
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Customer Centric Service Caching for Intelligent
Cyber-Physical Transportation Systems with

Cloud-Edge Computing Leveraging Digital Twins
Hanzhi Yan, Xiaolong Xu∗, Senior Member, IEEE , Muhammad Bilal, Senior Member, IEEE , Xiaoyu Xia,

Wanchun Dou, Huihui Wang

Abstract—To provide various high-quality intelligent trans-
portation services to customers, Intelligent Cyber-Physical Trans-
portation Systems (ICTS) with cloud-edge computing are widely
commissioned. In such ICTS, service requests processed by edge
servers (ES) usually have a low response latency, thus leading to
a high quality of service (QoS). As a prerequisite for requests
processing in the ES, service cache provides requests with storage
and computing resources. But the limited resources of each ES
make it impossible to cache all services, so how to generate high-
performance caching strategies for ICTS is a major challenge.
Besides, how to evaluate the effectiveness of the application of
these strategies is also a challenge. Fortunately, thanks to the con-
structed digital twins (DT) for ICTS, the strategies have a digital
platform to be simulated into application. With the assistance of
DT, a solution to service caching problem in ICTS, named SFT-
SCAR, is proposed. Firstly, a DT supported service providing
framework for ICTS is designed. Then, a graph attention network
(GAT) based service request flow prediction scheme and an
asynchronous advantage actor-critic (A3C) based service caching
scheme are presented. Besides, the generated caching strategies
are simulated in the DT of ICTS to evaluate the performance
of these strategies. Experimental results demonstrate that the
proposed SFT-SCAR approach improves the hit rate by 1.11%
- 13.27%.

Index Terms—Intelligent Cyber-Physical Transportation Sys-
tems, cloud-edge computing, digital twins, graph attention net-
work, asynchronous advantage actor-critic

I. INTRODUCTION

BENEFITING from advancements of the Artificial Intelli-
gence (AI) and Internet of Things (IoT), the development

of Intelligent Cyber-Physical Transportation Systems (ICTS)
has drawn widespread concern in industry and academia. As
AI and IoT both need data support, the communication in
ICTS is a critical point that is worth attention. Currently,
the data transmission in ICTS mainly relies on 5G. With the

Hanzhi Yan is with the School of Computer Science, Nanjing University
of Information Science and Technology, Nanjing 210044, China. E-mail:
yanhz.nuist@gmail.com.

Xiaolong Xu is with the School of Software, and Jiangsu Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology
(CICAEET), Nanjing University of Information Science and Technology,
Nanjing 210044, China. E-mail: xlxu@ieee.org.

Muhammad Bilal is with the School of Computing and Communica-
tions, Lancaster University, Lancaster LA1 4YW, United Kingdom. E-mail:
m.bilal@ieee.org.

Xiaoyu Xia is with the School of Computing Technologies, RMIT Univer-
sity, Melbourne, Victoria, Australia, e-mail: xiaoyu.xia@rmit.edu.au.

Wanchun Dou is with the State Key Laboratory for Novel Software Technol-
ogy, Nanjing University, Nanjing 210023, China. E-mail: douwc@nju.edu.cn.

Huihui Wang is with St. Bonaventure University, St. Bonaventure, NY
14778, USA. E-mail: hwang@sbu.edu
* Xiaolong Xu is the corresponding author of this paper.

Manuscript received; revised.

advantages of 5G, such as ultra-high data rate, low latency,
and massive connections, vehicles, pedestrians, smart sen-
sors, and service providers are connected to mobile networks
(MNs), enabling the Internet of Everything [1]. MNs have
become an important part of ICTS, and have supported many
ICTS services, such as route planning, collision warning,
and autonomous driving. Some of these ICTS services have
critical demands on the storage and computing resources [2].
Typically, customers have little resource on their own devices,
which makes it a challenge to process service requests locally,
especially for some compute-intensive services. Mobile cloud
computing (MCC) is a common paradigm for solving this
problem. With MCC, the service requests of customers are sent
through the MN to the cloud server has massive computing
and storage resources in ICTS. Then the requests are processed
in the cloud, and finally the processed results are returned to
customers.

The proliferation of service requests from customers pose
transmission bandwidth and latency challenges for the qual-
ity of latency-sensitive services in MCC. For example, au-
tonomous driving requires real-time analysis of the surround-
ing environment data collected by sensors and then making
decisions [3]. While MCC often needs long-distance signal
propagation, so it is hard to ensure that the latency-sensitive
service requests are processed within the specified time, thus
impairing the customers’ quality of service (QoS). Timeouts
in processing service requests, such as the collision warning
request, may even result in life-threatening situations. In
response to these challenges, the Mobile Edge Computing
(MEC) paradigm is introduced to reduce latency and enhance
service capabilities through configurating edge devices with
storage and computing resources near customers [4], [5]. Com-
pared with MCC, MEC provides services by edge servers (ES)
closer to customers, which reduces service latency, improving
the QoS [6]. The introduction of MEC into ICTS to assist
MCC in providing services (ICTS in cloud-edge computing)
significantly alleviates the network burden caused by large-
scale data transmission, and better supports compute-intensive
and latency-sensitive ICTS services, it also provides space
for better customer privacy protection mechanisms [7], [8].
As a prerequisite for requests processing in the ES, service
cache provides requests from customers with the necessary
resources. The ES only processes the request which is corre-
sponding to a cached service. If not cached, the requests for
this service will be handled by the cloud computing platform
(CCP).

Since the difficulty of directly observing the cache condition

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

and updating the service caching strategies of ESs in the real
world, and the potential for losses (especially to customers)
incurred from deploying low performance service caching
strategies, the digital twins (DT) of ICTS are constructed to
assist in observing and controlling. DT, as an emerging digital
technology, by modeling the physical world with a network
model, not only digitizes scenarios in real time, but also
predicts and optimizes the behavior of production systems and
its components [9]. Nowadays, MNs are being deployed on a
large scale and are more intensively, so the small changes in
the MNs have a cascading effect in a short period of time [10].
Constructing DT can simulate different and complex scenarios
and test solutions, contributing to the success of MNs in 6G
and beyond [11]. Simulating real scenarios using DT generally
relies on a wealth of information from the physical world.
With the help of MN, the real world and DT are able to
transfer data to each other, enabling the interaction between
the physical and virtual worlds [12], [13]. Therefore, DT and
MN are used in collaboration to provide powerful support for
different applications in various sectors [14]. For example, DT
assists in predicting and evaluating network events, conducting
tests and providing network updates. Besides, DT facilitates
the implementation of more powerful functions and services,
including the embedding of AI in the MNs. In the ICTS, DT
is used to simulate the solution and observe the influence on
each road section and area by collecting real data such as
traffic flow and service request flow. For example, integrating
traffic infrastructure into the DT to analyze the efficiency of
traffic infrastructure by predicting the traffic flow based on AI
models, thus enabling better resource scheduling [15]. There-
fore, the performance of the service caching can be evaluated
with the assistance of DT to avoid losses to consumers in
real scenarios caused by deploying low performance service
caching strategies.

