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Abstract
We develop two models for the temporal evolution of extreme events of multivariate kth order Markov
processes. The foundation of our methodology lies in the conditional extremes model of Heffernan and Tawn
(2004), and it naturally extends the work of Winter and Tawn (2016, 2017) and Tendijck et al. (2019) to
include multivariate random variables. We use cross-validation-type techniques to develop a model order
selection procedure, and we test our models on two-dimensional meteorological-oceanographic data with
directional covariates for a location in the northern North Sea. We conclude that the newly-developed
models perform better than the widely used historical matching methodology for these data.
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1 Introduction
Farmers, stock brokers and sailors have one thing in common: they or their businesses are most heavily
affected by extreme events like droughts and rainfall, stock market crashes, or extreme winds and waves,
respectively. Understanding the statistical behaviour of such events as a whole is crucial for risk analyses.
To make this more precise, if we let (X̃i)i∈Z be a stationary d-dimensional random process of interest, then
we seek to model excursions of the process in and out of a set E ⊂ Rd in time, i.e., the behaviour of

{X̃i : i = a, . . . , b; X̃i ∈ E; X̃a−1, X̃b+1 ̸∈ E}, (1)

where E is associated with extreme events of the random variable X, identically distributed for any time
point i; moreover, we assume that any of the d components of the multivariate time-series can be extreme.
To solve this task, we assume that the multivariate random process is a realisation of a kth order Markov
chain. (Note that here and throughout the article, for preciseness, the tilde symbol above Xi indicates that
Xi is indexed with respect to “absolute” time i. Later in the article, it will be convenient to index excursions
of (X̃i)i∈Z using time t relative to the time of the peak of the excursion (at t = 0), which we will write as
(Xt)t∈Z with the tilde suppressed.)

We use extreme value theory to characterise excursions. There is considerable attention to this area in the
literature, but most of extreme value theory for stationary Markov chains dates back over 20 years. Rootzén
(1988) and Perfekt (1997) develop limiting results for univariate Markov chains and multivariate Markov
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chains, respectively. Smith (1992) calculates the extremal index (Leadbetter et al., 1983) for a univariate
Markov chain and Smith et al. (1997) use parametric bivariate transition distributions to model the extremes
of a univariate first order Markov process. Finally, Yun (2000) develops asymptotic theory for functionals
of univariate kth order Markov extreme events. All of these authors derive results under the assumption
of asymptotic dependence (Joe, 1997), i.e., for a stationary univariate process (X̃i)i∈Z satisfying suitable
long-range mixing conditions, under the assumption that for any lag l = 1, 2, . . .

lim
u→x∗

P(X̃i+l > u|X̃i > u) > 0,

where x∗ is the right upper end point of the stationary distribution of X. This early work doesn’t consider
what happens when asymptotic independence is present, i.e., when this limiting probability converges to 0
for some l. The first paper which considers such processes is Bortot and Tawn (1998) who assume a first
order Markov model, with Ledford and Tawn (2003) considering a general framework for the modelling of
asymptotic independent processes, and key recent probabilistic developments given by Papastathopoulos
et al. (2017) and Papastathopoulos et al. (2023).

Randell et al. (2015) speculate that a statistical model for the evolution of (multivariate) trajectories
would be a valuable enhancement of description of ocean storm events. The first statistical work the current
authors are aware of, that defines a model for the distribution of all observations during an excursion
is Winter and Tawn (2016), who assume a flexible univariate first order Markov process exhibiting either
asymptotic independence or asymptotic dependence across lags. Winter and Tawn (2017) incorporate higher
order dependence models to give kth order Markov processes with k > 1. Finally, Tendijck et al. (2019)
extend that model to a kth order univariate Markov process with a directional covariate. We remark that
their work cannot be considered to model the extremes of bivariate Markov processes since the associated
directional covariate does not take on extreme values. Feld et al. (2015) use a sophisticated covariate
model for the most extreme observation (the most extreme value of the dominant variable) in an excursion,
combined with a historical matching approach for the intra-excursion trajectory; in Section 3.4 we adopt
a version of this methodology as a benchmark for our case study. Finally, we mention well-established
literature on multivariate time series, e.g., Tiao and Tsay (1989), which is not directly applicable to modelling
environmental extremes because such models are only designed to model typical behaviours. Financial time-
series models, e.g., Bauwens et al. (2006), are also not applicable because these are specifically tailored to
model data exhibiting volatility, with tail switching during extreme events (Bortot and Coles, 2003).

In this work, we present a natural extension to Tendijck et al. (2019) by defining two multivariate kth
order Markov models that exhibit both asymptotic (in)dependence across variables and/or at some lags.
The work is motivated by our case study in which we model excursions of meteorological-oceanographic
(met-ocean) data: significant wave height, wind speed, and their associated directions, for a location in the
northern North Sea. We will demonstrate the direct practical importance of a model for extremal excursions
of oceanographic time-series in characterising the extreme ocean environment, and in particular the forces
induced by that environment on marine structures.

We use the following set up. Assume that at each time i ∈ Z, the distribution of the d-dimensional random
variable X̃i is stationary through time; that is, X̃i has the same distribution as some X̃ = (X̃1, X̃2, . . . , X̃d)
with distribution function FX̃. For 1 ≤ j ≤ d, write FX̃j

as the jth marginal distribution of FX̃. The
distribution functions FX̃j

are unknown and must be estimated. For extreme arguments of FX̃j
, we use

univariate extreme value theory to motivate a class of parametric tail forms. More precisely, we assume that
for each 1 ≤ j ≤ d, the excesses tail above some high level uj ∈ R of the marginal distribution FX̃j

are
approximated with a generalised Pareto distribution (Davison and Smith, 1990). For non-extreme arguments
x < uj of the function FX̃j

, an empirical model usually suffices.
In multivariate extreme value theory, it is common to consider the marginals and the dependence of

random variables separately, such that the usually-dominant marginal effect does not influence the modelling
of a possibly complex dependence structure. So given the marginal models as discussed above, we transform
the random process (X̃i)i∈Z onto standard Laplace margins (Ỹt)t∈Z using the transformation: X̃j 7→ Ỹj :=

F−1
L (FX̃j

(X̃j)), 1 ≤ j ≤ d, where F−1
L is the inverse of the standard Laplace distribution function. Here the
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choice of Laplace margins is made to allow for the modelling of potential negative dependence at certain lags
or across components (Keef et al., 2013).

For multivariate random processes, there are many ways of defining an extreme event. In our case study,
we take the met-ocean variable significant wave height HS as the excursion-defining component. We follow
Winter and Tawn (2017) and Tendijck et al. (2019) in adopting the conditional extremes model of Heffernan
and Tawn (2004), see also Section 2.2, as the foundation of our approach. Without loss of generality, we
use the first component X1 of X as the defining variable for the extreme events. So, we set our excursion
set E = Eu := (F−1

X1
{FL(u)},∞) × Rd−1 for some high threshold u ∈ R+ and rewrite our definition of an

excursion as
{Ỹi : i = a, . . . , b; Ỹi,1 > u; Ỹa−1,1 ≤ u, Ỹb+1,1 ≤ u} (2)

for a, b ∈ Z, indices for the start and the end time points of the excursion, respectively. In shorthand, the
excursion is then Ỹa:b. We remark that in this definition, we accept that multiple excursions can occur
close together in time, and thus these cannot be considered independent. The reason for this choice is that
imposing a minimal separation of excursions would complicate the modelling significantly. We recognize that
this is a feature of the current approach which can be improved upon in future work.

