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Abstract

The common target problem in robotic swarms occurs when every robot must visit the
same target region. This may happen when a swarm of robots has to collect a leaked
toxic substance, for instance. To minimise congestion in such a situation, coordination
algorithms for traffic control are required. This thesis presents a mathematical study
about measures for evaluating the access efficiency of a common target area as the
number of robots in the swarm rises: the target area throughput and the asymptotic
throughput. Based on them, two algorithms were developed: the Single Queue Former
(SQF) and the Touch and Run Vector Fields (TRVF). I also present approaches for ad
hoc robots (i.e., those unaware of the coordination algorithm used by others) without
having to learn about them: the Ad Hoc Follower (AHF) and the Mixed Teams
(MT). Surprisingly, between the proposed approaches, simply executing an alternative
algorithm is better than following another robot perceived by local sensors. In the
tests performed in the Stage simulator, the other robots can use SQF or TRVF. These
algorithms are tested as alternative algorithms in addition to no coordination (NC),
where the robots only go directly to the target and avoid bumping each other. SQF
significantly outperforms all algorithms for a higher number of robots or when the
circular target region radius is small. Estimations of the expected task completion
time for the presented algorithms are also studied. These estimations consider not
only the number of robots as input but also environmental and algorithmic global
variables, such as the common target area size, the average speed and the average
distance between the robots. This work is a fundamental first step to start a discussion
on how better approximations can be achieved and which mathematical theories about
local-to-global analysis are better suited to this problem.
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Chapter 1

Introduction

1.1 Motivation

An agent is a software or hardware that acts autonomously in the environment
(Russell and Norvig, 2020). The decision-making of a single agent considers only its
environment with many distinct properties to take action. An autonomous vacuum
cleaner choosing the next direction to clean and an intelligent non-player character
used as an opponent in games for one person are examples of single agents.

However, there are situations where reasoning only with the information about the
environment without regarding other agents may not work or be inefficient. Agents
playing chess or multiplayer games have to consider other agents to succeed, for
instance. Self-driving cars in a street need to consider other cars as agents, cooperating
to minimise collisions and maximise the average speed on the road. With that in mind,
a multi-agent system is composed of several agents that communicate with themselves
explicitly or implicitly to solve a common task. Multi-agent systems have applications
in many areas, such as in the prediction of cancers (Yong, 2013; Pourpanah et al.,
2017; Tatari, Akbarzadeh-T, and Sabahi, 2012), students’ performance (Abdullah,
Malibari, and Alkhozae, 2014) and robotic intent (Demiris, 2007) or aiding decision-
making in companies (Miley, 2018; Hanga and Kovalchuk, 2019; Caridi and Cavalieri,
2004).

In the literature, robots are often considered agents in the physical world. Agents
can have the same characteristics, i.e., have the same hardware and software. In this
case, the system is named homogeneous, otherwise heterogeneous. When a group of
homogeneous or heterogeneous robots are used for a specific purpose, it is called a
multi-robot system (for example, in robot soccer or a group of military autonomous
drones). Such systems may be controlled by a single central processing unit (CPU),
but if it fails, all robots in the system will stop functioning.

An alternative to avoid this situation is using different CPUs for controlling each
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robot in the system distributedly. Accordingly, a multi-robot system with a large
number of distributed homogeneous robots is known as a robotic swarm. Although
this field was initially applied for validating biological models such as properties of
insect colonies (Beni, 2005), the interest in engineering applications has attracted
more researchers over the years (Dias et al., 2021). As it happens in insect swarms,
no centralised coordination is performed for controlling each individual. Thus, in
addition to a distributed control, local sensing is assumed in robotic swarms (Sahin,
2005; Beni and Wang, 1993).

In order to be more cost-effective, an increasing quantity of problems solved by
robotic swarms are tackled using many simple robots rather than a few complex robots
(Dudek et al., 1993). Counter-intuitively, some combinations of simple rules can create
complex global behaviours (Mataric, 1995; Panait and Luke, 2003). Some robotic
swarm research aim to create complex behaviours based on simple rules (Navarro and
Mat́ıa, 2013; Garnier, Gautrais, and Theraulaz, 2007). Therefore, careful design can
enable swarms of simple robots to perform complex tasks with robustness instead of
using intricate and expensive robots.

Robotic swarms have the potential to be used in construction (Stewart and
Russell, 2006), searching in regions harmful to humans (Arnold, Yamaguchi, and
Tanaka, 2018), warehouse management (Wen, He, and Zhu, 2018; Yogi et al., 2020),
microscopic robots locating cancer cells (Liu et al., 2015; Galstyan, Hogg, and Lerman,
2005; Bogdan, Wei, and Marculescu, 2012; Wang et al., 2022), collecting rubbish
(Chaudhari, Patil, and Raut, 2019; Mărgăritescu et al., 2020) in remote areas such as
the ocean and disaster response (Costa et al., 2022).

Having that in mind, this thesis focuses on a problem that may occur when robots
of a swarm are moving to a common location. The next section introduces this
problem, which is closely related to congestion problems in robotic swarms, discussed
in Section 1.1.2. As congestion in Swarm Robotics studies can be further investigated,
Section 1.1.3 elucidates why that topic should be theoretically analysed. Such a
study not only broadens the understanding of congestion but inspires the creation of
new algorithms for the common target problem. These algorithms may be used in
another situation that needs the execution of different algorithms by different swarms.
That situation is exemplified in Section 1.1.4. All algorithms approached here use
artificial potential fields as local path planners. The analysis of the influence of
a different potential field function on the overall swarm behaviour would benefit a
swarm designer. Section 1.1.5 motivates the study of that subject.

1.1.1 The common target problem

The main problem treated in this thesis may happen when all robots have to access
a shared place of any size. For instance, in a situation where robots are deployed to
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collect a leaked toxic substance, the robots need to coordinate themselves in order to
get to that region as fast as possible while not interfering with the collection of the
other robots. If the robots do not execute an efficient traffic control algorithm, their
mutual interference can worsen.

The previous example illustrates the application of a control algorithm for robotic
swarms when they need to reach a common target region. Thus, the common target
problem occurs when a large number of robots in a swarm have to access the same
area (Marcolino et al., 2017). Figure 1.1 illustrates a situation covered by the common
target problem with few robots (Passos, 2012). In it, robots must reach the area
inside the inner circle, leave that area and stop on one of the sides of the region at the
end by using only attractive and repulsive potential fields and no control algorithm
for minimising their interference. Figure 1.1a shows the initial configuration of that
experiment. Figure 1.1b displays the robot going to the common target area. After
some time (Figure 1.1c), the robots face congestion due to the absence of an algorithm
to lessen it. After overcoming the obstruction, they finish the experiment by stopping
on the sides (Figure 1.1d).

1.1.2 The congestion problem in robotic swarms

The robotic swarms in the problem described above can be seen as a multi-agent
system with spatial computers, that is, a group of devices displaced in the space
with its objective defined in terms of spatial structure, and its interaction depends
on the distance between them (Giavitto et al., 2013). Swarms have recently been
receiving attention in the multi-agents systems literature in problems such as logistics
(Giordano et al., 2021), flocking formation (Cohen and Agmon, 2021), pattern
formation (Cicerone et al., 2021) and the coordination of unmanned aerial vehicle
swarms (Yang, Ma, and Xia, 2021). In such problems relating to spatial distribution,
conflicts may be created by the trajectories of the robots, which may slow down the
system, especially when a group is intended to go to a common region of space. Traffic
congestion appears when several robots try to reach the same area simultaneously
(Treuille, Cooper, and Popović, 2006; Graciano Santos and Chaimowicz, 2011; Yan,
Jouandeau, and Cherif, 2013; Grossman, 1988), for instance, in waypoint navigation
(Marcolino and Chaimowicz, 2008; Duarte et al., 2016) and foraging (Ducatelle et al.,
2011; Fujisawa, Ichinose, and Dobata, 2019). Due to the local processing by the
individuals in a swarm, they cannot see beyond their range of sensing and do not have
global knowledge of every trajectory. Even if few of them had such global information,
the processing power would not be sufficient when the number of robots grows beyond
their capabilities. Thus, designing algorithms for local sensing to minimise congestion
is needed in swarms.

In the current state of the art, congestion problems in robotic swarms are mainly
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(a) (b)

(c) (d)

Figure 1.1: Example of the common target problem with a few robots (Passos, 2012).
Available on http://youtu.be/GvzgMhxjqk0, accessed on 18 October 2023.

solved by collision avoidance in a decentralised manner because it enables better
scalability of the algorithms (Batra et al., 2022; Majcherczyk et al., 2018; Borrmann
et al., 2015). Despite that, only avoiding collisions does not necessarily lead to a
good performance in the common target problem. For example, Marcolino et al.
(2017) showed that using only the decentralised collision avoidance algorithm Optimal
Reciprocal Collision Avoidance (ORCA) (Berg et al., 2011) creates local minima
around the common target region. They present experimental solutions for the
congestion problem that arises when the swarm shares the same goal. However, these
algorithms may completely fail in small target regions, with an area measuring less
than five times the area of the robots. In addition, no formal analysis of the cluttered
environment is done in that work.
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1.1.3 Theoretical analysis of the congestion in swarms

As discussed above, congestion in the Swarm Robotics context is still not well
understood, and theoretical work is needed to measure the optimality of the
algorithms. A better understanding of this topic should lead to a variety of new
algorithms adapted to specific environments. Thus, this thesis introduces the first
theoretical study on this problem, which should lead to future enhancements in
handling congestion in robotic swarms.

Additionally, a robotic swarm system is desired to work well as the number of
robots increases. As congestion in these systems grows with the number of robots,
its analysis needs to incorporate this. If one has a finite measure which abstracts the
optimality of any algorithm as the number of robots goes to infinity, it can be used as a
metric to compare different approaches to the same problem. In this work, I present as
a metric the target area throughput, defined as the inverse of the average time between
arrivals at the target region, and theoretical strategies to maximise the throughput
in scenarios where the robots have constant linear speed and distance between each
other. Although these scenarios are useful for ease of mathematical analysis, they
are not practical in real applications as inter-robot distances and speeds vary, but
the presented strategies help to design new algorithms, such as some presented in
this thesis: the Single Queue Former (SQF) and the Touch and Run Vector Fields
(TRVF).

1.1.4 Ad hoc teamwork and the common target problem

As new algorithms such as those mentioned above are publicly available for controlling
the congestion of swarms, there may be circumstances where different groups of
swarms execute different algorithms for accessing the same target area. Consider
a situation where a robotic swarm runs some coordination algorithm for accessing
an area for rescuing people in an accident, and different institutions want to help.
Assume that they deployed their robots and, for a fast response, did not meet to
settle the swarm congestion control algorithm for quickly accessing the common area.
Then, the first swarm to arrive will execute a congestion control algorithm, but the
next does not know which algorithm is in execution. This situation is an example
of ad hoc teamwork, i.e., when the system needs to solve a known objective, but the
agents do not know each other’s characteristics. To illustrate this, Stone et al. (2010)
give a scenario example involving people in ad hoc teamwork. Assume that a transit
accident occurred, and a group of passers-by’s goal (the agents) is to help the injured.
They do not know each other and discover by questioning their experiences that may
help in this situation. People with any experience in nursing should perform first
aid, and people with a telephone should call an ambulance or police, among other
activities. Usually, the agents’ task in this scenario includes coordinating with each
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other and learning about themselves to achieve the goal. Approaches to this problem
often involve learning about other agents (Mirsky et al., 2022; Albrecht and Stone,
2018), but this requires long iterations of training, and errors may be introduced
during the learning process.

That said, a simple distributed approach using local sensing is proposed in this
thesis to enable a group of robots in a swarm (the ad hoc robots) to minimise
congestion in the common target problem without learning the coordination algorithm
executed by the other robots (the aware robots). This approach results from
experiments of a previous follower algorithm to solve this problem, which is
summarised as follows. When ad hoc robots are not perceiving another robot in
their neighbourhood, they follow a fixed alternative algorithm (for example, to go
directly to the target). Otherwise, it follows the other robot while the angle between
the vector pointed by the alternative algorithm and the direction vector of the other
robot is not larger than a fixed angle. Accordingly, this approach does not need to
estimate the algorithm of the other robots because they will follow the path of their
potential field by getting in the proximity of one that knows the algorithm as probable
as encountering a robot aware of the swarm congestion control algorithm. However,
the experiments described in this work show that if the robots do not follow any robot,
the time to complete the task performed in the experiments (task completion time) is
minimised. Thus, our proposed approach is to execute a fixed alternative algorithm
without following any robot.

1.1.5 Global analysis from local potential field specification

These proposed algorithms have in common the usage of artificial potential fields in the
same manner as they are usually in robotic swarms due to their distributed and local
characteristic for path planning (Cai et al., 2023; Barnes, Fields, and Valavanis, 2007;
Galvez et al., 2017). Consequently, when the local individual specification based on
potential fields is modified, global swarm behaviours, such as the task completion time,
will have specific outcomes accordingly. The task completion time is the total time for
all robots to arrive at the target area and leave a fixed-size area that includes the target
area (the working area). In contrast with the throughput, which is associated with the
arrival at the target, the task completion time includes information about congestion
when leaving the target. Although state-of-the-art and the presented algorithms have
less time to go away from the target, some algorithms cause congestion when leaving
the target, such as one of the proposed solutions for ad hoc teamwork.

In order to compare distinct potential fields that work better for various
numbers of robots, experiments with different values must be simulated to form
a plot of the function of the task completion time versus the number of robots,
environmental or algorithmic parameters (for instance, working area and target
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area sizes). Nevertheless, plotting it for many robots through simulation is time-
consuming. A swarm designer could use estimations instead of simulations to choose
between available solutions. Additionally, such estimation is required to estimate the
expected task completion time of algorithms that utilises those as a component, such
as the proposed ad hoc teamwork algorithm.

An alternative approach would be using regression over the experimental data.
However, it does not explain the time in relation to the number of robots, dynamical
variables such as average speed, the average distance between the robots, and
environmental or algorithmic variables such as the radius of the target area, radius of
the task working area and how many directions the robots must go after they reach
the target area. Therefore, this thesis also suggests and discusses such estimations.

1.2 Contributions and Objectives

The main objective of this thesis is to validate a new theoretical study of the common
target problem in robotic swarms and new algorithms to control congestion when the
robots in a swarm have a common target area.

Consequently, this thesis also has as contributions:

• the proposal of a method for evaluating algorithms for the common target prob-
lem in a robotic swarm by using the throughput in theoretical or experimental
scenarios;

• the presentation of an extensive theoretical study of the common target problem,
allowing one to understand better how to measure the access to a common target
using a metric not yet used in other works on the same problem;

• assuming a circular target area and robots with a constant linear speed and
a fixed distance from each other, the development of theoretical strategies for
entering the area and calculating their theoretical throughput for a fixed time
and their asymptotic throughput; additionally, the verification of the correctness
of these calculations by simulations is shown;

• based on these theoretical strategies, the presentation of two novel algorithms
for handling congestion: Single Queue Former (SQF) and Touch and Run Vector
Fields (TRVF); SQF outperforms the state-of-the-art and can handle a small-
sized target area which is a situation where previous approaches completely
failed in our simulations, while TRVF helps us to understand the influence of
the variation in the speed and distance between the robots when translating an
idea from the theoretical strategies to concrete algorithms;
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• the proposal of simple distributed approaches, the Ad Hoc Follower (AHF) and
Mixed Teams (MT), for local sensing to enable ad hoc robots in a swarm to
minimise congestion in the common target problem without installing on the
robots or learning the coordination algorithm executed by the other robots;

• the estimations of the expected task completion time in relation to the number
of robots, environmental or algorithmic parameters for a swarm with no
coordination (that is, using only attractive and repulsive force fields), SQF and
TRVF algorithms and MT.

This thesis is a fundamental step to initiate a discussion about how the global
system behaviour from individual local controllers based on potential fields can be
better inferred in the common target problem.

1.3 Thesis Organisation

This thesis is organised as follows.

• Chapter 2 presents the background: robotic swarms, artificial potential fields,
the common target problem and the state-of-the-art algorithms for solving it.

• Chapter 3 discusses the related work.

• Chapter 4 explains the mathematical notation being used, formally defines
the common target area throughput, proves statements about this measure
for theoretical strategies that allow robots to enter the common target area
and presents experiments and their results to verify the correctness of those
strategies.

• In Chapter 5, these strategies are the inspiration for the two algorithms shown
here, conveyed in the first sections of that chapter. It also presents the follower
algorithm described above and the proposed approach for ad hoc robots in more
detail. The results of experiments with them, comparisons with state of the art
and how the ad hoc teamwork approaches behave when used for these algorithms
is also discussed.

• Chapter 6 demonstrates the task completion time estimations for these algo-
rithms, explains how they were obtained and presents the experiments and result
for them.

• Finally, Chapter 7 summarises the results, provides final remarks and discusses
future works.
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Chapter 2

Background

In this chapter, subjects closely related to this thesis are presented: robotic swarms,
artificial potential fields, the common target problem in a swarm of robots and state-
of-the-art algorithms for that problem.

2.1 Robotic Swarms

Robotic swarms are groups of numerous simple robots that work together to achieve
a common goal (Shen et al., 2004). The behaviour of insect colonies, such as ants
and bees, serves as inspiration (Kube and Zhang, 1993). Individuals in these colonies
interact among themselves through independent processing and local communication:
there is no central control unit overseeing each individual.

Influenced by that, the execution of a given task is decentralised. Each robot
must process the data collected by its sensors and eventually communicate the results
to the other robots in the swarm. Robots, in general, have limited processing and
communication capabilities. Because of this constraint, algorithms must be robust and
scalable, ensuring that the addition of more robots improves the efficiency of these
systems (Sahin, 2005) or minimises their interference in applications that naturally
lose its performance as the number of robots grows (Hamann, 2018). Decentralisation
and local communication in multiple robot control results in increased system
robustness and scalability.

According to Sahin (2005), robustness occurs when individuals fail in swarms,
reducing the system efficiency but not preventing it from performing its task.
Scalability is the ability to remain stable as the number of robots increases. A robotic
swarm control algorithm must be designed so that the inclusion of more robots in the
group tends to improve system performance whenever this is possible. A centralised
processing unit cannot accomplish that because adding new robots would only increase
its workload.
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In addition, a swarm of robots is implemented to improve flexibility. The robots
will execute in a manner that different situations generate different behaviours while
still performing the primary task. An ant colony is an example of flexibility in nature.
Its main goal is to collect food for the anthill, but sub-tasks must be completed for
unusual situations arising during the main task execution (for example, diverting
paths blocked by spilt liquids or objects left in the middle of the route, escaping
predators and carrying heavy food).

Furthermore, robotic swarms have been tested in real-world experiments inside
university laboratories and outdoors in the last few decades. Figure 2.1 shows
examples of robotic swarms with real robots. Alice swarm system comprised of
robots made by Caprari et al. (1998) in Figure 2.1a. Another swarm adapting
itself to overcome obstacles by combining its robots is in Figure 2.1b from the
project SYMBRION (Bristol Robotics Laboratory, 2017). A self-organising swarm
of hundreds of robots (Rubenstein, Cornejo, and Nagpal, 2014) forms a wrench in
Figure 2.1c. Figure 2.1d shows a rescue and search swarm of drones (Soria, 2022).

(a) (b)

(c) (d)

Figure 2.1: Examples of robotic swarms with real robots: (a) an Alice swarm (Jain,
2019), (b) a combining swarm (Golden, 2021), (c) a self-organising swarm forming a
wrech (Yong, 2014) and (d) a rescue and search swarm of drones (Aubourg, 2022).
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To conclude, recent advances in this area have revealed potential applications
such as military missions in the air (Wu, Xiao, and Bi, 2020) or complex urban
environments (Rudd, 2017), space exploration (stimulated by programs such as the
Swarmathon Challenge from NASA (Aeronautics and NASA, 2018; Aeronautics
and NASA, 2015)) and patrolling (Kobayashi, Higuchi, and Ueno, 2023). Current
advances and predictions of applications until 2050 are discussed by Dorigo, Ther-
aulaz, and Trianni (2020): agriculture, infrastructure inspection and maintenance,
maritime and deep-sea applications (for example, ecological monitoring, surveillance
and fishing), entertainment, cleaning, grazing, delivering goods, space exploration,
pest control, microplastic collection in aquatic environments and medical application
(for instance, drug delivery).

2.2 Artificial Potential Fields

Created by Khatib (1985), this method assumes that the position to be reached is an
attractive pole (as an electrical charge in the centre of its electrical potential field)
and the obstacles are repulsive surfaces. The robot position is a point-like ball moving
by the resultant force originated by that attractive and repulsive potential fields.

Formally speaking, let p = (px, py) and G = (Gx, Gy) be the robot and goal
positions. An attractive potential field is denoted UA(p,G) and a repulsive potential
field, UR(p,q) for the nearest obstacle edge point located at position q = (qx, qy).
The resultant potential field is

U(p) = UA(p,G) + UR(p,q),

and the resultant force for a given robot position is

F(p) = −∇U(p).

Figure 2.2 illustrates an example by Siegwart, Nourbakhsh, and Scaramuzza (2011).
A robot is initially located in position s and has to move to position G (Figure 2.2a).
For this example, the surface map of U(p) is shown in Figure 2.2b. Observe that
the obstacles have high altitude while the places without obstacles have a slope going
towards the goal position from the starting point. The path to be followed in Figure
2.2a is obtained from that with lowest energy. It can be locally calculated by the
robot as the potential field U(p) and its gradient only depends on the robot position,
assuming the goal and obstacles are fixed. This local feature is the main reason for
using it as path planner for robotic swarms.

In this thesis, the attractive and repulsive potential fields are (Siegwart, Nour-
bakhsh, and Scaramuzza, 2011)

UA(p,G) =
1

2
Ka∥p−G∥2
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(a) (b)

Figure 2.2: Example of artificial potential field, adapted from Siegwart, Nourbakhsh,
and Scaramuzza (2011). (a) Initial setup and followed path. (b) Resultant potential
field surface from goal and obstacles.

and

UR(p,q) =

{
1
2
Kr

Ä
1

∥p−q∥ −
1
I

ä2
, if ∥p− q∥ ≤ I,

0, otherwise,

where Ka and Kr are scaling factors, and I is the distance of influence of the object
(i.e., the maximal distance from the robot position to the obstacle for avoidance).
Algorithms may change the I value in this work. Hereafter, Id and I denote a fixed
default influence radius from the robot position and a variable one, respectively. The
resultant force is obtained by negating the gradient of the total potential field U(p)
obtained from the above potential fields:

F(p) = −∇U(p) = −∇UA(p,G)−∇UR(p,q) = FA(p) + FR(p),

for
FA(p) = Ka(G− p)

and

FR(p) =

®
Kr

Ä
1

∥p−q∥ −
1
I

ä
p−q

∥p−q∥3 , if ∥p− q∥ ≤ I,

0, otherwise.

Nonetheless, artificial potential fields may have local minima, that is, some
configurations of the goal and the obstacles may put the robot in a position with zero
force. Figure 2.3 illustrates a situation of local minima: repulsive and attractive forces
are of the same magnitude but in opposite directions, resulting in a zero resultant
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Figure 2.3: Example of local minima.

force. Although there are solutions to avoid them (Mabrouk and McInnes, 2008;
Matoui, Boussaid, and Abdelkrim, 2015), this situation rarely occurs in this work
because the obstacles are other moving robots.

2.3 Common Target Problem

The common target problem for robotics swarms occurs when N robots have the
same target area. They must cooperate in a decentralised manner and may use local
communication to enable them to reach the target, avoiding congestion, accessing and
leaving that area in the shortest possible time.

That congestion problem could be solved using a central processing unit to
compute the best trajectories for each robot. However, an obvious disadvantage would
be the system dependency on this unit. Additionally, it is not a scalable solution for
various robots. The challenge of its solution for swarms is the guarantee that the
whole system will work without each part being aware of the global environment.
Hence, the solutions must be decentralised and with local sensing.

Closely related to such solutions is robotic traffic control. This topic has been
studied for a long time (Grossman, 1988; Kato, Nishiyama, and Takeno, 1992; Caloud
et al., 1990), but assuming robots navigating in delimited lanes and coordination is
necessary only at the intersections. Other more recent works still focus on alleviating
congestion in delimited lanes and circuits (Masud et al., 2020; Hoshino and Seki,
2013; Hoshino, 2011; Viswanath and Madhava Krishna, 2009). For instance, an
algorithm based on Petri nets has been introduced to avoid deadlocks at intersections
(Zhou et al., 2017), where each robot follows a pre-determined closed path, but it
works only for robots on lanes and does not show performance in terms of simulation
time nor throughput, as in Chapters 4, 5 and 6. Saska et al. (2020) developed a
control algorithm for motion planning of formations for unmanned aerial vehicles
in environments with narrow passages. The robots in that system follow a leader
and maintain proximity while avoiding obstacles in a constrained space. Yoshimoto
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et al. (2018) describe a decentralised algorithm to maintain proximity between robots.
Although their work is designed for a robotic swarm, it depends on a leader, which is
a robot initially chosen and remains the same during the experiments.

Also related to the congestion problem, there are many relevant works in the
multi-agent systems literature, but assuming autonomous cars that navigate following
lanes or roads, and coordination is needed at the junctions (Carlino, Boyles, and
Stone, 2013; Sharon and Stone, 2017; Cui et al., 2021). Other lines of work try
to optimise trajectories across edges of complex traffic networks, for example, by
global planning and using incentives or tolls for self-interested agents (Sharon et al.,
2017; Sharon et al., 2018). Choudhury et al. (2021) and Shahar et al. (2021) also
deal with multi-agents and pathfinding, but not in a situation where the target of
every agent is the same area. Furthermore, distributed solutions are considered here
where agents only have local information, while Choudhury et al. (2021) and Shahar
et al. (2021) propose centralised solutions. Xia, Sun, and Xia (2021) investigate the
topology of the neighbourhood relations between multiple unmanned surface vehicles
in a swarm. They deal with maintaining formation in swarms, but they have to keep
virtual leaders, and their goal is not to minimise congestion. Cenedese, Favaretto,
and Occioni (2016) use the Kuramoto model to coordinate multiple vehicles towards
a target while avoiding collisions and keeping them next to each other, but they do
not analyse the time to get to the target and exit from it as the number of vehicles
grows, as in this thesis, and their model uses communication between agents, which is
unneeded by the proposed algorithms in Chapter 5. Ma, Ouimet, and Cortés (2020)
describe a reinforcement learning algorithm for multi-agent planning for a swarm of
vehicles to go to objectives distributed over space, but it does not perform well when
the targets cannot be well divided into regions over the environment.

Although minimising congestion by traffic control is a sub-problem in robotic
swarm applications, few works deal with it because a small number of robots are
often used in real-world swarms (Tarapore, Groß, and Zauner, 2020), and congestion
is not an issue in such works. The problem of alleviating congestion when a swarm
of robots has a common target has not yet been well studied. Thorough surveys
about Swarm Robotics (Sahin, 2005; Sahin et al., 2008; Barca and Sekercioglu,
2013; Brambilla et al., 2013; Bayındır, 2016; Chung et al., 2018) do not discuss
these situations. Additionally, a recent survey on collision avoidance (Hoy, Matveev,
and Savkin, 2015) provides insights into multiple vehicle navigation, for instance, the
model predictive control (MPC) – also known as Receding Horizon Control (RHC).
Their work also discusses algorithms for two- and three-dimensional kinematics, which
affect the swarm coordination algorithms presented in this thesis from the individual
level.

In order to show the influence of different kinematics, the experiments in this
thesis were applied to holonomic and non-holonomic robots. A robot is holonomic
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when the number of dimensions in the velocity space is equal to the degree of freedom
of its workspace (Siegwart, Nourbakhsh, and Scaramuzza, 2011). A holonomic robot
can freely move in any direction, while a non-holonomic robot has restrictions (for
example, car-like robots cannot skid). Hence, three-dimensional robots will influence
the algorithms differently, and the algorithms in Chapter 5 should be adapted and
extended to these types of robots. However, they do not discuss the common target
problem in multi-robot navigation.

As an alternative to these solutions, the first algorithm to minimise congestion
for the common target problem was presented by Marcolino and Chaimowicz (2009),
which propose an algorithm using potential fields. Their solution was improved later
by Marcolino et al. (2017), giving birth to the algorithms Probabilistic Congestion
Control (PCC), Entrance and Exit Regions (EE) and the combination of both (PCC-
EE), which will be described in more detail below and whose pseudocode are in
Appendix A. These algorithms have also been the inspiration for new algorithms since
their publication. For instance, inspired by the PCC algorithm, Oliveira, Inácio, and
Macharet (2017) developed an algorithm for the common target problem in distinct
groups of robots in a swarm to minimise the difference between the time of arrival of
individuals that belong to the same group. Brown and Adams (2023) analysed the
congestion in a heterogeneous swarm formed by unmanned ground and aerial vehicles
in the military program of the Defense Advanced Research Projects Agency (DARPA)
named OFFensive Swam-Enabled Tactics (OFFSET) and suggested, without testing,
the usage of a variant of the probabilistic state machine similar to the employed in the
PCC algorithm for congestion control of the aerial vehicles which assigns a random
wait time before they are set in motion. Table 2.1 summarises these works.

Reference Summary
Marcolino and Chaimow-
icz (2009)

First mention of the problem and description of an
earlier version of the PCC algorithm.

Marcolino et al. (2017) Description of PCC, EE, PCC-EE algorithms.
Tests with ORCA fail for the common target
problem.

Oliveira, Inácio, and
Macharet (2017)

Presentation of an algorithm for the common target
problem in distinct groups of robots.

Brown and Adams (2023) Discussion of algorithms for a congestion analysis
of swarms in a military application, including the
solutions for the common target problem.

Table 2.1: Summary of the works on the common target problem.
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Xrσ
Free

rγ
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Figure 2.4: Free and danger regions. “X” denotes the target area. Adapted from
Marcolino et al. (2017).

2.3.1 Probabilistic Congestion Control

The Probabilistic Congestion Control (PCC) minimises congestion by making some
robots wait randomly before going to the target area. The PCC algorithm utilises two
regions around the target: the free region, a circular region with radius rσ and the
danger region, a ring-shaped region with inner radius rσ and outer radius rγ (Figure
2.4). Cooperation is required for robots reaching the danger region in order to reduce
access to the free region. After entering this region, they go to the target.

In addition, the algorithm utilises an α-area, which is a sub-area in the robot
sensor region. Assume a coordinate system centred at the robot position with the
y-axis pointing towards the target. The α-area is the circular sector [−α, α] centred
in y with radius δ (Figure 2.5). The circle around the robot position with radius δ is
used to detect the presence of another. When a robot detects the presence of another,
it sends a message saying its target and current state, but only after every Tcomm
iterations, to decrease the number of messages sent. The communication radius for
sending such a message is δcomm.

A probabilistic finite state machine models the behaviour of each robot (Figure
2.6). Its states are normal (the starting state), waiting, locked and impatient. A
normal robot moves in the direction of the target while avoiding collisions. When
a robot in the normal state is in the danger region and detects another robot, the
normal robot checks if the other is within its α-area and if they have the same target.
If both conditions are met, there is a transition from normal state to waiting. For the
verification of the α-area in the latter condition, the constant α is called αw.

A waiting robot tries to remain stationary at the point where it changed its state
while simultaneously avoiding collisions. That robot periodically checks if it can make
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Figure 2.5: An α-area of the PCC algorithm (Marcolino et al., 2017).
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Figure 2.6: Probabilistic finite state machine of the PCC algorithm. Adapted from
Marcolino et al. (2017).
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a state transition every Tη iterations. It can switch to the impatient with probability
ρI > 0 or stay in the same state with probability 1− ρI .

An impatient robot moves in the direction of the target as a normal robot, but it
does not stop nor alter its state until it reaches the target. After that, it switches to
normal and moves towards its next destination.

In Figure 2.6, a normal robot can also change its state to locked to force the robots
outside the danger region to wait before being allowed to enter the target area. For
that transition, the robot has to check if another robot is locked or waiting only in
its front, so the α-area can be narrower than the area used to switch from normal to
waiting. Thus, the constant for that area is denoted αl.

A locked robot does not move (similar to a waiting robot), but the transition from
the locked state does not depend on probabilities. A locked robot switches back to
normal when no waiting or locked robot is in its α-area. Additionally, if a locked
robot is pushed into the danger region, it becomes a waiting robot. Moreover, a robot
sends a message if it is in the danger region or in locked state.

2.3.2 Entrance and Exit Regions

The Entrance and Exit Regions (EE) algorithm separates the area around the target
into entry and exit regions. A circular area centred in the target centre is divided
into four circular sectors: two defined by angle ω for entering the target area and two
by angle β = π − ω for leaving. The entry region is a circular area with radius rγ
around the target centre, as shown in Figure 2.7.

The EE algorithm affects the robots in the ring-shaped region defined by the inner
radius rγ and outer radius D. When a robot is moving towards the target and is within
a distance D from it, the robot verifies whether it is outside the entry region. If the
robot is not in the entry region, it is compelled to move to the nearest point in the
border of the entry region. This verification is equivalent to

(py −Gy ≥ tan(ϕ)(px −Gx)) ∧ (py −Gy ≥ tan(ψ)(px −Gx)) ∧ (py > Gy)∨
(py −Gy ≤ tan(ϕ)(px −Gx)) ∧ (py −Gy ≤ tan(ψ)(px −Gx)) ∧ (py ≤ Gy),

(2.1)

for a robot position p = (px, py), target centre at G = (Gx, Gy), ϕ = π/2 − ω/2 and
ψ = π/2 +ω/2, as illustrated in Figure 2.8. From that figure and using trigonometry,
equations of a line and the distance of a point to it, the waypoint w = (wx, wy) to
where the robot has to go is given by

wx = px + d cos(ϑ)

wy = py + tan(θ)(wx −Gx),
(2.2)

for

d =
py − tan(θ)(px −Gx)− py√

(tan2(θ) + 1)
,
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Figure 2.7: Division of the region around the target in entry (white) and exit (shaded)
areas. Adapted from Marcolino et al. (2017).

ϑ =


π/2 + ϕ, if ((py > Gy) ∧ (px > Gx))∨

((py ≤ Gy) ∧ (px ≤ Gx))

ψ − π/2, otherwise,

and

θ =


ϕ, if ((py > Gy) ∧ (px > Gx))∨

((py ≤ Gy) ∧ (px ≤ Gx))

ψ, otherwise.

Additionally, robots must also react to repulsive forces relative to their neighbours.
In the entry region, repulsive forces applied to a robot are divided by half if they push
it outside that region. The repulsive force vector is reduced by checking if it crosses
the nearest delimiting line from inside to outside the entry area (Figure 2.9). Upon
reaching the target, the repulsive forces induced by other robots are also divided in
half. After a robot in the entry region reaches the target, it will leave it by the exit
region without congestion caused by robots in the opposite direction. It is unexpected
that robots are in the opposite direction, as the robots going to the target area in the
exit area are induced to go to the entry area.
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l m

..

Figure 2.8: Nearest distance between a point in the exit region and the entry region
boundary. Adapted from Marcolino et al. (2017).

x = Gx

y = Gy

Figure 2.9: Forces that push the robots away of the entry region are divided by half
in the grey semicircles. Adapted from Marcolino et al. (2017).
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2.3.3 Probabilistic Congestion Control with Entrance and
Exit Regions

The combination of the two previous algorithms results in the Probabilistic Congestion
Control with Entrance and Exit Regions (PCC-EE). The circular region of radius rγ
for the EE algorithm corresponds to the danger region (of the same radius) of the
PCC algorithm.

Robots follow both algorithms in the entry region but only the EE algorithm in the
exit region. They must verify if they are inside the entry region while moving towards
the target. If they are outside, they move towards the nearest point in the entry
region. Inside the entry region, the robots also follow the PCC algorithm. Therefore,
they can change their state to either waiting, if in the danger region, or locked, if there
is a robot in the waiting or locked state in front of them.
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Chapter 3

Related work

The related work is divided into three major groups as seen below: congestion and
traffic in robotic swarms, supporting Chapter 4 and the new algorithms in Sections
5.1 and 5.2; studies of Swarm Robotics and other areas on the local to global analysis
related to Chapter 6; and the definition of ad hoc teamwork, applications and its
relation with multi-robot systems and robotic swarms aiding the solutions presented
in Section 5.3 and estimated in Section 6.1.4.

3.1 Traffic and Congestion Problems in Robotic

Swarms

In the literature on multiple robot systems, collision avoidance is closely related to our
problem, but works on this topic do not measure the efficiency concerning a common
target. Also, heed that collision avoidance alone is not enough to solve the common
target problem. As presented shortly ahead, there is a lack of theoretical papers about
this problem in robotic swarms. Thus, along with the theoretical work in Chapter
4, I suggest a measure that the control algorithm should maximise for getting to the
target area. Thus, works with similar measures are discussed here, but they differ
from the common target problem. Finally, this problem is treated mathematically in
Chapter 4, whose described strategies inspired the algorithms presented in Sections
5.1 and 5.2.

Works in Collision Avoidance. Collision avoidance is an important related
topic of study in robotics. In the found literature, algorithms let robots move
efficiently in environments with a lot of obstacles, but they do not measure the
efficiency of the algorithm in the common target problem (Hewawasam, Ibrahim,
and Appuhamillage, 2022). As an example, Ferrera et al. (2017) have proposed
a decentralised algorithm where a set of local reactive rules are followed to avoid
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collisions. Their work shows an extensive list of benchmarks and metrics for robotics
problems, but performance in common target situations is not included. Evolution-
based algorithms may learn traffic rules for collision avoidance after thousands of
iterations (Fujisawa, Ichinose, and Dobata, 2019), but they were not yet explored for
the common target problem. Additionally, Sections 5.1 and 5.2 focuses on algorithms
directly designed to handle congestion based on our theoretical work in Chapter 4
without requiring long iterations of training or optimisation.

Inadequacy of Employing Only Collision Avoidance. However, only
avoiding collisions does not necessarily lead to a good performance in the common
target problem. For instance, Marcolino et al. (2017) showed that the ORCA
algorithm (Berg et al., 2011) reaches an equilibrium where the robots cannot go to
the target. They proposed three algorithms using artificial potential fields and offered
experimental solutions for the target congestion problem. However, their proposed
algorithms face issues as the target area gets smaller. That paper also presents three
algorithms using artificial potential fields for the common target congestion problem,
but no formal analysis of the cluttered environment was conducted.

Lack of Theoretical Studies on Congestion in a Common Target Area.
Therefore, congestion is still not well understood, and more theoretical work is needed
to measure the optimality of the algorithms. A better understanding of this topic
should lead to a variety of new algorithms adapted to specific environments. Thus,
Chapter 4 aims to discuss the first theoretical study on this problem, which should
lead to future enhancements in handling congestion in robotic swarms. That chapter
is a theoretical work which fits in the literature on mathematical models of Swarm
Robotics, such as the works by Lima and Oliveira (2017), which models a cellular
automata ant memory to control a robotic swarm for foraging tasks; Varghese and
McKee (2010), for pattern transformation modelling; Li and Chen (2006), for box-
pushing; Taylor-King et al. (2015), which studies the effect of turning delays on the
behaviour of groups of robots; Galstyan, Hogg, and Lerman (2005), for microscopic
robots that reside in a fluid and can detect chemicals; Khaluf and Dorigo (2016),
which models swarm performance measures using the integral of linear birth–death
processes; and Mannone, Seidita, and Chella (2022), which uses category theory and
quantum computing to model the development of robotic swarm systems. However, as
mentioned, these theories do not yet allow one to better understand swarm congestion.

The Common Target Area Throughput and Similar Studies. Accordingly,
any elaborated analysis on that subject must investigate the effect of the increase in
the number of individuals on the swarm congestion, as it is desirable for the system
to perform well as it grows in size. If one has a finite measure that abstracts the
optimality of any algorithm as the number of robots goes to infinity, this can be used
as a metric to compare different approaches to the same problem. Thus, this work
presents as a metric the common target area throughput. That is, a measure of the
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rate of arrival in this area is proposed as the time tends to infinity as an alternative
approach to analyse the congestion in swarms with a common target area. In network
and parallel computing studies (Daduna, Pestien, and Ramakrishnan, 2003; Hockney,
1994), asymptotic throughput is used to measure the throughput when the message
size is assumed to have infinite length. The same idea is used here, but instead of
message size, it is applied with infinite time, as if the algorithms run forever. As it
will be presented in the next chapter, this implies dealing with an infinite number of
robots. Thus, time is being used here instead of message size or bytes, as in computer
network studies.

3.2 Many-Body Problem and Robotic Swarms

The effect of the task completion time of a robotic swarm based on the dynamic of
one individual is an example of an analysis from local to global. Similar works can
be found in other study areas. In special, the many-body problem in Physics has
elegant and strong mathematical solutions. Some works for traffic problem or Swarm
Robotics have applied solutions for the many-body problem. However, the solutions
presented there are not adequate for the common target problem. All algorithms
developed for the common target problem use potential fields as a local path planner
in order to emerge global congestion control. These works will now be discussed in
detail.

Studies of Local-to-Global. Biology, Chemistry and Physics share the study
of individual parts of different systems to explain their global behaviour. The
manifestation of emergence (Boogerd et al., 2005; Holland, 2000; Feltz, Crommelinck,
and Goujon, 2006; Couzin, 2023) is a good example of such studies. In it, the
microscopic characteristics enable the arising of unexpected macroscopical behaviour.
As the understanding of these relations grows, advances in other areas like engineering
and robotics are made. Related to that, the interdisciplinary Synergetics (Haken,
1983) explain self-organised phenomena in systems with non-equilibrium such as cloud
dissipation, lasers and patterns in slime mould or chemical reactions.

The Many-Body Problem and Solutions. In Physics, problems about the
interaction of microscopic particles is generally mentioned as the many-body problem
(March, Young, and Sampanthar, 1995; Kuzemsky, 2017). For instance, in statistical
mechanics, the Maxwell-Boltzmann distribution function (Mandl, 2013; Huang, 2008)
states the speed probability distribution of ideal gas particles. It is calculated by
analysing the movement of the particles under the influence of gravity and the
probability frequency of the energy from the distance to the ground. Then, the
velocities are averaged over all directions and that probability frequency to yield the
desired distribution. There are different approaches to this problem. The perturbation
theory (Kato, 2012; Holmes, 2015) starts with a simpler version of the problem. Then,
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an expression, often called perturbative expansion, using power series of successive
corrections to the simpler problem is developed to solve the original problem. The
coupled cluster technique is used in computational chemistry (Bartlett and Musia l,
2007; Shavitt and Bartlett, 2009) for solving this problem numerically. Similarly,
the density-functional theory (Glossman-Mitnik, 2019; Dreizler and Gross, 1995)
is applied in computational modelling to understand the electronic and molecular
organisation from atoms to solids by using functionals of electron density that depend
on the space. The mean-field theory (Opper and Saad, 2001) substitutes the high
number of interactions between the particles with a few averaged ones, reducing the
number of calculations but also the exactness of the solution. There are interesting
applications of this method in multi-agent research such as Chen, Georgiou, and
Pavon (2018) and Lasry and Lions (2007). The variational method (Jiao et al.,
2022; Pérez-Torres, 2019) is a solution similar to that used in quantum mechanics for
approximating the desired energy state by selecting wave functions whose parameters
minimise the expected value of the energy. The neural network quantum states (Carleo
and Troyer, 2017) approximate the solution using machine learning to minimise the
variational energy.

Similar to Many-Body in Swarm Robotics. Additionally, the literature
on many-body problem is mostly Physics-oriented. An interesting approach to
the intersection of Physics and Swarm Robotics is described by Hamann (2018),
where he applied Brownian motion, Langevin equation and Fokker-Plank equation for
estimating global behaviour from individual robot specification by random movement.
Another approach to the above solutions for the many-body oriented to real-world
application is the Herman-Prigogine kinetic equations for vehicular traffic (Prigogine
and Andrews, 1960; Iannini and Dickman, 2016; Prigogine and Herman, 1971),
considering the drivers with intentions but random actions. However, as these
approaches give results assuming that every action of every driver or particle are
random as the time passes, their equations cannot be applied directly in this work
because only the initial position is random, but all the movement is deterministic.
The survey of Elamvazhuthi and Berman (2019) also present another work on Swarm
Robotics and Physics aligned with our problem, but the references provided by
Elamvazhuthi and Berman (2019) do not answer our research question directly.
Instead of assuming randomness in the movement of the individual robots and showing
purely theoretical deductions, the estimations calculated here use experimental
observation from simulations performed in Stage (Gerkey, Vaughan, and Howard,
2003). Additionally, these estimations are a fundamental first step to start a discussion
on theoretical aspects on the relation of time and the number of robots on the common
target problem.

The Robotic Swarm Common Target Problem and Algorithms. More-
over, as explained in Section 2.3, the common target problem is usually handled by
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using potential fields. In fact, the algorithms discussed in Chapter 5 use them in
the role of an individual path planner to accomplish global congestion control. Any
of these algorithms modify the attractive and the repulsive force field to minimise
the time to access the common target area or the task completion time, which, in
addition to the time to access it, includes the time for leaving it. This may bring to
light the question about whether it is possible to find the exact attractive potential
field that minimises this time by a method similar to the Lagrangian in mechanics
(Morin, 2007), which elegantly solves curves with minimum energy requirement using
stationary action or with variability as in the many-body approaches discussed above.
For finding such a minimal potential field, the function of the task completion time per
number of robots has to be obtained beforehand. As far as I know, no work presents
how to get this function from the motion equations of a robot, which is a challenge
in Swarm Robotics. Thus, experimental approximations are presented in Chapter 6
by observing the swarm, making this work a fundamental first step for studying the
common target problem as a local-to-global analysis to serve as a basis for comparing
new approaches for a theory capable of finding such minimal potential field.

3.3 Ad Hoc Multi-Robot Systems

The definition of the ad hoc teamwork problem, the similar names and its applications
are presented. Different metrics and techniques were studied in the literature on this
problem in multi-robot systems and robotic swarms, as shown below.

Definition and Similar Names. Ad hoc teamwork is the problem of
coordinating autonomous agents without prior knowledge about the team where
they are inserted but have the same goal (Stone et al., 2010). Another name
for this problem is impromptu teamwork (Melo and Sardinha, 2016; Bowling and
McCracken, 2005). A recent survey presentation about this problem (Mirsky et al.,
2022) mentioned a closely related area named “zero-shot coordination”, which studies
methods for agents increasing rewards when set into a cooperative situation with
new teammates (Hu et al., 2020; Bullard et al., 2020). In that survey, the problem
is formulated such that the inserted agent learns about the others. Although the
literature of learning about other agents is rich – as surveyed by Albrecht and Stone
(2018) – no learning is needed in this work.

Applications of Ad Hoc Teamwork in Multi-Agent Systems. Furthermore,
ad hoc teamwork multi-agent systems can be used in the distribution of essential goods
(Palanca et al., 2020) and games (Cortés and Sheremetov, 2002). In my opinion, the
work of scientists in the world with the aim of finding a solution to a problem, such
as the cure for a disease, can be seen as a multi-agent system so that each agent –
the scientist – contributes to the solution of this problem, but the other agents do
not know much about those working in the present moment on the same problem

26



Chapter 3. Related work 3.3. Ad Hoc Multi-Robot Systems

although may know previous work and learn from it. In this regard, scientific work
can be seen as an ad hoc teamwork multi-agent system.

Studies of Ad Hoc Teamwork in Multi-Robot Systems. Additionally, for
multi-robot systems, ad hoc teamwork is most applied in robot soccer, although there
are works in marine applications and treasure hunting by robots. MacAlpine et al.
(2014) made simulations and real-world experiments with three different leagues of
RoboCup 2013 for a pick-up game. Teams were formed with agents without prior
coordination. They measured average goal difference and average human-judged score.
Others metrics for that work were proposed later by MacAlpine and Stone (2017).
Bowling and McCracken (2005) apply adaptive and predictive techniques for one agent
joining unknown teammates. They tested with simulations the effectiveness of pick-up
and baseline players, measuring the probability of a impromptu team scoring the next
goal in a game. Barrett and Stone (2015) devised an algorithm that learns policies
to work with other agents and can be easily adapted to new ones. They tested in
a robot soccer simulator and compared the results by measuring the fraction of the
time that the team scores in half field offence task. This algorithm is further analysed
by Barrett (2015) and Barrett (2014). Apart from robot soccer, Carlucho et al.
(2022) discuss the challenges and developments of ad hoc teamwork in robotic marine
operations for intervention, search and rescue, but no experiment was presented. Jones
et al. (2006) utilised it for a treasure hunt and experimented with a system of two
heterogeneous robots. No metric nor comparison was performed, and only the test of
their implementation was reported.

Applications in Robotic Swarms. Similarly, there are a few studies handling
ad-hoc teamwork in the context of swarm robotics. Genter, Agmon, and Stone
(2013) proposes a heuristic to flock simulated bird agents. They measured the
number of steps to achieve the desired orientation and compared their heuristic
with other methods without considering the ad hoc agent. This work was later
extended by Genter and Stone (2014). Menashe and Agmon (2022) also study ad hoc
teamwork in the flocking of a swarm in simulations. They equipped the agent with a
signalising mechanism which tells other agents to act in a specified manner but may
misunderstand the signal. They also examined this mechanism in swarm dispersion.
Grabe et al. (2021) consider ad hoc teamwork in robotic swarms by employing
reinforcement learning in a robot that follows a group. They counted the rate of
how many times the trained robot and groups achieved their goals per experiment
and compared it in different situations. Avrahami and Agmon (2019) introduces
the contamination problem in robotic swarms, i.e., a consensus problem where the
surrounding, internal state and other robots affect the outcome of avoiding adversarial
diversion by other robots. They used real robots and simulations to evaluate their
results with experiments to ensure consensus in geometric formations. They compared
the number of healthy and contaminated robots, the time of convergence to that
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consensus and the rate of convergence versus the resistance level (i.e., the level of
immunity to the contamination). As these authors, the solutions presented in Section
5.3 and estimated in Section 6.1.4 aim to contribute to the literature of ad hoc
teamwork in robotic swarms.
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Chapter 4

Analysis of the theoretical
strategies

In this chapter, I present an extensive mathematical study of the common target
problem, allowing to understand how to measure the access to a common target
using the target area throughput. Assuming a circular target area and that the
robots are constantly moving at the maximum linear speed and have a fixed minimum
distance from each other, theoretical strategies for entering the area are shown, and
their maximum theoretical throughput for a fixed time (also called instantaneous
throughput) and their maximum asymptotic throughput when time goes to infinity
are calculated (or bounds for it).