However, with the increasing types of the ICTS service, the
resource requirements (e.g., storage space, CPU, RAM) and
real-time requirements of services are different. In addition,
the limited resources of ESs makes it impossible to cache all
the services, and in ICTS, the service request flow is constantly
changing caused by the dynamic customer location, which
brings about the service requests hard to predict. Therefore,
it is difficult to adjust the service caching strategy flexibly
in such a multi-constrained and dynamic environment [16].
Responding to this challenge, a solution to the service caching
problem in ICTS, named SFT-SCAR, is proposed. SFT-SCAR
consists of two main modules, the graph attention network
(GAT) based service request flow prediction scheme and
the asynchronous advantage actor-critic (A3C) based service
caching scheme. The contributions are listed as follows.

• Design a service providing framework for the ICTS with
DT. Adopt the data collected by ESs to build the DT of
ICTS in the CCP. DT is used to observe the influence on
each road section and area by collecting real data such
as traffic flow and service request flow.

• Construct a graph neural network structure, and design a
customer service request flow prediction scheme based
on GAT (SFT). In SFT, by calculating the attention

coefficient between the current node and its neighbors,
the attention coefficients are weighted for calculating the
output features of the current node.

• To update the cache state in real time, a customer
centric service caching scheme based on A3C (SCAR) is
proposed. The service caching strategy for ICTS in each
time interval is generated by SCAR. In SCAR, multiple
agents are adopted to interact with the environment,
increasing the speed of data acquisition and improve
training efficiency.

• Simulate caching strategies in DT to verify the effec-
tiveness of SFT-SCAR in improving cache hit rate and
reducing request response latency.

Other content of the paper includes: In Section II, we
discuss the related work. In Section III, we design the system
model, and define the problem. In Section IV, we introduce
the service request flow prediction scheme SFT. In Section V,
we describe the service caching scheme SCAR. In Section VI,
we analyze the effectiveness of SFT-SCAR. Finally, in Section
VII, conclusion of this research is illustrated, which involves
the possible future works.

II. RELATED WORK

The related work is summarised in terms of three key points,
including A. applications of edge computing in ICTS, B.
researches on service caching in MEC and C. functions of
digital twins in ICTS.

A. Applications of Edge Computing in ICTS

In recent years, Telematics is widely researched, as Telem-
atics has high network requirements and needs to achieve
low latency, good stability and other requirements. Since
traditional cloud computing causes long data transmission time
in the link and thus high latency, edge computing chooses to
place computing resources closer to the vehicle, which largely
reduces latency and improve system stability.

The application of edge computing in ICTS has been
extensively researched by many scholars. Lv et al. [17] in-
troduced edge computing to Telematics and combined it with
techniques such as artificial intelligence to construct a model
for task offloading, effectually reducing the time and energy
costs caused by task offloading and improving task offloading
efficiency. Ning et al. [18] empower edge intelligence in
Telematics, propose a framework for optimizing computational
offloading as well as content caching within Telematics, and
use a lightweight real-time processing framework based on
simulation learning, which can effectively reduce network
latency and improve offloading and caching efficiency. Li et al.
[19] have built a framework with software-defined networking
and MEC as a solution to solve the problem of placing
ESs with controllers, which can effectively reduce service
latency and improve load balance. Wang et al. [20] design
an architecture for ICTS and propose a strategy which can
realize offload computation and allocate resource jointly. The
tasks of vehicles are directly offloaded to edge devices in MEC
for executing, thus reducing the data transmission latency.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

B. Researches on Service Caching in MEC

Service caching has attracted a lot of attention as it has
shown great potential to reduce service latency in MEC. There
are already some researches on service caching. Given the
limited storage space on ESs, the question of which tasks are
cached to the server is particularly important.

To solve the complex problem of which programs in the
service caching require long-term caching, Su et al. [21]
have designed a single ES to help customers in performing
computational tasks. Also, they have transformed this problem
into a mixed-integer nonlinear programming problem that
simplifies this caching problem and decreases computational
time and consumption. Zhao et al. [22] proposed an on-
line algorithm that dynamically computes whether a service
needs to be cached in the server, rather than predicting in
advance. Ren et al. [23] have transformed the problem of
service caching into a Markov-game and designed an deep
reinforcement learning based algorithm which is online and
is able to optimize the process of determining whether a
service needs to be cached. Some recent work has focused on
reducing the average service response time in service caching.
Pham et al. [24] have described the utility problem in service
caching as an integer nonlinear programming problem and
proposed a QOE-based utility optimization method to solve
the joint service caching problem in MEC systems, which
can effectively utilize computational resources to reduce the
request response latency. Ma et al. [25] have investigated
cooperation among edge nodes and workload scheduling in
MEC. Besides an algorithm for cooperative service caching is
proposed to reduce the request response latency.

C. Functions of Digital Twins in ICTS

DT can be used within ICTS to map physical reality such
as vehicles into virtual space by collecting historical as well
as current information from physical devices such as vehicles
and roadside units, thus making it easier to track and evaluate
devices.

In recent years, there has been extensive research on how
DT can be applied to ICTS with MEC. Sun et al. [26]
introduced the DT in a UAV-assisted vehicular network to
collect data from vehicles as well as RSUs within the ICTS
in real-time, using a two-stage incentive mechanism, and thus
achieved efficient unified resource scheduling in ICTS, further
improving resource utilization efficiency and reducing energy
consumption. Zheng et al. [27] introduced the DT in the study
of service offloading within the ICTS, using sensor data to
establish DTs corresponding to real vehicles, sharing infor-
mation among them so that vehicles can easily obtain global
information, which can better predict the possible arrival of
services in the future period and leave sufficient computational
resources for them. Vehicles within traditional Telematics can
only interact with each other with information from neighbor-
ing vehicles, and the degree of resource sharing is limited. To
address this drawback, Tan et al. [28] use DTs in the ICTS
to enable the virtual vehicles to communicate with each other
regardless of distance, and real vehicles can communicate with
their DTs thus enabling real vehicles to interact with each other

over long distances. Considering the contradiction between the
strong computational power required for resource allocation
and the insufficient computational power of ESs in ICTS,
Liu et al. [29] used DT technology to rationalize the global
resource allocation and thus optimize the quality of service.
Zhang et al. [30] proposed a new in-vehicle edge network, in
which proposed a new in-vehicle edge network, in which the
the vehicles are aggregated according to the gravity in DT,
divide the complex in-vehicle network into simpler parts, and
then use the multi-intelligence learning method to allocate the
edge resource based on vehicle aggregation. In addition the
system was verified to effectively improve the task offloading
efficiency.