Objective, novelty and outline
The objective of the current work is to develop a statistical description for the temporal evolution of excur-
sions of multivariate time-series near a local maximum of one of the time-series components. The novelty of
the new description rests in the incorporation and extension of existing methods. Specifically, the method-
ology presented incorporates the conditional extremes model of Heffernan and Tawn (2004), introduces a
multivariate extension of the Markov extremal model of Winter and Tawn (2017), and introduces a new
extremal vector autoregressive model. Following Tendijck et al. (2019), the methodology also accommodates
non-stationarity of excursions with respect to covariates. From a real-world applications’ perspective, we
will demonstrate that the methodology developed provides better simulation of excursions compared to a
baseline “historical matching” approach, in characterising extremes of structural loading from winds and
waves on a notional offshore structure.

The remaining part of this paper is organised as follows. In Section 2, we present our strategy for
modelling excursions by defining time intervals corresponding to so-called “pre-peak”, “peak” and “post-
peak” periods, and we present our kth order Markov models for each of these time periods. In Section 3,
we apply the two Markov model forms we propose to met-ocean data for a location in the northern North
Sea. We compare the model performance with a baseline historical matching approach by assessing their
respective performance in estimating the tails of the distributions of complex structure variables (Coles and
Tawn, 1994), corresponding to approximations of the response of hypothetical offshore or coastal facilities
to extreme met-ocean environments. We find that in general the new models are preferred.

2 The models

2.1 Modelling strategy
To model excursions as in definition (2), two types of approaches have been proposed in the literature of
univariate extremes: a forward model (Rootzén, 1988) and a peak model (Smith et al., 1997). Both of
these are two-step approaches by nature. The forward model first describes the distribution of a random
exceedance Ỹi > u with a univariate extremes model and a conditional model for the distribution for any
j ≥ 1 of Ỹi+l|(Ỹi+l−τ = yi+l−τ , τ = 1, . . . , l) where yi > u. Even though this approach does not directly
model the univariate equivalent of excursions in formulation (2), estimates of some extremal properties of the
process (Ỹt)t≥1, such as the extremal index (Leadbetter et al., 1983), can still be obtained by allowing the
excursion threshold to be significantly lower than the cluster threshold used in extremal index estimators.
Notably, Winter and Tawn (2016, 2017) use the forward approach in their work.
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The peak model, on the other hand, does model excursions as defined here. This method relies on a
univariate extremes model for the largest observation of an excursion, e.g., Eastoe and Tawn (2012), and a
conditional model for observations before and after the excursion maximum. Winter and Tawn (2016) use
this approach for their first order model but not for their kth order model (Winter and Tawn, 2017). They
avoid this method explicitly because of difficulties that arise in preserving model characteristics in forward
and backward simulations near the excursion maximum (i.e., the time point at which the defining variate
achieves its maximum value during the excursion; without loss of generality, we can assume that the first
variate X1 is the defining variate).

Tendijck et al. (2019) use the peak method, but they do not address the issues associated with forward
and backward simulation under the method. Because the excursion maximum is usually the most important
observation of an excursion for risk assessments, we also use the peak method in the current work, but with
consideration of backward and forward models. We separate the modelling of excursions into three stages:
the modelling of the period of the peak, and the modelling of the pre-peak and post-peak periods. Without
loss of generality, let i = i∗ be the time point at which the first component Y1 takes its maximum value
within an excursion, and define relative time as t = i− i∗. Then write (Ỹi)i∈[a,b] as (Yt)t∈[a,b]−i∗ , such that
Yt=0,j=1 > u for threshold u is a local maximum of Y1.

The periods of the peak Pk
0 , the pre-peak Ppre and post-peak Ppost are then defined by the expressions

Pk
0 := {Yt : −(k − 1) ≤ t ≤ k − 1} with Y0,1 > u, (3)

Ppre := {Yt : t′ ≤ t ≤ 0, with t′ = min{s < 0 : min
i=s,...,0

{Yi,1} > u}},

Ppost := {Yt : 0 ≤ t ≤ t′, with t′ = max{s > 0 : min
i=0,...,s

{Yi,1} > u}}.

Thus, for a kth order excursion, Pk
0 consists of a set of 2k−1 observations. The pre-peak Ppre and post-peak

Ppost periods are defined as the sets of observations that include the excursion maximum and the threshold
exceedances before and after, respectively, so each of them intersects with Pk

0 . The length of Pk
0 can be

longer or shorter than the length of an excursion if the excursion ends within the period of the peak. We
choose to define the period Pk

0 in this manner so that the pre-peak and post-peak parts of the excursion are
both initialized with k observations. Figure 1 illustrates the three time periods for the case k = 3.

We then model an excursion as follows: (i) we model the excursion maximum Y0,1 using a generalised
Pareto distribution; (ii) we model the period of the peak Pk

0 conditional on the storm maximum Y0,1 using
the model described in Section 2.2; (iii-a) if minj=1,...,k−1 Yl,1 < u (minl=1,...,k−1 Y−l,1 < u), then the period
Ppost (Ppre) of the excursion has ended; (iii-b) if minl=1,...,k−1 Yl,1 ≥ u (minl=1,...,k−1 Y−l,1 ≥ u), then the
remaining part of the excursion is modelled with our time-series models from Sections 2.3-2.4 until there
exist a l1, l2 > 0 such that Yl1,1 < u and Y−l2,1 < u; (iv) if max−l2≤i≤l1 Yi,1 > Y0,1, then the model for
the excursion contradicts the definition of the period of the peak of an excursion, and so we reject such
occurrences.

Two types of forward model are introduced below, either of which can be used to describe the pre- and
post-peak periods of excursions. The forward models are referred to as the multivariate Markov extremal
model (MMEM), and the extremal vector autoregression (EVAR). Informally, both forward models can be
viewed as extensions of the conditional extremes model of Heffernan and Tawn (2004). The canonical bivari-
ate conditional extremes model assumes a functional form (Y |(X = x)) = a(x) + b(x)Z for the relationship
between random variables X and Y on standard Laplace marginal scales, for large values x, for normalising
functions a, b and residual random variable Z. In this simplest setting, typical choices of a(x) and b(x) are αx
and xβ , for parameters α and β with restricted domains. Both MMEM (discussed in Section 2.3) and EVAR
(Section 2.4) describe the joint distribution of Yt+k conditional on (Yt, . . . ,Yt+k−1) when Yt,1 = y > u for a
large threshold u > 0, using the same functional form with suitable multivariate choices for the normalising
functions, and a multivariate residual process. In addition, the period of the peak is described directly with
a conditional extremes model (Section 2.2).

In the next sections, we discuss forward models that are applicable to model the post-peak period Ppost.
We model the pre-peak period Ppre using the forward models applied to (Y−t)t∈Z (with potentially different
parameters, although these would be the same if the process was time reversible). Importantly, we do not
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Figure 1: Illustrations of the pre-peak, peak and post-peak periods for two excursions (left and right) of
a bivariate time-series with defining component Y1 (black) and second component Y2 (red), for a Markov
model with order k = 3. The threshold level u is shown as a dashed blue line. Referring to Equation 3,
the period of the peak Pk

0 by definition consists of 2k − 1 = 5 observations for the left-hand and right-hand
excursions, centred on the local maximum of the defining component at t = 0 (despite the fact that Y1 < u
for the right hand excursion at t ≤ −1). The pre-peak period Ppre is the continuous interval, backwards in
time, from the peak of Y1 at t = 0 for which Y1 > u. Thus, for the left- and right-hand excursions, Ppre is
of length 4 and 0 respectively. The post-peak period Ppost is the continuous interval, forwards in time, from
the peak of Y1 at t = 0 for which Y1 > u. Thus, for the left- and right-hand excursions, Ppost is of length 5
and 3 respectively.
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impose consistency in the forward and backward models to yield a kth order Markov chain, e.g., in the
case of asymptotic dependent Markov chains the precise dependence conditions between the forward and
backward hidden tail chains are given by Janßen and Segers (2014). We make this choice for two reasons:
(i) for environmental applications, such as in this work, the pre-peak and post-peak period have different
distributions, see for example the asymmetry in Figure 5, which is due to different physics in the growth
and decay of a storm; (ii) the assumption of a kth order Markov process is an approximation for the process
that generates our data. Thus, imposing forward and backward consistency for a kth order Markov chain is
likely to yield worse results for our application. So, we consider the violating of this assumption as a benefit
more than a limitation as it can yield more flexible descriptions of excursions.

