained an ACC of 89.1% and an
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BAUC score of 81.4% in detecting the mix theft. However, in detecting the same theft
scenario, the SVM-based classification prototype trained on the third-party weather
data maintained a lower score (more than 6%) than the one trained on energy profiling
output by obtaining an ACC of 82.3% and an BAUC score of 74.2%. Similarly, to
detect the total scaling theft, the SVM-based prototype trained on the energy profiling
output provided more than 2% higher results than that trained on the third-party
weather data. In detecting replay theft, both classifiers performed excellent scores on
both ACC and BAUC.

Figure 5.4: ACC values of the Asugrid solar power data.

Figure 5.5: BAUC values of the Asugrid solar power data.

Overall, the SVM-based classification prototype trained on the energy profiling
output maintained higher ACC and BAUC scores in both the wind and solar power
measurements. Therefore, we can infer that the output of the SCADA-agnostic
power profiling prototypes (i.e., the energy profiling for the DRES) has an important
role to play in differentiating fraudulent prosumers. For more insight, Fig. 5.6
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Figure 5.6: Predicted and actual power generation of legit and fraudulent prosumers
in Engie and Ausgrid.

presents the boxplots of predicted power measurements and the actual generations
for both legit and fraudulent prosumers. It is evident, that the energy measurements
proportion range for legit prosumers was between 0 kW and the capacity of the DRES
installations, thus 2050 kW for wind and 1 kW for solar respectively.

However, the energy measurement proportion of the fraudulent prosumer exceeded
this range by the value of the manipulated green energy units. Moreover, it is
demonstrated that the predicted power of the legit prosumers falls within 8% of
actual generation, whereas a significant difference between the predicted and actual
generated power can be observed for the fraudulent ones. Therefore, the predicted
power measurements for DRES can be used as a useful feature for the proposed SVM-
based classification prototype, where prosumers are classified either as fraudulent or
legit based on their respective predicted energy measurements.

Fig. 5.7 depicts the results of the SVM-based classification prototype in both
the proposed cases in terms of computational time in our evaluation methodology.
This analysis was performed using a 64-bit Windows operating system with Intel
Core i7 (7th Gen) CPU with 12 GB RAM and 2.70 GHz clock cycle. The results
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clearly indicate that the SVM-based classification prototype trained on the energy
profiling prototype output operates on a relatively lower computational time than
that on third-party weather data. The reason behind this is the high dimensionality
of the aggregated third-party weather data, where the total number of selected
measurements was more than that output of the energy profiling prototype, i.e., the
predicted energy measurements. In the case of the third-party weather data, the
process of classifying such high dimensional data requires computational complexity
than that occurring in low dimensional spaces, where the SVM-based classifier only
performs on the energy profiling output.

Figure 5.7: Computational time comparison.

5.6.2 Monetary analysis

The density of the amount of the energy loss caused by the theft attacks originally
for the DSO in each month of the year is illustrated in Fig. 5.8. The amount of
the energy losses in both wind and solar data can be obtained using Equation (5.3).
Fig.5.9 presents the amount of the monetary cost caused by each individual theft
scenario for the whole of a year. These monetary costs are estimated by multiplying
the electricity price with the resulted total DSO energy loss in each season. The
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Figure 5.8: The density of the energy loss in wind and solar energy data.

France feed-in tariff (i.e., £7.40/kWh (Tazi and Bouzidi, 2020)) was applied to the
wind energy dataset, while the Ausgrid feed-in tariff (i.e., £0.051/kWh (Krishna,
Gunter, and Sanders, 2018)) was applied to the solar energy dataset.

These figures indicate that the monetary cost for the utility provider varied linearly
with the amount of energy loss for both datasets. The spikes of the density curves
in Fig.5.8 denote that for the wind measurement, the highest concentration of the
highest energy loss was caused by the total theft scenario resulting in a monetary cost
of 31% for the providers. The same behaviour was identified for solar measurements,
where the highest concentration of the highest energy loss was caused by replay thefts,
resulting in the largest amount of cost of 34.1% of the total annual monetary cost.
As evident from these figures, the monetary costs can reach an incredible level when
large-scale DRES are manipulated, especially for the replay or total scaling thefts. In
such cases, the fraudulent prosumer engaged in theft activities manipulates the energy
generation values measured by the generation meters endowed within the private
DRES by increasing the number of green energy measurements that are reversed to
the energy grid. Consequently, the energy losses increased by the discrepancy in this
value, leading the utility provider to overcharge.

In order to save such monetary costs incurred by the providers, an accurate
detection of the energy loss caused by energy thefts is required in the first place.
Fig.5.10 presents the saved cost provided by our proposed detection framework. As

97



Chapter 5. Predictive Energy Theft Detection for Distributed Renewable Energy
Sources

Figure 5.9: The amount of the monetary cost for the utility providers.

evident from this figure, for both wind and solar energy measurements, our framework
saved between 82− 99% of the monetary cost through detection the energy loss. The
median value of the cost that can be saved by the proposed detection framework of
the total theft scenario in the wind energy measurement is £7, 808, 430, while in the
solar energy measurements is £60.0395. The estimate of saved costs provided by the
proposed framework is without including any additional hardware equipment since the
proposed framework is completely data-driven, or utilizing additional measurements
that are directly unavailable to the providers that are only aware of the DRES capacity.

5.7 Summary

Energy theft attacks pose a pressing issue that has resulted in enormous non-technical
energy and monetary losses to energy providers at a global scale. The integration of
DRES deployments in modern energy grids in conjunction with the widely adopted
business model of demand-response have undoubtedly expanded the energy theft
attack surface. Conventional energy theft detection schemes heavily rely on the
assessment of spatiotemporal patterns from aggregated and commonly incomplete
SCADA measurements without considering the intrinsic weather or environmental
patterns related to a specific DRES deployment. Therefore, in this chapter we propose
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Figure 5.10: The saved cost by the proposed framework in wind and solar energy
data.

a predictive SCADA-agnostic energy theft detection framework explicitly to DRES-
based scenarios. We introduce a DRES-based theft attack model and further evaluate
the performance of our framework by utilizing freely available third-party weather
measurements over real solar and wind energy deployments in Australia and France
respectively. Through our evaluations based on energy profiling model and third party
weather data, we demonstrate that the proposed framework can detect fraudulent
prosumers with high average accuracy with relatively low computational costs. Hence,
placing it as a good and cost-effective candidate for future data-driven energy theft
detection schemes.
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Chapter 6

Adaptive Energy Theft Detection
for Generation and Consumption
Smart Meters

The modernisation of traditional power grids into smart grids through the demand
response (DR) paradigm alongside the integration of distributed renewable energy
sources (DRES) within grid optimisation practices is undoubtedly contributing
towards the global net-zero initiative. A core property of modern power grids revolves
around the adequate operation and optimisation of AMI as underpinned by networked
smart meters. In the United Kingdom alone, the number of smart meter deployed by
utility companies reached 28.8 million by the first quarter of 2022, with a full coverage
projected by the end of 2025 (Gov.UK, 2022; Ofgem, 2022).

