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Abstract

There has been substantial interest in developing Markov chain Monte Carlo al-

gorithms based on piecewise-deterministic Markov processes. However existing

algorithms can only be used if the target distribution of interest is differentiable

everywhere. The key to adapting these algorithms so that they can sample from

densities with discontinuities is defining appropriate dynamics for the process

when it hits a discontinuity. We present a simple condition for the transition

of the process at a discontinuity which can be used to extend any existing

sampler for smooth densities, and give specific choices for this transition

which work with popular algorithms such as the Bouncy Particle Sampler,

the Coordinate Sampler and the Zig-Zag Process. Our theoretical results

extend and make rigorous arguments that have been presented previously, for

instance constructing samplers for continuous densities restricted to a bounded

domain, and we present a version of the Zig-Zag Process that can work in

such a scenario. Our novel approach to deriving the invariant distribution of a

piecewise-deterministic Markov process with boundaries may be of independent

interest.
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1. Introduction

In recent years there has been substantial interest in using continuous-time piecewise-

deterministic Markov processes (PDMPs), as the basis for Markov chain Monte Carlo

(MCMC) algorithms. These ideas started in the statistical physics literature [28, 2, 22],

and have led to a number of new MCMC algorithms such as the Bouncy Particle

Sampler (BPS) [8], the Zig-Zag (ZZ) Process [5] and the Coordinate Sampler (CS) [33],

amongst many others. See [18] and [31] for an introduction to the area. One potential

benefit which is associated with these samplers are that they are non-reversible, and it

is known that non-reversible samplers can mix faster than their reversible counterparts

[9, 13, 3].

Informally, a PDMP process evolves according to a deterministic flow – defined via

an ordinary differential equation – for a random amount of time, before exhibiting an

instantaneous transition, and then following a (possible different) deterministic flow

for another random amount of time, and so on.

Initial PDMP samplers were defined to sample target distributions which were

continuously differentiable (C1) on Rd, but there is interest in extending them to

more general target distributions. To date, this has been achieved for sampling from

distributions defined on the union of spaces of different dimensions [10, 7] and to sample

from distributions on restricted domains [4], binary distributions [26] and phylogenetic

trees [21]. Here we rigorously consider a further extension to sampling from target

distributions on Rd which are piecewise-C1. That is, they can be defined by partitioning

Rd into a countable number of regions, with the target density C1 on each region.

We call such densities piecewise-smooth. Such target distributions arise in a range of

statistical problems, such as latent threshold models [24], binary classification [25] and

changepoint models [29]. The importance of this extension of PDMP samplers is also

indicated by the usefulness of extensions of Hamiltonian Monte Carlo (HMC) to similar

problems [27, 1, 14, 34].

The challenge with extending PDMP samplers to piecewise-smooth densities is the

need to specify the appropriate dynamics when the sampler hits a discontinuity in

the density. Essentially, we need to specify the dynamics so that the PDMP has our

target distribution µ as its invariant distribution. Current samplers are justified based
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on considering the infinitesimal generator, denoted A, of the PDMP. Informally, the

generator is an operator that acts on functions and describes how the expectation of

that function of the state of the PDMP changes over time. The idea is that if we

average the generator applied to a function and this is zero for a large set of functions

f ∈ F : ∫
Af dµ = 0, (1)

then the distribution µ must be the invariant distribution. Whilst intuitively this makes

sense, many papers use this intuitive reasoning without giving a formal proof that the

distribution they average over is in fact the invariant distribution, see for instance

[31, 18]. One important exception is the work of [16], where precise conditions and

functional-analytic proofs are given which establish that smooth, compactly-supported

functions form a core for the generator. This then rigorously establishes µ-invariance

of the PDMP. In this work, we actually take a different approach to [16]: we make use

of the particular nature of our PDMPs under consideration and give conditions under

which (1) directly holds for the whole domain D(A), then show that a large class of

functions F ⊂ D(A) separate measures, without attempting to show that F is a core.

This avoids the need for highly technical proofs as in [16].

Furthermore, once we introduce discontinuities, this complicates the definition of

the generator. The impact of these discontinuities is realised in terms of the domain of

the generator, and this necessitates the use of additional arguments which take account

of the impact of the discontinuity when applying arguments based on integration by

parts.

More specifically, we can see the challenge of dealing with discontinuities and some

of the contributions of this paper by considering the previous work of [4], who consider

designing PDMP samplers when the target distribution is only compactly supported

on Rd – a special case of our present work. It should be noted that there is a sign error

in the condition given by eq. 4 of [4], and furthermore their proof was not complete -

see Appendix E. In this work, we will provide a full proof.

The paper is structured as follows. In the next section we give a brief introduction

to PDMPs and some common PDMP samplers. Then in Section 3 we give general

conditions for checking the invariant distribution of a PDMP. The result in this section
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formalises the informal argument used by previous authors. We then develop these

results for the specific cases where the PDMP has active boundaries – for example,

due to a compact support, or when we wish to sample from a mixture of densities

defined on spaces of differing dimensions. The results in this section can be used to

address some shortcomings of [4] for sampling on a bounded domain, and have been

used to justify the reversible jump PDMP algorithm of [10]. In Section 5 we use our

results to provide a simple sufficient condition on the dynamics for a PDMP to admit a

specific piecewise-smooth density as its invariant density. Various proofs and technical

assumptions for these results are deferred to the appendices. We then show how to

construct dynamics at the discontinuities for a range of common PDMP samplers, and

empirically compare these samplers on some toy examples – with a view to gaining

intuition as to their relative merits, particularly when we wish to sample from high-

dimensional piecewise-smooth densities. The paper ends with a discussion.

2. PDMP basic properties

2.1. General PDMP construction

For this work, we require a general construction of piecewise-deterministic Markov

processes (PDMPs) in spaces featuring boundaries. We will follow the construction of

Davis in [11, p57], and largely make use of the notation therein.

Let K be a countable set, and for k ∈ K, let E0
k be an open subset of Rdk . Let E0

be their disjoint union:

E0 :=
{

(k, z) : k ∈ K, z ∈ E0
k

}
.

For any k ∈ K, we have a Lipschitz vector field on E0
k that induces a flow Φk(t, z).

In this setting, trajectories may reach the boundaries of the state. Hence we define

the entrance and exit boundaries using the flow; ∂−E0
k and ∂+E0

k respectively (see

Fig.1):

∂±E0
k = {z ∈ ∂E0

k|z = Φk(±t, ξ) for some ξ ∈ E0
k and t > 0}.

Note it may be possible for a point to be both an entrance and exit boundary.

We then have ∂1E
0
k := ∂−E0

k\∂+E0
k as in [11, p57], and also

Ek := E0
k ∪ ∂1E0

k.
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E0

Ec0

x0 ∈ ∂E−0

xt = Φ(t, x0)

x′t = Φ(t′, x′0) ∈ ∂E+
0

x′0

∂E0

Figure 1: Exit (∂E+
0 ) and Entrance boundary (∂E+

0 ): x0 is in the entrance boundary ∂E−0 ,

while x′t is in the exit boundary ∂E+
0 . The arrows represent the flow Φ(·, ·).

Finally, the full state space is the disjoint union,

E :=
⋃
k

({k} × Ek).

The active boundary (that is, the exit boundary) is then defined as

Γ :=
⋃
k

({k} × ∂+E0
k).

These are points on the boundary that the deterministic flow can hit.

We will denote the state of a PDMP on E at time t by Zt ∈ E. A detailed

construction of the PDMP is provided by Davis [11, p59], but we provide here a

summary of the quantities that defines a PDMP (Zt):

(i) An event rate λ(z), with z ∈ E. An event occurs in [t, t + h] with probability

λ(Zt)h+ o(h).

(ii) A jump kernel defined for z ∈ E ∪ Γ: Q(·|z) with Q(·|z) a probability measure

on E. At each event time Ti, the state will change according to the jump kernel:

ZTi ∼ Q(·|ZTi−).

(iii) The deterministic flow Φ which determines the behavior of Zt between jumps.
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(iv) For any trajectory Zt such that

lim
t↑t0

Zt = Zt0− ∈ Γ,

the state will change according to the jump kernel: Zt0 ∼ Q(·|Zt0−).

Remark 1. The trajectory never enters Γ, which is not in the domain.

2.2. PDMP samplers

In the case of most PDMP samplers, the state space is constructed by augmenting

the space of interest with an auxiliary velocity space Vk: E0
k = Uk × Vk. The

deterministic flow is then typically given by free transport, i.e. Φk(t, x, v) = (x+ tv, v),

though other examples exist [31, 30, 6]. The use of such simple dynamics allows for the

exact simulation of the process dynamics, without resorting to numerical discretisation.

For the purposes of this work, it will be useful to introduce three of the more

popular classes of PDMP sampler, which we will then be able to refer back to as running

examples. Each of these processes work on a velocity-augmented state space and follow

free-transport dynamics, and so they differ primarily in (i) the set of velocities which

they use, and (ii) the nature of the jumps in the process. We describe the dynamics

for each process if we wish to sample from a density π(x) on Rd.

1. The Bouncy Particle Sampler [8] uses a spherically-symmetric velocity space,

given by either Rd equipped with the standard Gaussian measure, or the unit

sphere equipped with the uniform surface measure. ‘Bounce’ events occur at rate

λ(x, v) = 〈v,−∇ log π(x)〉+, and at such events, the velocity deterministically

jumps to v′ =

(
I − 2

(∇ log π(x))(∇ log π(x))
>

(∇ log π(x))
>

(∇ log π(x))

)
v, i.e. a specular reflection against

the level set of log π at x.

2. The Zig-Zag Process [5] uses {±1}d as its velocity space, equipped with the

uniform measure. There are now d different types of bounce events, corresponding

to each coordinate of the velocity vector. Bounces of type i occur at rate

λi(x, v) =
(
−vi∂i log π(x)

)
+

, and at such events, vi is deterministically replaced

by −vi.

3. The Coordinate Sampler [20, 33] uses {±ei}di=1 as its velocity space, equipped

with the uniform measure, where ei is the ith coordinate vector. Bounce events
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again happen at rate λ(x, v) = 〈v,−∇ log π(x)〉+. At such events, the velocity is

resampled from the full velocity space, with probability proportional to λ(x,−v′).

When d = 1, all of these processes are identical. Additionally, all three processes

can be supplemented with ‘refreshment’ events, which occur at a rate independent of

v, and modify the velocity in a way which leaves its law invariant. This can include

either full resampling, autoregressive resampling in the case of spherical velocities,

coordinate-wise resampling in the case of velocity laws with independent coordinates,

and other variations.

From the above definitions, it is easy to see that the event rates only make sense

when π is sufficiently smooth, and that in the presence of discontinuities, complications

in defining the process will arise. Furthermore, it is not a priori clear which processes

will work best in the presence of such discontinuities.

2.3. Review: extended generator and semigroup

We collect some basic definitions and facts which will be crucial for our later results.

Let B(E) denote the set of bounded measurable functions E → R. For any f ∈ B(E),

we recall the definition of the semigroup Pt associated to the process Zt:

Ptf(z) = Ez[f(Zt)], z ∈ E,

where Ez is the expectation with respect to Pz, with Pz the probability such that

Pz[Z0 = z] = 1.

Proposition 1. The semigroup Pt is a contraction for the sup norm:

‖Ptf‖∞ ≤ ‖f‖∞,

for all f ∈ B(E) and t ≥ 0.

Proof. See [11, p28]. �

The semigroup is said to be strongly continuous for f ∈ B(E) if limt↓0 ‖Ptf−f‖∞ = 0,

and let B0 be the set of functions for which Pt is strongly continuous:

B0 :=

{
f ∈ B(E) : lim

t↓0
‖Ptf − f‖∞ = 0

}
.
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Lemma 1. We have that B0 ⊂ B(E) is a Banach space with sup norm ‖ · ‖∞, and Pt

maps B0 → B0 for any t ≥ 0.

Proof. See [11, p29]. �

Let us write (A,D(A)) for the infinitesimal generator (also referred to as the strong

generator) of the semigroup (Pt). By definition, for all f ∈ D(A),

Af = lim
t→0

1

t
(Ptf − f),

with this limit being taken in ‖ · ‖∞, with

D(A) =

{
f ∈ B0 :

∥∥∥∥1

t
(Ptf − f)− g

∥∥∥∥
∞
→ 0, for some g ∈ B(E)

}
. (2)

Since g in (2) is a limit of functions in a Banach space, if such a g exists, it must be

unique, and Af is well-defined.

Lemma 2. Let f ∈ D(A). Then Af ∈ B0. In other words, A : D(A)→ B0.