These quantities are formally defined in Section 4.2 after describing the notation
used in this work in Section 4.1. The presented theoretical strategies depend on
the size of the target area. Section 4.3 justifies why robots should go in a queue
by assuming the target is a point. When the target area is a small circle, Section
4.4 describes how the robots must move to that target area and calculates its
instantaneous and asymptotic throughput. From these results, in Section 4.5, the
strategies for a large target area are developed by forming a corridor towards the
target area or making multiple curved trajectories towards the boundary of the target
area. For the corridor strategy, the throughput when the robots are moving towards
the target in square and hexagonal packing formations is discussed in Sections 4.5.1
and 4.5.2. The same is done for the curved trajectories strategy in Section 4.5.3. These
strategies are theoretically compared in Section 4.5.4. In Section 4.6, the correctness
of these calculations is demonstrated by simulations. Artificial potential fields are not
considered in this chapter. A summary of the results of this chapter is in Section 4.7.

The presented strategies are the theoretical grounding for new distributed
algorithms for robotic swarms described in Chapter 5. When assuming that the robots
are constantly moving at maximum linear speed and maintaining a fixed minimum
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distance, analytical calculations of the maximum possible throughput for a given
time and bounds or the exact value of the maximum asymptotic throughput for the
different theoretical strategies are provided. Based solely on these calculations, it
is possible to compare which strategy is better. However, for robots using artificial
potential fields, it is not straightforward to obtain explicit throughput equations due
to the changeability of those quantities previously assumed constant. Then, in the
lack of closed asymptotic equations, simulations were performed in Section 4.6 for the
algorithms inspired by these strategies in order to obtain experimental throughput
and compare algorithms for varying linear speeds and inter-robot distances. As shown
by these experimental data, their variation and the effect of the other robots in the
trajectory does affect the throughput. However, the analytically calculated maximum
throughput in this work serves as an upper bound to the ones obtained from the
simulations in more realistic conditions when considering the mean speed and mean
distance between the robots in place of the constant values on the obtained equations.

Moreover, this chapter has many proofs whose main objective is to show how
to obtain the instantaneous and asymptotic throughput of the presented strategies
(or give bounds if no exact value can be obtained), along with lemmas and other
propositions for helping these proofs. To avoid impairing its flow, whenever the formal
proof is longer than a page, the main ideas of the proofs are given to summarise them.
The corresponding formal proofs are shown in Appendix B.

4.1 Notation

In this chapter, geometric notation is used as follows.
←→
AB,
−→
AB and AB represent a

line passing through points A and B, a ray starting at A and passing through B and

a segment from A to B, respectively. |AB| is the size of AB.
←→
AB ∥

←→
CD means

←→
AB is

parallel to
←→
CD. If a two-dimensional point is represented by a vector P1, its x- and

y-coordinates are denoted by P1,x and P1,y, respectively.
△ABC expresses the triangle formed by the points A, B and C.△ABC ∼= △DEF

and △ABC ∼ △DEF mean the triangles ABC and DEF are congruent (same angles
and same size) and similar (same angles), respectively. Depending on the context, the
notation is omitted for brevity.’AOB means an angle with vertex O, one ray passing through point A and another
through B. Depending on the context, if only one △EFG is being dealt with, its
angles will be named only by “E, F̂ and Ĝ. All angles are measured in radians in this
thesis.
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4.2 Definitions and Preliminaries

This chapter considers the scenario where a large number of robots must reach
a common target. After reaching the target, each robot moves towards another
destination which may or may not be common among the robots. It is assumed
that the target is defined by a circular area of radius s. A robot reaches the target
if its centre of mass is at a distance below or equal to the radius s from the centre
of the target. If a point different from the centre of mass is considered (for instance,
the first point of the robot’s surface to get in contact with the target), the time to
reach the target between the robots is affected by the shape of the robots. Using their
centre of mass ignores the shape of the robots by considering them as points because
the centre of mass can be computed from any shape. In addition, it is supposed that
there is no minimum amount of time to stay at the target. Additionally, the angle
and the speed of arrival have no impact on whether the robot reached the target or
not. In this chapter, theoretical strategies are constructed to solve that task and show
limits for the efficiency of real-life implementations, which is described in Chapter 5.
To measure performance, the following definition is presented.

Definiton 1. The throughput is the inverse of the average time between arrivals at
the target.

Informally speaking, the throughput is measured by someone located on the
common target (i.e., on its perspective). It is considered that an optimal algorithm
minimises the average time between two arrivals or, equivalently, maximises through-
put. The unit for throughput can be in s−1. It will be noted f (as in frequency).

Assume an experiment was run with N ≥ 2 robots for t units of time, such that
the time between the arrival of the i-th robot and the i + 1-th robot is ti, for i from
1 to N − 1. Then, by Definition 1,

f =
1

1
N−1

∑N−1
i=1 ti

=
N − 1∑N−1
i=1 ti

=
N − 1

t
,

because
∑N−1

i=1 ti = t. Thus, an equivalent definition of throughput is given:

Definiton 2. The throughput is the ratio of the number of robots that arrive at the
common target area, not counting the first robot to reach it, to the time taken for the
last robot to arrive at the target area after the arrival of the first robot.

The target area is a limited resource that must be shared between the robots.
Since the linear speeds of the robots have an upper bound, a robot needs a minimum
amount of time to reach and leave the target before letting another robot in. Let
the asymptotic throughput of the target area be its throughput as the time tends
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to infinity. Because any physical phenomenon is limited by the speed of light, this
measure is bounded. Then, the asymptotic throughput is well suited to measure the
access of a common target area as the number of robots grows.

One should expect that the asymptotic throughput depends mainly on the target
size and shape, the speed of the robots, and the distance between robots. As any
bounded target region can be included in a circle of radius s, only circular target
regions will be dealt with hereafter. If the robots are moving at maximum speed
and keeping the distance between each at a minimum value all the time, then it is
also expected that the throughput and asymptotic throughput reach their maximum
value. Thus, it is assumed hereafter that the robots move at a constant maximum
linear speed, v, and the distance between each other is either constant when possible
or no lower than a fixed value, d.

To efficiently access the target area, two main cases are identified: s ≥ d/2 and
s < d/2. There are targets that several robots can simultaneously reach without
collisions. That is the case if the radius s ≥ d/2. Thus, one approach is making lanes
arrive in the target region so that as many robots as possible can simultaneously arrive.
After the robots arrive at the target, they must leave the target region by making
curves. However, this approach does not obtain good results in realistic simulations
due to the influence of other robots, although it is theoretically the best approach
if the robots could run at a constant speed and maintain a fixed minimum distance
between each other (see Section 5.4 for more details).

The case where s < d/2, when only one robot can occupy the target area
simultaneously, is of interest. Making two queues and avoiding the inter-robot distance
being less than d is good guidance to work efficiently. Particularly, the case s = 0
offers interesting insights, so this is discussed next.

4.3 Common Target Point: s = 0

Consider the case where robots are moving in straight lines at constant linear speed
v, maintaining a distance of at least d between each other. A robot has reached the
target when its centre of mass is over the target. When s = 0, the target is a point.
The first result is the optimal throughput when robots are moving in a straight line
to a target point. It is illustrated in Figure 4.1. This section constructs a solution to
attain the optimal throughput.

First, consider two robots, Robot 1 and Robot 2. Their trajectories are straight
lines towards the target. Assume the straight-line trajectory of Robot 1 has an angle
δ1 with the x-axis and the one of Robot 2 has δ2. Define δ2 − δ1 = δ as the angle
between the two lines. The positions of the robots are described by the kinematic
Equation (4.1) below, where (x1(t), y1(t)) and (x2(t), y2(t)) are the positions of Robot
1 and Robot 2, respectively, and t ∈ R is an instant of time. Without loss of generality,
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AR1

R2

Figure 4.1: Two robots, R1 and R2, are moving in straight lines toward a target at
A. The angle between their trajectory is δ. The distance between the two robots over
time is denoted by lδ(t).

the origin of time is set when Robot 1 reaches the target, and the target is located
at (0, 0). Thus, (x1(0), y1(0)) = (0, 0). τ is the delay between the two arrivals at the
target. Then, (x2(τ), y2(τ)) = (0, 0), andï

x1(t)
y1(t)

ò
=

ï
vt cos(δ1)
vt sin(δ1)

ò
and

ï
x2(t)
y2(t)

ò
=

ï
v(t− τ) cos(δ2)
v(t− τ) sin(δ2)

ò
(4.1)

In order to find the optimal throughput, this chapter starts with its first lemma:

Lemma 1. To maintain a distance of at least d between the two robots, the minimum
delay between their arrival is d

v

»
2

1+cos(δ)
.

Idea of the proof. A function of the distance of two robots over the time is defined
and constrained to be always greater or equal to d. The angle δ is a parameter of
that function, and the aim of this proof is to provide the minimum distance between
the robot as a function of d and δ. Two cases are calculated: (i) δ ̸= 1 and (ii) δ = 1.
Both cases yield the same result. The formal proof is in Section B.1.

This result leads to Proposition 1.

Proposition 1. The maximum throughput f for a point-like target (s = 0) is f = v
d
.

It is achieved when robots form a single line, i.e., the angle between the trajectories
of the robots must be 0.

Proof. It is shown by induction on N , which is the number of robots moving towards
the target. Define δN as the angle between the trajectories of Robot N−1 and Robot
N ; τN , the minimum delay between the arrival of Robot N−1 and Robot N ; and ∆N ,
the minimum delay between the arrival of Robot 1 and Robot N . The aim is to show
the following predicate: for all N ≥ 2, ∆N = (N − 1)d/v for δ2 = δ3 = . . . = δN = 0.
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Base case (N = 2): Let τ2 be the delay between the arrival of Robot 1 and Robot
2. From Lemma 1, the minimum delay between Robot 1 and Robot 2 is equal to
d
v

»
2

1+cos(δ2)
, which is minimised by δ2 = 0. Then, the minimum delay between the

two robots is τ2 = d/v = ∆2.
Inductive step: suppose the predicate is true for a given N − 1 ≥ 2. It will be

shown that this implies the predicate is true for N robots. As in the previous case,
it is concluded from Lemma 1 that the minimum delay between Robot N − 1 and
Robot N is equal to d

v

»
2

1+cos(δN )
, which is minimised by δN = 0. Then, the minimum

delay between the two robots is τN = d/v, thus

∆N = ∆N−1 + τN = (N − 2)
d

v
+
d

v
= (N − 1)

d

v
.

Consequently, the minimum delay between Robot 1 and Robot N is ∆N =∑N
i=2 τi = (N − 1)d

v
and the time of arrival of Robot N , for all N , is minimised by

δ2 = δ3 = . . . = δN = 0. Finally, by Definition 2, the throughput is f = N−1
∆N

= v
d
.

The insight derived from Proposition 1 implies that one should increase the
speed of the robots or decrease the minimum distance between them to increase the
throughput. It is also noted that the optimal trajectory for all the robots is to form a
queue behind the target and Robot 1. As a result, the optimal path is to create one
lane to reach the target. When the angle δ between the path of a robot and the next
one is increased, a delay from the optimal throughput is introduced. For instance,
Figure 4.2 shows the normalised delay for different angles δ (normalised by dividing
τ by τmin = d/v) between two robots, according to Lemma 1. This figure shows that
for an angle of π/3, the minimum delay is 15% higher than for an angle of 0, and the
minimum delay is 41% higher for an angle of π/2.

4.4 Small Target Area: 0 < s < d/2

This section supposes a small target area where 0 < s < d/2; hence, two lanes
with a distance d cannot fit towards the target yet. The next results are based
on a strategy using two parallel lanes as close as possible to guarantee the minimum
distance d between robots. Figure 4.3 describes these two parallel lanes. This strategy
is called compact lanes hereafter. Proposition 2 considers a target area with radius
0 < s ≤

√
3
4
d, and Proposition 3 assumes

√
3
4
d < s < d

2
.

Proposition 2. Assume two parallel lanes with robots at constant speed v and
maintaining a constant distance d between them. The throughput of a common target
area with radius 0 < s ≤

√
3
4
d at a given time t after the first robot has reached the

target area is
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Figure 4.2: Normalised delay versus the angle between the trajectories of the robots.

goal

Robot 3

Robot 1

Lane 2

Lane 1

d

dp

s

dp
Robot 2

Figure 4.3: Two parallel robot lanes for a small target, illustrating the compact lanes
strategy.
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f(t) =
1

t

Çú
vt

2
√
d2 − (2s)2

ü
+

ú
vt

2
√
d2 − (2s)2

+
1

2

üå
(4.2)

and is limited by

f = lim
t→∞

f(t) =
v

d
»

1− (2s
d

)2
. (4.3)

Proof. Consider Figure 4.3. The distance between the lanes is 2s, and the distance
between two robots is d. Thus, dp =

√
d2 − (2s)2. Hence, the distance between two

robots in the same lane is de = 2dp = 2
√
d2 − (2s)2.

The distance between two robots in the same lane must not be less than d, so
de ≥ d. This is true, because, as 0 < s ≤

√
3
4
d,

de = 2
»
d2 − (2s)2 ≥ 2

Ã
d2 −

Ç
2

√
3

4
d

å2

= 2

Ã
d2 −

Ç√
3

2
d

å2

= 2

…
d2 − 3

4
d2

= 2

…
1

4
d2 = d.

Without loss of generality, assume the first robot to reach the target area being at
the top lane in Figure 4.3. The number of robots on any lane is the integer division of
the size of the lane by the offset between the robots plus one (because the first robot
is included in this counting). Therefore, the number of robots for a given time t in the

top lane is N1(t) =
ö
vt
de

+ 1
ù

and in the bottom lane is N2(t) =
ö
vt−dp
de

+ 1
ù

=
ö
vt
de

+ 1
2

ù
.

By Definition 2,

f(t) =
N1(t) +N2(t)− 1

t
=

1

t

Çú
vt

2
√
d2 − (2s)2

ü
+

ú
vt

2
√
d2 − (2s)2

+
1

2

üå
.

By the definition of the floor function, ⌊x⌋ = x − frac(x) with 0 ≤ frac(x) < 1.
Thus,
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lim
t→∞
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1
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Å
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2v

2
√
d2 − (2s)2

=
v

d
√

1− (2s/d)2
,

as lim
t→∞

frac(x)

t
= 0, for any x.

Proposition 3. Assume two parallel lanes with robots at constant speed v and
maintaining a constant distance d between them. The throughput of a common target
area with radius

√
3
4
d < s < d

2
at a given time t after the first robot has reached the

target area is

f(t) =
1

t

Åõ
vt

d

û
+

õ
vt

d
+

1

2

ûã
(4.4)

and is limited by

f = lim
t→∞

f(t) =
2v

d
. (4.5)

Proof. As the distance between the robots must be at least d and
√
3
4
d < s < d

2
,

dp = d/2 is assigned in Figure 4.3. By doing so, two robots side by side in one lane
and a robot in the other lane form an equilateral triangle with a side measuring d,
whose height has size

√
3
2
d. Hence, the minimum diameter of the circular target region

must be this value, and the hypothesis says so.
Moreover, the radius of the target area is less than d/2, implying that the three

robots in Figure 4.3 must stay in the equilateral triangle formation because the two
lanes cannot be far by d units of distance.

Thus, the throughput for a given time t is calculated similarly as in Proposition
2, resulting

f(t) =
1

t

Åõ
vt

d

û
+

õ
vt

d
+

1

2

ûã
and f = lim

t→∞
f(t) =

2v

d
.
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Observe that if t = k d
v

for any 0 < k ∈ Z is used in (4.4), the compact lanes
strategy can achieve the throughput of two parallel lanes of robots going in the
direction of the target region when t = k d

v
for any k ∈ Z or when t → ∞, even

though two robots cannot reach the target region at the same time.

4.5 Large Target Area: s ≥ d/2

This section focuses on situations where more than two robots can simultaneously
touch the target. Three feasible strategies are presented.

The simplest strategy is to consider several parallel lanes being at a distance d
from each other. However, it is possible to obtain higher throughput. In particular,
two other strategies are identified: (a) using parallel straight line lanes that may be
distanced lower than d and (b) robots moving towards the target following curved
trajectories. Strategy (a) uses more than two compact lanes, extending the strategy
presented in the previous section. By doing this, the robots fit in a hexagonal packing
arrangement moving toward the target region. Strategy (b) uses a touch and run
approach. In it, robots do not cross the target area, they only reach it and return in
the opposite direction using curved trajectories which respect the minimum distance
d.

The next section starts with the parallel lanes strategy, which has the lowest
asymptotic throughput over the strategies presented in this section, for comparison
with the other strategies. In particular, it will be used later as a justification for the
lowest number of lanes used in the strategy (b) in (4.14) in Proposition 7. Following
their description and properties, a discussion comparing them is provided.

4.5.1 Parallel Lanes

It is considered here that the robots are moving inside lanes. The lanes are straight
lines, and the linear speed v of the robots is constant. The lanes are separated by
a distance d, and each robot maintains a distance d from each other. Figure 4.4
illustrates an example of this strategy. The first lane, Lane 1, is at the top. The first
robot of each lane is located at (s, s− (i− 1)d) for the Lane i. The next proposition
states the throughput for a given time and the asymptotic throughput for this strategy.

Proposition 4. Assume a circular target region with its centre at (0, 0) and radius
s ≥ d

2
and parallel lanes starting at (s, s − (i − 1)d) for i ∈ {1, . . . ,

⌊
2s
d

⌋
+ 1}. At

each Lane i, the first robot is located at the point (s, s − (i − 1)d) in the starting
configuration. Then, the first robot to reach the target is located at (s, s− (J − 1)d),
for
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Target
region

Lane 1

s

d

Lane 2

Lane 3

Lane 4

(0,0)

(s,s)

(s,s-d)

(s,s-2d)

(s,s-3d)

Figure 4.4: Example of the parallel lanes strategy.

J =

®⌊
s
d

⌋
+ 1, if

∣∣s− ⌊ s
d

⌋
d
∣∣ ≤ ∣∣s− ⌈ s

d

⌉
d
∣∣ ,⌈

s
d

⌉
+ 1, otherwise.

The throughput for a given time t after the first robot reaches the target region is:

fp(t) =
1

t

Ö
⌊ 2sd ⌋+1∑
i=1

Ni(t)

è
− 1

t
, (4.6)

for

Ni(t) =

®⌊
vt−di+dJ

d
+ 1
⌋
, if t ≥ di−dJ

v
,

0, otherwise,

di = s−
»
s2 − (s− (i− 1)d)2, and

fp = lim
t→∞

fp(t) =

õ
2s

d
+ 1

û
v

d
. (4.7)

Idea of the proof. The throughput is calculated regarding, for each parallel lane, the
position of the circular target area where the robot arrives. As the first robot reaching
it in each lane takes a different time, the total number of robots that arrived at the
target area at a given time considers this difference. The formal proof is in Section
B.2.
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target
region

Lane 3

Lane 2

d
s

dd

d

Lane 1

Figure 4.5: Robot lanes for hexagonal packing.

4.5.2 Hexagonal Packing

By extending the compact lanes to more than two lanes, the robots will be packed
in a hexagonal formation. An illustration of this strategy is shown in Figure 4.5. As
it can be seen, robots from different lanes are still able to move towards the target
keeping a distance d from each other, even though the lanes have a distance lower
than d.

An upper bound of the asymptotic throughput for the hexagonal packing strategy
is first computed, then the throughput for a given time using this strategy is
calculated.

Proposition 5. Assume robots moving at speed v, going to a circular target of radius
s. The upper bound of the asymptotic throughput for the hexagonal packing strategy
is

fmaxh =
2√
3

Å
2s

d
+ 1

ã
v

d
. (4.8)

Idea of the proof. The upper bound of the throughput of the hexagon packing relies
on the results of the circle packing problem. By the optimal surface occupied by the
circles in a rectangle, the number of robots in hexagonal packing that reach the target
area through a rectangular corridor at a given time is calculated. When taking the
limit as time goes to infinity, the upper bound of the throughput is obtained. The
formal proof is in Section B.3.

Proposition 5 presents an upper bound of the asymptotic throughput using
hexagonal packing, but it does not tell us which is the best placement of the robots
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Target
region

Target
region

Target
region

Figure 4.6: Example of hexagonal packing with different angles. The robots are the
black dots.

inside a corridor since the hexagonal formation can be rotated by different angles.
Hence, the results about the throughput considering the placement of the hexagonal
packing inside a corridor of robots going to the target region will be presented. First,
however, the following definition will be needed.

Definiton 3. The hexagonal packing angle θ is the angle formed by the x-axis and the
line formed by any robot at position (x, y) and its neighbour at (x+d cos(θ), y+d sin(θ))
under the target region reference frame.

Observe that any robot at (x, y) under the hexagonal packing has at most six
neighbours located at

(
x+d cos

(
θ
)
, y+d sin

(
θ
))
,
(
x+d cos

(
θ+ π

3

)
, y+d sin

(
θ+ π

3

))
,

. . . ,
(
x + d cos

(
θ + 5π

3

)
, y + d sin

(
θ + 5π

3

))
(Figure 4.6). If θ = π

3
, putting this value

in the previous series results in the first neighbour robot being at (x+ d cos(π/3), y+
d sin(π/3)) and the last neighbour robot at (x+ d cos (0) , y + d sin (0)). This is the
same result if θ = 0 was used. Consequently, due to this periodicity, hexagonal
packing angles in [0, π

3
) are assumed.

The next proposition states the bounds of the throughput in the limit towards the
infinity for hexagonal packing using an arbitrary, but fixed, hexagonal packing angle
θ. A fixed θ is assumed because normally in a robotic swarm the robots rely on local
sensing. In order to obtain the maximum number of robots inside the corridor, all
robots should know the size of the corridor and communicate by local-ranged message
sending. It would take time to send information, and for all robots to adjust their
orientation each time a new robot joins the swarm when using this local sensing
approach.

In other words, if the corridor where the robots are going in the direction of
the target is increasing over time, then θ should change over time for the optimal
throughput. However, in practice, changing the hexagonal packing angle implies all
robots must turn to a hexagonal packing angle θ∗ depending on the size of the new
rectangle based on the added robots to it to maximise the number of robots inside
the corridor. In addition to the time to send messages with this parameter, more
time would be needed for every robot to adapt to the updated computed θ∗ because
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the turning speed of the robots is finite. Therefore, this thesis does not handle this
adjustable scenario.

Proposition 6. Assume the robots using hexagonal formation coming to a circular
target area with radius s such that the first robot to reach it was at time 0 at (x0, y0) =
(w, 0), for any w ≥ s. For a given time t, the robots are going to the target at linear
speed v, keeping a distance d between neighbours (0 < d ≤ 2s), using fixed hexagonal
packing angle θ ∈ [0, π/3). The throughput for a given time is given by

fh(t, θ) =
1

t

n+
l −1∑

xh=−n−
l

(
⌊Y R

2 (xh)⌋ − ⌈Y R
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1

t

U∑
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2 (xh)⌋ − ⌈Y S
1 (xh)⌉+ 1

)
− 1

t
,

(4.9)

for
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⌋
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⌈
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⌉
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⌊
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⌋
≥
⌈
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⌉
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conditions are false, it is assumed that the respective summand for this xh is zero).
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for cx = x0 + vt− s and

(lx, ly) =

{
argmin
(x,y)∈Z

|vt− s+ x0 − x|+ |y0 − y|, if t > s
v
,

(x0, y0), otherwise,

where Z is the set of robot positions inside the rectangle measuring (vt − s) × 2s for

vt− s > 0. If t > s
v
or arctan

Å
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√
3s
2

+cos(θ)(vt−s)

ã
< π

2
− θ,

U =

õ
2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(y0 − ly) + s)√

3d

û
,

otherwise,

U =

ú
2
√

2svt− (vt)2√
3d

cos
(
θ − π

3

)ü
.

In addition,

Y S
1 (xh) =

dxh − C−θ,x +
√

3C−θ,y −
√

∆(xh)

2d
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s
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(4.10)
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and
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fh(θ) = lim
t→∞

fh(t, θ) ∈
Å

4vs√
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− 2v cos(θ − π/6)√

3d
,

4vs√
3d2

+
2v cos(θ − π/6)√

3d

ò
.

(4.11)

Idea of the proof. The number of robots that reach the target area in hexagonal
packing at a given time is divided into two groups: the robots inside a rectangle
and those inside a semicircle of radius s. The coordinate space (xh, yh) is defined to
help the calculation. In this space, integer coordinates correspond to robot positions in
hexagonal packing. The number of parallel lines intersecting an integer xh-coordinate
inside a given rectangle is calculated. Then, the total number of robots for a given
time inside a rectangle is obtained for each parallel line. In order to count the number
of robots inside a rectangle in hexagonal packing, the minimum and maximum integer
yh-coordinate of robots inside the given rectangle for each xh are obtained: Y R

1 (xh)
and Y R

2 (xh). The set of integer values on the xh-axis containing robots inside a
given rectangle is divided into three groups that define three different equations for
obtaining Y R

1 (xh) and Y R
2 (xh). For calculating the number of robots in hexagonal

packing inside a semicircle, a similar coordinate system transformation is employed
but with a different origin and inclination than the previous one.

After obtaining the expressions for the number of robots for a given time, the limit
when the time goes to infinity is obtained. This limit is proved to be zero for the
equations that count the number of robots inside areas that are bounded regardless
of the time and hexagonal packing angle parameters. For the unbounded area that
extends infinitely as time grows, this limit is proven to exist. However, no exact limit
could be calculated due to the equations being formed by trigonometric functions
combined with floor and ceiling functions, complicating the acquisition of the exact
outcome for a given time and hexagonal packing angle. Thus, only the lower and
upper bounds of the limit are calculated. The formal proof is in Section B.4.

The upper and lower bounds presented on (4.11) are below or equal the maximum
asymptotic throughput presented by the Proposition 5, Equation (4.8). The result
of the Proposition 5 only concerns the maximum asymptotic throughput and does
not consider the hexagonal packing angle θ, while Proposition 6 gives a lower bound
and tightens the bounds for a given θ. Figure 4.7 presents an example comparison of
these equations for two different values of s. As expected, the maximum asymptotic
throughput under the optimal density assumption (in (4.8)) is a possible value of the
throughput using hexagonal packing and is above or equal to the interval in (4.11) for
any given θ. However, for practical robotic swarms applications, a certain hexagonal
packing angle must be fixed depending on the expected height of the corridor, target
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Figure 4.7: Limit given by (4.8) using the circle packing results and the lower and
upper bounds of the hexagonal packing limit by (4.11) for θ ∈ [0, π/3), d = 1 m, v = 1
m/s and s ∈ {3, 6} m.

size and the minimum distance between the robots, resulting in a throughput below
or equal to the upper value presented in Proposition 5.

On the other hand, due to the discontinuities of (4.9), it is difficult to obtain an
exact θ that maximises the throughput given the other parameters. In addition, there
is no specific value of θ that achieves the maximum throughput for all possible values
of the other parameters. Interestingly, given a fixed sub-interval of θ, depending on
the number of sample values, new local maxima and minima can arise from these
discontinuities. Additionally, a different parity of the number of samples can produce
a global maximum in even or odd interval points. To illustrate this, Figures 4.8–4.11
present the result of this equation for some randomly generated parameters and a
different number of samples of θ equally spaced and taken from the domain interval,
that is, from 0 to π/3, including these values. Two different orders of magnitude
are chosen for the number of equally spaced points in each plot (a small one, about
two orders, and a large one of seven orders), and different parities are also given (99
and 100 for the small order, and 107 and 107 + 1 for the large one). Although the
graphs present an apparent symmetry about the angle π/6, the values for an angle
θ and π/3 − θ may be slightly different, often one robot per total time. Thus, the
graphs are not symmetric about that angle in general. As an example, for t = 43, s =
3, d = 1, v = 1, θ = π

10000
, the number of robots which arrived at the target region is

N(t, θ) = 296, but N(t, π
3
− θ) = 295.

In Figures 4.8–4.11, θ is over the x-axis, and the number of robots inside the given
rectangle is over the y-axis. These plots use v = 1 m/s. The maximum value in each
image is represented by an orange circle, and a rectangle represents the maximum
between the left and the right image. No square means the maximum values in
both sides are equal. Each one of the Figures 4.8–4.11 presents two different sets of
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Figure 4.8: Examples of (4.9) varying θ from 0 to π
3

for different and randomly
generated values of t, s, and d. It continues in Figure 4.9. (a) For 99 samples, t = 43
s, s = 3 m, d = 1 m. (b) For 100 samples, t = 43 s, s = 3 m, d = 1 m. (c) For 99
samples, t = 30 s, s = 2.5 m and d = 0.66 m. (d) For 100 samples, t = 30 s, s = 2.5
m and d = 0.66 m.
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Figure 4.9: Continuation of Figure 4.8: examples of (4.9) varying θ from 0 to π
3

for
different and randomly generated values of t, s and d. (a) For 99 samples, t = 4 s,
s = 2 m and d = 0.13 m. (b) For 100 samples, t = 4 s, s = 2 m and d = 0.13 m. (c)
For 99 samples, t = 100 s, s = 2.40513 m and d = 1 m. (d) For 100 samples, t = 100
s, s = 2.40513 m and d = 1 m.
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Figure 4.10: Similar to Figures 4.8 and 4.9 but using 107 and 107 + 1 equally spaced
points for θ ∈ [0, π/3). It continues in Figure 4.11. (a) For 107 samples, t = 43 s,
s = 3 m, d = 1 m. (b) For 107 + 1 samples, t = 43 s, s = 3 m, d = 1 m. (c) For
107 samples, t = 30 s, s = 2.5 m and d = 0.66 m. (d) For 107 + 1 samples, t = 30 s,
s = 2.5 m and d = 0.66 m.
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Figure 4.11: Continuation of Figure 4.10: examples similar to Figures 4.8 and 4.9 but
using 107 and 107+1 equally spaced points for θ ∈ [0, π/3). (a) For 107 samples, t = 4
s, s = 2 m and d = 0.13 m. (b) For 107 + 1 samples, t = 4 s, s = 2 m and d = 0.13 m.
(c) For 107 samples, t = 100 s, s = 2.40513 m and d = 1 m. (d) For 107 + 1 samples,
t = 100 s, s = 2.40513 m and d = 1 m.
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parameters. In Figures 4.8 and 4.9, 99 equally spaced values are shown for θ ∈ [0, π/3)
on the left-hand side images and 100 on the right-hand side; then, the maximum on
each side is compared, and the best one is chosen. The same is performed in Figures
4.10 and 4.11, but using 107 and 107 + 1. Figures 4.8a, 4.9a, 4.10b and 4.11b show an
example that θ ≈ π/6 reaches the maximum throughput, and in Figures 4.8c, 4.8d,
4.10c and 4.10d, the maximum is at θ = 0. Moreover, Figures 4.9c and 4.9d have
their maximum for θ different from the other examples. Figure 4.8c and 4.8d have the
same maximum, despite the plots being different. This also occurs in Figures 4.10c,
4.10d, 4.11c and 4.11d. If the parameters are known, one can find an approximate
best candidate for θ by searching several values, as presented. However, as far as I
know, obtaining the true value which maximises that equation by a closed-form is an
open problem.

Additionally, notice that whenever the number of samples is odd, the value θ = π/6
is sampled. Observe in these figures that when the maximum is at θ = π/6, it tends
to be higher than the maximum found without considering it. For instance, compare
the maximum found on the pairs (a) and (b) in Figures 4.8–4.11. On the other hand,
θ = π/6 is not always the optimal value. Thus, I suggest to compute first the value
for θ = π/6, then compare it with the result for a search for the maximum for any
chosen number of samples in the interval from θ ∈ [0, π/3).

4.5.3 Touch and Run Strategy

Now, the touch and run strategy is discussed. Since a robot should spend as little
time as possible near the target, a simple scenario is imagined where robots travel in
predefined curved lanes and tangent to the target area where they spend minimum
time on the target. To avoid collisions with other robots, the trajectory of a robot
nearby the target is circular, and the distance between each robot must be at least d
at any part of the trajectory. Hence, no lane crosses another, and each lane occupies
a region defined by an angle in the target area, denoted by α and shown in Figure
4.12a.

Figure 4.12b shows the trajectory of a robot towards the target region following
that strategy. This figure also shows the relationship between the target area radius
(s), the minimum safety distance between the robots (d), the turning radius (r),
the central region angle (α) and the distance from the target centre for a robot to
begin turning (dr) – used as justification for (4.12) and (4.13). The green dashed
circle represents the whole turning circle. The robot first follows the boundary of
the central angle region – that is, the entering ray – at a distance of d/2. Then, it
arrives at a distance of s of the target centre using a circular trajectory with a turning
radius r. Due to the trajectory being tangent to the target shape, it is close enough
to consider that the robot reached the target region.
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Figure 4.12: Illustration of the touch and run strategy. (a) Central angle region and
its exiting and entering rays defined by the angle α. (b) Trajectory of a robot next
to the target in red.

Finally, the robot leaves the target by following the second boundary of the central
angle region – that is, the exiting ray – at a distance of d/2. Depending on the value
of α, it is possible to fit several of these lanes around the target. For example, in
Figure 4.13, when α = π/2, it is possible to fit four lanes. In this figure, robots are
black dots, and do is the desired distance between the robots in the same lane – which
is calculated depending on the values of d, s, r and the number of lanes K as shown
later. This desired distance is employed because the robots cannot reduce their speed
to maintain the fixed distance d in the curved path, as they are supposed to have a
constant linear speed. Consequently, do ≥ d. When robots of all lanes simultaneously
occupy the target region, their positions are the vertices of a regular polygon – it is
represented in the figure by a grey square inside the target region.

The lemma below concerns the distance to the target centre where the robots start
turning on the curved path. It will also be useful in the discussion about experiments
using this strategy in Section 4.6.4.

Lemma 2. The distance dr to the target centre for the robot to start turning is

dr =
»
s(2r + s)− rd. (4.12)

Proof. Figure 4.12b shows the distance dr from the target centre where the robots
begin turning. By symmetry, this is the same distance from the target centre
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Figure 4.13: Theoretical trajectory in red, for α = π/2 and K = 4.

where the robots stop turning. From the right triangle ABC on that figure,

|AC| =
√

(r + s)2 − (r + d/2)2 and from △ACD, dr =
»

(d/2)2 + |AC|2. Thus,

dr =
»

(d/2)2 + (r + s)2 − (r + d/2)2 =
»
s(2r + s)− rd.

Now, a lemma about the turning radius is presented, and then the domain of K
and α are defined in order to calculate the throughput for the touch and run strategy.

Lemma 3. The central region angle α, the minimum distance between the robots d
and the turning radius r are related by

r =
s sin(α/2)− d/2

1− sin(α/2)
. (4.13)

Proof. From Figure 4.12b, it can be seen that the right triangle ABE has angle’EAB = α/2, hypotenuse r + s and cathetus r + d/2. Hence, it directly follows that

sin(α/2) =
r + d/2

r + s
⇔ r =

s sin(α/2)− d/2
1− sin(α/2)

.

Proposition 7. Let K be the number of curved trajectories around the target area,
α be the angle of each central area region, and r the turning radius of the robot for
the curved trajectory of this central area region. For a given d > 0 and s ≥ d/2, the
domain of K is
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3 ≤ K ≤ π

arcsin
(
d
2s

) , and (4.14)

α =
2π

K
. (4.15)

Proof. The number of trajectories K must be greater or equal to 3. The reason is
that for the minimum possible value for s, s = d/2, K = 2 is enough to have parallel
lanes. However, starting with K = 3, curved trajectories are needed to guarantee
that robots of one lane do not interfere with robots from another lane.

Also, there are K identical trajectories around the target, each taking a central
angle of α. As a result, the value of α given K is α = 2π

K
, implying that 0 < α ≤ 2π

3
.

Additionally, in the worst case, one robot in each lane arrives in the target region
at the same time. When robots of all lanes simultaneously occupy the target region,
their positions can be seen as the vertices of a regular polygon which must be inscribed
in the circular target region of radius s (e.g., Figure 4.13 has a square whose sides are
greater than d). The number of robots on the target region at the same time must
be limited by the maximum number of sides of an inscribed regular polygon with a
minimum side greater than or equal to d. The side of a K regular polygon inscribed in
a circle of radius s measures 2s sin

(
π
K

)
. Thence, 2s sin

(
π
K

)
≥ d⇒ π

arcsin( d
2s)
≥ K.

Now that the correct parametrisation has been determined for the touch and run
strategy, its throughput is obtained in the next proposition. Heed that the value of K
below is constrained by the interval in Proposition 7. Consequently, the throughput
of the touch and run strategy cannot increase indefinitely with K.

Proposition 8. Assuming the touch and run strategy and that the first robot of every
lane begins at the same distance from the target, given a target radius s, the constant
linear robot speed v, a minimum distance between robots d, and the number of lanes
K, the throughput for a given instant t is calculated by

ft(K, t) =
1

t

Å
K

õ
vt

do
+ 1

û
− 1

ã
, for (4.16)

do = max(d, d′), and (4.17)

d′ =

®
r(π − α) + d−2r cos(α/2)

sin(α/2)
, if 2r cos(α/2) < d,

2r arcsin
(
d
2r

)
, otherwise,

(4.18)

with r obtained from (4.13). In addition,

53



Chapter 4. Analysis of the theoretical strategies 4.5. Large Target Area: s ≥ d/2

5 10 15 20 25 30 35
K

2

4

6

8

10

12

14

16

T
h
ro

u
g

h
p

u
t 

(1
/s

)

s=3,d=1

s=3,d=2

s=6,d=1

s=6,d=2

Figure 4.14: Plot of the asymptotic throughput of the touch and run strategy (given
by (4.19)) for some values of s and d, in metres, and v = 1 m/s, for the interval of
values for K obtained by (4.14).

ft(K) = lim
t→∞

ft(K, t) =
Kv

do
. (4.19)

Idea of the proof. The calculation of the throughput at a given time for the touch and
run strategy considers two cases: (i) when two robots cannot be on the lane curved
path and (ii) when more than one robot can occupy the lane curved path. After this
throughput is obtained, the limit for the time going to infinity is given. The formal
proof is in Section B.5.

Figure 4.14 presents examples of (4.19) for some parameters. Observe that the
maximum throughput for different values of s, d and v can be found by a linear search
in the interval obtained by (4.14). By assuming that K is a real number, the optimal
value of K could be obtained by adequately choosing an integer K next to a value
such that dft

dK
= 0 by substituting in (4.18) α by 2π/K and r by its definition in

(4.13). However, using a linear search is easier than obtaining the closed form of dft
dK

because it has a complicated combination of trigonometric functions with different
cases depending on s, d and K, overburdening the function inversion to attain K.
Table 4.1 summarises the instantaneous and asymptotic throughput presented in this
chapter, indicating the proposition that states them and the symbols used for them.
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Symbol Proposition Description
f Proposition 1 Maximum throughput for a point-like target (s = 0)

when robots form a single line
f(t) Proposition 2 Instantaneous throughput of the parallel lanes strategy

for a small target area and 0 < s ≤
√
3
4
d.

f Proposition 2 Asymptotic throughput of the parallel lanes strategy for
a small target area and 0 < s ≤

√
3
4
d.

f(t) Proposition 3 Instantaneous throughput of the parallel lanes strategy
for a small target area and

√
3
4
d < s < d

2
.

f Proposition 3 Asymptotic throughput of the parallel lanes strategy for
a small target area and

√
3
4
d < s < d

2
.

fp(t) Proposition 4 Instantaneous throughput of the parallel lanes strategy
for a large target area (s ≥ d

2
).

fp Proposition 4 Asymptotic throughput of the parallel lanes strategy for
a large target area (s ≥ d

2
).

fmaxh Proposition 5 Upper bound of the asymptotic throughput of the
hexagonal packing strategy for a large target area (s ≥
d
2
).

fh(t, θ) Proposition 6 Instantaneous throughput of the hexagonal packing
strategy for a large target area (s ≥ d

2
) for a given

hexagonal packing angle θ.
fh(θ) Proposition 6 Asymptotic throughput of the hexagonal packing

strategy for a large target area (s ≥ d
2
) for a given

hexagonal packing angle θ (only lower and upper bounds
were given).

ft(K, t) Proposition 8 Instantaneous throughput of the touch and run strategy
for a large target area (s ≥ d

2
) for a given number of

lanes K.
ft(K) Proposition 8 Asymptotic throughput of the touch and run strategy

for a large target area (s ≥ d
2
) for a given number of

lanes K.

Table 4.1: Summary of the instantaneous and asymptotic throughput of the presented
strategies.
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4.5.4 Comparison of the Strategies

The parallel lanes strategy has the lowest of the limits concerning u = s
d
, the ratio

between the radius of the target region and the minimum distance between the robots.
However, its asymptotic value is still higher than the minimum possible asymptotic
throughput for hexagonal packing just for some values of u. This section will make
explicit the dependence on the argument u in every throughput function defined
previously to compare them to this ratio. Let fp(u) = lim

t→∞
fp(t, u) and fminh (u) be

the asymptotic throughput for the parallel lanes strategy and the lower bound of the
asymptotic throughput for the hexagonal packing strategy for a ratio u, respectively.
Hence, by Proposition 4,

fp(u) = ⌊2u+ 1⌋v
d
,

and by (4.11) using θ = π/6 as it minimises the lower bound of lim
t→∞

f(t, θ) in

Proposition 6,

fminh (u) =
2√
3

(2u− 1)
v

d
.

Proposition 9. There are some u <
√
3+2

4−2
√
3
such that fp(u) > fminh (u), and for every

u ≥
√
3+2

4−2
√
3
, fp(u) ≤ fminh (u).

Proof. For any u <
√
3+2

4−2
√
3
, (2u+ 1)v

d
> fminh (u), due to

(2u+ 1)
v

d
>

2√
3

(2u− 1)
v

d
⇔ 2u+ 1 >

2√
3

(2u− 1)

⇔ 2u− 4√
3
u > −1− 2√

3
⇔ u <

−1− 2√
3

2− 4√
3

=
−
√

3− 2

2
√

3− 4
=

√
3 + 2

4− 2
√

3
.

(4.20)

fp(u) = (2u + 1)v
d

when 2u + 1 ∈ Z. Also, as u <
√
3+2

4−2
√
3
< 7, u can be a number

satisfying (2u + 1) = ⌊2u + 1⌋. Thus, there are some values of u such that fp(u) =
⌊2u+ 1⌋v

d
> fminh (u).

From the equivalence in (4.20) and because for any x, ⌊x⌋ ≤ x, it follows that for

any u ≥
√
3+2

4−2
√
3
, fp(u) ≤ (2u+ 1)v

d
≤ fminh (u).

Figure 4.15 shows an example of fminh (u), fp(u) and the maximum possible
asymptotic throughput of the hexagonal packing fmaxh (u) = 2√

3
(2u+ 1) v

d
for u ∈

[0, 10]. Observe that, from the left side of u = 7, fp(u) has some values above fminh (u)
even though they are below fmaxh (u) for every u.
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Figure 4.15: Example of u values such that fmaxh (u) > fp(u) for v = 1 m/s and d = 1
m.

Because of this proposition, for values of u ≥
√
3+2

4−2
√
3
≈ 7, the hexagonal packing

strategy at the limit will have higher throughput than parallel lanes. However, for
values u <

√
3+2

4−2
√
3
, there is the possibility of the parallel lanes strategy being better

than hexagonal packing. As there is not an exact asymptotic throughput for the
hexagonal packing strategy for a given angle θ, one can numerically find the best θ
using large values of t on (4.9); then, after choosing θ, the numerical approximation
of the asymptotic throughput using this fixed θ and those t values is calculated. This
result can be compared with the throughput for the same large values of t for the
parallel lanes strategy using (4.6). Furthermore, in a scenario with the target region
only being accessed by a corridor with a finite height, the maximum time t can be
inferred by its size, and then the exact throughput for this specific value can be
calculated by (4.9) and (4.6) as stated before, but using only this specific value t,
instead of a set of large values, to decide which strategy is more suitable.

Let fh(t, θ, u) and fp(t, u) be (4.9) and (4.6) making explicit the parameter u. Let
θ∗ be the outcome from the search of the θ, which maximises fh(t, θ, u) by numeric
approximation. Thus, define fh(t, u) = fh(t, θ

∗, u). Figure 4.16 illustrates the result
of the procedure mentioned above for t = 10,000 for 100 equally spaced values of
u ∈ [0, 7] and seeking the maximum throughput using 1000 evenly spaced points
between [0, π/3) to find the best θ for the hexagonal packing strategy. Then, it is
compared with the result for θ = π/6 as explained previously when Figures 4.8–
4.11 were discussed. Observe that for u ∈ [0.5, 0.9] there is some values for which
fh(10,000, u) < fp(10,000, u). Figure 4.17 shows this by 100 equally spaced values
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Figure 4.16: Comparison of fp(t, u) and fh(t, u) for u ∈ [0, 7], t = 10,000 s, v = 1 m/s
and d = 1 m.

of u ∈ [0.4, 1] for different values of v. This occurs because, for such values of u,
using square packing fits more robots inside the circle over the time than hexagonal
packing, as shown in Section 4.6.5.

Additionally, let ft(K, t, u), the throughput of the touch and run strategy for
a given number of lanes, a time and a ratio u explicit in the argument list, and
ft(u,K) = lim

t→∞
ft(K, t, u). The asymptotic throughput of the touch and run strategy,

ft(u) = maxK ft(u,K), for higher values of u is greater than the maximum possible
asymptotic value of the hexagonal packing fmaxh (u) = 2√

3
(2u+ 1) v

d
, as shown later

by numeric experimentation. Before presenting this result, it is necessary to verify
which values of u are allowed by ft(u) and to express the asymptotic throughput of
the touch and run strategy from Proposition 8 in terms of the ratio u.

From Proposition 7, the possible number of lanes K is in {3, . . . , K(u)} with

K(u) =
⌊

π

arcsin( 1
2u)

⌋
. Consequently, ft(u) is only allowed for any u ≥ 1√

3
. In fact,

by Proposition 7, K ≥ 3, then π

arcsin( 1
2u)
≥
⌊

π

arcsin( 1
2u)

⌋
≥ 3 ⇒ π

3
≥ arcsin

(
1
2u

)
⇔

sin
(
π
3

)
≥ 1

2u
⇔

√
3
2
≥ 1

2u
⇔ u ≥ 1√

3
.

The algebraic manipulations for expressing the asymptotic throughput of the touch
and run strategy from Proposition 8 is shown below in terms of the ratio u. The
asymptotic throughput expressed in (4.19) is

Kv

do
=
K
do
d

v

d
=

K
max(d,d′)

d

v

d
[(4.17)]

=
K

max(1, d
′

d
)

v

d
,

(4.21)
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(a) (b)

Figure 4.17: Comparison of fp and fh for u ∈ [0.4, 1], t = 10,000 s, v ∈ {0.1, 1} m/s
and d = 1 m. The difference in the lines of fh is due to θ∗ being different for each
value of v. (a) v = 0.1 m/s; (b) v = 1 m/s

.

for an integer K ∈ {3, . . . , K(u)}. From (4.15), α = 2π
K

, and, from (4.13),

r

d
=

s
d

sin(α/2)− d
2d

1− sin(α/2)
=
u sin( π

K
)− 1

2

1− sin( π
K

)
def
= r(u,K),

resulting in

d′

d
=

®
r
d
(π − α) + d−2r cos(α/2)

d sin(α/2)
, if 2r cos(α/2) < d,

2 r
d

arcsin
(
d
2r

)
, otherwise,

[by (4.18)]

=

{
r
d

(
π − 2π

K

)
+

1−2 r
d
cos( π

K
)

sin( π
K
)

, if 2 r
d

cos( π
K

) < 1,

2 r
d

arcsin
Ä(

2 r
d

)−1
ä
, otherwise,

=


r(u,K)

(
π − 2π

K

)
+

1−2r(u,K) cos( π
K
)

sin( π
K
)

,

if 2r(u,K) cos( π
K

) < 1,

2r(u,K) arcsin
Ä

1
2r(u,K)

ä
, otherwise,

def
= d′(u,K).

(4.22)

Thus, from (4.21) and (4.22), ft(u,K) = K
max(1,d′(u,K))

v
d
, and the upper throughput
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for the touch and run strategy in terms of u is given by

ft(u) = max
K∈{3,...,K(u)}

ft(u,K) = max
K∈{3,...,K(u)}

K

max(1, d′(u,K))

v

d

=
K∗(u)

max(1, d′(u,K∗(u)))

v

d
,

for some function K∗(u) that finds this maximum in {3, . . . , K(u)}. Similarly, for a
fixed maximum time t, by (4.16), ft(t, u) = max

K∈{3,...,K(u)}
ft(K, t, u).

Figure 4.18 presents a comparison of the asymptotic throughput ft(u) and the
lower and upper values of the asymptotic throughput of the hexagonal packing fminh (u)
and fmaxh (u) for values of u ranging from 1/

√
3 to 1000. Observe that the asymptotic

throughput of the touch and run strategy is greater than the maximum possible
asymptotic throughput of the hexagonal packing strategy for almost all values of u,
except for some in (1.12, 1.25) (Figure 4.18b).

Additionally, numerical experiments for ft(t, u) and fh(t, u) are performed using
fixed time t = 10,000 in (4.16), (4.9) and u ∈ [1/

√
3, 7]. For finding θ∗, the same

procedure is applied, which was described before to compare fh(t, u) and fp(t, u).
Figure 4.19 shows the result. It suggests the touch and run strategy has higher
throughput than hexagonal packing for large values of t. Although hexagonal packing
has lower asymptotic throughput than the touch and run strategy for almost all u
values, it is suitable for u < 1√

3
whenever it surpasses the parallel lanes strategy.

For real-world applications and assuming the robots are constantly at maximum
linear speed and at fixed distance between other robots, the hexagonal packing
strategy is adequate for a situation where the target is placed in a constrained region,
for example, walls in north and south positions. In this example, the number of lanes
used in the touch and run strategy would be reduced because of the surrounding
walls. In an unconstrained scenario, if the ratio u and the maximum time t are known,
the throughput value of the hexagonal packing strategy from (4.9) (for the θ which
maximises it) can be compared with the throughput of the touch and run strategy from
(4.16) (for K∗(u)) to choose which strategy should be applied. However, assuming
a constant speed and a fixed minimum distance between robots in a swarm is not
practical because other robots influence the movement in the environment. Hence,
these strategies are the inspiration to propose novel algorithms based on potential
fields for robotic swarms in Chapter 5.

4.6 Experiments and Results

In this section, the theoretical strategies and equations presented in this chapter are
evaluated by realistic Stage (Gerkey, Vaughan, and Howard, 2003) simulations with
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Figure 4.18: Graph varying u for fminh (u), fmaxh (u) and ft(u) with v = 1 m/s and d = 1
m for different intervals of u. In (a), fminh (u) and fmaxh (u) are almost overlapped.
In (b), ft(u) > fmaxh (u) for all u, except in an interval within (1.12,1.25). (a)
u ∈ [1/

√
3, 1000]; (b) u ∈ [1/

√
3, 1.25].

