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Abstract

Mars’ plasma environment is strongly driven by its interaction with the solar wind,

however the lack of an upstream solar wind monitor at Mars sometimes necessitates

assumptions about the variability of solar wind and interplanetary magnetic field (IMF)

conditions. This thesis investigates the variability in the solar wind. The first study

finds the IMF to be notably steadier in field strength, clock angle and cone angle

direction during the Mars Global Surveyor (MGS) mission than the Mars Atmosphere

and Volatile Evolution (MAVEN) mission. Additionally, the variability of the field

strength, clock angle and cone angle were all found to be dependant on the cone

angle of the measurements, with periods of IMF oriented close to the ecliptic plane

being considerably steadier than periods of IMF oriented approximately perpendicular

to it. The second study presents a data-driven model to predict the upstream solar

wind conditions for periods where MAVEN was inside the martian magnetosphere.

The predictions of this model are compared with those from a solar wind propagation

model commonly used at Mars, and the model presented in this thesis was found to

better capture the velocity of the solar wind during periods of more variable solar wind.

The final study of this thesis investigates orientation preferences in the interplanetary

magnetic field (IMF) using clustering techniques to group IMF measurements by field

strength and stability of the cone angle. It finds that periods of low strength and

steady orientation are typically aligned in one of two orientations which correspond to

‘towards’ and ‘away’ sectors of the IMF. During periods of higher field strength, the

cone angles are constrained out of the ecliptic plane.
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Chapter 1

Introduction

Of all of the known planets both within and outside of the solar system, Mars is one

of the most unique. Frequent impacts from comets and asteroids produce an unusual

planetary surface with two distinct regions. The southern hemisphere of Mars is heavily

cratered and the surface is comprised of a range of rock types that have been revealed

by impacts. The northern hemisphere however is much smoother and mainly made of

the igneous rocks such as basalt and andesite that were likely deposited by lava flows

during early periods in the planet’s history (Carr & Head, 2010). Governed by its

compact size, the planet’s once molten core cooled much faster than that of Earth, and

as such the strength of the intrinsic magnetic field associated with the electric current

created by motion in the liquid core gradually decreased until today when it is accepted

that Mars has no intrinsic magnetic field.

This chapter covers an introduction to the solar wind including sources of variability,

the martian magnetic environment, the ionosphere and neutral atmosphere of Mars and

a brief overview of past, current and future Mars missions.

1.1 The solar wind

The solar wind consists of the particles that leave the Sun’s corona and move out into

the solar system. Since the introduction of the solar wind theory in 1958 (Parker, 1958),

it has long been accepted that the solar corona is hot enough to overcome the Sun’s
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Chapter 1. Introduction

gravity and escape into the solar system. As the particles from the Sun’s atmosphere

spread out into interplanetary space, they drag with them the solar magnetic field as

the magnetic flux is ‘frozen in’ to the plasma. This expansion of the coronal magnetic

field into the solar system is known as the interplanetary magnetic field (IMF).

Initially, the solar wind was thought to propagate only radially through the solar system,

however recently it has been shown that there is a tangential flow of the solar wind

(Němeček et al., 2020) during both low speed (300-400 km/s) and moderate speed

(400-600 km/s) flow.

The solar wind encounters multiple obstacles within the solar system. Planets, comets

and moons disrupt the flow of the plasma, producing a bow shock as the supersonic

flow is abruptly stopped. Magnetospheres and thick atmospheres are impenetrable to

the solar wind, producing magnetospheric and ionospheric obstacles to the solar wind

flow. Mars is an ionospheric obstacle due to the lack of a global intrinsic magnetic field

at the planet.

1.1.1 Ambient solar wind and transient solar events

During ’typical’ solar conditions, the plasma that emanates from the Sun forms the

ambient solar wind. Three distinct regimes of ambient solar wind exist; the fast

(with speeds of 600-800 km/s), the slow (with speeds of 300-500 km/s) and streamers

(Neugebauer & Snyder, 1966). Solar wind streamers occur at points of reversal of the

IMF. Corotating interaction regions (CIRs) are the interaction between an earlier slow

solar wind stream and a later fast solar wind stream (Heber et al., 1999).

Transient events disrupt the ambient solar wind flow. Unlike ambient solar wind which

emanates from closed field structures within the Sun, energetic events are associated

with either solar flares or coronal holes (Intriligator, 1980). Examples of transient

events include solar flares, erupting solar prominences and interplanetary coronal mass

ejections (ICMEs). ICMEs are energetic events which are made of expelled magnetic

flux ropes from the Sun’s corona. They often have a shockwave, sheath region and

2



Chapter 1. Introduction

ejecta region. Those with flux rope magnetic structures are dubbed ’magnetic clouds’

(Burlaga et al., 2001).

As the Sun goes through a regular 22 year shift of its magnetic poles, the structure

of the solar magnetic field changes also from a well ordered field with clear positive

regions of outwards and inwards magnetic field, to times where the field is more erratic.

During these periods of disordered solar magnetic field there is an increased occurrence

of energetic solar wind streams which include coronal mass ejections.

1.1.2 Variability in the solar wind

Although our understanding of solar wind variability is not comprehensive, there are

multiple sources that are well understood. Known periodicities in the solar wind are

the result of the solar cycle and solar rotation as well as plasma oscillations, producing

regular variations in the solar wind that range in timescale from minutes to tens of years.

Changes in the uniformity of the Sun’s magnetic field as a result of the solar dynamo

produce the solar cycle; a 22 year change in the solar environment and consequently

the solar wind. On longer timescales still, variations have been noted in the solar

cycle activity, with later cycles tending to have higher maximum (the secular trend

(Hathaway et al., 2002; Wilson, 1988)) and odd numbered cycles tending to have higher

maximum sunspot numbers than the even cycles directly before them (Gnevyshev-Ohl

rule (Gnevyshev & Ohl, 1948)). Shorter term variability in the solar output includes

an 154 day periodicity that occurs near the solar cycle maximum (Ballester et al., 2002;

Lean, 1990) and a variation with a timescale of around two years. This periodicity is

most noticeable around solar maximum; producing double peaks in the sunspot number.

The Sun’s open magnetic flux and global magnetic field also show signs of quasi-

periodicities of about 1.3 years (Ulrich & Tran, 2013; Wang & N. R. Sheeley, 2003).

These are caused by the emergence of active regions, which take approximately a year

to decay due to restraints from differential rotation, meridional flow, and supergranule

diffusion. Additionally, the wind speed, field strength and density oscillate as the

Parker spiral sectors change. At the boundary between two sectors, the solar wind

speed decreases and the density and IMF strength increase.

3
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Sudden changes in solar wind properties such as field strength, density and dynamic

pressure can be the result of shocks, plasma boundary layers or discontinuities.

Expected events that would cause a change in IMF conditions at Mars are the crossing

of the current sheet as well as corotating interaction regions (CIRs) and interplanetary

coronal mass ejections (ICMEs).

Beyond variability in the solar wind that originates at the Sun, there will also be

differences in the solar wind as it moves through the solar system. It is expected that

CIRs will be more prevalent at Mars than at Earth due to the increased opportunity for

fast solar wind streams to catch up to slower streams of material emitted from the Sun

at an earlier time. Additionally, interplanetary coronal mass ejections (ICMEs) evolve

in all three dimensions between 1 and 1.5 AU so that their signatures are different from

terrestrial observations.

1.1.3 Qualities of the solar wind near Mars

Previous studies of the solar wind near Mars have provided an important insight into the

average solar wind conditions upstream of Mars. The IMF strength has been estimated

to be between 2.5nT and 3nT and the median direction of the IMF in the x-y plane

was found to be 52 degrees (Brain et al., 2003).

4
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Study Parameter MPV Mean Median Standard Deviation

Brain et al. (2003) IMF strength 2.5-3 nT - - -
Marquette et al. (2018) IMF strength - 3.486 nT 3.02 3nT 1.865 nT
Marquette et al. (2018) IMF clock angle - 162.3 129.7 100.7
Marquette et al. (2018) IMF cone angle - 94.33 93.35 33.99
Marquette et al. (2018) SW dynamic pressure - 0.9055 nPa 0.7059 nPa 0.7115 nPa
Marquette et al. (2018) SW density - 3.343 cm-3 2.418 cm-3 2.928 cm-3
Marquette et al. (2018) SW speed - 419.5 km/s 403.6 km/s 79.9 km/s

Liu et al. (2021) IMF strength 1.87 nT - - -
Liu et al. (2021) IMF clock angle 89.6, 207.8 - - -
Liu et al. (2021) IMF cone angle 115.9, 310.2 - - -
Liu et al. (2021) SW dynamic pressure 0.39 nPa - - -
Liu et al. (2021) SW density 1.4 cm-3 - - -
Liu et al. (2021) SW speed 368.9 km/s - - -

Table 1.1: Summary of measurements of the solar wind properties upstream of Mars. MPV = most probable value
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1.2 Mars and its magnetosphere

Early in the planet’s history, the hot core of Mars exuded a strong dipole magnetic

field. 4.1 billion years ago (Carr & Head, 2010) the field began to dissipate as the

planet cooled, and today the remaining dipole field is negligibly weak. However, the

planet does have a magnetic environment which can be split into two sections: an

induced magnetosphere caused as the interplanetary magnetic field bends around the

planet as it flows away from the Sun; and localised magnetic fields caused by magnetic

material in the planet’s crust.

1.2.0.1 Crustal magnetic fields

Figure 1.1: A map of the martian crustal field strength at 170 km altitude made using
data from the Mars Global Surveyor magnetometer and electron reflectometer data
(Mitchell et al., 2007). The letters on the map denote the Utopia (U), Hellas (H),
Argyre (A), and Isidis (I) impact basins, and the volcanoes Elysium (e), Syrtis Major
(Nili and Meroe) (s), Apollinaris (o), Tyrrhena (t), Hadriaca (h), Peneus (p), and
Amphitrites (a).
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Pockets of the Martian crust contain magnetic material that produces areas of high

magnetic field strength that act as an obstacle to solar wind flow. These crustal

magnetic fields are much stronger than the magnetic fields associated with the induced

magnetosphere (around 200nT compared to 20 − 50nT). It is thought that these

magnetised areas of crust may have been formed by a process called thermoremanent

magnetisation, which can occur when a material cools below its Curie temperature

within a magnetic field (Connerney et al., 1999). This process magnetised the material

in the crust as it cooled in the presence of the intrinsic magnetic field, with the degree

of magnetisation depending upon the composition of the crust. The crustal fields are

located almost exclusively in the planet’s southern hemisphere (as seen in Figure 1.1),

and are located less than 10 km under the planet’s surface. Also, these field regions

are regularly arranged in bands stretching along the planet from east to west. The

distribution of the magnetic material is thought to be due to the planet’s past tectonic

activity (Connerney et al., 2015; Zuber, 2001), with in situ measurements putting the

field strength at up to 150 nT at 400 km altitude (Connerney et al., 1999).

Because of the high altitude to which the crustal fields permeate, the magnetic pressure

in these areas is much higher which makes the standoff distance, at which the dynamic

pressure of the solar wind and the magnetic pressure of the planet balance, at a much

higher altitude than in areas where the crustal fields are not present (Krymskii et al.,

2003). This causes a magnetic obstacle to the solar wind, which differs as the planet

rotates. However, these magnetic fields also disrupt ionospheric layers. Inside the

closed crustal field lines, sometimes known as ’mini magnetospheres,’ (Krymskii et al.,

2003) there are increased electron temperatures which have been suggested to be due

to the existence of trapped high energy photoelectrons. Around the closed field lines of

the crustal fields are cusp regions, into which electrons precipitate causing excitation,

emission and ionisation of the planetary plasma (Shane et al., 2016). This process can

cause discrete aurora on the nightside of Mars that trace the locations of the crustal

fields.
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1.2.0.2 The induced magnetosphere

The induced magnetosphere refers to the magnetic characteristics that are caused by the

solar wind interaction. As the IMF permeates through the solar system, it interacts with

the planets. For bodies like Earth with an intrinsic magnetic field, the interplanetary

magnetic field lines interact with the field lines at the object’s magnetopause through

a process called magnetic reconnection. Field lines from the magnetosphere are broken

open and connect with lines from the interplanetary magnetic field. These lines that

connect the sun to the planet then move through the planetary magnetosphere in a

convection-like process governed by the Dungey cycle, and then reconnect on the night

side of the planet and continue traveling through the solar system. However, for planets

without an intrinsic magnetic field the process is quite different. The ionosphere and

exosphere of Mars act as an obstacle around which the solar wind bends, creating

areas of magnetic field pileup (Dubinin et al., 2006) which is separated from the low

field strength magnetopause area by a thin, sharp boundary (Bertucci et al., 2005). The

solar wind is stopped when it nears Mars at the point where the thermal pressure of the

atmosphere equals the dynamic pressure of the wind, which creates a magnetosheath.

Because the solar wind travels at supersonic speeds, this process also creates a separate

bowshock upstream of the magnetosheath.

The main features of the induced Martian magnetosphere are the bowshock, the

magnetosheath, the magnetic pile up boundary (also called the induced magnetospheric

boundary or magnetopause), the magnetotail and the plasma sheet.

The bowshock is the outermost plasma boundary within the planetary magnetosphere.

The bowshock occurs because the solar wind plasma is traveling supersonically, causing

a curved shape around the dayside of the magnetosphere. This phenomena is observed

at every planet in the solar system. The shape of the bow shock depends on the velocity

of the solar wind, with faster wind bringing the bowshock closer to the planet’s surface.

The bowshock also contains very high numbers of planetary ions, which are thought to

be ionised as the outermost part of the Martian exosphere undergoes impact ionisation

while interacting with the solar wind plasma.
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Figure 1.2: A schematic of the martian magnetosphere taken from (K. Liu et al.,
2020). MPB = magnetic pileup boundary, MPR = magnetic pileup region, PEB =
photoelectron boundary.