Given the diversity of hardware and software technologies entailed within smart
meter integration and the lack of holistic grid-specific cybersecurity practices, we
witness an evolving threat landscape in which energy theft activities are further
enabled (Shaaban et al., 2021). Energy theft has been a problem since the very
early coal-based power grids and its manifestation has changed dramatically with
the introduction of networking technologies, as well as, advanced energy trading
platforms. Estimates of monetary loss attributed to energy theft in the United
Kingdom and the US have been put at $170 million and $6 billion, respectively, in the
last few years (M. Wen et al., 2021). Evidently, the cybersecurity loopholes inherited
by the interface of IoT technologies with AMI and legacy or bespoke industrial control
system (ICS) in modern grids constitute the basis for various threat vectors in which
consumers or prosumers could exploit primarily for monetary gain, as we discussed in
Chapter 2.

By virtue of the direct relationship and impact of the DR paradigm with
energy trading as translated into financial transactions, energy theft has received
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a considerable level of attention by a number of studies. Nonetheless, the majority
of studies was limited in scope due to their explicit focus on particular types of
measurements or properties of the overall smart energy systems. Effectively, existing
energy theft detection schemes rely on readings related to consumption (Z. Zheng
et al., 2018; Yao et al., 2019; M. Wen et al., 2021) or focus on DRES energy generation
measurements (Mahmoud et al., 2020; Shaaban et al., 2021).

Therefore, in this chapter, we aim to present an adaptive energy theft detection
approach that considers both power generation and consumption measurements.
The proposed method is capable of distinguishing theft-related events from the
noisy data generated by misconfigured devices and, more importantly, it can self-
optimise by utilising the properties of incoming measurement streams, without human
intervention. The adaptive energy theft detection approach proposed in this chapter
is another instantiation of our overarching framework described in Chapter 3. Hence,
it employs the MMC dimension of the proposed theoretical framework and gathers
data at various levels of aggregation in the infrastructure dimension. The collected
data are then used within the operation dimension to extend the theft profiling sub-
process of the proposed theoretical framework, with the aim of proposing a general
adversary model applicable to stealthy energy theft and abnormalities resulting from
legitimate consumption and generation measures. The output of this theft profiling
round is then utilised to continue the detector construction, theft detection, and theft
classification sub-processes within the operation dimension of the proposed theoretical
framework.

In summary, we contribute by:

1. Formalising a novel and generic adversary model explicit to stealthy energy theft
and benign anomalies in consumption and generation measurements.

2. Introducing a novel energy theft detection system defined by the synergy of
an adaptive feature composition scheme and an smart meter classification
component resulted by the aggregation of weather condition measurements and
misconfiguration events over energy consumption and DRES deployments.

3. Constructing a self-learning process to enable our system to continuously and
autonomously retrain based on instantly available measurements.

The rest of this chapter is structured as follows; Section 6.1 presents a generic
model for mapping energy theft and misconfiguration events. Section 6.2 describes the
methodology underpinning our detection system whereas Section 6.3 demonstrates our
evaluation methodology. Section 6.4 evaluates the proposed soluton and demonstrates
its ability to achieve high precision and accuracy in energy theft detection, whereas
Section 6.5 concludes this work.
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6.1 Smart grid & energy theft

6.1.1 System description

We consider an energy distribution network G = {A,N} consisting of a set of
consumers A distributed in several geographical regions and a set of low/medium
voltage distribution buses N . Bidirectional data communication and power streams
are used for energy transmission and distribution through corresponding power
systems and networked data management components. Each consumer ui in G is
equipped with an smart meter to measure energy consumption. The consumption
of a single ui at a given hour h ∈ H for a day d ∈ D and month m ∈ M , is
represented by Eci(h, d,m). For this representation, H = 1, 2, ..., 24, D = 1, 2, ..., 30
and M = 1, 2, ..., 12 are defined as the set of hours within a day, the set of days in
a month and the set of months in a year, respectively. We define a subset B ⊆ A
as a group of consumers owning and managing a DRES installation (e.g. domestic
solar panels) as well as consuming power (i.e., prosumers). The energy produced by
a single prosumer i ∈ B in a given time period h, d,m is measured by a second smart
meter and mapped as the function Eri(h, d,m) : Eri(h, d,m) = 0 ∀i ̸∈ B.

In this context, energy theft activities result in energy losses defined as the
difference between the energy supplied into a grid and the energy consumed under
normal conditions (K. Zheng et al., 2018). Thus, the cumulative energy loss over a
single time period h, d,m can be expressed as follows:

NTL(h, d,m) = ∆Es(h, d,m) +

|B|∑
i=1

∆Eri(h, d,m)

−
|A|∑
i=1

∆Eci(h, d,m) +

|N |∑
i=1

TLi(h, d,m)

(6.1)

where Es(h, d,m) is the energy supplied by the utility provider to all individuals in
A at a time interval h, d,m. ∆ is the discrepancy in the smart meter measurements
for the actual and reported readings of a single consumer/prosumer ui due to the
energy theft activities at time h, d,m, and TL is the transmission line losses caused
by physical restrictions.

6.1.2 Energy theft and smart meter misconfiguration model

The primary assumption of this work is that prosumers and/or consumers can
manipulate their consumption and/or generation measurements to report erroneous
energy readings. Thus, in Eq. 6.1, we rule out discrepancies in the energy supplied
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Table 6.1: Energy theft and smart meter misconfiguration functions where α, β, γ(.),
ζ(.), ι(.) and τ(.) are anomaly coefficients.

Type Measurement Function
Curtailment

misconfiguration
Generation ∆Eri(h, d,m) = αEri(h, d,m) ∀ Eri(h, d,m) > 0, where

{
α ∈ R | 0 ≤

α < 1
}

Amplification
misconfiguration

Consumption ∆Eci(h, d,m) = βEci(h, d,m) ∀Eci(h, d,m) > 0, where
{
β ∈ R |β > 1

}
Disconnect

misconfiguration
Generation ∆Eri(h, d,m) = NaN

Consumption ∆Eci(h, d,m) = NaN

Total scaling theft
Generation ∆Eri(h, d,m) = γ(h, d,m)Eri(h, d,m) ∀ Eri(h, d,m) > 0, where{

γ(h, d,m) ∈ R |γ > 1
}

Consumption ∆Eci(h, d,m) = ζ(h, d,m)Eri(h, d,m) ∀ Eci(h, d,m) > 0, where
{

ζ(h, d,m) ∈ R | 0 ≤ ζ(h, d,m) < 1
}

Partial scaling theft
Generation ∆Eri(h, d,m) =

{
Eri(h, d,m), Eri(h, d,m) ≥ ι

ι, Eri(h, d,m) < ι

where
{
ι >∈ R |ι > Min

(
Eri(1, d,m), Eri(2, d,m), ..., Eri(24, d,m)

)}
Consumption ∆Eci(h, d,m) =

{
Eci(h, d,m), Eci(h, d,m) ≤ τ

τ, Eci(h, d,m) > τ

where
{
τ ∈ R |τ < Max

(
Eci(1, d,m), Eci(2, d,m), ..., Eci(24, d,m)

)}
Off-peak theft

Generation ∆Er(h, d,m) =

{
γ(h, d,m)Eri(h, d,m), hs ≤ h ≤ he|Eri(h, d,m) > 0

Eri(h, d,m), otherwise

where hs and he is the off-peak operating weather conditions for DRES.