Figure 4.19: Example for t = 10,000 s, v = 1 m/s, d = 1 m and 100 equally spaced
points of u ∈ [1/

√
3, 7]. fh(t, u) < ft(t, u), albeit fmaxh (u) ≥ ft(t, u) for a few values

of u < 1.5.
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holonomic and non-holonomic robots. Aditionally, these experiments corroborate that
whenever an algorithm makes a swarm take less time to reach the target region than
another algorithm, the throughput of the former is higher than the latter.

Hyperlinks to the video of executions are available in the captions of each
corresponding figure. They are in real-time so that the reader can compare the time
and screenshots presented in the figures in this section with those in the supplied
videos. (The source codes of each experimented strategy are in Passos (2022c).) In
addition, Appendix C also shows some of these screenshots and more graphs, adding
to the results in this section.

Experiments were executed for all strategies considering s > 0. Experiments for
point-like targets could not be performed because a point with a fixed value is nearly
impossible to be reached by a moving robot in Stage computer simulations due to
the necessity of exact synchronization of the sampling frequency of positions made
by the simulator and the speed of the robot. Hence, a circular area with a radius
s > 0 around the target must be used to identify that a robot reached it. After
presenting the experiments and results for all strategies for circular target region with
radius s > 0, they are compared experimentally considering the analysis previously
discussed in Section 4.5.4.

It is saved for each robot its arrival time in milliseconds since the start of the
experiment. The arrival time of every robot is subtracted by the arrival time of the
first robot. By doing so, the experiment is assumed to begin in time t = 0 without
worrying about the initial inertia. After this, the number of robots (N) is registered
for each time value (t).

To alleviate some of the numerical errors caused by the floating-point represen-
tation, rounding on the 13th decimal place was used before using floor and ceiling
functions on the equations presented. For example, in contemporary computers, by
using double variables in C or float in Python, if you divide 9.6 by 1.6, the result is
5.999999999999999 for 15 decimal places formatting, but it should be 6. If the floor
function was applied to the previous result, the outcome would be 5 instead of the
expected 6.

For all experiments in this section, the robots are distant from each other by d = 1
m. In the figures of this section, black robots indicate they reached the target, and
red did not. In addition, the experiments shown on this section were not repeated
because the linear speed and initial positions are constant, so there is no random
aspect, and the same results are obtained for different runs.

4.6.1 Compact Lanes

For compact lanes simulations, v = 1 m/s, and the first robot to reach the target is
at the bottom lane and starts at the target. For a target area radius s, such that
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(a) (b)

(c) (d)

Figure 4.20: Simulation on Stage for compact lanes strategy using s = 0.3 m, d = 1
m during t = 7.1 s. Available on https://youtu.be/e1cWJzWhQmQ, accessed on 12
June 2022. (a) 0 s: beginning of the simulation; (b) After 2.7 s; (c) After 6.7 s; (d) 5
s: ending of the simulation.

0 < s <
√

3d/4, s = 0.3 m, and for
√

3d/4 ≤ s < d/2, s = 0.45 m. Figure 4.20 shows
screenshots of the simulation using s = 0.3 m during t = 7.1 s and Figure 4.21 for
s = 0.45 m and t = 10.1 s.

Experiments were run in order to verify the throughput for a given time and the
asymptotic throughput calculated by (4.2) to (4.5). Figure 4.22 shows the throughput
for different values of time obtained by the experiments in Stage, i.e., (N − 1)/t, in
comparison with the calculated value by (4.2) and (4.3) for s = 0.3 m and by (4.4)
and (4.5) for s = 0.45 m. “Simulation” stands for the data obtained from Stage,
“Instantaneous” for the equations of the throughput for a given time calculated in
(4.2) and (4.4) and “Asymptotic” for the asymptotic throughput obtained from (4.3)
and (4.5). The mentioned results of the equations match the data obtained from
simulations. These figures confirm that the equations presented in the theoretical
section agree with the throughput obtained by simulations.

4.6.2 Parallel Lanes

The parallel lanes strategy was experimented for v = 1 m/s and s ∈ {3, 6} m. Figures
4.23 and 4.24 present screenshots from executions using these parameters.

To verify the throughput for a given time calculated by (4.6) and its asymptotic
value as in (4.7), they are compared with the throughput obtained from Stage
simulations. Figure 4.25a presents these comparisons. “Simulation” stands for the
data obtained from Stage, “Instantaneous” for the equations of the throughput for
a given time calculated in (4.6), and “Asymptotic” for the asymptotic throughput
obtained from (4.7). As expected, the values of (4.6) approximate to (4.7) as time
passes. Additionally, observe that the values from (4.6) are almost aligned with the
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(a) (b)

(c) (d)

Figure 4.21: Simulation on Stage for compact lanes strategy using s = 0.45 m, d = 1
m during t = 10.1 s. Available on https://youtu.be/9OXGC1w83j0, accessed on 12
June 2022. (a) 0 s: beginning of the simulation; (b) After 3.5 s; (c) After 7 s; (d) 10.1
s: ending of the simulation.
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Figure 4.22: Throughput versus time plot for compact lanes strategy for different
values of s.
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(a) (b)

(c)

Figure 4.23: Simulation on Stage for parallel lanes strategy using s = 3 m, d = 1 m
during t = 13 s. Available on https://youtu.be/2Y1RHc9YVaw, accessed on 12 June
2022. (a) 0 s: beginning of the simulation; (b) After 6.5 s; (c) 13 s: ending of the
simulation.

(a) (b)

(c)

Figure 4.24: Simulation on Stage for parallel lanes strategy using s = 6 m, d = 1
m during t = 16 s. Available on https://youtu.be/TVdka65fi1g, accessed on 12
June 2022. (a) 0 s: beginning of the simulation; (b) After 8 s; (c) 16 s: ending of the
simulation.
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Figure 4.25: Plots for the experiments of parallel lanes strategy for s ∈ {3, 6} m. (a)
Number of robots versus throughput. (b) Number of robots versus the time of arrival
of the last robot.

values from the simulation, except for some points. The difference in those points is
due to the floating-point error discussed at the beginning of Section 4.6 that happens
in the division before the use of floor or ceiling functions used on (4.6). Figure 4.25b
shows the number of robots versus the time of arrival of the last robot for the same
data used in Figure 4.25a. As the running time is proportional to the number of
robots in the experiments, observe that the higher throughput per time is reflected
as a lower arrival time of the last robot per the number of robots. In addition, note
that the values tend to infinity as the horizontal axis values grow.

4.6.3 Hexagonal Packing

The hexagonal packing was experimented for v = 1 m/s and the combination of the
following variables and values: s ∈ {3, 6} m and θ ∈ {0, π/12, π/6, 5π/18}. Figure
4.26 presents screenshots from executions using θ = 0 and s = 3 m. (The screenshots
with the other values of hexagonal packing angle θ and radius s are presented in
Section C.1.)

To evaluate the throughput for a given time and angle calculated in (4.9) and
the bounds on the asymptotic throughput as in (4.11), they are compared with the
throughput obtained from Stage simulations. Figure 4.27 presents these comparisons.
Observe that the values from (4.9) are almost aligned with the values from the
simulation, except for some points. The difference in those points is also due to the
floating-point error – discussed in the introduction of Section 4.6 – over the divisions
and trigonometric functions performed before the use of floor or ceiling functions used
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(a) (b)

(c)

Figure 4.26: Simulation on Stage for hexagonal packing strategy using s = 3 m, θ = 0
during t = 9.8 s. Available on https://youtu.be/6_LgZWFOWd0, accessed on 12 June
2022. (a) 0 s: beginning of the simulation; (b) After 4.9 s; (c) 9.8 s: ending of the
simulation.

on (4.9). In addition, due to the floating-point error, in the computation of (4.10),
instead of using min(L(xh), C2(xh)) = ⌊L(xh)⌋, |min(L(xh), C2(xh)) − ⌊L(xh)⌋| <
0.001 was checked.

Additionally, note in Figure 4.27 that for any value of s or θ, as time passes, the
values of (4.9) asymptotically approach some value inside the bounds given by (4.11).
Although the exact asymptotic value could not be given for the presented parameters,
the experiments show that the bounds are correct. In the same manner, as occurred
for parallel lanes, the higher throughput per time is reflected as a lower arrival time
of the last robot per the number of robots, and it tends to infinity as the number of
robots grows. These graphs showing the relation between the time of arrival at the
target and the number of robots are in Section C.2.

4.6.4 Touch and Run

For the touch and run strategy, the robots maintain the linear speed over the whole
experiment, then turn at a fixed constant rotational speed ω = v/r, for r obtained
from (4.13), when they are next to the target centre by the distance dr obtained from
(4.12). After they arrive at the target region, when they are distant from the target
centre by dr, they leave the curved path, stop turning and follow the linear exiting
lane. On that lane, to stabilise their path following, the robots follow the queue using
a turning speed equal to γ − β, such that β is the angle of the exit lane and γ is the
robot orientation angle, both in relation to the x-axis.

The speed of these experiments was v = 0.1 m/s because the robots utilised on
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Figure 4.27: Comparison of simulation data with the asymptotic and instantaneous
throughput for hexagonal packing with different values of s and θ. (a) θ = 0; (b)
θ = π/12; (c) θ = π/6; (d) θ = 5π/18.
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Stage have a maximum turning speed of π/2 rad/s. Choosing a low linear speed
implies a greater number of lanes K, as the turning speed ω = v/r and r vary over K
and s. In addition, a low linear speed diminishes the time measurement error, since
the positions of the robots are sampled at every 0.1 s by the Stage simulator. Their
positions are not guaranteed to be obtained at the exact moment they are far from
the target centre by dr; thus, this also yields an error in time measurement for their
arrival in the target area.

The value of s is in {3, 6} m and all allowed K values are used for experimenting
with the touch and run strategy with 200 robots. By (4.14), for the former s value,
there is a maximum K = 18 and for the latter, K = 37. However, as the maximum
angular speed is limited, the allowed K values range for s = 3 m is reduced to
{3, . . . , 16} and for s = 6 m, {3, . . . , 33}. Figures 4.28 and 4.29 present screenshots
from executions using s = 3 m and different values of K. Other examples with s = 6
m are in Section C.1. The circle in the middle of these figures is the target region,
and the lines where the robots are over represent the curved trajectory they follow by
the touch and run strategy. Notice that as the number of lanes increases, the distance
between the robots tends to be higher because, when the robot approaches the target
area in the entering ray, it becomes more distant from the robots in the exiting ray.
As v is constant, and they cannot change their speed, the distance between them
may increase as the number of lanes grows, according to (4.17) and (4.18). Due
to the throughput of the touch and run strategy in Proposition 8 being inversely
proportional to that distance, the instantaneous and asymptotic throughput drop for
some higher values of K.

Figure 4.30 presents the comparison of (4.16) and (4.19) for the throughput for
a given time, the bound on its asymptotic value and the one obtained from Stage
simulations. Although the total number of robots and the linear speed were fixed, the
arrival times and the number of robots to reach the target change for each parameter
used in this figure since the distance between the robots per lane varies and the
number of robots simultaneously arriving is, in most cases, the number of lanes. In
addition, the first two arrival times were not plotted because the first one is zero,
yielding an indeterminate output by the throughput definition, and the second one
is still too small in relation to the others, making the resultant throughput too high
compared with the rest, thus producing an incomprehensible graph.

Observe that the values from (4.16) are almost equal to the simulation values,
except for some points. They are different because of the floating-point error in the
divisions and trigonometric functions before the use of floor function used on (4.16) –
already mentioned in the introduction of Section 4.6 – as well as the time measurement
errors for the arrival of the robots on the target area as explained at the beginning of
this section. As expected, the values of (4.16) tend to come nearer to the asymptotic
value given by (4.19). Differently from the previous strategies, notice that, for small
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(a) (b)

(c)

Figure 4.28: Simulation on Stage for the touch and run strategy using s = 3 m, K = 10
during t = 228 s at v = 0.1 m/s. Available on https://youtu.be/Z-ruOMYFyBU,
accessed on 12 June 2022. (a) 0 s: beginning of the simulation; (b) After 114 s; (c)
228 s: ending of the simulation.
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(a) (b)

(c)

Figure 4.29: Simulation on Stage for the touch and run strategy using s = 3 m, K = 16
during t = 523.1 s at v = 0.1 m/s. Available on https://youtu.be/FvAqv0zD4_Y,
accessed on 12 June 2022. (a) 0 s: beginning of the simulation; (b) After 261.6 s; (c)
523.1 s: ending of the simulation.
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Figure 4.30: Throughput versus time comparison of the touch and run simulation
on Stage with asymptotic values and the theoretical instantaneous equation for the
throughput for different values of s and K. (a) s = 3 m and K ∈ {10, 16}; (b) s = 6
m and K ∈ {19, 33}.

values of t, the throughput is higher than for larger ones because, for a fixed K, (4.16)
is decreasing for t. As occurred for the previous strategies, higher throughput per time
is reflected as a lower arrival time of the last robot per number of robots, which tends
to infinity as the number of robots grows. Figures displaying this relation between
the time of arrival at the target and the number of robots are in Section C.2.

Figure 4.31 shows a comparison of the throughput at the end of the experiment –
that is, for 200 robots and considering the difference between the time to reach the
target region spent by the last robot and the first – and the asymptotic throughput
obtained by (4.19) for all the possible number of lanes (K) for the used parameters
and s ∈ {3, 6} m. The simulation values tend to come close to the asymptotic value,
confirming the theoretical results.

4.6.5 Comparison between Hexagonal Packing and Parallel
Lanes

As discussed in Section 4.5.4, it is observed that the parallel lane strategy has a higher
throughput than hexagonal packing for values of u = s/d from 0.5 to a value of
about 0.85 and for high values of t, despite the parallel lanes having lower asymptotic
throughput for other values of u. In order to validate this observation, experiments
on Stage were performed for these strategies using t = 10,000 s, v = 0.1 m/s, d = 1 m
and s ranging from 0.4 to 0.95 m in increments of 0.05 m. The best hexagonal packing
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Figure 4.31: Throughput versus the number of lanes comparison of the simulation on
Stage and asymptotic throughput for s ∈ {3, 6} m.

angle θ was computed for hexagonal packing using the same method mentioned at
the end of the theoretical section, i.e., the maximum throughput was searched using
1000 evenly spaced points between [0, π/3) to find the best θ; then, it was compared
with the result for π/6.

Figure 4.32 presents the results from the experiments with Stage and the
theoretical results shown earlier. The functions fh and fp are the same presented
in Figure 4.17. The labels “Simulation hex.” and “Simulation par.” stand for the
throughput resultant from the experiments with hexagonal packing and parallel lanes
strategies, respectively. The throughput improvement for the values of u = s/d
where the parallel lanes strategy overcomes the hexagonal packing is mainly caused
by the square packing being more effective than hexagonal packing for fitting the
robots inside the circle over the time for those values. To illustrate this, Figure 4.33
illustrates the execution for v = 0.1 m/s, d = 1 m and s ∈ {0.5, 0.85} m. The robots
run from right to left at a constant linear speed v = 0.1 m/s. The grey squares are
highlighted – which measure 1 × 1 m2 – to help estimate the time needed for about
eight robots to arrive in the target region. This figure shows that the square packing
fits more robots than hexagonal packing over time in these cases.

Observe in these figures that when the robots are arranged in squares, more robots
arrive per unit of time than using hexagonal packing. To help visualise this, heed that
in Figure 4.33a, there are N = 9 robots in black, occupying a rectangle including the
circular target area with a width of approximately W ≈ 4.5 m (this distance can be
roughly measured by the grey squares, counting from the two last black robots on
the right side to the first one in the left side). As v = 0.1 m/s was assumed, the
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(a) (b)

Figure 4.32: Throughput versus ratio u = s/d comparing hexagonal packing and
parallel lanes strategies for v ∈ {0.1, 1} m/s, including results from Stage simulations.
(a) v = 0.1 m/s; (b) v = 1 m/s.

throughput in this case is approximately N−1
W
v

≈ (9−1)0.1
4.5

≈ 0.178 s−1. Making similar

calculations, Figure 4.33b–d have the approximate throughput (8−1)0.1
3

≈ 0.233 s−1,
(8−1)0.1

4
= 0.175 s−1 and (8−1)0.1

3
≈ 0.233 s−1, respectively. The results from the parallel

lanes in this illustration – about 0.233 for both values of s – surpass the values for
the hexagonal packing.

4.7 Summary

This chapter presented definitions of the common target area throughput (Definitions
1 and 2). The aim is to calculate the highest common target area throughput reached
by different strategies by assuming that the target is a circle of radius s and the robots
are moving at constant maximum linear speed v and constant minimum distance
between each robot d. When the throughput is calculated for a given time t after
the first robot arrives at the target area, call it the instantaneous throughput or the
throughput for a given time t. As time passes, the throughput reaches a limit, when
the time goes to infinity, defined as the asymptotic throughput.

In order to analyse the throughput for different strategies, the throughput of a
common target point was calculated. Although a point is not reachable in practice,
using a point-like target gives insights into the best angle between different straight-
line trajectories of robots going to the same point (Lemma 1 and Proposition 1).
After that, the throughput of a small target area is computed by using the compact
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(a)

(b)

(c)

(d)

Figure 4.33: Screenshots of the Stage simulation for hexagonal packing and parallel
lanes strategy for d = 1 m and s ∈ {0.5, 0.85} m. (a) Hexagonal packing with best θ
for s = 0.5 m. Available on https://youtu.be/IZBnFHLKXUA, accessed on 12 June
2022. (b) Parallel lanes for s = 0.5 m. Available on https://youtu.be/YYv1dJFkdPA,
accessed on 12 June 2022. (c) Hexagonal packing with best θ for s = 0.85 m. Available
on https://youtu.be/r9X0fsnngm0, accessed on 12 June 2022. (d) Parallel lanes
for s = 0.85 m. Available on https://youtu.be/0cx-bHPIong, accessed on 12 June
2022.
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lanes, where the robots go in two lanes, and the robots are distant by themselves in
a triangular pattern (Propositions 2 and 3).

These results are utilised for developing three strategies for large target areas.
These strategies are divided into two groups. The first group is the corridor strategies,
formed by the two first strategies shown for large areas, where the robots go through
a corridor of lanes towards the target area. The second group is the multiple curved
trajectories around the target area and is composed of the third strategy presented
for large target areas.

The first strategy is the parallel lanes, where the robots go to the target area in
parallel lanes distanced by d in a square pattern. For that strategy, Proposition 4
shows its instantaneous and asymptotic throughput.

The second strategy is the hexagonal packing, where the robots go in parallel
lanes towards the target area, but their distance is less than d and the robots are
in a hexagonal pattern. The upper bound of the asymptotic throughput of the
hexagonal packing is calculated in Proposition 5. Nevertheless, this proposition relies
on results that do not tell how the hexagons representing the position of the robots are
placed inside the lanes. For this strategy, the hexagon pattern may be rotated at any
angle in relation to the horizontal axis (denoted hexagon packing angle in Definition
3). Depending on this angle, the instantaneous throughput can be increased. Yet,
obtaining the hexagonal packing angle that maximises the instantaneous throughput
from the parameters s, v, d and t is not straightforward. Because of that, although
Proposition 6 gives an exact instantaneous throughput for this strategy, it can only
show the lower and upper bounds of the asymptotic throughput instead of an exact
value.

The third strategy for large target areas is the touch and run. In it, the robots
touch the border of the circular target area through curved lanes tangent to that
border. These lanes have an entrance and leaving straight paths and are inside circular
sector regions which form an angle of α with the target area centre (called central
region angle). Lemma 2 calculates the distance from the target area that the robots
start turning. Lemma 3 relates α, d and the turning radius of the curve tangent to
the target area. Proposition 7 gives the possible number of lanes around the target
area from the parameters s and d. Proposition 8 computes the instantaneous and
asymptotic throughput of the touch and run strategy.

For all the strategies above, the ratio s
d

is in their expression of instantaneous
and asymptotic throughput. Thus, a comparison is made in relation to that ratio.
Proposition 9 shows that below a specific ratio value, the parallel lanes strategy
has a higher asymptotic throughput than the lower bound of the hexagonal packing
asymptotic throughput. That means the parallel lanes may be better for a hexagonal
packing angle and these values of s

d
. However, Proposition 9 also states that, for ratios

no less than that specific value, the hexagonal packing is better than the parallel lanes.
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However, the asymptotic throughput of the touch and run strategy is greater than
the maximum possible asymptotic throughput of the hexagonal packing strategy for
almost all values of s

d
, except for some in the interval (1.12, 1.25). In summary,

depending on the value of this ratio, one of those strategies is the most suitable.
The results above were tested and corroborated in experiments described in Section

4.6. Some of them are used in the next chapter in the context of the SQF and TRVF
algorithms, which are inspired by the corridor strategies (parallel lanes and hexagonal
packing) and the touch and run strategy, respectively. The TRVF algorithm uses the
same lanes of the touch and run strategy. Thus, the calculation in Lemma 2 is used in
that algorithm, and the maximum number of lanes for this algorithm is obtained from
Proposition 7. The lower bound of the asymptotic throughput in Proposition 6 for
the hexagonal packing and the asymptotic throughput of the touch and run strategy
in Proposition 8 are compared with the results obtained from experiments with SQF
and TRVF algorithm in Sections 5.4.1.1 and 5.4.1.2.
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Chapter 5

Proposed algorithms

This chapter presents algorithms based on the results in the previous one: the Single
Queue Former (SQF) in Section 5.1 and the Touch and Run Vector Fields (TRVF)
in Section 5.2. After these algorithms, algorithms for the ad hoc agents are presented
in Section 5.3. Consider the scenario where a large number of robots must reach a
common target. Each robot moves towards another destination after reaching the
target, which may be shared among the robots. Assume that the target is a circular
area of radius s. A robot reaches the target if its centre of mass is distant less or equal
to the radius s from the target centre. Consider that there is no minimum time to
stay at the target. The algorithms are only executed inside a circle of radius D > s
around the target centre (denoted the working area). Also, assume that if the robots
have two or more targets, their distance is at least 2D.

Differently from Chapter 4, which intended to find the maximum throughput for
the strategies by using constant maximum linear speed and fixed minimum distance
between the robots, in real applications, robots move at variable speeds, and they do
not always keep the same distance between others, although they may try to maintain
some distance to avoid bumping. In addition to that, the space around the target
region is finite and may have other obstacles.

Inspired by these theoretical developments presented in Chapter 4, new algorithms
are proposed in this chapter. That is, it discusses the analysis of the arrival rate in
the target area as the time tends to infinity as an alternative approach to analysing
congestion in swarms with a common target area. This measure has the advantage
of being finite for any closed target region of any shape as the number of robots
grows, as opposed to the number of robots per time of arrival at the target area.
Assuming a circular target area and robots with constant maximum linear speed
and fixed minimum distance from each other, theoretical strategies are developed
for entering that area and calculated their theoretical throughput for a given time
and their asymptotic throughput. The presented theoretical strategies were based
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on forming a corridor towards the target area or making multiple curved trajectories
towards the boundary of the target area. Based on the corridor strategy, the SQF
algorithm is proposed in Section 5.1, and, inspired by the multiple curved trajectories,
the TRVF algorithm is introduced in Section 5.2.

The Ad Hoc Follower (AHF) is an attempt to resolve the common target problem
for ad hoc teamwork discussed in Chapter 1 without using learning. Shortly speaking,
in this attempt, ad hoc robots follow a fixed alternative algorithm if they do not
perceive another robot in their neighbourhood; otherwise, they go after the other
robot while the angle between the vector pointed by the alternative algorithm and the
direction vector of the other robot does not exceed a predetermined angle. However,
as shown in Section 5.4.1.3, if the robots do not follow any robot, the task completion
time is minimised.

Thus, our proposed approach is to execute a fixed alternative algorithm without
following any robot. In this way, two teams will be running in the same space using
different algorithms: one running the ad hoc robots’ algorithm and the other, the
aware robots’ algorithm. Such approach uses mixed teams, and there are many
situations where different swarm teams may be present in the same environment. For
instance, in the multi-agent literature, we can find such mixed teams (MT) (Beavers
and Hexmoor, 2001) in problems like Pursuit-Evasion Games (dos Santos et al., 2023;
Salimi et al., 2016) and Multi-Agent Pickup and Delivery (Flammini, Azzalini, and
Amigoni, 2023). Therefore, in this thesis, when robots use AHF without following
any robot, they are in a Mixed Teams (MT).

Although not using the theoretical results in Chapter 4, AHF and MT described
in Section 5.3 have another algorithm as a parameter. Thus, SQF and TRVF are
described before it, aiding the description of the experiments with AHF and MT
parameterised by them in Section 5.4.

5.1 Single Queue Former

Based on the corridor strategy from Chapter 4, an algorithm is proposed, named
Single Queue Former, to improve throughput in case of target congestion whose aim
is to form a single queue that goes towards the target. The queue is formed inside a
rectangular corridor of width equal to the circular target diameter and a given fixed
length. The robots should only enter the target region by this queue.

Specifically, this algorithm is based on the compact lanes and hexagonal packing
strategies findings from Section 4.5.1 and 4.5.2. However, the hexagonal formation is
not enforced here to avoid robots losing time forming it, although the hexagon packing
is the configuration of the robots that maximises the throughput in an ideal scenario
where the robots maintain the same distance and keep constant linear speed. As it
will be shown in Section 5.4, the throughput for this algorithm is bounded by the
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Figure 5.1: Rotational force field to reach the target with Single Queue Former
algorithm.

hexagonal packing throughput for the mean distance and mean linear speed achieved
by the robots.

Artificial potential fields (Siegwart, Nourbakhsh, and Scaramuzza, 2011) are used
to apply forces on the robots to form the queue and exit the target area efficiently.
Let s be the radius of the current target. The corridor queue has a width 2s and
starts from the current target centre, denoted by G = (Gx, Gy). Let the length of
the corridor be the same value used for the radius of the circular working area of the
algorithms around the target, denoted D. Without any loss of generality, the corridor
is located between the point at (Gx, Gy) and the point at (Gx, Gy +D). Robots that
are going to enter the target area are submitted to a rotational field whose centre is
the position of the target centre. When they reach the corridor, they are submitted
to an attractive force towards the target. An illustration is shown in Figure 5.1.

Therefore, robots outside the corridor are submitted to a force according to the
following equations. For the right-hand side of the circle, an anti-clockwise rotational
field:

Fx = −KSQF
py −Gy

∥p−G∥
, Fy = +KSQF

px −Gx

∥p−G∥
. (5.1)

For the left-hand side of the circle, a clockwise rotational field:

Fx = +KSQF
py −Gy

∥p−G∥
, Fy = −KSQF

px −Gx

∥p−G∥
, (5.2)

where Fx and Fy are the two components of the force applied, p = (px, py) is the
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position of the robot, G = (Gx, Gy) is the target centre, and KSQF is a constant for
setting the force magnitude.

Additionally, it was noticed in previous algorithms (Marcolino et al., 2017) that
the robots reaching the target tend to stop on the target and orient themselves towards
their next goal. This increases the time during which the target is occupied and thus
decreases the throughput. To solve this problem, robots exiting nearby the target are
constrained by another rotational field. This field also is only applied inside a circle
with radius D around the target (Figure 5.2). The aim of this field is to be aligned
with the corridor orientation at the target and progressively allow robots to change
directions. This field also depends on the new target position, not only on the robot
location, because if some robots reach the target area on a side but have to go to the
opposite side when they leave the circle, it will cause congestion next to the exit area.
For a robot with a new target located on the right-hand side of the previous target
centre, an anti-clockwise rotational field is applied:

Fx = −KSQF
py −Qy

∥p−Q∥
, Fy = +KSQF

px −Qx

∥p−Q∥
. (5.3)

For a robot with a new target located on the left-hand side of the previous target
centre, a clockwise rotational field is applied:

Fx = +KSQF
py − Py
∥p−P∥

, Fy = −KSQF
px − Px
∥p−P∥

, (5.4)

where Q = (Qx, Qy) = (Gx + D,Gy) is a point on the right of the target, and
P = (Px, Py) = (Gx −D,Gy) is a point on the left of the target.

This outgoing rotational field enables robots to stay on their course after they
reach the target and gradually rotate towards their next goal. The orientation of the
field depends on the position of the robot relative to the corridor. If the robot is on
the left of the corridor, the robot follows the rotational field going to the left with
centre P. Otherwise, if it is on the right of the corridor, it follows the rotational field
going to the right with centre Q.

Finally, let the influence radius be the maximum distance a robot considers
anything sensed as an obstacle to avoid from its mass centre. To enable the robots to
deal with small target sizes, two different constants are used for the influence radius
between the robots when calculating repulsive forces, Id and Imin, with Imin < Id: Id
is the default and maximum radius for influence, and Imin is the minimum allowed.

For robots inside the corridor or exiting the target region, the influence radius is
set to Imin. Now, consider a robot is outside the corridor, but above the PQ line
in Figure 5.2. Let d′ be the distance between the robot and the central line of the
corridor (that is, from the position of the robot to the closest point in the vertical
axis of Figure 5.2, starting from the target centre). Its influence radius I varies in
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s

D

robot

d'

Figure 5.2: Rotational force field to leave the target in the SQF algorithm, and the
distance d′ from the central line of the corridor to the robot for varying its influence
radius.

going_to_target leaving_targetgoing_to_corridorstart

Figure 5.3: State machine transitions for the SQF algorithm.

relation to d′ and is set to I = Imin + d′ only for 0 ≤ d′ ≤ Id − Imin. This range for d′

guarantees that Imin ≤ I ≤ Id. For the rest of the robots the influence radius is Id.
Algorithm 1 presents the SQF algorithm. Robots have the states going to tar-

get, leaving target and going to corridor, which respectively means the robot is going
straightly to the target region, it is leaving it, and it is going to the corridor. The
robots begin at going to target state. Figure 5.3 shows the state machine and its
transitions, assuming that the robot may have two or more targets located at Gj =
(Gj,x, Gj,y), the circular target region has radius sj, and j is its current target index.
Note that this algorithm is only executed when the robot is at a distance at most D
from the target centre. When there are many robots inside the working area, due to
the repulsive forces, the robots next to the target area that did not reach the corridor
may be pushed towards the target area before they access the corridor. Thus, when
this happens, they are allowed to go directly from going to target to leaving target to
avoid more congestion and optimise traffic in this situation.
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Input : KSQF : force magnitude;
D: the length of the corridor;
G1 = (G1,x, G1,y), . . . ,Gn = (Gn,x, Gn,y): a list of n ≥ 2 circular
target region centres;
s1, . . . , sn: a list of n circular target region radii;
j: the current target index;
Imin, Id: minimum and default influence radius of the robot.

Output: F = (Fx, Fy): force vector;
I: influence of the robot for repulsive force calculation.

1 Get position of the robot p = (px, py), and let G = Gj = (Gx, Gy) and s = sj;
2 if ∥p−G∥ ≤ s then
3 state ← leaving target;
4 Increment j, then let G = Gj = (Gx, Gy) and s = sj;

5 if state ̸= leaving target then
6 if ∥p−G∥ ≤ D and (py < Gy or |px −Gx| > s) then
7 state ← going to corridor;
8 Set F according to (5.1) and (5.2);

9 else
10 state ← going to target;

11 F← KSQF
G−p

∥G−p∥ ;

12 else
13 if ∥p−Gj−1∥ ≤ D then
14 Set F according to (5.3) and (5.4);
15 else
16 state ← going to target;

17 F← KSQF
G−p

∥G−p∥ ;

18 if state = going to target or state = leaving target then
19 I ← Imin;
20 else if state = going to corridor and py > Gy and |px −Gx| < Id − Imin then
21 I ← Imin + |px −Gx|;
22 else
23 I ← Id;
24 return (F, I);

Algorithm 1: SQF algorithm, executed at every update in the position of the
robot.
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5.2 Touch and Run Vector Fields

Based on the results of the touch and run strategy in Section 4.5.3, an algorithm is
devised to mimic the curved trajectories around the target region using vector fields,
named Touch and Run Vector Fields (TRVF). The vector fields are only used inside a
circle with radius D around the target centre and apply forces on the robot to make it
follow a circular trajectory similar to the one described in the touch and run strategy.

As a way to do that, the vector fields proposed by Nelson et al. (2006) for
straight line and orbit following trajectories are adapted and combined. Their straight
line following vector field are employed whenever the robot has to follow a straight
trajectory and an anti-clockwise orbit following vector field for curved trajectories.
Firstly, our modified functions for these trajectories are explained, and afterwards,
the TRVF algorithm is introduced.

Our adaptation of their work concerns reducing the orbit following to a circular
sector, instead of the full circle, and adding an attractive force towards a fixed point
when the robots are performing the orbit following next to the target region. The
reduction to a circular sector is due to the curved trajectory next to the target having
α < 2π as explained in the Section 4.5.3. Attractive forces towards a fixed point are
added to the orbit following vector field intending to avoid the repulsive forces caused
by nearby robots to push a robot far away from that fixed point.

Figure 5.4 shows the straight line and orbit following vector fields proposed by
Nelson et al. (2006). Algorithm 2 presents our adapted function that computes the
straight line following vector field, its parameters and values returned. It assumes
a fixed segment to follow with initial and final waypoints wi and wf , respectively.
Based on the current position and orientation of the robot, p and ξ, respectively, a
force vector with magnitude KTRV F is computed. The orientation of the force vector
changes gradually as the robot approaches the segment. These changes are calculated
using the maximum linear speed of the robot v, and its rate of change depends on the
constants ks and kω.

In the original algorithm, ξe is the entry heading angle, and τ is the distance
perpendicular to the line from which the vector field makes the heading angle begin
to change (in Figure 5.4a, it is the distance from the dashed line to the solid line).
In our adaptation, τ = Id/5 and ξe = π/2, for a given default influence radius of the
robot Id. Additionally, the force vector is only computed if the robot did not reach the
point wf or if the robot is in a position on the plane perpendicular to wiwf limited by
its endpoints, otherwise, force vector zero is returned (line 4). At line 7, sign returns
−1 for negative numbers and 1, otherwise. Here × stands for the cross-product of two
vectors. A verification was also added for not a number (NaN) in the exponentiations
and replace the result for zero as it is a common source of numerical errors (lines 14
and 15). It is assumed a proportional angular speed controller such that if the robot

84



Chapter 5. Proposed algorithms 5.2. Touch and Run Vector Fields

1 Function straightPathFollowing (KTRV F ,p, ξ,wi,wf , Id, ks, kω, v)
Input : KTRV F : force magnitude;

p = (px, py), ξ: current position and orientation of the robot;
wi = (wi,x, wi,y),wf = (wf,x, wf,y): initial and final waypoints for
the segment to follow;
Id: influence radius of the robot;
ks > 1: constant for exponentiation in the vector field calculation;
kω: constant for proportional angular speed controller;
v: maximum linear speed.

Output: F = (Fx, Fy): force vector;
t′: indicates the position along the path (0 when the position of the
robot is on the line perpendicular to wiwf on the initial waypoint
and 1 when that happens for the final waypoint).

2 wfi = wf −wi;

3 t′ ← (p−wi)·wfi

∥wfi∥2
;

4 if t′ ≥ 1 then return ((0, 0), t′);
5 ξf ← atan2(wfi,y, wfi,x);
6 ϵ← ∥p−wi − t′wfi∥;
7 ρ← sign(wfi × (p−wi)) ;
8 τ ← Id/5;
9 ξe ← π/2;

10 if ϵ > τ then
11 ξc ← ξf − ρξe;
12 else
13 ϵ← ρϵ;

14 P1 ←
(
ϵ
τ

)ks ; if P1 is NaN then P1 ← 0;
15 P2 ← ϵks−1; if P2 is NaN then P2 ← 0;

16 ξc ← ξf − ξeP1 −
Ä
ksξev
kωτks

ä
P2 sin(ξ);

17 F← KTRV F (cos(ξc), sin(ξc));
18 return (F, t′);

Algorithm 2: Straight-line vector field algorithm adapted from Nelson et al.
(2006).
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Figure 5.4: Straight line and orbit following vector fields (Nelson et al., 2006).

has orientation ξ and needs to turn to orientation given by ξc, then it uses angular
speed kω(ξc − ξ) for a chosen kω > 0.

Algorithm 3 shows our modified function that computes the orbit following vector
field, its parameters and values returned. Let the orbit to follow be centred at a point
c = (cx, cy) and have radius R. As in the straight line following algorithm, given the
current position and orientation of the robot, p and ξ, respectively, a force vector
with magnitude KTRV F is calculated. In this work, the orbit following algorithm is
intended to perform curves, so a waypoint wf must be given to indicate where the
orbit following must stop. As in the previous algorithm, the orientation of the force
vector changes gradually as the robot approaches the orbit, and these changes are
computed using the maximum linear speed of the robot v, and its rate of change
depends on the constants ko and kω.

This algorithm only generates a force vector different from zero if the robot did
not cross −−→cwf for a given waypoint wf . It is verified if it crossed by the positive sign
of the cross product between the vector q = p− c (that is, the vector from the centre
of the orbit to the position p of the robot) and the vector wf − c. As the orbit is
anti-clockwise, the orbit following vector field makes the cross product q × (wf − c)
decrease with time, being zero when q has the same orientation as wf−c and negative
when the orientation of q is greater than the orientation of wf − c. Force vector zero
is returned when the robot is in a position beyond −−→cwf or intersects this ray (line 4).

At line 5, γ is the heading from the centre of the orbit to the position of the robot.
Nelson et al. (2006) use clockwise orientation and they assume null orientation when
the robot is at the y-axis, thus γ = atan2(qx, qy) is being used instead of atan2(qy, qx)
as in the original algorithm. Due to this, at line 12 π/2− ξc is utilised for computing
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1 Function orbitPathFollowing (KTRV F , c, R,p, ξ,wf , ko, kω, v)
Input : KTRV F : force magnitude;

c, R: centre and radius for orbit following;
p = (px, py), ξ: current position and orientation of the robot;
wf = (wf,x, wf,y): final waypoint;
ko > 1: constant for exponentiation in the vector field calculation;
kω: constant for proportional angular speed controller;
v: maximum linear speed.

Output: F = (Fx, Fy): force vector;
t′: indicates the position along the path (positive when the robot
did not cross −−→cwf ).

2 q← p− c;
3 t′ ← q× (wf − c);
4 if t′ ≤ 0 then return ((0, 0), t′);
5 γ ← atan2(qx, qy);
6 if ∥q∥ > 2R then
7 ξc ← γ − 5π

6
+ v

∥q∥ sin(ξ − γ);

8 else

9 P1 ←
Ä
∥q∥−R
R

äko
; if P1 is NaN then P1 ← 0;

10 P2 ← (∥q∥ −R)ko−1; if P2 is NaN then P2 ← 0;

11 ξc ← γ − π
2
− π

3
P1 − v

kω∥q∥ sin(ξ − γ)− kovπ
3Rkokω

P2 cos(ξ − γ);

12 F← KTRV F (cos(π/2− ξc), sin(π/2− ξc));
13 return (F, t′);

Algorithm 3: Anti-clockwise orbit following vector field algorithm adapted
from Nelson et al. (2006).
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Figure 5.5: If a line has angle γ with the y-axis assuming clockwise orientation, then
this same line has angle π/2 − γ with the x-axis using anti-clockwise orientation, as
the y-axis makes an angle of π/2 with the x-axis.

the result using the usual orientation, that is, anti-clockwise with null orientation at
the x-axis, as justified by Figure 5.5.

Now the previously defined functions are used to introduce the TRVF algorithm.
As explained in the theoretical section, the touch and run strategy uses K lanes. Each
robot calculates four waypoints to follow in the lane located on the right side of the
robot, assuming it is facing the target located at point G. Figure 5.6 shows these
four waypoints, which are based on the position of the robot p, and must be followed
in order. The four waypoints are calculated depending on the sector where they are.
There are K sectors, one per lane, numbered from 1 to K. Let η be the angle of
the vector p −G. Thus, a sector z of a robot is calculated by z =

⌊
η
α

⌋
+ 1 for the

angle α defined in Section 4.5.3 and given by (4.15). Also in that section, the entering
and exiting rays are defined – which robots use to enter and to exit in the curved
trajectory towards the circular target area, respectively – presented in Figure 4.12a.

Let E1 be the point in the entering ray on the boundary of the circle centred at G
with radius D, E2 be the point in the entering ray perpendicular to the point where
the robot starts to turn in the touch and run strategy (as presented in Figure 4.12b),
E3 be the point in the exiting ray perpendicular to the point where the robot ends
the turn in the touch and run strategy, and E4 be the point in the exiting ray on the
boundary of the circle centred at G with radius D. In Figure 5.6, these points are
exemplified for sector 1. For a given sector z, the entering and exiting rays will have
angle zα and (z − 1)α with the x-axis, respectively. The position vector w1 is given
by the sum of the vector G, the vector going from G to E1 and the vector of modulus
Id/2 from E1 rotated π/2 anti-clockwise from the entering ray. Thus,

w1 = G + (E1 −G) +
Id
2

(cos(zα− π/2), sin(zα− π/2))

= G +D(cos(zα), sin(zα)) +
Id
2

(sin(zα),− cos(zα)).

(5.5)
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Figure 5.6: The robots follow the waypoints w1, w2, w3 and w4 depending on
the sector where they are located. The centre c for the curved trajectory between
waypoints w2 and w3 is distant by r + s from the target centre G. In this example,
K = 4 and a robot is at position p and at sector 1.

The vector w2 is given similarly to w1 but using E2. The distance from G to E2

is
√

(r + s)2 − (r + Id/2)2. This was calculated in the proof of Lemma 2 and shown
as AC in the Figure 4.12b, but using d instead of Id. The value of r can be calculated
from (4.13) replacing d by Id as well, that is,

r =
s sin(α/2)− Id/2

1− sin(α/2)
.

Then,

w2 = G + (E2 −G) +
Id
2

(cos(zα− π/2), sin(zα− π/2))

= G +
»

(r + s)2 − (r + Id/2)2(cos(zα),

sin(zα)) +
Id
2

(sin(zα),− cos(zα)).

(5.6)

A similar reasoning is used to calculate w3 and w4, however, for the exiting ray,
the angle is (z − 1)α instead of zα. Thus,
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w3 = G + (E3 −G) +
Id
2

(cos((z − 1)α− π/2), sin((z − 1)α− π/2))

= G +
»

(r + s)2 − (r + Id/2)2(cos((z − 1)α), sin((z − 1)α))+

Id
2

(sin((z − 1)α),− cos((z − 1)α)),

(5.7)

and

w4 = G + (E4 −G) +
Id
2

(cos((z − 1)α− π/2), sin((z − 1)α− π/2))

= G +D(cos((z − 1)α), sin((z − 1)α)) +
Id
2

(sin((z − 1)α),

− cos((z − 1)α)).

(5.8)

For the sector z, the curve with radius r has centre c, which is distant by r + s
from the target centre. The vector c−G has orientation zα− α

2
(Figure 5.6), so

c = G + (r + s)

Å
cos

ÅÅ
z − 1

2

ã
α

ã
, sin

ÅÅ
z − 1

2

ã
α

ãã
. (5.9)

In order to keep track of the path following, a state machine is employed.
Every robot has six states. The initial state is going to target. The robot remains
in this state until it reaches the distance D from the target, then it changes to
going to entrance straight path. In this state, the robot follows an orbit following
vector field centred at the target centre G and radius D using Algorithm 3 with the
parameter wf = w1. The robot changes to the state on entrance straight path when
the Algorithm 3 outputs t′ ≤ 0. This state indicates that the robot is following the
straight-line vector field towards the target region until it reaches a position after the
line orthogonal to the following line at the waypoint w2. This happens when the
variable t′ returned by the Algorithm 2 is greater than or equal to 1.

When this occurs, the robot changes to on entrance curved path and is impelled
by the sum of two forces: the orbit following force for the curved trajectory with
centre at c and radius r and an attraction force towards the target centre G. The
second force was added because, next to the target region, as the number of robots
grows, repulsive forces may push a robot on state on entrance curved path far from
the target. The orbit following force field by itself does not attract to the target
region, so the other force is a counter-effect to this pushing. However, the attractive
force magnitude must be higher than the orbit following force magnitude to avoid
their vector sum being null. Consequently, a fixed norm 1.5KTRV F is used for that
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attractive force, sum these two vectors, then normalise the result to KTRV F . For the
Algorithm 3 in this state, wf = w3.

When the robot reaches the target region, it changes to on exit curved path. In
this state, the robot continues to follow the previous orbit following but an attractive
force towards the waypoint w3 is summed by a similar normalised summation as
described for the previous state. The transition to the next state, on exit straight path,
is done when Algorithm 3 returns t′ ≤ 0. Then, the robot follows the straight line
following force field until it leaves the circle with radius D around the target centre,
changing back to going to target and going to the next target region. A transition
from the state on exit curved path to going to target is also added because D can
be not much greater than s, so the robot can leave the circle with radius D due to
repulsive forces before making a transition to on exit straight path. In that case, not
doing that transition may expedite the leaving from the target because the robots
going to the target region are attracted to the entrance path and do not often cause
congestion on the exit path. To enforce that behaviour and reduce cluttering near
the target area, transitions from going to target and going to entrance straight path
to on entrance curved path are forbidden.

As the robot is attracted to the next target when it is on going to target, depending
on its position, it could be impelled to cross the previous target region again. Thus, a
repulsive force from the circle with radius D and centre at the previous target centre
is applied as if it was a huge obstacle. This makes the robots avoid the previous target
region giving space to other robots entering or exiting. Figure 5.7a summarises these
transitions and Figure 5.7b shows the vector field and the expected state for a robot
at the displayed positions assuming no influence of the repulsive force of the other
robots.

Finally, Algorithm 4 presents the TRVF algorithm. The condition at line 2 can
be checked by a global boolean variable initialised as false before the robot goes to
the next target. Without this condition, the robots would change lanes if they get
pushed to another one, resulting in more congestion. At lines 9 and 32, it is assumed
any chosen repulsive force function.

5.3 Ad Hoc Follower and Mixed Teams

Assume the same scenario described at the beginning of this chapter but this time
also consider that there are robots that do not know which algorithm is being used by
the individuals in the swarm. Let N be the total number of individuals and M < N
the number of robots not knowing the algorithm. These M robots are ad hoc agents
in that scenario because, as described in Chapter 1 and Section 3.3, they have the
same goal as the others – to get efficiently in the target area – but have no knowledge
about them. Inspired by the multi-agent terminology, I call them ad hoc robots. Thus,
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going_to_target

going_to_entrance_straight_path

on_entrance_straight_path

on_entrance_curved_path

on_exit_curved_path

on_exit_straight_path

start

(a) (b)

Figure 5.7: Vector field and state machine for the TRVF algorithm. The colours in
the vector field represent the expected robot state at the shown vector positions. The
black vector indicates the effect of the repulsive force from the target region when the
robot is more distant than D from the target already reached. The inner and outer
circles have a radius of s and D, respectively. Here, K = 4. (a) State machine. (b)
Vector field.
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Input : KTRV F : force magnitude;
K: number of lanes;
D: the length of the corridor;
G1 = (G1,x, G1,y), . . . ,Gn = (Gn,x, Gn,y): a list of n ≥ 2 circular
target region centres;
s1, . . . , sn: a list of n circular target region radii;
j: the current target index;
Id: influence of the robot;
ks > 1, ko > 1: constant for exponentiation in the straight line
following and orbit following vector fields, respectively;
kω: constant for proportional angular speed controller;
v: maximum linear speed.

Output: F = (Fx, Fy): force vector;
1 Get position of the robot p = (px, py), its orientation ξ, and let

G = Gj = (Gx, Gy) and s = sj;
2 if w1, . . . ,w4, and c were not calculated for target index j then

3 z ←
ö
atan2(py−Gy ,px−Gx)

2π/K

ù
+ 1;

4 Use Eqs. 5.5–5.9 to calculate w1, . . . ,w4, r and c;

5 if state = going to target then
6 if ∥p−G∥ ≤ D then state ← going to entrance straight path;
7 else

8 F← KTRV F
G−p

∥G−p∥ ;

9 FR ← repulsiveForceFromTarget(Gj−1, D);

10 return KTRV F
F+FR

∥F+FR∥ ;

11 if state = going to entrance straight path then
12 (F, t′)← orbitPathFollowing(KTRV F ,G, D,p, ξ,w1, ko, kω, v);
13 if t′ ≤ 0 then state ← on entrance straight path;
14 else return F;

Algorithm 4: TRVF algorithm (continues on Algorithm 5).

93



Chapter 5. Proposed algorithms 5.3. Ad Hoc Follower and Mixed Teams

16 if state = on entrance straight path then
17 (F, t′)← straightPathFollowing(KTRV F ,p, ξ,w1,w2, Id, ks, kω, v);
18 if t′ ≥ 1 then state ← on entrance curved path;
19 else return F;

20 if state = on entrance curved path then
21 if ∥G− p∥ ≤ s then
22 Increment j, then let G = Gj = (Gx, Gy) and s = sj;
23 state ← on exit curved path;

24 else
25 (F1, t

′)← orbitPathFollowing(KTRV F , c, r,p, ξ,w3, ko, kω, v);

26 F2 ← 1.5KTRV F
G−p

∥G−p∥ ;

27 return KTRV F
F1+F2

∥F1+F2∥ ;

28 if state = on exit curved path or state = on exit straight path then
29 if ∥p−Gj−1∥ > D then
30 state ← going to target;

31 F← KTRV F
G−p

∥G−p∥ ;

32 FR ← repulsiveForceFromTarget(Gj−1, D);

33 return KTRV F
F+FR

∥F+FR∥ ;

34 else
35 if state = on exit curved path then
36 (F1, t

′)← orbitPathFollowing(KTRV F , c, r,p, ξ,w3, ko, kω, v);
37 if t′ ≤ 0 then
38 F2 ← 1.5KTRV F

w3−p
∥w3−p∥ ;

39 return KTRV F
F1+F2

∥F1+F2∥ ;

40 else state ← on exit straight path;

41 if state = on exit straight path then
42 (F, t′)← straightPathFollowing(KTRV F ,p, ξ,w3,w4, Id, ks, kω, v);
43 return F;

Algorithm 5: TRVF algorithm (continuation).
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two distinct groups of robots are split from N : M ad hoc robots and N −M aware
robots (i.e., which know the swarm congestion control algorithm and execute it).

Contrary to the usual approach in the multi-agent systems’ literature, where the
ad hoc agents have to use processing time to learn about the other agents, I initially
propose a follower algorithm for ad hoc robots to overcome this problem that depends
on a distributed alternative algorithm: the Ad Hoc Follower (AHF). As shown later,
the experiments with this approach show that only using an alternative algorithm
without following any robot has a better outcome. Thus, our approach is to ad hoc
robots execute a fixed alternative algorithm. If this alternative algorithm is the same
used by the aware robots, there will be no impact in the swarm resulting from mixing
them. However, if they are different, this results in Mixed Teams (MT), and they may
affect negatively. The impact of different algorithms is analysed in Section 5.4.1.3.
Heed that both AHF and MT do not need learning about other robots, and each
individual can execute them distributively and by local sensing.

