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A Robust Distributed Observer Design for Lipschitz
Nonlinear Systems With Time-Varying Switching

Topology
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Abstract—This paper deals with state estimation for a class
of Lipschitz nonlinear systems under a time-varying discon-
nected communication network. A distributed observer consists
of some local observers that are connected to each other through
a communication network. We consider a situation where a
communication network does not remain connected all the time,
and the network may be caused by intermittent communication
link failure. Moreover, each local observer has access to a
local measurement, which may be insufficient to ensure the
system’s observability, but the collection of all measurements
in the network ensures observability. In this condition, the
purpose is to design a distributed observer where the estimated
state vectors of all local observers converge to the state vector
of the system asymptotically, while local observers exchange
estimated state vectors through a communication network and
use their local measurements. According to theoretical analysis,
a nonlinear and a robust nonlinear distributed observer exist
when in addition to the union of all communication topologies
being strongly connected during a time interval, the component of
each communication graph is also strongly connected during each
subinterval. The existence conditions of the distributed observers
are derived in terms of a set of linear matrix inequalities (LMIs).
Finally, the effectiveness of the presented method is numerically
verified using some simulation examples.

Index Terms—Distributed state estimation, Nonlinear dis-
tributed observer, LMIs, Switching topology.

I. INTRODUCTION

RECENTLY, much attention has been paid to the
distributed state estimation to solve the distributed

control problems in multi-agent systems [1]–[3]. Distributed
estimation algorithms can be used for sensor networks, target
tracking, or state estimation of large-scale systems where the
output of the system is required to be observed by multiple
sensors [4]. The focus on distributed estimation is because,
in many practical systems, not enough measurements can be
made in one place to provide an asymptotic estimate of the
system state, and using a centralized method may be costly
or impractical.

A distributed observer consists of N local observers
called agents that are connected to each other through a
communication network. The main challenge in designing a
distributed observer is the lack of local observability, since
the output vector of the system is divided between the agents,
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leading to the rank deficiency in the observability matrix
of each agent. This is why each agent requires to update
its local estimates based on its local measurement as well
as the information shared between its neighboring agents
in the network. In this way, a consensus of the estimation
can be reached on the unobservable part of all local observers.

Most recent research on the distributed observer problem
has focused on linear time-invariant systems, see in [5]–[8].
One of the main contributions was made in [9] where it was
suggested to apply the observability decomposition to each
agent and this idea made designs for the locally observable
and the unobservable subspaces independent from each other.
Then, [9] introduced a distributed design of the Luenberger-
type state observer for continuous-time LTI systems by
designing two observer gains. [10] extended the work done
in [9] based on some LMIs under the strongly connected
network. A more general structure of [9] is designed in [11]
where each agent has its own coupling gain that can be
different from the others, leading to the decentralized design.

In contrast to the above work which designed distributed
observers for linear systems, [12] and [13] introduced
distributed observers for nonlinear systems. [12] considers
the state and output matrices to be diagonal blocks, which
limits the application of the proposed observation method.
As stated in [13], the subsystem only has one output system
for each agent, and each local observer can only receive one
output measurement.

Although the above-mentioned papers concentrated on
steady and fixed communication, the first extension for time-
varying networks were created in [14]. The communication
networks used in [14] must always be strongly connected
for all time, while in practice, a network’s disconnectedness
may result from infrequent communication link failures or
environmental changes. So, further research on the distributed
estimation problem using jointly connected switching net-
works which can be disconnected at any time is more engaging
and difficult. Considering a time-varying version of [11],
[15] showed an asymptotic state estimate of linear systems
over a jointly connected switching network. Under the same
condition as [15], [16] developed the asymptotic convergence
results of [15] to the exponential convergence. However, in
both [15] and [16], the topology of the communication network
is described by an undirected switching graph.
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The problem of distributed observer design for the linear
system under time-varying disconnected communication
topologies is investigated in [17]. In this work, some necessary
constraints for achieving omniscience asymptomatically are
applied. When the LTI system is subject to external
disturbances and measurement noise, [18] solved the problem
of distributed observer design for the linear system under
switching communication topology.