III. SYSTEM MODEL

This section contains three parts. Firstly, a framework of
service providing in ICTS with DT is introduced. Then, the
caching model and the cost model are described. Finally, we
formulate the service caching problem with multiple con-
straints.

Digital Twin

Edge Server

 Roadside Unit

Traffic Data Interaction

and Service Request

Collection

Service Request Offload

and Feedback

Edge Server

 Roadside Unit

Traffic Data Interaction

and Service Request

Collection

Service Request Offload

and Feedback

Cloud Computing

Platform

Cloud Computing

Platform

Real-world information

DT construction

Real World

Strategy application

Strategy simulation

and evaluation

Fig. 1. A service providing framework for ICTS with DT

A. System Framework

The service providing framework with RSUs and ESs
for ICTS is shown in Fig.1. The RSUs denoted by U =
{u1, u2, ..., uM} are placed close to the roads to interact
with vehicles. In the ICTS, RSUs collect the service requests
which are generated by vehicles (i.e., requests from on-
board customers). ui has three parameters, latitude, longitude
and the collected service requests, so it is represented as
ui(lati, loti, Ri), ui ∈ U . Ri is a set of service requests,
Ri = {ri,1, ri,2, . . . , ri,Ki}, where ri,j is a service request
collected by ui, Ki is the amount of service requests in ui.
Typically, most of the services in ICTS are time sensitive
(e.g., crash warning and congestion detection). Hence the
ESs denoted by E = {e1, e2, ..., eN} are arranged in traffic-
intensive areas to process service requests. ei has four param-
eters, latitude, longitude, the set of cached services and the
set of service requests from the RSUs in the zone of ei, so

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

it is represented as ei(lati, loti, ci,Ri). The service requests
that are not processed on ESs will be offloaded to the CCP
for centralized processing. The CCP has enough storage and
computing power to perform all services and manages the
resources of ESs. In addition, the DT of the ICTS is built on
the CCP to realize real-time data visualization. With the help
of DT, the request flow prediction and the caching strategy
simulation are implemented more easily.

B. Service Caching Model

For ESs, the ICTS services are divided into two categories,
which are services that must be cached (e.g., crash warnings)
and services that need to be cached (e.g., path planning). The
caching model here is for the services need to be cached. Even
if these services are not cached in ESs, the QoS will not be
seriously affected. At the time interval t, a service request
collected by ui (the request is directed to a service that need
to be cached) is represented as rti,j(r

t
i,j ∈ Ri). Q(rti,j , eq)

indicates whether the service request rti,j should be sent to
the ES eq , measured by

Q(rti,j , eq) =

{
1, rti,j ∈ Rq

0, otherwise
. (1)

The service requests are directed to various services which are
represented as S = {s1, s2, ..., sG} . si has four parameters,
service type stpi , service priority spri , the required computing
resource scri and the required storage resource ssri . W (si, eq)
indicates whether the service has been cached in the ES eq ,
measured by

W (si, eq) =

{
1, si ∈ cq
0, otherwise

. (2)

Since the composition of the service request flow is changed
over time, and the frequency of requesting a certain service
is different in each time interval, the services cached in ESs
should be dynamically changed. Only when Q(rti,j , eq) = 1
and W (sz, eq) = 1 (i.e., the customer requests a service
cached in eq) does eq process rti,j , where sz is the service
corresponding to rti,j . Or else, rti,j is offloaded to the CCP
and then processed by CCP. The cache hit rate (i.e., among
all service requests, the proportion of the requests for cached
services) of eq at t is calculated by

Shratetq =
1

|Rt
q|

|U |∑
i=1

|Kt
i |∑

j=1

Q(rti,j , eq)W (sz, eq), (3)

where |Rt
q| represents the overall service request scale at time

interval t, |U | is the of RSU amount, |Kt
i | represents the

number of requests collected by ui at time interval t.

C. Cost Models

To provide customers with a series of ICTS services, two
kinds of costs should be mainly considered, the ES resource
occupied by the service caching, and the time required for
service request processing. The calculation methods of these
two kinds of costs are discussed respectively in the resource
model and latency model.

1) Resource Model: Traditional caching focuses on the
storage space (i.e., the storage resource) allocation. For ex-
ample, LRU (least-recently-used) and LFU (least-frequently-
used) are designed to improve cache hit rate through cache
replacement. While service caching requires not only storage
space but also CPU and RAM resources (i.e., the computing
resource). The computing and storage resources discussed in
this model are provided for the services need to be cached
(excluding the resources provided for the services must be
cached).

The amount of computing resource required for each service
varies depending on the type of service and the priority of the
service. In this model, computing resource is abstracted as the
number of computing units. Generally, the service with higher
priority occupies more computing units (scri introduced in the
framework indicates that the minimum number of computing
units needed for si). When there are free computing units in
a certain time unit, these units are allocated to the services
that need to be computed according to the service priority.
Assuming that the placed ESs have the same specifications
and the computing resource of each ES is ec, the storage
resource of each ES is es, and si is requested at the time
Tj , the additional computing resource allocated to si at the
time Tj are calculated by

AddTj (si) =
1

ec
((ec −

|cq|∑
p=1

scrp)
scri

|cq|∑
p=1

scrp

) =
1

ec
(
ecscri
|cq|∑
p=1

scrp

− scri)

= scri (
1

|cq|∑
p=1

scrp

− 1

ec
)

(4)
where |cq| represents the amount of services that eq has
cached. The computing resource occupancy of si at the time
Tj are calculated by

OccTj (si) =
scri
ec

+AddTj (si) =
scri

|cq|∑
p=1

scrp

. (5)

Since the execution of the service requires some regular
data and runs a series of pre-defined algorithms, the storage
resource for the service caching is relatively fixed compared
to the computing resource. The storage resource usage of eq
at the time Tj is expressed as

SruTj (eq) =
1

es

|cq|∑
p=1

ssrp (6)

2) Latency Model: The time cost of service requests has
three main components, transmission latency, propagation la-
tency and execution latency. Due to the transmission latency
and propagation latency between the customer and RSU are
not affected by the service request processing way, they are
not discussed.