A robot executing the AHF follows any robot that reaches its sensing area and is
in a direction around the one it would follow to the target area. As in the previous
algorithms, the robots have an influence radius Id for sensing other robots. Let p
be the position of a ad hoc robot and qi, i ∈ {1, . . . , V }, be the position vectors in
relation to p of the V robots inside the influence circle of the ad hoc robot. If V = 0,
that is, there is no robot inside its influence circle, the robot executes an alternative
algorithm Alg, which is supposed to return the force vector for accessing or leaving
the common target area. Let FAlg be the vector output by Alg. If V > 0, denote i∗

a number in {1, . . . , V } representing the index of the robot’s position qi inside the
influence circle having the smallest angle in relation to the vector FAlg, i.e.,

i∗ = argmax
i∈{1,...,V }

qi · FAlg

∥qi∥∥FAlg∥
, (5.10)

since the smallest angle has the largest cosine between those vectors.
The ad hoc robot follows the robot at qi∗ if its angle with FAlg is less than a fixed

γad. Assume γad ≤ π/2 to avoid deadlocks due to circular trajectories and robots
being pushed away from the target area for long periods. Ties are broken by the first
processed value. This algorithm outputs a force vector with fixed magnitude KAHF .
Thus, the final output FAHF is

FAHF = KAHF
FAlg

∥FAlg∥
,

if no robot is being followed. Otherwise,

FAHF = KAHF
qi∗

∥qi∗∥
.
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Figure 5.8: Example of output vector for AHF based on the variables. Robots are
the black dots, and the area in grey represents the positions of robots that may be
followed.

Figure 5.8 depicts an example of these vectors and variables. In it, three robots –
at q1, q2 and q3 – are in the influence circle with radius Id around the mass centre
of the ad hoc robot located at p. The robot located at q1 is outside the area in grey
and will not be followed. However, a robot inside it may be followed. This area is
calculated using the force vector FAlg given by the alternative algorithm and the angle
γad. Hereafter denote it γad-area. Among the robots inside this area, only the one
having a position with respect to p with the smallest angle between the vector FAlg

is followed – in this example, the robot at location q2.
Finally, Algorithm 6 states the above steps for calculating the output force vector,

given the mentioned parameters. It assumes a sensing device returning the position qi
of each locally perceived robot i ∈ {1, . . . , V } relative to the position p. The followed
robot may or may not be another ad hoc robot. This algorithm must be executed in
the robot’s main loop while getting its current position p. Note that when finding the
maximum value in (5.10), the maximum cosine value is initialised with the minimum
cosine allowed inside the area given by the angle γad in line 6. In addition, observe
that FAlg depends on an alternative algorithm.

Surprisingly, experiments in Section 5.4.1.3 with different values of γad for the
AHF show that using γad = 0, that is, not following any robot and only executing
the alternative algorithm, has better results on the simulation time. Thus, the Mixed
Teams (MT) are defined as a team of aware robots using its control algorithm and
another of ad hoc robots using an alternative algorithm, which is the same as using
AHF with γad = 0. Observe that when γad = 0, the if statement in lines 4–11 and the
variable V in line 2 are unneeded. Algorithm 7 presents the outcome of using γad = 0
for clarity.

Interestingly, Section 5.4.1.3 shows that, among the presented algorithms, the best
alternative algorithm for less than 30% of ad hoc non-holonomic robots to the total
number of individuals and less than 60% of ad hoc holonomic robots is to go in the
direction of the target. Hereafter, the absence of a control algorithm, that is, when
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Input : KAHF : force magnitude;
Id: influence of the robot;
Alg: alternative algorithm;
γad: maximum angle on the left and right of the direction given by
the alternative algorithm to allow following another robot;
p: current robot’s position.

Output: FAHF: force vector;
1 FAlg ← vector from Alg;
2 V ← number of robots inside the influence circle of radius Id ;

3 FAHF ← KAHF
FAlg

∥FAlg∥
;

4 if V > 0 then
5 Get all robots positions q1, . . . ,qV in respect to p;
6 maxCos← cos(γad);
7 for i← 1 to V do

8 if
qi·FAlg

∥qi∥∥FAlg∥
> maxCos then

9 maxCos← qi·FAlg
∥qi∥∥FAlg∥

;

10 FAHF ← KAHF
qi

∥qi∥ ;

11 end

12 return FAHF;

Algorithm 6: AHF algorithm.

Input : KAHF : force magnitude;
Alg: alternative algorithm;

Output: FAHF: force vector;
1 FAlg ← vector from Alg;

2 FAHF ← KAHF
FAlg

∥FAlg∥
;

3 return FAHF;

Algorithm 7: AHF algorithm when γad = 0 used by ad hoc robots in MT.
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the robots go straightly to the target area while avoiding others by repulsive forces,
is denoted as no coordination (NC).

5.4 Experiments and Results

The algorithms were tested in realistic simulations on Stage (Gerkey, Vaughan, and
Howard, 2003) for holonomic and non-holonomic robots to show that it can be applied
to different types of robots and the divergent outcomes when using them. The
robots measure 0.44 × 0.44 × 0.44 m3. When testing non-holonomic robots, the
control equations given by Luca and Oriolo (1994) are used. Our implementation
considered the following equation for the repulsive forces (Siegwart, Nourbakhsh, and
Scaramuzza, 2011):

FR =

 −Kr

Å
1

dqp
− 1

I

ã
q− p

d3qp
, if dqp < I,

0, otherwise,
(5.11)

where Kr > 0 is a constant, p the current position of the robot, q the position of the
neighbour, dqp = ∥q−p∥ the Euclidean distance between q and p, and I the influence
radius.

Experiments were run with the robots starting in a random position distant
between 13 and 21 m from the target centre. After reaching the common target,
robots will go towards the next one, either to the left or right of that target. It
is decided randomly, according to a uniform probability (roughly half of the robots
would go to the left and half to the right). The new targets are aligned with the
common target on the x-axis but far away.

Two kinds of experiments were performed, one for testing the algorithms
SQF, TRVF and AHF and another to compare them with the state-of-the-art
algorithms. Hyperlinks to the video of executions are available in the captions of
each corresponding figure. They are in real-time so that the reader can compare
the time and screenshots presented in the figures with those in the supplied videos.
(The source codes of the experimented algorithms are in Passos (2022b) and Passos
(2022a).) Additionally, Appendix D presents more figures, complementing the findings
in this chapter.

5.4.1 Experiments with the Proposed Algorithms Separately

SQF, TRVF and AHF algorithms are first individually analysed here. The default
values of the parameters used for the algorithms are shown in Tables 5.1 and 5.2.
For each experiment, 40 executions were run, and the average and the confidence
interval such that ρ = 0.01 are reported in the graphs. An appropriate statistical test
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with such ρ is performed each time statistical significance or “significantly better” are
mentioned. Since robots may rarely not reach the target in some simulations due to
local minima from potential fields, they were stopped after 60 minutes for SQF and
TRVF algorithms. This value was chosen because the total simulation time obtained
at the runs where all robots reached the target was less than 45 minutes. However,
for AHF, this occurred for less than 450 minutes, so it was increased to 600 minutes.

Parameter Notation Value
Used by
algorithm(s)

Circular target area radius s 3 m All
Working radius of the algorithm around
the target

D 13 m All

Coefficient for repulsive forces Kr 0.5 All
Default influence radius Id 3.0 m All
SQF force magnitude KSQF 2.5 SQF
Minimum influence radius Imin 1.0 m SQF
TRVF force magnitude KTRV F 2.5 TRVF
Number of lanes K 5 TRVF
Constant for exponentiation in the
straight line following

ks 1.1 TRVF

Constant for exponentiation in the orbit
following vector fields

ko 1.1 TRVF

Constant for proportional angular speed
controller

kω 3 TRVF

Maximum linear speed v 1 m/s TRVF
PCC force magnitude KPCC 2.5 PCC
Radius of the free region rσ 3.7 m PCC, PCC-EE

Outer radius of the danger region rγ 5.2 m
PCC, EE, PCC-
EE

Radius of the α-area δ 3 m PCC, PCC-EE
Communication radius δcomm 3 m PCC, PCC-EE
Number of iterations before sending a
message

Tcomm 25 PCC, PCC-EE

Number of iterations for testing if a
waiting robot will change state

Tη 40 PCC, PCC-EE

Table 5.1: Default values for simulation parameters with the notation used in this
work and algorithms that use it. It continues in Table 5.2.

The next sections present the experiments and results for SQF, TRVF and AHF
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Parameter Notation Value
Used by
algorithm(s)

Angle of the α-area to switch to waiting
state

αw
23π/36
rad

PCC, PCC-EE

Angle of the α-area to switch to locked
state

αl π/4 rad PCC, PCC-EE

Probability of impatience ρI 0.3 PCC, PCC-EE
EE force magnitude KEE 2.5 EE

Angle of the entry region ω
2π/3
rad

EE, PCC-EE

PCC-EE force magnitude KPCC-EE 2.5 PCC-EE
AHF force magnitude KAHF 2.5 AHF
Alternative algorithm Alg NC AHF
Angle of the γad-area to follow another
robot

γad 0 rad AHF

Table 5.2: Continuation of Table 5.1.

algorithms varying certain parameters, and then a comparison between all algorithms
is presented.

5.4.1.1 SQF

Sample of the Simulations. Figure 5.9 shows an execution of the SQF algorithm,
with 100 non-holonomic robots with default values. Figure 5.9a shows the initial
positions of the robots around the target area (small circle in the centre). The larger
circle around the target shows the distance D where the rotational field will take
place. Hence, robots inside the larger circle perform a rotational movement towards
the corridor and soon reach the state in Figure 5.9b, where the first robots reach
the corridor. These robots will directly move towards the target area (Figure 5.9c),
and then leave the region following a different rotational field, in yellow in Figures
5.9d and 5.10e. Eventually, all robots can reach the target. Robots in black are at
a distance greater than D and are now going towards their next target, randomly
chosen between left and right sides.

Comparison with Theoretical Throughput. The throughput for a growing
number of robots is analysed with holonomic and non-holonomic robots. Figure 5.11
displays the results for the experiments compared with the least bound of (4.11)
(that is, when θ = π/6) using the mean distance between each robot and its closest
neighbour and the mean linear speed in all experiments for each number of robots.
These values do not follow a normal distribution. Thus, instead of plotting the

100



Chapter 5. Proposed algorithms 5.4. Experiments and Results

(a) (b)

(c) (d)

Figure 5.9: Screenshots of the SQF algorithm, with 100 non-holonomic robots with
default values. The red, green and yellow robots are in state going to target, go-
ing to corridor and leaving target, respectively. Black robots are going to their next
target. This continues in Figure 5.10. Available on https://youtu.be/3-d7Y7eViW4,
accessed on 20 December 2022. (a) 0 s: Initial positions. (b) After 49.8 s. (c) After
142.8 s. (d) After 214.3 s.
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(e) (f)

Figure 5.10: Continuation of Figure 5.9. (e) After 285.7 s. (f) 357.2 s: ending of the
simulation.

confidence interval with ρ = 0.01, these means shifted to above and below by one
standard deviation are used to calculate the interval shown in Figure 5.11. In other
words, for every number of robots N , let vN and dN be the mean of the linear speed
and the distance between the robots from all experiments with the same number of
robots and σvN and σdN their standard deviations. The middle value of the theoretical
throughput is obtained from the least bound of (4.11) by using the vN and dN in place
of v and d for each experiment with the same number of robots. The upper bar value
is the least bound of (4.11) applying vN + σvN and dN − σdN , and the lower bar
value uses vN − σvN and dN + σdN . The inversion in the signs is because the speed
and distance are directly and inversely proportional to the throughput, respectively.
Moreover, for the graph labelled “Experiments”, the mean throughput was calculated
by averaging the result of Definition 2 in each experiment with the same number of
robots, and the bars correspond to the confidence interval with ρ = 0.01. Thus, by
using vN ± σvN and dN ∓ σdN , the range of the ratio v

d
in (4.11) is larger than the

range of the confidence interval obtained from the experiments.
Observe in Figure 5.11 that the results obtained from the experiments are still

below the upper bound obtained by the mean values but inside the one standard
deviation interval. The theoretical throughput for holonomic robots maintains a
steady mean value as the number of robots grows. Nevertheless, for non-holonomic
robots, the mean value reaches a maximum of 140 robots and decreases as more
robots are in the swarm. In the non-holonomic case, the mean velocity and the mean
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Figure 5.11: Throughput of the SQF algorithm by the number of robots from 20 to
300 in steps of 20 for the experiments and the least bound (4.11) with θ = π/6, using
the mean distance between the robots and mean linear speed from experiments – bars
represent the shift of the means by one standard deviation to above and below. (a)
Holonomic. (b) Non-holonomic.

distance of the robots vary more for non-holonomic robots due to the restrictions in
their movements. (This is discussed in more detail in Section 6.2.) Although the
high variation in the distance between the robots and linear speed contributes to the
difference, the SQF algorithm forms a corridor only in the upper part of the circle
with a radius of D around the target. Hence, the robots still need time to get to the
corridor. Also, the positions of the robots in the corridor are not too compacted.

5.4.1.2 TRVF

For the repulsive force away from the previous target region, one similar to (5.11) is
used but the distance is considered from the robot position and the circle with radius
D centred at the target position, and the influence radius is D, that is,

FTR =

 −Kr

Å
1

dgp
− 1

D

ã
1

d2gp

G′ − p

∥G′ − p∥
, if dgp < D,

0, otherwise,
(5.12)

where Kr > 0 is a constant, p the current position of the robot, G′ the previous target
centre position, and dgp = ∥G′ − p∥ − D is the distance from the robot position to
the circle.

Sample of the Simulations. Figure 5.12 displays an execution of the TRVF
algorithm, with 100 non-holonomic robots and four lanes with default values. Figure
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5.12a shows the initial positions of the robots around the target area (small circle
in the centre). The larger circle around the target shows the distance D, and the
robots will avoid it when they go to the next target using (5.12). Each robot goes to
the entering lane next to its position and follows the force field (Figure 5.12b). The
robots avoid crossing the target region and follow the border of the circle with radius
D when going to the next target in Figures 5.12c, 5.12d and its continuation on Figure
5.13 so that all robots can reach the target. With this algorithm, the cluttering is
distributed through the entrances and the target region according to the number of
lanes, while the leaving lanes become free. However, without the TRVF algorithm,
the clutter would concentrate only next to the target region.

Comparison with Theoretical Throughput. As done for the SQF algorithm,
the throughput for a growing number of robots is analysed by considering holonomic
and non-holonomic robots. Figure 5.14 displays the results of the experiments
in comparison with the theoretical maximum throughput value. The theoretical
maximum throughput was obtained by (4.19) for K = 5 with the mean distance
between the robots and mean speed in all experiments for each number of robots.
(Tests with different values of K are presented in Section D.1.) As before, to plot the
offset from the mean values, the standard deviation is used instead of the confidence
interval because these values do not follow a normal distribution. Thus, the upper
and lower bar values in the asymptotic plots of Figure 5.14 are obtained by a similar
process described for the analogous graph for the SQF algorithm (Figure 5.11) but
using (4.19). Identically to the experiments of the SQF algorithm, the graphs labelled
“Experiments” are related to the result of Definition 2, and the bars correspond to the
confidence interval with ρ = 0.01. Hence, as earlier, the range in the asymptotic graph
is larger than in the experiments. From Figure 5.14, the experimental throughput is
still below the upper bound obtained by the mean values but inside the one standard
deviation interval. The difference between the experimental data and the theoretical
value obtained from the mean values occurs because, by using variable linear speed,
the robots are not constantly paced towards the target. Additionally, next to the
curve, the robots deviate from the trajectory to avoid bumping into each other.

5.4.1.3 AHF and MT

Samples of the Simulations. Simulations were run using different percentages of
ad hoc robots to the total number of robots. The colours used by the aware robots
are the same as in the previous section. Figures 5.15–5.18 present an execution of
AHF using the γad = π

2
, Alg = NC, a total of 100 holonomic robots and 10% and 50%

of ad hoc robots (in grey). The aware robots are running the SQF algorithm with
the default values. Figure 5.15a shows the starting position of the robots, and the
ad hoc robots are scattered. As they are only 10% of the total number of robots in
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(a) (b)

(c) (d)

Figure 5.12: Screenshots of the TRVF algorithm, for 100 non-holonomic robots, four
lanes and default values. The colour of the robots are the same for their states
shown in Section 5.2, that is, red, cyan, blue, magenta, yellow and orange for go-
ing to target, going to entrance straight path, on entrance straight path, on entrance-
curved path, on exit curved path and on exit straight path states, respectively. Black

robots are going to their next target. This continues in Figure 5.13. Available on
https://youtu.be/MRzXS_9I2Ls, accessed on 20 December 2022. (a) 0 s: Initial
positions. (b) After 89.5 s. (c) After 179 s. (d) After 268.5 s.
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(e) (f)

Figure 5.13: Continuation of Figure 5.12. (e) After 358 s. (f) 447.5 s: ending of the
simulation.
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Figure 5.14: Throughput of the TRVF algorithm by the number of robots from 20 to
300 in steps of 20 for the experiments, and asymptotic throughput using K = 5, the
mean distance between the robots and mean linear speed from experiments – bars
represent the shift of the means by one standard deviation to above and below. (a)
Holonomic. (b) Non-holonomic.
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this example, they are likely to follow robots knowing the swarm control algorithm.
However, a few go directly to the target without encountering any robot in its γad-
area. There are three such ad hoc robots in Figure 5.15b (marked with circles and
arrows): one of those robots is in the bottom area, approaching the target area, and
two are outside the corridor on its left-hand side. A few seconds later, one of these two
will follow a robot using the SQF next to the target area, and the other will go after
the former ad hoc robot, as seen in Figure 5.15c (with circles and arrows). Because
the ad hoc robots use NC as the alternative algorithm, after reaching the target area,
one goes directly to the next target on the right instead of following a robot through
the SQF force field to leave (marked with a circle and an arrow in Figure 5.15d). This
also occurs because no other robot was in their γad-area oriented by the next target
direction. In Figure 5.16e, the ad hoc robots finish the task and follow the others
until the end of the experiment (Figure 5.16f).

Figure 5.17a similarly illustrates the starting position of the robots. Now that
there are 50% ad hoc robots (in grey) in this example, besides going directly to the
target, they may as well follow other ad hoc robots which are going directly to the
target, for example, the clusters with grey robots at the bottom of Figure 5.17b.
Robots from this cluster either follow the robots leaving the target area while their
direction is inside their γad-area or other ad hoc robots running by the left-hand side
of the target area (Figure 5.17c). However, as various robots come from the target
area using the rotational leaving force field of SQF or following a robot doing the
same, some will struggle to go to the target (Figure 5.17d). Figure 5.18e shows when
the ad hoc robots can go to the target after the robots on the leaving route of the
SQF algorithm are outside their γad-area. For this experiment, a robot using the SQF
was the last to finish (marked with a circle and an arrow in Figure 5.18f). However,
in different executions, a robot using AHF could be the last robot.

Figures 5.19–5.22 display executions with 10% and 50% ad hoc robots but using
TRVF instead of SQF. Figure 5.19a shows the initial position of the robots, with the
ad hoc robots uniformly distributed among the others. As occurred for SQF, even
though an ad hoc robot is probable to find another following the TRVF (90% of the
total robots), it can go directly to the target without following any other. In this
case, that occurs because there is no robot between the ad hoc robot and the target
area in the top left quadrant around the target centre in Figure 5.19b (marked with a
circle and an arrow). It will try to leave the working area, heading to the next target
on the left-hand side. However, it will follow a succession of other robots through the
entry lane until leaving the working area (with a circle and an arrow in Figure 5.19c)
as they are successively in its γad-area. For this number of ad hoc robots, the robots
frequently go after robots leaving through the exit lane after reaching the target area
(Figure 5.19d). Also, the robots executing AHF often finish before the robots using
TRVF (Figure 5.20e).
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(a) (b)

(c) (d)

Figure 5.15: Screenshots of 10% of the robots using AHF and the SQF algorithm
executed by the aware robots. This continues in Figure 5.16. Available on https:

//youtu.be/llHNPOaXgFE, accessed on 27 April 2023. (a) 0 s: Initial positions. (b)
After 33 s. (c) After 42 s. (d) After 89 s.
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(e) (f)

Figure 5.16: Continuation of Figure 5.15. (e) After 224.3 s. (f) 309.5 s: ending of the
simulation.

Figure 5.21a shows the initial position of the robots for the 50% case. As half of
the robots use AHF, more robots go directly towards the target (Figure 5.21b). They
will try to go directly to the next target, but the other robots are coming through the
lanes, and then they will follow any robot inside its γad-area. Some will pass through
the middle of the target area before, directly or indirectly, following another robot
going by the lanes (Figure 5.21c). This causes congestion, interfering with the robots
executing TRVF. After the cluttering diminishes (Figure 5.21d), most of the robots
with TRVF can access the target area. In Figure 5.22e, the few robots using AHF go
after the others through the lanes before the end of this experiment (Figure 5.22f).

Parameter γad. In order to compare the value of γad, experiments were run
to measure the total simulation time with this angle varying from 0 to π

2
rad in

increments of π
12

and 10%, 50% and 90% of ad hoc robots for a total of 100 and 200
robots with holonomic and non-holonomic robots. Heed that γad = 0 means that the
ad hoc robot will not follow any robot. In these experiments, NC, SQF and TRVF
are used as alternative algorithms.

Figures 5.23–5.24 present the results assuming NC as alternative algorithm and
the swarm control algorithm is SQF and Figures 5.25–5.26 for the same alternative
algorithm, but the TRVF algorithm as swarm control algorithm. Figures 5.27–5.28
present the results for SQF as the alternative algorithm and TRVF as swarm control
algorithm. In Figures 5.29–5.30, TRVF is the alternative algorithm and SQF is the
swarm control algorithm.
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(a) (b)

(c) (d)

Figure 5.17: Screenshots of 50% of the robots using AHF and the SQF algorithm
executed by the aware robots. This continues in Figure 5.18. Available on https:

//youtu.be/6tZndLOOFEQ, accessed on 27 April 2023. (a) 0 s: Initial positions. (b)
After 44 s. (c) After 76 s. (d) After 107 s.
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(e) (f)

Figure 5.18: Continuation of Figure 5.17. (e) After 134.3 s. (f) 279.9 s: ending of the
simulation.

For all plots, the minimum average time is at γad = 0 or, when the minimum
average is not at γad = 0, it is not different than the result using γad = 0 with
statistical significance. In general, the ad hoc robots have to change their orientation
whenever they find another using an algorithm going to a different direction. As
that algorithm gives force vectors with different directions on those positions, and
the γad-area is local, the robots may change their trajectory, making the route to and
off the target longer than it should be if they were constantly executing one of the
algorithms. Thus, using AHF is not significantly better than using MT. Therefore,
the default value for parameter γad is 0, that is, MT will be used as default.

Parameter Alg. The usage of SQF and TRVF as alternative algorithms was
compared by varying the number of robots and the ratio of ad hoc robots to the
number of robots

(
M
N

)
. Figure 5.31 illustrates an example of the comparison of the

total simulation time per total number of robots of MT using as alternative algorithms
the SQF and NC with 10% of ad hoc robots to the total number of individuals. In
these experiments, TRVF is the swarm control algorithm. (Section D.2 have similar
figures for percentages ranging from 20% to 90% in steps of 10%.) These figures
are summarised in Figure 5.32, which shows the sum of the average total simulation
time over each experimented number of robots by the percentage of ad hoc robots for
MT. The bars correspond to the respective sum of the confidence interval ranges with
ρ = 0.01.

SQF as the alternative algorithm takes more or equal time on average than using
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(a) (b)

(c) (d)

Figure 5.19: Screenshots of 10% of the robots using AHF and the TRVF algorithm
executed by the aware robots. This continues in Figure 5.20. Available on https:

//youtu.be/3pF4AqwOR6o, accessed on 27 April 2023. (a) 0 s: Initial positions. (b)
After 31 s. (c) After 88.5 s. (d) After 126.6 s.
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(e) (f)

Figure 5.20: Continuation of Figure 5.19. (e) After 174 s. (f) 264.6 s: ending of the
simulation.

NC for percentages from 10% to 20% of ad hoc robots using MT for both type of
robots and 30% to 70% for holonomic robots with statistical significance (Figure
5.32). Although the SQF is faster, when used as the alternative algorithm for a low
percentage of robots, they follow a trajectory longer than they would if NC is in use.
As fewer robots are going directly to the target region and there is less congestion, NC
is better for low percentages. The variance is higher for SQF because the SQF robots
leaving the target area may push the robots using TRVF away from the working area
in the bottom lane for a long time.

Additionally, the usage of holonomic robots takes more time and varies more than
non-holonomic robots for the SQF algorithm. Holonomic robots are faster to be
repelled by another robot due to their lack of restrictions on moving in any direction.
Because they can be repelled for longer periods, they tend to take more time going
away from the working area.

Figure 5.33 shows a sample of the comparison of NC and TRVF as the alternative
algorithms with 10% of ad hoc robots to the total number of robots for holonomic
and non-holonomic robots. In these experiments, SQF is the swarm control algorithm.
Similar figures for percentages ranging from 20% to 90% in steps of 10% are in Section
D.2. As before, these figures are summarised in Figure 5.34, which presents the sum
over the number of robots of the average total simulation time by the ratio of ad hoc
robots. NC as the alternative algorithm takes less or equal time than using TRVF
on average for percentages from 10% to 80% for both types of robots with statistical
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(a) (b)

(c) (d)

Figure 5.21: Screenshots of 50% of the robots using AHF and the TRVF algorithm
executed by the aware robots. This continues in Figure 5.22. Available on https:

//youtu.be/rjWWuVebqK8, accessed on 27 April 2023. (a) 0 s: Initial positions. (b)
After 45 s. (c) After 67 s. (d) After 160 s.
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(e) (f)

Figure 5.22: Continuation of Figure 5.21. (e) After 199.7 s. (f) 272.5 s: ending of the
simulation.
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Figure 5.23: Comparison of the total simulation time by γad values for the experiments
with AHF with NC as alternative algorithm for 10%, 50%, 90% of the robots executing
it and SQF being used by the others with a total of 100 robots for (a) holonomic and
(b) non-holonomic robots.
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Figure 5.24: Comparison of the total simulation time by γad values for the experiments
with AHF with NC as alternative algorithm for 10%, 50% and 90% of the robots
executing it and SQF being used by the others with a total of 200 robots for (a)
holonomic and (b) non-holonomic robots.
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Figure 5.25: Comparison of the total simulation time by γad values for the experiments
with AHF with NC as alternative algorithm for 10%, 50% and 90% of the robots
executing it and TRVF being used by the others with a total of 100 robots for (a)
holonomic and (b) non-holonomic robots.

116



Chapter 5. Proposed algorithms 5.4. Experiments and Results

0.0 0.5 1.0 1.5
Angle (rad)

400

450

500

550

600

650

To
ta

l t
im

e 
of

 th
e 

sim
ul

at
io

n 
(s

)

10%
50%
90%

(a)

0.0 0.5 1.0 1.5
Angle (rad)

600

700

800

900

To
ta

l t
im

e 
of

 th
e 

sim
ul

at
io

n 
(s

)

10%
50%
90%

(b)

Figure 5.26: Comparison of the total simulation time by γad values for the experiments
with AHF with NC as alternative algorithm for 10%, 50% and 90% of the robots
executing it and TRVF being used by the others with a total of 200 robots for (a)
holonomic and (b) non-holonomic robots.
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Figure 5.27: Comparison of the total simulation time by γad values for the experiments
with AHF with SQF as alternative algorithm for 10%, 50% and 90% of the robots
executing it and TRVF being used by the others with a total of 100 robots for (a)
holonomic and (b) non-holonomic robots.
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Figure 5.28: Comparison of the total simulation time by γad values for the experiments
with AHF with SQF as alternative algorithm for 10%, 50% and 90% of the robots
executing it and TRVF being used by the others with a total of 200 robots for (a)
holonomic and (b) non-holonomic robots.
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Figure 5.29: Comparison of the total simulation time by γad values for the experiments
with AHF with TRVF as alternative algorithm for 10%, 50% and 90% of the robots
executing it and SQF being used by the others with a total of 100 robots for (a)
holonomic and (b) non-holonomic robots.
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Figure 5.30: Comparison of the total simulation time by γad values for the experiments
with AHF with TRVF as alternative algorithm for 10%, 50% and 90% of the robots
executing it and SQF being used by the others with a total of 200 robots for (a)
holonomic and (b) non-holonomic robots.
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Figure 5.31: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and SQF and
NC as the alternative algorithm by 10% of the robots for (a) holonomic and (b) non-
holonomic robots.
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Figure 5.32: Comparison of the total simulation time sum over the number of robots
by the percentage of ad hoc robots using NC and SQF as alternative algorithms. The
swarm control algorithm of the aware robots is TRVF. (a) Holonomic robots. (b)
Non-holonomic robots.

significance.
Surprisingly, although NC is the slowest algorithm for handling the common target

problem for numerous robots (Marcolino et al., 2017), it was the best alternative
algorithm in most cases with statistical significance. Therefore, I selected it as the
default alternative algorithm in our experiments. In addition, I expect that MT
would be used for small ratios of ad hoc robots when assuming it would be made of
auxiliary robots in an ad hoc teamwork scenario. Remember, however, that SQF and
TRVF still outperform NC for this problem as the swarm control algorithm (Passos,
Duquesne, and Marcolino, 2023), and our result only relates to the choice of Alg for
MT. Nevertheless, if the proportion of ad hoc robots and an estimated number of
robots are known beforehand, the alternative algorithm can be chosen based on the
graphs.

Comparison of Different Ratios of Ad Hoc Robots and Control Algo-
rithms without Ad Hoc Robots. Finally, to show the effect of the ratio of ad
hoc robots on the total simulation time, Figures 5.35 and 5.36 show a sample of the
simulation time per number of robots for holonomic and non-holonomic robots for
10% of ad hoc robots in MT (that is, robots using AHF with default values in Table
5.2). SQF and TRVF are the congestion control algorithms in Figures 5.35 and 5.36,
respectively. (Plots for percentages varying from 20% to 90% in steps of 10% are
shown in Section D.4.) Figure 5.37 shows the sum ranging over the number of robots
of the average total simulation time by the percentage of ad hoc robots in MT. The
bars correspond to the respective sum of the confidence interval ranges with ρ = 0.01.
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Figure 5.33: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and TRVF and
NC as the alternative algorithm by 10% of the robots for (a) holonomic and (b) non-
holonomic robots.
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Figure 5.34: Comparison of the total simulation time sum over the number of robots
by the percentage of ad hoc robots using NC and TRVF as alternative algorithms.
The swarm control algorithm of the aware robots is SQF. (a) Holonomic robots. (b)
Non-holonomic robots.
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Figure 5.35: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and NC as the
alternative algorithm by 10% of the robots for (a) holonomic and (b) non-holonomic
robots.

In these figures, the results for the algorithm used by the aware robots without any
ad hoc robot and for NC are plotted as references.

From these figures, it is inferred that the rise in the total simulation time is
influenced by the ratio of ad hoc robots. As this ratio increases, the total simulation
time for all number of robots approaches the total time for NC. As noticed before, for
the SQF with holonomic robots, low percentages of robots using NC follow a path to
and out from the target shorter than SQF. Also, because they have no restriction in
movement compared to the non-holonomic robots, there is less congestion, and they
can outperform the SQF for such values. In fact, Section 6.2 will show that the total
simulation time increases as a linear combination of the alternative algorithm time
and the time of the swarm congestion control algorithm. (The effect of one ad hoc
robot in MT is presented in Section D.3.)

5.4.2 Comparison with State-of-the-Art Algorithms

In this section, the algorithms are compared regarding (i) the throughput, (ii) the
time the swarm reaches the target area, (iii) the time for leaving it averaged by the
number of robots, and (iv) the total simulation time. Only the runs that succeed in
terminating within 60 minutes are considered in Section 5.4.2.1 and 20 minutes in
Section 5.4.2.2. This termination time is lower in the later section because 100 robots
were used, while in the former, up to 300. The robots running algorithms PCC, EE
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Figure 5.36: Comparison of the total simulation time by the number of robots for the
experiments with MT using TRVF as the swarm control algorithm and NC as the
alternative algorithm by 10% of the robots for (a) holonomic and (b) non-holonomic
robots.

and PCC-EE for the experiments of Section 5.4.2.2 entered deadlock in executions
longer than 20 minutes for 100 robots.

The total simulation time is obtained when the last robot in the experiment arrives
at the outer circle with a radius of D after everyone has reached the target area. The
reaching time is measured from the last robot in the swarm that gets to the target
area. The leaving time is taken from the moment a robot reaches the target area
until it arrives at the outer circle. As done by Marcolino et al. (2017), to measure the
effectiveness of the algorithms on the crowd reduction for leaving the target area, the
leaving time of every robot are summed and divided by the number of robots in the
experiment.

Additionally, tests were performed with the target area with constant radius (as
in Table 5.1) in Section 5.4.2.1 and varying small values in Section 5.4.2.2.

5.4.2.1 Comparison for Constant Target Size

Comparison of the Reaching Time and Throughput. Figures 5.38 and 5.39
show the comparison for a varying number of robots of the target area throughput
and the reaching time, respectively. For both types of robots, throughput and time
increase with the number of robots. Additionally, observe in the comparisons that
higher throughput reflects a lower arrival time.

Moreover, in the throughput graph, for holonomic robots from 240 robots, the
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Figure 5.37: Comparison of the total simulation time sum over the number of robots
by the percentage of ad hoc robots in MT. For reference, the total simulation time
for NC and the swarm control algorithm without any ad hoc robot is shown. SQF is
the control algorithm for (a) holonomic and (b) non-holonomic robots and TRVF for
(c) holonomic and (d) non-holonomic robots.
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Figure 5.38: Throughput comparison of the algorithms for a number of robots from
20 to 300 in steps of 20. (a) Holonomic. (b) Non-holonomic.
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Figure 5.39: Comparison of the time to reach the target of the algorithms for a number
of robots from 20 to 300 in steps of 20. (a) Holonomic. (b) Non-holonomic.
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SQF algorithm is significantly better than all other algorithms and, from 100 robots,
for non-holonomic ones. In the reaching time graph, this only occurs from 280 for
holonomic and 120 for non-holonomic ones with statistical significance by t-test.
However, below these values, EE is still significantly better in term of throughput.
Excluding the EE algorithm, the TRVF algorithm is better than all the remaining
algorithms from 40 to 120 individuals for holonomic robots but, for non-holonomic
robots, it is only significantly better than SQF and PCC algorithms just for 40 and
60 robots.

Furthermore, unpaired t-tests with ρ = 0.01 returned that the reaching time
intervals of SQF and EE algorithms for 240 and 260 holonomic robots – Figure 5.39a
– have the same mean. These tests showed that the reaching time intervals for 100
non-holonomic robots of SQF and EE algorithms – Figure 5.41b – also have the same
mean.

Comparing only TRVF and SQF by the target reaching time, the former is better
than the latter until 120 individuals for holonomic robots and up to 40 for the non-
holonomic case with statistical significance. Unpaired t-tests returned that SQF and
TRVF reaching time mean intervals have different means except for 140 holonomic and
60 non-holonomic robots. As the SQF algorithm organises a queue above the target
region, the robots must initially follow the way until reaching that queue. After that,
the robots flow through it. On the other hand, in the TRVF, the robots go directly
to the target region. However, as the number of robots increases, more congestion
happens near this region because of the repulsive forces caused by the robots doing
the curve.

Observe as well that, although SQF has higher throughput than TRVF from
some number of robots, the comparison of their corresponding inspiration strategies,
hexagonal packing and touch and run, had a different result with respect to the
asymptotic throughput in Figure 4.18. For calculating asymptotic throughput, the
maximum linear speed and the minimum distance between robots are considered
constants. Using only asymptotic throughput, one can evaluate which one is the best
strategy in a scenario with those fixed quantities. For robots using artificial fields,
getting an explicit asymptotic throughput equation is difficult due to the changeability
of the speed and the distance between the robots, but this does not prevent using
experimental throughput for comparisons. Accordingly, this changeability and the
effect of the other robots in the trajectory yield the SQF being significantly better
than TRVF, although the touch and run is better than hexagonal packing. Even so,
the analytically calculated throughputs are still upper bounds on the ones obtained
from simulations, as observed in Figures 5.11 and 5.14.

Comparison of the Average Leaving Time. Figure 5.40 displays the
comparison for the number of robots versus the average leaving time. In Figure 5.40a,
the TRVF algorithm is significantly better than all the others until 240 individuals
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Figure 5.40: Comparison of the algorithms for a number of robots from 20 to 300 in
steps of 20 versus the sum of the time for leaving the target area of all robots in the
experiment divided by the number of robots. (a) Holonomic. (b) Non-holonomic.

for holonomic robots and 140 for non-holonomic ones. For holonomic robots, from
280 individuals, PCC-EE has less average leaving time than the other, while for non-
holonomic robots, SQF is better from 180 individuals with statistical significance.

As the number of robots increases, the TRVF algorithm has higher average leaving
time because more robots gather next to the target area, trying to go away. For non-
holonomic robots, this number is lower as they demand more time to avoid other
robots when moving under non-holonomic constraints.

For holonomic robots, robots using the SQF algorithm take more time to leave the
target due to the curved path that they must follow caused by the rotational force
field to leave the target area. By contrast, the robots with PCC-EE follow almost
a straight line from the target to leave that area, as it frees regions for leaving (as
seen in Figure 5.43b). However, in the non-holonomic case, the robots need to make
more turns or reduce linear speed to avoid others next to the target until they reach
one of those regions where they can move in straight lines. With SQF, the rotational
speed variation for leaving is low, and the robots can maintain linear speed most of
the time, as few robots are moving in the opposite direction.

Comparison of the Total Simulation Time. Figure 5.41 shows the comparison
for the total simulation time. Also, note that the average time to leave the target is
less than the time to reach it – less than 15% – justifying the low difference in the
shape of the graphs for the total simulation time and the reaching time. Apart from
the shifting in the values on these graphs, SQF is significantly better, regarding the
simulation time, only starting from 280 holonomic robots (the same for the reaching
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Figure 5.41: Total simulation time comparison of the algorithms for a number of
robots from 20 to 300 in steps of 20. (a) Holonomic. (b) Non-holonomic.

time). Unpaired t-tests with ρ = 0.01 returned that the simulation time intervals of
SQF and EE algorithms for 240 and 260 holonomic robots – Figure 5.41a – have the
same mean. For non-holonomic robots, the total time of SQF is less than the obtained
from EE for 120 robots, as occurred for the reaching time. Likewise, unpaired t-tests
showed that the simulation time intervals for 100 non-holonomic robots of SQF and
EE algorithms – Figure 5.41b – have the same mean (as happened for reaching time).

5.4.2.2 Comparison for Varying Target Sizes

The throughput and total simulation time of a varying target size using 100 robots
are now analysed to show that the SQF algorithm outperforms the other algorithms
as the target size gets smaller. Only total simulation time is shown here because
the leaving time is small compared to the reaching time, as shown before. In this
experiment, the TRVF algorithm was not used because the restriction the lower and
upper values of K in (4.14) (Proposition 7) forbids the usage of the small values of
target area radius for the influence radius used here.

First, it is shown that current algorithms fail to complete executions for small
target sizes. For a given target area radius s, it was respectively used s + 0.7 m and
s+2.2 m for the radius of free and danger regions to PCC, EE and PCC-EE algorithms
(Marcolino et al., 2017). Figure 5.42 shows the percentage of failed simulations for
different target sizes. For experiments with non-holonomic robots, PCC fails for all
target sizes. EE and PCC-EE failed to terminate every run for a target size below 0.6
m, but the number of unfinished experiments decreases until the radius is less than
0.9 m. The SQF can complete all executions for the displayed target sizes. For the
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Figure 5.42: The number of runs that fail to complete in a simulation time less than 20
minutes in relation to the target size and algorithm for holonomic and non-holonomic
robots. SQF had zero percentage of failure in all runs. (a) Holonomic. (b) Non-
holonomic.

holonomic robots experiments, from s = 0.9 m all algorithms complete the execution
within the time limit and the decrease in the number of failed executions per radius
size is greater than the non-holonomic robots experiments.

When the radius of the target area is small, more robots tend to concentrate
around it. The attractive force towards the target centre is not enough to counteract
the repulsive forces from the nearby robots. This does not create a zero force vector
but reduces the attraction to the target centre notably, and the robots slowly and
erratically circle around the target. Figure 5.43 shows examples of this situation.

Figures 5.44 and 5.45 display the throughput and time to complete by the radius of
the target area. The missing points are caused by failed executions, as shown above.
The confidence intervals are calculated taking in account only the successful runs. As
shown in Figure 5.42b, PCC failed for all radius values when non-holonomic robots
are utilised, so it is not presented in Figures 5.44b and 5.45b. SQF significantly
outperforms all other algorithms for any target size in both non-holonomic and
holonomic cases.
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(a) (b)

(c)

Figure 5.43: Executions with non-holonomic robots and s = 0.3 m showing situations
where the robots cannot proceed within the time limit of 20 minutes. Here the
colours have the same meaning as by Marcolino et al. (2017). The robots circle
around the target area for too long time. (a) PCC. Available on https://youtu.

be/kLOLOENvnqU, accessed on 20 December 2022. (b) PCC-EE. Available on https:

//youtu.be/UvzSqFyXB7E, accessed on 20 December 2022. (c) EE. Available on
https://youtu.be/BuTcsBNGCag, accessed on 20 December 2022.
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Figure 5.44: Throughput comparison of the algorithms for a varying circular target
area radius. (a) Holonomic. (b) Non-holonomic.
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Figure 5.45: Simulation time comparison of the algorithms for a varying circular
target area radius. (a) Holonomic. (b) Non-holonomic.
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Chapter 6

Estimated Task completion time
estimations

Besides the target area throughput, it is important to measure the task completion
time, which includes not only the time to arrive at the target but also the time to
leave the working area. In Chapter 5, the algorithms SQF, TRVF and the algorithms
used for comparison had lower time to leave the working area than to arrive at the
target, justifying the usage of target area throughput. However, there are algorithms
in which the time to leave the working area affects the swarm more, such as MT and
NC.

In this chapter, as before, consider the task scenario where a system with N robots
in a plane must reach a common target located at G. Upon reaching the target, the
robots move to different destinations, which may not be similar. Suppose that the
target area is a circle of radius s, and a robot reaches the target if its centre of mass is
at a distance below or equal to the radius s from the centre of the target. In addition,
there is no minimum amount of time to stay at the target.

In this scenario, the coordination algorithms, if applied, are only employed inside
a working area, that is, a circle of radius D > s around the target. If the robots
have two or more targets, they are apart by at least 2D. The robots are initially in a
random position with a distance from the target centre in [D,D + E) m for a fixed
E. Once the robots have reached the target area, they will proceed to the next one,
either to the left or right of the shared target. Approximately half of the robots will
go to the left-hand side and the rest to the right, according to a uniform probability.
The task completion time is obtained from the last robot to leave the working area,
that is, the maximum time to enter the target area plus the time to leave the working
area for every robot in the swarm. As the initial position of the robots is random in
an experiment and influences the variation of this maximum time, it is considered the
expected task completion time from various experiments.
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Assume a controller based on the following equations for a robot i ∈ {1, . . . , N} at

position ri(t) = (rix(t), riy(t)) at time t: ṙi(t) = dri(t)
dt

, r̈i(t) = dṙi(t)
dt

, FA = FA(ri(t)),

FR =
∑N

j=1
i ̸=j

FR(ri(t), rj(t)), and

r̈i(t) = Kres
FA + FR

∥FA + FR∥
−Kdpṙi(t), (6.1)

where FA depends on the algorithm used by each robot and has a fixed magnitude
Ka, and FR is the repulsive force applied to avoid bumping other robots. Each robot
adds the attractive force with the repulsive forces and then constrain the result to a
fixed vector modulus Kres to homogenise the acceleration among the individuals in
the swarm. The constant Kdp > 0 is employed to control alterations in velocity. It
prevents the robots slipping due to acceleration changes.

Also, the repulsive force is

FR(ri(t), rj(t)) =

{
Kr

Ä
1

∥ri(t)−rj(t)∥ −
1
Id

ä
ri(t)−rj(t)

∥ri(t)−rj(t)∥3 , if ∥ri(t)− rj(t)∥ < Id

0, otherwise,

where Kr is a fixed multiplicative constant for the repulsive force field, and Id is
the default influence radius, that is, the maximum distance from its mass centre a
robot considers anything sensed as an obstacle to avoid (Siegwart, Nourbakhsh, and
Scaramuzza, 2011).

With this FR, Equation 6.1 depends on the neighbourhood of the robot, which,
although limited, is dynamic. Even if there is a fixed maximum number of neighbours,
a global analysis of ri(t) would depend on all the other N − 1 robots for each instant
t. Thus, getting a closed-form expression for the task completion time in terms of N
directly from Equation 6.1 is difficult.

Instead of deriving a function ri(t), inverting it to get t for each robot i, get the
maximum t for every robot i and then calculate its expected value, a theoretical
macroscopic analysis inspired by simulations is performed to obtain the expected task
completion time E[t]. For doing this, besides the target area radius s and the working
radius D, assume that the following variables are given: the mean distance between
the centre of mass of a robot and the others d̄ inside the influence radius Id for all
robots and the mean linear speed of all robots v̄.

Furthermore, in the expected task completion time expressions shown below,
constants are defined for each algorithm to subsume the overall behaviour of the
robots, their interactions and the congestion inspired by the experiments. Such
abstraction is analogous to the friction constant in Physics, which summarises
the microscopical effect of surfaces. In this field of study, the friction constant
for commonly used materials was initially calculated from experiments with them.
Similarly, the defined constants are fitted by the experimental data in Section 6.2.
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s D E Kres Ka Kdp Kr Id
3 m 13 m 8 m 2.5 2.5 10 0.5 3 m

Table 6.1: Default values for parameters used in the examples of Chapter 6 for all
algorithms.

6.1 Analysis of algorithms

In this section, four algorithms are analysed about the expected task completion time.
In the examples in the figures that follow and in the performed experiments, it was
used the values in Table 6.1 and the robots are holonomic. In the experiments, the
new targets are far from the first target region at the same x coordinate but distant
by 999999 m on its left and right sides. Note, however, that the theoretical results
also apply for arbitrary values and holonomic or non-holonomic robots, as shown in
Section 6.2.

In the following sections, the algorithms of Chapter 5 are restated in equation
form and based on the local motion controllers for showing the difficulty of solving
the task completion time from the individual local control equations. I start this
presentation with the no coordination (NC) (Marcolino and Chaimowicz, 2009) (as
explained before, without any congestion control algorithm, only attractive potential
field to the target area and repulsive potential field for avoiding other robots) as a
simple example to show that even from this reduced model it is hard to infer the
expected task completion time per number of robots.

6.1.1 No Coordination Algorithm

When the robots are not coordinated, they only follow the target region, avoiding the
others by repulsive force. The equation for the FA in Equation 6.1 is the attractive
force to the target centre G given by

FA(ri(t)) =
Ka(G− ri(t))

∥G− ri(t)∥
. (6.2)

Although this is the simplest attractive force of all algorithms presented here,
Equation 6.1 also considers the repulsive force of all robots in the environment. Thus,
as the number of robots grows, the analytical solution for the differential equations is
still complicated to infer.

As an illustration, Figures 6.1 and 6.2 show an experiment of NC. Red robots are
going to the target region, yellow ones have arrived at it and are trying to leave it,
and black robots have exited from the working area and are going to the next target.
The robots start in random positions outside the working area (Figure 6.1a). The
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first robot to reach the working area takes an expected time inversely proportional to
the number of individuals in the swarm (marked with a circle and an arrow in Figure
6.1b). Each robot goes toward the target area until the first reaches it . Eventually,
the first robots to reach the common target area will be stuck in it and will try to
leave while they are slowed down due to the congestion caused by the other robots
that did not arrive at the target yet (Figure 6.1c). The robots trying to leave the
target area will slowly push the other robots until they move out of the cluttered
region with a shape similar to a circle. If a robot is heading in the same direction as
the first to overcome this area, it may follow the space created by the other robots
avoiding the first. This may cause more robots to do the same, and a queue of robots
is formed (Figure 6.1d). The length of this queue and the number of robots in it are
random. New queues may appear while the number of robots in the cluttered area
diminishes. When no robots are trying to arrive at the target area, the last queues
of robots will finally reach the outside of the working area (Figure 6.2e) until the last
robot leaves this area (with a circle and an arrow in Figure 6.2f).

Figures 6.3 and 6.4 illustrate an example with a larger target area radius. The
robots have more space to access the target. In this example, the capacity of the target
area is greater than the number of robots, so they can use the free space to travel
to the next targets in both sides (Figure 6.3c). Due to this free space, the number
of robots going to the target (in red) is not enough to force the robots leaving it (in
yellow) to go to the target centre (Figure 6.3d). Thus, the time until the cluttering
near the target area disappears is lower than in the previous example, and how the
robots leave the target area is also different (Figure 6.4e) because of the free space in
the target area and the less resistance caused by the robots going to the target area.

By analysing such examples, an approximation of the expected task completion
time for the NC algorithm can be obtained. The next estimation presents my result.

Estimation 1. The estimated expected time for N robots starting at a random position
with a distance from the target centre in [D,D + E) to arrive at the common target
area and leave the working area without coordination is

E[tNC ] ≈ E

v̄(N + 1)
+

2D − s
v̄

+ wait1(N). (6.3)

for

wait1(N) =

CNC1N, if N ≤ 2(s+d̄/2)
2

(d̄/2)
2

CNC2

Ä
N1.5

1.5
√
π
−N

ä
, otherwise

and constants CNC1 and CNC2.

Explanation. The equation for estimating the expected time for NC has five parts:
the expected time for (a) the first robot arriving at the working area from its starting
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(a) (b)

(c) (d)

Figure 6.1: Example of an experiment of the NC algorithm with N = 100 and default
values. (a) Start of the experiment. (b) The first robot to reach the target area.
(c) More robots reach the target region, fill this area and try to leave. (d) Queues
of robots formed to leave the cluttered area. Full simulation available on https:

//youtu.be/qgLxFk0OGyo, accessed on 14 October 2022.
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(e) (f)

Figure 6.2: Continuation of Figure 6.1. (e) Last queues near the end of the experiment.
(f) The last robot to leave the working area.

position, (b) the first robot that entered the working area reaching the target area
(e.g., the time at Figure 6.1b), (c) the first robots filling the target area (e.g., the
time from Figure 6.1b to 6.1c), (d) the cluttered area disappearing by the queues of
robots leaving the target (e.g., the time of Figures 6.1c–6.2e and 6.3c–6.4e) and (e)
the last robot that reached the target leaving the working area (e.g., the time from
Figure 6.2e to 6.2f).