On-peak theft
Consumption ∆Ec(h, d,m) =

{
ζ(h, d,m)Eci(h, d,m), hb ≤ h ≤ hc|Eci(h, d,m) > 0

Eci(h, d,m), otherwise

where hb and hc is the on-peak load hours.

Reply theft
Generation ∆Eri(h, d,m) = Max

(
Eri(h− 1, d,m), Eri(h, d,m)

)
Consumption ∆Eci(h, d,m) = Min

(
Eci(h− 1, d,m), Eci(h, d,m)

)
Stability theft

Generation ∆Eri(h, d,m) = Max
(
Eri(1, d,m), Eri(2, d,m), ..., Eri(24, d,m)

)
Consumption ∆Eri(h, d,m) = Min

(
Eci(1, d,m), Eci(2, d,m), ..., Eci(24, d,m)

)

by the utility provider having ∆Es(h, d,m) = 0, since this measurement is assumed
to be usually secure under a reliable communication link (Yip, Wong, et al., 2017a).
However, the discrepancy in the smart meter generation and consumption readings
in Eq. 6.1, ∆, may occur by both a theft-related activity or a non-malicious event,
such as a misconfiguration. In general, energy losses defined in Eq. 6.1 relate to
metering conditions that manifest as anomalous behaviour in the measurement of
that particular meter. Such occurrences are common in instances of energy theft-
related activities as well as smart meter misconfiguration incidents.

Therefore, to distinguish smart meter discrepancies, we present in Table 6.1 a
taxonomy of smart meter anomaly function definitions, based on energy consumption
and generation measurements. All functions mimic pragmatic characteristics of
fraudulent or misconfigured smart meter patterns in terms of erroneously reported
measurements. There anomaly functions are based on findings in the literature
(Mahmoud et al., 2020; Yip, Wong, et al., 2017a; K. Zheng et al., 2018; M. Liu
et al., 2020; David, 2021; Peppanen et al., 2015; Dai et al., 2021) and reflect a
representative collection of common anomaly operations. According to Table 6.1,
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misconfiguration and theft activities can partially or completely change the reported
energy timeseries signal. Theft activities within consumption measurements target
to decrease the monetary value of a consumer and thus they are mapped as a
direct decrease in consumed energy. However, smart meter misconfigurations lead
to unexpected increases in consumed energy. Theft functions exploiting DRES
generation measurements with a goal for monetary gain feature an increase in the
reported generated energy, while the misconfiguration of the DRES’s smart meter is
described as the curtailment of DRES energy back to the grid.

In more detail, the curtailment misconfiguration considers a scenario in which
the misconfigured smart meter reports always less supplied energy than what the
DRES deployment actually generated, for instance, 30% of the actual generated
energy when α = 0.3. However, in amplification misconfiguration, we assume
that the misconfigured consumption smart meter consistently reports more than the
actual amount of energy consumed by customers (i.e. β > 1). In the disconnect
misconfiguration scenario, a smart metre loses its connection and is unable to continue
transmitting energy measurements to the utility provider centre. This is one of the
characteristics shared by both generation and consumption smart metres.

In case of the total scaling theft, we consider a scenario in which the total
generation and consumption measurements are completely scaled by an attacker based
on an arbitrary percentage, i.e. γ and ζ. For example, 140% of the actual generation
measurements is reported by the attacker when γ = 1.4, while 50% of the actual
consumed energy is reported when ζ = 0.5. In the partial scaling theft scenario,
only consumption measurements above a threshold ι and generation measurements
under a threshold τ are scaled by the attacker. Therefore, a fraudulent prosumer
sets a minimum reporting value for the DRES-based generation measurements sent
to the main grid and a maximum value for the consumed energy every single day by
a fraudulent consumer.

We also considered a case in which theft could not continuously occur, so there
might be some discontinuous malicious reporting of the measurements during a certain
period. For instance, in off-peak theft, the fraudulent prosumer reports 40% more
power than that generated during off-peak hours, relating to the peak weather
conditions in which the DRES operates. In on-peak theft, malicious consumers
report 20% less than they consumed during on-peak load hours. However, in replay
attacks, the fraudulent prosumer only reports the highest actual generation once
it is reached; meanwhile, for consumption measurements, the attacker reports the
minimum consumed energy. Finally, in the case of stability thefts, the attacker
continuously reports the maximum generation for each day, and for the consumption
measurement, the fraudulent consumer sends the minimum consumption of the day
to take full benefit from the energy system business model.
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6.2 Energy theft detection

As illustrated in Fig. 6.1, our system consists of two stages: (i) feature construction
and, (ii) smart meter classification.

Figure 6.1: Data-flow of the proposed system.

6.2.1 Feature construction

The feature construction stage processes timeseries data from the infrastructure and
builds extended feature sets. This is achieved by composing first order statistics (e.g.,
min/max, variance) of generation and consumption measurements for each group of
consumers and prosumers. We consider correlated spatiotemporal behaviour across
timeseries measurements by virtue of behavioral similarities in seasonal consumption
and generation patterns.

For example, a peak in consumption pattern caused by air-conditioning demand
during a hot wave could be observed across a large number of neighbouring consumers
with similar characteristics. Similarly, prosumers managing solar panels can have a
correlated generation pattern based on sunlight availability. It is thus feasible to
establish a ground truth with respect to normal generation or consumption profiles.
In particular, the feature construction module stage clusters smart meter using
an incremental K-means algorithm, which partitions smart meters into k clusters
based on a set of consumer/prosumer characteristics. These characteristics include
geographical location, DRES physical characteristics, number of appliances, and tariff
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agreement type. Clustering smart meters based on common characteristics allows the
classification stage to extract common energy generation and consumption patterns
emerging between consumers/prosumers within the same cluster (Angelos et al., 2011;
D. Chen and Irwin, 2017).

Let an initial set of K-means
[
ξ
[1]
1 , ξ

[1]
2 , ..., ξ

[1]
K

]
, each consumer/prosumer ui ∈ G

would group into a cluster whose mean is the shortest squared Euclidean distance as:

s[r]q =

{
ui :|| ui − ξ[r]q ||2 ≤ || ui − ξ

[r]
j ||2 ∀ j ∈ [1, k]

}
(6.2)

In each iteration, the mean of the clusters can be updated as follows:

ξ[r+1]
q =

1

| s[r]q |

∑
uj∈s

[r]
q

uj (6.3)

Formally, the objective here is to minimise intra-cluster variance as:

argmin
s

k∑
q=1

∑
u∈sq

|| u− ξq ||2 (6.4)

where ξq is the mean of consumers and prosumers in sq. The output of this process is
a list of clusters S =

[
s1, s2, ..., sK

]
determining which cluster each individual ui ∈ G

is grouped into and a list of the mean of each cluster Ξ =
[
ξ1, ξ1, ..., ξK ,

]
determining

the mean of the individuals in each cluster. Once consumers and prosumers with
correlated consumption and generation measurements are grouped, we calculate a
set of variables representing regular consumption and generation patterns for the
individuals within each cluster. Hence, for each cluster, we calculate the minimum
(min), maximum (max), (var) variance, standard deviation (std), sum and mean
of the generation and consumption measurements of a set of completely legitimate
consumers/prosumers in that cluster. These variables provide different perspectives
on the generated and consumed energy within that cluster, and overall they reflect the
regular consumption and generation patterns for customers within that group. Thus,
these features are preserved to serve as the ground truth of the regular generation
and consumption patterns to support the detection process within each cluster.