The data upload and download delays constitute the trans-
mission latency. This latency is only influenced by the speed
of transmission and the amount of data that need to be

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

transmitted. The data of service request rti,j uploaded at the
time interval t is denoted as d(rti,j) (this data is also the data
downloaded by eq or the CCP). After the service request rti,j
is processed, the data uploaded is denoted as d′(rti,j) (this
data is also the data downloaded by ui). Generally, d′(rti,j)
is approximately equal to d(rti,j). If si is cached in eq , the
latency of rti,j transmission is calculated by

Ltm
rti,j

= d(rti,j)(
1

θu
+

1

∂d
+

1

∂u
+

1

θd
), (7)

otherwise

Ltm
rti,j

= d(rti,j)(
1

θu
+

2

∂d
+

2

∂u
+

1

θd
), (8)

where θu and θtd are respectively the upload and the download
speed of RSU. ∂u and ∂d represent the upload and download
speed of the ES and the CCP. Since the service request not
executed on the ES is transmitted to the CCP for processing,
the transmission of this service request has two additional
interactions between the ES, CCP and RSU.

The service request delivery time and the result feedback
time constitute the propagation latency. This latency is only
affected by the propagation speed and the propagation dis-
tance. If si is cached in eq , the latency of rti,j ropagation is
calculated as

Lpg
rti,j

= 2
dist(ui, eq)

vu,e
, (9)

otherwise

Lpg
rti,j

=
dist(ui, eq)

vu,e
+

dist(eq, CCP)

ve,CCP
+

dist(CCP, ui)

vCCP,u
,

(10)
where dist is the distance (with euclidean metric) between two
computing nodes (including RSUs, ESs and CCP), v represents
the propagation speed between two nodes. Since the service
request not executed on the ES is transmitted to the CCP for
processing, the propagation of this service request has two
additional interactions between the ES, CCP and RSU.

The execution latency is dependent on the computing units
of ESs and the data of service requests. CCP has massive com-
puting resource (i.e., the computing units), so the execution
latency of the service requests processed in CCP is negligible.
At the interval t, the sum of execution latency of the service
request executed in eq is calculated as

Lex
eq,t =

M∑
i=1

Ki∑
j=1

Q(rti,j , eq)W (sz, eq)
d(rti,j)

ηec
, (11)

where η is computing power of an computing unit. Due to
the minimum number of computing units for each server is
already set up, and there is a reallocation process on computing
resource, the average execution is more informative. At the
interval t, the average latency of the service request execution
in eq is calculated as

Lex
rti,j

=
Lex
eq,t

M∑
i=1

Ki∑
j=1

Q(rti,j , eq)W (sz, eq)

. (12)

D. Problem Definition

To obtain a high-performance strategy for service caching
in ICTS, the cache hit rate and the time cost of request
processing should be considered. We formulate the service
caching problem as

max(Shratetq), min(Ltm
rti,j

+ Lpg
rti,j

+ Lex
rti,j

), (13)

s.t. SruTj (eq) ≤ 1, ∀Tj ,∀q ∈ [1, N] , (14)∑
si∈cq

scri < ec, ∀Tj ,∀q ∈ [1, N] , (15)

OccTj (si) ≥
scri
ec

, ∀Tj . (16)

The services cached in an ES cannot occupy more resource
than the available resource of the ES. When a service cached
is requested, the service must immediately occupy enough
computing resource to ensure that the corresponding service
request can be processed in time. Higher cache hit rate and
lower latency are pursued while satisfying these constraints.

IV. GAT BASED SERVICE REQUEST FLOW PREDICTION

Owing to the strength of GAT in prediction, it has been
mostly applied to traffic flow prediction. In this section, GAT
is used to predict the service requests collected by each RSU
in ICTS to achieve service request flow prediction (similar
to traffic flow prediction). Based on the prediction results,
the caching strategy of the ES is adjusted to prepare for
the service request processing in next time interval. The
scheme of service request flow prediction with GAT (SFT) is
shown in Fig.2. The scheme consists of 3 main phases. firstly
the graph structure is constructed based on the correlation
between RSUs. Then GAT, a graph neural network (GNN) that
introduces an attention mechanism, is used for service request
flow prediction. Finally, the prediction results are mapped into
graph node information and the data are extracted as input for
the next phase of the task (SCAR).

A. Graph Neural Network Structure Construction

In the system framework, the service requests collected by
ui is Ri. Therefore, the service requests sent to the ES of the
selected area are denoted as the set Ri = {Ri

1, R
i
2, ..., R

i
Y }.

To predict the service request flow in the future time period,
the RSUs in the selected area are used as the nodes for
service request flow collection and the ESs are the platform
for prediction. According to the correlation degree of two
nodes, each RSU is connected to its neighboring nodes by
different edge weights. Since the relationship between nodes
is undirected and all nodes are connected, the whole region is
constructed as an undirected connected graph.

In each time interval, the record of a node is denoted as the
set Rec{Ams, Srf, Pse}. In the set Rec, Ams is the average
movement speed of customers on that road segment, which
will affect the sending location of service requests in the next
time interval. Srf is the service request flow, which reflects
all services requested and their corresponding quantities in
that time interval. Pse is the percentage of service requests

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

Time t+2
Time t+1

Time t

+Adjacent matrix Y×Y

… …

Whi

Whj

σij αij
softmaxj

GAT layer example
Input

Linear layer
Output

Linear layer

S E e_1

s_1

e_2 ...

value_a value_b ...

s_2 value_c value_d ...

...

G
raph C

onstruction
R

equest P
rediction

P
rediction R

esult

Information extraction

Input Node information aggregation

Mapping

Result extraction

Fig. 2. The GAT-based service request flow prediction scheme for ICTS

collected by the RSU in the number of requests received by the
ES in that time interval. These three indicators are considered
as the features of each node. A series of node features are
input to the building block layer of the GNN. The series of
node features are represented as

h = {h⃗1, h⃗2, ..., h⃗Y }, h⃗i ∈ RF , (17)

where Y and F are respectively the amount of nodes and the
feature dimensions of nodes. Finally the layer outputs a new
series of features (i.e., the objective function), which is are
represented as

h
′
= {h⃗′

1, h⃗
′
2, ..., h⃗

′
Y }, h⃗′

i ∈ RF
′

, (18)

where h⃗′
i is the prediction result at next t of node i. According

to this output, the service requests sent to the ES at next t are
updated to Ri

′
= {Ri

1

′

, Ri
2

′

, ..., Ri
Y

′

}.

B. Prediction of Service Request Flow

The core point of GAT is to quantify the importance of
the feature (i.e., attention), and to derive it through network
training. The importance of the features of node j to node i
is expressed as

σij = a(Wh⃗i,W h⃗j), (19)

where W is a learnable linear transformation, W ∈ RF×F
′

,
h⃗i is the series features of node i. To make the attention
coefficients easily comparable across nodes, the softmax func-
tion is adopted to achieve normalization of the importance of
all neighbor nodes. The normalized coefficient of attention is
expressed as

αij = softmaxj(σij) =
exp(σij)∑

k∈Ai
exp(σik)

, (20)

where represents the neighbor nodes of node i. After obtaining
the normalized attention coefficients, the linear combination of
features corresponding to them can be calculated as the final
output features of each node. The output series of features of
node i are calculated as

h⃗′
i = µ(

∑
j∈Ai

αijWh⃗j) (21)

where µ is a nonlinear activation function. The larger the αij ,
the closer the relationship between two nodes (i.e., the greater
the influence of node j on node i). It is essential to note that
αji is usually ̸= αij , which shows that node i and node j
have different degrees of influence on each other.