Proof. This is immediate since Pt maps B0 → B0. �

We now define the extended generator (A,D(A)): D(A) is the set of (potentially

unbounded) measurable functions f : E → R such that there exists a measurable

function h : E → R with t 7→ h(Zt) Pz-integrable almost surely for each initial point

z, and such that the process

Cft := f(Zt)− f(Z0)−
∫ t

0

h(Zs) ds, t ≥ 0, (3)

is a local martingale; see [11, (14.16)]. For f ∈ D(A), Af = h, for h as in (3).

Proposition 2. The extended generator is an extension of the infinitesimal generator:

1. D(A) ⊂ D(A)

2. Af = Af for any f ∈ D(A).

Proof. See [11, p32]. �

To simplify notation, we will define the action of our probability kernel, Q, on a

function, f , as

(Qf)(z) =

∫
E

f(y)Q(dy|z).
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We will assume throughout this work that the standard conditions of Davis [11, (24.8)]

hold. Under this assumption or PDMPs, (A,D(A)) are fully characterized in [11,

(26.14)]. In particular, the set D(A) is entirely known, and for all f ∈ D(A):

Af(z) = Ξf(z) + λ(z){(Qf)(z)− f(z)}, (4)

where Ξ is the differential operator associated to the deterministic flow of the PDMP.

The PDMP samplers we are interested in (see Section 2.2) have flow corresponding to

free transport, with corresponding Ξ operator for continuously differentiable f ,

Ξf(x, v) = v · ∇xf(x, v).

Remark 2. To reiterate, while the domain of the strong generator D(A) is not known,

the domain D(A) is known and D(A) ⊂ D(A).

3. A general framework for the invariant measure of a PDMP

A challenge in the piecewise-smooth setting is that the usual approach to con-

structing and working with PDMPs does not work without changing the topology. In

particular, existing results concerning the invariant measure of such processes requires

the process to be Feller. For PDMPs with boundaries, this is in fact not the case in

general [11, (27.5)].

3.1. Strong continuity of the semigroup

First, we give a general result that is not tied to our specific context and is valid

for any piecewise-deterministic Markov process that follows Davis’s construction, [11,

Section 24, Conditions (24.8)].

Let F be the space of C1 functions contained in D(A) with compact support.

Proposition 3. Assume that the deterministic flow and the jump rates are bounded

on any compact set, and that Qf has compact support whenever f has compact support.

Then, F ⊂ B0. In other words, the semigroup Pt of the process is strongly continuous

on F :

Ptf → f for all f ∈ F ,
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in ‖ · ‖∞, as t ↓ 0.

Proof. Let f ∈ F . Since f ∈ D(A),

Cft := f(Zt)− f(Z0)−
∫ t

0

Af(Zs) ds, t ≥ 0,

is a local martingale. Furthermore, by examining the expression of Af , one sees that

it can be rewritten as

Af(z) = Ξf(z) + λ(z)Qf(z)− λ(z)f(z)

from (4). Since f and Qf have compact support and are bounded, using the assump-

tions on Ξ and λ, we deduce that Af is bounded.

Since f and Af are bounded, Cft is bounded for any fixed t which implies that it is

a martingale. More precisely, consider the stopped process Cft∧T for any T > 0. This

is a uniformly bounded local martingale, and is hence a true martingale.

We have Cf0 = 0 hence for any starting point z and t > 0,

Ez[Cft ] = 0.

Hence

Ptf(z)− f(z) =

∫ t

0

PsAf(z) ds,

where we used Fubini’s theorem to swap the integral and the expectation. Since Pt is

a contraction for the sup norm, we see that

‖Ptf − f‖∞ ≤
∫ t

0

‖PsAf‖∞ ds

≤
∫ t

0

‖Af‖∞ ds

≤ t‖Af‖∞.

We thus conclude that Ptf − f → 0 as t ↓ 0. �

Remark 3. The set F does not capture every function of B0, nor is it invariant under

Pt. We will will not attempt to prove that F is a core of the infinitesimal generator.

Recall that a set of functions F0 ⊂ B(E) separates measures if for any probability

measures µ1, µ2 on E,
∫
f dµ1 =

∫
f dµ2 for all f ∈ F0 implies that µ1 = µ2. In order
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to study the invariant measure through the semigroup and its effect on functions, it

is important to consider sets of functions which separate measures. Therefore, we will

now show that F separates measures on E0.

Proposition 4. Assume that the jump kernel Q is such that for any z ∈ Γ, the measure

Q(·|z) is supported on the boundary ∪k∂−E0
k. Then F separates measures on E0.

Proof. Consider the set of C1 functions f : E → R, which are compactly supported

on each open set E0
k. The collection of such functions separates measures on E0.

We will show that such functions belong to D(A), and hence to F , by using the

explicit characterisation of D(A) from [11, Theorem 26.14].

Firstly, if f is C1 with compact support, Conditions 1 and 3 of [11, Theorem 26.14]

are automatically satisfied.

It remains to check the boundary condition:

f(z) =

∫
E

f(y)Q(dy|z) = Qf(z), z ∈ Γ. (5)

However, since we are considering only f which are compactly supported on each

E0
k, it holds that f(z) = 0 for any z ∈ Γ on the boundary. Recalling that Q(·|z) is

supported only on the boundary, it follows that Qf(z) = 0 also for any z ∈ Γ. It hence

follows that the boundary condition is satisfied. �

Remark 4. The assumption of Proposition 4 is restrictive and does not cover, for

example, the case of variable selection described in [10]. However, it is possible to

weaken the assumption to cover the variable selection case. A sketch is available in

Appendix A.

3.2. Invariant measure

We now turn to giving conditions for the invariant measure of our PDMP. The fol-

lowing lemma will be important within the proof, as it allows us to ignore contributions

from the boundary when calculating expectations over the path of the PDMP.

Lemma 3. For all z ∈ E, the process starting from z spends a negligible amount of

time on the boundary: for any t > 0,∫ t

0

1Zs∈E\E0 ds = 0,
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Pz-a.s.

Proof. In Davis’s construction, the number of events, including jumps at the bound-

ary, is countable for every trajectory. Hence, for every trajectory of the process, the

set of times for which Zt ∈ E \ E0 is countable and therefore negligible. �

Theorem 1. Let µ be a measure on E. Assuming the following conditions hold

1. the vector field of the deterministic flow and the jump rates are bounded on any

compact set,

2. Qf has compact support whenever f has compact support,

3. for any z ∈ Γ, the measure Q(·|z) is supported on the boundary ∪k∂−E0
k,

4. µ(E \ E0) = 0,

5. for all f ∈ D(A),
∫
E
Af dµ = 0,

then µ is invariant.

Proof. Using this fact and Proposition 1.5 from Ethier and Kurtz [17] (or [11,

(14.10)]), we note that for any f ∈ B0 and t > 0, we have that
∫ t
0
Psf ds ∈ D(A),

the domain of the strong generator. We also have that∫
E

Ptf dµ =

∫
E

[
f +A

∫ t

0

Psf ds

]
dµ =

∫
E

f dµ, (6)

where we have used our assumption that
∫
Ag dµ = 0 for any g ∈ D(A) and taken

g =
∫ t
0
Psf ds.

Let fB(z) := f(z)1z∈E\E0 and f0(z) := f(z)1z∈E0 be a decomposition of f with

f = f0 + fB . Let 1B(z) = 1z∈E\E0 be the indicator function of the boundary E \ E0.

From Lemma 3,
∫ t
0
Ps1B(z) ds = 0 for all z ∈ E. Hence we have that

∫
E

[
∫ t
0
Ps1B(z) ds] dµ(z) =

0, and by using Fubini’s theorem, that∫ t

0

∫
E

Ps1B dµds = 0.

By the nonnegativity of Pt1B , there exists a null set N ⊂ R+ such that for all t ∈

R+ \ N , ∫
E

Pt1B dµ = 0.
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For all z, fB(z) ≤ ‖f‖∞1B(z), hence for all t /∈ N ,
∫
E
PtfB dµ = 0. Hence∫

E
Ptf dµ =

∫
E
Ptf0 dµ for all t /∈ N . Since µ is supported on E0,

∫
E
f dµ =

∫
E
f0 dµ

and we deduce using (6) that for all t /∈ N :∫
E

Ptf0 dµ =

∫
E

f0 dµ. (7)

Let µt be the law Zt with Z0 ∼ µ. Let µ0
t and µBt be the measures defined by

µ0
t (A) = µt(A ∩ E0) and µBt (A) = µt(A ∩ (E \ E0)). Using (7), for all t /∈ N :∫

E0

f0 dµ0
t =

∫
E

Ptf0 dµ =

∫
E

f0 dµ =

∫
E0

f0 dµ0.

Since F separates measures on E0 by Proposition 4, µ0
t = µ0 for all t /∈ N . Further-

more, µ(E) = µt(E) and µ(E) = µ0(E), hence µ0
t (E) = µt(E) and µBt (E) = 0. Thus

µt = µ0
t = µ0 = µ for all t /∈ N .

Let t1, t2 /∈ N . Then µt1 = µt2 = µ, and for all functions g which are measurable

and bounded, it holds that∫
E

Pt1+t2g dµ =

∫
E

Pt1(Pt2g) dµ =

∫
E

Pt2g dµt1 =

∫
E

Pt2g dµ =

∫
E

g dµ.

Hence µt1+t2 = µ. To conclude, since N is a null set, for all t > 0, there exists

t1, t2 /∈ N such that t = t1 + t2, and therefore µt = µ. �

4. PDMP samplers with active boundaries

Let Uk be an open set of Rdk for all k ∈ K, and let Vk ⊂ Rdk be the velocity space

associated to the PDMP sampler on Uk. We consider the state space defined following

Davis’s construction described in Section 2.1: first, set

E0
k = Uk × Rdk .

Remark 5. We do not take E0
k = Uk × Vk because E0

k must be open and Vk, the set

of velocities of the PDMP sampler, might not be.

Let π be a measure on the disjoint union ∪kUk with a density πk on each Uk, where

πk can be extended continuously to the closure Ūk. Let pk be the marginal velocity

probability distribution on Rdk with support on Vk and let µ(k, x, v) = πk(x)pk(v) be
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a density on ∪k∈KUk × Vk with respect to a suitable dominating measure (which will

have discrete components when Vk is a finite set), defining a measure on E.

The core result of this section relies on integration by parts, and as such requires

extra assumptions on the sets Uk. For clarity of the exposition, we give here an

intuitive version of the required assumptions, and a detailed version can be found in

the appendix in Assumptions 3 and 4.

Assumption 1. Assumptions 3 and 4 can be informally described as:

(i) Uk has no interior discontinuities on a (dk − 1)-dimensional subset.

(ii) The boundary ∂Uk can be decomposed into a finite union of smooth parts, on each

of which the normal is well-defined.

(iii) The set of corner points, on which the normals of the boundary are not defined,

is negligible in an appropriate sense.

(iv) For each x ∈ Uk, v ∈ Vk, there is a finite number of intersections between each

line x+ Rv and ∂Uk.

(v) For each v ∈ Vk, the projection of the points on the boundary, which are tangent

to the velocity, onto Hv = span(v)⊥ is negligible in an appropriate sense.

Let Nk be the subset of points x on the boundary ∂Uk where the normal n(x) is

properly defined (see (10) of the Appendix for a precise statement).

Assumption 2. (i)
∫
|λ(z)|dµ <∞.

(ii) For all k ∈ K, πk is C1 in Ūk.

(iii) For any k ∈ K, and any v ∈ Vk, ∇πk · v is in L1(Leb).

Theorem 2. If Assumptions 2, 3 and 4 hold, then for all f ∈ D(A):∫
E

Af dµ =−
∫
E0

f(k, x, v)∇xµ · v dxdv +

∫
E0

λ(z)[Qf(z)− f(z)] dµ

+
∑
k∈K

∫
x∈∂Uk∩Nk,v∈Vk

f(k, x, v)πk(x)〈n(x), v〉dσ(x) dp(v)
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where f(k, x, v) is defined as f(k, x, v) := limt↓0 f(k, x − tv, v), for x ∈ ∂Uk ∩Nk, v ∈

Rdk such that 〈n(x), v〉 > 0,and σ is the Lebesgue measure induced on the surface ∂Uk.