2.2 The conditional extremes model
We introduce the conditional extreme value model of Heffernan and Tawn (2004), henceforth denoted the HT
model, with notation specific to modelling the period of the peak Pk

0 . The HT model is widely studied and
applied to extrapolate tails of multivariate distributions, e.g., in oceanography (Ross et al., 2020), finance
(Hilal et al., 2011), spatio-temporal extremes (Simpson and Wadsworth, 2021), and multivariate spatial
extremes (Shooter et al., 2022). The HT model is a limit model and its form was originally motivated by
deriving possible limiting forms for numerous theoretical examples.

Let

Y−(k−1):(k−1) :=

Y−(k−1),1 · · · Y−(k−1),d

...
...

Yk−1,1 · · · Yk−1,d


be a random matrix on R(2k−1)×d with standard Laplace margins (Keef et al., 2013), and define the irregular
random matrix Y to be Y−(k−1):(k−1) without the (k, 1)th element Y0,1. That is, we define the irregular
matrix x ∈ R(2k−1)d−1 as follows:

x =



x−k+1,1 x−k+1,2 · · · x−k+1,d

...
...

...
x−1,1 x−1,2 · · · x−1,d

x0,2 · · · x0,d

x1,1 x1,2 · · · x1,d

...
...

...
xk−1,1 xk−1,2 · · · xk−1,d


,

such that x does not contain the (k, 1)th element. Equivalently, we can write x = x−(k,1) for x ∈ R(2k−1)×d.
Additionally, we assume that the joint density of Y−(k−1):(k−1) exists.

The conditional extremes model for Y, conditional on Y0,1, assumes that irregular parameter matrices
α ∈ [−1, 1](2k−1)d−1, β ∈ (−∞, 1)(2k−1)d−1 and a distribution function H with non-degenerate marginals
on R(2k−1)d−1 (the space of irregular matrices) exist, such that for all irregular matrices z ∈ R(2k−1)d−1 the
limit

lim
u→∞

P

Y −αY0,1

Y
β

0,1

≤ z, Y0,1 − u > y

∣∣∣∣∣ Y0,1 > u


exists, assuming component-wise operations, and that

H(z) := lim
y→∞

P

Y −αY0,1

Y
β

0,1

≤ z

∣∣∣∣ Y0,1 = y

 (4)
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exists, where αi,j , βi,j and zi,j are the (i, j)th elements of α, β and z, respectively. This then implies,
according to l’Hopital’s rule, that for y > 0, z ∈ R(2k−1)d−1

lim
u→∞

P

Y −αY0,1

Y
β

0,1

≤ z, Y0,1 − u > y

∣∣∣∣∣ Y0,1 > u

 = H(z) exp(−y). (5)

Limit (5) in turn has the interpretation that as u tends to infinity, (Y − αY0,1)Y
−β

0,1 and (Y0,1 − u) are
independent conditional on Y0,1 > u, and are distributed as H and a standard exponential, respectively.

In practice, we exploit these results by assuming they hold exactly above some high finite threshold u > 0.
So, we approximate the conditional distribution of Y|Y0,1 = y for y > u, y ∈ R(2k−1)d−1 as

P(Y ≤ y | Y0,1 = y) = H

(
y −αy

yβ

)
, (6)

and we assume independence of (Y − αY0,1)Y
−β

0,1 and Y0,1. There is no finite-dimensional parametric form
for H, so non-parametric methods are typically applied. However, we remark that there are applications of
the conditional extreme value model where the copula H is assumed to be Gaussian (Towe et al., 2019) or
a Bayesian semi-parametric model is used (Lugrin et al., 2016). For inference, see Section 2.5.

2.3 Multivariate Markov extremal model
For ease of presentation, we present the multivariate Markov extremal model (MMEM) of order k only
for a two-dimensional time-series (Yt)t∈Z such that Yt = (Yt,1, Yt,2) in the notation of Section 1, i.e., Yt

has standard Laplace margins. We only describe a forward model that is applicable to the post-peak period
Ppost, since the backward model has a similar construction. As mentioned in Section 2.1, we apply a different
forward MMEM model to (Y−t)t∈Z to yield the backward model for the pre-peak period Ppre. Concisely put,
the MMEM exploits the HT model to estimate the distribution for Yt+k conditional on (Yt, . . . ,Yt+k−1)
when Yt,1 > u for a large threshold u > 0. As in Section 2.2, for each t ∈ Z, we define x̃t ∈ Rk × Rk+1 to
be an irregular matrix with k + 1 rows and 2 columns without the element that is on the first row and first
column:

x̃t =


xt,2

xt+1,1 xt+1,2

...
...

xt+k,1 xt+k,2

 .

Then, we assume that for a large threshold u > 0, there exist parameters α̃0 ∈ [−1, 1]k × [−1, 1]k+1,
β̃0 ∈ (−∞, 1)k×(−∞, 1)k+1, and a residual random variable ε̃t on Rk×Rk+1 with non-degenerate marginals.
Similar to Winter and Tawn (2017), for t ∈ Z, l ≥ 1 when Yt+l,1 > u, we then get

[Yt+k+l,1 Yt+k+l,2]|(Yt+l:t+k+l−1, Yt+l,1 > u) = [αk,1, αk,2]Yt+l,1 + Y
[βk,1, βk,2]
t+l,1 · εCk,1:2,

where εCk,1:2 is short-hand notation for [εk,1, εk,2] conditional on (ε1:k−1,1, ε0:k−1,2), and throughout component-
wise operations are assumed. For inference, we refer to Section 2.5.

2.4 Extremal vector autoregression
Here, we introduce extremal vector autoregression (EVAR) for extremes of the process (Yt)t≥1. This model
combines the HT model with a vector autoregressive model for the joint evolution of the time-series at high
levels. Here we focus on the post-peak period, but note that the pre-peak period is modelled analogously.
We define an EVAR model of order k with parameters Φ(l) ∈ Rd × Rd for l = 1, . . . , k and B ∈ (−∞, 1)d as

Yt+k|(Yt, . . . ,Yt+k−1) =

k∑
l=1

Φ(l)Yt+k−l + yBεt, (7)
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assuming component-wise operations, with Yt,1 = y for y > u, where u > 0 is a large threshold and
εt is a d-dimensional multivariate random variable that has non-degenerate margins and is independent
of (Yt, . . . ,Yt+k−1). Usually for a vector autoregressive model, parameter constraints would be imposed
so that the resulting process is stationary. In the current extreme value context, stationarity is not of
concern to us, since we reject trajectories that exceed the excursion maximum, and stop the process once
the first component dips below threshold u. We define EVAR0 as a special case of EVAR corresponding
to B = 0. EVAR0 therefore has clear similarities with a regular vector autoregressive model (Tiao and
Box, 1981), yet we emphasise that there is considerable difference between the two, since the parameters of
EVAR0 do not need to yield a stationary process, and the parameters of EVAR0 are estimated using only
extreme observations. To estimate the EVAR model, we adopt the same approach as that used to estimate
the HT model, see Section 2.5. As explained in Appendix A, the resulting parameter estimators Φ̂(l) are
highly correlated. Hence a reparameterisation is introduced to reduce this correlation, and improve inference
efficiency and computation.