The magnetosheath is the area behind the bow shock. This cavity within the

magnetosphere contains very low magnetic field strengths. The solar wind plasma

in this section of the magnetosphere has been heated as it was shocked and is turbulent

with little clear structure. However, because the region is thin (just under the gyroradius

of a proton in the solar wind), there is not enough space for all the material in the

region to reach thermal equilibrium through particle interactions. As such, there is

a temperature gradient where the outermost shocked edge is hottest. At Mars, the

exosphere extends into the magnetosheath region, which allows heavy ions from the
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Figure 1.3: Data from the MAVEN spacecraft showing measurements both within the
martian magnetosphere and out in the solar wind. Taken from (Romanelli et al., 2018).

planet’s ionosphere to mix with the solar wind electrons and change their movements.

The plasma in this region can be modelled as two interacting fluids: a proton fluid and

a planetary heavy ion fluid. The interaction between the two fluids can create electric

fields within the medium as the two types of ion move with different inertia due to

their different masses. Bi-ion waves within the plasma can lead to the formation of

‘shocklets’, small shock waves inside the original shockwave. The heavy ions also limit

the movement of protons and ions from the solar wind down towards Mars’ surface.

The magnetic pileup boundary (MPB) separates the magnetosheath and the magnetic

pile up regions (Acuna et al., 1998). This boundary is also known as the induced

magnetospheric boundary or IMB, as this is the boundary below which there are sharply

decreased suprathermal electron fluxes (Bertucci et al., 2003; Nagy et al., 2004). The
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stark difference between the very low magnetic field strength within the magnetosheath

and the high field within the magnetic pile up regions allows for clear identification of

the boundary (Bertucci et al., 2005), which is typically found at an altitude of 600-

1000km at the subsolar point (Brain et al., 2005). However, the boundary is typically

found at a higher altitude in the southern hemisphere because of the higher magnetic

pressure in the regions of crustal magnetic fields. It is not currently thought that the

position of the boundary is dependent on the phase of the solar cycle (Vignes et al.,

2000).

Due to the draping of the field lines around the magnetic obstacles of the planet, the pile

up structured regions are characterised by very high magnetic field strengths(Bertucci

et al., 2004). On the dayside, the lower boundary of the ionosphere is dependent on

the solar wind conditions (Nagy et al., 2004). On the nightside, the pile up region is

bounded by the magnetotail.

The magnetotail is the region of Mars’ magnetosphere downstream of the planet, where

nightside reconnection occurs. This region has been well explored by spacecraft such

as the Mars Global Surveyor and Mars Express. The radius of the Martian tail is 2-2.5

times the radius of Mars (J. Luhmann et al., 1991). In the magnetotail, a current sheet

separates the regions of differing magnetic field orientation. It is within this current

sheet that acceleration of auroral particles occurs. Because of the high rate of magnetic

reconnection events in this region, observations of the magnetotail show the acceleration

of ions back towards the planet (Harada et al., 2017).

1.2.1 Mars’ ionosphere and atmosphere

The composition of the Martian atmosphere is much more similar to Venus than it

is to the terrestrial atmosphere. Although the composition of the atmosphere varies

seasonally, on average the make up of the atmosphere is 95% carbon dioxide, 2.6%

nitrogen, 2% argon, 0.16% oxygen and 0.06% carbon monoxide (Connerney et al., 2015;

Trainer et al., 2019). As with the ionosphere, the density of atoms within the neutral

atmosphere varies depending on the latitude, longitude and solar zenith angle.
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The thermosphere is one of the most active regions of the neutral atmosphere, with the

temperature and composition being strongly dependent on the solar radiation and solar

wind conditions (Bougher et al., 2015). Additionally, the thermosphere is affected by

the exosphere above and the low and middle atmosphere below. Mars Global Surveyor

and Mars Odyssey spacecraft have both observed local mass density variations that are

caused by tidal waves in the lower atmosphere propagating up into the thermosphere.

Gravity waves thought to originate in the lower atmosphere have also been detected by

the Mars Odyssey spacecraft in the lower altitudes of the thermosphere (Parish et al.,

2009). Additionally, MAVEN detected gravity waves with vertical wavelengths between

10 km and 30 km on the dayside of Mars, with increasing amplitudes for larger solar

zenith angles (Siddlea et al., 2019).

Most of the particles that are removed from the Martian atmosphere do so via processes

that occur in the thermosphere and exosphere. Within the thermosphere, interactions

between N and NO produce odd nitrogen which can more easily escape from the Martian

atmosphere (Fox, 1993). The most important mechanism for the production of nitrogen

atoms is disassociative recombination reactions, but this process also occurs for a

significant amount of oxygen and carbon also. Neutrals may also leave through a process

known as ‘sputtering escape,’ where charged particles from the solar wind or energetic

ionospheric particles can directly impact with neutral species in the thermosphere and

impart enough energy onto them that the neutral can reach the escape velocity and

leave the atmosphere.

The Martian exosphere is composed mainly of a neutral oxygen corona that extends

from 200 km far out above the planet’s surface. Because of the large size of the

exosphere, it overlaps with many areas that are involved with the Martian magnetic

environment and affects the dynamics of these regions. The exosphere and thermosphere

are the regions most affected by the interaction with the solar wind, and the number

density of oxygen and carbon dioxide within the exosphere is thought to be significantly

less today than it was in the ancient atmosphere, when the extreme ultraviolet radiation

flux from the Sun was much higher (M. Zhang et al., 1993).
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Figure 1.4: Diagram of Mars dayside electron density profiles from the Mars Radio
Science experiment onboard Mars Express. Taken from Peter et al., 2021.

Like at Earth, many of Mars’ ionospheric layers are well modelled as Chapman layers

(i.e. characterised by a population of a single type of ion created by one particular

wavelength of radiation and destroyed only by recombination). Mars has three dayside

and three nightside layers.

The three dayside layers of the Marian ionosphere are the M1 and M2 layers and a
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third ablation layer, as shown if Figure 1.4. The M1 and M2 layers are driven by

photochemical reactions from x-ray and extreme ultraviolet radiation (Withers, 2009).

In both the M1 and M2 layers 0+
2 is the most common ion species, and is produced

by the interaction of oxygen atoms with ionised carbon dioxide. Recently, it has been

suggested that the movement of ions due to solar wind flow and diffusion of ions into

different ionospheric layers may be the dominant processes in the M2 layer (Bougher

et al., 2001).

The third dayside layer is situated at an altitude of 65-110km, much lower than the

M1 and M2 layers (at 110km and 135km respectively). It is caused by the ablation

of meteorites within the Martian atmosphere, and as such is densely populated with

heavy, metallic, ionised atoms (Patzold et al., 2005). In particular, these layers contain

high densities of ionised iron and magnesium, which are provided by the meteorites as

gaseous atoms and then ionised via charge exchange. This third layer is not always

present in the ionosphere, and was only seen in around 8% of the ion density profiles

taken by the Mars Explorer spacecraft. Currently, it is not known what drivers cause

the layer to appear.

The first detailed observations of Mars’ nightside ionosphere were made in 2014 by

the MAVEN spacecraft. In general, the density of charged species is much lower

on the nightside of Mars (Kopf et al., 2017), however the nightside ionosphere does

consist of three distinct layers found at approximately 70 km, 100 km and 130 km in

altitude. The three nightside layers are associated with energetic particles from the

solar wind, ions evaporated from the surface of meteorites and transport within the

Martian atmosphere. O+
2 and NO+ are the most common ion at altitudes above and

below 130km respectively (Girazian et al., 2017). Radar measurements of the ionosphere

suggest that the nightside structure is very fragmented and non-uniform. Unlike the

dayside ionosphere, which is structured in regular layers, the nightside ionsophere seems

to have holes, bands and other more complex features (Gurnett et al., 2008). The most

notable features are bulges in the ionospheric layers caused by strong radial magnetic

fields originating from crustal sources.
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1.2.2 Ionospheric losses

Due to its lack of intrinsic magnetic field, Mars’ exosphere interacts directly with

the solar wind through a variety of mechanisms. Ionisation of the exosphere through

charge exchange, electron impact and solar radiation produces charged particles that

are quickly picked up by the solar wind.

Once the ionisation has occurred, the presence of the ionised martian plasma within

the changing IMF generates a strong electric field that facilitates ion outflow. Plumes

of ions have been modelled escaping into the solar wind after being directed through

the magnetosheath before being deflected into the solar wind (Brecht & Ledvina, 2006;

Cloutier et al., 1974; Curry et al., 2015; Dong et al., 2015; Fang et al., 2008; Jarvinen

et al., 2016; J. G. Luhmann & Schwingenschuh, 1990; Najib et al., 2011). Additionally,

bulk loss of plasma from the martian ionosphere can occur when crustal fields are

stretched by the solar wind and undergo magnetic reconnection to detach from the

planet (Brain et al., 2010).

Oxygen is one of the atmospheric components for which solar wind interaction has

significantly decreased its abundance in the martian atmosphere. As the oxygen is

predominantly ionised by solar extreme ultraviolet (EUV) radiation, there is a strong

seasonal dependence of the oxygen ion outflow as the EUV strength changes (Dong

et al., 2017). As O+, O+
2 and CO+

2 ions have gyroradii close to the radius of Mars,

these ions are easily taken into the solar wind via ion pickup. In the energy range of 30

to 30000 eV/C, Mars Express (MEX) measured that approximately 4g of O+ atoms,

8g of O+
2 ions and 6g of CO+

2 ions are lost to the solar wind on average every second

(roughly 300 kg/day, 700kg/day and 500kg/day respectively) (Barabash et al., 2007).

The deposition of lighter solar wind ions such as H+ into the martian atmosphere and

pickup of heavier planetary ions such as O+, O+
2 and CO+

2 disrupts the flow of the solar

wind downstream of the planet as the solar wind is suddenly slowed because of the

heavier atoms in a process known as mass loading. The process of mass loading is also

observed at other induced magnetospheres within the solar system including at mercury

and passing comets (Benna et al., 2010; Huddleston et al., 1990; Volwerk et al., 2016).
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Figure 1.5: Schematic of loss mechanisms for ions and neutral atoms at Mars
(Dandouras et al., 2020). Plasma processes are shown in red text, and escaping neutral
processes are shown in blue text.

1.3 A brief history of Mars missions

Over the years, many probes and rovers have been sent to take measurements of the

Martian environment. Recent developments have seen high quality observations of

many aspects of the Martian planet and the surrounding space environment. Most

notably, measurements of the magnetic field taken from underneath the planet’s

ionosphere by the Mars Global Surveyor revealed the existence of strong crustal fields.

To date, 49 spacecraft have been launched towards Mars, but only 35 have been

successful in achieving their missions.

The table below gives a brief overview of all of the spacecraft that have reached Mars.
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More in depth information is provided on Mars Global Surveyor and Mars Atmosphere

and Volatile EvolutioN, as data from these spacecraft were used in this thesis.

The space agency acronyms and names used in Tables 1.2 and 1.3 are defined below:

NASA = National Aeronautics and Space Administartion

SSP = Soviet Space Program

ROSCOSMOS = Russian State Space Corporation

JAXA = Japan Aerospace Exploration Agency

ESA = European Space Agency

ISRO = Indian Space Research Organisation

UAESA = United Arab Emirates Space Agency

CNSA = Chinese National Space Agency.

17



Chapter 1. Introduction

Figure 1.6: The first photograph of Mars taken from space. Taken by NASA’s Mariner
IV spacecraft on its flyby and shown here in an article from the front page of the
New York Times on 16th July 1965 (Sullivan, 1965). Even from this first in situ
measurement, it is beginning to become clear that the magnetic environment (and
therefore the atmosphere and ionosphere) at Mars is much more different from Earth
than previously thought.
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Name Space
Agency

Launch date Key achievements

Mariner 4 NASA 28 November 1964 First in situ image of Mars (see Fig. 1.6)
Mariner 6 NASA 25 February 1969 -
Mariner 7 NASA 27 March 1969 First in situ image of Phobos
Mars 3 SSP 28 May 1971 -
Mariner 9 NASA 30 May 1971 First artificial satellite of Mars
Mars 4 SSP 21 July 1973 First successful non-American mission
Mars 5 SSP 25 July 1973 -
Mars 6 SSP 5 August 1973 First direct measurements of Mars’ atmospheric

temperature and pressure
Mars 7 SSP 9 August 1973 -
Viking 1 NASA 20 August 1975 First probe to land on Mars
Viking 2 NASA 9 September 1975 First complete map of martian surface
Phobos 2 SSP 12 July 1988 -
Mars Observer NASA 25 September 1992 Communications failed before reaching Mars orbit
Mars Global Surveyor NASA 7 November 1996 See section 1.3.1 below
Mars 96 ROSCOSMOS16 November 1996 Failed to leave Earth’s orbit
Mars Pathfinder NASA 4 December 1996 First wheeled vehicle on any other planet
Nozomi JAXA 3 July 1998 Lost contact after Mars flyby
Mars Climate Orbiter NASA 11 December 1998 Failed shortly after reaching Mars
Mars Polar Lander NASA 3 January 1999 Communication lost after reaching Mars
Mars Odyssey NASA 7 April 2001 Found evidence of ice below martian surface
Mars Express ESA 2 June 2003 Included the failed Beagle 2 lander and the Mars

Express orbiter, which made the first detection of
a third ionospheric layer

Spirit Rover NASA 10 June 2003 -
Opportunity Rover NASA 8 July 2003 -

Table 1.2: Summary of Mars missions 1964-2004.