Proof (sketch). The outline of the proof is that we first use the definition of the

generator acting on a function Af and then rearrange the resulting integral using

integration by parts. If our PDMP has no boundary this would give just the first two

terms on the right-hand side [18, 31]. The effect of the boundaries is to introduce the

additional terms when performing integration by parts. For full details of the proof,

see Section B.2. �

Corollary 1. If Assumptions 2, 3 and 4 hold, then for all f ∈ D(A):

∫
E

Af dµ =−
∫
E0

f(k, x, v)∇xµ · v dx dv +

∫
E0

λ(z)[Qf(z)− f(z)] dµ

+
∑
k∈K

∫
∂−Ek

[f(k, x, v)−Qf(k, x,−v)]πk(x)〈n(x), v〉dσ(x) dp(v) (8)

Proof. Plugging the boundary condition 9 that must be satisfied by any f ∈ D(A)

in the result of Theorem 2 yields the result. �

To show that a PDMP has the correct invariant distribution we need to show that∫
E
Af dµ = 0. It is difficult to give simple criteria for this in full generality, so in what

follows we will focus on samplers where the position is unchanged at the boundary.

This is consistent with the dynamics of current PDMP samplers where trajectories are

continuous, and events of the PDMP only changes the velocity. A natural approach

for constructing other sampling behaviour at the boundary is to work with samplers

for which f(k, x, v)∇xµ · v dx dv+
∫
E0 λ(z)[Qf(z)− f(z)] dµ = 0. In this case, we only

need to verify that the dynamics at the boundary are such that the remaining term

in (8) simplifies to 0: see [19] for a condition for a class of moves on the boundary for

which this term vanishes. In more generality, such as for the variable selection sampler

of [10], we can also introduce additional events into the sampler to compensate for the

boundary term.
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5. PDMP samplers for piecewise continuous densities

Let π be a density on Rd and {Uk : k ∈ K} be a finite collection of disjoint open

subsets of Rd, such that ∪kUk = Rd, which satisfy our technical Assumptions 3 and 4.

We assume that π is C1 on each Ūk. We are now in the same setting as the previous

section.

Let ∂U =
⋃
k∈K(∂Uk ∩ Nk) be the union of the boundaries, i.e. the set of discon-

tinuities of π. We consider now only points on the boundary where exactly two sets

Uk1 , Uk2 intersect, and where the respective normals are well-defined; the set of points

where more sets intersect or the normal is ill-defined form a null set by assumption

and thus have no impact on the resulting invariant distribution.

In the following we will restrict ourselves to transition kernels on the boundary that

keep the location, x, unchanged and only update the velocity, v.

For each such x in ∂U , there exists k1(x) and k2(x) such that x ∈ Ūk1 and x ∈ Ūk2 .

We will define the ordering of the labels such that πk1(x) < πk2(x). Let n(x) be the

outer normal for Uk1 . Thus this is the normal that points to the region k2(x), which

is the region that has higher density, under π, at x.

Let V+
x = {v ∈ V|〈v, n(x)〉 > 0} and V−x = {v ∈ V|〈v, n(x)〉 < 0}. Thus V+

x is

the set of velocities that would move the position x into k2(x), thereby increasing the

density under π, and V+
x is the set of velocities that move the position into k1(x).

For x ∈ ∂U , let lx be the following (unnormalized) density on V

lx(v) =

 |〈n(x), v〉|p(v)πk2(x)(x) ∀v ∈ V+
x ,

|〈n(x), v〉|p(v)πk1(x)(x) ∀v ∈ V−x .

This is just proportional to the density p(v) weighted by the size of the velocity in the

direction of the normal n(x) and weighted by the density at x either in the region,

k1(x) or k2(x), that the velocity is moving toward.

Consider the transition (x, v) → (x′, v′) obtained by first flipping the velocity

and then applying the Markov kernel Q. Since we assume that Q only changes the

velocity, there exists a Markov kernel Q′x such that this transition can be described as

δx(dx′)Q′x(dv′|v). One can equally define this kernel by Q′x(A|v) = Q({x} × A|x,−v)

for any measurable A.
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Theorem 3. Assume that for all v ∈ Vx that p(v) = p(−v), and that the transition

kernel Q only changes the velocity, and define the family of kernels, Q′x for x ∈ ∂U as

above. Further, assume that

−
∫
E0

f(k, x, v)∇xµ · v dx dv +

∫
E0

λ(z)[Qf(z)− f(z)] dµ = 0,

and that

∀x ∈ ∂U , lx is an invariant density of Q′x. (9)

Then
∫
E
Af dµ = 0 for all f ∈ D(A), and µ is the invariant distribution of the process.

Proof. Starting from Theorem 2, for all f ∈ D(A):∫
E

Af dµ =−
∫
E0

f(k, x, v)∇xµ · v dxdv +

∫
E0

λ(z)[Qf(z)− f(z)] dµ

+
∑
k∈K

∫
x∈∂Uk∩Nk,v∈V

f(k, x, v)πk(x)〈n(x), v〉dσ(x) dp(v).

By assumption, −
∫
E0 f(k, x, v)∇xµ · v dxdv +

∫
E0 λ(z)[Qf(z) − f(z)] dµ = 0, and so

we simplify the integral of Af to:∫
E

Af dµ =
∑
k∈K

∫
x∈∂Uk∩Nk,v∈V

f(k, x, v)πk(x)〈n(x), v〉dσ(x) dp(v).

To simplify notation, in the rest of the proof we write k1 for k1(x) and k2 for k2(x)

We rewrite the previous equation:∫
E

Af dµ =

∫
x∈∂U

∫
v∈V+

x

[
f(k2, x, v)πk2(x)− f(k1, x, v)πk1(x)

]
|〈n(x), v〉| dp(v) dσ(x)

−
∫
x∈∂U

∫
v∈V−x

[
f(k2, x, v)πk2(x)− f(k1, x, v)πk1(x)

]
|〈n(x), v〉|dp(v) dσ(x).

Using that if v ∈ V−x then −v ∈ V+
x we can rewrite the right-hand side as∫

x∈∂U

(∫
v∈V+

x

[
f(k2, x, v)πk2(x)− f(k1, x, v)πk1(x)

]
|〈n(x), v〉|dp(v)

−
∫
v∈V+

x

[
f(k2, x,−v)πk2(x)− f(k1, x,−v)πk1(x)

]
|〈n(x), v〉|dp(−v)

)
dσ(x).

A sufficient condition for
∫
E
Af dµ = 0 is that for all x the integral over v in the

brackets is 0.
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Any f ∈ D(A) satisfies the boundary condition (5) on Γ. For v ∈ V+
x , we have

(k1, x, v) ∈ Γ and (k2, x,−v) ∈ Γ, hence,

f(k1, x, v) =

∫
f(z′)Q(dz′|(k1, x, v)),

f(k2, x,−v) =

∫
f(z′)Q(dz′|(k2, x,−v)).

Thus our sufficient condition for
∫
E
Af dµ = 0 becomes∫

V+
x

[f(k2, x, v)πk2(x)−Qf(k1, x, v)πk1(x)]|〈n(x), v〉|dp(v)

=

∫
V+
x

[Qf(k2, x,−v)πk2(x)− f(k1, x,−v)πk1(x)]|〈n(x), v〉|dp(−v).

Using again the fact that if v ∈ V+
x then −v ∈ V−x , this condition can be rewritten as:∫

V+
x

f(k2, x, v)πk2(x)|〈n(x), v〉|dp(v) +

∫
V−x

f(k1, x, v)πk1(x)|〈n(x), v〉|dp(v)

=

∫
V+
x

Qf(k2, x,−v)πk2(x)|〈n(x), v〉| dp(−v)

+

∫
V−x

Qf(k1, x,−v)πk1(x)|〈n(x), v〉|dp(−v).

We can then write this in terms of lx and Q′x by introducing a function f ′(x, v) that

is defined as

f ′(x, v) = f(k1, x, v) if v ∈ V−x , and f ′(x, v) = f(k2, x, v) if v ∈ V+
x .

Then, using p(v) = p(−v) and the definitions of lx and Q′x, our sufficient condition

becomes ∫
Vx
f ′(x, v) dlx(v) =

∫
Vx

(∫
Vx
f ′(x, v′)Q′x(dv′|v)

)
dlx(v).

This is true if lx is an invariant density of Q′x. �

6. Boundary kernels for usual PDMP samplers

We give here possible Markov kernels for the Bouncy Particle Sampler, the Zig-

Zag sampler, and the Coordinate Sampler. Since the condition of Theorem 3 only

depends on the velocity distribution, any two processes that share the same velocity

distribution can use the same boundary Markov kernels. We present two approaches

to constructing appropriate kernels on the boundary.
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6.1. Sampling l using Metropolis–Hastings

Recall from Theorem 3 that a valid kernel for the velocity when we hit a boundary

can be constructed as follows: first, construct a transition kernel Q′x which leaves lx

invariant; and if the current velocity is v, simulate a new velocity from Q′x(·|−v). That

is we can simulate a new velocity by (i) flipping the velocity, and (ii) applying Q′x.

The simplest choice of Q′x is just the identity map, i.e. a kernel that keeps the

velocity. However this would correspond to a transition kernel on the boundary which

simply flips the velocity, thus forcing the PDMP to retrace its steps. Where possible,

we can improve on this by choosing to be Q′x a kernel which samples from lx, though

it should be noted that this choice may be difficult to implement.

When V is bounded, an alternative is to define Q′x as a Metropolis–Hastings kernel

[15] targeting lx, with proposals from a uniform sampler of V. The algorithm starting

from v then proceeds as follows:

1. Sample v′ uniformly in V.

2. Accept v∗ = v′ with probability α = lx(v
′)

lx(v)
, otherwise set v∗ = v.

Of course, it is also possible to iterate the Metropolis–Hastings kernel several times to

get a good sample from lx at a reasonable cost.

6.2. Limiting behaviours

A natural strategy for constructing the transition kernel for the velocity at a bound-

ary is to consider the limiting behaviour of the sampler for a family of continuous

densities which tend to a piecewise-discontinuous density in an appropriate limit. We

will do this for a density π with one discontinuity on a hyperplane with normal n:

π(x) = c01〈x,n〉<0 + c11〈x,n〉≥0 with c0 < c1. In the following we will assume c0 > 0,

but the extension of the arguments to the case c0 = 0 is straightforward.

We can approximate π by a continuous density πk such that ∇ log(πk) is piecewise

constant:

πk(x) = c01〈x,n〉∈(∞,−C/k] + c1 exp{k〈x, n〉}1〈x,n〉∈(−C/k,0] + c11〈x,n〉∈(0,∞),

where C = log(c1/c0). As k →∞ we can see that πk converges to π. In the following

we will call the region where 〈x, n〉 ∈ [−C/k, 0] the boundary region of πk, as this is
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approximating the boundary defined by the discontinuity in π.

The advantage of using the densities πk is that the resulting behaviour of standard

PDMP samplers is tractable, and, as we will see, the distribution of the change in

velocity from entering to exiting the boundary region of πk will not depend on k. The

choice of k does affect the change in position of the PDMP as it moves through the

boundary region. The effect of increasing k is just to reduce the time spent passing

through the boundary region. In the limit as k →∞ this becomes instantaneous, and

the PDMP’s position will be unchanged.

We consider this limiting behaviour for BPS, the Coordinate Sampler, and Zig-

Zag. Whilst we derive the transition distribution for the velocity in each case from

this limiting behaviour, we will demonstrate that each distribution is valid for the

corresponding sampler directly by showing that it satisfies our condition (9). The

proofs of the propositions in this section are deferred to Appendix D.

6.2.1. Limiting behavior of the Bouncy Particle Sampler Consider the BPS dynamics

for sampling from πk for a trajectory that enters the boundary region, and ignore any

refresh events. If the state of the BPS is (x, v) then dynamics are such that events

occur at a rate max{0,−〈v,∇ log πk(x)〉}, and at an event the velocity is reflected in

∇ log πk(x). Whilst in the boundary region, ∇ log πk(x) = kn.

For any v such that 〈v, n〉 > 0, it is clear that λ(x, v) = 0 for all x. Hence, the

trajectory through the boundary region will be a straight line.

Let v be such that 〈v, n〉 < 0. Without loss of generality assume that the trajectory

enters the boundary region at t = 0 with 〈x0, n〉 = 0. If no jumps occurs, the trajectory

will exit the boundary region at some time te, where 〈xte , n〉 = −C/k, which implies

te = −C/(k〈v, n〉). For such a trajectory, the Poisson rate whilst passing through the

boundary region is λ = −k〈v, n〉. Remembering that C = log(c1/c0), the probability

of a trajectory passing through the region in a straight line is

exp{−λte} = exp

{
− log

(
c1
c0

)}
=
c0
c1
,

which does not depend on k.