6.2.2 Smart meter classification

Due to its ability to address multi-category problems and multiple tasks simultane-
ously, a dual deep feed forward neural network (D-FFNN) is defined in this module
to determine whether each consumption and generation measurement is malicious,
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misconfigured, or legitimate. The structure of the proposed D-FFNN comprises of
an input layer with v neurons followed by l hidden layers, each with ne neurons, and
finally, dual output layers, each with 3 neurons as per the category each sample is
stratified (i.e., malicious, misconfigured, legitimate). The input layer sends the input
data X =

{
x[1], x[2], ..., x[|X|]} to the hidden layers to extract features and understand

patterns to facilitate producing a given category by each output layer.
Each x[i] ∈ X is an instance in the v − dimensional feature space, i.e. x[i] =[

x1, x2, ..., xv

]
. This feature space includes the reported consumed energy Eci(h, d,m)

and generated energy Eri(h, d,m) together with the features constructed in Section
(6.2.1) and the weather conditions of i’s geographical region for each i ∈ G over the
time slot h, d,m. The first output layer projects the category of the consumer’s i
consumption measurement ŷ

[i]
c whereas the second output layer projects the category

of the generation reading ŷ
[i]
r at the time h, d,m. These two decisions indicate

whether each smart meter of each consumer or prosumer is legitimate, malicious, or
misconfigured. To train the D-FFNN, the input instances in X are mapped through
the hidden layers from the input layer to the dual output layers as follows:

z[n] = σ
(
θ[n] · z[n−1] + b[n]

)
∀ n ∈ [1, l + 1] (6.5)

where: 
z[0] = x[i] =

[
x1, x2, ..., xv

]
z[l+1]1 = ŷ

[i]
c

z[l+1]2 = ŷ
[i]
r

Here b represents a bias vector, θ is the connection weight, and σ(·) is a sigmoid
function for the hidden layer and a softmax function for the dual output layers. The
objective of the training process is to use a standard back-propagation to find b and θ.
Algorithm 1 describes a workflow for the entire training process. In Algorithm 1, ⊙
represents element-wise multiplication, ρ is a predefined learning rate, T is transpose
operation, σ′(·) is the derivative of an activation function σ(·), and δ[n] is the error in
the layer n. The training process here is achieved by minimizing the dual objective
function:

argmin
θ,b

J =
1

| X |

|X|∑
i=1

(
L
(
ŷ[i]c , y[i]c

)
+ L

(
ŷ[i]r , y[i]r

))
(6.6)

where y
[i]
c and y

[i]
r represent the actual category corresponding to a sample x[i] ∈ X

and L(·) is a three-class cross entropy function formulated as:

L(ŷ, y) = −
3∑

i=1

ηi yi log(ŷi) (6.7)
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where η represents an adjustment weight map for each category to force the detector
to focus on the category where a larger learning loss occurs, resulting from an
imbalance issue, to improve its performance. The initial D-FFNN defined by its
trained parameters, i.e. θ abd b, is preserved to save the knowledge acquired during
the learning process from the input data X. Thus, it can be used for detecting further
measurements where each smart meter is listed in one of three groups – legitimate,
malicious, or misconfigured – based on the results of the classification process.

Algorithm 1 D-FFNN training.
1: Initialise θ[n] and b[n] randomly ∀ n ∈ [1, l + 1]
2: for each training sample x[i] ∈ X do
3: for each layer n ∈ [1, l + 1] do
4: Calculate z[n](x[i]) using Equation 6.5
5: end for
6: Calculate J(x[i]) using Equation 6.6 and Equation 6.7
7: Calculate δl+1(x[i]) = ∇zJ(x[i])⊙ σ′(θ[l+1] · z[l](x[i]) + b[l+1]

)
8: Calculate θ[l+1] = θ[l+1] − ρ δ[l+1](x[i])

(
z[l](x[i])

)T
9: Calculate b[l+1] = b[l+1] − ρ δ[l+1](x[i])
10: for each hidden layer n ∈ [l, 1] do
11: Calculate

δ[n](x[i]) =
(
(θ[n+1])

T
δn+1(x[i])

)
⊙ σ′(θ[n] · z[n−1]

+ b[n]
)

12: Calculate θ[n] = θ[n] − ρ δ[n](x[i])
(
z[n−1](x[i])

)T
13: Calculate b[n] = b[n] − ρ δ[n](x[i])
14: end for
15:
16: end for

6.2.3 Self-learning operation

The self-learning operation of our detection system starts once a new batch of
smart meter measurements is available. In this regard, new consumption and
generation measurements are collected from the grid’s consumers and prosumers,
whose measurements may have been collected in the first data batch, or from
new individuals who were connected recently to the power system. A generalised
workflow of the self-learning operation is described in Algorithm 2. As illustrated
in this algorithm, the system initially assigns each individual in the new batch to a
corresponding cluster defined in the saved list of clusters S in Section 6.2.1.

However, if the new batch contains measurements from new consumers/prosumers,
the squared Euclidean distance between these new individuals and the k-means in Ξ
is measured. Subsequently, each new consumer/prosumer is assigned to the nearest
cluster whose mean is the shortest distance, if this distance is smaller than a predefined
threshold Tk. Otherwise, the system creates a new cluster for this new individual and
updates the cluster set S and means set Ξ by adding the means of the recently created
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cluster. We set the threshold Tk by referencing the longest distance between each
individual and its cluster mean in the initial measurement batch. Once consumers
and prosumers are clustered, the system calculates the set of features proposed in
Section 6.2.1 from the newly available measurements to create the new input batch
X ′ along with the weather data.

Algorithm 2 Self-learning operation.
1: Recall S and Ξ
2: Assign each consumer/prosumer ui to its cluster sq
3: for each new ui do
4: Find ξq ∈ Ξ : || ui − ξq ||2 is the smallest
5: if || ui − ξq ||2< Tk then
6: sq = sq ∪ ui

7: Updated Ξ
8: else
9: Updated S
10: Updated Ξ
11: end if
12: end for
13: Construct features from each cluster
14: Collect weather condition measurements
15: Merge all measurements to create input data X′

16: Load D-FFNN
17: for each x[i] ∈ X′ do
18: ŷ

[i]
r and ŷ

[i]
c ← D-FFNN(Θ, x[i])

19: end for
20: Calculate ACc and ACr using Equation (6.8)
21: if ACc ≤ Tc OR ACr ≤ Tr then
22: Retrain D-FFNN with X′ using Equation (6.5) to minimise the objective function in Equation (6.6)
23: end if
24: Save D-FFNN

Following the update of the new features based on newly available measurements,
the previous version of the D-FFDD detection module is loaded such as to predict the
consumption categories ŷc and generation categories ŷr in X ′. The accuracy of this
detection process is measured as follows:

AC =
1

3

3∑
c=1

TP c + TN c

TP c + FN c + FP c + TN c

(6.8)

where TP are true positives, TN are true negatives, FN are false negatives, and FP
are false positives.