19



C
hapter

1.
In

trodu
ction

Name Space
Agency

Launch date Key achievements

Mars Reconnaissance
Orbiter

NASA 12 August 2005 Found evidence suggest liquid water flowed on
Mars 2-2.5 billion years ago

Phoenix Lander NASA 4 August 2007 -
Fobos-
Grunt/Yinghuo-1

ROSCOSMOS/CNSA26 November 2011 Failed to leave Earth’s orbit

Mars Science Labora-
tory

NASA 26 November 2011 -

Mars Orbiter ISRO 5 November 2013 -
MAVEN NASA 18 November 2013 See section 1.3.2 below
ExoMars 2016 ESA 14 March 2016 Contained both the the trace gas orbiter and the

failed Schiaparelli lander
InSight NASA 15 May 2018 -
Hope Orbiter UAESA 19 July 2020 -
Tianwen-1 CNSA 23 July 2020 Included the Tianwen-1 orbiter, lander and

cameras as well as the Zhurong rover
Mars 2020 NASA 30 July 2020 Included the most recent Mars rover, Perseverance,

as well as the Ingenuity helicopter which completed
the first flight on another planet

Table 1.3: Summary of Mars missions 2005-Present.
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1.3.1 Mars Global Surveyor

The Mars Global Surveyor is the longest running Mars mission in history. Operating

for more than four times the planned period (Greicius, 2015), the mission was split into

two phases: the aerobraking (AB) phase and the mapping phase. The AB phase in the

initial part of the mission aimed to change the orbit of the spacecraft from an elliptical

orbit to a close circular orbit via the process of aerobraking. The resistance that the

spacecraft experienced whilst it dipped into Mars’ atmosphere reduced its speed and

caused the apoapsis of the spacecraft’s orbit to decrease. This made the orbit more

circular. This phase also allowed for scientific measurements to be made outside of the

Martian magnetosphere, including measurements of the solar wind (Brain et al., 2003).

The mapping phase provided high quality images of the planet’s surface.

The Mars Global Surveyor spacecraft had five scientific instruments onboard: a

magnetometer and electron reflectometer (MAG-ER), the Mars Orbiter Camera

(MOC), the Mars Orbiter Laser Altimeter (MOLA) (Smith et al., 2001), The Thermal

Emission Spectrometer (TES) (Christensen et al., 2001) and radio science (RS).

The mapping phase was where the main aim of the mission took place: high quality

detailed mapping of the Martian surface. This phase did also allow for measurements

at lower altitudes of approximately 100km, including the first measurements of the

magnetic field from below the planet’s ionosphere by the Magnetometer-Electron

Reflectometer instrument (Mitchell et al., 2001). Measurements from the magnetometer

provided a comprehensive survey of the vector magnetic field at altitudes between

108km and 120km (Acuna et al., 1998), which led to the discovery and detailed mapping

of the crustal magnetic fields discussed in Section 1.2.0.1. However, these measurements

were not precise enough to definitively rule out the possibility of a global dipole field

of strength ≈ 2× 1017Am−3 or below (Acuna et al., 2001).

Other than the magnetometer-electron reflectometer the spacecraft was also equipped

with a thermal emission spectrometer (which calculates the chemical composition of the

Martian surface using images in the infrared and near infrared), a laser altimeter (which

uses laser pulses to calculate the altitude of surface features), an ultrastable oscillator
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(which takes measurements of the Doppler shift) and a camera, as well as a signal relay

for communication with the Mars Exploration rovers Spirit and Opportunity.

1.3.2 Mars Atmosphere and Volatile EvolutioN (MAVEN)

MAVEN is a current NASA mission aiming to better explain the changing climate of

Mars (Jakosky et al., 2015). It is expected that the measurements from this satellite

will lead to a better understanding of the nightside ionosphere and of the planet’s

interaction with the solar wind. Instruments onboard the orbiter are categorised into

three packages. The ‘Particles & Field’ package includes solar wind electron and ion

analysers (Halekas et al., 2015; Mitchell et al., 2016), the SupraThermal And Thermal

Ion Composition (STATIC) experiment (McFadden et al., 2015), the solar Energetic

Particle (SEP) experiment (Larson et al., 2015), the Langmuir Probe and Waves (LPW)

experiment (Andersson et al., 2015) and a magnetometer (Connerney et al., 2015).

The remote sensing package contains an imaging ultraviolet spectrometer (McClintock

et al., 2015), and the final package contains the Neutral Gas and Ion Mass Spectrometer

(NGIMS) (Mahaffy, Benna, King, et al., 2015).

Already MAVEN has provided insight into the planet’s thermosphere (Mahaffy, Benna,

Elrod, et al., 2015; Stone et al., 2018), ionosphere (Benna et al., 2015; Girazian et al.,

2017), magnetosphere and solar wind interaction (Halekas, Brain, et al., 2017) and

rates of neutral (Chaffin et al., 2018; Lillis et al., 2017; Rahmati et al., 2018) and ion

atmospheric escape (Dubinin et al., 2018; Dubinin et al., 2017). From SWIA’s direct

measurements of solar wind upstream of Mars, interaction with the solar wind was

shown to be dependent on solar wind conditions and seasonal (Halekas, Ruhunusiri,

et al., 2017). Additionally, the occurrence of proton cyclotron waves upstream of

Mars has been found to vary temporally (Romanelli et al., 2016). With regards to

atmospheric loss, escape rates of oxygen atom were found to scale linearly with solar

activity (Cravens et al., 2017). Following form this work, escape rates of hot atomic

oxygen due to disassociative recombination were modelled using in situ measurements

of the ion densities and temperatures (Lillis et al., 2017). The escape rates of heavy

ions have also been modelled and the total heavy ion escape rate was calculated to be

1.2× 1025 ions/s, consistent with MAVEN measurements (Ledvina et al., 2017). Dong
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et al. (2017) used MAVEN data to investigate ion escape rates in the magnetotail and

plume, and found that the total ion escape rate is highly sensitive to the solar EUV

flux.

1.4 Plasmas

Much of the material in the Sun is in the form of ionised gas, or plasma. There are

three criteria that a material must show if it is to be considered a plasma: the plasma

frequency must be considerably higher than the collision frequency between charged

and neutral particle species; the physical size of the gas must be much larger than the

typical shielding distance or Debye length; and the number of particles with a spherical

volume with the radius of the Debye length must be large (Bittencourt, 2004). Due to

the high temperatures and relatively large number density of particles within the Sun

these criteria are easily met.

In a homogenous plasma, electrons and ions that form atoms become completely

disassociated even though the total plasma is charge neutral. Plasmas behave in a

grouped way because of the electromagnetic forces that the particles in the plasma

exert on each other, and these type of forces are referred to as ‘self-consistent’. The

main parameter that determines the dynamics of a plasma is the plasma beta. This is

a parameter that describes the relative strengths of the magnetic pressure and thermal

pressure within a plasma and is defined as

β =
nkBT

( B
2

2µ0
)

(1.1)

where n is the number density of particles within the plasma, kB is the Boltzmann

constant, T is the temperature, B is the magnetic field strength and µ0 is the

permeability of free space. In low plasma beta regimes, where β � 1, the plasma

can be considered to be near collisionless and its motion is governed by the magnetic

field (Boldyrev et al., 2021). For plasmas where β > 1 the thermal pressure is higher

than the magnetic pressure so the plasma will expand.
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1.4.1 Magnetohydrodynamics & Modelling Solar System Plas-

mas

Space plasmas can be modelled using magnetohydrodynamics (MHD). These are

modified equations of electromagnetism that account for the fluid nature of the plasma

by taking into consideration the resistivity and compressibility of the medium, and that

on average every particle in the plasma will have the same motion.

dB

dt
= ∇× (V×B) +

η

µ0

∇2B (1.2)

The equation above defines the magnetic flux of a plasma using magnetohydrodynamics

for a plasma with constant resistivity, V is the velocity of the plasma, η is the resistivity

of the plasma and dB
dt

is the magnetic flux. The ∇ × (V × B) term describes how the

magnetic flux is carried by the plasma, and the η
µ0
∇2B term describes the diffusion of

the magnetic field through the plasma as it resists the plasma’s motion. The relation

between these two terms is a useful parameter in determining the nature of the plasma-

magnetic field interaction which is known as the magnetic Reynolds number S.

S =
∇× (V×B)

η
µ0
∇2B

(1.3)

For a plasma with magnetic Reynolds number much larger than one, as is the case

with space plasmas, the plasma convection dominates and the magnetic field can be

considered ‘frozen in’ to the plasma. For a plasma with magnetic Reynolds number

much smaller than one, the diffusion of the field through the plasma is the dominating

process and the frozen in flow model is a poor approximation. Because of the large

scales in the solar system, most plasmas have a large magnetic Reynolds number and

so can be thought to have magnetic flux frozen into them. Through this behaviour,

the Sun’s interplanetary magnetic field is carried through the solar system by the solar

wind plasma as it moves outwards from the Sun, and the particles within the plasma

gyrate around their associated field line with gyroradius and gyrofrequency

rg =
mv⊥
qB

(1.4)
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Ωg =
qB

m
(1.5)

where rg is the gyroradius, Ωg is the gyrofrequency, m and q are the mass and charge

of the particle, v⊥ is the velocity of the particle perpendicular to the magnetic field line

and B is the magnetic field strength. At Mars, ions with larger gyroradii can be lost

more easily as they are picked up by the solar wind. For example, an O+
2 ion in a 10

nT magnetic field with a perpendicular velocity of 50 kms−1 would have a gyroradius

of approximately 1700 km (Kallio & Barabash, 2012). Comparitively, a H+ ion with

the same perpendicular velocity in the same magnetic field would have a gyrroadius of

approximately 50km. As the O+
2 ion has a much larger gyroradius, it would be picked

up into the solar wind much more easily.

1.4.2 Plasma wave modes

One of the most interesting features of plasmas is the large number of wave modes that

they support. In a vacuum, only electromagnetic wave modes are supported, however

within even relatively sparse plasmas such as the solar wind, a variety of other pressure

and magnetic waves can propagate because of the compressible and magnetic nature of

the fluid.

Within a magnetised, compressible fluid, one type of wave mode is Alfven waves. These

are waves that propagate with a velocity

vA =

√
B2

µ0ρ
(1.6)

where vA is the Alfven velocity, B is the magnetic field strength and ρ is the mass density

of the plasma (Bittencourt, 2004). The waves travel through the plasma without causing

any density or field strength fluctuations. The particles in the fluid feel a magnetic

tensile force towards the field line, and so the field lines oscillate due to this pressure in

a direction perpendicular to the plasma propagation direction. Because Alfven waves

do not cause any density changes or changes in magnetic field strength, they are called
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‘incompressible’ waves.

Finally, magnetoacoustic waves can propagate through a plasma also. The plasma

particles can sustain pressure waves, which can move through the plasma in the direction

that the medium was propagating. Unlike the Alfven waves, magnetoacoustic waves

are compressible and can result in a changing magnetic field strength.
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Instruments and methodology

This chapter covers the basics of some of the methods that are used throughout this

thesis. It contains an introduction to time series analysis as well as the fundamentals

of machine learning. Additionally it provides an overview of the scientific instruments

onboard MAVEN, MGS, Geotail, IMP-8, Wind and ACE that were used for the research

in this thesis.

2.1 Time series analysis

Time series analysis techniques are an essential part of gaining insight from spacecraft

data. The (mostly) continuous measurements from onboard instruments provide an

insight into the variability of the environments they sample. This analysis can be very

straightforward for series that are stationary (i.e. with no net movement up or down)

with regular time steps between points. However in reality it is rare to receive data of

this kind in space physics settings. Every measurement device, be it terrestrial or out in

the solar system, will inevitably have a period where it is not in operation and taking

measurements. Also, some spacecraft will not take measurements for a long enough

period of time that the time series will be stationary. For example, the far ultraviolet

(FUV) flux from our Sun varies during the solar cycle. If a spacecraft were to measure

only 5 years of FUV flux data, then this time series would be non-stationary as the

trend of the series would be upwards or downwards, depending on what part of the

solar cycle was measured.
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Techniques for analysis on non stationary and/or incomplete time series exist in many

forms. The choice of autocorrelation functions for the first study in this thesis was

made as it provides information on any periodicities within the time series data as

well showing any decay in the autocorrelation (Box et al., 2015). This method is

ideal for investigating the timescale of variability within the solar wind, and with small

adjustments can be suitable for time series that are inconsistent like those from orbiting

spacecraft.

Forecasting a time series involves predicting future values based on a good model of

previous measurements (i.e. one that captures the general trend of the time series

as well as the seasonality). Common methods for forecasting include autoregression,

exponential smoothing, moving average techniques and neural networks. In the next

section I will discuss my choice to use a neural network model for forecasting of solar

wind conditions.

2.2 Machine learning

Machine learning (ML) is is a branch of artificial intelligence (AI) wherein programs

can infer the best choices for a model based on patterns within the data they are

given (LeCun et al., 2015). The theory of machine learning (also known as statistical

learning) was introduced in the late 1950s (Abramson et al., 1963; Friedberg, 1958;

Samuel, 1959), but due to recent advances in computing power these methods are now

more practical to apply to data analysis problems.

Machine learning models are already well established in everyday life, being used for

recommendation systems (Song et al., 2011), speech recognition (Ganapathiraju et al.,

2004), fraud detection (Bartoletti et al., 2018; Puh & Brkic, 2019), stock market

predictions (Huang et al., 2005), image classification (Krizhevsky et al., 2017), medical

diagnostics (Cruz & Wishart, 2006; Wernick et al., 2010), traffic forecasting (Kumar,

2020), natural disaster predictions (Choi et al., 2019; Choubin et al., 2019; Kwon

et al., 2008) and many other fields. In space and astrophysics research, machine
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learning has been applied to a variety of problems including space weather forecasting

(Nishizuka et al., 2021), identifying exoplanets (Shallue & Vanderburg, 2018), and

mapping spectral features in Saturn’s gas clouds (Waldmann & Griffith, 2019). Multiple

chapters within this thesis will detail research applying machine learning methods to

datasets from Mars missions to shed light on the solar wind conditions at Mars, and so

this section will cover a brief introduction to types of machine learning and discuss the

advantages and disadvantages of this approach.

2.2.1 What types of machine learning models are there?

Today, there are an ever growing number of machine learning algorithms which are

available to use. In general, these algorithms can be sorted into types based on either

the type of data that they are used with (labelled or unlabelled) or the type of output

they produce (classification or regression). Of course there are models that do not fit

well into any of the groups, or that take characteristics of multiple groups and combine

them, but in general these groups define the types of machine learning models fairly well.