Part (a) is obtained from the expected value of the minimum starting distance
to the working area for the N robots. Due to the task scenario description, this
value uniformly ranges in [0, E). Consequently, the expected minimum distance is
E/(N + 1), obtained from the probability distribution function of the minimum value
(Casella and Berger, 2002, p. 229). Then, the expected time for the first robot to
arrive at the working area is E/(v̄(N + 1)).

Parts (b) and (e) share the same expression, obtained from the expected time for
a robot on average speed going from the end of the working area to the target area
and vice-versa: (D − s)/v̄. Part (c) is given by the expected time for a robot going
from the border of the target area to the target centre due to the congestion caused
by the other robots going to the target area: s/v̄.

For calculating the time (d), there are two cases. When the number of robots
that fit inside the target area is greater than or equal to the number of robots that
do not fit, the robots which arrived at the target area have less resistance to leave
through the space between the robots which did not yet. The capacity of the target
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(a) (b)

(c) (d)

Figure 6.3: Example of an experiment of the NC algorithm with N = 100 and default
values except for s = 7 m. (a) Start of the experiment. (b) The first robot to reach
the target area. (c) Free space in the middle of the target area. (d) A few robots going
to the target area and more space inside the target area. Full simulation available on
https://youtu.be/x0oO5DuAtwQ, accessed on 12 May 2023.
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(e) (f)

Figure 6.4: Continuation of Figure 6.3. (e) Robots leave the target area with less
resistance. (f) End of the experiment.

area is approximately the number of circles of radius d̄/2 – half the mean distance
between the robots – inside the target area with radius s increased by d̄/2, that is,
(s+d̄/2)

2

(d̄/2)
2 . Thus, the number of robots exceeding the capacity of the target area is

less than or equal to its capacity if N − (s+d̄/2)
2

(d̄/2)
2 ≤

(s+d̄/2)
2

(d̄/2)
2 ⇔ N ≤ 2(s+d̄/2)

2

(d̄/2)
2 . From

experiments, the waiting time can be approximated by CNC1N for a constant CNC1

that abstracts the influence of other factors in this time, assuming that it does not
depend on time (e.g., any scaling in the speed or the average number of robots per
queue, and the influence in the overall movement by the type of the robot – holonomic
or non-holonomic).

If the number of robots that fit inside the target area is less than the number of
robots that do not fit, the resistance for leaving the target area is higher than before,
and part (d) is calculated differently. Due to the erratic formation of the queues
of the robots leaving the target area, the time is approximated by assuming a fixed
mean distance d̄ between the robots and mean speed v̄ moving from the cluttered
area and taking the same time to move as the erratic queues. As seen in the example
from Figure 6.5, the robots outside the target area go towards the centre, while those
leaving it form queues following the other robots for each direction to overcome the
congestion. The red robots going to the target tend to concentrate inside a circle
containing the cluttered area. On the other hand, the yellow robots leave that area
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Figure 6.5: Number of robots at a given time, N(t), occupying a circle of radius r
with robots distant by each other by d̄. Red and yellow dots and circles represent
robots going to and leaving the target area, respectively.

one by one for each queue, diminishing the number of robots in the clutter.
Hence, the cluttered area is approximated by a circle whose radius r(t) vanishes

as the robots run through these queues. Let N(t) be the number of robots in that
circle at time t. Figure 6.5 illustrates this circle with robots. The cross mark in the
middle indicates the target area centre. Suppose that a robot next to that position
has to leave that circle. Then, it must run a distance of at most r(t).

This radius r(t) can be estimated from the area occupied by N(t) robots. For this
estimation, consider each robot occupying a squared area of d̄2 m2. The area of the
circle containing the robots is approximately the area occupied by N(t) squares with
area d̄2, that is,

πr(t)2 ≈ d̄2N(t)⇒ r(t)2 ≈ d̄2N(t)

π
⇒ r(t) ≈

 
d̄2N(t)

π
⇒ r(t) ≈ d̄

√
N(t)√
π

.

A robot next to the target centre has to move through a distance equivalent to the
number of robots fitting r(t), excluding that one. Thus, the number of robots to
move through is given by r(t)/d̄− 1. As one robot is decreased proportionally to the
number of robots that it would have to move through and the number of queues, the
rate of decrease is given by

dN(t)

dt
=

−1

CNC2

Ä
r(t)

d̄
− 1
ä = − 1

CNC2

Ä
r(t)

d̄
− 1
ä ≈ − C−1

NC2

d̄

√
N(t)√
π

d̄
− 1

= − C−1
NC2√

N(t)
√
π
− 1

.

CNC2 subsumes the effect of other factors in this rate, such as how the robots move
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and variations in the speed, similar to CNC1 above. Hence,Ç√
N(t)√
π
− 1

å
dN(t) ≈ −C−1

NC2dt⇔
∫ Ç√

N(t)√
π
− 1

å
dN(t) ≈ −

∫
C−1
NC2dt⇔

N(t)1.5

1.5
√
π
−N(t) + n0 ≈ −C−1

NC2t,

for a constant n0. As for t = 0, N(0) = N , n0 = − N1.5

1.5
√
π

+ N, implying that when

N(t) = 0,

t ≈ CNC2

Å
N1.5

1.5
√
π
−N

ã
.

The desired result is obtained by summing parts (a)-(e).

6.1.2 Single Queue Former Algorithm

As presented before in Section 5.1, the SQF algorithm makes one queue shaped as a
rectangular corridor that goes towards the target. This corridor has a width equal to
the circular target diameter, 2s, and a length equal to the working radius, D. The
robots are permited to enter the target region only by this queue. Potential fields are
deployed to form this queue and to guide the robots to the target area exit efficiently.
The corridor starts from the current target centre G = (Gx, Gy). Without any loss
of generality, the corridor has vertices located at (Gx + s,Gy +D), (Gx − s,Gy +D),
(Gx − s,Gy) and (Gx + s,Gy).

A rotational force field is applied to robots in the working area in order to enter
the common target area through the corridor. The field rotation centre is at the target
centre. The robots are submitted to an attractive force towards the target once they
reach the corridor. After they arrive at the target area, another rotational force field
is applied to them, whose centre is either at the leftmost point of the working area,
P = (Px, Py) = (Gx−D,Gy), or at the rightmost point, Q = (Qx, Qy) = (Gx+D,Gy),
depending on the position of the next target.

To control the attractive forces, each robot has the states going to the target
(GT ), leaving the target (LT ) and going to the corridor (GC), which respectively
means the robot is going straightly to the target region, it is leaving it, and it is going
to the corridor. The starting state of the robots is GT since they start outside the
working area. Consider the conditions named W , O and A, represented as well-formed
formulas:

W = ∥ri(t)−G∥ ≤ D,

O = riy(t) < Gy ∨ |rix(t)−Gx| > s,

A = ∃t′ ≤ t : ∥ri(t′)−G∥ ≤ s,
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W O A State
T T T LT
T T F GC
T F T LT
T F F GT
F T T GT
F T F GT
F F T GT
F F F GT, Start

Table 6.2: Truth table relating the possible values of conditions W,O and A with the
states. “Start” means the condition met at t = 0.

where ri(t) = (rix(t), riy(t)) is the position of the robot i at time t. In other terms, W
is true when the robot is inside the working area, O, when it is outside the corridor
unlimited from above and A, when it has already arrived at the target area. Note
that W and O do not depend on past time as A. Thus, the states of the robot can
be represented as formulas using these conditions, which are mutually exclusive:

GT = ¬W ∨ ¬O ∧ ¬A,
GC = W ∧O ∧ ¬A,

LT = W ∧ A.

To help to check that these states are mutually exclusive, see that GT ∧GC, GT ∧LT
and GC ∧ LT are false. Another way is by their corresponding truth values in Table
6.2.

By using these conditions, the attractive force is represented as follows. Robots
outside the corridor follow a force according to Chapter 5

FA(ri(t)) =

{
Ka

(riy(t)−Gy ,−rix(t)+Gx)
∥ri(t)−G∥ , if GC ∧ rix(t)−Gx ≤ 0,

Ka
(−riy(t)+Gy ,rix(t)−Gx)

∥ri(t)−G∥ , if GC ∧ rix(t)−Gx > 0,
(6.4)

where Ka is a constant for setting the force magnitude. In other words, for the left-
hand side of the circular working area, a clockwise rotational field is applied, and for
the right-hand side, an anti-clockwise one.

However, if the robots are in the corridor, they go towards the target area following
the same attractive force equation as in Equation 6.2, that is,

FA(ri(t)) =
Ka(G− ri(t))

∥G− ri(t)∥
, if GT. (6.5)
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Robots exiting nearby the target are constrained by another rotational field. This
field also is only applied inside the circular working area:

FA(ri(t)) =

{
Ka

(riy(t)−Py ,−rix(t)+Px)
∥ri(t)−P∥ , if LT ∧G′

x ≤ Gx,

Ka
(−riy(t)+Qy ,rix(t)−Qx)

∥ri(t)−Q∥ , if LT ∧G′
x > Gx,

(6.6)

where G′ = (G′
x, G

′
y) is the new target location. In other terms, for a robot with

a new target located on the left-hand side of the previous target centre, a clockwise
rotational field is applied and, on the right-hand side, an anti-clockwise one.

Finally, in addition to the default influence radius Id, another constant is used
by the robots when calculating repulsive forces: Imin, with Imin < Id, the minimum
influence radius allowed. For robots inside the corridor or exiting the target region,
the influence radius is Imin. Now consider a robot outside the corridor but on the
upper half of the circular working area. Let d′ be the distance between the robot and
a vertical line in the middle of the corridor. Its influence radius I varies in relation
to d′ and is set to I = Imin + d′ only for 0 ≤ d′ ≤ Id − Imin. This range for d′

guarantees that Imin ≤ I ≤ Id. For the other robots, the influence radius is Id. Thus,
the influence radius and repulsive force are given by

I(ri(t)) =


Imin, if W ∧ (GT ∨ LT ),

Imin + |rix(t)−Gx|, if GC ∧ riy(t) > Gy ∧ |rix(t)−Gx|
< Id − Imin,

Id, otherwise,

FR(ri(t), rj(t)) =


Kr

Ä
1

∥ri(t)−rj(t)∥ −
1

I(ri(t))

ä
ri(t)−rj(t)

∥ri(t)−rj(t)∥3 , if ∥ri(t)− rj(t)∥
≤ I(ri(t)),

0, otherwise.

(6.7)

Observe that plugging those attractive and repulsive forces in Equations 6.4–6.7
into the movement controller (Equation 6.1) yields an intricate differential equation
with cases that not only depend on the position of an individual robot for attraction
but also the robots in the neighbourhood due to the repulsive force and past time.
Moreover, the influence radius calculated in Equation 6.7 also has different cases,
expanding the chain of related expressions to calculate the solutions of the differential
equations for each robot. Due to this complexity, the inference of the SQF algorithm
task completion time function from the controller equations becomes more difficult
than when the robots use NC. As a result, the estimated task completion time function
equation is calculated by observing the behaviour of the robots in experiments,
similarly to the previous section.

As an example, Figures 6.6 and 6.7 illustrate an experiment of the SQF algorithm
with the default value of its parameter Imin = 1 m. Red, green and yellow robots are in
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the state going to the target, going to the corridor and leaving the target, respectively.
Black robots have exited the working area and are going to the next target. The
starting positions are shown in Figure 6.6a. The robots go in the direction of the
target and change to state going to the corridor as they reach the working area (Figure
6.6b). The longest time for all the robots to enter the corridor is approximately the
time for the bottom-most robot to go to it over the working area border (marked with
a circle and an arrow in Figure 6.6c). Its time includes the waiting of all robots ahead
due to those occupying the corridor while they move towards the target area. After
that, all robots can access the corridor (Figure 6.6d). After the last robot reaches the
target area (marked with a circle and an arrow in Figure 6.7e), all robots follow the
exit force field and are on different sides depending on their next target (Figure 6.7f).

Depending on the target size, the area for leaving the target may have robots still
going to the entrance corridor. In this circumstance, the robots going to the target
area must wait before they reach a location without any robot leaving the working
area because these robots keep passing through them. Figures 6.8 and 6.9 present an
example of such a situation. Figure 6.8a illustrates the initial configuration. Figure
6.8b presents the first robot to reach the target area through the corridor (marked
with a circle and an arrow). Figure 6.8c shows a robot that has arrived in the target
area without going through the corridor and is leaving the target area. As the space
between the target area and the working area border is small, the other robots push
the robots near the target, and some may go to the target area without passing
through the corridor. By the time the first robot leaves the working area (marked
with a circle and an arrow in Figure 6.8d), there are robots going to the corridor in
green and robots reaching the working area in red in the middle of the way induced by
the potential field to leave the target area. These robots will take more time to go to
the corridor than when s was smaller. Thus, they create a barrier reducing the area
for the robots to leave, and the congestion also blocks the robots going to the corridor,
thus, increasing their time to leave (Figure 6.9e). Figure 6.9f shows the end of this
experiment. Observe that most of the robots are not in this figure. The robots on it
are examples of robots that took more time to go to the corridor because they were
on the leaving route when the other robots were leaving, as described above. Hence,
these robots in Figure 6.9f were the last to overcome the robots exiting through the
leaving area.

As before, an approximation of the expected task completion time for the SQF is
presented as follows.

Estimation 2. The estimated expected time for N robots starting at a random position
with a distance from the target centre in [D,D + E) to arrive at the common target
area and leave the working area using the SQF algorithm is
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(a) (b)

(c) (d)

Figure 6.6: Example of an experiment of the SQF algorithm with default values and
N = 100. (a) Start of the experiment. (b) Bottom-most robot to reach the working
area. (c) Robots waiting on both sides of the corridor. (d) The last robot to reach
the corridor. Full simulation available on https://youtu.be/EdkCnUVw4Bg, accessed
on 24 March 2023.
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(e) (f)

Figure 6.7: Continuation of Figure 6.6. (e) The last robot to reach the target area.
(f) The last robot to leave the working area.

E[tSQF ] ≈
√
D2 − s2
v̄

Ç
arcsin

( s
D

)
+ arccos

Ç√
D2 − s2

2D

åå
+
D − s
v̄

+
N(π − arcsin(s/D))D

(N + 2)v̄
+

NE

v̄(N + 1)
+ wait2(N),

(6.8)

for

wait2(N) =


CSQF1N, if N ≤ 1

2d̄2

(
2D2 arccos

(
s
D

)
+ 2s2 + 2(D − s)2 arccos

(
D−s
2D

)
+ 4D2 arcsin

(
D−s
2D

)
− (D − s)

√
4D2 − (D − s)2

ä
,

CSQF2N
2, otherwise

and constants CSQF1 and CSQF2.

Explanation. The estimation of the expected time to complete the SQF algorithm
is better explained by analysing the experiment backwardly from the last robot to
complete the task. Its calculation has five parts: the expected time for (a) the last
robot leaving the working area from the target area (e.g., the time from Figure 6.7e
to 6.7f), (b) the last robot going from the topmost edge of the corridor to the target
area (e.g., from Figure 6.6d to 6.7e), (c) robots waiting to access the corridor (e.g.,
Figures 6.6c, 6.8d and 6.9e), (d) the bottom-most robot travelling from where it first
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(a) (b)

(c) (d)

Figure 6.8: Example of an experiment of the SQF algorithm with default values except
for s = 7 m and N = 300. (a) Start of the experiment. (b) The first robot to enter
the target area by going to the corridor. (c) The first robot to leave the target area
without passing through the corridor. (d) The first robot to leave the working area.
Full simulation available on https://youtu.be/pEQzg0JwPbQ, accessed on 19 April
2023.
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(e) (f)

Figure 6.9: Continuation of Figure 6.8. (e) Robots create a barrier obstructing others
from leaving the working area. (f) The last robot to leave the working area.

entered the working area border to the corridor (e.g., the time from Figure 6.6b to
6.6d but excluding the waiting time (c)), (e) the bottom-most robot going from its
starting position to the working area (e.g., Figure 6.6a–6.6b).

Part (a) is the time from the expected location in the target area reached by the
last robot to the border of the working area by following a circular arc due to the
exit force field. On average, the starting position of this arc is at the point A1 in the
circular target area and ends at A2 in Figure 6.10a, which shows this arc in dashed line.
This arc belongs to a circle with radius

√
D2 − s2 as illustrated by the right triangle

formed by the points A1 (at the target area circle with radius s by straightly following
the corridor corner A4 in Figure 6.10b), the target centre located at G and the point
at P1. Its length is proportional to the angle α1 + α2, with α1 = arcsin(s/D) in the
right triangle and α2 = arccos(

√
D2 − s2/(2D)) in the isosceles triangle GPA2. Thus,

the expected time (a) is given by
√
D2 − s2(arcsin(s/D)+arccos(

√
D2 − s2/(2D)))/v̄.

Part (b) is given by the time to move from the topmost edge (see point A4 in
Figure 6.10b) to the target area, that is, (D − s)/v̄.

Part (c) depends on the target area size and the number of robots. If the number of
robots is greater than the entry area capacity, there will be robots going to the corridor
in the leaving area while others are leaving the working area, causing congestion (as in
Figure 6.8d–6.9f). The entry area capacity is calculated from the part of the working

1In this work, bold is for points located at a previously defined position vector and non-bold for
those not associated with such a vector.
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(a) (b) (c)

Figure 6.10: (a) Dashed arc length from the expected target arriving location at A1

to the working area border at A2. (b) Dashed arc length from the expected position
of the bottom-most robot A3 to the corridor corner A4. (c) Area considered for entry
capacity for the SQF algorithm.

area likely to be occupied by robots going to the target area and unused for leaving.
Thus, it includes the part of the upper half working area that the robots are probable
to occupy inside the corridor, including half of the target area, but excluding the area
used only by the robots that first arrived in the corridor (for instance, in Figures 6.8d
and 6.9e). The entry area also includes two lateral areas where robots leaving the
target area are unlikely to go, given the SQF force field for leaving from the left- and
rightmost points of the target area. The entry area is shaded in Figure 6.10c. For the
calculation of the entry area, three areas are considered – namely, Area1, Area2 and
Area3 – defined in the following paragraphs. Due to symmetry, Area2 and Area3 are
doubled for the final outcome.

Area1 is the working area upper half minus the area of △D1D2D3 and the area of
the circular segment of points D1 and D2. For the area of △D1D2D3, the height
h1 is given by the height of the isosceles triangle GD1D2 – which is

√
D2 − s2

from its inner right triangle – minus the radius s. Thus, h1 =
√
D2 − s2 − s,

and the area of △D1D2D3 is s(
√
D2 − s2 − s). For the circular segment area,

β1 is obtained from the isosceles triangle GD1D2 (with equal sides measuring D
and base side, 2s). Thus, β1 = 2 arcsin(s/D), and the circular segment area
is obtained by subtracting the area of △GD1D2 from the working area sector
of β1:

1
2
D2β1 − 1

2
2s
√
D2 − s2 = D2 arcsin(s/D) − s

√
D2 − s2. Hence, Area1 =

π
2
D2− s(

√
D2 − s2− s)−D2 arcsin(s/D) + s

√
D2 − s2 = D2

(
π
2
− arcsin

(
s
D

))
+ s2 =
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D2 arccos
(
s
D

)
+ s2.

Area2 and Area3 comprise the area on the left-hand side where robots leaving
the target area are almost unlikely to pass, given the leaving force field from the
leftmost point of the target area. Area2 is a circular sector area of angle β2, and
Area3 is the circular segment area of points D4 and D5 with angle β3. β2 and β3
are obtained by the isosceles triangle GD4D5 of equal sides measuring D and base
side, D − s, obtained from the radius of the circular sector going from the leftmost
point of the circular target area to the point D5. Thus, β2 = arccos

(
D−s
2D

)
and

β3 = 2 arcsin
(
D−s
2D

)
. Consequently, Area2 = 1

2
(D − s)2β2 = 1

2
(D − s)2 arccos

(
D−s
2D

)
,

and Area3 is the circular sector area of angle β3 minus the area of the isosceles triangle
GD4D5, that is, Area3 = D2 arcsin

(
D−s
2D

)
−D−s

4

√
4D2 − (D − s)2. The entry capacity

is approximated by considering each robot occupying a squared area of d̄2 m2 inside
the entry area: 1

d̄2
(Area1 + 2(Area2 + Area3)) = 1

2d̄2

(
2D2 arccos

(
s
D

)
+ 2s2 + 2(D −

s)2 arccos
(
D−s
2D

)
+ 4D2 arcsin

(
D−s
2D

)
− (D − s)

√
4D2 − (D − s)2

)
.

If the number of robots is less than or equal to the entry capacity, experiments
show that the waiting time is linear in relation to the number of robots; otherwise, it
is quadratic (due to the interference of the robots going to the corridor outside the
entry area to the robots leaving the working area). Therefore, in the former case,
part (c) is estimated by CSQF1N , and, in the latter case, by CSQF2N

2, for constants
CSQF1 and CSQF2. As before, these constants abstract characteristics intrinsic to the
robot dynamics and the environment where the algorithm is applied.

Part (d) is calculated from the arc length from the estimated initial position of
the last robot to the corridor topmost edge (point A4 in Figure 6.10b). In Figure
6.10b, the point A3 represents the maximum possible initial position. The estimated
arc angle is the expected maximum from approximately N/2 robots on the left-hand

side uniformly sampled over (0, π − α3], i.e.,
N
2
(π−α3)
N
2
+1

= N(π−α3)
N+2

(Casella and Berger,

2002, p. 229). From the right triangle formed by A4, A5 and G in Figure 6.10b,

α3 = arcsin(s/D). Thus, the estimated time of part (d) is
Ä
N(π−arcsin(s/D))

N+2

ä
D/v̄.

Part (e) is also obtained from the expected maximum but for N robots and the
uniformly distributed distance from the starting point to the working area. It is given
by NE

v̄(N+1)
. The desired result is obtained by summing parts (a)-(e).

6.1.3 Touch and Run Vector Fields Algorithm

As presented before in Section 5.2, the TRVF algorithm creates K lanes around the
target area by using potential fields. Each lane goes from the working area to next to
the target area through an entrance path in a straight fashion, makes a circular curve
intersecting only one point of the target area through a circular curved path, and then
leaves the working area directly through an exit path. An entrance path is parallel to
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the exit path on the opposing lane, and both are apart from d meters. Between them,
a parallel ray passes from the target centre to the working area border. There are K
such rays that divide the target area into sectors with angle α = 2π/K. Each lane is
contained in such sectors called the central angle region.

Consider a central angle region z =
⌊
η
α

⌋
+ 1, such that η is the angle of the vector

ri(t)−G with the x-axis. Each lane is formed by four waypoints: w1 and w2 forms
the entrance path, w2 and w3, the circular curved path, and w3 and w4, the exit
path. From Section 5.2,

w1 = G +D(cos(zα), sin(zα)) +
d

2
(sin(zα),− cos(zα));

w2 = G +
»

(r + s)2 − (r + d/2)2(cos(zα), sin(zα))+

d

2
(sin(zα),− cos(zα));

w3 = G +
»

(r + s)2 − (r + d/2)2(cos((z − 1)α),

sin((z − 1)α)) +
d

2
(sin((z − 1)α),− cos((z − 1)α)); and

w4 = G +D(cos((z − 1)α), sin((z − 1)α))+

d

2
(sin((z − 1)α),− cos((z − 1)α))

for the radius r of the circular path from w2 to w3. Due to Lemma 3, r = s sin(α/2)−d/2
1−sin(α/2)

.

This path has centre located at c = G + (r + s)
(
cos
((
z − 1

2

)
α
)
, sin

((
z − 1

2

)
α
))

(Section 5.2).
The robot follows a straight line force field from the entrance and exit paths and

an anti-clockwise orbit guided by the force field for the curved path. Let wi and wf

be two arbitrary initial and final waypoints, and C and R any centre and radius to
follow an orbit. The force field for the straight line following is expressed by (adapted
from Nelson et al. (2006))

ξl =

ξf −
π
2
ρ, if ϵ > d

5
,

ξf −
Å

ks
π
2
v

kω( d5)
ks

ã
ϵks−1 sin(ξ)− π

2

(
ϵ
d
5

)ks
, otherwise,

FL(ri(t),wi,wf ) =

®
Ka(cos(ξl), sin(ξl)), if (ri(t)−wi)·wfi

∥wfi∥2
≥ 1,

0, otherwise,
(6.9)

for wfi = wf − wi, ξf = atan2(wfi,y, wfi,x), ϵ =
∥∥∥ri(t)−wi − (ri(t)−wi)·wfi

∥wfi∥2
wfi

∥∥∥, ρ =

sign(wfi × (ri(t) − wi)), a constant for setting the force magnitude Ka, the current
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orientation of the robot ξ, the constant for proportional angular speed controller kω,
the constant for exponentiation in the vector field calculation ks > 1 and the maximum
linear speed v.

The force field for the orbit following is given by (adapted from Nelson et al.
(2006))

ξc =


γ − 5π

6
+ v

∥q∥ sin(ξ − γ), if ∥q∥ > 2R,

γ − π
2
− π

3

Ä
∥q∥−R
R

äko − v
kω∥q∥ sin(ξ − γ)

− kovπ
3Rkokω

(∥q∥ −R)ko−1 cos(ξ − γ), otherwise,

FO(ri(t),C, R,wf ) =

®
Ka(cos(π

2
− ξc), sin(π

2
− ξc)), if q× (wf −C) ≤ 0,

0, otherwise,
(6.10)

for q = (qx, qy) = ri(t)−C, γ = atan2(qx, qy) and the constant for exponentiation in
this vector field calculation ko > 1.

In addition, the robots have six states to indicate in which part of the lane they
are: going to the target (GT ), going to the entrance path (GEP ), on the entrance
path (OEN), entering through the curve path (ECP ), leaving through the curve path
(LCP ) and on the exit path (OEX). The initial state is going to the target (GT ).

Consider the conditions named W , A, B, EN and TA, represented as well-formed
formulas:

W = ∥ri(t)−G∥ ≤ D,

A = ∃t′ ≤ t : ∥ri(t′)−G∥ ≤ s,

B = ∃t′ ≤ t : (ri(t
′)−G)× (w1 −G) ≤ 0,

EN = ∃t′ ≤ t :
(ri(t

′)−w1) · (w2 −w1)

∥w2 −w1∥2
≥ 1,

TA = ∃t′ ≥ tA : (ri(t
′)− c)× (w3 − c) ≤ 0.

W and A means the same as in SQF in the previous section. B, EN and TA
respectively means in some moment the robot left the entering orbit towards the
entrance path, left the entrance path and left the curved path orbit next to target
area. tA is the time that robot i arrived at target area, i.e., tA = mint ∥ri(t)−G∥ ≤ s.

As in the previous section, the states can be expressed as mutually exclusive
formulas using these conditions:

GT = ¬W
GEP = W ∧ ¬A ∧ ¬B ∧ ¬EN ∧ ¬TA,
OEN = W ∧ ¬A ∧B ∧ ¬EN ∧ ¬TA,
ECP = W ∧ ¬A ∧B ∧ EN ∧ ¬TA,
LCP = W ∧ A ∧B ∧ EN ∧ ¬TA,
OEX = W ∧ A ∧B ∧ EN ∧ TA.
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Using them and Equations 6.9 and 6.10 the attractive forces of the TRVF algorithm
are expressed as follows. Robots in GT are attracted to the current target by a force
FA1 but are repelled by a FTR from the working area of the previous target position
G′ (zero, if there is no previous target). The sum of these forces is normalised so that
the resultant force has magnitude Ka:

FA1(ri(t)) =
Ka(G− ri(t))

∥G− ri(t)∥
,

FTR(ri(t)) =

®
Kr

Ä
1

∥G′−ri(t)∥ −
1
D

ä
G′−ri(t)

∥G′−ri(t)∥3 , if ∥G′ − ri(t)∥ −D ≤ D,

0, otherwise,

FA(ri(t)) = Ka
FA1(ri(t)) + FTR(ri(t))

∥FA1(ri(t)) + FTR(ri(t))∥
, if GT. (6.11)

The robots in OEN and OEX only follow a straight line force field in FL with different
parameters:

FA(ri(t)) =

®
FL(ri(t),w1,w2), if OEN,

FL(ri(t),w3,w4), if OEX.
(6.12)

Robots in GEP are only guided by an orbital force field FO with the following
parameters:

FA(ri(t)) = FO(ri(t),G, D,w1), if GEP. (6.13)

In ECP and LCP , they are submitted to a sum of an orbital force and a stronger
attractive force, and the resultant modulus of this sum is constrained to Ka:

FA2(ri(t)) = 1.5
Ka(G− ri(t))

∥G− ri(t)∥
,

FA3(ri(t)) = 1.5
Ka(w3 − ri(t))

∥w3 − ri(t)∥
,

FA(ri(t)) =

{
Ka

FA2(ri(t))+FO(ri(t),c,r,w3)
∥FA2(ri(t))+FO(ri(t),c,r,w3)∥ , if ECP,

Ka
FA3(ri(t))+FO(ri(t),c,r,w3)

∥FA3(ri(t))+FO(ri(t),c,r,w3)∥ , if LCP.
(6.14)

Again, the controller in Equation 6.1 with the attractive force described by
Equations 6.11–6.14 results in a complicated differential equation with mutual
dependence. Consequently, the estimated expected task completion time function
equation for the TRVF algorithm is also calculated by observing the experiments.

As an example, Figures 6.11 and 6.12 present an execution of the TRVF algorithm
with its default values (Table 6.3). Robots in red, cyan, blue, magenta, yellow,
orange and black represent the states GT , GEP , OEN , ECP , LCP , OEX and
that they left the previous target area, respectively. Figure 6.11a illustrates the
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K d v kω ks ko
5 3 m 1 m/s 3 1.1 1.1

Table 6.3: Default values for the parameters used in the examples of Chapter 6 for
the TRVF algorithm.

starting configuration. Robots go to the entrance path conducted by an orbital force
around the working area. Then, they proceed to the target through the entrance
path (Figure 6.11b). Figure 6.11c shows the first robot to reach the target in this
experiment (marked with a circle and an arrow). Depending on the number of robots,
some robots still have to wait to enter the entrance path (in cyan) while the first one
to leave the working area exited (the black robot with a circle and an arrow in the
bottom of Figure 6.11d). After that wait, the last robot to get into the working area
proceeds through the entrance path in the lane, arrives in the target area (with a
circle and an arrow in Figure 6.12e) and leave by the exit path, facing a few robots
going to different directions (Figure 6.12f).

From such examples, an approximation of the expected task completion time for
the TRVF is shown below.

Estimation 3. The estimated expected time for N robots starting at a random position
with a distance from the target centre in [D,D + E) to arrive at the common target
area and leave the working area using the TRVF algorithm is

E[tTRV F ] ≈ E(
arctan( d

2D
)

2π
N + 1

)
v̄

+
2ds + r(π − α)

v̄
+ CTRV F

N

K
, (6.15)

for a constant CTRV F , α = 2π/K, r = s sin(α/2)−d/2
1−sin(α/2)

and ds =
√
D2 − d2/4 −»

s(2r + s)− d
(
r + d

4

)
.

Explanation. In order to estimate the expected time to complete the task with the
TRVF algorithm, three parts are needed: the expected time for (a) the first robot
reaching an entrance path without moving across the border of the working area
circular sector from its starting point, (b) the first robot going to the target area and
then leaving it until reaching the working area border by one of the K lanes (e.g.,
Figures 6.11b–6.11d), (c) the waiting and travel of the last robot through the lane.

Part (a) is approximated by the expected minimum distance of a robot from its
starting position going directly to an entrance path of a lane without moving next
to the border of the working area circular sector. This approximation considers that
it is more probable that the first robot to arrive at the entrance path was initially
in front of the entrance path. Otherwise, the robot would have to move next to the
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(a) (b)

(c) (d)

Figure 6.11: Example of an experiment of the TRVF algorithm with default values
and N = 100. (a) Start of the experiment. (b) Robots go through the entrance path.
(c) The first robot to reach the target area. (d) The first robot to leave the working
area. Full simulation available on https://youtu.be/bNIgvgpl_J4, accessed on 14
October 2022.
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(e) (f)

Figure 6.12: Continuation of Figure 6.11. (e) The last robot to reach the target area.
(f) End of the experiment.

working area border until it arrives at the entrance path, which is more distant, as
the cyan robots in Figures 6.11b–6.11d. From Figure 6.13a, the sector angle in front
of the entrance path is given by α4 = arctan(d/(2D)). Thus, the expected time is
calculated from the expected minimum distance (Casella and Berger, 2002, p. 229)
for the number of robots located in the sector angle α4 when the experiment started
(α4

α
N
K

), i.e.,
E(

α4

α
N
K

+ 1
)
v̄

=
E(

α4

2π
N + 1

)
v̄

=
E(

arctan( d
2D

)

2π
N + 1

)
v̄
.

Figure 6.13b helps to understand how part (b) is calculated. This part is obtained
from the time of the first robot moving at average speed through a distance of ds
meters via the entrance path, going through the circular path until the point A6,
leaving by this curved path and running again a distance of ds meters via the exit
path. The curved path length is obtained from the circular sector angle β = π − α
(because the sum of the angles inside the quadrilateral containing the point A6 must
be 2π and the internal angle on the right-hand side is equal to α due to parallelism
of the line in the lane).

The length ds in Figure 6.13b is calculated from C1C and es = |A1C1| in Figure
6.13c. The triangle ABC is the same depicted in the proof of Lemma 4.12, where the
distance to the target centre for the robot to start turning was calculated using this
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(a) (b)

trajectory

(c)

Figure 6.13: (a) Sector angle α4 where the first robot on that lane arrives. (b)
Estimated location A6 where the first robot will arrive at the target area. (c) Right
triangles A1B1C1 and ABC for calculating the lenghts ds and es.

triangle, so, from the proof of that lemma,

|AC| =
»

(r + s)2 − (r + d/2)2 =

 
s(2r + s)− d

Å
r +

d

4

ã
.

From the right triangle AB1C1, |AC1| =
√
D2 − d2/4. As D = |A1A| = |AC1| +

|A1C1| =
√
D2 − d2/4 + es, es = D −

√
D2 − d2/4. Also, D = |A1A| = |A1C1| +

|C1C|+ |AC| = es + ds +
»
s(2r + s)− d

(
r + d

4

)
. Therefore,

ds = D − es −
 
s(2r + s)− d

Å
r +

d

4

ã
=
»
D2 − d2/4−

 
s(2r + s)− d

Å
r +

d

4

ã
.

As mentioned before, part (b) is the time to go through the entrance lane, the curved
path and the exit path, measuring ds, rβ and ds, respectively. Consequently, part (b)

is given by 2ds+r(π−α)
v̄

.
From experiments, part (c) is proportional to the number of robots in each lane,

that is, CTRV F
N
K

, for a constant CTRV F that abstracts the characteristics of the
experiment. The final result holds by adding parts (a)-(c).

6.1.4 Mixed Teams

The MT is used by M < N robots that do not know the algorithm executed by the
other robots. As explained below, the estimation for MT shows that the estimations

157



Chapter 6. Expected Time Estimations 6.1. Analysis of algorithms

of the presented algorithms can be used as a basis for further derivations. A robot
at position ri(t) in an MT executes a fixed alternative algorithm Alg which returns a
vector FAlg. Following the definitions of Section 5.3, denote ad hoc robots, the group
of M robots not knowing the algorithm used by the other group, and aware robots, the
group of N −M robots. Thus, their attractive force in an MT is simply FA(ri(t)) =
FAlg(ri(t)). As noticed in the previous algorithms, deriving an exact equation of the
task completion time function from the controller equations is complicated because
two groups of robots are executing possibly two different algorithms.

As shown in Section 5.4.1.3, using NC has the best results among the experimented
alternative algorithms. Thus, FAlg is the same as in (6.2). This alternative algorithm
was used in the following illustrations.

Figures 6.14–6.17 show the execution of MT by 10% and 50% of ad hoc robots (in
grey) to the total number of robots, respectively, when the aware robots are executing
the SQF algorithm with its default values. In these figures, the total number of robots
is N = 100. In Figure 6.14b, the usual behaviour of the 10% of the ad hoc robots
in grey is to go directly to the target. In Figure 6.14c, some grey robots left the
target region and are going to the next target on both sides (marked with circles and
arrows). When the two last robots running NC leave the target area in Figure 6.14d
(with circles and arrows), they try to go to the next target on the left-hand side, but
other robots using the SQF are blocking their way. Due to that blockage, the two
robots will continue through the SQF-induced leaving route until they can go to the
left (Figure 6.15e). After that, only robots using SQF are in the experiment (Figure
6.15f). When few robots use NC, this often happens.

Figures 6.16 and 6.17 have more robots using NC. From the bottom of Figure
6.16b, more of them go directly to the target than in the previous example. Robots
trying to reach the target may be pushed by robots using SQF on the way to leave the
working area (Figure 6.16c). The cluttering formed by them may continue until the
last robot using SQF reaches the target area (marked with a circle and an arrow in
Figure 6.16d). This tendency to clutter occurs proportionally to the number of robots
using NC as the alternative algorithm. The robots using NC which are oriented to
the target but were on the SQF-induced leaving route are more likely to be the last
ones to arrive at the target region (as the two grey robots marked with circles and
arrows near the target in Figure 6.17e). At the end of this experiment, they are the
last robots to leave the working area (one of them is marked with a circle and an
arrow in Figure 6.17f).

Figures 6.18–6.21 illustrate the execution of MT with 10% and 50% of ad hoc
robots to the total number of robots for an experiment with the TRVF with the
default parameter values as the algorithm of the aware robots. In these figures,
N = 100. As occurred for SQF, using 10% of the robots has almost the same result
as using only TRVF for all robots. Figure 6.18b shows the robots using NC arriving
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(a) (b)

(c) (d)

Figure 6.14: Example of an experiment of MT with 10% of ad hoc robots (M = 10 and
N = 100) and the SQF algorithm executed by the others. (a) Start of the experiment.
(b) Robots using NC go directly to the target. (c) Some grey robots go to the next
target. (d) The last robots using NC leave the target, but SQF robots are on their
way to the next target. Full simulation available on https://youtu.be/uBetIxGOl20,
accessed on 24 April 2023.
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(e) (f)

Figure 6.15: Continuation of Figure 6.14. (e) The last grey robots leave the working
area through the SQF-induced leaving route. (f) The remaining robots use the SQF
algorithm near the end.

at the target area through the free space between the lanes. If a robot using NC is
on the left-hand side, but its new target is on the right-hand side, it has to wait for
robots using TRVF open space in the lane blocking its passage (as the grey robot
marked with a circle and an arrow on the left side near the target area in Figure
6.18c). When a few robots use NC, they leave the working area faster than robots
using TRVF, as they tend to follow the shortest distance to the target through the
spaces between lanes (Figure 6.18d). In Figure 6.19e, all robots executing NC have
finished the task. Only robots with TRVF are leaving the target area by exit paths
until the end of the experiment in Figure 6.19f.

Figures 6.20 and 6.21 exemplify the usage of 50% of ad hoc robots, and the others
execute TRVF with default values. As the proportion of robots using NC is more
than in the previous example, they are more likely to cover the open space near the
target (Figure 6.20b) and cause congestion inside the target area (Figure 6.20c). If a
lane has more robots using NC, they hamper robots using TRVF to go through it, as
the exit lane on the top left-hand side in Figure 6.20d. As for the 10% case, the last
robot using NC leaves before the TRVF robots (marked with a circle and an arrow in
Figure 6.21e). However, fewer TRVF robots than in 10% case are inside the working
area until the end of the experiment (Figure 6.21f).

These illustrations hint that the proportion of ad hoc robots induces a cluttering
similar to that occurred by using only NC. Thus, the task completion time tends to be
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(a) (b)

(c) (d)

Figure 6.16: Example of an experiment of MT with 50% of ad hoc robots (M = 50
and N = 100) and the SQF algorithm executed by the others. (a) Start of the
experiment. (b) Robots using NC go directly to the target. (c) Robots using NC go
to the target after being pushed by SQF robots leaving the target. (d) The last robot
using SQF reaches the target area. Full simulation available on https://youtu.be/

a-05slaNud8, accessed on 24 April 2023.
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(e) (f)

Figure 6.17: Continuation of Figure 6.16. (e) The robots on the SQF-induced leaving
route are the last to arrive at the target region. (f) End of the experiment.

near NC time as the number of ad hoc robots M increases and the algorithm followed
by the aware robots as M decreases. To better show this, Figures 6.22 and 6.23 show
the result from the experiments with MT for scenarios with the robots executing SQF
and TRVF with different values of M . The bars mean the 99% confidence interval of
the average for 40 runs for each value in the horizontal axis. (The examples above
are shown for convenience for the explanation below. They are obtained from the
Section 5.4.1.3. Results containing the estimations for other values of percentage are
shown in Section 6.2.) Based on these observations, the next estimation shows an
approximation for an MT.

Estimation 4. The estimated expected time for N robots starting at a random position
with a distance from the target centre in [D,D + E) to arrive at the common target
area and leave the working area when M < N robots are using MT with NC as the
alternative algorithm depends on the ratio p = M/N and is expressed by

E[tMT ](p) ≈ CMTNC(p)E[tNC ] + CMTAw(p)E[tAw] (6.16)

for constants CMTNC and CMTAw (dependent on p), Aw being the algorithm followed
by the N −M aware robots and its estimated expected time E[tAw].

Explanation. Let CMTNC be a given constant abstracting the environment and the
dynamics of the ad hoc robots for the ratio p and CMTAw a similar constant for
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(a) (b)

(c) (d)

Figure 6.18: Example of an experiment of MT with 10% of ad hoc robots (M = 10
and N = 100) and the TRVF algorithm executed by the others. (a) Start of the
experiment. (b) Robots using NC arrive at the target area through the free space. (c)
A grey robot using NC waits for robots in a lane. (d) The last grey robot is leaving the
working area. Full simulation available on https://youtu.be/VlhXKM77q90, accessed
on 24 April 2023.
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(e) (f)

Figure 6.19: Continuation of Figure 6.18. (e) Only robots using TRVF are inside the
working area. (f) End of the experiment.

the aware robots. Thus, as observed in the experiments (Figures 6.22 and 6.23 and
Section 6.2), the estimated expected time is the sum of the estimated expected time
of NC and the control algorithm followed by the aware robots each multiplied by the
constants CMTNC and CMTAw, respectively.

6.2 Experiments and Results

Experiments were performed in the Stage simulator (Gerkey, Vaughan, and Howard,
2003) with the algorithms in the previous section using the same task scenario and
the default values used in the examples of the last section. Only the number of
robots N is varied from 20 to 300 with steps of 20 and the robotic movement type
(holonomic and non-holonomic, to show the adaptability of our estimations). For each
N , 40 executions were run. In the figures of this section, the bar intervals are the
99% confidence interval of the mean value of the variable considered. “Experiments”
and “Estimation” stand for these intervals of the experimental data mean and the
equation estimated from these experiments, respectively.

Moreover, the constants for the estimated time equations were obtained with the
least squares method from the mean value of the experimental data. It is important to
heed that the presented estimations produce curves that can be fitted to the simulation
results by tuning the coefficients of the expressions. Thus, using wrong equations with
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(a) (b)

(c) (d)

Figure 6.20: Example of an experiment of MT with 50% of ad hoc robots (M = 50
and N = 100) and the TRVF algorithm executed by the others. (a) Start of the
experiment. (b) Robots using NC go directly to the target. (c) NC robots (in grey)
cluster in the target area. (d) NC robots interfere with the access of robots using
TRVF. Full simulation available on https://youtu.be/1nxSEsre5mk, accessed on 24
April 2023.
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(e) (f)

Figure 6.21: Continuation of Figure 6.20. (e) The last robot using NC leaves the
working area. (f) End of the experiment.

constants obtained from the least square method does not work appropriately. For
example, the Estimation 1 has two cases depending on N . If one of the cases is ignored
and the other is applied for every N , even by fitting its constant, the estimation will
be further from the experiment data than the presented equation.

In addition, Appendix E contains more figures that support the insights in this
chapter. (The source codes of the experimented algorithms and estimations are in
Passos (2022a).)

Figure 6.24 and 6.25 present the comparison between the experimental data and
the estimated expected time computed by Estimation 1 for NC and s ∈ {3, 5, 7} m.
Observe that the estimation is closer as the value of s is smaller.

Figures 6.26 and 6.27 show the comparison for the SQF algorithm with the
estimated time in Estimation 2 for s ∈ {3, 5, 7} m. The negative value of CSQF1 in
the non-holonomic case for s = 3 m (Figure 6.26b) means that the waiting time was
less than the predicted travel time of the last robot (i.e., the value from Estimation
2 without the term CSQF1N). Notice that the shapes of the graphs are different
for different type of robotic movement, although the equations are the same. This is
because the average linear speed varies further with more robots in the non-holonomic
case than with the holonomic one, as it will be shown later.

Figures 6.28 and 6.29 show the comparison for TRVF algorithm with the estimated
time in Estimation 3 for s ∈ {3, 5, 7} m. Observe that using this estimation for
holonomic robots and s = 7 m is not as close as for non-holonomic ones (Figure 6.29).
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Figure 6.22: Task completion time versus the number of robots for NC, SQF and an
MT with NC as the alternative algorithm and aware robots with SQF for holonomic
robots and (a) M = 0.1N , (b) M = 0.5N and (c) M = 0.9N .
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Figure 6.23: Task completion time versus the number of robots for NC, TRVF and
MT with NC as the alternative algorithm and aware robots with TRVF for holonomic
robots and (a) M = 0.1N , (b) M = 0.5N and (c) M = 0.9N .
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In the algorithms where the lower number of robots differs more from the estimation,
the robots had little mutual influence as they were scattered. These estimations are
not close to the experimental data for these values because they were deduced from
the global behaviour affected by the influence of their surroundings assuming that the
algorithms were applied with a large number of individuals.

Figure 6.30 gives the results of the root mean squared error normalised by the
y-axis range (NRMSE) for the estimations in Figures 6.24–6.29. From it, I considered
that these estimations are close to the experimental data because the NRMSE values
were lower than 0.03. In Figure 6.30, the lowest error for holonomic robots was for
SQF with s = 5 m while for non-holonomic case, it was NC with s = 3 m. NC has the
highest error for s = 7 in both types of robotic movement because the graph seems
linear instead of a curve.

In addition, this work assumes a fixed working area. That being so, notice that
the influence of the number of robots has a limit because a higher number will
clutter the environment no matter the algorithm. Thus, the parameters related to
the environment area affect these functions in this sense.

Although it is not explicit from Estimations 1, 2 and 3 for the estimated expected
time, d̄ and v̄ depend on N . Figure 6.31 presents the relation between the average
speed and the number of robots for the algorithms for s = 3 m. Note that the range
for the holonomic case is smaller (around 0.25 m/s) than for the non-holonomic robots
(from 0.05 to 0.25 m/s). The holonomic robot can maintain the linear speed in all
directions, while the non-holonomic one needs to go forward or backwards, depending
on the situation, yielding positive and negative values for the linear speed. When
more robots are next to each other, this forward and backward movement intensifies
in the non-holonomic case. In the holonomic case, the slight rise in the speed as the
number of robots increases is due to the velocity of a holonomic robot being calculated
for every direction, as they can move freely in any direction. Thus, as more robots
are added, they are deviating more and consequently, more speed is included in the
average.

Figure 6.32 shows the relation between the mean distance between the robots and
the number of robots. For both types of robots, the trends in the mean distance are
similar: as the number of robots grows, they have to move nigher to each other in the
algorithms.

Figure 6.33 presents an instance of the estimations for MT with the proportion
p = 10% of ad hoc robots varying from 10 to 90%, and SQF is the control algorithm
of the aware robots. For reference, the task completion time from the experiments of
SQF and NC is shown. (Section E.1 contains the figures for p from 20% to 90% in
increments of 10%.) Figure 6.34 shows the results of the NRMSE for the estimations
for these values of p. From the NRMSE values, they match better for non-holonomic
robots from 70 to 90%.

169



Chapter 6. Expected Time Estimations 6.2. Experiments and Results

100 200 300
Number of robots

250

500

750

1000

1250

Si
m

ul
at

io
n 

tim
e 

(s
) Estimation

NC

(a)

100 200 300
Number of robots

500

1000

1500

Si
m

ul
at

io
n 

tim
e 

(s
) Estimation

NC

(b)

100 200 300
Number of robots

100

200

300

400

500

Si
m

ul
at

io
n 

tim
e 

(s
) Estimation

NC

(c)

100 200 300
Number of robots

200

400

600

800

Si
m

ul
at

io
n 

tim
e 

(s
) Estimation

NC

(d)

Figure 6.24: Comparison of the estimated expected time and the experimental data
for NC, s = 3 m with (a) holonomic robots ((CNC1, CNC2) = (2.1431, 0.6502)) and
(b) non-holonomic robots ((CNC1, CNC2) = (2.7784, 0.5694)) and s = 5 m with (a)
holonomic robots ((CNC1, CNC2) = (1.0994, 0.2614)) and (b) non-holonomic robots
((CNC1, CNC2) = (1.2867, 0.2539)).
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Figure 6.25: Comparison of the estimated expected time and the experimental data
for NC, s = 7 m with (a) holonomic robots ((CNC1, CNC2) = (0.857, 0)) and (b) non-
holonomic robots ((CNC1, CNC2) = (0.9795, 0)).

Similarly, Figure 6.35 shows an example of the estimations for MT with TRVF as
the control algorithm of the aware robots with p = 10%. As before, they have the task
completion time from the experiments of TRVF and NC for reference. (The figures for
p ranging from 20% to 90% in steps of 10% appear in Section E.1). Figure 6.36 shows
the results of the NRMSE for these estimations. Due to the estimation equation for
TRVF working better for a higher number of robots, the ad hoc estimation reflects
this result. Also, the NRMSE is higher for holonomic case.