As a result, we obtain two values ACc and ACr indicating the average number of
correct predictions of ŷc and ŷr, respectively, for all observations in X ′. If one of the
calculated values is less than the predetermined thresholds Tc and Tr, the batch is
considered challenging, and the preserved D-FFDD is retrained automatically, using
Equation (6.5), with the goal of minimizing the objective function in Equation (6.6).
We set these thresholds by referencing arbitrary values around the accuracy of the
training step of the system in the initial measurement batch. Similarly with the rest
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of the parameters, the weights for the preserved D-FFNN will also be incrementally
updated with the back-propagation as the new batch X ′ pass. This step is required
such as the proposed classification module will adapt to observe the newly arrived
generation and consumption measurements and self-optimise its own parameters.

6.3 Datasets and evaluation methodology

6.3.1 Datasets description

To validate our work, we utilise energy consumption and generation datasets collected
in the power network of Australia’s largest electricity provider, Ausgrid 1. The
dataset represents the generation and consumption measurements captured at a real
installation of 300 different consumers and prosumers with rooftop solar panels from 1
July 2010 to 30 June 2013. However, in this work, we use only 139 individuals whose
measurements were valid for the entire period. In addition to the consumption and
generation smart meter measurements, the dataset includes information with respect
to consumer/prosumer geolocation (e.g., postal codes) and solar panel capabilities
(e.g., capacity).

As already mentioned, our system depends solely on weather conditions. For
this purpose, we extracted available weather measurements from the World Weather
Online API 2 and predictions of worldwide energy resources (POWER) project API 3

over the same observational period as that of the measurements obtained for Asugrid
individuals.

6.3.2 Evaluation methodology

To demonstrate the effectiveness of our system, we conduct a performance comparison
across four clustering algorithms named the density-based spatial clustering of appli-
cations with noise (DBSCAN), agglomerative nesting (AGNES), affinity propagation
(AP), and fuzzy C-means clustering (FCM). We measure the silhouette coefficient
(SC) score to evaluate whether individuals are clustered in well-defined groups. The
SC is defined as:

SC =
1

| A |

|A|∑
e=1

c(e)− o(e)

Max
(
c(e), o(e)

) (6.9)

1Explore – Ausgrid Solar Home Electricity Data, Available:https://www.ausgrid.com.au/
Industry/Our-Research/Data-to-share/Solar-home-electricity-data

2Explore – Weather API, Available:https://www.worldweatheronline.com/developer/api/
3Explore – Power Hourly API, Available:https://power.larc.nasa.gov/api/pages/
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where | A | is the total number of individuals in the grid, c(.) is the average distance
between a consumer/prosumer and other individuals in the same cluster, and o(.) is
the minimum average distance between that individual and all individuals belonging
to other clusters.

Furthermore, we conduct a performance evaluation of various classification
algorithms including both classic techniques (such as decision tree (DT), support
vector (SVM) and K-nearest neighbours (K-NN)) and advanced methods (such as
extreme gradient boosting (Xgboost)). This evaluation excludes advanced deep
learning models such as long short-term memory networks (LSTM) because they
require a two-dimensional feature vector, whereas our data is only one-dimensional.
For this comparison, we utilise the following performance metrics:

1. Precision (PR) defined as:

PR =
1

3

3∑
c=1

TP c

TP c + TF c

(6.10)

2. Recall (RE) defined as:

RE =
1

3

3∑
c=1

TP c

TP c + FN c

(6.11)

3. F1 Score (F1) defined as:

F1 = 2× RE × PR

RE + PR
(6.12)

4. Area Under the Curve (AUC) defined as:

AUC =
1

3

3∑
i=1

3∑
j>i

1

2

(
BAUC

(
i, j
)
+ BAUC

(
j, i
))

(6.13)

where

BAUC
(
x, y
)
=

Ranks− AP
2

× (1 + AP )

AP × AN
(6.14)

Here Ranks represents the sum of the ranks from class x, AP is the number of
samples in class x and AN represents the number of samples in class y. The
samples are arranged in ascending order based on the prediction of class i for
ranking (Z. Zheng et al., 2018).
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5. Computational complexity: to measure the inference time required to obtain
classification decisions on test data.

It is worth mentioning that the computational complexity excludes the grid search
process utilised to train and fine-tune hyper-parameters. It transforms a hyper-
parameter domain into a grid and then traverses each point on the grid to obtain
the optimal classifier parameters. Utilizing such a search strategy is straightforward,
and the optimal search speed is quite reasonable. In addition, the optimal hyper-
parameters are determined independently, enabling simultaneous optimization. Table
6.2 illustrates the results of the grid-search process for each classification algorithms.

Table 6.2: Optimal hyper-parameters of the classification algorithms.
Algorithm Hyper-parameters
D-FFNN l = 8, ne in hidden layer 1= 70, ne in hidden

layer 2= 70, ne in hidden layer 3= 60, ne in
hidden layer 4= 50, ne in hidden layer 5= 30,
ne in hidden layer 6= 40, ne in hidden layer 7=
20, ne in hidden layer l= 4, Batch size = 32,
Optimizer = adam, Learn rate = 0.001

DT Maximum depth=12, Minimum samples split=
2, Minimum samples leaf= 2

SVM Kernel= radial basis function, C= 1, Gamma=
0, 2

K-NN Number of neighbors= 15
Xgboost Number of estimators= 7, Maximum depth= 10

In addition, the RE, PR, F1 and AUC are utilised to conduct a performance
evaluation of the self-learning operation employed within the long-term theft detection
process. The long-term theft detection process is described as the classifier trained on
the initial batch training data is used to directly identify thefts and misconfigurations
for the test set across other batches.

During our evaluation, we synthetically inject anomalous patterns within Ausgrid’s
dataset using the functions in Table 6.1 to emulate fraudulent and misconfigured
samples. In order to avoid a data imbalance issue resulting from this procedure, a
higher weight to the loss encountered by the samples associated with minor categories
in Equation 6.7 is assigned. To note that we filter out instances of disconnect
misconfgurations during the pre-processing stage. Evidently, such events demonstrate
extremely large numbers of missing values in both generation and consumption
measurements and they were affecting significantly the training phase. We also adjust
the value of the solar panel smart meter to zero for a randomly chosen third of
individuals to simulate simple consumers (i.e., not owning/managing a DRES).