Supervised algorithms require a set of training data which has already been assessed by a

person and has been labelled. From this the machine can learn the relationship between

the input variables and the output variable. On the other hand, unsupervised models

use the unlabelled data alone to make their estimates. An example of unsupervised

learning is the clustering used in Chapter 5. This technique sorts data into groups

based only on the distribution of the data points. These models use the distribution of

data within the feature space to identify trends and groups. A fusion of the two known

as semi-supervised learning includes elements of both kinds, using both labelled and

unlabelled data for its predictions.

Reinforcement learning is a facet of machine learning wherein an agent must be able

to learn from its previous experience (Sutton & Barto, 2018). In this situation,

like in unsupervised learning, there is no labelled data from which the agent can

base its choices. However reinforcement learning differs form unsupervised learning

in that whereas unsupervised learning aims to find the structure within a data set,
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reinforcement learning aims to maximise a specific reward function.

2.2.2 Neural networks, deep learning & transfer learning

Of all of the methods of machine learning used today perhaps the most well known is

the neural network; a machine learning model that is comprised of layers of nodes that

are connected in a way similar to that of neurons in the brain. They consist of an input

layer, an output layer and any number of layers in between. The more layers between

the input and output, the more the original data has been abstracted and so the more

complex the patterns that the model is capable of learning. Each node in a network

consists of a function which is applied to the input values taken from the previous layer,

along with weights for each parameter that are also unique to each node. The output

of the function is a single value, which is passed into the activation function. After this

the output of the activation function will determine which of the nodes of the next layer

receive the data from this node. In the training process a set of training data is used to

adjust the weights of each nodes to produce the most accurate results. To determine

which outputs are the most accurate, a loss function is used to quantify the difference

between the predicted outputs and the known data labels. The aim is to minimise the

loss function, but gradients in the loss function are used to update the model weights

with the hope of improving the output. In the testing phase, the chosen weights are

used with new data to produce predictions. One of the reasons that neural networks

are so frequently used for machine learning problems is that they are very customisable

and can be applied to a large number of different problems. Both categorisation and

regression problems can be tackled using neural networks, which will produce outputs

of different kinds.

One glaring problem when applying machine learning algorithms to large data sets

is the need for feature extraction and engineering to guarantee successful application.

Feature extraction requires significant time to allow for tweaking and tinkering by hand,

which is obviously not practical when working with large amounts of data (LeCun et al.,

2015). A solution to this problem is implementing deep learning techniques; a category

of neural networks that use multiple levels of abstraction to detect higher level features
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within the data. These methods have a structure that is similar to the brain (Goldberg

& Holland, 1988), and can be more suitable when using complex data sets with a high

number of features.

An example of where deep learning is useful is in image classification. First level

features of an image are the pixel values. The first level image features are the presence

or absence of edges at specific locations in the image. The second level can detect

small repeated patterns of edges within the image. At higher levels, larger patterns

of edges that can be at bigger differences in the images can be detected. In theory,

networks with higher levels of abstraction can be applied to less carefully curated data

sets, which is preferable when there are large numbers of images such that formatting

them all manually would take a considerable amount of time.

Another use of neural networks is for a method known as transfer learning, where the

model is trained on one data set and then used on a separate, similar data set. This

method is successful as it uses knowledge learned from the previous domain and applies

it to a new related domain (Ye & Dai, 2018). These methods have been used to forecast

the electric load on the power grid (Jung et al., 2020) and to forecast traffic (Kumar,

2020).

2.2.3 Choosing a machine learning model

Although high accuracy is of course a key factor of a suitable model, other characteristics

that may help when choosing an appropriate ML algorithm may include interpretability,

computational cost and generalisation (Ahmed et al., 2010). If you would like to apply

your model to multiple datasets, then you may value a very general model. Additionally,

if your model will be used for a situation where knowing the way in which the model

makes its choice is important (for example, if you are using a model for diagnosing

illnesses) then interpretability would be a crucial factor of your model and you may

choose a self-explaining model or one with fewer layers of abstraction.
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2.2.4 Criticisms of machine learning

With the rise in use of ML techniques to a range of problems there has also been

an increase in the number of criticisms of this approach, both for academic research

and broader social applications. Many have denounced the use of ML for a variety of

reasons both due to the very nature of the models and their application to less than

ideal datasets as a quick fix or substitute for human decision making.

Many novice ML practitioners have a tendency to overfit the model to the training

data if they use only the training accuracy as the measure of determining the correct

model. Overfitting a model sacrifices its suitability to be used on dataets other than

the training data set in lieu of high accuracy in the training data set. Obviously, this

is not ideal.

Many researchers are skeptical of the use of ML techniques due to their lack of

transparency. These are ‘black box’ methods; it is impossible to tell exactly why the

model produces the answers that it does. However, there are some ways to improve

this with the use of more ‘interpretable’ models. Many of these methods are more

applicable to categorisation problems than regression, and should be implemented at

the beginning of the use of ML techniques; there is little to be done to illuminate the

reasons behind a model’s predictions after it has already been trained and fitted.

Recently there have been many examples of ML techniques applied in important social

situations where the training dataset has not been representative of the population

on which the model will be used, leading to a data bias. One practical example of

this is outlined in an article in the Harvard Business Review (Gentile et al., 2022)

that details the issues an american day care center had with a newly installed security

system based on facial recognition technology. The system regularly classified women

with darker skin tones as intruders as it failed to match their faces to the images kept

on file. This system was test mainly on pale skinned men, and as such it exhibited a

bias towards people who looked like the images it had been trained on. In a similar way,

we cannot expect a solar wind model to predict accurately conditions during periods

which are notably different from the periods it has been trained on.
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2.3 Instruments

2.3.1 Mars Global Surveyor MAG/ER

Figure 2.1: A schematic of the MGS spacecraft taken from (Albee et al., 2001).

The Mars Global Surveyor (MGS) spacecraft was launched on 7 November 1996, and

arrived at the planet on 11 September 1997 (Albee et al., 1998). With a primary aim of

mapping the complete surface of Mars for the first time, MGS mapped the magnetic field

of Mars from its mapping orbit showing the crustal field magnetic structures embedded

in the planet’s crust (Acuna et al., 2001).

The electron reflectometer instrument measures the energy and angular distribution of

electrons originating from both the solar wind plasma and the Martian atmosphere.
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The instrument also includes two magnetometers which are affixed to the edges of

the spacecraft’s solar panels (as shown in Figure 2.1) to limit interference from the

magnetic fields of the spacecraft’s own instruments. The electron reflectometer utilises

the magnetic mirror effect; an observable effect where particles are reflected in areas

of strengthening magnetic field (Mitchell et al., 2001), and measures the ratio of the

strength of the magnetic field at the altitude the electrons are absorbed at compared

to that of the spacecraft.

The three-axis fluxgate magnetometer measures vector magnetic fields using a set of

three cores that can be easily magnetised, each set up perpendicular to the other two and

wrapped in two coiled wires. In each of the set ups the core is saturated with a magnetic

field that varies with time sinusoidally. In the presence of an external magnetic field

produces an output current on the surrounding wire that differs from the input current.

The wire wrapped around the magnetometer detects the second harmonic of the core as

this can be used to derive the magnetic field direction and amplitude (C. Zhang et al.,

2020). The magnetometer onboard MGS provided the first map of the martian crustal

magnetic fields (Mitchell et al., 2007). Additionally it took measurements of the solar

wind during its aerobraking phase, during which the spacecraft dipped in and out of

Mars’ magnetosphere in its highly elliptical orbit (Brain, 2007).

2.3.2 MAVEN scientific instruments

The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft was launched on

18 November 2013 from Cape Canaveral.

Data used in this thesis came from two scientific instruments onboard MAVEN: the

solar wind ion analyser (SWIA) (Halekas et al., 2015), and magnetometer (Connerney

et al., 2015). Like MGS, the magnetometers onboard MAVEN are tri-axial fluxgate

magnetometers and provide vector measurements of the magnetic field within and near

the martian magnetosphere with a resolution of 0.008 nT (Connerney et al., 2015).

The MAVEN SWIA instrument (Halekas et al., 2015) includes a toroidal electrostatic

analyser with electrostatic reflectors. The instrument has an angular resolution of 22.5
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by 22.5 degrees for its entire field of view (a total of 360 by 90 degrees) and a much

finer 4.5 by 3.75 degrees angular resolution for an area of 45 by 45 degrees close to the

instrument’s z-axis which typically points towards the Sun. SWIA does not provide

information on specific ion species.

As the amount of data the instrument collects is too high to be sent regularly back

to Earth, the data is changed into ‘coarse’ and ‘fine’ 3D data products. The coarse

product averages the smaller angular resolution measurements to create an array with

a uniform 22.2 by 22.5 degree angular resolution and a uniform 15% energy resolution

but a maximum field of view. Alternately, the fine product uses only measurements

from the area covered by the smaller anodes producing an array with 4.5 by 3.75 degree

angular resolution and 7.5% energy resolution but a much smaller field of view. By

summing over all bins to provide a 1D energy spectrum, the flight software (FSW)

onboard MAVEN can compute additionaly information including the number density,

vector velocity, pressure and vector heat flux (Halekas, Ruhunusiri, et al., 2017). Using

the ratio of counts in the coarse and fine mode, the FSW can also determine whether

the spacecraft is within the solar wind or magnetosheath.
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Solar cycle dependence of the

interplanetary magnetic field

variability at Mars

The solar wind is a strong driver for the martian ionosphere, and as such knowing

the upstream conditions for in situ magnetospheric measurements would provide an

insight into the dynamics of the coupling. At Mars, characterising the intricacies of the

interaction between the solar wind and the martian plasma environment is particularly

difficult due to the complex interplay between the induced magnetosphere and the

embedded crustal magnetic fields creating a constantly changing obstacle to the solar

wind flow. If both the upstream solar wind and IMF conditions and the magneto-

and ionospheric dynamics of a specific moment were known, it would be much easier to

understand exactly how specific upstream conditions affect the martian magnetosphere.

Although in rare cases, two of the spacecraft currently orbiting Mars do happen to be

in a configuration where one is inside the magnetosphere and one is outside, it is far

more common that this is not the case and estimates of the upstream conditions are

required instead.

Case studies at Mars commonly assume that the IMF is steady for the periods (of

up to 3 hours) when upstream measurements are unavailable (DiBraccio et al., 2015;

Dubinin et al., 2017; Romanelli et al., 2015), or rely on magnetosheath magnetic field
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measurements as a proxy for IMF values (Dieval et al., 2014). Previously the variability

of the IMF clock angle (the angle of the IMF in the y-z plane) at Mars has been

estimated using magnetic field measurements from the magnetosheath, however this

is only suitable for measurements taken at high altitudes and low solar zenith angles

(Fang et al., 2018). Although at Mars towards and away sectors of the Parker spiral

change on average every 13 days (Brain et al., 2005), Marquette et al. (2018) showed

that the IMF is highly variable at timescales on the order of hours, so assumptions

of a steady field are often unsuitable. Marquette’s study is currently the only work

investigating the steadiness of the IMF at Mars and quantifying variability in the IMF

strength, clock angle and cone angle. Marquette and co-authors used almost three

years of MAVEN magnetometer measurements from near solar maximum (from 2014-

2017). It is unclear whether this variability is similar at all stages of the solar cycle, or

how appropriate these steady field assumptions might be for measurements from other

spacecraft. There are now almost three times as many magnetometer measurements

available from MAVEN covering a wider range of the solar cycle phases including solar

minimum. Additionally, the inter-relations between the different IMF parameters has

not been investigated. For instance, do periods of higher field strengths correspond with

steadier field orientation? By calculating the cross correlation between IMF parameters,

this study aims to answer such questions.

Building upon this previous work by Marquette et al, magnetometer data taken by

the Mars Global Surveyor spacecraft have been analyzed and compared with those

of the later MAVEN mission. These results provide an insight into the solar cycle

dependencies of the steadiness of the solar wind, and allow for more accurate estimation

of IMF properties hours after the previous measurement.

3.1 Methodology

Data for this study were taken from the MGS mission aerobraking phase (spanning

1997-1999) magnetometer measurements, while the MAVEN magnetometer data was

recorded during science phase orbits between 2014-2022 (Connerney et al., 2015) and

has been split into three periods: the downswing period of solar cycle 24 lasting from
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Figure 3.1: Graph of the sunspot number during the last three solar cycles, with the
periods of measurement from MGS and MAVEN highlighted in the purple, orange and
yellow regions. MGS measurements were taken during the rising phase or upswing
of solar cycle 23, whilst MAVEN measurements were taken during a much longer
period and have been separated into the declining phase or downswing of cycle 24,
solar minimum and the rising phase of solar cycle 25.

September 2014 to December 2017; the minimum period of solar cycle 24 lasting January

2018 to July 2020 and the upswing period of solar cycle 25 spanning August 2020 to

February 2022. Measurement periods are shown in Figure 3.1, along with the daily

sunspot numbers. The Vignes et al. (2000) model of the martian bowshock location

was used to identify times when the spacecraft was located in the IMF. To guarantee

the use of only pristine IMF measurements (or as close as possible), an additional buffer

was added to the Vignes model boundary of one Mars radii (RM or RM). The effect of
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Figure 3.2: Graph showing the number of available solar wind measurements from the
MGS and MAVEN spacecraft with the use of a range of buffer values onto the Vignes
at al. (2000) magnetospheric shock boundary model.

the buffer on reducing available solar wind data points is shown in Figure 3.2.

For this study, the IMF was parameterised in spherical coordinates, and so is described

by the field strength, clock angle and cone angle in Mars solar orbital (MSO)

coordinates. In Cartesian MSO coordinates, x is defined as the direction towards the

Sun from Mars, y is defined as antiparallel to the direction of the planet’s orbital

motion and z completes the right-handed set. In this system Bx, By and Bz are the

components of the magnetic field in the x,y and z directions respectively. The clock

angle is defined as Θclock = tan−1(By

Bz
), and describes the orientation of the field in the

plane perpendicular to the Mars-Sun line. This angle can range from -180 degrees to
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Figure 3.3: Diagram showing the clock and cone angles of the IMF.

plus 180 degrees, with 0 degrees referring to a northward field. The cone angle is the

angle of the field out of the ecliptic plane, and is defined as Θcone = cos−1(−Bx

|B| ), where

Bx is as defined above and B is the magnitude vector magnetic field of the IMF. This

angle ranges from 0 to 180 degrees: 0 degrees referring to field pointing away from the

Sun, 180 degrees referring to field pointing towards the Sun and 90 degrees referring to

field perpendicular to the Mars-Sun line. Diagrams showing the clock and cone angles

are found in Figure 3.3.