Since most practical systems are inherently nonlinear, the
necessity of designing a distributed observer for nonlinear
systems was raised. the only point is that the nonlinearity in
this work is Lipschitz-type. Note that the Lipschitz nonlinear
systems usually arise in practical applications due to
increasing in the domain of attraction. Moreover, by applying
nonlinear transformation on many dynamic systems, one can
achieve some canonical form e.g. Brunovsky form, which
involves linear and nonlinear parts, where the nonlinearity
involves the Lipschitz condition.

The observer synthesis problem becomes more challenging
when the nonlinear system dynamics involve disturbance. By
adding a bounded disturbance to the introduced nonlinear
system, our proposed nonlinear distributed observer loses its
efficiency. Then, taking the advantages of the sliding mode
observer in [19]–[21], we extended the proposed nonlinear
distributed observer to a robust distributed observer for
Lipschitz nonlinear systems involving matching uncertainty.
If the matching condition is met, the disturbance effect
disappears and the asymptotic convergence can be achieved.

The connection between agents may not be stable due
to several issues including barriers, communication device
malfunctions, etc. So, the connection links may break and
then be rebuilt at various intervals, and the communication
topology may change over time. This problem affects state
estimation and may possibly lead to the failure of the entire
estimate system. In this situation, a distributed estimating
strategy must be developed to ensure state estimation even
when communication links are interrupted. Therefore, in
this paper, we investigate the asymptotic omniscience of
distributed observers (which is equivalent to the consensus of
error system) for Lipschitz nonlinear systems with switched
disconnected topologies.

The main contribution of this paper is to propose a
distributed observer such that if each communication graph’s
component is strongly connected during each subinterval
and the union/joint of all communication topologies are
strongly connected during a time interval, the state vector of
the system is estimated by each local observer. So, we first
extend the linear distributed observer to the nonlinear one
under switching topology, and then, by taking advantage of
the observability decomposition of the local observers, we
analyzed the structure of the design parameters. Next, by
using an auxiliary undirected graph during each subinterval
for each agent, a bank of LMIs is derived to calculate the
design parameters of our distributed observer.

We tried to design our proposed observers without using
complex structures, or applying any kind of restrictions
mentioned in [12] and [13], and compared with existing
approaches, our proposed approaches are more resilient to
unreliable communication.

Notations: Throughout the paper, Rn indicates the n-
dimensional space and N is the number of local observers.
For a given matrix X,XT shows its transpose, and X−1

denotes its inverse. The symbol sym(X) is represented as
sym(X) := X + XT . In is the identity matrix, and 1N is
the N -dimensional column vector with all entries equal to
one. P > 0 (P < 0) means that P is a positive (negative)
definite matrix. The expression col(X1, X2, · · ·, XN ) refers
to the matrix [XT

1 , X
T
2 , · · ·, XT

N ]T . The Kronecker product is
expressed as X1 ⊗X2.

II. PRELIMINARIES

A. Graph Theory

The topology of the communication network for N
agents is described by a disconnected switching graph
G(t) = (V(t), ξ(t),A(t)), where V(t) = {1, 2, ..., N}
is the set of nodes and ξ(t) ⊆ V(t) × V(t). Each node
in V(t) corresponds to an agent in the network and
(i, j) ∈ ξ(t) if and only if the ith agent can exchange
information with the jth agent at the time instant t.
A(t) = [αji(t)] ∈ RN×N , i, j ∈ V(t) is the nonnegative
weighted adjacency matrix of graph G(t) at the instant of
time t where αii(t) = 0. We have αji(t) ̸= 0 if and only
if (i, j) ∈ ξ(t), otherwise αji(t) = 0. The index set is
denoted by ϖ = {0, 1, ..., τk − 1}, and σ(t) : R+ → ϖ is the
piecewise constant switching signal.