Figure 6.37 displays the change in constants CMTAw and CMTNC by the experi-
mented percentage of ad hoc robots shown above for each tested control algorithm of
the aware robots and robots’ movement type. Note that when CMTNC rises, CMTAw

decreases, because it is expected to these constants are proportional to the number
of robots executing the algorithm associated with each of them. Although the values
of the constants are different, the trend for the SQF algorithm is similar for both
robots’ movement types (Figures 6.37a and 6.37b). The same happens for the TRVF
algorithm in Figures 6.37c and 6.37d. In addition, notice that the sum of CMTAw(p)
and CMTNC(p) is not exactly one for a fixed p because these constants abstract
properties of the environment and dynamics of the robots, which may have variations
due to the unpredictable behaviour resulting from the combination of swarms with
different algorithms in the same region.
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Figure 6.26: Comparison of the estimated expected time and the experimental data for
the SQF algorithm, s = 3 m with (a) holonomic robots ((CSQF1, CSQF2) = (0.5277, 0))
and (b) non-holonomic robots ((CSQF1, CSQF2) = (−0.1202, 0)) and s = 5 m with (c)
holonomic robots ((CSQF1, CSQF2) = (0.4346, 0.0016)) and (d) non-holonomic robots
((CSQF1, CSQF2) = (0.0037, 0.0004)).
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Figure 6.27: Comparison of the estimated expected time and the experimental data
for the SQF algorithm, s = 7 m with (a) holonomic robots ((CSQF1, CSQF2) =
(0.4237, 0.0026)) and (b) non-holonomic robots ((CSQF1, CSQF2) = (0.0928, 0.0022)).
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Figure 6.28: Comparison of the estimated expected time and the experimental data
for the TRVF algorithm, s = 3 m with (a) holonomic robots (CTRV F = 8.3866) and
(b) non-holonomic robots (CTRV F = 10.0287) and s = 5 m with (c) holonomic robots
(CTRV F = 7.9166) and (d) non-holonomic robots (CTRV F = 9.3022).
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Figure 6.29: Comparison of the estimated expected time and the experimental data
for the TRVF algorithm, s = 7 m with (a) holonomic robots (CTRV F = 7.1029) and
(b) non-holonomic robots (CTRV F = 8.7103).
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Figure 6.30: Normalised root mean square error of the estimations in Figures 6.24–
6.29 for (a) holonomic and (b) non-holonomic robots.
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Figure 6.31: Comparison of the linear speeds of the algorithms for s = 3 m with (a)
holonomic robots and (b) non-holonomic robots.
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Figure 6.32: Comparison of the mean distance between the robots of the algorithms
for s = 3 m with (a) holonomic robots and (b) non-holonomic robots.
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Figure 6.33: Comparison of the estimated expected time and the experimental data
for MT with NC as the alternative algorithm, the swarm control algorithm is the SQF
algorithm and p = 10% for (a) holonomic robots (CMTNC = −0.0042 and CMTAw =
0.9779) and (b) non-holonomic robots (CMTNC = 0.0069 and CMTAw = 1.027).
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Figure 6.34: Normalised root mean square error of the estimations in Figures 6.33–E.4
for MT with SQF and NC.
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Figure 6.35: Comparison of the estimated expected time and the experimental data for
MT with NC as the alternative algorithm, the swarm control algorithm is the TRVF
algorithm and p = 10% for (a) holonomic robots (CMTNC = 0.0309 and CMTAw =
0.9459) and (b) non-holonomic robots (CMTNC = 0.0766 and CMTAw = 0.9323).
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Figure 6.36: Normalised root mean square error of the estimations in Figures 6.35–E.8
for MT with TRVF and NC.
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Figure 6.37: Constants used for MT estimations (CMTAw and CMTNC) versus percent
of ad hoc robots for SQF as the control algorithm of aware robots and (a) holonomic
and (b) non-holonomic robots; and TRVF and (c) holonomic and (d) non-holonomic
robots.
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Chapter 7

Conclusion and future work

In a swarm of robots, when all the robots have to go to the same region, congestion
interferes with their time to move to a shared target region and from it. The common
target problem in robotic swarms occurs in that situation. Thus, congestion control
algorithms must be executed to minimise that interference. Hence, this thesis presents
an extensive theoretical study for a better understanding of that problem and new
algorithms. Additionally, for a situation where two groups of robots do not know each
other and have to go to a common target area, this thesis experiments and discusses
new solutions that do not need learning algorithms to overcome that situation.

A novel metric was proposed for measuring the effectiveness of algorithms to
minimise congestion in a swarm of robots trying to reach the same goal: the common
target area throughput. In addition, the asymptotic throughput for the common
target area was defined as the throughput when the time tends to infinity.

Assuming robots moving at constant maximum speed and the distance between
each other being as close as possible to a fixed value, it was shown how to calculate
the maximum throughput for different theoretical strategies to arrive at the common
circular target region: (i) making parallel queues to reach the target region, (ii) using
a corridor with robots in hexagonal packing to enter in the region, and (iii) following
curved trajectories to touch the region boundary. As the growing number of robots
needs to be considered in robotic swarms, the asymptotic throughput abstracts the
measure of how many robots can reach the target as time passes and, consequently,
as the number of robots raises. When a closed form for the asymptotic throughput is
given, it can be used to compare algorithms, as it will always be finite.

To achieve the analytical results of the proposed theoretical strategies, constant
linear speed and distance between the robots are assumed. However, in the real world,
these values are dynamic. Thus, inspired by these strategies, two novel algorithms
were developed: SQF and TRVF. It was demonstrated by simulations in the Stage
platform that SQF outperforms TRVF and the state-of-the-art algorithms PCC,
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PCC-EE and EE by time for reaching the target for a large number of robots from
280 for holonomic and 120 for non-holonomic robots. From these same numbers of
robots, swarms running the SQF algorithm also use less time for total simulation
time (i.e., reaching plus leaving the target) than the other algorithms. SQF also
outperforms these algorithms concerning the average target leaving time from 180
non-holonomic robots. However, for holonomic robots, TRVF is better up to 240
individuals and PCC-EE from 280 robots. Additionally, this work showed that the
previous approaches might completely fail for small target areas, that is, with an
area fitting less than five times the area of a robot, and they are outperformed in
throughput by SQF when they succeed. Moreover, TRVF helps us to understand the
potential impacts of the variation in the linear speed and distance between the robots
when translating an idea from theoretical strategies to concrete algorithms.

Even though SQF has more throughput than TRVF for a number of robots greater
than 140 for holonomic robots and 60 for non-holonomic ones, the comparison of
their corresponding inspiration strategies (hexagonal packing and touch and run,
respectively) had reversed outcomes concerning asymptotic throughput. When
constant maximum linear speed and fixed minimum distance between robots are
assumed, analytical calculations of the throughput for a given time and the asymptotic
throughput could be provided for the different theoretical strategies. Based solely on
these calculations, it could be compared which strategy is better. However, for robots
using artificial potential fields, it is not straightforward to get explicit throughput
equations due to the changeability of those quantities previously assumed constant.
Then, in the lack of closed asymptotic equations, simulations were performed to get
experimental throughput and compare algorithms for varying linear speed and inter-
robot distance. As shown by the experimental data, their variation and the effect of
the other robots in the trajectory affect the throughput, but the analytically calculated
throughput values are still within the upper bounds of the ones obtained from the
simulation.

Accordingly, when the closed theoretical equation cannot be obtained, the
comparison by experimental throughput per number of robots has the same result
as the simulation time per number of robots. However, if the asymptotic throughput
of any algorithm can be theoretically calculated, it may be utilised to compare them
to decide which one is better. When a robotic swarm has all robots going to the
same target, the function relating the number of robots and the time of arrival on the
target region tends to be infinite as the number of robots grows, while the function
relating the number of robots and throughput tends to a finite number. When an
algorithm exhibits a lower target region arrival time for a number of robots, the
throughput is higher, so the comparison by this latter metric can replace the former
as it reflects the same ordering but is reversed. Although for the proposed algorithms
closed asymptotic equations tackling dynamic speed and inter-robot distance were not
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given, I believe that, if they were, the comparison could be done only by the analytical
asymptotic throughput, as accomplished when the linear speed and distance between
the robots are constant. Thus, for common target area congestion in robotic swarms,
the throughput is well suited for comparing algorithms due to its abstraction of the
rate of the common target area access as the number of robots grows, whether the
closed throughput equation is given or not.

Furthermore, algorithms were presented for ad hoc robots for the common target
problem in a robotic swarm. Unlike the usual approach of an ad hoc multi-agent
system in which the agent needs to learn about the environment or other agents, no
learning is required. Experiments showed that not following a robot and using NC as
the alternative algorithm for AHF have better results in most tests. When only one
ad hoc robot executes it, the total simulation time will increase by a small amount.
However, as more robots run AHF, the swarm behaves similarly to the alternative
algorithm. That is a consequence of its estimated expected task completion time being
a linear combination of the estimated expected time of NC, used as the alternative
algorithm in the experiments, and the control algorithm proportional to the ratio of
robots. If the percentage of ad hoc robots using MT is lower than 30% and 60% for
non-holonomic and holonomic robots, respectively, the results on the average total
simulation time are better for NC as the alternative algorithm, although it is not
suitable for a swarm with only one team.

In addition, this thesis presented estimations of the expected task completion
time in relation to the number of robots in algorithms for the common target problem
using potential fields. These relations were calculated by analysing the experiments
with NC, SQF, TRVF and AHF. Besides the number of robots, the task completion
time estimations are also expressed in terms of the average speed of the robots and
algorithm parameters such as the working area radius, the target area radius, the
number of lanes in TRVF, its central angle, the distance travelled through its lanes
and the ratio of the number of ad hoc robots to the total number of individuals. In
addition, the experimental relation of the average speed and distance between the
robots as a function of the number of individuals in the swarm for SQF and TRVF
was illustrated.

7.1 Future Work

The key contribution of the presented theoretical work is a fundamental theoretical
study of congestion in Swarm Robotics, which already served as an inspiration to
create new algorithms. However, future work could extend this study further by
considering varying linear speeds and distances between the robots. Research about
which statistical distributions are suited for these variables applied to the throughput
functions developed here may be a starting point for analysing that study. In this
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way, random variables and their properties also could be appropriate for this analysis.
Furthermore, this thesis worked with the throughput of the target area in

equivalence with the target area reaching time as an inspiration to new algorithms.
As the leaving time may interfere with some algorithms, such as NC and MT, a study
of a measure involving the throughput of the robots leaving a target area and the
working area may be interesting to broaden the understanding of the common target
problem.

Moreover, dynamical systems and chaos theory may be applied for further studies
on the hexagonal packing strategy, both for constant and variable hexagonal packing
angles. In the constant case, these topics may help to find the exact limit for a
given hexagonal packing angle instead of an interval, as did here. Also, these studies
may answer whether finding such an exact limit is indeed feasible. When dealing with
varying speed and inter-robot distance, the case of a variable hexagonal packing angle
will appear. Therefore, in that case, these studies may discover the most probable
limit or a new interval of the lower and upper bound of the limit. Although effort
has to be invested in that research, these analyses are interesting and may deliver
new facts useful for a better understanding of the common target problem and the
development of new algorithms or adaptations of the existing ones.

Other subsequent work is to test newer obstacle avoidance methods with the
proposed algorithms. As presented in the related work, despite the ORCA algorithm
not working in the common target problem, new methods such as the Model Predictive
Control (MPC) – also known as Receding Horizon Control (RHC) – may yield distinct
outcomes for that problem. Also, they may have different behaviours when put in
place of the potential fields in the presented algorithms, which may or may not be
more efficient in some aspects.

In addition, another future work is to experiment with the execution of mixed
approaches. An example of a mixed approach is an algorithm that employs multiple
corridors or lanes around the target area, as in the TRVF algorithm but uses potential
fields similar to those in the SQF algorithm.

As the usage of aerial robots is increasing nowadays, another future step is to
adapt to three-dimensional robots and experiment with their type of movements. As
this thesis considered robots and the target regions in a plane, the equations must
be extended to three dimensions. Also, three-dimensional robots have different types
of movement, and they have to be experimented with the algorithms for feasibility.
For instance, aircraft-like robots cannot stop in mid-air, and some aerial robots are
controlled by Dubins paths.

Furthermore, using learning to discover better algorithms may be valuable.
Statistical learning, deep learning and evolutionary algorithms are examples of
methods to be applied to discover better algorithms. Another subsequent work is
the comparison of reinforcement learning for ad hoc robots with MT. As said before,
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the advantage of MT is that the robot does not spend time learning. However, it is
worthwhile to analyse how the effort of learning about other agents by methods such
as reinforcement learning can be advantageous to the common target problem with
ad hoc robots.

Additionally, the work about estimations is a fundamental first step to study the
common target problem as a local-to-global analysis of the task completion time from
the specification of the individual robot to the swarm behaviour. An extensive and
challenging study is needed to explain the local-to-global nature of these subsumed
details. This invokes a theory to untangle this relationship, and I aim to start
a discussion about that with this work by presenting a baseline approximation to
compare with future work. There is room for improvement on these estimations.
Approaches using adaptations of the methods discussed in the Section 3.2 are welcome
to be compared. Thus, in future work, methods from statistical mechanics, in special
for many-body problems, will be applied to this problem and compared with those
developed here.

Consequently, a question may arise: is it possible to find a potential field that
minimises the relation of the task completion time versus the number of robots?
Notice that if this is possible, a time relation for a given field has to be given to
be minimised. From future improvements, I expect to be possible to find a better
potential field minimising the task completion time per number of robots, presuming
that finding it is decidable.

Finally, this work has direct application in diverse areas as subsequent works. A
list of suggestions is below:

• emergency services – fast access to locations for rescue operations by a robotic
swarm;

• surveillance or remote monitoring – mobile robots going from their stations to
the target region to be monitored or surveilled;

• logistics – the transportation of goods by robots from various places to a common
target area such as a parked ship or a warehouse;

• warehouse management – robots in a swarm inside a warehouse may have to
stack products in a shared storage hack, and then the proposed algorithms are
utilised to access the region of a common hack;

• construction – robots collecting materials in a shared deposit or disposing of
debris in a common rubbish site;

• searching in regions harmful to humans – fast collection of precious or dangerous
objects in areas such as deep sea, contaminated areas or small places;
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• microscopically locating cancer cells – quick access to a tissue to be destroyed
or given medicine by autonomous microscopic robotic swarms;

• disaster response – for a swarm entering a destroyed place in search of people or
dangerous objects, such as non-activated bombs, and a swarm of autonomous
firefight robots going to a region to put out fire quickly and leaving it to pick
more extinguishing agents;

• plantation management – for robots hunting insects in a region, for accessing
the infestation focus or the disposal site to throw the insects after captured; and

• common or hazardous waste collection – fast entry in the waste location in
remote areas such as the ocean and for going to the disposal site to store the
waste.
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Appendix A

Pseudocodes of the State-of-the-art
Algorithms

Algorithm 8 describes PCC assuming a robot executes it at every update in its
position. It outputs a force vector pointing to where the robot must head depending
on its current coordinates and state. This force vector has a constant magnitude
KPCC . The robot still has to compute the repulsive force by another procedure – not
described in Algorithm 8. At line 6, w holds the robot position when it switches its
state (lines 11 and 17). At line 22, the variable iteration – incremented at line 46 –
must be initialised at zero before calling the PCC algorithm. Messages are sent in
lines 40 and 43. The warning type at line 40 is sent by a normal robot to other robots
in the danger region to warn them that they may switch to waiting state. The stop
type at line 43 is for a waiting or locked robot to tell other robots outside the danger
region that they may need to alter their state to locked.

Algorithm 10 describes the EE algorithm, executed after position updates. As
before, it returns a force with constant magnitude KEE. However, as this algorithm
reduces the repulsive force, a function for computing it must be given and include the
multiplicative constant and the robot and obstacle positions as parameters. In line
12, the repulsive force is reduced by half only for the robots that push the robot away
from the entry region. However, in line 15, the repulsive force from nearby robots is
reduced to half.

Algorithm 11 describes the PCC-EE algorithm. Similar to the previous algorithms,
it returns a force with constant magnitude KPCC-EE. In line 7, the PCC algorithm is
called with the appropriate parameters. As said before, the PCC does not compute
any repulsive force, so it returns only the attractive force according to the robot state
and position. However, the EE algorithm alters the repulsive force depending on the
position and whether the robot reached the target area from line 8 to 17.
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Input : KPCC : force magnitude;
G1, . . . ,Gn: a list of n ≥ 2 circular target region centres;
s1, . . . , sn: a list of n ≥ 2 target region radii;
j: the current target index;
rσ, rγ: radius of the free region and outer radius of the danger
region, respectively;
δ, δcomm: radius of the α-area and of communication, respectively;
Tcomm, Tη: number of iterations before sending a message and for
testing if a waiting robot changes state, respectively;
αw, αl: angle of the α-area to switch to waiting and locked states,
respectively;
ρI : Probability of impatience.

Output: F: force vector;
1 Get robot position p, and let G = Gj and s = sj;
2 if state = normal or state = impatient then

3 F← KPCC
G−p

∥G−p∥ ;

4 end
5 if state = waiting or state = locked then
6 F← KPCC

w−p
∥w−p∥ ;

7 end
8 if state = normal then
9 if the robot is inside danger region and has neighbour in αw-area then

10 state ← waiting;
11 w← p;

12 end
13 if the robot is outside danger region and has neighbour i in αl-area then
14 statei ← robot i state from its message;
15 if statei = waiting or statei = locked then
16 state ← locked;
17 w← p;

18 end

19 end

20 end

Algorithm 8: PCC algorithm (continues on Algorithm 9).
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21 if state = waiting then
22 if iteration mod Tη = 0 and rand() < ρI then
23 state ← impatient;
24 end

25 end
26 if state = locked then
27 if the robot is inside danger region then
28 state ← waiting;
29 else if there is no neighbour i in αl-area where statei = waiting or locked

then
30 state ← normal;

31 end
32 if state = impatient then
33 if ∥p−G∥ ≤ s then
34 state ← normal;
35 j ← j + 1;

36 end

37 end
38 if the robot detects another robot at distance δcomm and iteration

mod Tcomm = 0 then
39 if state = normal and rγ > ∥p−G∥ > rσ then
40 Send a warning message with G and state;
41 end
42 if state = waiting or state = locked then
43 Send a stop message with G and state;
44 end

45 end
46 iteration ← iteration + 1;
47 return F;

Algorithm 9: PCC algorithm (continuation).
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Input : KEE: force magnitude;
G1, . . . ,Gn: a list of n ≥ 2 circular target region centres;
s1, . . . , sn: a list of n ≥ 2 target region radii;
j: the current target index;
rγ: radius of the entry region;
ω: angle of the entry region;
FR(Kr,p,q): a repulsive force with multiplicative constant Kr,
robot position p and obstacle position q.

Output: a force vector;
1 Get robot position p, and let G = Gj and s = sj;
2 Let Nr be the set of robots locally sensed and qi the neighbour robot i

position;
3 if ∥p−G∥ < D then
4 if the robot is not in entry region by (2.1) and ∥p−G∥ > rγ then
5 Calculate w by (2.2);
6 FA ← KEE

w−p
∥w−p∥ ;

7 F′
R ←

∑
i∈Nr FR(Kr,p,qi);

8 else

9 FA ← KEE
G−p

∥G−p∥ ;

10 if the robot is in entry region by (2.1) and ∥p−G∥ > rγ and did not
reach the target area then

11 Let N1
r ⊂ Nr be the set of robots that pushes the robot away from

the entry region and N2
r = Nr −N1

r ;

12 F′
R ←

∑
i∈N1

r
FR(Kr

2
,p,qi) +

∑
i∈N2

r
FR(Kr,p,qi) ;

13 else
14 if the robot reached the target area then
15 F′

R ←
∑

i∈Nr FR(Kr
2
,p,qi) ;

16 else
17 F′

R ←
∑

i∈Nr FR(Kr,p,qi);

18 end

19 end

20 end

21 else

22 FA ← KEE
G−p

∥G−p∥ ;

23 F′
R ←

∑
i∈Nr FR(Kr,p,qi);

24 end

25 return KEE
FA+F′

R

∥FA+F′
R∥ ;

Algorithm 10: EE algorithm.
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Input : KPCC-EE: force magnitude;
G1, . . . ,Gn: a list of n ≥ 2 circular target region centres;
s1, . . . , sn: a list of n ≥ 2 target region radii;
j: the current target index;
rσ, rγ: radius of the free region and outer radius of the danger
region, respectively;
δ, δcomm: radius of the α-area and of communication, respectively;
Tcomm, Tη: number of iterations before sending a message and for
testing if a waiting robot changes state, respectively;
αw, αl: angle of the α-area to switch to waiting and locked states,
respectively;
ρI : Probability of impatience.
ω: angle of the entry region;
FR(Kr,p,q): a repulsive force with multiplicative constant Kr,
robot position p and obstacle position q.

Output: a force vector;
1 Let Nr be the set of robots locally sensed and qi the neighbour robot i

position;
2 if ∥p−G∥ < D and the robot is not in entry region by (2.1) and
∥p−G∥ > rγ then

3 Calculate w by (2.2);
4 FA ← KPCC-EE

w−p
∥w−p∥ ;

5 F′
R ←

∑
i∈Nr FR(Kr,p,qi);

6 else
7 FA ← PCC(KPCC-EE,G1, . . . ,Gn,s1, . . . , sn,j,rσ, rγ, δ, δcomm,Tcomm, Tη,

αw, αl,ρI);
8 if the robot is in entry region by (2.1) and ∥p−G∥ > rγ and did not

reach the target area then
9 Let N1

r ⊂ Nr be the set of robots that pushes the robot away from the
entry region and N2

r = Nr −N1
r ;

10 F′
R ←

∑
i∈N1

r
FR(Kr

2
,p,qi) +

∑
i∈N2

r
FR(Kr,p,qi);

11 else
12 if the robot reached the target area then
13 F′

R ←
∑

i∈Nr FR(Kr
2
,p,qi);

14 else
15 F′

R ←
∑

i∈Nr FR(Kr,p,qi);

16 end

17 end

18 end

Algorithm 11: PCC-EE algorithm (continues on Algorithm 12).
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19 return KPCC-EE
FA+F′

R

∥FA+F′
R∥ ;

Algorithm 12: PCC-EE algorithm (continuation).

191



Appendix B

Proofs of Chapter 4

B.1 Proof of Lemma 1

Let lδ(t) =
√

(x1(t)− x2(t))2 + (y1(t)− y2(t))2 be the distance between the two
robots. The robots must maintain their minimum distance d at all time:

∀t ∈ R, lδ(t) ≥ d. (B.1)

To avoid a collision, δ ̸= π, which corresponds to the case where robots face each
other exactly. As a result, cos(δ) ̸= −1. For ease of calculation, define X = τv, that
is, the distance between Robot 1 and Robot 2 when Robot 1 reaches the target. Also
define Pδ(t) = lδ(t)

2 − d2, so the constraint in (B.1) for the distance between them is
expressed by

∀t ∈ R, lδ(t) ≥ d⇔ ∀t ∈ R, Pδ(t) ≥ 0.

Additionally,

Pδ(t) = (vt cos(δ1)− v(t− τ) cos(δ2))
2 + (vt sin(δ1)− v(t− τ) sin(δ2))

2 − d2

= (vt cos(δ1)− (vt−X) cos(δ2))
2 + (vt sin(δ1)− (vt−X) sin(δ2))

2 − d2

= (vt)2 cos(δ1)
2 − 2vt cos(δ1)(vt−X) cos(δ2) + (vt−X)2 cos(δ2)

2+

(vt)2 sin(δ1)
2 − 2vt sin(δ1)(vt−X) sin(δ2) + (vt−X)2 sin(δ2)

2 − d2

= (vt)2 − 2vt(vt−X)(cos(δ1) cos(δ2) + sin(δ1) sin(δ2)) + (vt−X)2 − d2

= (vt)2 − 2vt(vt−X) cos(δ2 − δ1) + (vt−X)2 − d2

= (vt)2 − 2vt(vt−X) cos(δ) + (vt−X)2 − d2

= (vt)2 − 2vt(vt−X) + 2vt(vt−X)− 2vt(vt−X) cos(δ) + (vt−X)2 − d2

= (vt)2 − 2vt(vt−X) + (vt−X)2 + 2vt(vt−X)− 2vt(vt−X) cos(δ)− d2

= (vt− (vt−X))2 + 2vt(vt−X)− 2vt(vt−X) cos(δ)− d2
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= X2 + 2vt(vt−X)− 2vt(vt−X) cos(δ)− d2

= 2vt(vt−X)− 2vt(vt−X) cos(δ) +X2 − d2

= 2(vt)2 − 2Xvt− 2(vt)2 cos(δ) + 2Xvt cos(δ) +X2 − d2

= 2(vt)2 − 2(vt)2 cos(δ)− 2Xvt+ 2Xvt cos(δ) +X2 − d2

= 2(1− cos(δ))(vt)2 − 2X(1− cos(δ))vt+X2 − d2

= 2(1− cos(δ))v2t2 − 2X(1− cos(δ))vt+X2 − d2,

where cos(δ) = cos(δ2 − δ1) = cos(δ2) cos(δ1) + sin(δ2) sin(δ1) is used.
Two cases are identified:

1. Case 1: cos(δ) ̸= 1. Then Pδ(t) is a second-degree polynomial in t. It is of the
form at2+bt+c with a = 2(1−cos(δ))v2, b = −2X(1−cos(δ))v and c = X2−d2.
Pδ(t) has a with positive sign for all t, because (1−cos(δ)) > 0 when cos(δ) ̸= 1.
Thus, as a > 0, by second-degree polynomial inequalities properties, Pδ(t) ≥ 0
for all t if and only if its discriminant ∆ = b2 − 4ac is negative, that is,

∀t ∈ R, Pδ(t) ≥ 0⇔ b2 − 4ac ≤ 0.

Thus:

22X2(1− cos(δ))2v2 − 4 · 2(1− cos(δ))v2(X2 − d2) ≤ 0⇔
(4(1− cos(δ))v2)(X2(1− cos(δ))− 2(X2 − d2)) ≤ 0⇒
X2(1− cos(δ))− 2(X2 − d2) ≤ 0⇔ 2d2 −X2(1 + cos(δ)) ≤ 0⇔

2d2

1 + cos(δ)
≤ X2 ⇒

X ≥ d

 
2

1 + cos(δ)
(B.2)

2. Case 2: cos(δ) = 1. Then Pδ(t) = X2− d2. In this case, Pδ(t) ≥ 0 for all t when
X2 − d2 ≥ 0⇒ X ≥ d. This is the same as using cos(δ) = 1 in (B.2).

Hence, (B.2) gives, for the robots to respect the minimum distance d for every
time t, a relation between the minimum distance, the angle between the lanes and the
distance between Robot 1 and Robot 2 when Robot 1 reaches the target. The final
result is obtained by noticing that (B.2) is equivalent to

τ ≥ d

v

 
2

1 + cos(δ)
.
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Target
region

Lane i

di

s

|s - (i-1)d|

A B

C

D

s

Figure B.1: The distance from the target region to a robot at the beginning of the
Lane i is equal to di (represented by BD).

B.2 Proof of Proposition 4

When robots move in straight lines in a single lane, the optimal throughput is v
d

(Proposition 1). Since s ≥ d
2
, multiple straight line lanes can be parallel to each other

(Figure 4.4).
As the robots are going to a circular target region, the robots next to the centre

reach the region in a shorter time than the others. The first robot of each lane
must run an additional distance di from the beginning of its lane, which is related
to its y-coordinate. Figure B.1 illustrates this distance for a robot in Lane i. The
right triangle ABC has hypotenuse AC measuring s, so the horizontal cathetus AB
measures

√
s2 − (s− (i− 1)d)2. Consequently, the robot in the Lane i needs to walk

an additional distance represented by BD, which has di = |BD| = s − |AB| =
s−

√
s2 − (s− (i− 1)d)2 units of length.

This distance is minimised when |BD| = 0, that would happen if i = s
d

+ 1.

However, i must be integer, so |BD| is minimised by an integer J that minimises
dJ . If s

d
/∈ Z, the two nearest integers are

⌊
s
d

⌋
and

⌈
s
d

⌉
. Thus, if J =

⌊
s
d

⌋
+ 1 then,

equivalently,

d⌊ sd⌋+1 ≤ d⌈ sd⌉+1 ⇔ s−
…
s2 −

(
s−

⌊s
d

⌋
d
)2
≤ s−

…
s2 −

(
s−

⌈s
d

⌉
d
)2
⇔…

s2 −
(
s−

⌈s
d

⌉
d
)2
≤
…
s2 −

(
s−

⌊s
d

⌋
d
)2
⇔ s2−

(
s−

⌈s
d

⌉
d
)2
≤ s2−

(
s−

⌊s
d

⌋
d
)2
⇔(

s−
⌊s
d

⌋
d
)2
≤
(
s−

⌈s
d

⌉
d
)2
⇔
∣∣∣s− ⌊s

d

⌋
d
∣∣∣ ≤ ∣∣∣s− ⌈s

d

⌉
d
∣∣∣
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Thus,

J =

®⌊
s
d

⌋
+ 1, if

∣∣s− ⌊ s
d

⌋
d
∣∣ ≤ ∣∣s− ⌈ s

d

⌉
d
∣∣ ,⌈

s
d

⌉
+ 1, otherwise.

Let N(t) be the number of robots that arrive at the target region until a given
time t after the first robot has reached it. Thus,

N(t) =

⌊ 2sd ⌋+1∑
i=1

Ni(t),

where Ni(t) is the number of robots at Lane i that arrived at the target region by time
t. As every robot has the same linear speed and started at the same x-coordinate,
when the first robot at Lane J reaches the target region, all robots have run dJ units
of length. Hence, at each Lane i, instead of running an additional di to reach the
target region, they need to run di − dJ . Consequently,

Ni(t) =

®ö
vt−(di−dJ )

d
+ 1
ù
, if t ≥ di−dJ

v
,

0, otherwise,

and, by Definition 2,

fp(t) =
N(t)− 1

t
=

1

t

Ö
⌊ 2sd ⌋+1∑
i=1

Ni(t)

è
− 1

t
.

Also,

fp = lim
t→∞

fp(t) = lim
t→∞

Ö
1

t

Ö
⌊ 2sd ⌋+1∑
i=1

Ni(t)

è
− 1

t

è
= lim

t→∞

1

t

⌊ 2sd ⌋+1∑
i=1

Ni(t) = lim
t→∞

⌊ 2sd ⌋+1∑
i=1

Ni(t)

t

= lim
t→∞

⌊ 2sd ⌋+1∑
i=1

1

t

õ
vt− di + dJ

d
+ 1

û ï
as t→∞⇒ t ≥ di − dJ

v

ò
= lim

t→∞

⌊ 2sd ⌋+1∑
i=1

1

t

Å
vt− di + dJ

d
+ 1− frac

Å
vt− di + dJ

d
+ 1

ãã
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= lim
t→∞

⌊ 2sd ⌋+1∑
i=1

Å
v

d
− di − dJ

dt
+

1

t

ã
− lim

t→∞

1

t

⌊ 2sd ⌋+1∑
i=1

frac

Å
vt− di + dJ

d
+ 1

ã
=

õ
2s

d
+ 1

û
v

d
,

as frac and di are bounded for every i due to 0 ≤ di ≤ s and 0 ≤ frac(x) < 1 for
any x.

B.3 Proof of Proposition 5

Without loss of generality, consider the target at the origin of a coordinate system
and that the robots are moving parallel to the x-axis. By Definition 2, the throughput
considers the number of robots that cross the target during a unit of time and after
the first robot has reached it. The number of robots, Nt, is evaluated during a time t.
As a result, computing the maximum throughput is reduced to finding the maximum
number of robots (their centre of mass) that can fit in a rectangle of width w(t) = vt
and height h = 2s.

Figure B.2 illustrates how Nt is calculated. Robots are represented by black dots
in hexagonal formation and distant by d. In (I), only the first robot reached the
target. In (II), all robots not in the dashed area arrived in the target region before
the last robot. The robots on the right dashed area should not be counted because
their arrival time is greater than the arrival time of the last robot. Hence, they arrive
after the considered time frame t. That is, all robots on the dashed area in (I) should
be counted as part of the number of robots that reached the target region in the time
between the first and the last robot, while the robots on the dashed area in (II) should
not. As these dashed areas have the same value, this proof considers the number of
robots inside a rectangle vt × 2s. Then, the dashed area used for counting in (II)
replaces the unconsidered robots in the dashed area in (I). As t → ∞ is of concern,
any possible difference between the number of robots on the dashed areas of either
side due to the configuration of the hexagonal packing is negligible.

Due to the constraint that robots must be at a distance d from each other, consider
discs of radius d/2 as reserved areas for each robot, and any two reserved areas must
not intersect. Therefore, the problem is equivalent to finding the optimal arrangement
of circles of radius d/2 in a rectangle of width W (t) = w(t) + 2d

2
= vt+ d and height

H = h + 2d
2

= 2s + d. This formulation is a variant of the circle packing problem,
which is already well studied. (See http://packomania.com/ and http://hydra.

nat.uni-magdeburg.de/packing/crc_var/crc.html, acessed on 16 November 2021,
for an informal introduction.) The term 2d

2
was added because the circle packing

problem deals with full circles, not their centres.
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Target
region
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vt
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first last first last

Figure B.2: The rectangular area regarding the calculation of Nt over time.

The optimal surface occupied by the circles divided by the rectangle area was
proven to be π

√
3/6 in the case of hexagonal packing over an infinite area (Chang and

Wang, 2010). Thus, the total area occupied by the circles representing the reserved

areas of the robots is given by
Ä
π
√

3/6
ä
HW (t). Hence, the maximum number of

robots Nt that can fit inside the HW (t) area is bounded by Nopt(t) ≥ Nt, for

Nopt(t) =

Äπ√3/6
ä
HW (t)

πd2/4

 =

õ
2HW (t)√

3d2

û
.

By Definition 2, the maximum throughput is

fmaxh (t) =
Nopt(t)− 1

t
=

ö
2HW (t)√

3d2

ù
− 1

t
.

As for any x, ⌊x⌋ = x − frac(x) and 0 ≤ frac(x) < 1, the upper bound of the
asymptotic throughput is

fmaxh = lim
t→∞

fmaxh (t) = lim
t→∞

ö
2HW (t)√

3d2

ù
− 1

t
= lim

t→∞

2HW (t)√
3d2t

= lim
t→∞

2(h+ d)(w(t) + d)√
3d2t

= lim
t→∞

2(2s+ d)(vt+ d)√
3d2t

= lim
t→∞

2√
3

2s+ d

d2
vt+ d

t

= lim
t→∞

2√
3

Å
2s

d2
+

d

d2

ãÅ
vt

t
+
d

t

ã
= lim

t→∞

2√
3

Å
2s

d2
+

1

d

ãÅ
v +

d

t

ã
=

2√
3

Å
2s

d2
+

1

d

ã
v =

2√
3

Å
2s

d
+ 1

ã
v

d
.
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Figure B.3: Arrival of the robots on the target region over time.

B.4 Proof of Proposition 6

This proof concerns about the throughput of the target region for a given time and
hexagonal packing angle θ, fh(t, θ) = N(t,θ)−1

t
, where N(t, θ) denotes the number of

robots which arrived at the target region. Figure B.3 illustrates the arrival of the
robots on the target region.

In Figure B.3 (I), when the robots – here represented by black dots – in hexagonal
packing begin to arrive at the target region, only the robots inside a part of the
semicircle are counted. In Figure B.3 (II), consider the first robot to reach the target
region being at (x0, y0) at time 0. As t grows, this continues until vt = s. In Figure
B.3 (III), when vt > s, the robots are counted on two regions: a rectangular, NR, and
a semicircular, NS. When vt > s, the semicircular region counting starts after the
last robot on the rectangular region located at (lx, ly).

As this region has a circular shape, not all robots at the distance vt arrive at
target region by the time t. Thence, the number of robots in hexagonal packing are
divided into the number of robots located inside a rectangle, NR, and of robots inside
a semicircle NS (Figure B.3 (III)). That is, N(t, θ) = NS(t, θ) +NR(t, θ) and NR = 0
whenever vt ≤ s.

This proof is divided in lemmas for helping the construction of the equation to
computeNR(t, θ) andNS(t, θ) as well for calculating limt→∞ fh(t, θ). Before presenting
them, it is discussed a coordinate space transformation which will be used to count
the robots for NR and NS. This transformation was inspired by (Red Blob Games,
2021).

Figure B.4 shows the coordinate spaces used in this proof: the usual Euclidean
space (x, y) in relation to the target region and the rectangle region formed by robots
in hexagonal packing going to it; the coordinate space (xg, yg), formed by the usual
space after a translation to the first robot to reach the target region at (x0, y0), followed
by a rotation by −ψ; the coordinate space (xh, yh), a hexagonal grid coordinate space
made after this transformation and a linear transformation H. Robots are represented
by the black dots and they are on hexagonal formation. Each neighbour of a robot is
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x
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Target
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(x0,y0)

Figure B.4: The reference frames used in this proof.

distant by d, so △ABC is equilateral. Thus, θ + ψ = π/3.
Let ψ = π/3−θ (because the angle of the equilateral triangle formed by neighbours

is π/3, as explained in Figure B.4). Accordingly, ψ ∈ [0, π/3), too. The usual
Euclidean coordinate space which represents the location of all robots is denoted
here by (x, y) coordinates. The next coordinate space is denoted by (xg, yg), and it is
the result of a translation of the usual Euclidean coordinate space by the position of
the first robot to reach the target region at (x0, y0), then a rotation of −ψ, that is,ï

xg
yg

ò
=

ï
cos(−ψ) − sin(−ψ)
sin(−ψ) cos(−ψ)

ò ï
x− x0
y − y0

ò
.

The last coordinate space is denoted by (xh, yh), and it is intended to represent a
hexagonal grid such that the position of each robot is an integer pair.

Figure B.5 shows an example of the location of robots with respect to that
hexagonal grid. Robots are located in the line representing the yh-axis and in the
lines named l, m, n, o, p and q, which are parallel to the yh-axis. In this example,
ψ = 0.227 and the distance between all robots is d = 0.5. The distance between those
parallel-to-yh lines is

√
3d/2. The robots inside the rectangle EFGH are counted

and are indicated by red points, while blue points are robots outside the rectangle.
Although the xh-axis coincides with the xg-axis, xh is scaled by d.

Let (xh, yh) ∈ Z2 be the hexagonal coordinates of a robot in this hexagonal grid
space. In this figure, there is an integer grid in grey – the horizontal lines correspond
to fixed integer yh values and the inclined ones, xh values. For example, in Figure
B.5 robots R10, R11 and R20 respectively are at (0, 1), (1, 1) and (1, 0) at (xh, yh)

coordinate system, which is equivalent to
Ä
−1/4,

√
3/4
ä
,
Ä
1/4,
√

3/4
ä

and (1/2, 0) on

the usual two dimensional coordinate system with origin at (x0, y0).
A linear transformation H from a point (xh, yh) to (xg, yg) basis is obtained by

knowing the result of this transformation for the standard vectors (1, 0) and (0, 1).
Observing Figure B.5 and having that the angle between the x-axis and yh-axis is
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Figure B.5: Example of robots in hexagonal packing formation and the corresponding
rectangular corridor which will reach the target region. The axes of the coordinate
spaces (xg, yg) and (xh, yh) overlap. Red robots are inside the rectangle EFGH,
blue robots are outside it, and the first robot to reach the target area is located at
(xg, yg) = (0, 0) – equivalently (xh, yh) = (0, 0).
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by definition 2π/3, one gets the following mappings (xh, yh) 7→ (xg, yg): (1, 0) 7→
(d, 0) and (0, 1) 7→ (d cos (2π/3) , d sin (2π/3)) = (−d

2
,
√
3d
2

) (in Figure B.5 these two
mappings are represented by robots R20 and R10, respectively, with d = 0.5). Then,ï

xg
yg

ò
=

ñ
H

Çñ
1

0

ôå
H

Çñ
0

1

ôå ôï
xh
yh

ò
=

ñ
d −d

2

0
√
3d
2

ô ï
xh
yh

ò
. (B.3)

Counting the robots inside the rectangle is the same as counting the number of
integer hexagonal coordinate points lying inside it. Figure B.6 shows the rectangular
part with some robots in hexagonal packing, where the robots are the red dots, and
the hexagonal packing is guided by the grey lines inside the rectangle based on the
value of the angle ψ. The rectangle has width vt−s and height 2s. The reference frame
of the hexagonal grid is rotated about the target region (Figure B.4). The problem
involves the rectangle EFGH in a hexagonal grid (grey lines inside the rectangle)
of robots (the red dots). The xh-axis is horizontal and coincides with the x-axis.
The yh-axis forms a 2π/3 angle with it. EH and AB have length 2s and vt − s,
respectively. In this example, ψ = 19π/180 and s = 1. The angles marked with a line

are equal to ψ, because the angle formed by
−−→
y2A and the x-axis is right, as well as’EAB. Accordingly, ’y2AB = π/2− ψ implies that ’EAy2 = ψ.

From Figure B.6,

2s = (y2 − y1) cos(ψ), y2 =
s

cos(ψ)
and y1 = − s

cos(ψ)
. (B.4)

Consider a robot with coordinates (xg, yg). The four sides of the rectangle EFGH,
HG, EF , EH and FG, have the following equations of line: yg = y1 + tan(ψ)xg, yg =

y2 + xg tan(ψ), yg = tan
(
ψ + π

2

)
xg and yg = tan(ψ + π

2
)
Ä
xg − vt−s

cos(ψ)

ä
, respectively.

The term vt−s
cos(ψ)

in the last equation arises because of the length of AC, which is

the hypotenuse of △ABC whose side AB measures vt. Knowing that tan
(
ψ + π

2

)
=

− cot(ψ), the equations below are all true for a robot at (xg, yg) to be inside or on the
boundary of the previously defined rectangle,

yg ≥ y1 + xg tan(ψ), yg ≤ y2 + xg tan(ψ), −xg ≤ tan(ψ)yg, and

−
Å
xg −

vt− s
cosψ

ã
≥ tan(ψ)yg.

(B.5)

Now take the minimum and maximum yh value for each parallel-to-yh line
depending on the xh value. Using (B.3) for converting (B.5) to xh and yh coordinate
system, i.e., hexagonal coordinates, one obtains for HG and EFÇ√

3

2
+

1

2
tan(ψ)

å
yh − tan(ψ)xh ≥

y1
d

and
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Figure B.6: Example of counting robots in hexagonal packing with rotation in the
reference frame.
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3

2
+

1

2
tan(ψ)

å
yh − tan(ψ)xh ≤

y2
d
.

Hence,

y1
d
≤
Ç√

3

2
+

1

2
tanψ

å
yh − tan(ψ)xh ≤

y2
d
⇔

2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

≤ yh ≤
2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

. (B.6)

Analogously, but considering EH and FG,

−xh ≤
Ç

tan(ψ)

√
3

2
− 1

2

å
yh and

Ç
tan(ψ)

√
3

2
− 1

2

å
yh ≤

vt− s
d cos(ψ)

− xh. (B.7)

Based on the sign of
Ä
tan(ψ)

√
3
2
− 1

2

ä
and excluding the null case (when ψ = π/6),

there are two different inequalities over yh. Assuming ψ ∈ [0, π/3),
Ä
tan(ψ)

√
3
2
− 1

2

ä
>

0⇔ tan(ψ)
√
3
2
> 1

2
⇔ tan(ψ) > 1√

3
⇔ ψ > π/6. Thus, from (B.7),

−xh
√
3 tan(ψ)−1

2

≤ yh ≤
vt−s

d cos(ψ)
− xh

√
3 tan(ψ)−1

2

, if ψ > π/6,

vt−s
d cos(ψ)

− xh
√
3 tan(ψ)−1

2

≤ yh ≤
−xh

√
3 tan(ψ)−1

2

, if ψ < π/6.

(B.8)

−2xh√
3 tan(ψ)− 1

≤ yh ≤
2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1
, if ψ > π/6,

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1
≤ yh ≤

−2xh√
3 tan(ψ)− 1

, if ψ < π/6.

(B.9)

(B.6) and (B.9) restrict the value of yh depending on the value of xh by the relation
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max

Ç
2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,
−2xh√

3 tan(ψ)− 1

å
≤ yh

≤ min

(
2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1

)
, if ψ > π/6,

max

(
2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1

)
≤ yh

≤ min

Ç
2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,
−2xh√

3 tan(ψ)− 1

å
, if ψ < π/6.

(B.10)

Using hexagonal coordinates the position of each robot is represented by a pair
of integers. Then, assuming xh and yh integers, (B.10) becomes ⌈Y R

1 (xh)⌉ ≤ yh ≤
⌊Y R

2 (xh)⌋, for

Y R
1 (xh) =



max

Ç
2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,
−2xh√

3 tan(ψ)− 1

å
, if ψ > π/6,

max

(
2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1

)
, if ψ < π/6,

√
3y1 + dxh

2d
, if ψ = π/6,

=



max

Ç
2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,
−2xh√

3 tan(ψ)− 1

å
, if ψ > π/6,

max

(
2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1

)
, if ψ < π/6,

−
√
3s

cos(π/6)
+ dxh

2d
, if ψ = π/6,

=



max

Ç
2y1 cos(ψ)

d
+ 2 sin(ψ)xh√

3 cos(ψ) + sin(ψ)
,
−2xh cos(ψ)√

3 sin(ψ)− cos(ψ)

å
, if ψ > π/6,

max

Ç
2y1 cos(ψ)

d
+ 2 sin(ψ)xh√

3 cos(ψ) + sin(ψ)
,
2(vt−s)

d
− 2xh cos(ψ)

√
3 sin(ψ)− cos(ψ)

å
, if ψ < π/6,

−2
√
3s√
3

+ dxh

2d
, if ψ = π/6,
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=



max

Ç −2s
d

+ 2 sin(ψ)xh√
3 cos(ψ) + sin(ψ)

,
−2xh cos(ψ)√

3 sin(ψ)− cos(ψ)

å
, if ψ > π/6,

max

Ç −2s
d

+ 2 sin(ψ)xh√
3 cos(ψ) + sin(ψ)

,
2(vt−s)

d
− 2xh cos(ψ)

√
3 sin(ψ)− cos(ψ)

å
, if ψ < π/6,

−2s+ dxh
2d

, if ψ = π/6,

=



max

Ç
sin(ψ)xh − s

d

cos
(
π
6
− ψ

) , − cos(ψ)xh

sin
(
ψ − π

6

)å , if ψ > π/6,

max

Ç
sin(ψ)xh − s

d

cos
(
π
6
− ψ

) , vt−sd − cos(ψ)xh

sin
(
ψ − π

6

) å
, if ψ < π/6,

xh
2
− s

d
, if ψ = π/6,

=



max

Ç
d sin(ψ)xh − s
d cos

(
π
6
− ψ

) , − cos(ψ)xh

sin
(
ψ − π

6

)å , if ψ > π/6,

max

Ç
d sin(ψ)xh − s
d cos

(
π
6
− ψ

) , vt− s− d cos(ψ)xh

d sin
(
ψ − π

6

) å
, if ψ < π/6,

xh
2
− s

d
, if ψ = π/6,

(B.11)

Y R
2 (xh) =



min

(
2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1

)
, if ψ > π/6,

min

Ç
2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,
−2xh√

3 tan(ψ)− 1

å
, if ψ < π/6,

√
3y2 + dxh

2d
, if ψ = π/6,

=



min

Ç
sin(ψ)xh + s

d

cos
(
π
6
− ψ

) , vt−sd − cos(ψ)xh

sin
(
ψ − π

6

) å
, if ψ > π/6,

min

Ç
sin(ψ)xh + s

d

cos
(
π
6
− ψ

) , − cos(ψ)xh

sin
(
ψ − π

6

)å , if ψ < π/6,

xh
2

+
s

d
, if ψ = π/6.

(B.12)

The simplifications above used (B.4), cos
(
π
6
−ψ

)
=

√
3
2

cos(ψ) + 1
2

sin(ψ) and sin
(
ψ−

π
6

)
=

√
3
2

sin(ψ)− 1
2

cos(ψ).
Now the possible integer values for the xh-axis which are inside the rectangle

EFGH are obtained, that is, the number of lines parallel with the yh-axis that
intersect the rectangle for xh integer values is counted. Let nl be the number of

205



Appendix B. Proofs of Chapter 4 B.4. Proof of Proposition 6

such parallel lines. Consider nl = n−
l + n+

l , such that n−
l is the number of lines

parallel to the yh-axis whose intersection with the xh-axis is a point (i, 0) for i < 0
and i ∈ Z, and n+

l is similar but for non-negative integer i. For example, Figure B.5
has n−

l = 0 and n+
l = 6 (it is marked below the values of the points over the x-axis

the equivalent over xh-axis, in order to aid enumerating them). Note that the point
(i, 0) may be outside of the rectangle, but it will still be counted if there are integer
(i, yh) coordinates inside the rectangle. The next lemma shows how to compute n+

l

and n−
l to aid in this proof development.

Lemma 4. On the (xh, yh) coordinate system, the integer values for xh robot
coordinates inside the rectangle EFGH are in the set {−n−

l , . . . , n
+
l − 1} with

n+
l =

õ
2(vt− s) cos(ψ − π/6) + 2s sin(|ψ − π/6|)√

3d
+ 1

û
, (B.13)

and

n−
l =

õ
2s sin (|ψ − π/6|)√

3d

û
. (B.14)

Proof. The value of n+
l is obtained by counting how many parallel-to-yh lines, when

projected over the x-axis, are distant from each other by d on this axis and are
inside the rectangle. These lines must intersect the diagonal HF of the rectangle, but
commencing from the intersection between the yh-axis and the diagonal, i.e., from B0

in the Figure B.7. In this figure, Bi is the intersection of a parallel-to-yh line on a
xh integer coordinate and the diagonal HF . The triangles ADiCi for any i ∈ {1, 2}
and ADC are similar. ADi and ACi have distance i · d and i · e, respectively. In this
example, d = 2 and there are three points lying over HF .

Let ϕ = arctan
Ä

2s
vt−s

ä
be the angle of the diagonal in relation to the rectangle

base. There are two cases depending on the value of ψ.

• Case ψ ≤ π
6
: from Figure B.7, every line parallel to yh is distant by d on the

projection onto the x-axis. The triangles ADiCi for any i ∈ {1, . . . , n+
l − 1}

and ADC are similar, |AD1| = d and |AC1| = e, whose value is unknown for

the moment. △ADC has angles ’CAD = ψ + ϕ, ’ADC = π/3 and ’ACD =

π −’CAD −’ADC = 2π/3− ψ − ϕ. As for every i, △ADiCi ∼ △ADC,

|AC|
|AC1|

=
|AD|
|AD1|

⇔ |AC|
e

=
|AD|
d

. (B.15)
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Figure B.7: Counting how many points named Bi lie in the diagonal HF .
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As AHFI is a parallelogram, |HF | = |AI| and |FI| = |AH| = s, then |BI| =
2s. Thus, |AI| =

√
(2s)2 + (vt− s)2, because △ABI is right-angled. Also, by

the law of sines, |AD|
sin(’ACD)

= |AC|
sin(’ADC)

⇔

|AD| = |AC|sin(’ACD)

sin(’ADC)
=
(
|AI| − |CI|

) sin(’ACD)

sin(’ADC)

=
(
|AI| − |CI|

) sin(2π/3− ψ − ϕ)

sin(π/3)
.

(B.16)

AB0FC is a parallelogram as well, so |AC| = |B0F | = |HF | − |HB0| and
|CI| = |HB0|.