We note that dependence between components of the response for both MMEM and EVAR models is
captured by the residual processes. For a d-dimensional application, the dimension of the residual process
for MMEM(k) is kd, considerably larger that the d-dimensional residual process for EVAR. For practical
applications with limited sample, EVAR is in this sense more parsimonious that MMEM. In contrast, in a
data-rich context, we might expect MMEM to provide more complex descriptions of dependence.

2.5 Inference for conditional models
We discuss inference for each of the conditional extremes, MMEM and EVAR models with parameter vector
θ. We discuss these together because they can be summarized in the same form. Specifically, let W =
(W1, . . . ,Wd) be a d-dimensional random variable and assume that for some high threshold u > 0,

W2:d|(W1 > u) = g1(W1;θ) + g2(W1;θ)ε (8)

for some parametric functions g1( · ;θ) : R → Rd−1 and g2( · ;θ) : R → Rd−1
>0 , where

g1(x,θ) := (g1,2(x,θ), . . . , g1,d(x,θ)), and g2(x,θ) := (g2,2(x,θ), . . . , g2,d(x,θ)), for x ∈ R

where ε = (ε2, . . . , εd) is a (d− 1)-dimensional multivariate random variable that is non-degenerate in each
margin and independent of W1. As an example, for MMEM, g1,j(x) = αjx for some αj and g2,j(x) = xβj

for some βj .
Next, assume that we have n observations D := {w1, . . . ,wn} of the conditional random variable W|W1 >

u, where wi = (wi1, . . . , wid) with wi1 > u for i = 1, . . . , n. We then infer θ by calculating the likelihood of
model (8) by temporarily assuming that the ε has a multivariate normal distribution with unknown mean µ =
(µ2, . . . , µd) and unknown diagonal covariance matrix Σ = σ2I where σ2 = (σ2

2 , . . . , σ
2
d). These assumptions

imply that the mean and the variance of ε are estimated simultaneously with the model parameters. The
likelihood is then evaluated as

L(θ,µ,σ2;D) =

n∏
i=1

d∏
j=2

1√
2πσjg2,j(wi1;θ)

exp

{
− 1

2σ2
j

(
wij − g1,j(wi1)− µjg2,j(wi1;θ)

g2,j(wi1;θ)

)2
}
.

Finally, the parametric assumption on the distribution of ε is discarded and estimated conditional on the
parametric estimate θ̂ for θ, with a kernel density ĥ2:d using the ‘observations’ {εi : i = 1, . . . , n} where
εi = (εi2, . . . , εid) and

εij :=
wij − ĝ1,j(wi1; θ̂)

ĝ2,j(wi1; θ̂)

for i = 1, . . . , n, j = 2, . . . , d. In case of MMEM, we additionally require estimates for the density of a
conditional random variable εl+1:d|2:l = (εl+1, . . . , εd)|(ε2, . . . , εl) for some l ∈ {2, . . . , d−1}. Given the same
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set of observations, we estimate its conditional density hl+1:d|2:l as

ĥl+1:d|2:l(εl+1, . . . , εd|ε2, . . . , εl) =
ĥ2:d(ε2, . . . , εd)

ĥ2:l(ε2, . . . , εl)
,

where h2:l is estimated as the (l − 1)-dimensional marginal of ĥ2:d.

3 Case Study - Northern North Sea

3.1 Overview
We apply MMEM, EVAR and a historical matching procedure (introduced in Section 3.4, henceforth referred
to as HM) to characterise excursions of significant wave height HS and wind speed Ws with directional
covariates for a location in the northern North Sea. Our goal is to estimate parsimonious predictive models
for the joint evolution of HS and Ws time-series conditional on HS being large.

In Section 3.2, we describe the available met-ocean data. In Section 3.3, we outline a model for the
evolution of storm direction that is needed for our time-series models. Section 3.4 then summarises the HM
procedure, and in Section 3.5, we introduce structure variable responses that approximate fluid drag loading
on a marine structure such as a wind turbine or coastal defence. Finally, in Section 3.6, we compare the
predictive performance of MMEM and EVAR (over a set of model orders) with the HM method in estimating
structure variables for withheld intervals of time-series.

3.2 Data
We have 53 years of hindcast data

D := {(HS,i,Ws,i, θ
H
i , θWi ) : i ∈ T }

indexed with finite T ⊂ Z≥1 consisting of time-series for four three-hourly met-ocean summary statistics at
a location in the northern North Sea (Reistad et al., 2009): significant wave height (HS,i in metres), wind
speed (Ws,i in metres per second), wave direction (θHi in degrees) and wind direction (θWi in degrees) for
each i ∈ T . To use MMEM and EVAR, we transform significant wave height and wind speed onto Laplace
marginals: HS,i|θHi 7→ HL

S,i and Ws,i|θWi 7→ WL
s,i, e.g., using directional marginal extreme value models for

the tails (Chavez-Demoulin and Davison, 2005), but ignoring seasonality. This part of the analysis has been
reported on numerous occasions, see for example Randell et al. (2015). Because the marginal transformation
includes direction as a covariate and because direction is not constant during an excursion, we also establish
a model for the directional evolution of excursions in order to transform them between standard and original
margins, see Section 3.3.

Let DL be the collection of transformed data

DL := {(HL
S,i,W

L
s,i, θ

H
i , θWi ) : i ∈ T }.

To define excursions in DL, we set the excursion threshold u equal to the 95% percentile of a standard
Laplace distribution, i.e., u ≈ 2.3, yielding 1, 467 observations of extreme excursions Eu. This choice of
threshold is not unusual as similar conclusions are drawn for excursion thresholds that are slightly different
from our original choice.

Figure 2 shows four intervals of the time-series chosen to contain the observations corresponding to the
100%, 95%, 90% and 85% sample percentiles of the set of excursion maximum significant wave heights, on
original and standard Laplace margins, with directional covariates. Excursions are centred around extreme
events. There is a large dependence of HS and Ws on both original and standard margins. Moreover,
variables associated to significant wave height, i.e., HS , HL

S and θH , are much smoother than their wind
speed counterparts. Additionally, the directional covariates θH and θW centre around each other with no
large deviations during extreme events.

9



In Figure 3, we visualize the (across variable joint) dependence of key variables HL
S and WL

s on Laplace
scale at time lags up to lag 4 using a series of scatterplots where a unit of lag corresponds to three hours of
observation time. The figure illustrates the complex dependence of the bivariate time-series of significant wave
height and wind speed on Laplace margins. As expected, we observe (slow) convergence to an independent
variable model as lag increases. Most notably, we observe a similar level of dependence of (HL

S,t,W
L
s,i+4) and

(WL
s,i,W

L
s,i+4) which suggests counter-intuitively that HL

S,i would be a better predictor for WL
s,i+4 than WL

s,i.
In Figure 4, we plot (cross) correlation functions for these variables, and also for the change in directional

covariates at various lags. These show that the dependence of (HL
S,i, H

L
S,i+l) decays relatively slowly as l

grows to 90 hours, and that indeed the cross dependence between (HL
S,i,W

L
s,i+l) is larger than the dependence

of (WL
s,i,W

L
s,i+l) for large l. Finally, the correlation plot of the change in directional covariates ∆θHS,i :=

(θHS,i+1 − θHS,i, mod 360) and ∆θWs,i := (θWs,i+1 − θWs,i, mod 360) on the right shows that a first order model for
these covariates is appropriate since the correlations nearly vanish at lag 2 (for wind and wave) or 6 hours
(for all other combinations).
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Figure 2: Intervals of oceanographic time-series: (top) key variables: significant wave height HS,i and wind
speed Ws,i on original margins; (middle) on Laplace margins; (bottom) covariates: wave direction θHi and
wind direction θWi . The four columns correspond to time periods that contain the 100%, 95%, 90% and 85%
empirical percentiles of HS,i, respectively.