Based on GAT, a new service flow prediction algorithm is
designed. By calculating the attention coefficient between the
current node and its neighbors, the attention coefficients are
weighted for calculating the output features of the current
node. GAT focuses more on the key nodes and reduces the
influence of noisy nodes. The details of SFT are given in
Algorithm 1.

Algorithm 1: Service Request Flow Prediction
Input: the records set Rec{Ams, Srf, Pse}, the

series of node features h = {h⃗1, h⃗2, ..., h⃗Y }
Output: the service request flow prediction result

h
′
= {h⃗′

1, h⃗
′
2, ..., h⃗

′
Y }

1 Construct an undirected graph G(V,E) based on node
data;

2 Initialize the edge weights;
3 for each episode do
4 Achieve the novel W ;
5 for (i = 1; i <= Y ; i++) do
6 Calculate the importance of the features of

node j to node i → σij ;
7 Normalized the attention coefficient with

αij = softmaxj(σij) =
exp(σij)∑

k∈Ai
exp(σik)

;

8 Differentiated information aggregation of
neighbor nodes with attention coefficients;

9 Complete the graph convolution operation.
10 end
11 Obtain h

′
.

12 end
13 return the prediction results;

V. SCAR FOR ICTS SERVICE CACHING

The section contains two parts. A. The definition of markov
decision process (MDP). B. The detailed description of the
proposed SCAR.

A. MDP Definition

The goal of reinforcement learning is to construct a MDP
and find the optimal strategy. The strategy is the mapping of
states to actions, and it makes the final cumulative reward
maximum. MDP is a markov process that considers action
strategies, i.e., each state under the system is related not only

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

to the current state but also to the action currently taken. Since
reinforcement learning learns based on the rewards given by
the environment, the corresponding MDP should also include
the reward values.

For the the problem defined in Section III, the agents are
set on ESs, and the service providing condition in ICTS is
considered as environment. The MDP is defined as M =
(St,Ac, Po,Re), where St is the state, Ac is the action, Po
is the state transition probability, and Re is the reward value.
Specific definitions are given:

1) State Space: Since service request flow changes dynami-
cally, the caching strategy for each ES should also change over
time. The state at t is represented as

state(t) = {[sc(t)], [tp(t)], [am(t)]}, (22)

where sc is the cache state of services, tp is the types of service
requests , am is the amounts of different service requests.
In the MDP, the next state is only affected by the current
state. The previous state has no effect on the next state (i.e.,
state(t+ 1) is only influenced by state(t)).

2) Action Space: The action (i.e., an update of service
caching condition) that the agent takes is is dependent on
the current state. Taken an action at t is recorded as a list
action(t), assuming that there are three services, and [0, 1, 1]
indicates that the second and third services are cached.

3) State Transition Probabilities: The state transition prob-
ability is the probability of changing from the current state
to the next state which is belonging to the next time interval.
The state transition probability of changing from state(t) to
state(t+ 1) with action(t) is represented as

Pb = (state(t+ 1)|state(t), action(t)). (23)

Taking action(t) at t is noted as a policy, denoted as

π(state(t), action(t)). (24)

4) Rewards Mechanism: The service request processing
latency is negatively correlated with the cache hit rate. When
the cache hit rate of the ES eq rises, the latency of service
request processing falls. Therefore, the cache hit rate greatly
determines the reward value. However, service caching has
to consider resource constraints, and the cached services take
up more computing or storage resources than the limit is not
allowed. In conclusion, the reward function is represented as

Rwd =

N∑
i=0

(Shratei +B1(
∑
sj∈ci

scrj − ec) +B2(Sru(ei))),

(25)
where B1 and B2 are punishment weights, they are able to
make the reward value extremely low.

B. The Service Caching Scheme Based on A3C

Fig.3 shows an service caching scheme based on A3C
(SCAR) for ICTS. The output of SFT (i.e., the result of
service request flow prediction) is adopted as part of the
input to the SCAR. There are two commonly used classical
deep reinforcement learning methods. They are respectively
entitled deep Q-network (DQN) and deep deterministic policy

gradient (DDPG). DQN uses two key techniques, a replay
buffer to break the correlation between samples, and a fixed
target network for better training stability and convergence.
DQN copes well with high-dimensional inputs, while it is
helpless for high-dimensional action outputs. DDPG has the
advantage of solving high-dimensional or continuous action
spaces. It consists of an actor network and a critic network,
and these two networks are responsible for generating actions
and judging actions respectively. Similar to DQN, DDPG also
uses a replay buffer and a fixed target network, and it is an
Actor-Critic method combined with the deep network. The
A3C-based service caching in ICTS has made engineering
improvements to DDPG, using multiple agents to interact with
the environment, increasing the speed of data acquisition and
improve training efficiency.

Replace parameters

 ζ'=ζ , ω'=ω

Update parameters

(ζ , ω)

Actor Network Critic Network

Global network

State

Action

Reward

Next state

Environment-1

State

Action

Reward

Next state

Environment-2

...

State

Action

Reward

Next state

Environment-n

Actor Critic

Worker-1

Actor Critic

Worker-2

Actor Critic

Worker-n

Fig. 3. The A3C-based service caching scheme for each ES in ICTS

1) Cache Update: The cache state of the services in ES and
the number of requests received by ES for each type of service
are considered as the primary state which is input to the agent.
Subsequently, an action is performed by the agent for the state
in this time interval. The cache state is updated according to
the application of this action in the environment. The reward
for action execution is calculated by equation (25). During
training, the experience (a piece of experience is consist of a
state, an action and a next state) is put into a replay buffer,
which serves to overcome the experience data dependency. The
global network in A3C consists of two core networks which
are the same as that in DDPG. Multiple workers have the
same configuration are set for interacting with environment
in their own thread. When a worker has received the result
after interacting, the gradient is calculated. The gradient is
used for updating the global network. That is, multiple threads
update the parameters in global network using the cumulative
gradients separately. At regular intervals, the threads update

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

the parameters of their own networks to those of the global
network, which in turn guide the later interactions.