Finally, the probability of an event that changes the velocity in the boundary region

is thus 1 − c0/c1. If there is an event, then the velocity reflects in the normal and
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becomes v′ = v − 2〈v, n〉. As 〈v′, n〉 > 0, no further events will occur whilst passing

through the boundary region.

Hence the probability transition kernel assigns probabilities

Q(x, v′|x, v) =


1 v′ = v and 〈v, n〉 > 0,

c0/c1 v′ = v and 〈v, n〉 < 0,

1− c0/c1 v′ = v − 2〈n, v〉n and 〈v, n〉 < 0.

If we translate this into the corresponding transition kernel at a general discontinuity,

for a trajectory that hits the boundary defined by the continuity at a point with unit

normal n = n(x) then

QBPS(x, v′|x, v) =


1 v′ = v and v ∈ V+

x ,

πk1(x)(x)/πk2(x)(x) v′ = v and v ∈ V−x ,

1− πk1(x)(x)/πk2(x)(x) v′ = v − 2〈n, v〉n and v ∈ V−x .

That is, if the trajectory is moving to the region of lower probability density, then it

passes through the discontinuity with a probability proportional to the ratio in the

probability densities. Otherwise, it reflects off of the surface of discontinuity.

Proposition 5. The transition kernel of the velocity, Q′x, derived from QBPS satisfies

(9).

This result holds for either implementation of the Bouncy Particle Sampler, i.e.

where the distribution of the velocity is uniform on the sphere, or is an isotropic

multivariate Gaussian. Examination of the proof of the proposition shows that we

only require that p(v) is spherically symmetric.

6.2.2. Limiting behavior of the Coordinate Sampler In the coordinate sampler, the

velocity is always in the direction of one of the coordinates of x, and we will denote the

set of 2d possible velocities by V. The dynamics of the coordinate sampler are similar to

those for BPS except that the transition kernel at an event is different. At an event the

probability of the new velocity being v′ ∈ V is proportional to max{0, 〈v′,∇ log πk(x)〉}.

The calculations for the transition kernel of the coordinate sampler for a trajectory

that enter the boundary region of πk is similar to that for the BPS, except that, if

there is an event, the distribution of the new velocity changes to that for the coordinate

sampler.
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The resulting probability transition kernel, expressed for a general discontinuity is:

QCS(x, v′|x, v) =


1 v′ = v and v ∈ V+

x

πk1(x)(x)/πk2(x)(x) v′ = v and v ∈ V−x ,

(1− πk1(x)(x)/πk2(x)(x)) 〈v
′,n〉
K v′ ∈ V+

x and v ∈ V−x ,

where K =
∑
v∈V+

x
〈v, n〉 is a normalising constant for the distribution of the new

velocity if it changes.

That is, a trajectory moving to the higher probability region is unaffected by the

discontinuity. For a trajectory moving to a lower probability region it either passes

through the discontinuity, or bounces. The bounce direction is chosen at random from

v′ ∈ V+
x with probability equal to the component of v′ in the direction of the normal

at the discontinuity, n.

Proposition 6. The transition kernel of the velocity, Q′x, derived from QCS satisfies

(9).

6.2.3. Limiting behavior of the Zig-Zag Sampler For Zig-Zag the velocities are of the

form {±1}d. Given the positions, events occur independently for each component.

That is if vi ∈ {±1} is the component of the velocity in the i coordinate axis then

this velocity will flip, i.e. change sign, at a rate max{0,−vi∂ log πk(x)/∂xi}. For the

boundary region of πk(x) we have

∂ log πk(x)

∂xi
= kni,

where ni is the ith component of the normal n.

If we consider the dynamics of Zig-Zag once it enters the boundary region of πk(x),

then each velocity component with vini < 0 will potentially flip. Whilst travelling

through the boundary region the rate at which such a vi will flip will be −vinik. If a

component flips then the new velocity satisfies v′i = −vi, and hence v′ini > 0 and the

rate of any future flip while in the boundary region will be 0. Thus, each component

will flip at most once whilst the trajectory passes through the boundary region.

The resulting dynamics are somewhat complicated, but can be easily simulated,

using the following algorithm.

a) For i = 1, . . . , d simulate τi as independent realisations of an exponential random

variable with rate kmax{−nivi, 0}. If nivi ≥ 0 then set τi =∞.
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b) Calculate the time t∗ at which we leave the boundary as the smallest value t > 0

for which
n∑
i=1

vini(τi − |t− τi|) = ±C/k,

or
n∑
i=1

vini(τi − |t− τi|) = 0.

c) The new velocity has v′i = vi if τi > t∗ and v′i = −vi otherwise.

The key idea is that whilst the trajectory remains within the boundary region, each

velocity component flips independently with its own rate. Step a) then simulates the

time at which each component of the velocity would switch. Step b) then calculates, for

the event times simulated in a), what time, t∗ the trajectory will leave the boundary.

There are two possibilities, the first corresponds to passing through the boundary,

the second to bouncing back to the region where we started. For the first of these

possibilities we have two possibilities, corresponding to C/k and −C/k to allow for the

two possible directions with which we can enter the boundary region. Then in step c)

we calculate the velocity once the trajectory exits the boundary region – using the fact

that a velocity component will have flipped if and only if τi < t∗.

It is simple to show that the distribution of the new velocity, v′, simulated in step c)

is independent of k, as the value of k only introduces a scale factor into the definition

of the event times τi and the exit time, t∗. Thus for a general general discontinuity, we

define the probability transition kernel, QZZ as corresponding to the above algorithm

with k = 1, with n = n(x) and C = log(πk2(x)(x)/πk1(x)(x)), the log of the ratio in

probability density at x for the two regions.

Proposition 7. The transition kernel of the velocity, Q′x induced by QZZ satisfies (9).

6.3. Bouncy Particle Sampler with reflection and refraction

The Bouncy Particle Sampler can be implemented using a Gaussian velocity dis-

tribution, similar to Hamiltonian Monte Carlo. In that case, it is possible to use the

boundary kernel developed for Hamiltonian Monte Carlo which reflects and refracts

on the boundary [1]. This kernel is fully deterministic and is as follows. As before

let k1 and k2 denote the regions either side of the discontinuity, with the density
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being higher in region k2, and let n be the normal that points to k2. Let ∆U =

log(πk2(x)) − log(πk1(x)) > 0 be the (positive) difference in log density between

the two sides of the boundary. If 〈v, n〉 < 0 and 〈v, n〉2 > 2∆U , then the process

crosses the boundary and the outgoing velocity is v′ = v+ (
√
〈v, n〉2 − 2∆U −〈v, n〉)n

(refraction). Otherwise, if 〈v, n〉 < 0 and 〈v, n〉2 < 2∆U , the boundary is not crossed

and the output velocity is v′ = v − 2〈v, n〉n (reflection). If 〈v, n〉 > 0 then, as we are

moving to the region with higher density, we always refract, and the new velocity is

v′ = v + (
√
〈v, n〉2 + 2∆U − 〈v, n〉)n.

The idea of the refraction is that only the velocity in the direction of the normal, n,

is changed. If the PDMP is moving to a region with higher density then the velocity

in the direction of n is increased, if it is moving fast enough into a region with lower

density it is reduced.

Let QRR be the probability kernel defined by the reflection and refraction process.

The following result gives the validity of this kernel.

Proposition 8. The transition kernel of the velocity, Q′x induced by QRR satisfies (9).

We give examples of using this boundary kernel in Figure 3 and Appendix F.

7. Comparison of samplers

We now present some simulation results that aim to illustrate the theory, and show

how different samplers and different choices of kernel at the discontinuities behave. We

do this by considering a simple model for which it is easy to see the boundary behavior,

with a target density

π(x) = αine
− ‖x‖

2

2σin 1x∈[−1,1]d + αoute
− ‖x‖

2

2σout 1x/∈[−1,1]d ,

which is Gaussian inside and outside the hypercube [−1, 1]d, with a discontinuous

boundary on the hypercube.

For algorithms such as Zig-Zag and Coordinate Sampler, the choice of basis is

extremely important. In particular, we expect the Zig-Zag Process to perform very

well for product measures if the velocity basis is properly chosen. Hence we use a

rotated basis where we generate a random rotation matrix R and rotate the canonical

basis by R. (For results for Zig-Zag with the canonical basis, see Appendix F.) The
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random matrix R is obtained by computing the polar decomposition of a random

matrix composed of i.i.d. standard normal random variable.

Since the goal of the experiments is to highlight the boundary behavior, and not a

general comparison between BPS, Zig-Zag, and Coordinate Sampler, we only perform

basic tuning of these algorithms, in particular with respect to the refresh rate which is

necessary for BPS to be ergodic (without boundaries). For each sampler we consider

a range of transition kernels at the discontinuity. These are the Metropolis–Hastings

kernel of Section 6.1; using 1 or 100 iterations of the Metropolis-Hastings kernel; and

using the kernel derived from the limiting behaviour in Sections 6.2.1–6.2.3. We have

implemented all methods in dimensions d = 2, 10 and 100; though we only present

results for d = 100 here in Figure 2, with the full results shown in Appendix F.

An example of the resulting trajectories for d = 100, for the case of a Gaussian

restricted to the cube, i.e. αout = 0, can be found in Figures 2. Additional trajectory

examples can be found in the Appendix for other dimensions in Fig. 4 – 7. There

are a number of obvious qualitative conclusions that can be drawn. First, using a

single Metropolis–Hastings kernel leads to poor exploration for these examples – with

the trajectories often doubling back on themselves when they hit the boundary, and

the trajectories for all three algorithms explore only a small part of the sample space.

Increasing the number of Metropolis–Hastings kernels qualitatively improves explo-

ration noticeably, but does introduce diffusive-like behaviour. For the Bouncy Particle

Sampler and the Zig-Zag Process, the kernel derived from the limiting behaviour allows

for smaller changes in the velocity at the boundary. We see this as the trajectories look

qualitatively different from the Metropolis kernels, with the diffusive behaviour being

suppressed. Overall the Bouncy Particle Sampler with the limiting kernel appears to

mix best – though this may in part be because this sampler is known to mix well for

low-dimensional summaries of the target, but less well for global properties [12].

When the density π is a product, i.e. the basis used in the Zig-Zag process is not

rotated by a random matrix R, the Zig-Zag process does not display a diffusive behavior

as can be seen in Fig. 7 of Appendix F.

Finally, while the case αout = 0 allows a clear visualisation of the trajectories, we

provide simulations for the general case αout 6= 0 in Fig. 3, and Fig. 8 – 10 of Appendix

F. Figures 9 and 10 provide example trajectories in dimension 20, while we verify in
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Fig. 3 and Fig. 8 that the integral with respect to a test function converges to the true

value to show the validity of our boundary kernels, using a random orthogonal basis

and the canonical basis respectively. It is clear the variability is worse for Metropolis

compared to limiting behaviors. In dimension 20 with a rotated basis, the Zig-Zag

process with the limiting behavior seems better overall, but the simulation of the

boundary kernel is significantly more difficult than for the other processes. To make

a fair comparison between kernels, we would need to rescale the time axis, taking into

account the complexity of each kernel.

8. Discussion

This paper focuses on PDMP-based MCMC samplers to sample densities which are

only piecewise smooth. In particular, we presented a general framework for showing

invariance of a given target, and then specialise to the case of the common PDMP

samplers, namely the Bouncy Particle Sampler, Coordinate Sampler and Zig-Zag sam-

pler when the target is piecewise smooth. Our general framework avoids the general

functional-analytic approach of establishing a given set of functions is a core [17, 16].

Rather, we make use of specific properties of the PDMP processes which we are

interested in.

Since we do not use the functional-analytic and operator-theoretic framework of [16],

we lose some of their powerful results, such as the existence of a tractable core for the

generator and useful perturbation results [16, Section 10]. However, our conditions are

arguably more transparent and our general approach is considerably less technically

demanding.

When the target π possesses discontinuities, we found that PDMP-based samplers

display a surprisingly rich set of behaviours at the boundary, as evidenced by our

empirical results, which demonstrate that the choice of jump kernel at the boundary is

crucial. We see that the limiting kernels compare favourably to Metropolis–Hastings-

based jump kernels.

Ideas from [23] for designing the distribution of the change in velocity at a jump

event for standard PDMP samplers may possibly be adapted to our boundary kernels

to improve their mixing properties, as there is an equivalence between the densities lx
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Figure 2: Example trajectories for the Bouncy Particle Sampler (left), Coordinate Sampler

(middle) and Zig-Zag Process (right) for simulating from a 100-dimensional Gaussian

distribution restricted to a cube for different transitions on the boundary. For ZigZag and

Coordinate sampler, the basis is rotated by random matrix R. We show the dynamics for

the first two coordinates only. The different transitions correspond to the limiting behaviour

Section 6.2.1–6.2.3 (top); using a single Metropolis-Hastings step to sample from lx (middle);

and using 100 Metropolis-Hastings steps to sample from lx (bottom).

that we introduce in Theorem 3 and the densities that are left invariant at jumps of a

PDMP [see 23].