Moreover, we group the Ausgrid dataset by year to simulate a scenario in which
smart meter measurements were presented continuously over time. Nevertheless, to
simulate a scenario in which new individuals join the grid, we removed the measure-
ments of ten arbitrarily chosen individuals from the first batch, and reintroduce them
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incrementally across batches. Each batch is split into training and testing sets, with
a ratio of 70 : 30 respectively. In order to avoid bias issues here, we employ a 10-fold
cross-validation scheme. This scheme divides each patch’s sample into 10 distinct
folds of approximately equivalent size (without repetition). One fold is used as a
test set, while the other folds are utilised as a training set. This process is repeated
10 times, and the average performance across all 10 repetitions of the testing set
is then calculated for consideration. We then normalise the training and test data
incrementally to transform all values of the features into a single scale with unit
variance and mean of zero. However, categorical time series are encodeed using a
binary encoder.

6.4 Results

Following the evaluation methodology presented earlier, the produced outputs in
Fig. 6.2 indicate that the k-means formulation achieved the highest SC score (i.e.,
SC=0.44). Thus, we utilise its capabilities for the proposed detection system. In
addition, the D-FFNN, formulation performed better than all classification algorithms
in detecting malicious and misconfigured meters as demonstrated in Table 6.3. With
respect to generation measurements, the D-FFNN scheme recorded a precision of
0.92, 0.90, 0.85, 0.84 and 0.91 higher than that of DT, SVM, K-NN and Xgboost
respectively. This was similar to the consumption measurements, where the D-FFNN
outperformed the other classifiers, as it recorded a 72% precision accuracy, while the
DT, SVM, K-NN and Xgboost achieved 0.68, 0.71, 0.59 and 0.68 respectively.

Table 6.3: Detection performance of the smart meter classification module using
different algorithms.

Algorithm
Performance Parameter

Consumption Generation
PR RE F1 AUC PR RE F1 AUC

D-FFNN 0.72 0.69 0.70 0.73 0.92 0.92 0.92 0.91
DT 0.68 0.61 0.64 0.68 0.90 0.89 0.89 0.88
SVM 0.71 0.69 0.69 0.69 0.85 0.85 0.85 0.84
K-NN 0.59 0.49 0.53 0.60 0.84 0.84 0.84 0.83

Xgboost 0.68 0.65 0.66 0.67 0.91 0.90 0.90 0.89

Evidently, the D-FFNN superiority over DT, SVM, K-NN and Xgboost in
generation and consumption measurements were uniform, even when RE, F1 and
AUC scores were measured. We argue, that the D-FFNN formulation is superior
due to its ability to capture hidden patterns in the weather condition data as well as
the constructed features in Section 6.2.1. Higher detection performance in terms of
RE, PR, F1 and AUC was observed particularly for the generation measurements as
depicted in Table 6.3. The higher performance is attributed to the variables distilled
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Figure 6.2: SC score of different clustering algorithms and comparison of the
computational complexity time.

by the original solar panel capacity feature that was instrumental in profiling prosumer
normal behaviour with respect to generation. Nonetheless, Ausgrid’s dataset lacks
consumer characteristics (e.g., number of rooms, appliances) that can contribute
better to profiling consumers with similar consumption patterns. Therefore, the use
of additional features in the smart meter clustering process to identify customers with
similar patterns is necessary to improve the performance of the classification process
in consumption measurements.

Apart from high precision accuracy, the D-FFNN formulation also operates with
relatively lower computational time compared to other schemes as depicted in Fig.
6.24. Arguably, this outcome revolves around the fact that the rest of the formulations
required independently trained models explicit to either generation or consumption
measurements incurring extensive computational overheads. This demonstrates the
efficacy of using a dual, deep learning technique instead of conventional techniques
in our detection system, as we need to train one model with two outputs to address
both tasks simultaneously.

Deteriorated performance over time was observed in the long-term detection

4On 64-bit Windows operating system with an Intel Core i7 (7th Gen) CPU with a 2.80 GHz
clock cycle and 32 GB of RAM.
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process, where the 2010 training data is used to detect thefts and misconfigurations
across 2011, 2012 and 2013 as depicted in Fig. 6.3. The impact on accuracy
performance is a result of the change in data distribution properties across the batches.
Consequently, such change misleads the detection system over the years and results
in further detection errors.

Figure 6.3: Long-term detection performance.

The main cause for such a change is attributed via including entirely new
individuals whose measurement patterns vary from the patterns included in the
first batch’s training data. Therefore, the detection system fails to identify the
measurements of consumers/prosumers who have recently connected to the network
and decide whether they are legitimate, malicious, or misconfigured. Even in cases
where no new individuals are linked with the grid, the generation and consumption
measurements of the same individuals usually have non-stationary properties, so the
distribution of the data also varies across batches. The non-stationary properties
in the consumption measurements are caused by changes in consumption habits, for
example, installing eco-friendly equipment that reduces energy consumption (Fekri
et al., 2021), while the non-stationary nature of the generation measurements is
usually caused by changes in the weather conditions over many years (Staffell and
Pfenninger, 2018).

However, as depicted in Table. 6.4, whilst the detection accuracy of the
consumption and generation measurements are less than the predefined thresholds
in the 2011 data batch, the system considers the batch challenging and self-optimises
by retraining on that batch. As a result, the performance of the proposed system is
improving based on the test data of the 2011 batch (see Fig. 6.3). The same process
was also carried out for the years 2012 and 2013 to ensure validation.

6.5 Summary

Modern energy theft techniques exploit the highly distributed nature of the modern
smart grid and cause significant financial loss to energy providers. Hence, tracking
such events is critical but also challenging due to the diversity of the composite
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Table 6.4: Accuracy of the smart meter classification module in the long-term
detection process.

Batch Consumption Generation Consumption
Threshold

Generation
Threshold

2010 0.72 0.92 0.71 0.91
2011 0.67 0.90 0.71 0.91
2012 0.67 0.87 0.71 0.91
2013 0.70 0.90 0.71 0.91

attack vectors triggering them where faults promote the same properties as theft.
In this paper, we propose a self-learning system that can distinguish energy theft
from faults with the joint use of consumption and generation measurements as
well as openly available weather information. The outcomes of an extensive and
comparative evaluation over real measurements reveal that the introduced scheme can
reach over 90% of accuracy under the D-FFNN formulation and with relatively low
computational overheads. Its joint use with other ML techniques under the proposed
methodology that can provide for the analysis of online measurement streams can
adequately adapt over varying properties of theft or misconfiguration scenarios. It
can thus benefit the design of next-generation energy theft detection systems.
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Chapter 7

Conclusions and Future Directions

This chapter provides a summary of this thesis conducted on designing a practical
and data-driven framework considering the advanced characteristics of modern energy
grids. In addition, it highlights a number of unresolved issues that could be the subject
of future research in this field.

7.1 Conclusion

Smart grids are the result of the convergence of legacy energy system components and
advanced information and communication technologies. Smart grids are viewed as
innovative, next-generation power systems that can ensure cost-effective decarbonisa-
tion of the energy sector. They are accomplished by collecting data and measurements
from various elements of grid infrastructures (i.e. generation, T&D, and end-user) in
order to extend grid monitoring, observation and control. However, the development
of such systems brings it is accompanied by a wide range of security threats that
increase the opportunities for energy theft-related attacks. In addition to the financial
gain that it brings for a malicious actor, energy theft can have a direct effect on the
overall resilience and safety of smart energy ecosystems. Associated with the invention
of the smart grid, the primary focus of this thesis is to design a practical and data-
driven framework for energy theft detection in the modern energy grid environment.