2) The Network training: In the global network, the pa-
rameter of the actor network is ζ, and the parameter of the
critic network network is ω. Correspondingly, in each worker,
the parameter of the actor network is ζ ′, and the parameter of
the critic network network is ω′. First, set the relative updated
value dζ of ζ and the relative updated value dω of ω in the
global network to 0. Meanwhile, assign the ζ ′ and ω′ of the
thread-local network to the ζ and ω of the global network.
Then let the agent in the current thread keep exploring until
the step limit is reached. During this process, the action is
output using policy π(state(t), action(t)) (i.e., using the local
actor network to take actions).

The gradient update equation is as follows.

dζ ← dζ +∇ζ′ logPbt(X− V (state(t);ω′)), (26)

and
dω←dω +

∂(X− V (state(t);ω′))2

∂ω′ , (27)

where X represents the reward valuation (X = Shratet+γX),
while V (state(t);ω′)) is the reward valuation in state(t).
Algorithm 2 shows the details of SCAR for ICTS.

Algorithm 2: Service caching based on A3C
Input: space of state state, time interval number T ,

replay buffer, workers, global network
Output: strategies for caching

1 Initialize replay buffer, agents and global network;
2 t = 1;
3 dζ←0, dω←0;
4 for each episode do
5 Synchronize parameters to this thread’s neural

network ζ ′ = ζ, ω′ = ω;
6 Get state(t);
7 for (tstart; t <= T ; t++) do
8 if the initial state is state(t) then
9 Random an action;

10 else
11 action(t) is taken with ζ according to

formula (24);
12 end
13 Computing reward by formula (25);
14 end
15 Calculate the reaward valuation X;
16 for j ∈ (t− 1, t− 2, ..., tstart) do
17 Calculate the reward valuation Xj for the time

interval j;
18 The local accumulative gradient update of ζ ′:

using formula (26);
19 The local accumulative gradient update of ω′:

using formula (27);
20 end
21 Update the ζ with dζ and update ω with dω

asynchronously;
22 end
23 return ζ and ω of global network;

VI. EXPERIMENT AND ANALYSIS

The setup of experiments and the comparative schemes are
firstly introduced. With the implementation of SFT-SCAR and
the experimental results, the caching strategies are simulated
in the DT of ICTS and its performance is evaluated. The
effectiveness of SFT-SCAR will be analyzed with regard to
prediction accuracy, cache hit rate and time cost of requests.

A. Experimental Setup

The dataset used to assess the accuracy of SFT predictions
is downloaded from the Caltrans Performance Measurement
System (https://pems.dot.ca.gov). The data in the dataset (in-
cluding traffic, user location) is collected in real time by
more than 39,000 individual detectors. These sensors span the
freeway system across all major metropolitan areas of the State
of California. Besides, the dataset used to evaluate the perfor-
mance of SFT-SCAR in solving the service caching problem
in ICTS was generated with reference to the simulation in
[31] (Generate service request datasets in proportion, e.g.
Request A: 0.6, Request B: 0.3, Request C: 0.1). Regarding the
parameter configuration of A3C, the network consisted of 3
fully connected layers with 200 neurons and 2 fully connected
layers with 100 neurons, with a learning rate of 0.0001 and
a reward discount of 0.95. The Adam optimizer was used to
adaptively adjust the learning rate, with the value set to (0.95,
0.999).

To analyze the performance of SFT-SCAR, we implement
three schemes for performance comparison, and they are
described as follows:

• Static caching scheme (SCS)
The caching decision of this scheme is based on the
historical number of requests for each service (without
relying on the request flow prediction), while ensuring
that resource usage does not exceed the limit. Once
services with high request rate have been cached, the
caching strategies are not automatically updated.

• DQN-based service caching scheme (DQN)
DQN is a powerful reinforcement learning method in
solving problems such as task offloading [32]. DQN
usually outputs discrete actions.

• DDPG-based service caching scheme (DDPG)
This service caching scheme makes strategies based on
DDPG [33]. DDPG is a method that can solve the
problem of continuity control. The output of DDPG is
continuous.

B. Analysis of the Prediction Performance

GAT introduces an attention mechanism that allows for
adaptive weight allocation to the relationships between nodes,
enabling the model to focus on nodes with higher relevance
during the learning process, improving the efficiency and
accuracy of representation learning. Due to the high accuracy
of existing studies using GAT for traffic flow prediction, we
decided to involve a service request flow prediction method
based on GAT, SFT, to provide an initial input to SCAR.
Figure 4 demonstrates a similar prediction accuracy as [1].

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

According to the Pareto principle (i.e. for any set of things,
the most important is only a small part of it, about 20%, and
the remaining 80%, although the majority, is less important),
user requests are concentrated on 20% services, so that degree
of prediction accuracy is sufficient to reflect user requirements
and achieve the objectives of the scheme. As the service
requests originate from customers in the ICTS, the service
request flow has the similar temporal and spatial characteristics
as the traffic flow. Therefore it is reasonable for this experiment
to generate service request flows based on traffic flows. The
predicted and actual values of the number of requests for a
service over 200 time intervals are shown in Fig.4. The data
show the service request flow prediction scheme has a high
accuracy rate, and the error values between predicted and
actual values are small and only become relatively large when
there is a measurable change in the actual values. According
to Pareto principle, only a small part of the services are
requested by customers in large numbers at a certain time
interval. Hence, the acceptable error in the predicted result has
a little impact on the proportion of this type of service request
to all service requests. In addition, the figure demonstrates
the stability of the GAT prediction performance, maintaining
essentially a similar and high accuracy rate across all time
intervals. The loss of each Epoch is shown in Fig.5. In this

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f s
er

vi
ce

 re
qu

es
ts

Time interval

prediction
target

Fig. 4. Service request flow predicted value and actual value

figure, the loss eventually drops to around 0.2 at the 20th
epoch, and the loss fluctuates slightly at this value for the
following epochs. This shows that the algorithm has good
convergence.

C. Analysis of Service Caching Performance

The service caching strategies generated by SFT-SCAR
should not be applied directly until their validity has been
verified. Due to the massive service requests in ICTS and
their varying sensitivity to latency, direct application of low
performance caching strategies will significantly degrade QoS.
So the caching strategies are simulated in the DT of ICTS to
evaluate their performance. To the service caching problem,
the cache hit rate is a significant indicator. The higher cache
hit rate means that more services are processed on the ESs,
thus reducing the overall response latency of service requests.