There remain several avenues for future exploration. We believe it is possible to

weaken Assumptions 1 and 2. For example Assumption 1(ii) could be relaxed to allow

for a countable union of smooth parts; it should be possible to remove Assumption 1(v)

using Sard’s theorem; and Assumption 2(ii) could be relaxed to: for all x ∈ Uk, for all
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Figure 3: MCMC estimates over time of Eπ[1[−1,1]d(X)], the expectation of the indicator

function of [−1, 1]d under π, for different samplers, repeated 5 times for each sampler. Here d =

20 and the expectation is computed with respect to the d-dimensional density (proportional

to) π(x) = αine
− ‖x‖

2

2σ2
in 1R−1x∈[−1,1]d + αoute

− ‖x‖
2

2σ2out 1R−1x/∈[−1,1]d , with (αin, αout, σin, σout) =

(1, 1, 2, 0.8), where R is a random rotation matrix. The red line correspond to the true value

of the expectation. For BPS, a refresh rate of 5 is used. Each sampler ran for 100000 events.

v ∈ Vk, t → πk(x + tv) is absolutely continuous. Our chosen set of Assumptions 3,

4 are sufficient to allow an application of integration by parts, but a simpler and

more transparent set of sufficient assumptions would also be desirable. Finally, we

conjecture that nonlocal moves into PDMP samplers, for example based on [32] or

otherwise, might also be useful in boosting convergence in the presence of significant

discontinuities.
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[23] Michel, M., Durmus, A. and Sénécal, S. (2020). Forward event-chain monte

carlo: Fast sampling by randomness control in irreversible markov chains. Journal

of Computational and Graphical Statistics 29, 689–702.

[24] Nakajima, J. and West, M. (2013). Bayesian analysis of latent threshold

dynamic models. Journal of Business & Economic Statistics 31, 151–164.

[25] Nishimura, A., Dunson, D. B. and Lu, J. (2020). Discontinuous Hamiltonian

Monte Carlo for discrete parameters and discontinuous likelihoods. Biometrika

107, 365–380.

[26] Pakman, A. (2017). Binary bouncy particle sampler. https://arxiv.org/abs/

1711.00922v1.

[27] Pakman, A. and Paninski, L. (2014). Exact Hamiltonian Monte Carlo

for truncated multivariate Gaussians. Journal of Computational and Graphical

Statistics 23, 518–542.

[28] Peters, E. A. J. F. and de With, G. (2012). Rejection-free Monte Carlo

sampling for general potentials. Physical Review E 85, 026703.

https://arxiv.org/abs/1711.00922v1
https://arxiv.org/abs/1711.00922v1


32 Augustin Chevallier, Sam Power, Andi Q. Wang, Paul Fearnhead

[29] Raftery, A. E. and Akman, V. (1986). Bayesian analysis of a Poisson process

with a change-point. Biometrika 73, 85–89.

[30] Terenin, A. and Thorngren, D. A piecewise deterministic Markov process via

(r, θ) swaps in hyperspherical coordinates 2018. http://arxiv.org/abs/1807.

00420.
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Appendix A. Weakened assumptions for Proposition 4

As mentioned in Remark 4, the assumption of proposition 4 can be weakened to

the following: for any compact K1, there exists a compact K2 such that K1 ⊂ K2 and

for any z ∈ Kc
2 ∩ Γ, Q(K2, z) = 0. In other words, it is impossible to jump from the

boundary outside of K2 to the inside of K2.

For the sake of brevity, we only give an outline of the proof:

1. Let g0 be a function with compact support. The boundary condition 5 is not

satisfied.

2. For any α > 0, build a sequence gαi+1 such that gαi+1 is C1, gαi+1 = f on the

domain of f and gαi+1 = Qgαi on Γ, and gαi+1(z) = gαi (z) if d(z,Γ) > α.

3. Show that this sequence converges to gα, and that gα is C1 with compact support

and satisfies the boundary condition 5, and hence is in F . Furthermore, gα → f

point-wise when α→ 0.

4. Use dominated convergence to conclude.

This covers the case of variable selection.

Appendix B. Theorem 2

B.1. Precise assumptions

Assumption 3. For each k ∈ K:

(i) dimH((Uk)o \ Uk) ≤ dk − 2, where dimH is the Hausdorff dimension.

(ii) We assume that there is a finite collection {W k
1 , . . . ,W

k
l } of disjoint open sets,

and a second collection of disjoint open sets, {Ωk1 , . . . ,Ωkl }, where each W k
i ,Ω

k
i ⊂

Rdk−1 with W k
i ⊂W k

i ⊂ Ωki for each i = 1, . . . l.

(iii) The boundaries satisfy dim ∂W k
i ≤ dk − 2.

(iv) Furthermore we assume that we have C1 (injective) embeddings φki : Ωki → Rdk ,

and also have continuous normals ni : Ωki → Sdk−1.

(v) Set Mi := φ(W k
i ), for each i = 1, . . . , l. Then we have ∂Uk = M1 ∪ · · · ∪Ml.
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(vi) The intersections satisfy dimMi ∩Mj ≤ d− 2 for any i 6= j.

Let

Nk = {x ∈ ∂Uk|∃!i such that ∃u ∈Wi such that φ(u) = x} (10)

be the set of points of ∂Uk for which the normal n(x) = n(u) is well-defined. Since

dimH((Uk)o \ Uk) ≤ dk − 2, for all points for which the normal exists, the boundary

separates Uk and Rdk \ Uk, and does not correspond to an “internal” boundary of Uk

that is removed. By convention, we assume that n(x) is the outer normal.

Assumption 4. We make the following assumptions: for all v ∈ V, there is a refine-

ment {W v
1 , ...,W

v
m} and {Ωv1, ...,Ωvm} of the boundary decomposition such that:

(i) This new decomposition satisfies the previous assumptions.

(ii) For all 0 < i ≤ m, there exists j ∈ {1, . . . , l} such that φ(W v
i ) ⊂ φ(Wj).

(iii) for all x ∈W v
i , y ∈Wj such that φ(x) = φ(y), then ni(x) = ni(y).

(iv) for each 0 < i ≤ m, dimH pv(M
v
i ) ≤ n−2 where Mv

i = {φi(x) : x ∈W v

i and 〈v, ni(x)〉 =

0} and pv is the orthogonal projection on Hv = span(v)⊥.

(v) for all 0 < i ≤ m and all x ∈ Rn, the sets Mv+
i ∩ (x+ Rv) and Mv−

i ∩ (x+ Rv)

have at most one element where Mv+
i = {x = φ(y) ∈ Mi : 〈ni(y), v〉 > 0} and

Mv−
i = {x = φ(y) ∈Mi : 〈ni(y), v〉 < 0}.

B.2. Proof of Theorem 2

We abuse notations and write ∂vf the derivative at t = 0 of f(x+ tv, v) with respect

to t for a fixed v, which corresponds to the term Ξf .

B.2.1. Integrability We give two integrability lemmas that will be useful for the follow-

ing proof.

Lemma 4. Let f ∈ D(A). We know that:

(i) f is bounded.

(ii) Af is bounded.

(iii) f ∈ D(A) and Af = Af .
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Proof. (i) and (ii) are immediate since D(A) ⊂ B0 ⊂ B(E), and A : D(A) → B0 ⊂

B(E).

(iii) follows from the fact that for f ∈ D(A) there is the Dynkin formula which

exactly implies Cft is a true martingale ([11, (14.13)]), hence also a local martingale.

�

Lemma 5. λ(k, x, v)(Qf(k, x, v)− f(k, x, v)) ∈ L1(µ) and ∂vf(k, x, v) ∈ L1(µ)

Proof. Since Af is bounded, Af ∈ L1(µ). Since f is bounded and with (i) of

Assumption 2, λ(k, x, v)(Qf(k, x, v)−f(k, x, v)) ∈ L1(µ). Hence, ∂vf(k, x, v) ∈ L1(µ).

�

This means that we can treat each term independently.

B.2.2. Integration of the infinitesimal generator over E

Proposition 9. Let f ∈ D(A) and let k ∈ K. For all v ∈ Vk we have:∫
Uk

πk(x)∂vf(k, x, v) dx = −
∫
Uk

f(k, x, v)∂vπk(x) dxdv

+

∫
∂Uk∩Nk

πk(x)f(k, x, v) |〈n(x), v〉|dσ(x),

where σ is the Lebesgue measure of the boundary (seen as a Riemannian manifold).

Proof. We would like to use an integration by parts result on the integral in question,

which is precisely detailed in Appendix C.

So now let v ∈ Vk. Assumptions 3 and 4 imply that Uk satisfies Assumption 6 of

Appendix C. Furthermore, f ∈ D(A) ⊂ D(A), thus for all x ∈ Uk, t→ f(k, x+ tv, v) is

absolutely continuous. Finally, Lemma 5 implies that ∂vf(k, x, v) ∈ L1(µ), hence we

can use Proposition 10 of Appendix C on Uk with the function z 7→ f(z)π(z). In this

context, for x ∈ ∂Uk, if 〈n(x), v〉 > 0,

πk(x−)f(k, x−, v) = lim
t↑0

πk(x+ tv)f(k, x+ tv, v) = πk(x)f(k, x, v),

πk(x+)f(k, x+, v) = 0;
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otherwise if 〈n(x), v〉 > 0,

πk(x−)f(k, x−, v) = 0,

πk(x+)f(k, x+, v) = lim
t↓0

πk(x+ tv)f(k, x+ tv, v) = πk(x)f(k, x, v).

This yields:∫
Uk

πk(x)∂vf(k, x, v) dx = −
∫
Uk

f(k, x, v)∂vπk(x) dx dv

+

∫
∂Uk\Cv

πk(x)f(k, x, v) 〈n(x), v〉dσ(x),

where we removed the absolute value around 〈n(x), v〉 to account for the sign difference

of πk(x−)f(k, x−, v)−πk(x+)f(k, x+, v). Furthermore, ∂Uk \Cv ⊂ ∂Uk∩Nk and these

two sets differs by a set of zero measure. Hence:∫
Uk

∂vπk(x)f(k, x, v) dx = −
∫
Uk

f(k, x, v)∂vπk(x) dx dv

+

∫
∂Uk∩Nk

πk(x)f(k, x, v) 〈n(x), v〉dσ(x),

which concludes the proof.

�

Lemma 6.∫
Ek

∂vf(k, x, v)µ(k, x, v) dxdv = −
∫
Uk×Vk

f(k, x, v)∇xµ · v dxdv

+

∫
(∂Uk∩Nk)×Vk

f(k, x, v)µ(k, x, v)〈v, n(x)〉dσ(x) dv

Proof. Since ∂vf is in L1(µ), ∂vf(k, x, v)µ(k, x, v) is integrable. Hence by Fubini’s

theorem:∫
Uk×Vk

∂vf(k, x, v)µ(k, x, v) dx dv =

∫
Vk

∫
Uk

∂vf(k, x, v)µ(k, x, v) dxdv.

Using Proposition 9:∫
Uk×Vk

∂vf(k, x, v)µ(k, x, v) dxdv = −
∫
Vk

∫
Uk

f(k, x, v)(∇πk(x) · v)pk(v) dxdv

+

∫
Vk

∫
∂Uk∩Nk

f(k, x, v)µ(k, x, v)〈v, n(x)〉dσ(x) dv.
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Using (iii) from Assumption 2, f(k, x, v)(∇πk(x)·v)pk(v) is integrable, and f(k, x, v)µ(k, x, v)

is bounded. Hence we can use Fubini a second time on both terms to get the result. �

Appendix C. Theorem: integration by parts

Assumption 5. (informal geometrical assumption.) Let U be an open set in Rn such

that:

• Ū = Rn

• the boundary ∂U can be decomposed as a finite union of smooth closed sub-

manifolds with piecewise C1 boundaries in Rn,

• for any x, v ∈ Rn, the intersection ∂U∪{x+Rv} is finite (not taking into account

the points where v is tangent to ∂U),

• dimH(Nv) ≤ n− 2 where Nv is the subset of ∂U where the normal is ill-defined,

• dimH pv(M
v) ≤ n − 2 where Mv = {x ∈ ∂U such that 〈v, n(x)〉 = 0} and pv is

the orthogonal projection on Hv = v⊥,

with dimH the Hausdorff dimension.