The autocorrelation functions of the field strength, clock and cone angles were calculated

using the Pearson correlation coefficients for time lags with increasing intervals of 10

minutes. For measurements of parameter X; X1, X2, X3 taken at times t1, t2, t3, the

autocorrelation coefficient r for a specific time lag ∆t is given by

r∆t =
ΣN−∆t
i=1 (Xi −X)(Xi+∆t −X)

ΣN
i=1(Xi −X)2

(3.1)

where N is the number of measurements of parameter X and X is the mean value of
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parameter X.

Because of the elliptical orbits of the MGS and MAVEN spacecraft at Mars,

measurements of the IMF are intermittent. To remove any effects this might have on

the autocorrelation results, data from both spacecraft were averaged and resampled at

a frequency of one measurement per minute. The Mars Global Surveyor data coverage

includes three large gaps within the data set of around one month each and so these

periods were excluded from the analysis. Elsewhere, minutes during which there were

no measurements were ignored when calculating the autocorrelation values. Using

1/e as a minimum value for the IMF to be considered autocorrelated, decorrelation

times were calculated and compared to the previous Marquette et al. (2018) study.

To investigate whether certain values of these properties had stronger correlation than

others, subsets of the data were created by splitting measurements based on cone angle

and field strength.

Xestimate = X̄ + r(X − X̄) (3.2)

Using this method, there is a clear periodicity in the autocorrelation functions that is

due to the spacecraft orbit. As MAVEN has a consistent orbital period of approximately

4.5 hours, the periodicity in the MAVEN autocorrelation functions is very clear. To

minimise effects of the orbital period on the autocorrelation function, a sixth order

polynomial of the form

r(∆t) = a0 + a1∆t+ a2(∆t)2 + a3(∆t)3 + a4(∆t)4 + a5(∆t)5 + a6(∆t)6 (3.3)

where ∆t is the time lag and a0, a1, a2, a3, a4, a5 and a6 are coefficients, was fitted to

the data with points weighted by the number of available measurements at that time

lag. Particularly for MAVEN, as there are fewer periods of available measurements

with time lags around half the period of the spacecraft’s orbit, these measurements are

less influential to the final polynomial. An example of the calculated autocorrelation

values for each time lag and the polynomial best fit associated are shown in Figure 3.4.
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Figure 3.4: An example graph showing the calculated autocorrelation values for the
MAVEN downswing field strength and the best fit sixth order polynomial. Polynomial
fits for other time periods and IMF components can be found in the appendix.

Similar graphs for all other parameters can be found in the appendix of this thesis.

The error in estimating a component (e.g. the field strength) of the magnetic field at a

time after previous measurement was calculated as

σestimate = σdata
√

1− r2 (3.4)

where σdata is the standard deviation of the component for the entire data set and r is

the autocorrelation value at the given time lag.
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3.2 Results

3.2.1 Distribution of IMF values

Figure 3.5 shows the relative distributions of IMF strength, clock angle and cone angle

measurements during the MGS and MAVEN measurement periods. This plot shows

that the distribution of measured IMF strength has a similar peak for the MGS and

MAVEN datasets, except for the most recently measured dataset showing the increasing

phase of solar cycle 25. This upswing section of MAVEN measurements shows higher

IMF strengths to be much more common, with a peak strength of approximately 6 nT

compared to 2.5 nT to 3 nT for all other datasets. Additionally, all MAVEN datasets

measured a larger proportion of higher field strengths than the MGS dataset.

The central panel of Figure 3.5 presents the distribution of clock angles observed by

MGS and MAVEN. Measurements from MGS show westward (negative) clock angles

to be more frequently observed than eastward (positive) clock angles. The MAVEN

measurements had a more pronounced eastward-westward asymmetry, however the

peaks in the distribution remained at the same angles (approximately -160 and +160

degrees) for all sets of measurements except for the most recent MAVEN upswing

dataset.

The distribution of measured cone angles for the two spacecraft is shown in the lower

panel of Figure 3.5. MGS regularly measured a distinctly smaller range of cone angles,

with a tighter distribution centred around 100 degrees. Data from MAVEN datasets

(excluding the upswing dataset) shows a broader distribution, with angles close to

parallel to the Sun-Mars line making up a larger proportion of the total measurements.

The upswing MAVEN data shows a starkly different distribution, with angles near the

ecliptic plane making up a much higher proportion of measurements than those far from

the ecliptic plane. This distribution has peaks at angles of 25 and 155 degrees.

3.2.2 IMF Variability

The autocorrelation times of the MGS and MAVEN IMF strengths are presented in

the upper panel of Figure 3.6. Measurements of the IMF properties are considered
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decorrelated (i.e. no longer influenced by previous conditions) once their autocorrelation

value is equal to or below 1/e (approximately 0.37), which is shown as a dotted line

on the panels of the figure. The time taken for this to happen is referred to as

the ‘decorrelation time,’ and is a useful measure in characterising and comparing the

variability of different IMF characteristics. MGS was autocorrelated for significantly

longer than that of the complete MAVEN dataset, with decorrelation times of 6

hours and 1.5 hours respectively. Of the MAVEN periods, both the downswing and

minimum periods have decorrelation times similar to the complete MAVEN dataset.

The upswing period of MAVEN was decorrelated much faster, with a decorrelation time

of approximately 30 minutes.

The IMF clock angle autocorrelation functions are shown on the middle panel of Figure

3.6. All of the MGS and MAVEN datasets have very similar clock angle autocorrelation

functions, which decorrelate at time lags between 30 minutes and one hour. The bottom

panel of the figure shows the autocorrelation functions of the cone angles.

Similar to the IMF strength functions, the MGS cone autocorrelation function is

correlated for much longer time periods than the MAVEN autocorrelation functions,

with a decorrelation time of 6.5 hours. MAVEN autocorrelation functions for all

periods other than the upswing have decorrelation times of 1.5 hours, with the upswing

decorrelation time being around 20 minutes.

Panels on the left side of of Figure 3.7 present the autocorrelation functions of the field

strength, clock angle and cone angle separated by IMF strength. The IMF strength

has been split into 4 regimes: low (0-2.25 nT), mid (2.25-3.5 nT), high (3.5-4.75 nT)

and extra high (4.75+ nT). Autocorrelation function in this figure are shown only up

to 6 hour time lags to focus on time periods used in estimating these values during

an orbit of MAVEN. For the IMF strength autocorrelation functions, shown in the

upper left hand panel, the maximum decorrelation time for any data set was 2 hours

for the low strength and high strength sub sets. This suggests that the IMF strength is

highly variable even over these small time periods of a few hours and that estimating

the upstream IMF to be constant is unsuitable even for only a few hours since the
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last measurement. The clock angle autocorrelation functions, shown in the middle left

panel, have an even shorter decorrelation times than the IMF strength with the mid

strength subset having a decorrelation time of 1.5 hours and other subsets having times

of 40 minutes. The low strength cone angles have the highest decorrelation time of 4

hours, with all other field strengths having cone angles that are decorrelated at time

lags between 1 and 2 hours.

Panels on the right side of of Figure 3.7 present the autocorrelation functions of the

field strength, clock angle and cone angle separated by cone angle. Cone angles are split

into 3 regimes: parallel/anti-parallel (less than 30 degrees out from the Mars-Sun line),

middle (between 30 and 60 degrees from the Mars-Sun line) and perpendicular angles

(over 60 degrees from the Mars-Sun line) with respect to the ecliptic plane. Parallel and

middle cone angles seem to be autocorrelated for longer periods, with perpendicular

cone angles being the fastest to decorrelate. This might be expected, as under quiet

solar conditions Parker spiral configurations suggest that the IMF should lie close to

the ecliptic plane, and should only vary with regards to the change between towards

and away sectors of the IMF every 13 days. The prime sources of IMF oriented out of

the ecliptic plane are ICMEs and interacting streams, which would be associated with

much more variability and would therefore be expected to have lower autocorrelation

values.

3.2.3 Estimates and errors

Using the autocorrelation functions from the above graphs estimates of the IMF

strength, clock ang cone angles are shown in Figure 3.8. They are calculated using

equations 3.2 and 3.4 given in the methodology section of this chapter. As the

autocorrelation function decreases, the estimates tend to the mean value measured for

each component of the IMF, and the error of estimate tends to the standard deviation.
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3.3 Discussion

The MAVEN mission measured IMF cone angles that were less variable and more

commonly found close to perpendicular to the Mars-Sun line compared to the MGS

measurements. This is consistent with faster, stronger wind which would be expected

around solar maximum (Rickett & Coles, 1991). The steadier wind near solar maximum

will be more easily propagated to later times to produce reliable estimates of upstream

conditions. Alternately, this configuration of IMF is also expected in pile up regions

(Bertucci et al., 2004). As the model of the Martian bowshock used in this study

to remove measurements inside the planet’s magnetosphere was based on bowshock

crossings from Mars Global surveyor, it is possible that this model is less suited to

MAVEN measurements and has classified sections of draped IMF as pristine IMF

measurements. It is unlikely however that the model would be so unsuitable that

it would cause such a stark difference between the MGS and MAVEN data sets,

particularly as previous analysis of the bowshock terminator position during the period

of MAVEN measurement found maximum variations of 0.5RM during a complete solar

cycle(Hall et al., 2019).

Field strength autocorrelation values show that the magnetic field measurements from

MGS remain autocorrelated for distinctly longer than the measurements from MAVEN.

The MGS data was taken during the upswing period of solar cycle 23, however Figure

3.1 shows that the solar activity levels during this period were higher than during the

upswing period of cycle 25 which was measured by MAVEN. This could be explained as

higher activity periods will have a higher proportion of fast ambient solar wind streams

(which are associated with coronal holes). The slower ambient wind has a more intricate

magnetic field structure, which could cause less autocorrelation and more variability

(Cranmer, 2005). The upswing subset of MAVEN measurements had a much faster

decorrelation time, but contained a higher proportion of measurements that were at a

higher field strength and angles near the ecliptic plane. Higher field strengths would

suggest energetic events, but these would typically have cone angles out of the ecliptic

plane.

The clock angle autocorrelation function was decreased sharply for all MGS and
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MAVEN measurement periods. When separated by field strength, clock angle

decorrelation times were the same for all field strengths except for mid strength. This

suggests that the orientation of the field in the x-y plane is not affected by the field

strength or the solar cycle and is consistently variable. Outside of energetic events like

CIRs and ICMEs, IMF clock angle is mostly dependent on the Parker spiral structure

in the IMF. It might be expected that as energetic events occur more frequently during

periods of higher solar activity, the clock angle should therefore decorrelate faster during

these periods. However, this does not agree with our results, suggesting that these

relatively rare events have only a small impact on the total autocorrelation functions

during this time.

The cone angle is correlated for a much longer period for MGS measurements than

MAVEN ones, and again the MAVEN upswing period is decorrelated much faster than

other MAVEN datasets. In general, splitting the IMF measurements by cone angle has

little effect on the decorrelation time. Periods where the cone angle is near perpendicular

to the ecliptic plane are slightly faster to decorrelate, which is expected as these angles

of IMF are associated with energetic events which will be inherently more variable.

Overall, these autocorrelation functions suggest that assumptions that the IMF is

steady over the periods of one MAVEN orbit are highly unsuitable in all cases except

predicting cone angles during low field strengths. However it may be suitable to assume

the IMF strength and cone angle are constant between MGS orbits, depending on the

configuration of the orbit and how long the spacecraft is within the magnetosphere.

Differences in the variability occur between solar cycles, as we see in the comparison

if data from MGS and MAVEN, as well as difference in the frequency of observed

strengths, clock angles and cone angles between the upswing periods of solar cycles

23 and 25. Although the MAVEN measurements have likely been affected by the

periodicity of the calculated autocorrelation functions, the polynomial fits capture

accurately the general trend of the data, which is the most important aspect when

comparing the function to determine differences in the variability between the field

components. When comparing MAVEN measurements to other MAVEN measurements

this should not be an issue, but it is unclear how much this affects the direct
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comparison between the MAVEN measurements and those from MGS, where the

changing orbit (and decreasing orbital period) has negated any obvious periodicity

in the autocorrelation functions.

3.4 Conclusions

• The upswing period of MAVEN measurements contained higher field strengths

and southward IMF orientations much more frequently than any other period of

measurements

• Field strengths and cone angles measured by MGS were much steadier than those

measured by MAVEN, even during similar stages of the solar cycle.

• The clock angle is decorrelated in approximately an hour irrespective of the

measurement period, suggesting that the clock angle variability is unaffected by

the solar cycle.

• Periods of lower field strengths have more stable IMF strength and cone angle

conditions compared to periods of mid, high and extra high field strengths.

• Periods when the cone angle was perpendicular to the ecliptic plane were more

variable in all three components of the IMF compared to periods when the cone

angle was parallel to or up to 60 degrees out of the ecliptic plane.

• In general, assuming the IMF to be steady is unsuitable for periods of more than

one hour since the last measurement for all MAVEN measurements or 6 hours

since the last measurement for MGS strength and cone angle measurements.
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Figure 3.5: Kernel-smoothed probability density graph showing the distribution of ten
minute averaged IMF field strength, clock angle and cone angle measurements taken
by Mars Global Surveyor and MAVEN. The y-axis denotes the probability of the IMF
measurements to be a given value at a random time (i.e. the probability that MGS
measures the IMF strength to be 2.5 nT at a random time is approximately 0.22).
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Figure 3.6: Graph showing the autocorrelation functions of the IMF strength, cone
angle and clock angle for data from MGS and MAVEN.
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Figure 3.7: Graph showing the autocorrelation functions of IMF strength, clock angle
and cone angle measurements at varying time lags taken by MAVEN and separated by
strength and cone angle.
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Figure 3.8: Graph showing estimates of the IMF strength, clock angle and cone angle
at times up to 6 hours after the previous measurement. Different colours in the upper
and lower panels show the estimates for different field strengths and cone angles. The
dashed lines show the mean values of the IMF properties as observed by MAVEN. The
shaded regions show the errors in the estimates.
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Predicting solar wind conditions

using deep learning

The aim of this study is to produce a model suitable for hindcasting solar wind

conditions at Mars during periods where no in situ measurements are available.