In this experiment, the service caching strategies for the dif-
ferent ESs are recorded for analysis. Fig.6 and Fig.7 show the

0

2

4

6

8

10

12

14

16

18

1 4 7 10 13 16 19 22 25 28 31

L
o
ss

Epochs

Fig. 5. The test-loss value of prediction (measuring the distortion rate of
prediction results)

cache hit rates corresponding to the service caching strategies
generated by SFT-SCAR, DDPG, DQN and SCS. In Fig.6,
only in 4 time intervals does SFT-SCAR perform slightly
worse than DDPG, in the other 12 time intervals SFT-SCAR
has a different degree of advantage. In Fig.7, only in 2 time
intervals does DDPG performs better. In contrast to DDPG,
workers in A3C interact with the environment independently
through multiple threads, while asynchronous training breaks
the correlation of data. As a result, A3C usually performs
better than DDPG on problems with large scale (including
service caching problems, which are complicated by various
constraints). DQN is inferior to the other two reinforcement
learning schemes because of its poor performance on problems
with complex action spaces. SCS performs extremely well or
poorly at certain time intervals because it is non-dynamic,
which brings low utility. Fig.8 visually shows the cache hit

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
ac

he
 h

it
ra

te
(%

)

Time interval

SFT-SCAR
DDPG
DQN
SCS

Fig. 6. Cache hit rate of ES-1 with SFT-SCAR, SCS, DQN and DDPG

condition of the strategies generated by SFT-SCAR, DDPG,
DQN and SCS through the values of their minimum hit rate,
average hit rate and maximum hit rate. The maximum hit rate
of SFT-SCAR is about 4.14% higher than the maximum hit
rate of DDPG, 6.17% higher than the maximum hit rate of
DQN, and 9.92% higher than the maximum hit rate of SCS.
The average hit rate of SFT-SCAR is about 1.11% higher than
that of DDPG, 6.81% higher than that of DQN, and 13.27%
higher than that of SCS. The maximum hit rate and the average
hit rate of SFT-SCAR are both the highest, which demonstrates

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
ac

he
 h

it
ra

te
(%

)

Time interval

SFT-SCAR
DDPG
DQN
SCS

Fig. 7. Cache hit rate of ES-2 with SFT-SCAR, SCS, DQN and DDPG

the effectiveness of SFT-SCAR in making caching decisions.
Regarding the minimum hit rate of SFT-SCAR, it is lower than
DDPG, but higher than DQN and SCS. Having the highest
average cache hit rate, but not the highest minimum hit rate,
indicates that this strategy is generally effective only in a few
time intervals (but still has a hit rate higher than 3/4), which
also illustrates the superiority of SFT-SCAR.

60

65

70

75

80

85

90

SFT-SCAR DDPG DQN SCS

C
ac

he
 h

it
ra

te
(%

)

min rate

average rate

max rate

Fig. 8. Comparison on the minimum, average and maximum cache hit rate
with SFT-SCAR, SCS, DQN and DDPG

Since the ES is closer to the customer, customers get
feedback more quickly when requesting services cached in
the ES. The response latency of the requests for strategy
corresponding to Fig.6 is shown in Fig.9. Similar to the cache
hit rate, only in 4 time intervals does SFT-SCAR have higher
response latency than DDPG. In addition, the request response
latency of SFT-SCAR is lower than the request response
latency of DQN and SCS in almost all time interval. The result
of the experiment shows that SFT-SCAR effectively reduces
time cost of service requests processing in ICTS with cloud-
edge computing. After testing strategies generated by SFT-
SCAR in DT, the strategies are validated to be applied to real
scenarios.

In Fig.7 and Fig.9, the reason that SCAR is only slightly
higher compared to DDPG is that most of the service requests
in this group have more distinct distribution characteristics,
and thus both schemes obtain better decisions. It is possible
that there is only difference in caching decisions on few
services and there is little difference between the number of

0.9

1

1.1

1.2

1.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
eq

ue
st

 r
sp

on
se

 la
te

nc
y(

s)

Time interval

SFT-SCAR
DDPG
DQN
SCS

Fig. 9. Average request response latency with SFT-SCAR, SCS, DQN and
DDPG

requests for these services, leading to a similarity in the per-
formance of the final strategies. A3C has good parallelization
capabilities, it uses multiple asynchronous actors to collect
samples and update the strategies, and it learns in multiple
environments at the same time, and therefore may be able to
explore some better solutions.

40

45

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
a

ch
e

h
it

 r
a

te
(%

)

Time interval

SFT-SCAR (H)

SFT-SCAR (L)

Fig. 10. Performance gap obtained by DT simulation

Fig.10 illustrates the normal output high-performance strat-
egy (SFT-SCAR (H)) of SFT-SCAR and the low-performance
strategy (SFT-SCAR (L)) due to an attack or an error in the
training process. The major advantage of using DT to simulate
service caching strategies is its ability to accurately model
the real-world caching decision-making process in virtual
environments, based on real-time data and physical models,
so as to optimize the effect of caching strategies as well as
the performance of service request flow prediction, and to
provide highly credible predictions and guidance for practical
decision-making. The data of the figures such as Fig.6 and
Fig.7 in this section are generated with the assistance of the DT
simulation. Without the assistance of DT, it is difficult to assess
the performance of a scenario in advance without actually
utilizing it. The core application of DT in this paper is putting
the scheme into use virtually to avoid losses to consumers in
real scenarios caused by deploying low performance service
caching strategies.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

VII. CONCLUSION

Responding to the challenge in service caching and the
QoS assurance in ICTS, a service providing framework for
ICTS is proposed, and a solution for service caching in ICTS
named SFT-SCAR is proposed. The solution consists of two
main modules, the GAT-based service request flow prediction
scheme and the A3C-based service caching scheme. Besides,
the strategies are simulated in DT and the efficiency is verified.
Commonly, service providers should pay for the occupied ES
resources (it should be a long-term occupation). The future
work could be devoted to researching the caching problem or
the allocation of ES resources in relation to service providers’
costs.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant no. 92267104 and
no. 62372242, and Natural Science Foundation of Jiangsu
Province of China under no. BK20211284.

REFERENCES

[1] X. Xu, Q. Jiang, P. Zhang, X. Cao, M. R. Khosravi, L. T. Alex, L. Qi,
and W. Dou, “Game theory for distributed iov task offloading with
fuzzy neural network in edge computing,” IEEE Transactions on Fuzzy
Systems, vol. 30, no. 11, pp. 4593–4604, 2022.

[2] Z. Wang, D. Jiang, Z. Lv, and H. Song, “A deep reinforcement learning
based intrusion detection strategy for smart vehicular networks,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2022, pp. 1–6.

[3] J. Zhao, X. Sun, Q. Li, and X. Ma, “Edge caching and computation
management for real-time internet of vehicles: An online and distributed
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 4, pp. 2183–2197, 2020.

[4] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, “Artificial intelli-
gence empowered edge computing and caching for internet of vehicles,”
IEEE Wireless Communications, vol. 26, no. 3, pp. 12–18, 2019.