These assumptions are made precise in Assumption 6 of the next section.

Proposition 10. Let U be an open set of Rn satisfying Assumption 6, and ∂U be its

boundary. Let f and g be measurable functions from U to R such that:

1. f is bounded;

2. for any sequence (yn) ⊂ U with ‖yn‖ → ∞, limn→∞ g(yn) = 0;

3. for each x, v ∈ Rn, the functions t 7→ f(x+ tv) and t 7→ g(x+ tv) are absolutely

continuous on U ∩ (x+ Rv) and ∂tf, ∂tg ∈ L1(U).

Fix v ∈ Rn. Then, using the convention

f(x+) = lim
t↓0

f(x+ tv) and f(x−) = lim
t↑0

f(x+ tv)

and

g(x+) = lim
t↓0

g(x+ tv) and g(x−) = lim
t↑0

g(x+ tv),
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we have:∫
U

∂vf(x) g(x) dx =

∫
∂U\Nv

(g(x−)f(x−)− f(x+)g(x+)) |〈n(x), v〉|dσ(x)

−
∫
U

f(x) ∂vg(x) dx,

where the second term is integrated with respect to the Lebesgue measure of the boundary

(seen as a Riemannian manifold) and Nv is the set of points where the normal is ill-

defined.

Proof. The proof is a corollary of the next section. �

C.1. Integration over open domain

Assumption 6. Let U be an open set in Rn such that for each v ∈ Sn−1 (the unit

sphere in Rn),

1. there exist W1 ⊂ W 1 ⊂ Ω1, . . . ,Wk ⊂ W k ⊂ Ωk, 2k open sets in Rn−1 with

dimH ∂Wi ≤ n − 2 (these open sets may depend on v because of 6 of this

assumption).

2. there exist φi : Ωi → Rn, i = 1, . . . k, C1 one to one maps such that the differential

Dφi(x) is one to one for all x ∈ Ωi. It implies that there is a continuous normal

ni : Ωi → Sn−1.

3. ∂U = M1 ∪ · · · ∪Mk where the sets Mi = φi(W i) are closed,

4. dimHMi ∩Mj ≤ n− 2 for all i 6= j.

5. Let W 0
i = {x ∈ Wi : v · ni(x) = 0}). For each i, dimH pv(M

0
i ) ≤ n − 2 where

M0
i = φi(W

0
i ) and pv is the orthogonal projection on H = Hv = v⊥.

6. Let W+
i = {x ∈ Wi ∈ Mi : ni(x) · v > 0} and W−i = {x ∈ Wi : ni(x) · v < 0}.

For all i and all y ∈ Rn, the sets M+
i ∩ (y+Rv) and M−i ∩ (y+Rv) have at most

one element where M+
i = φi(W

+
i ) and M−i = φi(W

−
i ).

Assumption 7. Let f : U → R be a measurable function such that

i. for each y, v ∈ Rn, the function t 7→ f(y + tv) is absolutely continuous on every

bounded interval I such that y + Iv ⊂ U
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ii. lim‖y‖→∞ f(y) = 0. That is, for any sequence (yn) ⊂ U with ‖yn‖ → ∞.

iii. If U is not bounded, then for each v ∈ Rn, ∂vf ∈ L1(U).

We extend f to Rn \ ∂U with f(y) = 0 for every y /∈ U . So that we can suppose

that U = Rn \ ∂U .

Theorem 4. Let U be an open set of Rn satisfying Assumption 6, for some fixed

v ∈ Rn with ‖v‖ = 1. Let

Nv =
( k⋃
i=1

(φi(∂Wi) ∪M0
i )
)⋃( ⋃

1≤i<j≤k

Mi ∩Mj)
)

the set on which normals are ill-defined. Then for any f satisfying Assumption 7:

1. dimH Nv ≤ 2 and dimH pv(Nv) ≤ n− 2;

2. for each y ∈ ∂U \ Nv, the limits

lim
t↓0

f(y + tv) = f(y+) and lim
t↑0

f(y + tv) = f(y−)

exist;

3. The normal n(y) is well-defined at each point y ∈ ∂U \ Nv and∫
U

∂vf(y) dy =

∫
∂U\Nv

(f(y−)− f(y+)) |n(y) · v|dσ(y),

where σ is the Lebesgue measure on ∂U .

We can use the theorem with a product f = gπ where

• g : U → R is measurable, bounded, absolutely continuous on each sets U ∩ (y +

Rv), y ∈ Rn, and ∂tg ∈ L1(U),

• π : U → R is in C1(U)∩L1(U), bounded with bounded derivatives, lim‖y‖→∞ π(y) =

0, and the derivative ∂vπ ∈ L1(U).

C.2. Proof of Theorem 4

For the first point, let

Nv =
( k⋃
i=1

(φi(∂Wi) ∪M0
i )
)⋃( ⋃

1≤i<j≤k

Mi ∩Mj)
)
,

N = p−1v (pv(Nv)) and V = H \ pv(Nv).
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By Assumptions 6.1, 6.4 and 6.5, dimH(pv(Nv)) ≤ n − 2, therefore pv(Nv) has zero

H-Lebesgue measure.

For the second point, the fact that f(y+) and f(y−) exist is a direct consequence

of Asssumption 7.7.

Finally we consider the third point. For all z ∈ H denote

E(z) = {t ∈ R : z + tv ∈ ∂U}.

By Assumption 6.6, the set E(z) has 2k elements at most for all z ∈ V . Set

U ′ = U \ N .

Since dimH(pv(Nv)) ≤ n− 2, it follows that dimH N ≤ n− 1. Therefore,∫
U

∂vf(y) dy =

∫
U ′
∂vf(y) dy.

By Fubini’s theorem,∫
U ′
∂vf(y) dy =

∫
V

(∫
R\E(z)

∂tf(z + tv) dt

)
dz.

By Assumption 7, for almost all z ∈ V and for each connected component (a, b) of

R \ E(z), ∫
(a,b)

∂vf(z + tv) dt = f((z + tb)−)− f((z + ta)+).

Taking into account that limt→±∞ f(z + tv) = 0, we obtain∫
U

∂tf(y) dy =

∫
V

∑
t∈E(z)

(f((z + tv)−)− f((z + tv)+)) dz.

Now we want to see that the latter integral is equal to∫
∂U\Nv

(f(y−)− f(y+)) |n(y) · v|dσ(y).

Set

I = {1, . . . , k} × {+,−},

J(z) = {(i, s) ∈ I : ∃t ∈ E(z), z + tv ∈Ms
i } for z ∈ H,

VJ = {z ∈ V : J(z) = J} for J ⊂ I, and

V si = pv(M
s
i ) for (i, s) ∈ I.
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By Assumption 6.6, for each (i, s) ∈ I, the map pv ◦ φi : W s
i → V si is a bijection,

so that we can define the map F si : V si → Ms
i by F si (z) = φi((pv ◦ φi)−1(z)). Using

the definition of the set V = H \ N , we see that for each z ∈ V and each t ∈ E(z),

there exists (i, s) ∈ I unique such that z + tv = F si (z) ∈ Ms
i . Furthermore, for each

(i, s) ∈ I, V si ∩ V = ∪J3(i,s)VJ . It follows that

∫
U

∂tf(y) dy =

∫
V

∑
t∈E(z)

(f((z + tv)−)− f((z + tv)+)) dz

=
∑
J⊂I

∫
VJ

∑
t∈E(z)

(f((z + tv)−)− f((z + tv)+)) dz

=
∑
J⊂I

∫
VJ

∑
(i,s)∈J

(f(F si (z)−)− f(F si (z)+)) dz

=
∑

(i,s)∈I

∑
J3(i,s)

∫
VJ

(f(F si (z)−)− f(F si (z)+)) dz

=
∑

(i,s)∈I

∫
V si ∩V

(f(F si (z)−)− f(F si (z)+)) dz.

Since the differential of each φi is always one to one and since Dφi(x)(u).u is never

orthogonal to v for x ∈W s
i and u 6= 0, the local inverse function theorem implies that

the maps F si are C1. Furthermore, the image of F si is Ms
i and the normal to Ms

i at

y = F si (z) is n(y) = ±ni((pv ◦ φ)−1(z)). Therefore,

∫
V si ∩V

(f(F si (z)−)− f(F si (z)+)) dz =

∫
Ms
i \Nv

(f(y−)− f(y+))|n(y)|dσ(y).

Finally, since ∂U \ Nv = ∪(i,s)∈I(Ms
i \ Nv),

∑
(i,s)∈I

∫
V si ∩V

(f(F si (z)−)− f(F si (z)+)) dz =

∫
∂U\Nv

(f(y−)− f(y+))|n(y)|dσ(y).

Appendix D. Validity of transition kernels derived from limiting

behaviour

D.1. Bouncy Particle Sampler: Proof of Proposition 5

For the specified QBPS, we first derive the form of the associated probability kernel

on velocities, Q′x, remembering that Q′x is obtained by flipping the velocity and then
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applying the transition defined by QBPS. This gives

Q′x(v′|v) =


1 v′ = −v and v ∈ V−x ,

πk1(x)(x)/πk2(x)(x) v′ = −v and v ∈ V+
x ,

1− πk1(x)(x)/πk2(x)(x) v′ = −v + 2〈n, v〉n and v ∈ V+
x .

The transition kernel Q′x allows for two possible transitions, either v′ = −v or

v′ = v − 2〈n, v〉n. These transitions have the following properties:

(i) In the first case if v ∈ V+
x then v′ ∈ V−x , and vice versa. While for the second

case if v ∈ V+
x then v′ ∈ V+

x .

(ii) For either transition, 〈v′, v′〉 = 〈v, v〉, and |〈n, v′〉| = |〈n, v〉|. Furthermore by the

spherical symmetry of p(v) for the Bouncy Particle Sampler, the first of these

means that p(v) = p(v′).

We need to show that lx(dv′) =
∫
Q′x(dv′|v)lx(v) dv, where

lx(v) =

 |〈n, v〉|p(v)πk2(x)(x) ∀v ∈ V+
x ,

|〈n, v〉|p(v)πk1(x)(x) ∀v ∈ V−x .

We will show this holds first for v′ ∈ V+
x and then for v′ ∈ V−x .

If v′ ∈ V+
x then there are two possible transitions, from v = −v′ ∈ V−x and from

v ∈ V+
x where v = −v′ + 2〈v′, n〉n. v∗ = −v′ + 2〈v′, n〉n. Since the Jacobian of both

transformations is 1:∫
Q′x(dv′|v)lx(v) dv = 1 ·

(
|〈n,−v′〉|p(−v′)πk1(x)(x)

)
dv′

+

(
1−

πk1(x)(x)

πk2(x)(x)

)(
|〈n, v∗〉|p(v∗)πk2(x)(x)

)
dv′,

= |〈n, v′〉|p(v′)

πk1(x)(x) +

(
1−

πk1(x)(x)

πk2(x)(x)

)
πk2(x)(x)

dv′,

where the last equality comes from applying Property (ii) of the transition. The last

expression simplifies to lx(dv′) as required.

For v′ ∈ V−x we have only one transition and thus∫
Q′x(dv′|v)lx(v)dv =

(
πk1(x)(x)

πk2(x)(x)

)(
|〈n,−v′〉|p(−v′)πk2(x)(x)

)
dv′,

which, again using Property (ii), is lx(v′).
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D.2. Coordinate Sampler: Proof of Proposition 6

We follow a similar argument to that of the previous section. First we write down

the form of Q′x derived from QCS:

Q′x(v′|v) =


1 v′ = −v and v ∈ V−x ,

πk1(x)(x)/πk2(x)(x) v′ = −v and v ∈ V+
x ,

(1− πk1(x)(x)/πk2(x)(x)) 〈v
′,n〉
K v′ ∈ V+

x and v ∈ V+
x ,

where K =
∑
v∈V+

x
|〈n, v〉|.

For the Coordinate Sampler, p(v) = 1/(2d) for each of the possible values for v.

Now we need to show lx(v′) =
∑
Q′x(v′|v)lx(v). We will consider the case v′ ∈ V+

x and

v′ ∈ V−x separately. For the latter case, the argument is the same as for the Bouncy

Particle Sampler. Thus we just present the case for v′ ∈ V+
x .