During these periods, where spacecraft such as MAVEN will be inside the martian

magnetosphere, additional estimates of the upstream solar wind conditions will improve

our understanding of solar wind drivers on the martian plasma environment.

Previously, work using an artificial neural network (also referred to as simply a neural

network or NN) has been used to predict average solar wind conditions based on

measurements taken in the magnetosheath region (Ruhunusiri et al., 2018). Although

the model in this study is successful, in order to provide training data of both the

magnetosheath conditions which the model takes as input and solar wind conditions

which it aims to predict, it assumes solar wind conditions to be relatively constant

during an orbit of MAVEN. The work shown in Chapter 3 of this thesis shows that this

is not a suitable assumption to make in most cases.

This study builds upon the concept of utilising machine learning (specifically a NN) to

improve current abilities to estimate solar wind conditions upstream of Mars, whilst also

providing higher time resolution in the predictions in attempt to capture the inherent

variability within solar wind conditions.
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4.1 Data & Methodology

Measurements for this study were taken from the MAVEN spacecraft. Measurements

taken inside the magnetosphere were removed and the measurements were averaged

over a period of 30 minutes. The period of over which the measurements were taken

is from 21 September 2014 to 22 February 2022. Because the model requires periods

of nine consecutive (30 minute averaged) measurements, only a small percentage of the

total MAVEN measurements can be used. A period was deemed suitable if half-hour

averaged values were available for the full four and a half hours for all of the properties

measured. Of 130,167 possible four and a half hour periods of measurements, 48,758

periods were suitable for using in the model.

4.1.1 Model Specification

The deep learning model takes data from three time steps prior to the prediction period

and two time steps after as inputs to predict the four time steps in between. Four

measurements spaced 30 minutes apart were chosen for the prediction period as two

hours is the time average period that MAVEN spends inside the magnetosphere on

a typical orbit. This prediction period allows for our model to be trained on and

applied to the most orbits possible. Although it would be preferable to have a higher

temporal sampling frequency, the complexity of the neural network is proportional to

the number of neurons squared, meaning that it can quickly become too large to be

trained in a reasonable time frame. The model takes as both input and output the

vector interplanetary magnetic field, vector velocity, proton density and temperature

and dynamic pressure of the solar wind.

The input matrix of MAVEN observations I =
(
Xt=1 Xt=2 Xt=3 Xt=8 Xt=9

)
The output matrix of values for the model to predictO =

(
Xt=4 Xt=5 Xt=6 Xt=7

)
where Xt is column vector containing the measurement of each of the nine solar wind
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Figure 4.1: Diagram of the model structure.
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properties in the model taken at time t such that Xt =



Bx,t

By,t

Bz,t

vx,t

vy,t

vz,t

np,t

Tp,t

Pt



Figure 4.2: Example of how a convolutional layer transforms an input array. Taken
from (Singh et al., 2020).

The choice of a convolutional neural network for this study was made as these networks

are the most suitable at identifying and extracting high level features from input data.

The structure of the neural network used in this study is shown in Figure 4.1. The

convolutional layers convolve a one dimensional kernel (also called a filter) with the

inputs to their layers. These layers change an original single tensor into a ‘feature

map’ which is comprised of the dot products of the convolving kernel with portions of

the original array. After each convolutional layer, there is a max pooling layer which

decreases the size of the input array by taking the max value from each portion of

the array and removing all other values from the section. Example transformations of

convolutional and max pooling layers and shown in Figures 4.2 and 4.3.
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Figure 4.3: Example of how a max pooling layer transforms an input array.

The model uses a mean squared error loss (MSE) function, which is defined as

MSE =
1

N

N∑
i=0

(yi − ŷi)2 (4.1)

where y is the value of a parameter measured by MAVEN, ŷ is the value of the same

parameter predicted by the model and N is the number of predictions. The MSE is

a measure of how far away the model’s predictions are from the measured values it

was predicting. This loss function (also known as the objective function when talking

about the optimising algorithm) is the function that the model aims to minimise during

the training period to produce the most accurate model. The optimiser chosen for

this model is the adaptive moment estimation (ADAM) algorithm. This method is a

variation of the gradient descent method, which is used to choose the weights for the

model to improve its accuracy. Unlike the traditional gradient descent methods, this

method computes adaptive learning rates for each parameter, and this has been shown

to be an effective algorithm for CNNs (Kingma & Ba, 2015).
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Figure 4.4: Graph showing the training cost of a CNN, run using various optimiser
algorithms to predict the CIFAR-10 dataset. Taken from Kingma and Ba (2015)

The architecture of the network is fairly simple, with an input layer, a convolutional

layer, a max pooling layer, another convolutional layer, another max pooling layer, a

dense, fully connected layer and nine fully connected outputs, one for each SW property

predicted, each with four neurons. Figure 4.1 shows a visual representation of the model

architecture. The model uses the rectified linear unit (ReLU) activation function for

the nodes, performing the function

ReLU(x) = max(0, x) (4.2)

on input values. This function is preferred for deep neural networks over the more

common tangential, sigmoid or linear transfer functions as it converges quickly and

reliably (Dahl et al., 2013).

To quantify the benefit of using the transfer learning model, a separate model with the

same structure was trained on only the available in situ data from MAVEN. Figure

(enter figure reference here) shows the mean average error (MAE) for the predictions

of each of the seven properties of the solar wind at each forecasted time step for both

the model trained on OMNI Earth data and the model trained on MAVEN Mars data.
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4.2 Results

4.2.1 Model accuracy

Figure 4.5: Graph showing the root mean squared error (RMSE) of the model’s
predictions for each parameter and time step.

Figure 4.5 shows the root mean squared error (RMSE) for the predictions of each of

the nine properties of the solar wind at each time step for the model. These values are

averaged over the entire test set and do not include errors associated with the original

measurements by the spacecraft instruments. All properties have small RMSE values
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for all time lags, Particularly, all three components of the velocity have RMSE values of

less than 0.8km/s for all time lags, which is a small percentage of the velocities which

range from -600 km/s to 10 km/s for the x component and and -100 km/s to 105 km/s

for the y and z components.

Figure 4.6: Histograms showing the distribution of differences between the model’s
predicted values and the measured values from MAVEN. The total number of
measurements in each histogram N = 682654.

Figure 4.6 shows a histogram of how far each of the predictions was from the measured

values in the test set. Approximately 29% of Bx predictions, 37% of By predictions
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Figure 4.7: Graph showing the distribution of IMF values in both the training and test
sets for the interplanetary magnetic field measurements.

and 42% of Bz predictions are less than 1 nT away from the measured values. For the

velocity, 18% of vx predictions, 21% of vy predictions and 31% of vz predictions were

within 10kms−1 of the measured velocities. 15% of the proton density measurements

were within 1cm−3. 10% of the proton temperature measurements were within 1 eV.

70% of dynamic pressure measurements were within 1 nPa of the measured values.

These results show that the model can accurately predict many of the input values but

doesn’t provide close predictions for all of the test data. Figures 4.7, 4.8 and 4.9 show

the distribution of measured values in the training and test sets.
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Figure 4.8: Graph showing the distribution of solar wind velocities values in both the
training and test sets for the solar wind velocity measurements.

4.2.2 Model generalisability

To make sure that this model is suitable for using for a range of solar wind conditions

and periods of the solar cycle, it should be trained well enough that it can approximate

the behaviour of the solar wind components in the training set, but not so well that it has

learned to reproduce exactly the training data and will be unable to predict new data

it has not been trained on (known as overfitting). Methods of ensuring generalisabilty

that are used in this study are limiting the amount of training data, such that the

model will not have enough measurements to use to become overfitted, and simplifying

the model by removing unnecessary layers and neurons.

The difference in mean squared errors of the models with one, two or three fully

connected layers after the convolutions was minimal. By choosing to use the model

with only one fully connected layer, we are keeping the model in a simpler form that
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Figure 4.9: Graphs showing the distribution of values in both the training and test sets
for the proton density, proton temperature and dynamic pressure measurements.

will make it inherently more general.

Figure 4.10 shows the loss values for the training and test sets for each of the predicted

properties of the solar wind for models trained on different percentages of the total

data. As the model is trained on larger percentages of data, the loss in its predictions

decreases and the loss on the test data increases. This is indicative of the model being

overfitted; it is learning to reproduce exactly the training data but will not be able to

successfully predict any new data. To stop this, the model in this study was given a

65/35 train/test split (with no overlap between the training and testing data) to negate

overfitting but allow for the model to learn a general view of the solar wind properties

and how they evolve with time.
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Figure 4.10: Graph showing the loss (both total and for each solar wind component).

4.2.3 Case studies

4.2.3.1 21 November 2018

To get a better understanding of how this model would be used in practice, two case

studies taken from the test dataset are detailed in this section. The predicted values

64



Chapter 4. Predicting solar wind conditions using deep learning

Figure 4.11: Graph showing the values of the magnetic field, velocity, proton density,
temperature and dynamic pressure of the solar wind measured by MAVEN on 21
November 2018, shown in grey. Model prediction and errors are overlaid in pink.
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Figure 4.12: Graph showing the solar wind values predicted by the Tao et al model on
21 November 2018. BT = sqrt(B2

y + B2
z), vT = sqrt(v2

y + v2
z)

from our model are also compared against the model specified in Tao et al., (2005).

The first case study is taken from a period of ambient solar wind conditions, and shows

predictions of the typically low values of each of the parameters. Measurements from

MAVEN and the model predictions are shown in Figure 4.11. The error bars show the
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RMSE of each parameter at each time step as shown in Figure 4.5. With the exception

of the x velocity, all parameters are predicted accurately, with the measured values

within the uncertainties on the predicted measurements. The model underestimates the

velocity of the solar wind in the x direction, however the prediction from the Tao model

shown in Figure 4.12 overestimates (underestimates) this component of the velocity to

a similar degree.
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4.2.3.2 21 February 2019

Measurements from MAVEN and the model predictions for this case study are shown

in Figure 4.13. This case study shows a small period of rapidly undulating magnetic

field measurements around 08:15 to 08:45 as well as increased x velocity and enhanced

proton densities and temperatures. Unfortunately the model completely misses the

period of variable field strength and orientation, however as this was during a short

period of time it is questionable how visible this disturbance would be within a 30

minute averaged time series. The model captures well the general increase in the x

component of the velocity, while the Tao model predicts the x velocity to be positive

and fairly constant in the same period (as shown in Figure 4.14. Both this model

and the Tao model predict near zero values for the temperature, density and dynamic

pressure, however this model does predict negative dynamic pressure values at 09:00,

which are not physically possible.

4.3 Transfer learning model

In an attempt to improve upon the model detailed above, a second model with the

same architecture was trained on OMNI data measured at Earth. Utilising the process

of transfer learning, where a ML model trained on data from an original domain is

applied to data from another related domain, it was intended to increase the accuracy

of the model above due to the many years of available in situ solar wind measurements

available at Earth.

To determine whether there was a benefit to using the OMNI data would improve the

model’s predictions, the mean average errors were calculated for this model and the

percentage decrease in the mean average error was calculated for each of the solar wind

parameters compared with the results of predictions from the model trained only on

MAVEN data. The results of this analysis are shown in Figure 4.15. The y and z

components of the solar wind velocity and the density showed a small improvement in

the accuracy of up to 2% and the dynamic pressure predictions had an accuracy that was

increased by 8%. Unfortunately, all three components of the IMF and the x component

of the solar wind velocity had a decreased accuracy (between 2% and 6% worse) when
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trained on OMNI data, and the difference to the proton temperature predictions was

negligible. As such, in this case it was deemed that there was no improvement on using

OMNI data to train the model.

4.4 Discussion

This data-driven model has been successful in predicting properties of the solar wind

at Mars with good accuracy compared to the physics-based Tao propagation model

which is used currently. The Tao model assumes that the solar wind structure is

conserved during solar rotation, and as such for periods of variable solar wind conditions

the accuracy of this model is decreased. This is noticeable in the second case study

presented in this chapter, where the velocity predictions from the Tao model were

considerably different from the in situ measurements from MAVEN.

Obvious disadvantages of the model presented in this chapter are that it has no

boundaries or restraints to predict only physically possible values, and its usability

is limited by its sparse time sampling. Smaller time steps, such as ten minutes, five

minutes, or even one minute, would allow the model to be able to produce more complex

predictions of the solar wind. However, a more complex model will likely take much

longer to train. The training of the main model for this study took 10 hours on a dual

core computer, and we might expect that training a model with solar wind average every

10 minutes rather than every 30 would take at least three times as long and possibly

over 100 hours. Using a computer cluster would greatly decrease the computational

time. For example, the high energy cluster at Lancaster University contains 8,800 cores

and so may be able to train this model in a matter of minutes rather than days.

As this model uses input data from both before and after the prediction period (which

is not true of SW propagation models) it has the unique possibility to be able to predict

the beginning of energetic solar events if only measurements of the end of the event

are available and vice versa. However, there are still many amendments to the model

which may improve its results. Some possible improvements are detailed in the section

below.
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4.4.1 Improving the model by integrating physics

In the past few years, models that are hybrids of data driven and physics based models

have begun to appear in research in a variety of areas including climate modelling

(Kashinath et al., 2021), physical chemistry (Noé et al., 2020) and fluid dynamics (Cai

et al., 2021). These physics-informed ML models improve upon traditional ML when

applied to physical problems by being more generalisable, and quantifying uncertainties.