[5] X. Xu, J. Gu, H. Yan, W. Liu, L. Qi, and X. Zhou, “Reputation-aware
supplier assessment for blockchain-enabled supply chain in industry
4.0,” IEEE Transactions on Industrial Informatics, 2022.

[6] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang, “Data caching
optimization in the edge computing environment,” IEEE Transactions
on Services Computing, vol. 15, no. 4, pp. 2074–2085, 2020.

[7] P. Dai, K. Hu, X. Wu, H. Xing, and Z. Yu, “Asynchronous deep re-
inforcement learning for data-driven task offloading in mec-empowered
vehicular networks.” in INFOCOM, 2021, pp. 1–10.

[8] Z. Li, X. Xu, T. Hang, H. Xiang, Y. Cui, L. Qi, and X. Zhou, “A
knowledge-driven anomaly detection framework for social production
system,” IEEE Transactions on Computational Social Systems, 2022.

[9] G. N. Schroeder, C. Steinmetz, R. N. Rodrigues, R. V. B. Henriques,
A. Rettberg, and C. E. Pereira, “A methodology for digital twin modeling
and deployment for industry 4.0,” Proceedings of the IEEE, vol. 109,
no. 4, pp. 556–567, 2020.

[10] A. Banchs, D. M. Gutierrez-Estevez, M. Fuentes, M. Boldi, and
S. Provvedi, “A 5g mobile network architecture to support vertical
industries,” IEEE Communications Magazine, vol. 57, no. 12, pp. 38–44,
2019.

[11] Z. Lv, Y. Li, H. Feng, and H. Lv, “Deep learning for security in
digital twins of cooperative intelligent transportation systems,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[12] H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “Sensor-fault
detection, isolation and accommodation for digital twins via modular
data-driven architecture,” IEEE Sensors Journal, vol. 21, no. 4, pp.
4827–4838, 2020.

[13] X. Xu, S. Tang, L. Qi, X. Zhou, F. Dai, and W. Dou, “Cnn partitioning
and offloading for vehicular edge networks in web3,” IEEE Communi-
cations Magazine, 2023.

[14] X. Lin, J. Wu, J. Li, W. Yang, and M. Guizani, “Stochastic digital-
twin service demand with edge response: An incentive-based congestion
control approach,” IEEE Transactions on Mobile Computing, 2021.

[15] Z. Tu, L. Qiao, R. Nowak, H. Lv, and Z. Lv, “Digital twins-based auto-
mated pilot for energy-efficiency assessment of intelligent transportation
infrastructure,” IEEE Transactions on Intelligent Transportation Sys-
tems, 2022.

[16] Q. Xu, Z. Su, and R. Lu, “Game theory and reinforcement learning based
secure edge caching in mobile social networks,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3415–3429, 2020.

[17] Z. Lv, D. Chen, and Q. Wang, “Diversified technologies in internet
of vehicles under intelligent edge computing,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 4, pp. 2048–2059, 2020.

[18] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and
R. Y. Kwok, “Intelligent edge computing in internet of vehicles: a joint
computation offloading and caching solution,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 4, pp. 2212–2225, 2020.

[19] B. Li, X. Deng, and Y. Deng, “Mobile-edge computing-based delay
minimization controller placement in sdn-iov,” Computer Networks, vol.
193, p. 108049, 2021.

[20] K. Wang, X. Wang, and X. Liu, “A high reliable computing offloading
strategy using deep reinforcement learning for iovs in edge computing,”
Journal of Grid Computing, vol. 19, no. 2, pp. 1–15, 2021.

[21] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge comput-
ing systems,” IEEE Transactions on Wireless Communications, vol. 19,
no. 7, pp. 4947–4963, 2020.

[22] T. Zhao, I.-H. Hou, S. Wang, and K. Chan, “Red/led: An asymptotically
optimal and scalable online algorithm for service caching at the edge,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp.
1857–1870, 2018.

[23] D. Ren, X. Gui, and K. Zhang, “Adaptive request scheduling and service
caching for mec-assisted iot networks: An online learning approach,”
IEEE Internet of Things Journal, 2022.

[24] X.-Q. Pham, T.-D. Nguyen, V. Nguyen, and E.-N. Huh, “Joint service
caching and task offloading in multi-access edge computing: A qoe-
based utility optimization approach,” IEEE Communications Letters,
vol. 25, no. 3, pp. 965–969, 2020.

[25] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching
and workload scheduling in mobile edge computing,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 2076–2085.

[26] W. Sun, P. Wang, N. Xu, G. Wang, and Y. Zhang, “Dynamic digital
twin and distributed incentives for resource allocation in aerial-assisted
internet of vehicles,” IEEE Internet of Things Journal, vol. 9, no. 8, pp.
5839–5852, 2021.

[27] J. Zheng, T. H. Luan, L. Gao, Y. Zhang, and Y. Wu, “Learning based
task offloading in digital twin empowered internet of vehicles,” arXiv
preprint arXiv:2201.09076, 2021.

[28] C. Tan, X. Li, T. H. Luan, B. Gu, Y. Qu, and L. Gao, “Digital twin
based remote resource sharing in internet of vehicles using consor-
tium blockchain,” in 2021 IEEE 94th Vehicular Technology Conference
(VTC2021-Fall). IEEE, 2021, pp. 1–6.

[29] T. Liu, L. Tang, W. Wang, X. He, and Q. Chen, “Resource allocation
via edge cooperation in digital twin assisted internet of vehicle,” in 2021
IEEE Global Communications Conference (GLOBECOM). IEEE, 2021,
pp. 1–6.

[30] K. Zhang, J. Cao, and Y. Zhang, “Adaptive digital twin and multi-
agent deep reinforcement learning for vehicular edge computing and
networks,” IEEE Transactions on Industrial Informatics, vol. 18, no. 2,
pp. 1405–1413, 2021.

[31] H. Yan, X. Xu, F. Dai, L. Qi, X. Zhang, and W. Dou, “Service
caching for meteorological emergency decision-making in cloud-edge
computing,” in 2022 IEEE International Conference on Web Services
(ICWS). IEEE, 2022, pp. 120–128.

[32] C. Yang, X. Xu, X. Zhou, and L. Qi, “Deep q network–driven task
offloading for efficient multimedia data analysis in edge computing–
assisted iov,” ACM Transactions on Multimedia Computing, Communi-
cations, and Applications (TOMM), vol. 18, no. 2s, pp. 1–24, 2022.

[33] W. Liu, X. Xu, L. Qi, X. Zhang, and W. Dou, “Godeep: Intelligent
iov service deployment and execution with privacy preservation in
cloud-edge computing,” in 2021 IEEE International Conference on Web
Services (ICWS). IEEE, 2021, pp. 579–587.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3326969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on November 13,2023 at 13:04:59 UTC from IEEE Xplore. Restrictions apply.