∑
Q′x(v′|v)lx(v) = 1 ·

(
|〈n,−v′〉|p(−v′)πk1(x)(x)

)
+〈v′, n〉

(
1−

πk1(x)(x)

πk2(x)(x)

) ∑
v∈V+

x

|〈n, v〉|
K

p(v)πk2(x)(x)

= p(v′)〈v′, n〉

πk1(x)(x) +

(
1−

πk1(x)(x)

πk2(x)(x)

)
πk2(x)(x)

∑
v∈V+

x

|〈n, v〉|
K


= p(v′)〈v′, n〉

πk1(x)(x) +

(
1−

πk1(x)(x)

πk2(x)(x)

)
πk2(x)(x)

 .

The second equality comes from the fact that p(v) is constant for all v ∈ V. The third

equality comes from the definition of K.

D.3. Zig-Zag Sampler: Proof of Proposition 7

As discussed, the kernel for the velocity does not depend on k. Without loss of

generality, we can set k = 1 for implementing the algorithm that defines QZZ. We

need to show that Q′x keeps lx invariant. We will prove this by showing the following

stronger detailed balance condition holds:

lx(v)Q′x(v′|v) = lx(v′)Q′x(v|v′), ∀v, v′ ∈ V.

As Q′x(v′|v) = QZZ(v′| − v), then writing the detailed balance condition for pairs −v
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and v′ we have that it suffices to show

lx(−v)QZZ(v′|v) = lx(v′)QZZ(−v| − v′), ∀v, v′ ∈ V.

By a slight abuse of notation let k(v) = k1(x) if v ∈ V−x and k(v) = k2(x) if v ∈ V+
x .

Then we can write lx(v) = |〈n, v〉|p(v)πk(v)(x). Thus using the fact that p(v) defines a

uniform distribution on V, the detailed balance condition simplifies to

|〈n, v〉|πk(−v)(x)QZZ(v′|v) = |〈n, v′〉|πk(v′)(x)QZZ(−v| − v′), ∀v, v′ ∈ V.

This can be viewed as matching the probability we have a velocity v and transition to

v′ with one where we flip the velocities: starting at −v′ and transition to −v.

We show that the detailed balance condition holds separately for different combina-

tions of whether v ∈ V+
x or v ∈ V−x and whether v′ ∈ V+

x or v′ ∈ V−x .

First assume v ∈ V+
x and v′ ∈ V−x . This corresponds to a trajectory that is moving

from the lower to the higher density region, but that reflects off the boundary and stays

in the lower density region. It is straightforward to see that the events that change

the velocity only increase 〈n, v〉, the speed at which the trajectory moves through

the boundary region to the higher density region. Thus a transition from V+
x to V−x is

impossible, and QZZ(v′|v) = 0. Similarly, −v′ ∈ V+
x and −v ∈ V−x so QZZ(−v|−v′) = 0.

Hence the detailed balance conditions trivially hold in this case.

Next assume v ∈ V−x and v′ ∈ V+
x . This corresponds to a trajectory that is moving

from the higher to the lower density region, but that reflects off the boundary and

stays in the higher density region. In this case k(−v) = k(v′) and thus the detailed

balance condition becomes

|〈n, v〉|QZZ(v′|v) = |〈n, v′〉|QZZ(−v| − v′), ∀v ∈ V−x , v′ ∈ V+
x . (11)

To prove the detailed balance condition holds we will first obtain an expression for

QZZ(v′|v), and then introduce a coupling between a transition for v to v′ and one from

−v′ to −v to link it to a similar expression for QZZ(−v| − v′).

The randomness in the algorithm that defines QZZ only comes through the random-

ness of the event times simulated in step a) of Section 6.2.3. Remember that τi is the

time at which component i of the velocity would switch, if the trajectory is still within

the boundary region. Each τi is (conditionally) independent of the others, and has an
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exponential distribution with rate max{0,−nivi}, where ni is the component of the

ith coordinate of the unit normal n. If nivi ≥ 0, then τi =∞.

It is helpful to introduce three sets of components.

• Let S1 be the set of components i such that v′i = vi and nivi < 0.

• Let S2 be the set of components i such that v′i = −vi.

• Let S3 be the set of components i such that v′i = vi and nivi ≥ 0.

So S1 is the set of components of the velocity v that are moving the particle towards

the low-density region, and are unchanged by the transition to v′; S2 is the set of

components that flip during the transition from v to v′; and S3 is the set of components

of the velocity v that are moving the particle towards the high-density region, and are

unchanged by the transition to v′.

Only components i of the velocity for which nivi < 0 can change during the

transition from v to v′. This means that if there exists i ∈ S2 such that nivi ≥ 0

then the transition from v to v′ is impossible. By the same argument, the transition

from −v′ to −v is impossible. Thus in this case QZZ(v′|v) = QZZ(−v| − v′) = 0 and

detailed balance trivially holds. So in the following we will assume that nivi < 0 for

i ∈ S2.

By a similar argument we have that the set S1 is the set of indices of the velocity

that could change during the transition from v to v′, but did not. Whereas S3 are the

set of indices of the velocity that could never have changed during the transition.

To ease notation let m = |S2|, the number of indices in set S2, and note that

m ≥ 1 as v 6= v′. Without loss of generality we can relabel the coordinates so that

S2 = {1, . . . ,m}, and we will use τ1:m to denote the vector of event times for the

coordinates in S2.

We now introduce a function of time, t, that depends on τ1:n. This is

h(t; τ1:n) =

m∑
i=1

nivi(t− 2 max{0, t− τi}) +
∑
i∈S1

nivit+
∑
i∈S3

nivit.

This can be viewed as the net distance travelled by the trajectory up to time t

in the direction of the normal n, given that only velocity coordinates in S2 can

change, and these change at times τ1:m. This function is important as it determines
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when the trajectory leaves the boundary region, and determines the termination of

the simulation algorithm in step b). As v ∈ V−x and v′ ∈ V+
x , and the changes

in velocity in the direction of n is monotone as we flip components, we have that

h(t; τ1:n) is strictly decreasing at t = 0, strictly increasing for large enough t and is

unimodal. As h(0; τ1:m) = 0, this means that there is a unique t∗(τ1:m) > 0 such that

h(t∗(τ1:m); τ1:m) = 0. This is the exit time from the boundary region calculated in

step b) of the algorithm.

We can now define the set T of values of τ1:m that are consistent with a transition

from v to v′. The conditions are that all components of the velocity must flip before

t∗, and that the trajectory must not pass through the boundary region – see the other

stopping criteria in step b) of the algorithm. This gives us that

T =

{
τ1:m : τi ≤ t∗(τ1:m), i = 1, . . . ,m; min

0<t<t∗(τ1:m)
h(t; τ1:n) > −C

}
.

The probability of a transition from v to v′ is thus the probability τ1:m ∈ T times

the probability that τi > t∗(τ1:m) for i ∈ S1. As each τi, i ∈ S1 or i ∈ S2, has an

independent exponential distribution with rate −nivi,

QZZ(v′|v) =

∫
T

∏
i∈S1

exp{nivit∗(τ1:m)}

 m∏
i=1

(−nivi) exp{niviτi} dτ1:m

 .

Now consider the reverse transition, from −v′ to −v. Under our existing definitions

S1, S2 and S3, we have that S2 is still the set of indices that the flip for the transition

from −v′ to −v, but now S1 is the set of components of the velocity that could never

have flipped, while S3 is the set of components that could have flipped but did not.

We can define the same quantities for the reverse transition from −v′ to −v. We

will use tildes to denote quantities that relate to this transition. So τ̃1:m will be the

vector of flip times for components in i ∈ S2. We have

h̃(t; τ̃1:n) =

m∑
i=1

nivi(t− 2 max{0, t− τ̃i})−
∑
i∈S1

nivit−
∑
i∈S3

nivit,

using the fact that −v′i = vi for i ∈ S2 and −v′i = −vi otherwise. By the same argument

as above, there is a unique t̃∗(τ̃1:m) > 0 such that h̃(t̃∗(τ̃1:m); τ̃1:m) = 0. The set of

possible values of τ̃1:m that are consistent with the transition from −v′ to v is

T̃ =

{
τ̃1:m : τ̃i ≤ t̃∗(τ̃1:m), i = 1, . . . ,m; min

0<t<t̃∗(τ̃1:m)
h̃(t; τ̃1:n) > −C

}
.
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Finally we can write down the transition probability as before, remembering that

the rate of flipping for components i ∈ S2 is −nivi as before; but for i ∈ S3 it is nivi.

Thus

QZZ(−v| − v′) =∏
i∈S3

exp{−nivit̃∗(τ̃1:m)}

∫
T̃

m∏
i=1

(−nivi) exp{niviτ̃i} dτ̃1:m

 . (12)

To relate the two transition probabilities, we introduce a coupling between τ1:m and

τ̃1:m, so τ̃1:m = g(τ1:m), where

τ̃i = g(τ1:m)i = t∗(τ1:m)− τi.

This coupling is a natural one. If we consider the path through the boundary region

given by τ1:m that transitions from v to v′, we can reverse that path to get a path

that transitions from −v′ to −v. For the forward path a flip of component i at time τi

occurs at a time t∗(τ1:m) − τi prior to the end of the path. Thus for the reverse path

the flip would occur at time t∗(τ1:m)− τi.

It is straight forward to show that if τ̃1:m = g(τ1:m) then h(t; τ1:m) = h̃(t∗(τ1:m) −

t; τ̃1:m). This result is intuitive; it is saying the distance of the forward trajectory within

the boundary region at time t is equal to the distance of the backward trajectory

within the boundary region at time t∗(τ1:m) − t. This immediately implies that

t∗(τ1:m) = t̃∗(τ̃1:m), the exit time for the forward and backward trajectories are the

same. Furthermore, if we consider the second constraint on τ1:m in the definition of T

then we have

min
0<t<t∗(τ1:m)

h(t; τ1:n) = min
0<t<t̃∗(τ̃1:m)

h̃(t; τ̃1:n),

for τ̃1:m = g(τ1:m). Together with the fact that τi ≤ t∗(τ1:m) then τ̃1:m ≤ t̃∗(τ̃1:m). We

have that the function g maps τ1:m ∈ T to τ̃1:m ∈ T̃ . Furthermore, the function g is

invertible, and by similar arguments we have that g−1 maps τ̃1:m ∈ T̃ to τ1:m ∈ T .

Hence g is a bijection from T to T̃ .

The function g defines a linear map between τ1:m and τ̃1:m. For τ1:m ∈ T we have

that, by definition of t∗(τ1:m),

m∑
i=1

nivi(2τi − t∗(τ1:m)) +

d∑
i=m+1

nivit
∗(τ1:m) = 0. (13)
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This gives that

t∗(τ1:m) =

m∑
i=1

(
−2nivi
K

)
τi, where K = −

m∑
i=1

nivi +

d∑
i=m+1

nivi.

Furthermore, using that v′ is equal to v except that vi is flipped for i = 1, . . . ,m,

K = 〈v′, n〉.

Let b1:m be the 1×m vector whose ith entry is bi = 2vini/K. If we let 1m denote

the 1×m vector of ones, and Im the m×m identity matrix then we have

τ̃1:m = g(τ1:m) = (b1:m1>1:m − Im)τ1:m = Aτ1:m,

where the m×m matrix A = (b1:m1>1:m− Im). In the following argument we will make

the change of variables τ̃1:m = g(τ1:m) = Aτ1:m, and we will need the determinant

of the Jacobian of this transformation. Using the matrix determinant lemma, this is

given by

|det(A)| = |(1− 1>1:mb1:m)||det(−Im)| =

∣∣∣∣∣∣1−
m∑
i=1

bi

∣∣∣∣∣∣ .
This simplifies to∣∣∣∣∣∣1−

m∑
i=1

bi

∣∣∣∣∣∣ =

∣∣∣∣∣∣1 +

m∑
i=1

2vini
〈v′, n〉

∣∣∣∣∣∣ =

∣∣∣∣∣ 〈v′, n〉+
∑m
i=1 2vini

〈v′, n〉

∣∣∣∣∣ =

∣∣∣∣ 〈v, n〉〈v′, n〉

∣∣∣∣ .
So now, taking the definition of QZZ(v′|v) and applying the change of variables

τ̃1:m = g(τ1:m) we get

QZZ(v′|v) =

∫
T

∏
i∈S1

exp{nivit∗(τ1:m)}
m∏
i=1

(
(−nivi) exp{niviτi}

)
dτ1:m

=

∫
T̃

exp

∑
i∈S1

nivit̃
∗(τ̃1:m)


∣∣∣∣ 〈v, n〉〈v′, n〉

∣∣∣∣ m∏
i=1

(
(−nivi) exp{nivi(t̃∗(τ̃1:m)− τ̃i)}

)
dτ̃1:m

=

∣∣∣∣ 〈v, n〉〈v′, n〉

∣∣∣∣ ∫
T̃

 m∏
i=1

(−nivi)

 exp

∑
i∈S1

nivit̃
∗(τ̃1:m) +

m∑
i=1

nivi(t̃
∗(τ̃1:m)− τ̃i)

dτ̃1:m

=

∣∣∣∣ 〈v, n〉〈v′, n〉

∣∣∣∣ ∫
T̃

 m∏
i=1

(−nivi)

 exp

∑
i∈S3

−nivit̃∗(τ̃1:m) +

m∑
i=1

niviτ̃i

dτ̃1:m,

where the final equality comes from the definition of t̃∗(τ̃1:m) = t∗(τ1:m), using (13)

after substituting in τi = t̃∗(τ̃1:m)− τ̃i.
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By comparing the final expression with (12), we get that

QZZ(v′|v) =

∣∣∣∣ 〈v, n〉〈v′, n〉

∣∣∣∣QZZ(−v|v′),

which satisfies (11) as required.