The △AB0H has angles ÷HAB0 = ’HAB −÷B0AB = ’HAB − (÷B0AD+ ’DAB) =

π/2 − (π/3 + ψ) = π/6 − ψ, ÷AHB0 = ’AHG −’FHG = π/2 − ϕ and ÷HB0A =

π−÷HAB0−÷AHB0 = π/3 +ψ+ϕ. By the law of sines, |HB0| = sin(◊�HAB0)|AH|
sin(◊�HB0A)

=

sin(π/6−ψ)s
sin(π/3+ψ+ϕ)

. Hence,

|AD| =
(
|AI| − |CI|

) sin(2π/3− ψ − ϕ)

sin(π/3)
[from (B.16)]

=

Å»
(2s)2 + (vt− s)2 − s sin(π/6− ψ)

sin(π/3 + ψ + ϕ)

ã
sin(2π/3− ψ − ϕ)

sin(π/3)

=
»

(2s)2 + (vt− s)2 sin(2π/3− ψ − ϕ)

sin(π/3)
− s sin(π/6− ψ)

sin(π/3)

= 2
»

(2s)2 + (vt− s)2 sin(2π/3− ψ − ϕ)√
3

− 2s sin(π/6− ψ)√
3

=
2
√

(2s)2 + (vt− s)2sin (2π/3− ψ − ϕ)− 2s sin(π/6− ψ)√
3

=
2
√

(2s)2 + (vt− s)2
(
sin(2π

3
− ψ) cos(ϕ)− cos

(
2π
3
− ψ

)
sin(ϕ)

)
√

3

−
2s sin(π

6
− ψ)

√
3
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=

2
√

(2s)2 + (vt− s)2
Å

sin(2π/3−ψ)(vt−s)√
(2s)2+(vt−s)2

− 2s cos(2π/3−ψ)√
(2s)2+(vt−s)2

ã
√

3

− 2s sin(π/6− ψ)√
3

=
2 (sin(2π/3− ψ)(vt− s)− 2s cos(2π/3− ψ))− 2s sin(π/6− ψ)√

3

=
2 (sin(2π/3− ψ)(vt− s) + 2s sin(π/6− ψ))− 2s sin(π/6− ψ)√

3

=
2 sin(2π/3− ψ)(vt− s) + 4s sin(π/6− ψ)− 2s sin(π/6− ψ)√

3

=
2 sin(2π/3− ψ)(vt− s) + 2s sin(π/6− ψ)√

3

=
2 cos(π/6− ψ)(vt− s) + 2s sin(π/6− ψ)√

3
(B.17)

Above it was used sin(2π/3−ψ) = cos(π/6−ψ), cos(2π/3−ψ) = − sin(π/6−ψ),
sin(2π/3−ψ−ϕ) = sin(π/3+ψ+ϕ), sin(2π/3−ψ−ϕ) = sin(2π/3−ψ) cos(ϕ)−
cos(2π/3 − ψ) sin(ϕ), sin(arctan(y/x)) = y√

x2+y2
, and cos( arctan(y/x)) =

x√
x2+y2

.

Therefore, the number of lines parallel to the yh-axis intersecting B0F for integer
xh values is

n+
l =

ú
|B0F |
e

+ 1

ü
=

ú
|HF | − |HB0|

e
+ 1

ü
=

ú
|AC|
e

+ 1

ü
=

ú
|AD|
d

+ 1

ü
[from (B.15)]

=

õ
2 cos(π/6− ψ)(vt− s) + 2s sin(π/6− ψ)√

3d
+ 1

û
[from (B.17)]

• Case ψ > π
6
: Figure B.8 shows this case. The triangles ADiCi for any i ∈ {1, 2}

and ADC are similar. ADi and ACi have distance i · d and i · e, respectively. In
this example, d = 2 and there are three points lying over EG. Observe that when
ψ > π

6
, EA is on the left side of the yh-axis. Also, note that it is being considered

now the diagonal EG, because the yh-axis does not intersect the diagonal HF
for these values of ψ. Then, one has to consider B0G to count n+

l . Additionally,
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|B0G| = |AC|, due to the AB0GC parallelogram properties. As in the previous

case, for i ∈ {1, . . . , n+
l −1},△ADiCi ∼ △ADC, ’CAD = ’BAD−’BAC = ψ−ϕ,’ADC = π/3, ’ACD = π−’CAD−’ADC = 2π/3−ψ+ϕ, and |B0G|

e
= |AC|

e
= |AD|

d
,

by the similarity of these triangles as showed in the previous case. Also, ÷EAB0 =’DAE−÷DAB0 = ψ+π/2−2π/3 = ψ−π/6, ÷B0EA = ’FEA−÷FEB0 = π/2−ϕ,÷EB0A = π−÷B0EA−÷EAB0 = π− (π/2−ϕ)− (ψ−π/6) = 2π/3+ϕ−ψ. Thus,

by the law of sines, |B0E|
sin(÷EAB0)

= |EA|
sin(÷EB0A)

⇔ |B0E| = s sin(÷EAB0)

sin(÷EB0A)
= s sin(ψ−π/6)

sin(2π/3+ϕ−ψ) .

EAIG and B0ACG are parallelograms sharing the points G and A, so |B0E| =
|CI|. By following similar steps as before,

n+
l =

ú
|B0G|
e

+ 1

ü
=

ú
|AC|
e

+ 1

ü
=

ú
|AD|
d

+ 1

ü
=

⌊(
|AI| − |CI|

) sin(2π/3−ψ+ϕ)
sin(π/3)

d
+ 1

⌋

=

Ä√(2s)2 + (vt− s)2 − s sin(ψ−π/6)
sin(2π/3−ψ+ϕ)

ä
sin(2π/3−ψ+ϕ)

sin(π/3)

d
+ 1


=

⌊√
(2s)2 + (vt− s)2 sin(2π/3−ψ+ϕ)

sin(π/3)
− s sin(ψ−π/6)

sin(π/3)

d
+ 1

⌋

=

ú
2
√

(2s)2 + (vt− s)2sin(2π/3− ψ + ϕ)− 2s sin(ψ − π/6)√
3d

+ 1

ü
=

⌊
2
√

(2s)2 + (vt− s)2(sin(2π/3− ψ) cos(ϕ) + cos(2π/3− ψ) sin(ϕ))√
3d

− 2s sin(ψ − π/6)√
3d

+ 1

⌋

=

õ
2 sin(2π/3− ψ)(vt− s) + 4s cos(2π/3− ψ)− 2s sin(ψ − π/6)√

3d
+ 1

û
=

õ
2 sin(2π/3− ψ)(vt− s) + 4s sin(ψ − π/6)− 2s sin(ψ − π/6)√

3d
+ 1

û
=

õ
2 sin(2π/3− ψ)(vt− s) + 2s sin(ψ − π/6)√

3d
+ 1

û
=

õ
2 cos(π/6− ψ)(vt− s) + 2s sin(ψ − π/6)√

3d
+ 1

û
.
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Figure B.8: Counting how many points named Bi lie in the diagonal EG.

This time sin(2π/3− ψ) = cos(ψ− π/6) and cos(2π/3− ψ) = sin(ψ− π/6) was
used.

For the final result on (B.13), one can simplify it using the fact that when ψ ≤ π/6,
sin(|ψ − π/6|) = sin(π/6− ψ), otherwise, sin(|ψ − π/6|) = sin(ψ − π/6).

For n−
l , it is also calculated how many lines parallel to the yh-axis projected over

the x-axis are distant from each other by d on this axis and are inside the rectangle.
However, consider only those on the left side of the point A, i.e., commencing from
the one whose intersection with the x-axis is at (−d, 0), equivalently, (−1, 0) on the
(xh, yh) coordinate system. Also, there are two cases here.

• Case ψ ≤ π/6: Figure B.9 shows the △HIA on the left side of the rectangle
EFGH. The pink line on the left side is an example of one satisfying Lemma
6, while the one on the right side, Lemma 7. The triangles ACE, HIA, BMG
and BNF are congruent, because their respective angles are equal – due to
parallelism – and |EA| = |AH| = |GB| = |FB| = s. In this example, except

for
←→
JH,
←→
EC,
←−→
MG,

←→
BL and

←→
FD, the lines parallel-to-yh are distant by d on the

projection over the x-axis and can have robots on them. As the robots are over
the parallel-to-yh lines distant by d on the projection over the x-axis, the goal is
to know how many parallel lines intersect HI (equivalently, how many such lines
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Figure B.9: Triangles ACE, HIA, BMG, BNF and the rectangle EFGH for ψ ≤
π/6.

intersect JA due to parallelism), excluding
←→
AI (because it was already counted

on n+
l ). Thus,

n−
l =

õ |HI|
d

û
.

It is known that |AH| = s, “H = π/2 + ψ, Î = π/3 and Â = π − Î − “H =
π − π/3− (π/2 + ψ) = π/6− ψ. By the law of sines on the angles opposite to
the sides AH and HI, results the following

|HI| = |AH| sin(Â)

sin(Î)
=
s sin

(
π
6
− ψ

)
sin
(
π
3

) =
2s sin

(
π
6
− ψ

)
√

3
. (B.18)

Thus,

n−
l =

ú
2s sin

(
π
6
− ψ

)
√

3d

ü
.

• Case ψ > π/6. Figure B.10 illustrates this case. The side EH has an angle
greater than zero with the yh-axis. The pink line on the left side is an example of
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Figure B.10: Triangles AIE, HCA, FNB and BMG and the rectangle EFGH for
ψ > π/6.

one satisfying Lemma 6, while the one on the right side, Lemma 7. The triangles
AIE, HCA, FNB and BMG are congruent, because their respective angles are
equal – due to parallelism – and |EA| = |AH| = |GB| = |FB| = s. Except

for
←→
EJ,
←→
CH,

←→
FK,

←→
BL and

←→
GD, the lines parallel-to-yh are distant by d on the

projection over the x-axis and can have robots on them. The reasoning is similar
to the previous case, but now using △EIA. Then, |EA| = s, “E = π/2 − ψ,

Î = 2π/3 and Â = π− Î − “E = π− 2π/3− (π/2−ψ) = ψ−π/6. Consequently,

n−
l =

ú
|EI|
d

ü
=

ú
2s sin

(
ψ − π

6

)
√

3d

ü
.

For the final result in (B.14), the absolute value inside the sine function is used to
combine both cases.

The previous lemma has the calculations for the interval of an integer xh values
needed for counting the robots inside the rectangle. The next lemma presents the
equation for the number of robots at the rectangular part (NR) ranging from these
integer xh values. Although the proposition that is now being proved gives the
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throughput in terms of θ, this number is first going to be calculated in terms of
ψ.

Lemma 5. For ψ ∈ [0, π/3),

NR(t, ψ) =

n+
l −1∑

xh=−n−
l

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
.

If for some xh
⌊
Y R
2 (xh)

⌋
<
⌈
Y R
1 (xh)

⌉
, the respective summand for this xh is zero.

Proof. By the previous lemma and knowing that the positions of the robots are integer
coordinates over the hexagonal grid coordinate space,

NR(t, ψ) =

n+
l −1∑

xh=−n−
l

⌊Y R2 (xh)⌋∑
yh=⌈Y R1 (xh)⌉

1 =

n+
l −1∑

xh=−n−
l

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
.

since (B.11) and (B.12) give the minimum (Y R
1 ) and maximum (Y R

2 ) yh coordinates
for a given xh value such that the robot is inside the rectangle. Note that the
last summation can only be used when

⌊
Y R
2 (xh)

⌋
≥
⌈
Y R
1 (xh)

⌉
, otherwise a negative

number of robots would be accounted.

In special, for ψ = π/6, by (B.11) and (B.12),

N(t, π/6) =

⌊
2(vt−s)√

3d

⌋∑
xh=0

Çú√
3y2 + dxh

2d

ü
−
¢√

3y1 + dxh
2d

•
+ 1

å
. (B.19)

If ψ ̸= π/6, each parallel-to-yh-axis line intersects two segments of the rectangle
EFGH. The yh-components of the two intersections of a rectangle side and such
lines are the values of Y R

1 (xh) and Y R
2 (xh) for a given xh. Hence, the set of xh

integer values {−n−
l , . . . , n

+
l − 1} will be cut in disjoint subsets based on the max

and min outcomes of (B.11) and (B.12). That is, Y R
1 (xh) and Y R

2 (xh), respectively;
equivalently, which two sides of the rectangle the parallel-to-yh-axis line corresponding
to (xh, 0) intersects. The following lemmas describe each subset: {−n−

l , . . . , n
−
l } in

Lemma 6; {n−
l + 1, . . . , K ′ − 1} in Lemma 9; {K ′, . . . , n+

l − 1} in Lemma 7, for an
integer K ′ defined later.

Lemma 6. Consider parallel-to-yh-axis lines inside the rectangle EFGH intersecting
the xh-axis at (xh, 0), for xh ∈ Z. The two following statements are equivalent:
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(I) If ψ < π/6,

Y R
1 (xh) =

2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

and Y R
2 (xh) =

−2xh√
3 tan(ψ)− 1

, (B.20)

and, if ψ > π/6,

Y R
1 (xh) =

−2xh√
3 tan(ψ)− 1

and Y R
2 (xh) =

2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

. (B.21)

(II) xh ∈ {−n−
l , . . . , n

−
l }.

Proof. (I)⇒ (II) : Let ψ < π/6. By (B.11) and (B.12), (B.20) is equivalent to

sin(ψ)xh − s
d

cos
(
π
6
− ψ

) ≥ vt−s
d
− cos(ψ)xh

sin
(
ψ − π

6

) and
sin(ψ)xh + s

d

cos
(
π
6
− ψ

) ≥ − cos(ψ)xh

sin
(
ψ − π

6

) .
From the second inequality,

sin(ψ)xh + s
d

cos
(
π
6
− ψ

) ≥ − cos(ψ)xh

sin
(
ψ − π

6

) ⇔ Ç
sin(ψ)

cos
(
π
6
− ψ

) +
cos(ψ)

sin
(
ψ − π

6

)åxh ≥ − s

d cos
(
π
6
− ψ

)
⇔
Ç

sin(ψ) sin
(
ψ − π

6

)
+ cos(ψ) cos

(
π
6
− ψ

)
cos
(
π
6
− ψ

)
sin
(
ψ − π

6

) å
xh ≥ −

s sin
(
ψ − π

6

)
d cos

(
π
6
− ψ

)
sin
(
ψ − π

6

)
⇔
Ç

sin(ψ) sin
(
ψ − π

6

)
+ cos(ψ) cos

(
ψ − π

6

)
cos
(
π
6
− ψ

)
sin
(
ψ − π

6

) å
xh ≥ −

s sin
(
ψ − π

6

)
d cos

(
π
6
− ψ

)
sin
(
ψ − π

6

)
⇔
Ç

cos(ψ − (ψ − π
6
))

cos
(
π
6
− ψ

)
sin
(
ψ − π

6

)åxh ≥ − s sin
(
ψ − π

6

)
d cos

(
π
6
− ψ

)
sin
(
ψ − π

6

)
⇔
Ç

cos(ψ − ψ + π
6
)

cos
(
π
6
− ψ

)
sin
(
ψ − π

6

)åxh ≥ − s sin
(
ψ − π

6

)
d cos

(
π
6
− ψ

)
sin
(
ψ − π

6

)
⇔
Ç

cos(π
6
)

cos
(
π
6
− ψ

)
sin
(
ψ − π

6

)åxh ≥ − s sin
(
ψ − π

6

)
d cos

(
π
6
− ψ

)
sin
(
ψ − π

6

)
⇔
Ç √

3
2

cos
(
π
6
− ψ

)
sin
(
ψ − π

6

)åxh ≥ − s sin
(
ψ − π

6

)
d cos

(
π
6
− ψ

)
sin
(
ψ − π

6

)
⇔ xh ≤

−s sin
(
ψ − π

6

)
√
3
2
d

⇔ xh ≤
−2s sin

(
ψ − π

6

)
√

3d
⇔ xh ≤=

2s sin
(
π
6
− ψ

)
√

3d
.
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The change of inequality sign above is due to cos
(
π
6
−ψ

)
sin
(
ψ− π

6

)
< 0 for ψ < π/6.

As xh ∈ Z,

xh ≤
ú

2s sin
(
π
6
− ψ

)
√

3d

ü
= n−

l .

The lower value on xh is obtained by Lemma 4, as to be inside the rectangle EFGH
xh ≥ −n−

l . For ψ > π/6, the same result is obtained by a similar reasoning, but
without changing the inequality sign since in this case cos

(
π
6
− ψ

)
sin
(
ψ − π

6

)
> 0.

(II) ⇒ (I) : From (B.6), (B.7) (i.e., the line equations for
←→
HG,

←→
EH and

←→
EF ),

(B.11) and (B.12) (i.e., the definitions of Y R
1 and Y R

2 ), if ψ < π/6,

(xh, Y
R
1 (xh)) ∈

←→
HG⇔ Y R

1 (xh) =
2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

,

(xh, Y
R
2 (xh)) ∈

←→
EH ⇔ Y R

2 (xh) =
−2xh√

3 tan(ψ)− 1
,

and, if ψ > π/6,

(xh, Y
R
1 (xh)) ∈

←→
EH ⇔ Y R

1 (xh) =
−2xh√

3 tan(ψ)− 1
,

(xh, Y
R
2 (xh)) ∈

←→
EF ⇔ Y R

2 (xh) =
2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

.

Then, this part is proved by showing that for all xh ∈ {−n−
l , . . . , n

−
l }, the line

parallel to the yh-axis intercepting the point (xh, 0) intercepts both sides EH and
HG (and no other), if ψ < π/6 (Figure B.9), and, if ψ > π/6, both sides EH and
EF (and no other) (Figure B.10).

• Case ψ < π/6: Figure B.9 shows the triangles HIA, ACE and BMG inside
the rectangle EFGH. As the robots are over the parallel lines to the yh-axis,
which are distant by d when projected over the x-axis, the objective is to know
how many such parallel lines intersect HI (equivalently, how many such lines
intersect JA due to parallelism) or AC. For such parallel lines that intersect HI,
Lemma 4 showed that for every xh ∈ {−n−

l , . . . ,−1} the line parallel to yh-axis
intersecting (xh, 0) is inside the rectangle. Also, these lines intersect the sides

EH and HG, as any line parallel to
←→
AI which is on its left side intersects the

sides EH and HG if it is inside the rectangle. For the case where such parallel
lines intersect AC, the maximum integer value, M , must be known such that
these parallel lines still intersect the sides EH and HG for any xh ∈ {0, . . . ,M}.
Starting from point A (that is, when xh = 0),
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M =

ú
|AC|
d

ü
.

It is given that |AH| = |EA| = s,
←→
AI ∥

←→
EC,

←→
HI ∥

←→
AC, and

←→
AH ∥

←→
AE (as E,

A and H are collinear), then ’IHA = ’CAE,’AIH = ’ECA, and ’HAI = ’AEC.
Thus, △HIA ∼= △ACE, then |AC| = |HI|, whose value has been previously
calculated in Lemma 4, leading to

M =

ú
2s sin

(
π
6
− ψ

)
√

3d

ü
= n−

l .

Hence, for any xh ∈ {0, . . . , n−
l }, those parallel lines intersect the sides EH and

HG.

• Case ψ > π/6: Figure B.10 illustrates this case. The reasoning is similar to the
previous case, but using that △AIE ∼= △HCA. As the value for |EI|/d also
has been calculated in Lemma 4 for this figure, then

M =

ú
2s sin

(
ψ − π

6

)
√

3d

ü
= n−

l .

Consequently, for any xh ∈ {−n−
l , . . . , n

−
l }, the parallel-to-yh-axis line at (xh, 0)

intersects the sides EH and EF in this case.

The next lemma will define the integer K ′ mentioned before. This number will
be compared with the integer xh coordinate of the point (n+

l − 1, 0) intersected by
the rightmost parallel-to-yh-axis line inside the rectangle EFGH. Assuming θ ̸= π/6,
if this rightmost line intersects a point on the xh-axis with an integer coordinate
less than K ′, then no parallel-to-yh-axis line intersects the rectangle right side FG.
However, if the intersection point coordinate is greater than or equal to K ′, then at
least one parallel line crosses FG.

Lemma 7. Consider parallel-to-yh-axis lines inside the rectangle EFGH intersecting

the xh-axis at (xh, 0), for xh ∈ Z, and K ′ =
†
2(vt−s) cos(ψ−π/6)−2s sin(|ψ−π/6|)√

3d

£
. Then,

the two statements below are equivalent:

(I) If ψ < π/6

Y R
1 (xh) =

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1
and Y R

2 (xh) =
2y2
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

, (B.22)
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and, if ψ > π/6

Y R
1 (xh) =

2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

and Y R
2 (xh) =

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1
. (B.23)

(II) xh ∈ {K ′, . . . , n+
l − 1}.

Proof. (I) ⇒ (II): By contrapositive, assume xh /∈ {K ′, . . . , n+
l − 1}. By Lemma 4,

there is no xh > n+
l − 1, so xh < K ′. For the case of ψ < π/6, observe in Figure

B.9 the point K on the xh-axis. This point corresponds to the intersection of
←−→
MG on

the xh-axis, which is the first parallel-to-yh-axis crossing the rectangle right side FG.
The point D on the xh-axis is the projection of the point F on this axis. By (B.17),

|AD| = 2 cos(π/6−ψ)(vt−s)+2s sin(|ψ−π/6|)√
3

. Because of the parallelism, |MN | = |KD|. Due

to the congruence of triangles ACE, HIA, BMG and BNF and (B.18), |BM | =

|BN | = |HI| = 2s sin(|ψ−π/6|)√
3

. Thus, |KD| = |MN | = |BM | + |BN | = 4s sin(|ψ−π/6|)√
3

.

Since |AK| = |AD| − |KD| = 2 cos(π/6−ψ)(vt−s)−2s sin(|ψ−π/6|)√
3

, the point K is located on

the (xh, yh) coordinate space at

Å
2 cos(π/6−ψ)(vt−s)√

3d
− 2s sin(|ψ−π/6|)√

3d
, 0

ã
, as K is on the

x-axis and to convert it to (xh, yh) coordinate space it is only needed to divide the
x-coordinate by d. On the xh-axis, the nearest point on the right of K with integer
xh is (⌈K⌉ , 0) = (K ′, 0). As it is assumed xh < K ′, no parallel-to-yh-axis crossing a
integer (xh, 0) point inside the rectangle intersects FG. Thus, no such parallel line

has Y R
1 (xh) =

2(vt−s)
d cos(ψ)

−2xh√
3 tan(ψ)−1

, which is the yh-coordinate of the intersection of this line

with
←→
FG.

In the case of ψ > π/6, using a similar argument as in Figure B.10 leads to the
desired result, but here |NB| + |MG| = |KD| and the congruence is between the
triangles AIE, HCA, FNB and BMG. As it is assumed xh < K ′, no parallel-to-yh-
axis intersecting a integer point (xh, 0) inside the rectangle crosses FG, so for such

line Y R
2 (xh) ̸=

2(vt−s)
d cos(ψ)

−2xh√
3 tan(ψ)−1

.

(II) ⇒ (I) : If xh ∈ {K ′, . . . , n+
l − 1} then the lines parallel-to-yh-axis inside the

rectangle intersecting the xh-axis at (xh, 0) are on the right of point K or intersecting
it. Hence, these lines intersect EF and FG, if ψ < π/6. By applying (B.6), (B.7) (for

the line equations for
←→
EF and

←→
FG), (B.11) and (B.12) (for the definitions of Y R

1 and
Y R
2 ), (B.22) is obtained. A similar argument is used in the case of ψ > π/6, but for
FG and HG intersections, yielding (B.23).

The lemma below characterises when a parallel-to-yh-axis line touches only the
sides EH and FG of the rectangle. Intuitively, if this happens, a rectangle with a
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small width is obtained. Thus, on rectangles with a large width, no such lines are
crossing the sides EH and FG, for ψ ̸= π/6. This lemma will be used on the Lemma
9, for completing the disjoint subsets based on the possible max and min outcomes of
Y R
1 and Y R

2 .

Lemma 8. If vt − s > 2s tan(|ψ − π
6
|), then there is not a xh ∈ {−n−

l , . . . , n
+
l − 1}

such that,

Y R
1 (xh) =

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1
and Y R

2 (xh) =
−2xh√

3 tan(ψ)− 1
, if ψ < π/6;

Y R
1 (xh) =

−2xh√
3 tan(ψ)− 1

and Y R
2 (xh) =

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1
, if ψ > π/6.

Proof. This proof is by contrapositive. Assume ψ < π/6. By (B.11) and (B.12), there
is an xh such that

y1
d

+ tan(ψ)xh
√
3+tan(ψ)

2

≤
vt−s

d cos(ψ)
− xh

√
3 tan(ψ)−1

2

and
y2
d

+ tan(ψ)xh
√
3+tan(ψ)

2

≥ −xh
√
3 tan(ψ)−1

2

.

Since
√
3 tan(ψ)−1

2
< 0, the signs of inequalities change, then the following

implication is obtained

y1
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

− vt− s
d cos(ψ)

≥ −xh −
tan(ψ)xh

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

and

y2
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

≤ −xh −
tan(ψ)xh

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

⇒
y2
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

≤
y1
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

− vt− s
d cos(ψ)

,

by the transitivity of ≤ under the real numbers. Also, the following equivalences is
obtained
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y2
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

≤
y1
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

− vt− s
d cos(ψ)

⇔ vt− s
d cos(ψ)

≤
y1
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

−
y2
d

√
3 tan(ψ)−1

2√
3+tan(ψ)

2

⇔ vt− s
d cos(ψ)

≤ y1 − y2
d

√
3 tan(ψ)− 1√
3 + tan(ψ)

⇔ vt− s
d cos(ψ)

≤ − 2s

d cos(ψ)

√
3 tan(ψ)− 1√
3 + tan(ψ)

[By (B.4)]

⇔ vt− s
2s

≤ 1−
√

3 tan(ψ)√
3 + tan(ψ)

⇔ vt− s
2s

≤ 1

tan(π/3 + ψ)

⇔ vt− s
2s

≤ cot(π/3 + ψ)⇔ vt− s
2s

≤ − tan(ψ + 5π/6)

⇔ vt− s ≤ 2s tan(π/6− ψ).

It is used above the equalities tan(a+ b) = tan(a)+tan(b)
1−tan(a) tan(b)

, cot(a) = − tan(a+ π/2) and

− tan(π − a) = tan(a) for any real a and b.
For the case ψ > π/6, using similar arguments the same result is obtained, but the

signs of inequalities are not changed due to
√
3 tan(ψ)−1

2
> 0 in this case. The conclusion

is reached after combining the two cases using absolute values inside the tangent.

The next lemma completes the properties of NR(t, ψ) that are useful for calculating
its limit when t tends to infinity.

Lemma 9. Let K ′ =
†
2(vt−s) cos(ψ−π/6)−2s sin(|ψ−π/6|)√

3d

£
. If vt − s > 2s tan(|ψ − π/6|),

then xh ∈ {n−
l + 1, . . . , K ′ − 1} if and only if

Y R
1 (xh) =

y1
d

+ tan(ψ)xh
√
3+tan(ψ)

2

and Y R
2 (xh) =

y2
d

+ tan(ψ)xh
√
3+tan(ψ)

2

.

Proof. Excluding the case when ψ = π/6, (B.11) and (B.12) give four combinations
of possible outcomes for the values of Y R

1 (xh) and Y R
2 (xh) based on the results of min

and max. When vt− s > 2s tan(|ψ − π/6|), by Lemma 8, there is not the case when
they are on the sides EH and FG. For the given values of xh on the hypothesis,
neither Lemma 6 nor Lemma 7 applies, excluding other two combinations of results
for Y R

1 (xh) and Y R
2 (xh). Finally, Lemma 4 shows that every parallel-to-yh-axis line

crosses the xh-axis at (xh, 0) for xh ∈ {−n−
l , . . . , n

+
l −1}, so the remaining combination

yields the desired equivalence.
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Now the calculation of NS(t, θ) is presented. Here θ is being used instead of
ψ = π/3− θ for easiness of presentation. Denote (lx, ly) the position of the last robot
inside a rectangle of width vt− s and height 2s whose left side is at (x0, y0). Here last
means the robot with highest x coordinate value. However, if two robots have the
same x coordinate value, take the robot whose y coordinate is nearer to y0. Let Z be
the set of robot positions inside the rectangle above for vt− s > 0.

Lemma 10. Let cx = x0 + vt− s, and

(lx, ly) =

®
argmin(x,y)∈Z |vt− s+ x0 − x|+ |y0 − y| if t > s

v
,

(x0, y0) otherwise.

Then,

NS(t, θ) =
U∑

xh=B

(
⌊Y S

2 (xh)⌋ − ⌈Y S
1 (xh)⌉+ 1

)
,

for
⌊
Y S
2 (xh)

⌋
≥
⌈
Y S
1 (xh)

⌉
(if for some xh

⌊
Y S
2 (xh)

⌋
<
⌈
Y S
1 (xh)

⌉
, assume the respective

summand for this xh being zero),

B =


°

2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(y0 − ly − s))√
3d

§
, if t >

s

v
,¢

−2
√

2svt− (vt)2√
3d

sin
(
θ +

π

6

)•
, otherwise,

(B.24)

if t > s
v
or arctan

Å
s
2
−sin(θ)(vt−s)

√
3s
2

+cos(θ)(vt−s)

ã
≤ π

2
− θ,

U =

õ
2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(y0 − ly) + s)√

3d

û
, (B.25)

otherwise,

U =

ú
2
√

2svt− (vt)2√
3d

cos
(
θ − π

3

)ü
. (B.26)

Also,

Y S
1 (xh) =

dxh − C−θ,x +
√

3C−θ,y −
√

∆(xh)

2d
,

Y S
2 (xh) =


min(L(xh), C2(xh))− 1, if min(L(xh), C2(xh)) = ⌊L(xh)⌋

and t >
s

v
,

min(L(xh), C2(xh)), otherwise,
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for

C−θ =

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

ò ï
cx − lx
y0 − ly

ò
,

∆(xh) = 4s2 −
Ä√

3(dxh − C−θ,x)− C−θ,y
ä2
,

C2(xh) =
dxh − C−θ,x +

√
3C−θ,y +

√
∆(xh)

2d
,

and

L(xh) =


sin
(
π
2
− θ
)

(dxh − C−θ,x) + cos
(
π
2
− θ
)
C−θ,y

d sin
(
5π
6
− θ
) , if t >

s

v
,

sin
(
π
2
− θ
)
xh

sin
(
5π
6
− θ
) , otherwise.

Proof. Assume t > s
v
, as shown in Figure B.3 (III). The robots are located in the

usual Euclidean space. However, instead of it, this proof uses a similar coordinate
system transformation for positioning the robots in a hexagonal grid with integer
coordinates, similarly to how it was performed in the rectangular part. As in the
previous lemmas, call this coordinate system space coordinates (xh, yh). However,
here a (xh, yh) coordinate system is being used with a different origin and inclination.

In order to do so, first redefine a (xg, yg) coordinate space, that is, perform rotation
by −θ on the usual Euclidean space about (lx, ly). The origin of the (xg, yg) coordinate
system is at (lx, ly). The transformation for (xg, yg) coordinate system used here is
similar to the depicted in the Figure B.4, but here −θ and (lx, ly) are being used
instead of −ψ and (x0, y0), i.e.,ï

xg
yg

ò
=

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

ò ï
x− lx
y − ly

ò
.

As the coordinate space (xg, yg) is already translated to the point (lx, ly), the
transformation from the new (xh, yh) to the new (xg, yg) is the same as in (B.3),
repeated below for convenience:ï

xg
yg

ò
=

ñ
d −d

2

0
√
3d
2

ô ï
xh
yh

ò
. (B.27)

Despite these differences, the notation (xg, yg) and (xh, yh) will be kept as before for
a clean presentation.

Figure B.11 shows how the semicircle with centre at C = (cx, cy) = (x0+vt−s, y0)
will be after the rotation by −θ about (lx, ly), that is,
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yh

xh

xh

yh
(I) (II)

yg

xg

Figure B.11: Semicircle for counting the robots after the rotation on the coordinate
space.

C−θ =

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

ò ï
cx − lx
cy − ly

ò
. (B.28)

In the space (I) in Figure B.11, the robots are in the standard coordinate system and

the semicircle with centre at C = (cx, cy) has the lowest point at B
′
.
←−→
CB

′
has angle π

2

with the usual x-axis, however the xh-axis here has angle θ with it. In (II) it is rotated
by −θ with (lx, ly) as centre of rotation. After this rotation, B

′
, U

′
and C become

B
′

−θ, U
′

−θ and C−θ, respectively, and
←−−−→
C−θB

′

−θ has angle π
2
− θ in relation to the xg-axis

and xh-axis, which are now coincident lines despite their scale being different. B and
U are the minimum and maximum values of the xh-axis coordinate for a line parallel
to the yh-axis on the hexagonal grid coordinate system. Hereafter the subscript −θ
is on every point presented on the usual Euclidean space to denote the corresponding
point on the (xg, yg) coordinate space.

The upper and lower values, U and B, of xh lying on the semicircle are computed
first. For getting the U value on the xh-axis, draw a line parallel to the yh-axis on the
rightmost semicircle boundary at the point U

′
in order to reach the xh-axis (Figure

B.11 (I)). The corresponding point on the (xg, yg) space is denoted by U
′

−θ (Figure B.11
(II)). U

′

−θ is computed, then its xh-value on the hexagonal grid coordinate system.

△U ′

−θC−θU2 in Figure B.11 (II) has |U ′

−θC−θ| = s and Ÿ�U
′
−θC−θU2 = π −Ÿ�C−θU

′
−θU2 −Ÿ�U

′
−θU2C−θ = π − π/2− π/3 = π/6. Hence,
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U
′

−θ = C−θ + s(cos(π/6), sin(π/6)) = C−θ +

Ç√
3s

2
,
s

2

å
=

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

ò ï
cx − lx
cy − ly

ò
+

ñ √
3s
2
s
2

ô
=

Å
cos(−θ)(cx − lx)− sin(−θ)(cy − ly) +

√
3s

2
,

sin(−θ)(cx − lx) + cos(−θ)(cy − ly) +
s

2

ã
=

Å
cos(θ)(cx − lx) + sin(θ)(cy − ly) +

√
3s

2
,

cos(θ)(cy − ly)− sin(θ)(cx − lx) +
s

2

ã
.

The inverse transformation from (B.27) isï
xh
yh

ò
=

ñ
1
d

1√
3d

0 2√
3d

ô ï
xg
yg

ò
. (B.29)

Applying the transformation of (B.29) to the point U
′

−θ its xh-axis coordinate is

U =
1

d

Ç
cos(θ)(cx − lx) + sin(θ)(cy − ly) +

√
3s

2

å
+

1√
3d

(
cos(θ)(cy − ly)− sin(θ)(cx − lx) +

s

2

)
=

1

d
(cos(θ)(cx − lx) + sin(θ)(cy − ly)) +

√
3s

2d
+

1√
3d

(cos(θ)(cy − ly)− sin(θ)(cx − lx)) +
s

2
√

3d

=
1

d
(cos(θ)(cx − lx) + sin(θ)(cy − ly)) +

3s+ s

2
√

3d
+

1√
3d

(cos(θ)(cy − ly)− sin(θ)(cx − lx))

=
cos(θ)(cx − lx) + sin(θ)(cy − ly)

d
+

cos(θ)(cy − ly)− sin(θ)(cx − lx)√
3d

+
2s√
3d
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=
1√
3d

(
√

3 cos(θ)(cx − lx) +
√

3 sin(θ)(cy − ly) + cos(θ)(cy − ly)

− sin(θ)(cx − lx)) +
2s√
3d

=
2√
3d

(√
3

2
cos(θ)(cx − lx) +

√
3

2
sin(θ)(cy − ly) +

1

2
cos(θ)(cy − ly)

− 1

2
sin(θ)(cx − lx)

)
+

2s√
3d

=
2√
3d

((√
3

2
cos(θ)− 1

2
sin(θ)

)
(cx − lx) +

(√
3

2
sin(θ) +

1

2
cos(θ)

)
(cy − ly)

)
+

2s√
3d

=
2√
3d

((sin(π/3) cos(θ)− cos(π/3) sin(θ))(cx − lx) + (sin(π/3) sin(θ)

+ cos(π/3) cos(θ))(cy − ly)) +
2s√
3d

=
2√
3d

(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(cy − ly)) +
2s√
3d

=
2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(cy − ly) + s)√

3d
(B.30)

As the integer coordinate less or equal to this value is needed, the floor function is
applied to yield the desired result in (B.25).

For getting the B value on the xh-axis, draw a line parallel to the yh-axis on the
lower semicircle corner at the point B

′
in order to reach the xh-axis (Figure B.11 (I)).

A calculation similar to the previous paragraph is performed but using B
′

−θ (Figure

B.11 (II)). It is obtained ◊�C−θOU = π/2 − θ (as this is the same angle of
←−→
CB′ with

xh-axis in Figure B.11 (I) which coincides with xg-axis in the Figure B.11 (II)). Then,
as the vector C−θB

′

−θ is pointed downwards, it has negative angle with the xg-axis,

that is, −◊�B−θOU = −(π −◊�C−θOU) = −(π − (π/2 − θ)) = −π/2 − θ with xg-axis.

Also,
∣∣∣C−θB

′
−θ

∣∣∣ = s. Consequently,

−−−−−→
C−θB

′

−θ = B
′

−θ − C−θ = s(cos(−π/2− θ), sin(−π/2− θ))⇔
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B
′

−θ = C−θ + s(cos(−π/2− θ), sin(−π/2− θ))
= C−θ + s(sin(−θ),− cos(−θ))
= C−θ − s(sin(θ), cos(θ))

=

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

ò ï
cx − lx
cy − ly

ò
−
ï
s sin(θ)
s cos(θ)

ò
= (cos(θ)(cx − lx) + sin(θ)(cy − ly)− s sin(θ),

cos(θ)(cy − ly)− sin(θ)(cx − lx)− s cos(θ))

= (cos(θ)(cx − lx) + sin(θ)(cy − ly − s),
cos(θ)(cy − ly − s)− sin(θ)(cx − lx)).

Using (B.29) on B
′

−θ,

B =
1

d
(cos(θ)(cx − lx) + sin(θ)(cy − ly − s)) +

1√
3d

(cos(θ)(cy − ly − s)− sin(θ)(cx − lx))

=
cos(θ)(cx − lx) + sin(θ)(cy − ly − s)

d
+

cos(θ)(cy − ly − s)− sin(θ)(cx − lx)√
3d

=
1√
3d

(√
3 cos(θ)(cx − lx) +

√
3 sin(θ)(cy − ly − s) + cos(θ)(cy − ly − s)−

sin(θ)(cx − lx)
)

=
2√
3d

(√
3

2
cos(θ)(cx − lx) +

√
3

2
sin(θ)(cy − ly − s) +

1

2
cos(θ)(cy − ly − s)−

1

2
sin(θ)(cx − lx)

)

=
2√
3d

(√
3

2
cos(θ)(cx − lx)−

1

2
sin(θ)(cx − lx) +

√
3

2
sin(θ)(cy − ly − s)+

1

2
cos(θ)(cy − ly − s)

)

=
2√
3d

((sin(π/3) cos(θ)− cos(π/3) sin(θ))(cx − lx) + (sin(π/3) sin(θ)+

cos(π/3) cos(θ))(cy − ly − s))

=
2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(cy − ly − s))√

3d
.
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Then, the ceiling function is applied on this value to get an integer coordinate greater
or equal to it in order to obtain (B.24) for t > s

v
.

On the hexagonal grid coordinate system, for each xh from B to U , it is needed to
find the minimum and maximum yh – namely Y S

1 (xh) and Y S
2 (xh), respectively – of a

line parallel to yh-axis intercepting the xh-axis and lying on the semicircle. Depending

on the angle of
←−−−→
C−θB

′

−θ with the xh-axis, the minimum and maximum yh can be either

on the semicircle arc or
←−−−→
C−θB

′

−θ. Due to θ ∈ [0, π/3), the angle of
←−−−→
C−θB

′

−θ is in (π
6
, π
2
].

Thus, the minimum yh value is at the semicircle arc, otherwise the minimum angle

of
←−−−→
C−θB

′

−θ would be 2π/3, which is the yh-axis angle with the xh-axis. However, the

maximum yh value could be either on
←−−−→
C−θB

′

−θ or on the circle, thus take the lowest,
since the yh value on the boundary of the semicircle is wanted.

Let C1(xh) and C2(xh) be functions that respectively return the lowest and the
highest yh value at the circle centred at C−θ and radius s for a xh coordinate value
of a parallel-to-yh-axis line assuming it intersects the circle. Then, a point (xg, yg) on
the Euclidean space is on that circle if

(xg − C−θ,x)
2 + (yg − C−θ,y)

2 = s2 ⇔Å
dxh −

dyh
2
− C−θ,x

ã2

+

Ç√
3dyh
2
− C−θ,y

å2

= s2,

by (B.27).
Isolating yh and solving the two degree polynomial it is obtained

yh1 = C1(xh) =
dxh − C−θ,x +

√
3C−θ,y −

√
∆(xh)

2d
and (B.31)

yh2 = C2(xh) =
dxh − C−θ,x +

√
3C−θ,y +

√
∆(xh)

2d
, (B.32)

for 0 ≤ ∆(xh) = 4s2 −
Ä√

3(dxh − C−θ,x)− C−θ,y
ä2

. ∆(xh) cannot be negative,

otherwise the lines would not intersect this circle, contradicting the assumption.

Denote L(xh) a function that returns the yh component of the line
←−−−→
C−θB−θ for a

given xh. The
←−−−→
C−θB−θ equation for a point in the space (xg, yg) is
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tan
(π

2
− θ
)

=
yg − C−θ,y

xg − C−θ,x

⇔
sin
(
π
2
− θ
)

cos
(
π
2
− θ
) =

yg − C−θ,y

xg − C−θ,x

⇔ sin
(π

2
− θ
)Å

dxh −
dyh
2
− C−θ,x

ã
= cos

(π
2
− θ
)Ç√3dyh

2
− C−θ,y

å
⇔ sin

(π
2
− θ
)

(dxh − C−θ,x)− sin
(π

2
− θ
) dyh

2
= cos

(π
2
− θ
) √3dyh

2

− cos
(π

2
− θ
)
C−θ,y

⇔
√

3dyh
2

cos
(π

2
− θ
)

+ sin
(π

2
− θ
) dyh

2
= sin

(π
2
− θ
)

(dxh − C−θ,x)

+ cos
(π

2
− θ
)
C−θ,y

⇔ d

Ç√
3

2
cos
(π

2
− θ
)

+ sin
(π

2
− θ
) 1

2

å
yh = sin

(π
2
− θ
)

(dxh − C−θ,x)

+ cos
(π

2
− θ
)
C−θ,y

⇔ yh =
sin
(
π
2
− θ
)

(dxh − C−θ,x) + cos
(
π
2
− θ
)
C−θ,y

d
Ä√

3
2

cos
(
π
2
− θ
)

+ sin
(
π
2
− θ
)

1
2

ä
⇔ yh =

sin
(
π
2
− θ
)

(dxh − C−θ,x) + cos
(
π
2
− θ
)
C−θ,y

d
(
sin
(
π
3

)
cos
(
π
2
− θ
)

+ sin
(
π
2
− θ
)

cos
(
π
3

))
⇔ yh =

sin
(
π
2
− θ
)

(dxh − C−θ,x) + cos
(
π
2
− θ
)
C−θ,y

d sin
(
π
3

+ π
2
− θ
)

⇔ L(xh) = yh =
sin
(
π
2
− θ
)

(dxh − C−θ,x) + cos
(
π
2
− θ
)
C−θ,y

d sin
(
5π
6
− θ
) .

Y S
1 (xh) = C1(xh) and Y S

2 (xh) can be either min(L(xh), C2(xh)) or min(L(xh),
C2(xh)) −1. As t > s

v
, there can be a number of robots inside the rectangle

NR(t, θ) ≥ 1. If, for some xh, Y
′(xh) = min(L(xh), C2(xh)) = ⌊L(xh)⌋, then the

robot on (xh, Y
′(xh)) is on the line

←−−−→
C−θB

′

−θ. As this line belongs to the rectangle, the
robot was already counted by NR(t, θ). Hence,
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yh

xh

(I) (II)
yh

yg

xh

xg

Figure B.12: Similar to the coordinate spaces of Figure B.11, but for t ≤ s
v
.

Y S
2 (xh) =


min(L(xh), C2(xh))− 1, if min(L(xh), C2(xh)) = ⌊L(xh)⌋

and t >
s

v
,

min(L(xh), C2(xh)), otherwise.

The number of robots inside the semicircle is the number of integer coordinates
(xh, yh) for xh ranging from B to U and yh ∈

[⌈
Y S
1 (xh)

⌉
,
⌊
Y S
2 (xh)

⌋]
for each xh. Thus,

NS(t, θ) =
U∑

xh=B

⌊Y S2 (xh)⌋∑
yh=⌈Y S1 (xh)⌉

1 =
U∑

xh=B

(
⌊Y S

2 (xh)⌋ − ⌈Y S
1 (xh)⌉+ 1

)
.

Heed that the last summation can only be used when
⌊
Y S
2 (xh)

⌋
≥
⌈
Y S
1 (xh)

⌉
, otherwise

a negative number of robots would be summed.
Now, assume t ≤ s

v
. Then, the semicircle has centre at C = (cx, cy) = (x0 −

(s − vt), y0) as shown in the Figure B.12. In this figure, the rotation and hexagonal
grid system centres are now (x0, y0). Notice also in (I) that △CAO is right with
hypotenuse CA measuring s, and the horizontal cathetus CO measures s− vt. Now,
as there is no rectangle part, consider the last robot of the rectangular part being the
first robot to arrive at the target region, so (lx, ly) = (x0, y0), and, by (B.28),

C−θ =

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

ò ï
cx − x0
cy − y0

ò
. (B.33)

In the usual Euclidean coordinate space before the rotation about (x0, y0), consider

the line
←→
OA perpendicular to the x-axis at O = (x0, y0). This line represents the
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perpendicular axis such that all the robots from it to the arc of the semicircle on its
right are counted. From Figure B.12 (I),

r′ = |AO| =
»
|CA|2 − |CO|2 =

»
s2 − (s− vt)2 =

»
2svt− (vt)2.

After the rotation by −θ about the point O, the maximum value for xh is defined

by the point U . The point U is chosen depending on the angles ◊�U
′
−θOU and ◊�A−θOU .

When the angle ◊�U
′
−θOU is greater than ◊�A−θOU , the value of U is calculated in relation

to A−θ, because the line parallel to yh-axis intercepting U
′

−θ is not inside the semicircle

below
←−−→
OA−θ as shown in Figure B.13. It is only considered here robots inside the

semicircle below the line
←−−→
OA−θ, otherwise the robot on O would not be the first

robot by assumption. In this case, any line parallel to yh-axis crossing the semicircle
below OA−θ must have its xh-axis coordinate less than or equal to U , for example Q
projected from P . For comparison, Figure B.12 (II) illustrates an example where U is
chosen as the xh-axis intersection with the line parallel to yh-axis at U

′

−θ. As before,

for the case t > s
v

(Figure B.11 (II)), the angle of C−θU
′
θ in relation to xh-axis is π/6,

consequently,

U
′

−θ = C−θ + s
(

cos
(π

6

)
, sin

(π
6

))
=

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

ò ï
cx − x0
cy − y0

ò
+

ñ √
3s
2
s
2

ô
=

ï
cos(θ) sin(θ)
− sin(θ) cos(θ)

ò ï
vt− s

0

ò
+

ñ √
3s
2
s
2

ô
=

Ç√
3s

2
+ cos(θ)(vt− s), s

2
− sin(θ)(vt− s)

å
,

from (B.33), and ◊�U
′
−θOU measures

arctan

Ç
U

′

−θ,y

U
′
−θ,x

å
= arctan

Ç
s
2
− sin(θ)(vt− s)

√
3s
2

+ cos(θ)(vt− s)

å
.◊�A−θOU measures π

2
− θ, as show in Figure B.12 (II). Thence,

A−θ =
(
r′ cos

(π
2
− θ
)
, r′ sin

(π
2
− θ
))

.

If arctan

Å
U

′
−θ,y

U
′
−θ,x

ã
≤◊�A−θOU = π

2
−θ, apply (B.29) on U

′

−θ to get its xh-axis coordinate
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yh

xh

no robots here

robots
 here

first
robot

Figure B.13: An example of when the angle ◊�U
′
−θOU is greater than ◊�A−θOU .

U =
1

d

Ç√
3s

2
+ cos(θ)(vt− s)

å
+

1√
3d

(s
2
− sin(θ)(vt− s)

)
= cos(θ)

vt− s
d

+

√
3s

2d
− sin(θ)

vt− s√
3d

+
s

2
√

3d

= cos(θ)
vt− s
d
− sin(θ)

vt− s√
3d

+

√
3
√

3s

2
√

3d
+

s

2
√

3d

= cos(θ)
vt− s
d
− sin(θ)

vt− s√
3d

+
3s

2
√

3d
+

s

2
√

3d

= cos(θ)
vt− s
d
− sin(θ)

vt− s√
3d

+
4s

2
√

3d

= cos(θ)
vt− s
d
− sin(θ)

vt− s√
3d

+
2s√
3d

=
√

3 cos(θ)
vt− s√

3d
− sin(θ)

vt− s√
3d

+
2s√
3d

= 2

Ç√
3

2
cos(θ)− 1

2
sin(θ)

å
vt− s√

3d
+

2s√
3d

=
2 sin(π/3− θ)(vt− s)√

3d
+

2s√
3d
,

followed by applying floor function to it, as the integer coordinate less or equal to this
value is needed. This is the same as (B.30) by using (lx, ly) = (x0, y0), then (B.25)

also applies when arctan

Å
s
2
−sin(θ)(vt−s)

√
3s
2

+cos(θ)(vt−s)

ã
≤ π

2
− θ.
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If arctan

Å
U

′
−θ,y

U
′
−θ,x

ã
> π

2
−θ, then there are no robots to consider on the parallel lines

to yh-axis between U
′

−θ and A−θ, otherwise the robot at (x0, y0) would not be the first

to arrive at the target region. Thus, if arctan

Å
U

′
−θ,y

U
′
−θ,x

ã
> π

2
− θ, the xh-coordinate for

the point A−θ on the hexagonal grid space is used, that is,

U =
1

d

(
r′ cos

(π
2
− θ
))

+
1√
3d

(
r′ sin

(π
2
− θ
))

=
2r√
3d

Ç√
3

2
cos
(π

2
− θ
)

+
1

2
sin
(π

2
− θ
)å

=
2r√
3d

Ç√
3

2
sin (θ) +

1

2
cos (θ)

å
=

2r√
3d

cos
(
θ − π

3

)
.

then apply the floor function to yield the desired result in (B.26).
Now the minimum value for an integer xh will be found such that a parallel-to-yh-

axis line is inside the semicircle and starting from the right of
←→
OA or on it. For the

calculation of B, from Figure B.12 (II), similarly to how it was previously done,

B
′

−θ = O + r′(cos(−(π/2 + θ)), sin(−(π/2 + θ))

= (r′ cos(π/2 + θ),−r′ sin(π/2 + θ))

= (−r′ sin(θ),−r′ cos(θ)),

and, by (B.29), as B is the xh-coordinate of the B−θ,

B =
1

d
(−r′ sin(θ)) +

1√
3d

(−r′ cos(θ)) = − 2r√
3d

Ç
1

2
cos(θ) +

√
3

2
sin(θ)

å
= − 2r√

3d
(sin(π/6) cos(θ) + cos(π/6) sin(θ))

= − 2r√
3d

sin
(
θ +

π

6

)
.