To achieve this, this thesis addresses the following research questions: 1) how does
the introduction of smart grids enable larger attack vectors that provide a basis for
energy theft?; and 2) how do we design a data-driven framework for detecting energy
theft? The latter question can be divided into the following sub-questions: a) how
can we leverage diverse sources of measurement to identify energy theft attacks in
DRES?; and b) how can we devise a generic method to accurately detect energy theft
in scalable smart grids?

With regard to the first question, Chapter 2 conducts a comprehensive review of
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energy theft attacks and detection methods for smart grid systems. In this regard,
the chapter begins with a discussion of smart grid components in the energy supply
chain, with an emphasis on data communication, as well as the pillars for assessing
grid effectiveness. The impact of energy theft on the smart grid is then evaluated by
analysing how demand, supply and generation data manipulation can facilitate energy
theft activities targeting energy grids. Examples of data-driven and data-agnostic
energy theft attacks and their enabling techniques are then discussed. Additionally,
this chapter categorises the main research studies, addressing the aspect of energy
theft detection, and summarises the experimental approaches applied in this research.
This chapter concludes by highlighting a number of open issues and challenges in the
field of energy theft detection in modern energy ecosystems.

In light of this chapter, the answer to the first research question is that the smart
grid paradigm, characterized by the integration of the data collection infrastructure
(cyber infrastructure) running through smart grid components (including generation,
T&D and end-user infrastructures), enables additional energy theft activities in mod-
ern energy systems, while also suggesting promising detection solutions. Therefore,
the smart grid paradigm represents a double-edged sword for the security and forensic
domains of modern energy systems.

On the one hand, the integrated data collection infrastructure within modern
energy grids enables a wide range of applications, such as energy trading platforms.
These applications rely on inherently vulnerable networked environments, such
as advanced metering systems. Malicious actors exploit these vulnerabilities by
manipulating communication and energy measurement-related data generated and
stored by networked metering, management and control devices. By tampering
with data integrity and energy measurement precision, these actors can report false
information, leading to financial gain through energy theft or fraudulent trading
behaviours. Additionally, this can disrupt the grid’s reliability, potentially causing
power disruptions or supply-demand imbalances.

On the other hand, data-driven strategies have enormous potential for detecting
energy theft-related activities across smart grid infrastructures. Utilizing measure-
ments and information collected by an integrated cyber-infrastructure infrastructure,
utility providers are able to develop data-driven energy theft detection strategies. Such
strategies comprise an algorithmic solution that emphasizes data deviations related to
aspects such as metering and billing. Hence, these detection schemes put significant
emphasis on analysing data patterns with a variety of statistical tools, and the vast
majority employ machine learning techniques.

Regarding the second research question, Chapter 3 proposes a widely applicable
theoretical framework for data-driven energy theft detection. According to the study
conducted in Chapter 2, we have noticed that there are still some uncertainties over
the architecture, components and resources of data-driven energy theft detection
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strategies. Motivated by this observation, our second contribution in Chapter 3
proposes a general theoretical framework for a data-based energy theft detection
process. It is based on in-depth comprehension of the energy theft problem and
the detection requirements for modern energy grids. The proposed framework is a
complementary four-dimensional structure. These four dimensions are infrastructure,
measurement monitoring control (MMC), operation and end-users. These are evolving
domains that allow utility operators to continuously identify theft activities and thus
optimise their detection procedures.

By utilizing the theoretical framework proposed in this chapter, we can develop
two distinct data-driven detection approaches for identifying theft activities in
various scenarios. These data-driven detection contributions, derived from the
proposed theoretical framework are: i) a predictive energy theft detection approach
for distributed energy sources (DRES); and ii) an adaptive energy theft detection
approach for consumption and generation smart meters.

The first proposed approach, a predictive energy theft detection method for
DRES theft scenarios, is discussed in both Chapter 4 and Chapter 5. In Chapter
4, a SCADA-agnostic energy modelling system for DRES is proposed. This DRES
profiling method enables automated feature selection and the tuning of regression
models based on machine learning, facilitating adaptation to various measurement
inputs. Building on the work in Chapter 4, Chapter 5 introduces a predictive SCADA-
agnostic energy theft detection approach for DRES-based scenarios. The proposed
detection approach involves two algorithms: i) a SCADA-agnostic DRES profiling
scheme operating purely on third-party and widely available weather measurements;
and ii) a classification scheme relying on DRES profiling that is able to classify
theft detection events. In addition, this chapter provides a formalised approach for
describing DRES-based adversaries with the objective of energy theft.

According to the performance evaluations of the data-driven approaches proposed
in these two chapters, the answer to research question 2a is that using freely available
third-party weather data can be effectively applied to detect energy theft-based DRES
scenarios. Hence, in Chapter 4, the SCADA-agnostic energy profiling performance of
regression-based models employing SCADAmeasurements can be adequately matched
on a large scale using freely available third-party weather data. Moreover, the
SCADA-agnostic approach proposed in Chapter 4 is achieved with a minimal set
of weather parameters and at a lower computational cost than SCADA-based energy
profiling. This opens the door to independent and cost-effective power generation
profiling to support various planned smart grid applications, including the detection
of malicious actors. In addition, using evaluations based on an energy profile model
and third-party weather data, Chapter 5 demonstrates that the proposed predictive
detection strategy can detect fraudulent DRES measurements with relatively low
computing costs and a high average accuracy rate. These evaluations are conducted

119



Chapter 7. Conclusions and Future Directions

by employing freely available third-party weather measurements from actual solar and
wind energy deployments in Australia and France, respectively. These outcomes show
that the predictive approach presented in this chapter is a viable and cost-effective
solution for data-driven energy theft detection in the DRES context.

The second proposed approach derived from our theoretical framework in Chapter
3, which is a an adaptive energy theft detection approach for consumption and
generation smart meters, is discussed in Chapter 6. The proposed energy theft
detection approach in this chapter is a self-learning system that can differentiate
between energy theft and misconfigurations by combining consumption and generation
measurements with openly available weather data. The proposed detection strategy
is defined by the synergy of: i) an adaptive feature composition scheme and ii) a
smart meter classification component working on the aggregation of weather condition
measurements and misconfiguration events over DRES and consumption deployments.
In addition, this chapter introduces the formalisation of a novel and generic adversary
model explicit to stealthy energy theft causing benign anomalies in consumption and
generation measurements.

Based on performance evaluations of the energy theft detection approach proposed
in this chapter, the answer to research question 2b is that by employing the synergy of
adaptive data-driven methods, we can develop a technique to accurately detect energy
thefts in scalable smart grids. The approach presented in this chapter can achieve
relatively high accuracy with minimal computing overheads for detecting energy
theft activities and misconfiguration instances across generation and consumption
smart meters. Furthermore, the proposed methodology is capable of continuous and
autonomous retraining, utilizing instantly available measurements. Therefore, it can
contribute to the development of next-generation energy theft detection systems in
scalable smart energy grids.