Methods to introduce physics into ML models include using customised loss functions

that penalise unphysical predictions; using customised model architectures (particularly

in NNs); embedding suitable symmetries, invariance and equivariance within model

inputs outputs; and integrating the frameworks of existing physics-based models into

the ML model. These are a range of ‘soft’ and ‘hard’ constraints, making the models

either heavily biased against unphysical predictions (soft) or incapable of making them

(hard).

With regards to this model, using a custom loss function would be a simple adjustment

to our model to bias the prediction towards physically possible values. Penalising

negative density, temperature and pressure predictions by weighting the loss functions

heavily against them would be quick to implement. However, as this is a ’soft’ constraint

this does not guarantee that unphysical, negative values would never be predicted but

rather that they would be less likely. With more effort, additional layers enforcing

physical predictions could be added to our model.

The nature of CNNs means they are always equivariant with respect to shift (in this

model this corresponds to a time shift of the measured parameters). In this sense,

the model in this study already has a physical equivarance embedded within it. A

regularly critiqued property of CNNs is that they are not translation invariant. In an

image classifying task, this might mean that two similar pictures of the same subject

might be differently classified if the subject is in a different portion of the image. For a

regression task like the one in this study this is not an issue as the different rows within

the input array represent different solar wind properties. For example, measurements

of low velocity and measurements of low density would denote different conditions and

so it would not be expected that they would produce the same predicted values.
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Regarding uncertainty quantification, this study uses the root mean squared error

of the test data separated by time step. In practical use of this model, there may

not be a test data set and so this method would not be possible. Also, the mean

RMSE provides an estimate of only the epistemic uncertainty (the uncertainty caused

by the model, similar to the systematic uncertainty) and does not take into account

the aleatoric uncertainty (the uncertainty due to the inherently stochastic underlying

physical processes of the solar wind (Hüllermeier & Waegeman, 2021). To get a more

reliable estimate of the uncertainties associated with this model, fitting multiple models

trained on different, smaller portions of the same data would produce a group of models

with different predictions for each time step. The epistemic uncertainty could then

be estimated from the set of predictions for each parameter and time step. This

process is know as bootstrap aggregating or ‘bagging’ (Caldeira & Nord, 2020), and

would be straightforward, although time consuming, to implement. To estimate the

aleatoric uncertainty, a similar method can be used adding poise to the input data and

quantifying the difference to the predictions.

4.5 Conclusions

• This study acts as a proof-of-concept for the use of artificial neural networks to

hindcast solar wind conditions.

• Case studies show that the model can predict solar wind conditions more

accurately than the Tao propagation model in some cases.

• Training the model on in situ solar wind data from Earth decreased the

accuracy of the model overall. In particular all components of the IMF had

decreased prediction accuracy when trained on OMNI data, suggesting that the

configuration of the IMF is notably different from Earth by the time it reaches

Mars.

• The half hour averaging of the solar wind data causes the model to miss some

of the faster periods of variability within the solar wind data. To improve this,
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sampling frequency could be increased, however this would mean that the model

took longer to train.

• This model could be made more accurate by restricting the predictions to physical

values only (i.e. no density measurements below 0).
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Figure 4.13: Graph showing the values of the magnetic field, velocity, proton density,
temperature and dynamic pressure of the solar wind measured by MAVEN on 21
February 2019, shown in grey. Model prediction and errors are overlaid in pink.
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Figure 4.14: Graph showing the solar wind values predicted by the Tao model on 21
February 2019. BT = sqrt(B2

y + B2
z), vT = sqrt(v2

y + v2
z)
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Figure 4.15: Bar graph showing the percentage improvement in the mean average
error when training on OMNI data rather than MAVEN. Bars coloured green had a
decreased error for the OMNI model compared to the MAVEN model, whereas red bars
show parameters that had an increased error when trained on OMNI data compared to
MAVEN.
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Interplanetary magnetic field

orientation preferences observed by

Mars Global Surveyor and MAVEN

The effect of the IMF orientation on the martian magnetosphere has been well

researched. Rapid and maintained change of the IMF cone angle, the angle between the

IMF orientation and the Sun-Mars line, has been shown to change the orientation of

the magnetosphere resulting in large movements in the magnetotail (Romanelli et al.,

2018). Changes in field orientation have also been shown to cause twisting of the

magnetosphere due to the different reaction times of sections of the magnetosphere

(Modolo et al., 2005). The IMF angle also controls the fluctuations of the foreshock.

Density and magnetic field strength fluctuations are caused in areas where the IMF

direction is normal to the bowshock surface as ions are reflected from or accelerated at

the bowshock surface (J. Luhmann & Brace, 1991).

Clearly, the IMF orientation is an important factor in the interaction with the martian

magnetosphere, but measurements of the field at this distance from the Sun are scarce.

Current models of the IMF at this distance assume it to be steady and slow changing,

with the main structure cause by the Parker spiral pattern of towards and away field

sectors. These sectors change on average every 13 days (Brain et al., 2005). However,

more complex structure within the magnetic field can be caused by energetic events such

76



Chapter 5. Interplanetary magnetic field orientation preferences observed by Mars
Global Surveyor and MAVEN

as interplanetary coronal mass ejections (ICMEs) and corotating interaction regions

(CIRs). In order to better understand how big a role these events play in the solar

wind at Mars, a larger and more complete data set of IMF conditions would be needed.

A statistical study by D. Liu et al. (2021) calculated the distributions of values of solar

wind properties for high and low solar activity levels. Their study found differences

between the most frequent values of the solar wind clock angle and cone angle for high

and low solar activities. Unusually, this study has chosen to define the cone angle for the

range of 0◦ ≤ θcone ≤ 360◦ rather than the commonly used range of 0◦ ≤ θcone ≤ 180◦.

This study searches for preferences in IMF orientation in measurements representing

the typical, ‘ambient’ solar wind and rarer energetic events. Using Gaussian mixture

modelling to group subsets of data with similar properties into clusters, this study

investigates the orientations of these clusters to show the typical IMF structure of

different data subsets.The interplanetary magnetic field measurements are used to

determine the typical orientations of broad types of IMF, including low strength and

steady direction, low strength and changing direction and high strength.

5.1 Methods and Data

5.1.1 Data Selection

Magnetometer and spacecraft location data from the Mars Global Surveyor and

MAVEN missions have been used in this study. As in other chapters, the Vignes

et al. (2000) model of the martian bowshock location was used to remove data

collected inside the magnetosphere. Only measurements where all parameters were

available are suitable for use in the clustering algorithm, so periods when one or

more of the spacecraft’s instruments are inactive were removed. This study uses data

from September 1997 to March 1999 from the Mars Global Surveyor spacecraft and

September 2014 to December 2017 from the MAVEN spacecraft.
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5.1.2 Gaussian Mixture Modelling

This study utilises a machine learning technique known as Gaussian mixture modelling;

an unsupervised machine learning method where similar data points are grouped

together based on their distribution of the points and a number of user-specified

parameters. In this study the aim was to find and group similar measurements within

the solar wind magnetic field measurements upstream of Mars, to find patterns or

similar characteristics within smaller data clusters that might be hidden in an analysis

of the entire data set.

Although there are a range of clustering algorithms available, one of the most common

is the expectation maximisation (EM) algorithm (Dempster et al., 1977). This is an

iterative algorithm which cycles through two steps: expectation and maximisation.

During the expectation step, the current model parameters are used to calculate the

maximum likelihood estimation for the data (i.e. what is the likelihood that these

clusters with given means and variances produced the data we have measured?).

The likelihood estimate is similar to a probability density estimate, with a few

notable differences. Unlike probability density functions, likelihood functions are not

normalised. Also, a likelihood function shows the likeliness of different parameters

in your distribution, whereas a probability density function which shows how likely a

particular outcome is. In the maximisation step, the model parameters are adjusted

to maximise the likelihood for the data. In this application, the speed and efficiency

of the EM algorithm, as well as its ability to create clusters with similar centers and

a range of shapes, make it a common choice for data clustering over the simpler but

more limiting method of k-means clustering (Fraley & Raftery, 1998).

The measurements were clustered based on their cone angle changes and field strengths.

Separating measurements by field strength will provide insight into differences in

the orientation of the IMF during ambient solar wind conditions and more energetic

transient events. Additionally, clustering by the change in the cone angle between two

consecutive measurements will differentiate between periods of variable field orientation

and steady field orientation. As mentioned in Chapter 3, the primary source of solar

wind with cone angles out of the ecliptic plane is energetic events such as CIRs and
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Figure 5.1: Using the Bayesian information criterion (also known as the Schwarz
Bayesian information criterion or SBIC) scores of a range models including up to 10
clusters, 7-10 was chosen to be a suitable range to describe the Mars Global Surveyor
(panel a) and MAVEN (panel b) data sets.

ICMEs and so this study will determine if there is a preference in the IMF orientation

during these events.

As the Gaussian mixture models with between 2 and 10 components and based on the

EM algorithm described above were fitted, and a range of suitable models were chosen.

Figure 5.1 shows the Bayesian information criterion (BIC) for these models. In general

the BIC is given by

BIC = kln(n)− 2ln(L̂) (5.1)
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where k is the number of parameters estimated by the model, n is the number of data

points and L̂ is the maximised likelihood function. The BIC can be thought of as a

balance between the deviance and the complexity of a model. The term kln(n) describes

the complexity of the model, with models that have more estimated parameters having

higher values and as such higher BIC scores. The term 2ln(L̂) estimates the accuracy

of the model, and penalises models that do not describe the observed data well. Low

BIC scores suggest the estimated parameters well describe the observed data, and as

such are the ’best fit’ models for that specific problem. In this case, the BIC scores

for models with different numbers of clusters are plotted to find how many clusters are

needed to produce a model that describes the observed IMF data well.

The Gaussian mixture modelling technique was chosen because of its speed and

simplicity, and because the assumption that each cluster can be well represented by

a Gaussian distribution was considered to be well satisfied. Each component had its

own general covariance matrix to allow for the maximum possible variation in cluster

sizes and orientations. This model is useful in that as well as clustering the data, it also

provides the probability that a data point might belong to any of the clusters, which

is a useful test of the confidence of fit. Additionally, this model can infer the number

of clusters that will provide the best fit given a maximum and prevent overfitting. In

this study, the maximum was set to 10, but 7-10 clusters were found to fit both the

MGS and MAVEN data sets best. A 7 cluster model was chosen as the best fit model

for both data sets. A main issue with this method is the lack of reproducibility of

results; because of the random start points of each cluster in this method, the clusters

may be placed differently during different runs on the same data set. To improve the

reproducibility of this study, the data was clustered three times and only data points

that had been assigned to the same cluster on all three runs were used in the analysis.

Once the clusters had been identified, subsets of magnetic field measurements were

collated for each group, and the orientation of the clusters was investigated using two

dimensional histograms showing clock and cone angle measurements. Five degree bins

were used for both angles.
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5.2 Results

5.2.1 Mars Global Surveyor observations

Figure 5.2: The seven clusters identified in the Mars Global Surveyor data based on
field strength and cone angle change.

The seven groups in the MGS magnetometer data are shown in Figure 5.2, each

shown in a different colour. 27,928 MGS data points were used in the seven clusters,

and the number of data points in each cluster is detailed in Figure 5.3, where two

dimensional histograms for each of the groups show the frequency of measurements

with different IMF orientations in each group. These histograms also state the number

of measurements each group is comprised of. The histograms have bin sizes of 10 degrees

for both clock angles and cone angles.
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Figure 5.3: Histograms of the orientation of the IMF in the seven MGS clusters.

Groups 1 and 4 contain 6% and 4% of the total data respectively. These clusters both

contain measurements with cone angle changes of up to 10 degrees. Group 1 includes

measurements with field strengths of between 5 nT and 10 nT while group 4 contains

measurements with field stengths between 9 nT and 18 nT. These groups show smaller

cone angle ranges from 30 to 150 degrees and both show a peak in clock angle values

around 180 degrees.

Group 2 comprises of 6% of the data points and includes measurements with field

strengths between 3 and 7 nT and cone angle changes of up to 30 degrees. This group

has peaks at clock angles of -20 degrees and 170 degrees and cone angles of 80 degrees

and 140 degrees respectively.

Group 3 is comprised of 13% of the data points and has lower field strength values

which from 0.3 nT to 4.5 nT. These measurements have cone angles confined between

45 and 135 degrees.

Group 5 is the largest cluster, containing approximately 43% of the total measurements.

This cluster is characterised by small cone angle velocities and field strengths of up to 4

nT and can be considered a good representation of the ambient solar wind stream. The
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mean IMF orientation of this group has two peaks, one at a cone angle of 70 degrees

and a clock angle around 0 degrees, and one with a 110 degree cone angle and a clock

angle of 180 degrees. These likely correspond to the towards and away IMF sectors

characterised in Brain et al. (2006).

Group 6 is the cluster with the highest cone angle velocities, and magnetic field strengths

from 5 nT to 18 nT. This is the smallest of the MGS clusters containing less than 2%

of the total measurements. Like group 4, this group shows a smaller distribution of

cone angles, with very few measurements taken within 30 degrees of the Mars-Sun line.

There is a strong preference for southwards clock angles with a peak in the clock angle

values between 160 and 180 degrees and a corresponding peak in cone angle values

between 100 degrees and 140 degrees.

Group 7 is the second largest group containing 26% of the total measurements. It

contain measurements with field strengths up to 7 nT and very small changes in cone

angle of up 10 nT. The IMF orientation histogram for group 7 is similar to group 5,

with peaks at a -170 degree clock angle and 120 degree cone angle, and 0 degrees clock

angle and 70 degrees cone angle.

5.2.2 MAVEN observations

The seven groups in the MAVEN magnetometer data are shown in Figure 5.4. The

MAVEN data totalled 11,232 data points, and the number of data points in each group

is shown in Figure 5.5. Unlike the MGS groups, the lower IMF strength measurements

have split into separate clusters for positive and negative cone angle changes.

Group 1 contains 16% of the data points and is characterised by low, positive cone

angle changes and field strengths of up 5 nT. This group has a strong preference for

northwards IMF that is facing towards the Sun at a peak cone angle of 70 degrees.