The final combination involve v, v′ ∈ V+
x and −v′,−v ∈ V−x , or vice versa. The

detailed balance condition in this case becomes

πk1(x)(x)|〈n, v〉|QZZ(v′|v) = πk2(x)(x)|〈n, v′〉|QZZ(−v| − v′), ∀v, v′ ∈ V−x .

We can show this using a similar argument to above, with the same coupling of paths

from v to v′ with paths from v′ to v. The main differences are, first, that the definition

of T is simplified to {
τ1:m : τi ≤ t∗(τ1:m), i = 1, . . . ,m

}
,

as, by monotonicity of the changes in velocity, we do not need to check whether the

other exit condition in step b) holds. Second, that the definition of t∗(τ1:m) changes,

with it being the value of t for which h(t; τ1:m) = C. For τ1:m ∈ T , this becomes

m∑
i=1

nivi(2τi − t∗(τ1:m)) +

d∑
i=m+1

nivit
∗(τ1:m) = C

due to the different exit condition in step b). We have similar changes to the definitions

of T̃ and t̃∗(τ̃1:m).

However we can define QZZ(v′|v) and QZZ(−v| − v′) in a similar way. Furthermore

we can use the same linear transformation g, which is still a bijection between T and

T̃ . Whilst the definition t∗ has changed, this only introduces an additive constant into

the linear transformation defined by g, and thus the Jacobian of the transformation

is unchanged. Following the argument above we thus get to the same expression for

QZZ(v′|v) after making the change of variables:

QZZ(v′|v) =

∣∣∣∣ 〈v, n〉〈v′, n〉

∣∣∣∣ ∫
T̃

 m∏
i=1

(−nivi)


× exp

∑
i∈S1

nivit̃
∗(τ̃1:m) +

m∑
i=1

nivi(t̃
∗(τ̃1:m)− τ̃i)

dτ̃1:m.

Now substituting in our new definition of t̃∗(τ̃1:m) = t∗(τ1:m) we get

QZZ(v′|v) =

∣∣∣∣ 〈v, n〉〈v′, n〉

∣∣∣∣QZZ(−v|v′) exp{C},
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where the additional factor of exp{C} is due to the different definition of t∗. As

C = log(πk2(x)(x)/πk1(x)(x)) this rearranges to

πk1(x)(x)|〈v′, n〉|QZZ(v′|v) = πk2(x)(x)|〈v, n〉|QZZ(−v|v′),

as required.

D.4. BPS with Reflect and Refract: Proof of Proposition 8

We first write down the form of Q′x derived from QRR. To do this it is helpful to

define functions that define the new velocity at a reflection or refraction. Remember

that ∆U is the change in log-density as we move from the region with lower density,

k1, to the region with higher density, k2, and is strictly positive. We will define

the reflection of a velocity v by L(v) = v − 2〈v, n〉n. For refractions we need to

distinguish transitions from k1 to k2 and vice versa. The refraction for a transition

from k1 to k2 is R1(v) =
√
〈v, n〉2 + 2∆Un + v − 〈v, n〉n, and for k2 to k1 is R2(v) =√

〈v, n〉2 − 2∆Un+v−〈v, n〉n with R2 being only defined for v such that 〈v, n〉2 > 2∆U

Using these functions, we can write the transition kernel Q′x as

Q′x(v′|v) =



1 for v ∈ V−x and v′ = R1(−v),

1 for v ∈ V+
x , 〈v, n〉2 > 2∆U and v′ = R2(−v),

1 for v ∈ V+
x , 〈v, n〉2 ≤ 2∆U and v′ = L(−v),

0 otherwise.

We need to show that lx(dv′) =
∫
Q′x(dv′|v)lx(v)dv with

lx(v) =

 |〈n, v〉|p(v)πk2(x)(x) ∀v ∈ V+
x ,

|〈n, v〉|p(v)πk1(x)(x) ∀v ∈ V−x .

Since for each v′, there is only a finite number of v such that Q′x(v′|v) > 0, the

former is equivalent to lx(v′) =
∑
Q′x(v′|v)lx(v)Jv,v′ , where Jv,v′ is the Jacobian of the

deterministic transformation from v to v′.

If v′ ∈ V+
x and 〈v′, n〉2 ≤ 2∆U , then the only v for which Q′x(v′|v) is non-zero is

v = L(−v′). The result trivially holds as this transition has unit Jacobian, ‖v‖ = ‖v′‖

so p(v) = p(v′); |〈n, v〉| = |〈n, v′〉|; v′ ∈ V+
x and Q′x(v′|v) = 1.

If v′ ∈ V+
x and 〈v, n〉2 > 2∆U then the only v for which Q′x(v′|v) is non-zero

is for v such that v′ = R1(v) which is equivalent to v = R2(−v′) ∈ V−x . So as
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p(v) = C1 exp{− 1
2‖v‖

2} for some constant C1∑
Q′x(v′|v)lx(v) = lx(R2(−v′))

= |〈n,R2(−v′)〉| · p(R2(−v′)) · πk1(x)

= |〈n,R2(−v′)〉|

(
C1 exp

{
−1

2
‖R2(−v′)‖2

})
πk1(x). (14)

Now

‖R2(−v′)‖2 = ‖
√
〈v′, n〉2 − 2∆Un−v′+〈v′, n〉n‖2 = 〈v′, n〉2−2∆U+‖v′−〈v′, n〉n‖2 = ‖v′‖2−2∆U,

where the third equality comes from n being orthogonal to v′ − 〈v′, n〉n. This gives(
C1 exp

{
−1

2
(‖v′‖2 − 2∆U)

})
πk1(x) = p(v′) exp{∆U}πk1(x).

The definition of ∆U gives that exp{∆U}πk1(x) = πk2(x).

Now v′ =
√
〈v, n〉2 + 2∆Un − v + 〈v, n〉n. Up to a sign-change, this only changes

the velocity in the direction of n. Thus the Jacobian of the transformation is given by

J−1v,v′ =

∣∣∣∣d〈v′, n〉d〈v, n〉

∣∣∣∣ =

∣∣∣∣ d

d〈v, n〉
√
〈v, n〉2 + 2∆U

∣∣∣∣ =

∣∣∣∣∣ 〈v, n〉√
〈v, n〉2 + 2∆U

∣∣∣∣∣ =
|〈v, n〉|
|〈v′, n〉|

Thus, substituting in these expressions, we have∑
Q′x(v′|v)lx(v)Jv,v′ = |〈n,R2(−v′)〉|p(v′)πk2(x)

|〈v′, n〉|
|〈v, n〉|

= |〈n, v〉|p(v′)πk2(x)
|〈v′, n〉|
|〈v, n〉|

= |〈n, v′〉|p(v′)πk2(x)

= lx(v′).

As required.

An equivalent calculation holds for v′ ∈ V−x , and is omitted for brevity.

Appendix E. Comments on reference [4]

Eq. 4 of [4] should read Qb(x, u,dv)ρ(du) = Qb(x,−v,−du)ρ(−dv), x ∈ ∂O, for u

in the exit boundary and v in the entrance boundary. The sketch of the proof given

in their appendix also requires a correction. The condition (S2) on the domain of the
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generator has to be modified: it only holds for v in the exit boundary, and not for

every v. This mistake, combined with the sign error in eq 4, is what allows [4] to reach

the conclusion that
∫
Lf dπ dρ = 0, missing the fact that the boundary term for the

exit velocities cancels out the one for the entrance velocities. A full proof is provided

in this manuscript, with proper care for the entrance/exit velocities.

Appendix F. Additional Simulation Results

For αout = 0, figures 4–6 show trajectories for the Bouncy Particle Sampler, the

Coordinate Sampler and the Zig-Zag Process for dimensions d = 2, 10, 100 for the

sampling from a Gaussian restricted to a cube. Figure 7 shows trajectories for the

Zig-Zag Process if we use the canonical basis – in this case the distribution of all

coordinates are independent, and the Zig-Zag Process benefits from this by being able

to run independent dynamics for each coordinates.

For αout > 0, Figures 8 and 9 show trajectory and a Monte Carlo estimates along

trajectories in dimension 20, in the case where the canonical basis is not rotated. In

this case, the Zig-Zag sampler clearly performs the best. Fig. 10 shows trajectories

when the basis is rotated.
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Figure 4: Example trajectories for the Bouncy Particle Sampler for simulating from a d-

dimensional Gaussian distribution restricted to a cube, for d =2, 10, 100; and for different

transitions on the boundary. For d = 10, 100 we show the dynamics for the first two

coordinates only. The different transitions correspond to the limiting behaviour, QBPS of

Section 6.2.1 (top); using a single Metropolis-Hastings step to sample from lx (middle); and

using 100 Metropolis-Hastings steps to sample from lx (bottom).
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Figure 5: Example trajectories for the Coordinate Sampler for simulating from a d-

dimensional Gaussian distribution restricted to a cube, for d =2, 10, 100; and for different

transitions on the boundary. For d = 10, 100 we show the dynamics for the first two

coordinates only. The different transitions correspond to the limiting behaviour, QCS of

Section 6.2.2 (top); using a single Metropolis-Hastings step to sample from lx (middle); and

using 100 Metropolis-Hastings steps to sample from lx (bottom).
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Figure 6: Example trajectories for the Zig-Zag Sampler for simulating from a d-dimensional

Gaussian distribution restricted to a cube, for d =2, 10, 100; and for different transitions on

the boundary. For d = 10, 100 we show the dynamics for the first two coordinates only. The

different transitions correspond to the limiting behaviour, QZZ of Section 6.2.3 (top); using a

single Metropolis-Hastings step to sample from lx (middle); and using 100 Metropolis-Hastings

steps to sample from lx (bottom).
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Figure 7: Example trajectories for the Zig-Zag Sampler for simulating from a d-dimensional

Gaussian distribution restricted to a cube, for d =2, 10, 100; and for different transitions on

the boundary – using the canonical basis. For d = 10, 100 we show the dynamics for the first

two coordinates only. The different transitions correspond to the limiting behaviour, QZZ of

Section 6.2.3 (top); using a single Metropolis-Hastings step to sample from lx (middle); and

using 100 Metropolis-Hastings steps to sample from lx (bottom).
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Figure 8: MCMC estimates over time of Eπ[1[−1,1]d(X)], the expectation of the indicator

function of [−1, 1]d under π, for different samplers, repeated 5 times for each sampler. Here d =

20 and the expectation is computed with respect to the d-dimensional density (proportional to)

π(x) = αine
− ‖x‖

2

2σ2
in 1x∈[−1,1]d + αoute

− ‖x‖
2

2σ2out 1x/∈[−1,1]d , with (αin, αout, σin, σout) = (1, 1, 2, 0.8).

The red line corresponds to the true value. For BPS, a refresh rate of 5 is used. Each sampler

ran for 100000 events.
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Figure 9: Example trajectories for each sampler using the 20-dimensional density (propor-

tional to) π(x) = αine
− ‖x‖

2

2σ2
in 1x∈[−1,1]d + αoute

− ‖x‖
2

2σ2out 1x/∈[−1,1]d , with (αin, αout, σin, σout) =

(1, 1, 2, 0.8). For BPS, a refresh rate of 5 is used. Each sampler ran for 10000 events.
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Figure 10: Example trajectories for each sampler using the 20-dimensional den-

sity (proportional to) π(x) = αine
− ‖x‖

2

2σ2
in 1R−1x∈[−1,1]d + αoute

− ‖x‖
2

2σ2out 1R−1x/∈[−1,1]d , with

(αin, αout, σin, σout) = (1, 1, 2, 0.8) and R a random rotation matrix. For BPS, a refresh

rate of 5 is used. Each sampler ran for 10000 events.
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