7.2 Future directions

Future research on data-driven energy theft detection in smart grid environments will
focus on enabling the next generation of energy theft detection, in response to the
emergence of advanced energy trading market applications (such as ancillary services
and virtual power plants). There are two directions in which the work presented
in this thesis can be extended for the next generation of energy theft detection: i)
developing a formalised approach to describing how these applications facilitate energy
theft attacks, and ii) devising a data-driven strategy for detecting these energy theft
attacks.

For the former direction, our energy theft categorisation model introduced in
Chapter 2 can be applied. We argue that our energy theft model can be used to derive
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a set of discrete functions that describe the core concept behind any given theft attack.
The inter-dependent variables of these proposed functions can be adapted according
to the infrastructures containing the targeted applications; this will provide a formal
definition of how the manipulation of these applications can increase the non-technical
energy loss formulated by our energy theft model. Hence, these functions rely on the
variable-specific manipulations of a malicious actor, based on the intrinsic properties
of the system and/or the network components of the targeted applications.

In this direction, Chapters 5 and 6 detail specific applications of the proposed
energy theft model. On the basis of our energy theft model, Chapter 5 presents
a formalised method for describing DRES-based adversaries with the goal of energy
theft. The proposed DRES-based theft model illustrates how effectively DRES owners
can exploit the existing business model for financial gain, thereby increasing non-
technical energy loss for a given TSO. In addition, in Chapter 6, we formalise a generic
adversary model based on our energy theft model that is explicitly for stealthy energy
theft, which causes benign anomalies in consumption and generation measurements.
These proposed formulas describe how malicious actors exploit smart metering system
vulnerabilities to increase non-technical energy losses for financial gain.

For the latter of the above directions, our proposed theoretical framework
described in Chapter 3 can be applied to instantiate data-driven approaches to energy
theft detection that are explicitly applicable to the next generation of energy theft
scenarios. The following paths can be considered in this regard:

1. Including additional features within the detector construction sub-process of
the operation dimension of the proposed theoretical framework in order to
improve the overall detection accuracy of the detection approaches. These
features could be, for instance: (i) information regarding grid consumers, such
as the number of appliances and rooms; (ii) information regarding the DRES,
such as accurate longitude and latitude; and (iii) information on underlying
communication architectures. The integration of additional features could
provide greater insights into generation and consumption patterns throughout
the energy flow, thereby enhancing the ability of data-driven detectors to detect
anomalies related to energy theft activities. However, a trade-off should be made
between the efficiency benefit and the issue of over-fitting. Hence, the addition
of features can lead to a detection strategy that is specifically tailored to suit
particular data conditions and settings, limiting its generalisability.

2. Conducting simulated testbed-based evaluations within the operation dimension
of the proposed theoretical framework in order to gain insights into the
performance of detection approaches. While evaluating energy theft detectors
using real-world datasets provides a more accurate understanding of smart grid
environments, such datasets are either not commonly available or primarily
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created for specific projects. We argue that simulation analyses can provide
significant exposure to settings and scenarios (e.g., various DRES billing
and trading approaches) that are unavailable within the current real-world
validations. In this regard, MATLAB Simulink (MathWorks, 2021) can be used
to create virtual energy grids. This is a graphical programming environment
that permits the performance of individual grid components to be modelled and
simulated in order to generate grid-wide measurements. These measurements
can be used in the development of data-driven detection algorithms.

3. Incorporating an online-learning theft detection sub-process within the opera-
tion dimension of the proposed theoretical framework in order to detect unseen
(unknown) theft attacks. Within smart grid deployments, malicious actors
frequently introduce innovative techniques to manipulate the smart grid business
model and gain financial benefits. These new theft behaviours are referred to
as zero-day theft attacks, and they may not be anticipated during the training
phase of theft detectors, as they have never occurred before (Shaaban et al.,
2021). Therefore, it is essential to develop online detection algorithms that can
tolerate zero-day energy theft attacks and gradually identify new theft patterns
across the smart grid. In such a situation, a theft attack repository can be
utilised to collect unknown malicious behaviours. These unknown attacks are
then combined with a portion of previous theft behaviour seen during detector
training, and fed into the classification technique for online learning of these
new theft events.

4. Leveraging quantum machine learning strategies within the proposed theoretical
framework’s operation dimension’s detector construction sub-process. In
contrast to traditional computers based on the physical implementation of the 0
and 1 states, quantum computers employ the combination of two quantum states
|0⟩ and |1⟩ in a qubit to perform several computational processes concurrently
(Schuld, Sinayskiy, and Petruccione, 2015). Recent studies have investigated
the possibility of employing quantum computing to improve machine learning
techniques, therefore the use of such quantum machine learning algorithms
to develop advanced data-driven energy theft solutions is a promising notion.
The benefits anticipated from these strategies include an improvement in theft
detector learning efficiency, meaning that the same detection performance can
be achieved with fewer training data or more simple architectures. In addition,
the use of quantum machine learning techniques can enhance the computational
overheads by obtaining faster theft identification across scalable energy systems.

5. Incorporating a privacy-preserving technique within the detector construction
sub-process of the operation dimension of the proposed theoretical framework
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in order to protect the private measurements utilised in data-driven detection
processes. Such private information could be purchased by marketing companies
seeking to target individuals who are likely to be interested in their products.
In addition, criminals gaining access to this information can use knowledge
about a resident’s energy use and generation practices to better organise their
attacks (S. Salinas, Ming Li, and P. Li, 2012). In addition to approaches for
preserving the identities of grid users (such as pseudonyms and anonymization
algorithms) and for protecting users’ data (such as data obfuscation algorithms
and homomorphic encryption), a federated learning-based detection model can
be used to maintain grid users’ privacy. In federated learning, theft detectors
are trained on a decentralised edge node, which retains all the training data
(Yan and H. Wen, 2021). Generally, privacy-preserving strategies are costly
since they require substantial computational resources (Ahmed et al., 2022). To
achieve a low total cost, energy theft detection systems should integrate privacy
protection strategies and account for their associated costs.

6. Developing a top-down energy theft detection system within the operation
dimension in order to encompass the entire life cycle of energy data through the
MMC dimension of the proposed theoretical framework. In the field of data-
driven energy detection, system integration demand is always one of the primary
considerations (Jindal, Dua, et al., 2016; Yan and H. Wen, 2021). Hence, it
would be ineffective for providers at different levels of aggregation to deploy and
synchronise monolithic energy theft detection techniques due to their demanding
processing needs. To address this issue, multiple input multiple output neural
networks can be utilised to construct energy theft detectors. Such networks
receive multiple measurements as inputs from each of the three infrastructures
of the smart grids and return three outputs simultaneously, where each output is
an identification of energy theft in the corresponding infrastructure. In addition
to decreasing the computing demands of deploying detection procedures, this
strategy delivers benefits such as improved data efficiency, reduced over-fitting
through the use of shared representations, and rapid learning by using auxiliary
information (Crawshaw, 2020).
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