Group 2 contains 9% of the total measurements. It contains a similar field strenth range

of up to 5 nT and cone angle changes between 0 and -15 degrees. The IMF orientations

for this group are also very similar to group 1. The main peak in the distribution is
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Figure 5.4: The seven clusters identified in the MAVEN data based on field strength
and cone angle velocity.

located at a clock angle of 0 degrees and a cone angle of 50 degrees. There is a smaller

second peak at -180 degrees clock angle 100 degrees cone angle.

Group 3 contains 4% of the measurements. It is comprised of data points with large

cone angle changes, with values reaching up to 60 degrees. This is the most obvious

difference between the MGS and MAVEN clusters; the highest cone angle changes for

the MGS data reach more than double the highest MAVEN cone angle changes.

Group 4, like group 3, contains points with large cone angle changes. It contains fewer

data points (402 compared to 503 for group 3). For this group the changes are negative,
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Figure 5.5: Histograms of the orientation of the IMF in the seven MAVEN clusters.

ranging from -75 degrees to -10 degrees and including field strengths between 0 nT and

10 nT. The most frequent IMF orientations have similar clock angles to group 3, however

the cone angle values for these peaks seem to be shifted to cone angles approximately

20 degrees lower.

Group 5 is the group containing the largest number of measurements. It contains

field strengths between 3.5 nT and cone angle changes of up to 8 degrees. The IMF

orientations of this cluster are predominantly southward, with the peak around a

clock angle of 0 degrees much less prominent than in groups 1-4. The most common

orientation is a clock angle of around -150 degrees and cone angles of 90 degrees and

130 degrees.

Group 6 contains data with the highest field strengths peaking at 18 nT. The cone angle

changes for this group are very small, reaching angle changes of only 8 degrees. It is also

the smallest group containing less than 2% of the total data. The IMF orientations for

this cluster are starkly different to the other groups. All of the measurements have cone

angles ranging between 60 degrees and 140 degrees. The most frequent IMF orientation

for this group has a clock angle of 20 degrees and a cone angle of 80 degrees. The peak

of this distribution is much sharper than those of the other distributions.
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Group 7 contains 22% of the available measurements. It contains field strengths between

6 nT and 11 nT, and cone angle changes between -10 degrees and 10 degrees. The data

in this cluster have higher cone angles, with very few measurements having cone angles

less than 70 degrees. Additionally there is a strong preference for southwards IMF

with most of the measurements containing clock angles between -180 degrees and -150

degrees and 140 degrees and 180 degrees.

5.3 Discussion

The clustering method was very effective at identifying measurements with unusually

high field strengths and cone angle velocities. In the MGS analysis groups 3, 4 and

5 in particular, which represent the ambient solar wind, periods of high field strength

and periods of large cone angle changes respectively, show strong differences in the

orientation of the IMF as shown in Figure 5.3. The high field strength measurements

in group 4 showed a tighter variation of cone angles near perpendicular to the Sun-

Mars line, which is logical as these measurements are likely to correspond to shocks

from ICMEs or CIRs and so would be expected to be oriented normal to their direction

of movement. However, a comparison of Figures 5.2 and 5.4 shows that the groups with

largest changes in cone angle have much higher changes in the MGS data compared to

MAVEN. This is the most noticeable change in the cluster distributions. Very little

difference is seen in the distribution of the other clusters, which shows that the ambient

field does not change significantly with solar season. The difference in the distribution

of clusters for MAVEN and MGS mayeb be due to their measurements corresponding

to different stages of the solar cycle. As the MGS data covers an increasing period near

solar minimum, the solar wind may be comprised proportionally of more ‘slow’ solar

wind which consists of intricate magnetic structures and thus would correspond to a

larger proportion of measurements having larger cone angle changes.

5.4 Conclusions

• Both MGS and MAVEN measurements show 7 distinct clusters within the data.

• MAVEN measurements have much smaller cone angle changes than MGS
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measurements

• The largest group for the MGS dataset contains low field strengths (up to

approximately 4 nT) and small changes in cone angle (up to 10 degrees in either

direction).

• The MAVEN dataset’s largest group showed similarly small cone angle changes,

but higher field strengths between 4 nT and 7 nT.

• Higher field strength clusters are typically associated with periods where the IMF

is perpendicular to the Sun-Mars line
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Conclusions

This thesis has presented three studies all providing insight into the upstream solar

wind conditions at Mars using modern data science techniques. In this final chapter,

the original work from this thesis is summarised and its contribution to the field is

discussed. Additionally further work is suggested regarding open questions.

Chapter 3 presented a study that investigated the steadiness of the IMF via autocorre-

lation analysis of in situ magnetic field measurements in the solar wind. Decorrelation

times of IMF observations are calculated and results are compared for measurements

taken near solar maximum and minimum to provide some insight into how the steadiness

of the field is affected by the solar cycle. The IMF measurements taken by the MGS

spacecraft show consistently lower autocorrelation values than the MAVEN spacecraft

at the same time lags, showing that the solar wind was steadier during the period of

MAVEN measurements for all components of the IMF. This implies that that during

solar minimum, the field strength and cone angle of the IMF were much less steady

than during solar maximum. It should be noted that these two data sets were taken

during different solar cycles; MGS covered the period near the minimum of cycle 23

and MAVEN near the maximum of the much milder cycle 24. Subsets of data based

on field strength and cone angle showed noticeable differences in the field strength and

clock angle autocorrelation functions, however the cone angle decorrelation time was not

affected by field strength or cone angle. This shows that the IMF clock angle is highly

variable irrespective of the solar cycle. Especially high field strengths had longer field

88



Chapter 6. Conclusions

strength decorrelation times than mid field strengths, suggesting that during space

weather disturbances the field strength is more steady (and therefore more suitable

for propagating forward in time during periods where no upstream measurements are

available) than during the more common periods of mid field strength. However even

then these measurements are decorrelated in less than 2 hours, which does not cover

the entire period of an event such as an ICME which could affect the planet for one

or multiple days. This result sheds some doubt on how appropriate the commonly

used assumption of steady IMF conditions really is in many cases, in contrast to Earth

where the steady IMF assumption in more suitable as previous studies have found the

decorrelation time to be as long as 25 hours (Borovsky, 2012). All of the decorrelation

periods calculated from MAVEN data are shorter than the spacecraft’s orbital period,

which suggests that it is never suitable to assume that the IMF conditions are steady for

case studies using MAVEN data. It seems that very high solar activities are associated

with highly variable solar wind, but quiter solar conditions are still found to be notably

variable.

The study presented in Chapter 4 described the development of a new data-driven

model to estimate solar wind conditions upstream of Mars using direct measurements

taken before and after the prediction period. The accuracy of the model was evaluated,

and two case studies were presented, showing the actual MAVEN measurements;

the predictions of the Tao solar wind propagation model and the predictions of the

model introduced in this thesis. For the model in this study to be capable of being

compiled in a matter of days rather than weeks or months, the temporal spacing for

the measurements was increased to 30 minutes. This was significantly lower than the

measurement frequency provided in the MAVEN data, and averaging the data over such

long periods loses some of the intricate structure in the solar wind, particularly in the

IMF. The use of data with which has a higher temporal frequency would improve the

ability of the model to accurately reflect the solar wind conditions. For this significantly

more complicated model to be trained in a reasonable amount of time we would advocate

for the use of a high end computing cluster, however the relationship between complexity

of a model and its training time is not currently clear (Shah & Bhavsar, 2022). Despite

the temporal limitations, the case studies presented show that this model can more
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accurately predict the solar wind conditions than solar wind propagation models due to

the CNN’s use of in situ data. This is particularly useful for studies involving ICMEs,

where propagation models may not accurately predict the arrival time of these events

and so may predict quiet solar wind conditions during these energetic periods.

In Chapter 5, a study investigating the directional preferences of different clusters of

IMF measurements using the Gaussian mixture modelling technique was presented.

The interplanetary magnetic field was found to be on average steady and with low field

strengths around 3 nT, in line with previous studies by Brain et al. (2006) and the work

presented in Chapter 3. These measurements show clearly two orientational preferences

which correspond with the towards and away sectors of magnetic field consistent with

a Parker spiral field configuration, as is observed at Earth. However, measured field

strengths stretch up to 18 nT near solar minimum and 20 nT near solar maximum,

suggesting that energetic solar events can change the IMF conditions upstream of Mars

considerably. High field strengths above 7 nT are confined to cone angles between 45

and 135 degrees. Measurements with large cone angle velocities are observed in both

data sets to show a strong preference for 45 degrees for both clock and cone angles.

Limitations of our study stem primarily from the lack of available data. The MGS

data set spans only 14 months, and MAVEN only 27 months. Significantly more data

would be needed to determine how the IMF behaves over longer timescales, such as

how it changes from solar cycle to solar cycle. Another possible issue with this method

is that the small and incomplete time window of measurements makes it difficult to

generalise the higher field strength measurements. At first look, it may seem reasonable

to suggest that the field strengths can double during solar maximum, however, although

the number of individual measurements is large the number of events that provide

these measurements are unknown. It may be that MGS happened to be inside the

magnetosphere during higher field strength events, making the IMF strengths observed

during this period look weaker. The longer the observation window and the higher the

number of measurements the less likely this situation is.

With MAVEN, the number of possible features to apply this clustering method to is
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huge. This method might be used on plasma data to distinguish between interplanetary

coronal mass ejections and corotating interaction regions. Magnetic field data that

have been shifted into minimum variance coordinates might be used to find flux ropes

in the magnetospheric data to allow for more study of the interaction between these

structures and crustal fields. Should proxy methods become a more reliable technique

for producing estimated IMF measurements, then repeating this analysis with a larger

data set would improve confidence in the results of this study.

Limitations aside, the work presented in this thesis has cemented that the view of

Mars’ plasma environment as static or slow-changing is clearly untrue. The martian

magnetosphere is heavily influenced by upstream solar wind conditions, and the results

presented in Chapter 3 show that the upstream IMF is highly variable even during quiet

solar conditions. The highest IMF strengths observed by MAVEN have the shortest

cone angle decorrelation times, showing energetic solar wind events to have highly

variable magnetic fields as might be expected in structures such as magnetic clouds.

These high field strengths are known to allow the IMF to push into the magnetosphere

and allow direct interactions between the IMF and crustal fields, which can result in

bulk loss of atmospheric plasma. These results show that the upstream conditions

during periods of extremely high field strengths are ideal for facilitating this type of

bulk ionospheric loss. The data-driven model presented in Chapter 4 demonstrates the

application of CNN models to predicting solar wind conditions. It performed better

than a popular solar wind propagation model during a period of turbulent solar wind

conditions. The case studies demonstrate that Sudden and sustained changes in the

clock angle direction can result in dramatic changes the magnetosphere, displacing the

magnetopause as much as 1RE (Duš́ık et al., 2010), and the clusters found in Chapter

5 show that these large angular changes are regularly observed, with consecutive

measurements having an angular difference of more than ten degrees in 15% of MGS

measurements (4179 out of 27928 total) and 8% of MAVEN measurements (905 out of

11232 total) used in this study. At the very least, this thesis has demonstrated that

the assumption that the solar wind conditions are constant on a timescale of hours

is unsuitable and should not be used when analysing data for future Mars missions.

Instead, future researchers may want to utilise a ML model of some sort, such as the
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one presented in Chapter 4.

6.1 Future Work

One of the most obvious areas for future work will be to repeat these studies once

MAVEN has taken measurements spanning a complete solar cycle. This will provide

a more accurate analysis of the solar cycle’s effect on the IMF variability and remove

the uncertainty of comparing measurements from different solar cycles and spacecrafts.

Additionally, expanding the study presented in Chapter 3 to investigate the variability

of other solar wind parameters including density and speed would be insightful.

Using measurements that cover the entirety of the solar cycle to train and test the

CNN model presented in Chapter 4 would provide (in theory) more accurate model

predictions, as well as testing results that better reflect how the model would perform

whilst predicting measurements during a wide range of solar conditions.

The clustering study presented in Chapter 5 presents results on the IMF orientation

preferences during steady and fast-changing cone angles. However, it would be

interesting to see how the clustering method could be used to group solar wind

measurements based on more measured properties of the solar wind such as dynamic

pressure and proton density. This could be investigated using dimensionality reduction

techniques such as principle component analysis or using an autoencoder.

Beyond the work suggested above, all of the techniques used within this thesis could be

applied to other planets in the solar system without the luxury of upstream solar wind

monitors. In particular, the hindcasting model presented in Chapter 4 could be used

not only to provide more context in case studies at other planets but also for studies

of comet 67P/Churyumov–Gerasimenko where the Rosetta spacecraft is in orbit and

passes through the comet’s induced magnetosphere.
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Additional figures showing

polynomial fits of autocorrelation

values

This appendix contains additional figures for Chapter 3, showing the calculated

autocorrelation values and the polynomial lines of best fit for each measurement period

and component of the IMF.
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Figure A.1: Graph showing the autocorrelation functions of IMF strength, clock angle
and cone angle measurements at varying time lags taken by MGS and MAVEN for
the total MAVEN data set and for periods of decreasing, minimum and increasing
solar activity. Calculated autocorrelation values are shown as individual points. The
polynomial line of best fit is also plotted.
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Figure A.2: Graph showing the autocorrelation functions of IMF strength, clock angle
and cone angle measurements at varying time lags taken by MAVEN for periods of
low, medium, high and extra high field strengths. Calculated autocorrelation values
are shown as individual points. The polynomial line of best fit is also plotted.
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Figure A.3: Graph showing the autocorrelation functions of IMF strength, clock angle
and cone angle measurements at varying time lags taken by MAVEN for periods of IMF
orientation in, near and out of the ecliptic plane. Calculated autocorrelation values are
shown as individual points. The polynomial line of best fit is also plotted.
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Najib, D., Nagy, A. F., Tóth, G., & Ma, Y. (2011). Three-dimensional, multifluid,

high spatial resolution MHD model studies of the solar wind interaction with

Mars [ eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2010JA016272].

Journal of Geophysical Research: Space Physics, 116 (A5). https://doi.org/10.

1029/2010JA016272
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