Also, apply the ceiling function to yield the desired result in (B.24).
In this case, C1(xh) and C2(xh) are equal to (B.31) and (B.32), but L(xh) is

different from the previous case. The line
←−−→
OA−θ for a point (xg, yg) in the Euclidean

space is

yg = tan
(π

2
− θ
)
xg ⇔ yg =

sin
(
π
2
− θ
)

cos
(
π
2
− θ
)xg
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⇔
√

3dyh
2

=
sin
(
π
2
− θ
)

cos
(
π
2
− θ
) Ådxh − dyh

2

ã
⇔
√

3dyh
2

cos
(π

2
− θ
)

+ sin
(π

2
− θ
) dyh

2
= sin

(π
2
− θ
)
dxh

⇔ yh =
2 sin

(
π
2
− θ
)
xh√

3 cos
(
π
2
− θ
)

+ sin
(
π
2
− θ
)

⇔ yh =
sin
(
π
2
− θ
)
xh

sin(π/3) cos
(
π
2
− θ
)

+ cos(π/3) sin
(
π
2
− θ
)

⇔ yh =
sin
(
π
2
− θ
)
xh

sin(π/3 + π/2− θ)

⇔ L(xh) = yh =
sin
(
π
2
− θ
)
xh

sin
(
5π
6
− θ
) .

It follows that lim
t→∞

fh(t, θ) = lim
t→∞

NR(t, θ)

t
+ lim
t→∞

NS(t, θ)− 1

t
, by Definition 2. As

shown below, this limit needs only the rectangle part, because NS is limited by a
semicircle with finite radius.

Lemma 11.

lim
t→∞

NS(t, θ)− 1

t
= 0.

Proof. As t→∞, t > s
v
. By Lemma 10, cx = x0+vt−s, which is the x-axis coordinate

of the right side of the rectangle. The robots are distant by d, so the last robot must
be at most distant by d from the point (cx, y0). Hence, x0+vt−s−d ≤ lx ≤ x0+vt−s,
and y0−d ≤ ly ≤ y0 +d, so 0 = cx− (x0 +vt−s) ≤ cx− lx ≤ cx− (x0 +vt−s−d) = d
and −d ≤ y0 − ly ≤ d. Then, −d ≤ C−θ,x, C−θ,y ≤ d. Also, θ ∈ [0, π/3), so
−1/2 ≤ cos(π/3− θ) ≤ 1. Thus,

B =

°
2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(y0 − ly − s))√

3d

§
≥
°

2(cos(π/3− θ)(−d− s))√
3d

§
=

°−2 cos(π/3− θ)(1 + s
d
)

√
3

§
≥
°−2(1 + s

d
)

√
3

§
=

°
− 2√

3
− s√

3d

§
≥ − 2√

3
− s√

3d
,
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U =

õ
2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(y0 − ly) + s)√

3d

û
≤
õ

2(sin(π/3− θ)d+ cos(π/3− θ)d+ s)√
3d

û
≤
õ

2(2d+ s)√
3d

û
=

õ
4√
3

+
2s√
3d

û
≤ 4√

3
+

2s√
3d
,

and for any integer xh ∈ [B,U ], as ∆(xh) cannot be negative,

0 ≤ ∆(xh) = 4s2 −
Ä√

3(dxh − C−θ,x)− C−θ,y
ä2
≤ 4s2,

⌈Y S
1 (xh)⌉ ≥ Y S

1 (xh) =
dxh − C−θ,x +

√
3C−θ,y −

√
∆(xh)

2d

≥ dxh − d−
√

3d− 2s

2d
=
xh − 1−

√
3

2
− s

d
,

and

⌊Y S
2 (xh)⌋ ≤ Y S

2 (xh) ≤ min(L(xh), C2(xh)) ≤ C2(xh)

=
dxh − C−θ,x +

√
3C−θ,y +

√
∆(xh)

2d
≤ dxh + d+

√
3d+ 2s

2d

=
xh + 1 +

√
3

2
+
s

d
.

Thus,

0 ≤ NS(t, θ) =
U∑

xh=B

(
⌊Y S

2 (xh)⌋ − ⌈Y S
1 (xh)⌉+ 1

)
≤

U∑
xh=B

Ç
xh + 1 +

√
3

2
+
s

d
−
Ç
xh − 1−

√
3

2
− s

d

å
+ 1

å
=

U∑
xh=B

Ç
xh + 1 +

√
3

2
+
s

d
− xh − 1−

√
3

2
+
s

d
+ 1

å
=

U∑
xh=B

Ç√
3

2
+

1

2
+

2s

d
+

1

2
+

√
3

2
+ 1

å
=

U∑
xh=B

Ç
2s

d
+

√
3 + 1 + 1 +

√
3

2
+ 1

å
=

U∑
xh=B

Ç
2s

d
+

2
√

3 + 4

2

å
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=
U∑

xh=B

Å
2s

d
+
√

3 + 2

ã
= (U −B + 1)

Å
2s

d
+
√

3 + 2

ã
≤
Å

4√
3

+
2s√
3d
−
Å
− 2√

3
− s√

3d

ã
+ 1

ãÅ
2s

d
+
√

3 + 2

ã
=

Å
4√
3

+
2s√
3d

+
2√
3

+
s√
3d

+ 1

ãÅ
2s

d
+
√

3 + 2

ã
=

Ç
2
√

3 +

√
3s

d
+ 1

åÅ
2s

d
+
√

3 + 2

ã
⇒ 0 = lim

t→∞

−1

t
≤ lim

t→∞

NS(t, θ)− 1

t

≤ lim
t→∞

1

t

ÇÇ
2
√

3 +

√
3s

d
+ 1

åÅ
2s

d
+
√

3 + 2

ã
− 1

å
= 0.

Hence, the result follows from the sandwich theorem.

As lim
t→∞

NS(t, θ)− 1

t
= 0, hereafter only the limit for the number of robots inside

the rectangle is calculated. By Lemmas 5 to 9, if n+
l − 1 < K ′

lim
t→∞

fh(t, ψ) = lim
t→∞

1

t

n−
l∑

xh=−n−
l

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)

+ lim
t→∞

1

t

n+
l −1∑

xh=n
−
l +1

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
,

otherwise,

lim
t→∞

fh(t, ψ) = lim
t→∞

1

t

n−
l∑

xh=−n−
l

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)

+ lim
t→∞

1

t

K′−1∑
xh=n

−
l +1

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)

+ lim
t→∞

1

t

n+
l −1∑

xh=K′

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
.

To clarify, the third summation is zero in the case of n+
l − 1 < K ′, while the second

summation goes until min(n+
l −1, K ′−1) in both cases. Each one will be individually
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solved assuming ψ ̸= π/6. Later, it will be seen that the final result holds for ψ = π/6
as well. The following lemmas will be useful soon.

Lemma 12. Assume ψ ̸= π/6.

lim
t→∞

1

t

n−
l∑

xh=−n−
l

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
= 0.

Proof. As for any x, x− 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+ 1,

lim
t→∞

1

t

n−
l∑

xh=−n−
l

(
Y R
2 (xh)− Y R

1 (xh)− 1
)

< lim
t→∞

1

t

n−
l∑

xh=−n−
l

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)

≤ lim
t→∞

1

t

n−
l∑

xh=−n−
l

(
Y R
2 (xh)− Y R

1 (xh) + 1
)
.

By Lemma 6, the first and last summations do not depend on t, so both sides have
limit equal to 0. By the sandwich theorem, the result is obtained.

Lemma 13. Assume ψ ̸= π/6. For K ′ =
†
2(vt−s) cos(ψ−π/6)−2s sin(|ψ−π/6|)√

3d

£
,

lim
t→∞

1

t

n+
l −1∑

xh=K′

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
= 0.

Proof. If K ′ > n+
l − 1, this limit is already zero, so this proof is focused on the other

case. Analogously to the previous lemma,

lim
t→∞

1

t

n+
l −1∑

xh=K′

(
Y R
2 (xh)− Y R

1 (xh)− 1
)

< lim
t→∞

1

t

n+
l −1∑

xh=K′

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
≤ lim

t→∞

1

t

n+
l −1∑

xh=K′

(
Y R
2 (xh)− Y R

1 (xh) + 1
)
.

(B.34)
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For any constant c,

lim
t→∞

1

t

n+
l −1∑

xh=K′

c = 0, (B.35)

because the number of xh indexes in the summation is limited by a finite number of
integer outcomes that depends on t. In other words, the number of indexes in the
above summation is n+

l −K ′ such that 4s sin(|ψ−π/6|)√
3d

− 1 < n+
l −K ′ ≤ 4s sin(|ψ−π/6|)√

3d
+ 1.

The last inequality is obtained by counting how many xh are used in the summation
and knowing that 2y − 1 < ⌊x + y⌋ − ⌈x − y⌉ + 1 ≤ 2y + 1 for any x, y ∈ R. Thus,

for any t, n+
l −K ′ can only range from

†
4s sin(|ψ−π/6|)√

3d

£
− 1 to

ö
4s sin(|ψ−π/6|)√

3d

ù
+ 1. This

yields to three possible integer numbers, if 4s sin(|ψ−π/6|)√
3d

∈ Z, or four, otherwise. Thus,
a finite range of outcomes, none of them having t. Hence, for all outcomes, the limit
on the left side of (B.35) is zero.

Assume ψ > π/6 (for ψ < π/6 the result is the same). From Lemma 7,

Y R
2 (xh)− Y R

1 (xh) =

2(vt−s)
d cos(ψ)

− 2xh
√

3 tan(ψ)− 1
−

2y1
d

+ 2 tan(ψ)xh√
3 + tan(ψ)

=

2(vt−s)
d cos(ψ)√

3 tan(ψ)− 1
−

2y1
d√

3 + tan(ψ)
−

(
2√

3 tan(ψ)− 1

+
2 tan(ψ)√
3 + tan(ψ)

)
xh.

(B.36)

For the second term above, by (B.35), lim
t→∞

n+
l −1∑

xh=K′

2y1
d√

3 + tan(ψ)
= 0.

For the first term,

n+
l −1∑

xh=K′

1

t

2(vt−s)
d cos(ψ)√

3 tan(ψ)− 1
=

n+
l −1∑

xh=K′

2
(
v − s

t

)
d cos(ψ)(

√
3 tan(ψ)− 1)

=

n+
l −1∑

xh=K′

2
(
v − s

t

)
d(
√

3 sin(ψ)− cos(ψ))
=

n+
l −1∑

xh=K′

v − s
t

d sin(ψ − π/6)

=

n+
l −1∑

xh=K′

v

d sin(ψ − π/6)
− 1

t

n+
l −1∑

xh=K′

s

d sin(ψ − π/6)
,

(B.37)

due to
√
3
2

sin(ψ) − 1
2

cos(ψ) = sin(ψ − π/6). Let L′ be the number of terms on
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the summation of (B.37). As discussed above, L′ is an integer in
{ †

4s sin(|ψ−π/6|)√
3d

£
−

1, . . . ,
ö
4s sin(|ψ−π/6|)√

3d

ù
+ 1
}

, so

n+
l −1∑

xh=K′

1

t

2(vt−s)
d cos(ψ)√

3 tan(ψ)− 1
=

L′v

d sin(ψ − π/6)
− 1

t

n+
l −1∑

xh=K′

s

d sin(ψ − π/6)
. (B.38)

Also,

2√
3 tan(ψ)− 1

+
2 tan(ψ)√
3 + tan(ψ)

=
2(
√

3 + tan(ψ)) + 2 tan(ψ)(
√

3 tan(ψ)− 1)

(
√

3 tan(ψ)− 1)(
√

3 + tan(ψ))

=
2
√

3 + 2 tan(ψ) + 2
√

3 tan2(ψ)− 2 tan(ψ)

(
√

3 tan(ψ)− 1)(
√

3 + tan(ψ))
=

2
√

3 + 2
√

3 tan2(ψ)

(
√

3 tan(ψ)− 1)(
√

3 + tan(ψ))

=
2
√

3(1 + tan2(ψ))

(
√

3 tan(ψ)− 1)(
√

3 + tan(ψ))
=

2
√

3 sec2(ψ)

(
√

3 tan(ψ)− 1)(
√

3 + tan(ψ))

=
2
√

3

(
√

3 sin(ψ)− cos(ψ))(
√

3 cos(ψ) + sin(ψ))
=

√
3

2 sin(ψ − π/6) cos(ψ − π/6)

as 1 + tan2(ψ) = sec2(ψ) and
√
3
2

cos(ψ) + 1
2

sin(ψ) = cos(ψ−π/6). Hence, for the last
term in (B.36),

1

t

n+
l −1∑

xh=K′

√
3

2 sin(ψ − π/6) cos(ψ − π/6)
xh

=
1

t

√
3

2 sin(ψ − π/6) cos(ψ − π/6)

(n+
l − 1 +K ′)(n+

l −K ′)

2

=

√
3LG

4T sin(ψ − π/6) cos(ψ − π/6)
,

(B.39)

for an integer G = n+
l − 1 + K ′. As 2x − 1 < ⌊x + y⌋ + ⌈x − y⌉ < 2x + 1 for any

x, y ∈ R, G ∈
Ä
4(vt−s) cos(ψ−π/6)√

3d
− 1, 4(vt−s) cos(ψ−π/6)√

3d
+ 1
ä
.

For the lowest bound on G, using (B.38) and (B.39)

lim
t→∞

1

t

n+
l −1∑

xh=K′

(
Y R
2 (xh)− Y R

1 (xh)
)

= lim
t→∞

1

t

n+
l −1∑

xh=K′

( 2(vt−s)
d cos(ψ)√

3 tan(ψ)− 1
−
Ç

2√
3 tan(ψ)− 1

+
2 tan(ψ)√
3 + tan(ψ)

å
xh

)
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= lim
t→∞

Ñ
L′v

d sin(ψ − π/6)
− 1

t

n+
l −1∑

xh=K′

s

d sin(ψ − π/6)

−

√
3L′
Ä
4(vt−s) cos(ψ−π/6)√

3d
− 1
ä

4T sin(ψ − π/6) cos(ψ − π/6)

é
= lim

t→∞

Ñ
L′v

d sin(ψ − π/6)
−

L′ 4(vt−s) cos(ψ−π/6)
d

−
√

3L′

4T sin(ψ − π/6) cos(ψ − π/6)
− 1

t

n+
l −1∑

xh=K′

s

d sin(ψ − π/6)

é
= lim

t→∞

Ç
L′v

d sin(ψ − π/6)
− L′v

d sin(ψ − π/6)
+

√
3L′

4T sin(ψ − π/6) cos(ψ − π/6)
−

1

t

n+
l −1∑

xh=K′

s

d sin(ψ − π/6)

é
= lim

t→∞

Ñ √
3L′

4T sin(ψ − π/6) cos(ψ − π/6)
− 1

t

n+
l −1∑

xh=K′

s

d sin(ψ − π/6)

é
= 0,

due to (B.35) on the second term and, as

L′ ∈
{⌈4s sin(|ψ − π/6|)√

3d

⌉
− 1, . . . ,

⌊4s sin(|ψ − π/6|)√
3d

⌋
+ 1
}
,

no element in this finite set has the term t.
For the highest bound on G, the same limit is obtained. Hence, by the sandwich

theorem applied on the results for both bounds of G,

lim
t→∞

1

t

n+
l −1∑

xh=K′

(
Y R
2 (xh)− Y R

1 (xh)
)

= 0. (B.40)

Using (B.40) and (B.35) on the bounds of (B.34) and the sandwich theorem again
concludes with the desired value.

Lemma 14. Assume ψ ̸= π/6.

lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)
exists and is bounded by
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4vs√
3d2
− 2v cos(ψ − π/6)√

3d
,

4vs√
3d2

+
2v cos(ψ − π/6)√

3d

ò
.

Proof. The next lemmas will be useful for proving this lemma.

Lemma 15. For any a, b > 0, a⌊x⌋ − b⌊y⌋ < ax− by + a+ b.

Proof. As mentioned before, by the definition of floor function ⌊x⌋ = x − frac(x),
where frac is the function that returns the fractional part of the number x, such that
0 ≤ frac(x) < 1 (Graham, Knuth, and Patashnik, 1994),

a⌊x⌋ − b⌊y⌋ = ax− afrac(x)− by + bfrac(y)

< ax− by + b− afrac(x) [because frac(y) < 1]

< ax− by + b+ a [as − afrac(x) ≤ 0 < a].

Lemma 16. Let c, d, A1, B1, A2, B2 ∈ R, c > 0 and I1 ∈ Z. Then, the limit below
exists:

lim
n→∞

⌊cn+d⌋∑
i=I1+1

frac(−(A1i+B1)) + frac(A2i+B2)

n
.

Proof. For convergence, it is shown that for R(i) = frac(−(A1i+B1)) + frac(A2i+

B2), (an)n∈N∗ =
Ä∑⌊cn+d⌋

i=I1+1
R(i)
n

ä
n∈N∗

is a Cauchy sequence. Take ϵ > 0 and choose

N > 4|I1−d+1|
ϵ

. Let n,m ∈ N∗ and n > m > N. Then,

|an − am| =

∣∣∣∣∣∣
⌊cn+d⌋∑
i=I1+1

R(i)

n
−

⌊cm+d⌋∑
i=I1+1

R(i)

m

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

nm

Ñ
m

⌊cn+d⌋∑
i=I1+1

R(i)− n
⌊cm+d⌋∑
i=I1+1

R(i)

é∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

nm

Ñ
m

⌊cn+d⌋∑
i=⌊cm+d⌋+1

R(i) + (m− n)

⌊cm+d⌋∑
i=I1+1

R(i)

é∣∣∣∣∣∣ [as ⌊cn+ d⌋ > ⌊cm+ d⌋]

< 2

∣∣∣∣m(⌊cn+ d⌋ − (⌊cm+ d⌋+ 1) + 1) + (m− n)(⌊cm+ d⌋ − (I1 + 1) + 1)

nm

∣∣∣∣
[as R(i) < 2 for any i]
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= 2

∣∣∣∣m⌊cn+ d⌋ −m(⌊cm+ d⌋+ 1) +m+m⌊cm+ d⌋ −m(I1 + 1) +m− n⌊cm+ d⌋
nm

+
n(I1 + 1)− n

nm

∣∣∣∣
= 2

∣∣∣∣m⌊cn+ d⌋ −m⌊cm+ d⌋ −m+m+m⌊cm+ d⌋ −mK −m+m− n⌊cm+ d⌋
nm

+
nK + n− n

nm

∣∣∣∣
= 2

∣∣∣∣m⌊cn+ d⌋ −mK − n⌊cm+ d⌋+ nK

nm

∣∣∣∣ = 2

∣∣∣∣m⌊cn+ d⌋ − n⌊cm+ d⌋ − (m− n)I1
nm

∣∣∣∣
< 2

∣∣∣∣m(cn+ d)− n(cm+ d) +m+ n− (m− n)I1
nm

∣∣∣∣ [Lemma 15]

= 2

∣∣∣∣(m− n)(d− I1) +m+ n

nm

∣∣∣∣
= 2

∣∣∣∣(n−m)(I1 − d) +m+ n

nm

∣∣∣∣ < 2

∣∣∣∣(n+m)(I1 − d) +m+ n

nm

∣∣∣∣
= 2

∣∣∣∣(m+ n)(I1 − d+ 1)

nm

∣∣∣∣ = 2|I1 − d+ 1|m+ n

nm
= 2|I1 − d+ 1|

Å
1

n
+

1

m

ã
< 2|I1 − d+ 1| 2

N
=

4|I1 − d+ 1|
N

< ϵ.

To prove the existence of the limit in Lemma 16, note that ⌈x⌉ = x + frac(−x),
for any real number x (heed that using this definition of frac, frac(1.7) = 0.7 and
frac(−1.7) = 0.3), because

frac(−x) = −x− ⌊−x⌋ [def. of ⌊−x⌋]
= −x− (−⌈x⌉) [⌊−x⌋ = −⌈x⌉]
= −x+ ⌈x⌉

⇔ ⌈x⌉ = x+ frac(−x).

Thus,

241



Appendix B. Proofs of Chapter 4 B.4. Proof of Proposition 6

lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)

= lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
Y R
2 (xh)− Y R

1 (xh)− frac
(
−Y R

1 (xh)
)

−frac
(
Y R
2 (xh)

)
+ 1
)

= lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
Y R
2 (xh)− Y R

1 (xh) + 1
)
−

lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
frac

(
−Y R

1 (xh)
)

+ frac
(
Y R
2 (xh)

))
.

The limit of the first term above exists and its value is presented below on (B.43). The
existence of the limit for the second term was shown by Lemma 16 for any outcome

of min(n+
l − 1, K ′ − 1), because, if

ö
2(vt−s) cos(π/6−θ)+2s sin(|π/6−θ|)√

3d

ù
= n+

l − 1 ≤ K ′ − 1,

then c = 2v cos(ψ−π/6)√
3d

and d = 2s√
3d

(sin(|π/6 −θ|)− cos(π/6− θ)) on the Lemma 16. If

n+
l − 1 > K ′ − 1 =

⌈
2√
3d

((vt− s) cos(ψ− π/6)− 2s sin(|ψ− π/6|))− 1
⌉
, as for any x,

⌈x⌉ = ⌊x⌋ or ⌈x⌉ = ⌊x⌋+1 depending on whether x is an integer or not, then K ′−1 =⌊
2(vt−s) cos(ψ−π/6)√

3d
− 2s sin(|ψ−π/6|)√

3d
− 1
⌋

or K ′ − 1 =
⌊
2(vt−s) cos(ψ−π/6)√

3d
− 2s sin(|ψ−π/6|)√

3d

⌋
.

For both cases, on the Lemma 16 c = 2v cos(ψ−π/6)√
3d

as well, but for the former case,

d = −2s(sin(|ψ−π/6|)+cos(π/6−θ))√
3d

− 1, and for the latter, d = −2s(sin(|ψ−π/6|)+cos(π/6−θ))√
3d

.
To get the bounds,

lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
Y R
2 (xh)− Y R

1 (xh)− 1
)

< lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
⌊Y R

2 (xh)⌋ − ⌈Y R
1 (xh)⌉+ 1

)

≤ lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
Y R
2 (xh)− Y R

1 (xh) + 1
)
,

(B.41)

and by Lemma 9, as t→∞,
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Y R
2 (xh)− Y R

1 (xh) =
y2
d

+ tan(ψ)xh
√
3+tan(ψ)

2

−
y1
d

+ tan(ψ)xh
√
3+tan(ψ)

2

=
y2−y1
d√

3+tan(ψ)
2

=

2s
d cos(ψ)

√
3+tan(ψ)

2

=
4s

d(
√

3 cos(ψ) + sin(ψ))

=
2s

d cos(ψ − π/6)
,

by (B.4).
For the first limit at (B.41) in the case of min(n+

l − 1, K ′ − 1) = n+
l − 1,

lim
t→∞

1

t

n+
l −1∑

xh=n
−
l +1

(
Y R
2 (xh)− Y R

1 (xh)− 1
)

= lim
t→∞

1

t

n+
l −1∑

xh=n
−
l +1

Å
2s

d cos(ψ − π/6)
− 1

ã
= lim

t→∞

1

t

(
n+
l − n

−
l − 1

)Å 2s

d cos(ψ − π/6)
− 1

ã
=

Å
2s

d cos(ψ − π/6)
− 1

ãÅ
lim
t→∞

1

t
n+
l − lim

t→∞

1

t
(n−

l − 1)

ã
=

Å
2s

d cos(ψ − π/6)
− 1

ã
lim
t→∞

1

t
n+
l =

Å
2s

d cos(ψ − π/6)
− 1

ã
2v cos(ψ − π/6)√

3d
.

=
4vs√
3d2
− 2v cos(ψ − π/6)√

3d
. (B.42)

Above lim
t→∞

1

t
n+
l =

2v cos(ψ − π/6)√
3d

is derived by using the sandwich theorem and the

inequality x− 1 < ⌊x⌋ ≤ x to get the bounds on n+
l .

Similarly, for the last limit at (B.41) in the case of min(n+
l − 1, K ′ − 1) = n+

l − 1,

lim
t→∞

1

t

n+
l −1∑

xh=n
−
l +1

(
Y R
2 (xh)− Y R

1 (xh) + 1
)

=
4vs√
3d2

+
2v cos(ψ − π/6)√

3d
.

The limits above in the case of min(n+
l − 1, K ′ − 1) = K ′ − 1 yields the same result

because of the sandwich theorem, the inequality x ≤ ⌈x⌉ < x+ 1, and
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2v cos(ψ − π/6)√
3d

= lim
t→∞

1

t

Å
2(vt− s) cos(ψ − π/6)− 2s sin(|ψ − π/6|)√

3d

ã
≤ lim

t→∞

1

t
(K ′ − 1) = lim

t→∞

1

t
K ′

= lim
t→∞

1

t

°
2(vt− s) cos(ψ − π/6)− 2s sin(|ψ − π/6|)√

3d

§
< lim

t→∞

1

t

Å
2(vt− s) cos(ψ − π/6)− 2s sin(|ψ − π/6|)√

3d
+ 1

ã
=

2v cos(ψ − π/6)√
3d

,

so, lim
t→∞

1

t
K ′ = lim

t→∞

1

t
n+
l . Consequently, the limit below exists and

lim
t→∞

1

t

min(n+
l −1,K′−1)∑

xh=n
−
l +1

(
Y R
2 (xh)− Y R

1 (xh) + 1
)

=
4vs√
3d2

+
2v cos(ψ − π

6
)

√
3d

. (B.43)

Finally, using the bounds provided by (B.42) and (B.43) the expected result is
obtained.

By Lemmas 12, 13 and 14 it is obtained for ψ ̸= π/6

lim
t→∞

fh(t, ψ) ∈
Å

4vs√
3d2
− 2v cos(ψ − π/6)√

3d
,

4vs√
3d2

+
2v cos(ψ − π/6)√

3d

ò
. (B.44)

For ψ = π/6, by (B.19),

lim
t→∞

1

t

⌊
2(vt−s)√

3d

⌋∑
xh=0

Ç√
3y2 + dxh

2d
−
√

3y1 + dxh
2d

− 1

å
< lim

t→∞
fh(t, π/6)

≤ lim
t→∞

1

t

⌊
2(vt−s)√

3d

⌋∑
xh=0

Ç√
3y2 + dxh

2d
−
√

3y1 + dxh
2d

+ 1

å
,

with
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lim
t→∞

1

t

⌊
2(vt−s)√

3d

⌋∑
xh=0

Ç√
3y2 + dxh

2d
−
√

3y1 + dxh
2d

+ 1

å
= lim

t→∞

1

t

⌊
2(vt−s)√

3d

⌋∑
xh=0

Ç √
3s

d cos(π/6)
+ 1

å
= lim

t→∞

1

t

⌊
2(vt−s)√

3d

⌋∑
xh=0

Å
2s

d
+ 1

ã
= lim

t→∞

1

t

õ
2(vt− s)√

3d
+ 1

ûÅ
2s

d
+ 1

ã
=

2v√
3d

Å
2s

d
+ 1

ã
,

from (B.4) and, as similarly done before, lim
t→∞

1

t

õ
2(vt− s)√

3d
+ 1

û
=

2v√
3d

by using the

sandwich theorem and the inequality x− 1 < ⌊x⌋ ≤ x to get the bounds on the floor
function; and

lim
t→∞

1

t

⌊
2(vt−s)√

3d

⌋∑
xh=0

Ç√
3y2 + dxh

2d
−
√

3y1 + dxh
2d

− 1

å
=

2v√
3d

Å
2s

d
− 1

ã
.

Accordingly,

lim
t→∞

fh(t, π/6) ∈
Å

2v√
3d

Å
2s

d
− 1

ã
,

2v√
3d

Å
2s

d
+ 1

ãò
,

which are the same values in (B.44) if ψ = π/6 is used. Lemmas 4–9, 12, 13 and 14
used ψ, so, after replacing ψ by π/3− θ, the proof of the Proposition 6 is concluded.

B.5 Proof of Proposition 8

Using the touch and run strategy, each lane is distant by at least d from each other.
However, the minimum distance between robots on the same lane do must be checked
at the beginning of the curved path, as their distance decreases if assuming constant
linear speed. Two cases are distinguished based on Figure B.14:

1. |ED| < d: Two robots cannot be on the lane curved path;

2. |ED| ≥ d: More than one robot can occupy the lane curved path.

In this figure, the red line represents the trajectory of robots in one lane. α is the
central angle for the lane. The dashed blue circle of centre A is the target. C is the
centre of the circle of radius r from the circular trajectory. The grey circle of centre C
has a radius of r+ d/2. Points D and E represent the connection between the curved
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A C

D

E

r

d/2

Figure B.14: Relationship between the curved path and the distance between the
robots.

path and the straight path. β = π − α due to the symmetry and the fact that the
sum of the angles of △ECD is equal to π.

The two identified cases affect the minimum distance between robots, do, such that
they can follow the trajectory without decreasing their linear speed. In both cases,
they need to satisfy the minimum distance d if they are turning on the curved path.
From Figure B.14,

|ED| = 2r sin

Å
β

2

ã
= 2r sin

(π
2
− α

2

)
= 2r cos

(α
2

)
. (B.45)

In case 1, in Figure B.15a, two points t and U are defined on the lane such that
the distance between them is |TU | = d and their distances to the target are equal.
The robots R1 and R2 are the black dots on the red line representing the trajectory.
If the delay between R1 and R2 is less than the time for a robot to run from t to
U following the red trajectory, there will be some instant in which R1 and R2 will
be vertically aligned. Their positions at that instant are represented by grey dots in
front of them. Hence, their distance would be less than d. The right triangle TV E
has side TV , which can be measured using ED. The delay between one robot at t
and another at U is equal to

∆t1 =
|TE|+ |ẼD|+ |DU |

v
,

that is, the time for running through the straight line TE, the curved path ED and
the straight line DU .
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C

E

D

T

U

V
d

B

R1

R2

(a)

do

r

d

r
r

r
C

D

H

R

E

(b)

Figure B.15: Enlargements of Figure B.14. (a) |ED| < d. (b) |ED| ≥ d.

For any delay less than ∆t1 between two robots, say R1 and R2, there is an instant
of time when R1 is on the path between B and t and R2 is on the path between B and
U , and they are vertically aligned (Figure B.15a). In this case, the distance between
R1 and R2 is below |TU |, so they do not respect the minimum distance d between
them. Hence, the minimum delay between two robots in case 1 is ∆t1.

From Figure B.14, |ẼD| = rβ = r(π − α). For calculating the value of |TE| and
|DU | from Figure B.15a, observe that |TE| = |DU | by symmetry. Thus,

|V T | = d

2
− |ED|

2
[From Figure B.15a]

=
d

2
− r cos

(α
2

)
[From (B.45)].

As △TVE is right, |TE| = |V T |
sin(α/2)

. Thence,

∆t1 =
r(π − α) + 2d/2−r cos(α/2)

sin(α/2)

v
=
r(π − α)

v
+
d− 2r cos(α/2)

v sin(α/2)

and

do = max (d, v∆t1) = max

Å
d, r(π − α) +

d− 2r cos (α/2)

sin(α/2)

ã
.

Above the max function is used because the result of v∆t1 can still be less than d,
depending on α, r and d.

In case 2, one has to check the minimum distance d when two robots are on the

circular part ẼD in Figure B.15b. Here, do denotes the minimum arc length for two
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robots located at any two points R and H on ẼD such that they are distant by at
least d. γ is the angle defining the arc do for the circle of centre C. From this figure,
△CRH is isosceles, so γ = 2 arcsin

(
d
2r

)
. Thus, to keep constant linear speed, the

delay between two robots in this case is

∆t2 =
do
v

=
rγ

v
=

2r

v
arcsin

Å
d

2r

ã
.

Then,

do = max (d, v∆t2) = max

Å
d, 2r arcsin

Å
d

2r

ãã
.

The max function is applied for a similar reason as exposed before. After rearranging,
(4.17) and (4.18) are obtained.

For calculating the throughput ft(K, t) for K lanes and a given time t after the
arrival of the first robot, the number of robots reaching the target region by the time
t is obtained, then the Definition 2 is applied. As it was assumed that the first robot
of every lane begins at the same distance from the target, at time t = 0 there are
K robots simultaneously arriving. Then, after do/v units of time, there are K more
robots arriving and this keeps happening every do/v units of time. Denote N(K, t)
the total number of robots that have arrived at the target region from K lanes by
time t. Thus,

N(K, t) = K

ú
t
d0
v

+ 1

ü
= K

õ
vt

do
+ 1

û
,

so, by Definition 2,

ft(K, t) =
1

t

Å
K

õ
vt

do
+ 1

û
− 1

ã
.

As for every number x, ⌊x⌋ = x− frac(x) and 0 ≤ frac(x) < 1, then distributing
1
t

for each term,

ft(K) = lim
t→∞

ft(K, t) = lim
t→∞

1

t

Å
K

Å
vt

do
+ 1

ã
− frac

Å
vt

do
+ 1

ã
− 1

ã
= lim

t→∞

K

t

Å
vt

do
+ 1

ã
=
Kv

do
.
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Additional graphs for Chapter 4

C.1 Additional screenshots

Figures C.1–C.7 presents screenshots from experiments using the hexagonal packing
strategy with different values of hexagonal packing angles θ and radius of circular
target area s.

Figures C.8–C.9 displays screenshots from experiments using the touch and run
strategy with radius of circular target area s = 6 m and different values of the number
of lanes K.

C.2 Graphs of the time of arrival per robots

Figure C.10 displays the relation between the time of arrival at the target region
and the number of robots for the hexagonal packing strategy for s ∈ {3, 6} and
θ ∈ {0, π/12, π/6, 5π/18}. They match the experiments of Figure 4.27 in Section
4.6.3.

Figure C.11 exhibits the relation between the time of arrival at the target region
and the number of robots for the touch and strategy for s ∈ {3, 6} and different values
of the number of lanes K. They are on a par with the experiments of Figure 4.30 in
Section 4.6.4.
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(a) (b)

(c)

Figure C.1: Simulation on Stage for hexagonal packing strategy using s = 3 m,
θ = π/12 during t = 10 s. Available on https://youtu.be/Wji8XlSQJBQ, accessed
on 12 June 2022. (a) 0 s: beginning of the simulation; (b) After 5 s; (c) 10 s: ending
of the simulation.

(a) (b)

(c)

Figure C.2: Simulation on Stage for hexagonal packing strategy using s = 3 m,
θ = π/6 during t = 10 s. Available on https://youtu.be/szOBU8no_sU, accessed on
12 June 2022. (a) 0 s: beginning of the simulation; (b) After 4.9 s; (c) 10 s: ending
of the simulation.
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(a) (b)

(c)

Figure C.3: Simulation on Stage for hexagonal packing strategy using s = 3 m,
θ = 5π/18 during t = 10 s. Available on https://youtu.be/jRLgaF7Te1Q, accessed
on 12 June 2022. (a) 0 s: beginning of the simulation; (b) After 4.9 s; (c) 10 s: ending
of the simulation.

(a) (b)

(c)

Figure C.4: Simulation on Stage for hexagonal packing strategy using s = 6 m, θ = 0
during t = 9.8 s. Available on https://youtu.be/v0FK8YpGrL8, accessed on 12 June
2022. (a) 0 s: beginning of the simulation; (b) After 4.9 s; (c) 9.8 s: ending of the
simulation.
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(a) (b)

(c)

Figure C.5: Simulation on Stage for hexagonal packing strategy using s = 6 m,
θ = π/12 during t = 10.1 s. Available on https://youtu.be/OBS_HADH5OE, accessed
on 12 June 2022. (a) 0 s: beginning of the simulation.; (b) After 5 s; (c) 10.1 s: ending
of the simulation..

(a) (b)

(c)

Figure C.6: Simulation on Stage for hexagonal packing strategy using s = 6 m,
θ = π/6 during t = 10 s. Available on https://youtu.be/-KX7ziOp8b0, accessed on
12 June 2022. (a) 0 s: beginning of the simulation.; (b) After 4.9 s; (c) 10 s: ending
of the simulation.
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(a) (b)

(c)

Figure C.7: Simulation on Stage for hexagonal packing strategy using s = 6 m,
θ = 5π/18 during t = 10 s. Available on https://youtu.be/GRYRnH5CrhU, accessed
on 12 June 2022. (a) 0 s: beginning of the simulation; (b) After 4.9 s; (c) 10 s: ending
of the simulation.
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(a) (b)

(c)

Figure C.8: Simulation on Stage for the touch and run strategy using s = 6 m, K = 19
during t = 127.4 s at v = 0.1 m/s. Available on https://youtu.be/xJVoVCIjX5k,
accessed on 12 June 2022. (a) 0 s: beginning of the simulation; (b) After 63.6 s; (c)
127.4 s: ending of the simulation.
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(a) (b)

(c)

Figure C.9: Simulation on Stage for the touch and run strategy using s = 6 m, K = 33
during t = 548 s at v = 0.1 m/s. Available on https://youtu.be/-xZz84npKV4,
accessed on 12 June 2022. (a) 0 s: beginning of the simulation; (b) After 274 s; (c)
548 s: ending of the simulation.
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Figure C.10: Time of arrival at the target of the last robot versus the number of
robots for the same simulations in Figure 4.27. (a) θ = 0; (b) θ = π/12; (c) θ = π/6;
(d) θ = 5π/18.
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Figure C.11: Time of arrival at the target of the last robot versus number of robots
for the same simulations in Figure 4.30. (a) s = 3 m and K ∈ {10, 16}; (b) s = 6 m
and K ∈ {19, 33}.
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Additional graphs for Chapter 5

D.1 Parameter K of the TRVF algorithm

Simulations were performed to compare different K values for the defaults parameters
for a number of robots ranging from 20 to 300 with increments of 20 with the default
values in Table 5.1. The results are in Figure D.1.

Firstly, the results are compared with the touch and run strategy by calculating
the asymptotic throughput for the allowed values of K following (4.19) – that is,
K ∈ {3, . . . , 6} – the asymptotic throughput rounded to three decimal places are
0.994, 1.2, 1.099 and 1, respectively. Thus, K = 4 would be the best number of lanes
for the touch and run strategy. However, as in the TRVF experiments, the distances
between robots and linear speeds change over time, and the movement of the robots
is influenced by the other robots in their neighbourhood. Therefore, the best K was
5 according to the results in Figure D.1.

Figure D.2 shows a screenshot in the middle of the execution for the allowed K
values and 100 holonomic robots. Using K = 6, the default values s = 3 m and
d = Id = 3 m in (4.13) gives r = 0, so the TRVF algorithm will run but no curved
trajectory is made. In this case, the entrance and exiting straight lanes lie exactly
in the target region. This could be a shorter trajectory, as the robots do not have
the curved turn, but congestion happens in the target region as they have to turn to
leave the target area in a sharp curve (Figure D.2d). As K grows, the curve tends to
be sharper. Obligating robots to do sharp curves tends to increase congestion due to
their slowdown. Thus, the best K results from the equilibrium between the rise of the
number of target accesses and the minimisation of congestion due to slowdowns near
the target caused by diminishing the turning radius of the curved path. Observe that,
for any K displayed in Figure D.2, some robots are trapped inside the target area.
They were pushed inside the area due to repulsive forces from other robots, and they
inflicted those forces on the robots getting near the target region from the curved
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Figure D.1: Throughput of the TRVF algorithm by the number of robots from 20 to
300 in steps of 20 for different values of the number of lanes (K). (a) Holonomic. (b)
Non-holonomic.

trajectory, consequently causing congestion as well. However, for the best K = 5,
congestion is minimised.

D.2 Parameter Alg of MT

Figures D.3–D.6 illustrates the comparison of the total simulation time per total
number of robots of a MT using SQF and NC as parameter Alg with percentages of
robots in group A to the total number of individuals ranging from 20% to 90% in
steps of 10%. For 30% to 70% for non-holonomic robots (Figures D.3–D.5), NC as
the alternative algorithm is significantly better on average until different values from
120 to 180 robots. Note that the number of robots where it starts to take less time
decreases with the ratio of ad hoc robots.

Figures D.7–D.10 show the comparison of NC and TRVF as the group A algorithms
for ratios varying from 20% to 90% in steps of 10% for holonomic and non-holonomic
robots. For 90%, TRVF is significantly better only from 200 to 300 in the holonomic
case and from 180 to 300 robots in the non-holonomic cases, respectively (Figure
D.10). When using the TRVF as an alternative algorithm, the lanes near the leaving
trajectory of the SQF algorithm create congestion. However, with NC, they tend to
go directly to the target, opening space near the SQF leaving area.
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(a) (b)

(c) (d)

Figure D.2: Screenshots of the TRVF algorithm, for 100 holonomic robots, default
values and different numbers of lanes (K) at the middle of the execution. Available
on https://youtu.be/BYd8VncXnCQ, accessed on 20 December 2022. (a) K = 3
and after 202.8 s. Available on https://youtu.be/0U6ajiBtYw8, accessed on 20
December 2022. (b) K = 4 and after 155.5 s. Available on https://youtu.be/

D-_2VK5JRYg. (c) K = 5 and after 156.1 s. Available on https://youtu.be/

z92SNJ8ugHs, accessed on 20 December 2022. (d) K = 6 and after 177.3 s.
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Figure D.3: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and SQF and
NC as the alternative algorithm by 20% of the robots for (a) holonomic and (b) non-
holonomic robots and 30% for (c) holonomic and (d) non-holonomic robots.
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Figure D.4: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and SQF and
NC as the alternative algorithm by 40% of the robots for (a) holonomic and (b) non-
holonomic robots and 50% for (c) holonomic and (d) non-holonomic robots.
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Figure D.5: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and SQF and
NC as the alternative algorithm by 60% of the robots for (a) holonomic and (b) non-
holonomic robots and 70% for (c) holonomic and (d) non-holonomic robots.
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Figure D.6: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and SQF and
NC as the alternative algorithm by 80% of the robots for (a) holonomic and (b) non-
holonomic robots and 90% for (c) holonomic and (d) non-holonomic robots.
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Figure D.7: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and TRVF and
NC as the alternative algorithm by 20% of the robots for (a) holonomic and (b) non-
holonomic robots and 30% for (c) holonomic and (d) non-holonomic robots.
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Figure D.8: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and TRVF and
NC as the alternative algorithm by 40% of the robots for (a) holonomic and (b) non-
holonomic robots and 50% for (c) holonomic and (d) non-holonomic robots.
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Figure D.9: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and TRVF and
NC as the alternative algorithm by 60% of the robots for (a) holonomic and (b) non-
holonomic robots and 70% for (c) holonomic and (d) non-holonomic robots.
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Figure D.10: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and TRVF and
NC as the alternative algorithm by 80% of the robots for (a) holonomic and (b) non-
holonomic robots and 90% for (c) holonomic and (d) non-holonomic robots.
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Figure D.11: Comparison of the total simulation time by the number of robots for
the experiments with one robot using NC and SQF being used by the others for (a)
holonomic and (b) non-holonomic robots.

D.3 Tests with one Ad Hoc Robot in MT.

When assuming only one ad hoc robot, the effect of its presence does not have a
big impact in the total simulation time. Figures D.11 and D.12 show the simulation
time per number of robots for only one robot in MT with NC and the aware robots
using SQF and TRVF for holonomic and non-holonomic cases. For reference, results
for the algorithms without any ad hoc robot are presented. Observe that for each
number of robots, the mean values for SQF and TRVF with holonomic robots are not
significantly different except for 180 robots for the SQF algorithm (Figure D.11a).
For the non-holonomic case, the mean values are significantly different for 20, 260
and 300 robots for the SQF algorithm (Figure D.11b) and 40 robots for the TRVF
algorithm (Figure D.12b). Despite that, the difference in their means is low.

D.4 Different Ratios of Ad Hoc Robots

Figures D.13–D.20 show the simulation time per number of robots for holonomic and
non-holonomic robots from 20% to 90% in steps of 10% of ad hoc robots to the total
number of individuals. SQF is the congestion control algorithm in Figures D.13–D.16
and TRVF in Figures D.17–D.20.
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Figure D.12: Comparison of the total simulation time by the number of robots for
the experiments with one robot using NC and TRVF being used by the others for (a)
holonomic and (b) non-holonomic robots.
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Figure D.13: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and NC as the
alternative algorithm by 20% of the robots for (a) holonomic and (b) non-holonomic
robots and 30% for (c) holonomic and (d) non-holonomic robots.
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Figure D.14: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and NC as the
alternative algorithm by 40% of the robots for (a) holonomic and (b) non-holonomic
robots and 50% for (c) holonomic and (d) non-holonomic robots.
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Figure D.15: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and NC as the
alternative algorithm by 60% of the robots for (a) holonomic and (b) non-holonomic
robots and 70% for (c) holonomic and (d) non-holonomic robots.
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Figure D.16: Comparison of the total simulation time by the number of robots for
the experiments with MT using SQF as the swarm control algorithm and NC as the
alternative algorithm by 80% of the robots for (a) holonomic and (b) non-holonomic
robots and 90% for (c) holonomic and (d) non-holonomic robots.
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Figure D.17: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and NC as the
alternative algorithm by 20% of the robots for (a) holonomic and (b) non-holonomic
robots and 30% for (c) holonomic and (d) non-holonomic robots.
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Figure D.18: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and NC as the
alternative algorithm by 40% of the robots for (a) holonomic and (b) non-holonomic
robots and 50% for (c) holonomic and (d) non-holonomic robots.
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Figure D.19: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and NC as the
alternative algorithm by 60% of the robots for (a) holonomic and (b) non-holonomic
robots and 70% for (c) holonomic and (d) non-holonomic robots.
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Figure D.20: Comparison of the total simulation time by the number of robots for
the experiments with MT using TRVF as the swarm control algorithm and NC as the
alternative algorithm by 80% of the robots for (a) holonomic and (b) non-holonomic
robots and 90% for (c) holonomic and (d) non-holonomic robots.
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Appendix E

Additional graphs for Chapter 6

E.1 Estimations for MT

Figure E.1–E.4 present estimations for MT with the proportion p of ad hoc robots
from 20% to 90% in increments of 10% and SQF as the control algorithm of the aware
robots.

Figures E.5–E.8 show the estimations for MT with TRVF as control algorithm of
the aware robots with p from 20% to 90% in steps of 10%.
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Figure E.1: Comparison of the estimated expected time and the experimental data
for MT with NC as the alternative algorithm, the swarm control algorithm is the
SQF algorithm, p = 20% for (a) holonomic robots (CMTNC = −0.0091 and CMTAw =
0.9709) and (b) non-holonomic robots (CMTNC = 0.0187 and CMTAw = 1.0246) and
p = 30% for (c) holonomic robots (CMTNC = −0.0169 and CMTAw = 0.9757) and (d)
non-holonomic robots (CMTNC = 0.026 and CMTAw = 1.029).
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Figure E.2: Comparison of the estimated expected time and the experimental data
for MT with NC as the alternative algorithm, the swarm control algorithm is the
SQF algorithm, p = 40% for (a) holonomic robots (CMTNC = −0.0023 and CMTAw =
0.9569) and (b) non-holonomic robots (CMTNC = 0.0486 and CMTAw = 1.0023) and
p = 50% for (c) holonomic robots (CMTNC = 0.0328 and CMTAw = 0.9148) and (d)
non-holonomic robots (CMTNC = 0.0813 and CMTAw = 0.9682).
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Figure E.3: Comparison of the estimated expected time and the experimental data
for MT with NC as the alternative algorithm, the swarm control algorithm is the SQF
algorithm, p = 60% for (a) holonomic robots (CMTNC = 0.093 and CMTAw = 0.8514)
and (b) non-holonomic robots (CMTNC = 0.1383 and CMTAw = 0.9088) and p = 70%
for (c) holonomic robots (CMTNC = 0.1842 and CMTAw = 0.7678) and (d) non-
holonomic robots (CMTNC = 0.2217 and CMTAw = 0.8241).
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Figure E.4: Comparison of the estimated expected time and the experimental data
for MT with NC as the alternative algorithm, the swarm control algorithm is the SQF
algorithm, p = 80% for (a) holonomic robots (CMTNC = 0.3188 and CMTAw = 0.6471)
and (b) non-holonomic robots (CMTNC = 0.3557 and CMTAw = 0.6847) and p = 90%
for (c) holonomic robots (CMTNC = 0.5419 and CMTAw = 0.4552) and (d) non-
holonomic robots (CMTNC = 0.5644 and CMTAw = 0.4906).
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Figure E.5: Comparison of the estimated expected time and the experimental data for
MT with NC as the alternative algorithm, the swarm control algorithm is the TRVF
algorithm, p = 20% for (a) holonomic robots (CMTNC = 0.1062 and CMTAw = 0.863)
and (b) non-holonomic robots (CMTNC = 0.1445 and CMTAw = 0.8724) and p = 30%
for (c) holonomic robots (CMTNC = 0.1729 and CMTAw = 0.7976) and (d) non-
holonomic robots (CMTNC = 0.1791 and CMTAw = 0.8497).
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Figure E.6: Comparison of the estimated expected time and the experimental data for
MT with NC as the alternative algorithm, the swarm control algorithm is the TRVF
algorithm, p = 40% for (a) holonomic robots (CMTNC = 0.2346 and CMTAw = 0.7458)
and (b) non-holonomic robots (CMTNC = 0.2395 and CMTAw = 0.7943) and p = 50%
for (c) holonomic robots (CMTNC = 0.3221 and CMTAw = 0.6633) and (d) non-
holonomic robots (CMTNC = 0.3178 and CMTAw = 0.7238).
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Figure E.7: Comparison of the estimated expected time and the experimental data
for MT with NC as the alternative algorithm, the swarm control algorithm is the
TRVF algorithm, p = 60% for (a) holonomic robots (CMTNC = 0.46 and CMTAw =
0.5282) and (b) non-holonomic robots (CMTNC = 0.4279 and CMTAw = 0.6173) and
p = 70% for (c) holonomic robots (CMTNC = 0.603 and CMTAw = 0.4011) and (d)
non-holonomic robots (CMTNC = 0.5836 and CMTAw = 0.4588).
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Figure E.8: Comparison of the estimated expected time and the experimental data for
MT with NC as the alternative algorithm, the swarm control algorithm is the TRVF
algorithm, p = 80% for (a) holonomic robots (CMTNC = 0.7498 and CMTAw = 0.2673)
and (b) non-holonomic robots (CMTNC = 0.753 and CMTAw = 0.2806) and p = 90%
for (c) holonomic robots (CMTNC = 0.9173 and CMTAw = 0.1106) and (d) non-
holonomic robots (CMTNC = 0.8884 and CMTAw = 0.1511).
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