3.3 Directional model
We model wave direction θHi in a similar fashion as Tendijck et al. (2019), summarised as follows. Let
I ⊂ T be the set of indices of the original data that correspond to all observations of any excursion.
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Figure 3: Matrix plot of observed HL
S,i and WL

s,i at various time lags up to lag 4 (corresponding to 12 hours
in real time) including cross dependece.
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Figure 4: Estimated correlation and cross-correlation at various time lags of: (left) the key variables
on Laplace margins: HL

S,i and WL
s,i; (right) the covariates: change in wave direction ∆θHi := (θHi+1 −

θHi , mod 360), change in wind direction ∆θWi := (θWi+1 − θWi , mod 360) and γi, see definition (10).
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Next, let {d(θHi+1, θ
H
i ) : i ∈ I} be the set of changes in wave directions, where d(θ, θ′) = (θ − θ′ + 180;

mod 360)− 180 ∈ [−180, 180) denotes the circular difference of θ and θ′ in degrees. In our application, the
set of changes in wave directions during excursions do not contain values close to −180 or 180. In particular,
all of the observed changes centre around 0.

For i ∈ I , we transform observations d(θHi+1, θ
H
i ) 7→ δHi := Φ−1(F̂ (d(θHi+1, θ

H
i ))) on Gaussian margins,

where F̂ denotes the empirical distribution function of the set of changes in wave directions. We estimate
the following autoregressive model for ∆H

i of order p1 = 1, 2, 3, . . . with parameters φH
l ∈ R for l = 1, . . . , p1

as

∆H
i |(∆H

i−1, . . . ,∆
H
i−p1

) =

p1∑
l=1

φH
l ∆

H
i−l + ζ(HS,i)εi, (9)

where εi is a standard Gaussian random variable, and standard error ζ(h) is given by

ζ2(h) = λ1 + λ2 exp(−λ3h)

with λl′ > 0 for l′ = 1, 2, 3, see Tendijck et al. (2019). In particular, the standard error ζ(h) decays as h
grows due to the significantly larger amounts of energy needed to change the direction of more severe sea
states. The parameters of this model are inferred with maximum likelihood, and in contrast to the inference
discussed in Section 2.5, we do not reject the assumption that εi is a standard Gaussian. In practice, we use
p1 = 1 in line with Tendijck et al. (2019).

Given model (9), we propose the following model

θWi = θHi + γi mod 360 (10)

for wind direction θWi conditional on wave direction θHi , where γi is a zero-mean stationary AR(p2) pro-
cess. That is, there exist parameters φW

l ∈ R, 1 ≤ l ≤ p2, and a non-degenerate residual distribution ri
independent of γi−l, such that

γi|(γi−1, . . . , γi−p2
) =

p2∑
l=1

φW
l γi−l + ri,

and such that the polynomial 1 −
∑p2

l=1 φ
W
l zl has roots outside the unit circle. The model parameters and

the distribution of ri are inferred as described in Section 2.5 conditional on the model order p2, which is
selected by investigating the correlation function in Figure 4 and the partial autocorrelation function of γi
(not reported). In our application, we conclude that p2 = 1 is sufficient.

3.4 Historical matching
An empirical method for simulating excursions is described in Feld et al. (2015) and termed historical
matching (HM) in this work. They model trajectories of significant wave height, wave direction, season and
wave period during extreme events. The key assumption they make is that storm trajectory (or excursion)
profiles are not independent of storm maximum conditions. Specifically, the HM approach is a composition
of four models: (i) a model for storm maximum wave direction; (ii) a model for storm maximum significant
wave height conditional on storm maximum wave direction; (iii) a model that selects at random a historical
storm trajectory with similar storm maximum characteristics to that simulated; (iv) a model that adjusts the
historical storm trajectory by matching storm maximum characteristics of simulated and historical storms.

Specific details of the individual models are as follows, but this level of detail is not required for under-
standing the impact of the core methodology developments in Section 3. For model (i), we simply sample at
random from the observed wave directions associated with storm maximum significant wave height (excursion
maximum). In model (ii), storm maximum significant wave height are modelled using a generalised Pareto
distribution conditional on the sampled storm maximum wave direction using a generalised additive model
with the parameters as B-splines conditional on directional covariates (Chavez-Demoulin and Davison, 2005).
In model (iii), we use a distance measure to calculate the dissimilarity between pairs of storm maximum
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significant wave heights and storm maximum wave directions for simulated and historical trajectories. Here,
we use the heuristic recommended by Feld et al. (2015) ensuring that a difference of 5 degrees in storm
maximum wave direction corresponds to the same dissimilarity as 0.5m of difference in storm maximum
significant wave height; one of the closest 20 matching storms is then selected at random for associated with
the simulated storm maximum. In model (iv), we match the variables of the chosen historical trajectory as
follows: (a) the historical significant wave height series are multiplied by the ratio of the simulated maximum
significant wave height to the maximum of the historical significant wave height; (b) the historical wave di-
rections are shifted such that the storm maximum wave directions of simulated and historical trajectories
coincide; (c) the associated historical wind directions are rotated in the exact same way as wave direction;
(d) for the full set of historical storm maxima, storm maximum associated wind speed WM

s (namely the
value of wind speed at the time point corresponding to the storm maximum event) conditional on storm
maximum significant wave height HM

S is described using linear regression with parameters β0, β1 ∈ R, σ > 0:

WM
s |HM

S = β0 + β1H
M
S + σε

with ε a standard normal random variable; (e) wind speed for the selected historical trajectory is scaled
linearly such that it agrees with the storm maximum associated wind speed from (d).

The main deficiencies of the HM approach are (i) it does not provide a means for modelling the extremal
temporal dependence characteristics of excursions, and the extremal dependence between different compo-
nents of the time-series for excursions to levels beyond those observed in the historical sample, and (ii) it
does not provide a model framework for the assessment of fit or uncertainty propagation.

3.5 Response variable
The motivating underlying engineering problem is the assessment of the structural reliability of an offshore
structure such as a wind turbine subject to the joint action of ocean waves and winds. In the current
application, the structure variable of interest is therefore the structural load (or force) on the offshore
structure due to the environment, which depends on the characteristics of temporally-varying wave and
wind fields present. Specifically, we seek to understand the characteristics of extreme structural loads.

To measure the practical impact of extreme met-ocean excursions, we define structure response variables
for a simple hypothetical marine offshore facility. A structure response variable is a function of the met-
ocean variables, key to assessing the integrity of the design of a physical structure of interest. Specifically,
we consider a structure in the form of a unit cube standing above the water, supported by thin rigid legs,
with vertical cube faces aligned with cardinal directions. Only wave and wind impact on the cube itself
is of interest to us, and we neglect the effects of other oceanic phenomena such as swell, surge, tide, and
potential climate non-stationarity. For simplicity, we also assume that when HS < h, for some known value
h > 0, the wave impact on the structure is negligible, and structural response is dominated by wind. When
HS ≥ h, we assume that wave impact increases cubically with HS and quadratically with Ws (see Morison
et al. 1950 and Ma and Swan 2020 for supporting literature). Hence, the impact of an extreme excursion on
the structure is defined by the instantaneous response variable R

R(HS ,Ws, θ
H , θW ; c, h) =

{
c · I2W (Ws, θ

H − θW ) for HS < h,

c · I2W (Ws, θ
H − θW ) +A(θH) · (HS − h) ·H2

S for HS ≥ h,

where IW : R>0 × [−180, 180) → R is the inline wind-speed, defined below, A : [−180, 180) → [1,
√
2] is

the exposed cross-sectional area of the cube, see below, and the parameter c > 0 is specified such that both
significant wave height and wind speed have an approximately equal contribution to the largest values of R.
Here both c and h are values that can be changed by altering structural features. The exposed cross-sectional
area A(θ) ∈ [1,

√
2] of the cube is given by

A(θH) := 1/ cos([(θH + 45; mod90)− 45] · π/180)
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for a given wave direction θH . The inline wind-speed IW is the component of the wind speed in the direction
of the wave given by

IW (Ws, θ
H − θW ) = Ws cos((θ

H − θW ) · π/180).

To simplify notation, we write Ri(c, h) := R(HS,i,Ws,i, θ
H
i , θWi ; c, h) for i ∈ T . To define a structure response

for a complete excursion Eu, we write

Eu := {(HS,i,Ws,i,Θ
H
i ,ΘW

i ) : a ≤ i ≤ b},

for some a < b such that for a threshold u > 0 (on Laplace margins) HL
S,i > u for a ≤ i ≤ b and

HL
S,a−1, H

L
S,b+1 ≤ u. Next, let i∗ := i∗(Eu) be the time of the excursion maximum, i.e., HS,i∗ is the

maximum of HS,i over Eu. We define two natural structure response variables representing the maximum
impact of an excursion max{a≤i≤b} Ri(c, h), and the cumulative impact of an excursion

∑
{a≤i≤b} Ri(c, h),

respectively. For our application, we consider slight alterations Rmax(c, h, Eu) and Rsum(c, h, Eu)

Rmax(c, h, Eu) := max
{a≤i≤b, |i−i∗|>2}

Ri(c, h), Rsum(c, h, Eu) :=
∑

{a≤i≤b, |i−i∗|>2}

Ri(c, h).

That is, we consider responses that do not depend directly on the characteristics of the excursion near to
the excursion maximum, to exaggerate the dependence of the structure variables on pre-peak and post-peak
periods compared to the period of the peak, and hence the importance of estimating good models for the
pre-peak and post-peak periods using MMEM or EVAR. Moreover, we define Rmax(c, h) and Rsum(c, h) as
the random structure responses related to a random excursion.

3.6 Model comparisons
Here, we use our time-series models to characterise extreme excursions for the met-ocean data D of Section 3.2
with structure responses Rmax and Rsum. First, we investigate the model fits, then we describe our model
comparison procedure, and finally we assess model performance using a visual diagnostic.

We fit a total of EVAR, EVAR0 and MMEM models with model orders k = 1, 2, . . . , 6 to data DL,
corresponding to a total of 3 × 6 = 18 inferences. Estimation of MMEM and EVAR models of order k
for the pre- and post-peak periods requires a starting interval of k points from the peak of the defining
time-series component at t = 0. These are provided by the HT model for the period of the peak, which must
be consequently of order at least k. In this work, we therefore assume that the same model order is used to
describe all of the periods Pk

0 , Ppre and Ppost. The choice of optimal model order for MMEM and EVAR is
based on an assessment of the performance of models of different orders in reproducing the characteristics
of extreme structural responses from Section 3.5 reported in Figure 7, discussed later in this section. Note
that, in referring to a model briefly as ‘MMEM(4)’ for example, we are actually referring to a model which
adopts an MMEM model of order 4 for the pre- and post-peak periods, together with a HT model of order
4 for the period of the peak.

The fitting of these 18 models is a two-stage procedure. In the first part, we fit (six) conditional extremes
models for the period of the peak Pk

0 for each k. Given the conditional extremes model for some order for
the period of the peak, we are then able to estimates each of 2 × 18 = 36 models of the same order for the
pre-peak Ppre and post-peak Ppost periods. We find that a model order k = 4 for both MMEM and EVAR
is optimal in reproducing the characteristics of extreme structural responses from Section 3.5 reported in
Figure 7, discussed later in this section. In Table 1, we report parameter estimates for the HT model of the
period of the peak. Tables 2-3 then give parameter estimates on Ppost and Ppre for MMEM(4); Table 4
reports analogous estimates for EVA(4) on post- and pre-peak periods.

The presentation of parameter estimates and their uncertainties for HT(4) and MMEM(4) in Tables 1-3
follows the model specifications in Section 2.2 and 2.3. The corresponding tables indicate that HT and
MMEM models agree on some level of asymptotic independence at each lag for both pre- and post-peak
periods, since coefficients of both α and α̃0 are less than unity in Tables 1-3. The MMEM models also
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α
0.54 (0.53,0.55) 0.58 (0.56,0.59)
0.67 (0.66,0.68) 0.75 (0.73,0.76)
0.86 (0.85,0.87) 0.91 (0.90,0.93)

0.86 (0.84,0.87)
0.88 (0.87,0.88) 0.61 (0.59,0.62)
0.73 (0.72,0.74) 0.46 (0.45,0.47)
0.61 (0.60,0.62) 0.36 (0.34,0.37)

β

0.68 (0.59,0.72) 0.36 (0.31,0.52)
0.76 (0.66,0.82) 0.34 (0.32,0.41)
0.82 (0.61,1.00) 0.08 (0.07,0.14)

0.27 (0.20,0.29)
0.75 (0.52,0.96) 0.46 (0.33,0.47)
0.64 (0.62,0.80) 0.46 (0.35,0.56)
0.49 (0.48,0.66) 0.16 (-0.03,0.35)

Table 1: Estimates of the HT model parameters α and β for the period of the peak Pk
0 with model order

k = 4. Also shown in parentheses are 90% bootstrap confidence intervals. The structure of the irregular
matrix estimates of α and β is explained in Section 2.2.

α̃0

0.74 (0.73, 0.75)
0.86 (0.86, 0.87) 0.56 (0.55, 0.57)
0.73 (0.72, 0.74) 0.44 (0.43, 0.45)
0.63 (0.62, 0.64) 0.35 (0.34, 0.37)
0.55 (0.54, 0.56) 0.29 (0.27, 0.31)

β̃0

0.37 (0.29, 0.38)
0.36 (0.35, 0.44) 0.36 (0.26, 0.46)
0.46 (0.45, 0.51) 0.31 (0.20, 0.39)
0.44 (0.43, 0.54) 0.13 (0.01, 0.22)
0.29 (0.28, 0.51) 0.05 (-0.06, 0.16)

Table 2: Estimates of MMEM model parameters α̃0 and β̃0 with model order k = 4 for Ppost. Also shown
in parentheses are 90% bootstrap confidence intervals. The structure of the irregular matrix estimates of α̃
and β̃ is explained in Section 2.3.

α̃0

0.93 (0.92, 0.95)
0.84 (0.83, 0.84) 0.88 (0.87, 0.90)
0.67 (0.67, 0.69) 0.73 (0.72, 0.74)
0.56 (0.55, 0.57) 0.60 (0.59, 0.61)
0.48 (0.47, 0.50) 0.50 (0.49, 0.52)

β̃0

0.06 (0.05, 0.09)
0.29 (0.28, 0.49) 0.10 (0.09, 0.16)
0.46 (0.45, 0.55) 0.25 (0.24, 0.36)
0.52 (0.51, 0.59) 0.32 (0.31, 0.45)
0.42 (0.41, 0.56) 0.37 (0.27, 0.44)

Table 3: Estimates of MMEM model parameters α̃0 and β̃0 with model order k = 4 for Ppre. Also shown
in parentheses are 90% bootstrap confidence intervals. The structure of the irregular matrix estimates of α̃
and β̃ is explained in Section 2.3.
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show decreasing levels of dependence as lag increases, indicated by decreasing values of coefficients of ã0 for
entries lower in Tables 2 and 3.

The presentation of parameter estimates and their uncertainties for EVAR(4) in Table 4 follows the model
specification in Section 2.4. For each of pre- and post-peak periods, estimates for each of the 2× 2 matrices
Φ(l), l = 1, 2, 3, 4 are given. Then, for example, the elements (1,1), (1,2), (2,1) and (2,2) of Φ(l=1) for the
post-peak period give parameter coefficients for HL

S,t+4 on HL
S,t+3, H

L
S,t+4 on WL

s,t+3, WL
s,t+4 on HL

S,t+3 and
WL

s,t+4 on WL
s,t+3 respectively, and their 90% bootstrap confidence bands. Results for EVAR(4) also reflect

physical intuition regarding wind-driven waves in the current application. For example, the value 0.73 of
Φ(1)(2, 1) for Ppre indicates stronger coupling on Laplace scale between Ws at lag 4 (into the past) on HS a
lag 3 (into the past) than the coupling Φ(1)(2, 2) between Ws and itself at the same lags. This is consistent
with winds creating waves, also suggested by Figure 4. A number of parameter estimates in matrices Φ(3)

and Φ(4) for Ppost and Ppre are near zero, but there are significant elements in each matrix except for Φ(4)

pre-peak.

Post-peak
Φ(1) 1.32 (1.28, 1.36) 0.13 (0.11, 0.15)

0.43 (0.33, 0.52) 0.82 (0.76, 0.88)
Φ(2) -0.42 (-0.47, -0.36) -0.09 (-0.12, -0.07)

-0.27 (-0.39, -0.16) -0.08 (-0.13, -0.02)
Φ(3) 0.00 (-0.04, 0.05) -0.04 (-0.06, -0.02)

-0.02 (-0.12, 0.08) -0.08 (-0.12, -0.04)
Φ(4) 0.00 (-0.02, 0.02) 0.01 (-0.01, 0.02)

-0.02 (-0.08, 0.03) 0.04 (0.01, 0.07)
B 0.18 (0.01, 0.32) -0.22 (-0.41, -0.01)

Pre-peak
Φ(1) 1.34 (1.30, 1.38) -0.15 (-0.18, -0.12)

0.73 (0.66, 0.80) 0.58 (0.51, 0.65)
Φ(2) -0.40 (-0.45, -0.34) 0.05 (0.03, 0.08)

-0.43 (-0.55, -0.32) 0.04 (-0.02, 0.09)
Φ(3) 0.01 (-0.03, 0.06) -0.00 (-0.02, 0.01)

0.09 (-0.02, 0.19) -0.05 (-0.09, -0.01)
Φ(4) -0.01 (-0.04, 0.01) 0.01 (-0.01, 0.02)

-0.04 (-0.09, 0.04) 0.01 (-0.03, 0.04)
B 0.36 (0.17, 0.43) 0.15 (-0.03, 0.34)

Table 4: Estimates of EVAR model parameters (Section 2.4) with model order k = 4 for Ppost and Ppre.
Also shown in parentheses are 90% bootstrap confidence intervals.

For each of the 18 models and HM, we simulate 20, 000 excursions to estimate model properties. First,
we illustrate model characteristics for EVAR(4) in Figure 5 by plotting simulated excursions such that the
excursion maximum significant wave height takes on values between 11.5m and 12.5m (left). We visually
compare these with observed excursions for the same interval of excursion maxima (middle). On the right,
we summarize simulated and observed excursions in terms of the median, the 10% and 90% percentiles of
the sampling distribution at each time period. Finally, in the bottom panel we plot

P
(
min{HL

S,i : i = min(0, τ), . . . ,max(0, τ)} > u
∣∣∣ HS,0 ∈ [11.5, 12.5]

)
, (11)

for τ ∈ Z, i.e., we plot the survival probability for an excursion relative to the time of the excursion
maximum, conditional on the excursion maximum taking a value between 11.5m and 12.5m for both the
simulated excursions and the observed excursions. We observe good agreement in the distribution of the
length of an excursion with respect to the excursion maximum as both estimates are close to each other.

In the supplementary material, we produce analogous plots for each of the 18 models considered and HM.
We observe that EVAR(4) characterizes the period of the peak, and also the pre-peak and post-peak periods
of the excursion well. Moreover, EVAR(4) also reproduces the observed excursion survival probability.

Next, in Figure 6, we plot estimates of conditional probabilities χH(u, l) := P(HL
S,i+l > u | HL

S,i > u),
χHW (u, l) := P(WL

s,i+l > u | HL
S,i > u), and χW (u, l) := P(WL

S,i+l > u | WL
S,i > u) using EVAR, MMEM and

HM with model orders 1 and 4, and we compare these with empirical estimates.1 We make the following
observations: HM is significantly worse at characterizing each of χH , χW and χHW compared to EVAR
and MMEM. Moreover, estimates obtained from EVAR of large enough order, e.g., k ≥ 4, agree well with

1We leave out EVAR0 in this analysis for conciseness since its estimates are very similar to the estimates obtained using
EVAR of the same model order.
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empirical estimates. MMEM, on the other hand, yields estimators that are slightly positively biased. In
particular, larger model orders yield considerable improvements.
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Figure 5: Excursions of HS (top row) and Ws (middle row) from EVAR(4) model (left; black), and observed
data (middle; red) on original margins such that storm peak significant wave height is in [11.5, 12.5]; right-
hand plots summarise the observed (red) and EVAR(4) (black) excursions, in terms of the median (solid),
and the 10% and 90% quantiles (dashed). In the bottom panel, we plot survival probabilities for observed
(red) and EVAR(4) (black) excursions relative to the time of the excursion maximum, see equation (11).

In Figure 6, we discuss goodness-of-fit of each of the models. To compare MMEM and EVAR with each
other and with HM, we take a similar approach to Gandy et al. (2022), who adjust standard cross-validation
techniques to extreme value applications by taking a small training set and a larger test set. We select at
random 25% of the observed excursions for our training sample; the remaining 75% forms our test sample.
Below, we calculate performance statistics for the response variables by averaging over 50 such random
partitions of the sample.

For training, we fit EVAR, EVAR0 and MMEM with model orders k = 1, 2, . . . , 6 as explained in the
second paragraph of this section. For each of the 18 models and HM, we simulate 20, 000 excursions, calculate
structure response variables Rmax and Rsum, and compare distributions of simulated structure response
variables with those corresponding to the withheld test data. This is achieved by defining a dissimilarity
distance function D that measures the level of difference in tails of distribution functions. We select 20
equidistant percentiles p1, . . . , p20 ranging from 97% to 99.9% corresponding to moderately extreme to very
extreme levels with respect to the (smaller) training sample but not too extreme for the (larger) withheld
data. We define the distance D of distribution functions FM (of model M) and FE (an empirical distribution

17
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Figure 6: Estimates of measures of extremal dependence across time lags 1 and 4, and variables given by χH ,
χHW and χW (left, middle, and right respectively) for each of the models: EVAR (red), MMEM (blue), HM
(green), data (grey). For EVAR and MMEM, we plot these estimates for different model orders k = 1 and
k = 4 with line types: one (solid), four (dotted). Moreover, the grey region depicts the confidence bounds
for empirical estimates of these extremal dependence measures from the data.
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function) as the mean absolute relative error over these percentiles, i.e.,

D(FM , FE ; p1, . . . , p20) =
1

20

20∑
j=1

∣∣∣∣F−1
E (pj)− F−1

M (pj)

F−1
E (pj)

∣∣∣∣ .
We remark that in the above definition, we never divide by zero because we only use D to measure the
dissimilarity of distributions of positive random variables.

In Figure 7, we show the results for the 50 random partitions of the original sample by plotting the
average distance D (with 80% confidence intervals) for each model together with HM for four different
structure response variables corresponding to two choices of c and h for each of Rmax and Rsum. Note
that similar studies for other values of c and h for Rmax and Rsum were examined, and general findings are
consistent with those illustrated in Figure 7. For legibility, we omit confidence bands for EVAR0 since the
difference with EVAR is minimal. Model selection now involves choosing the model that yields the smallest
average dissimilarity D whilst keeping the model order as low as possible.

We make a number of observations. For the Rmax response, EVAR and MMEM clearly outperform HM
regardless of model order. However, for the Rsum response, high order (e.g., k = 4, 5, 6) EVAR and MMEM
are necessary to be competitive with HM. We observe also that performance of EVAR and MMEM does
not significantly improve or worsen for k > 4. This finding is further supported with an unpublished study
with Markov model orders of k ≤ 10. We note that llustrations of excursions in the supplementary material
demonstrate that MMEM(1) does not explain the variability of the pre-peak and post-peak periods well.

By looking at the average relative errors in Rmax and Rsum of our proposed selection of methods, we
conclude that a third or fourth order MMEM and a fourth order EVAR are competitive models within
their class. Since these models have similar performance, we prefer EVAR(4) because of its simpler two-
dimensional residual distribution.
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Figure 7: Average mean relative errors of HM, EVAR, EVAR0 and MMEM (dashed/dotted) and 80%
confidence regions (shaded) for estimating the distribution of structure responses using 25% of data for
training and 75% of data for testing. For details, see the text.
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4 Conclusions and discussion
In this paper, we provide models for extreme excursions of multivariate time-series. Excursions are char-
acterized by a three-stage modelling procedure for the period of the peak, the pre-peak and the post-peak
periods. We model the period of the peak using the conditional extremes framework (Heffernan and Tawn,
2004), and for the pre-peak and post-peak periods, we define two classes of time-series models: MMEM, mo-
tivated by the Markov extremal model of Winter and Tawn (2017); and EVAR, an extreme-value extension
of a vector autoregressive model. We compare these excursion models with a baseline historical matching
method, motivated by Feld et al. (2015). We find that the excursion models - for a reasonably informed
choice of k, the order of the Markov process - are at least competitive with historical matching and often
outperform it in the estimation of the tail of a range of notional structure response variables for a met-ocean
application in the northern North Sea.

Statistical modelling of extreme excursions of multivariate time-series is difficult as it requires the es-
timation of complex model forms. MMEM requires the estimation of the conditional distribution of high-
dimensional residual random variables and EVAR is highly parameterized. Model checking for MMEM and
EVAR can therefore be challenging. Nevertheless, plots of residuals from model fits on explanatory variables
indicate in general that model fits are reasonable. For realistically sized directional samples of significant
wave height and wind speed time-series, we found that MMEM(4) and EVAR(4) perform well. Even when
the empirical historical matching procedure is competitive, adoption of an excursion model is advantageous
because it allows for rigorous uncertainty quantification. We expect that our excursion models are applicable
more generally, e.g., for the modelling of higher-dimensional met-ocean time-series and spatial fields.

We model wind speed and significant wave height marginally conditional on directional covariates. In
the current work, the marginal transformation to standard Laplace scale does not accommodate seasonal
variation. Since only the most extreme excursions are selected for analysis per direction, we are effectively
focussing on excursions from the winter period. If the objective of our analysis is a description of the
directional evolution of the most extreme excursions with direction, it can be argued (e.g. Mackay et al.
2010, Mackay and Jonathan 2020) that the current approach is acceptable. However, if our objective is
to characterise directional evolution as a function of peak direction and season, and the sample data are
sufficiently informative, then directional-seasonal marginal models should be preferred (e.g. Jones et al.
2016, Mackay and Jonathan 2020). Moreover, we did not investigate the explicit effect of the directional
components on the dependence models. Since we remove the marginal effect of direction before modelling
the dependence, we do not expect this covariate to have a strong impact on the dependence. However, it
would be very interesting to adapt our models to be able to investigate this further in future research.
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A Reparameterization of EVAR
As opposed to inference for vector autoregressive models, we cannot estimate the EVAR parameters (see Sec-
tion 2.4) by least squares due to the presence of the Y B

t,1 term. Instead, we apply the inference methodology
discussed in Section 2.5. Not surprisingly, the parameter estimates Φ̂(l) for l = 1, . . . , k are highly intercor-
related because of the linear dependence between the components of Yt−1, . . . ,Yt−k. Reparameterization
to reduce the correlation between parameter estimators is therefore attractive.

To reparameterize the model, we proceed as follows. First, we assume that the conditional extremes model
is applicable to Yt−l,j conditional on Yt−k,1 for each l = 0, . . . , k and j = 1, . . . , d apart from (l, j) = (k, 1),
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i.e., there exist parameters αl,j ∈ [−1, 1] and βl,j < 1 such that

lim
y→∞

P
(
Yt−l,j − αl,jy

yβl,j
≤ x

∣∣∣ Yt−k,1 = y

)
= Hl,j(x),

where Hl,j is a non-degenerate distribution function. Following the EVAR model (7), we now must have

Yt+k,1 = Φ
(1)
1,1Yt+k−1,1 + · · ·+Φ

(1)
d,1Yt+k−1,d + · · ·+Φ

(k)
1,1Yt,1 + · · ·+Φ

(k)
d,1Yt,d + Y B1

t,1 εt,1

=
(
Φ

(1)
1,1αk−1,1 + · · ·+Φ

(1)
d,1αk−1,d + · · ·+Φ

(k)
1,1 + · · ·+Φ

(k)
d,1α0,d

)
Yt,1 + op(Yt,1)

conditional on Yt,1 > v as v tends to infinity. On the other hand, we have Yt+k,1|(Yt,1 > v) = α0,1Yt,1 +
op(Yt,1). So,

α0,1 = Φ
(1)
1,1αk−1,1 + · · ·+Φ

(1)
d,1αk−1,d + · · ·+Φ

(k)
1,1 · 1 + · · ·+Φ

(k)
d,1α0,d,

which explains the collinearity of the estimators. We now propose the following reparameterization (B, Φ̃(1), . . . , Φ̃(k)).
For each 1 ≤ l ≤ d, we acquire Φ̃

(k−l)
j,j′ , i.e., the (j, j′)th element of Φ̃(k−l), inductively with 0 ≤ l ≤ k − 1,

1 ≤ j ≤ d.

Φ
(k−l)
j,j′ =


α̂0,j′ + Φ̃

(k)
1,j′ , for l = 0, j = 1,

−Φ̃
(k−l)
j−1,j′ · α̂l,j−1/α̂l,j + Φ̃

(k−l)
j,j′ , for l = 0, . . . , k − 1, j = 2, . . . , d, conditional on Φ̃

(k−l)
1,j′ ,

−Φ̃
(k−l+1)
d,j′ · α̂l−1,d/α̂l,1 + Φ̃

(k−l)
1,j′ , for l = 1, . . . , k − 1, j = 1 conditional on Φ̃

(k−l+1)
d,j′ .

where α̂l,j is the maximum likelihood estimate for αl,j . Under this reparametrization, estimators of Φ̃(l)
j,j′ are

less correlated, which we demonstrated in unreported experiments comparing the dependence of the original
and the reparameterized parameters using adaptive MCMC methodology (Roberts and Rosenthal, 2009).
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Figure 1: EVAR(1)
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Figure 2: EVAR(2)
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Figure 3: EVAR(3)
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Figure 4: EVAR(4)
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Figure 5: EVAR(5)
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Figure 6: EVAR(6)
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Figure 7: MMEM(1)
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Figure 8: MMEM(2)

9



4

6

8

10

12

H
S

MMEM(3)

-40 -20 0 20 40 60
0

10

20

30

W
s

Data

-40 -20 0 20 40 60

Summary

-30 -20 -10 0 10 20 30 40

-40 -20 0 20 40 60

Hours (relative to the peak)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Figure 9: MMEM(3)
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Figure 10: MMEM(4)
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Figure 11: MMEM(5)
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Figure 12: MMEM(6)
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Figure 13: HM
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