Let the Laplacian matrix of the disconnected graph G(t) at
the instant of time t be L(t) = [lij(t)] ∈ RN×N . The diagonal
elements of L(t) are equal to the degree of the nodes, and
the off-diagonal elements of L(t) are −1 if the node i is
adjacent to node j, otherwise equal to 0. The Laplacian
matrix of a connected graph is always a semi-positive definite
matrix (by having a zero eigenvalue), however, if G(t) is a
disconnected graph the Laplacian matrix will have multiple
zero eigenvalues.

B. System Description

In this note, we regard the following nonlinear system

ẋ = Ax+ f(t, x, u) + Γd(t) +Bu (1)

y = Cx, (2)

where x ∈ Rn is the state vector, u ∈ Rm denotes the vector
of known inputs, and y ∈ Rp is the measurement output.
f(t, x, u) is a known smooth vector field with dimension n.
The bounded disturbance input is represented with d(t) ∈ R
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such that ∥d∥ ≤ D where D > 0 is a known constant. The
matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,Γ ∈ Rn are the
state, input, output, and disturbance matrices, respectively.

It is assumed that the output y in (2) has been segmented
into N parts yi, so that yi ∈ Rpi for i = {1, 2, ..., N} and∑N

i=1 pi = p. Consequently, the sub-matrix Ci ∈ Rpi×n is
a partition of output matrix C. The portion yi = Cix ∈ Rpi

is the only data that can be received by the node i. Now, we
will give three basic assumptions of this paper, and throughout
this paper, we assume that (1) and (2) satisfy the following
assumption.

Assumption 1: The system (1) and (2) is observable.
Assumption 2: The nonlinear function f(t, x, u) is a Lips-

chitz nonlinear function with respect to x ∈ Rn and a positive
Lipschitz constant ζ i.e.

∥f(t, x̂i, u)− f(t, x, u)∥ ≤ ζ∥(x̂i − x)∥, ∀i ∈ V(t), (3)

where f(t, x̂i, u) is the nonlinear function of state estimated
by node i.

Assumption 3: We consider an infinite time sequence
{t0, t1, t2, ...} such that t0 = 0, and the intervals
[tk, tk+1), k = {0, 1, 2, ...} are bounded and in each interval,
the graph is switching in a way that it is jointly connected
(see definition in [22]). It is assumed that there is a finite time
sequence {t0k, t1k, ..., t

τk−1
k } in the interval [tk, tk+1) so that

G(t) switches to Gω
k at t = tjk, ω and j ∈ ϖ and Gω

k stays
steady during the subinterval [tjk, t

j+1
k ). It is worth noting that

Gω
k can be a disconnected graph with isolated nodes, however,

the remaining part consists of a single strongly connected
subgraph.

Remark 1. The system (1) is a generalization of a
linear system in which a nonlinear term has been added
to the system to increase the field of practical application.
Therefore, the linear term cannot be zero in this class of
system. A wide range of practical nonlinear systems can
be indicated in the form of (1),(2) provided that f(t, x, u)
is differentiable with respect to the system state variables [23].

Assuming that in system (1), Γd(t) = 0, and the function
f(t, x, u) has a Lipschitz constant ζ = 0 in (3), [10] can
be used to create a distributed Luenberger observer for the
resulting linear system. In this case, the dynamic of the local
observer at node i under fixed strongly connected communi-
cation topology has the following form

˙̂zi = Aẑi +ℸi(yi −Ciẑi)+ γMi

N∑
j=1

αij(ẑj − ẑi)+Bu, (4)

where ẑi ∈ Rn is the state estimated by the ith agent, and
αij is the (i, j)th entry of the adjacency matrix A of the
network. Observer gain ℸi ∈ Rn×pi , coupling gain γ ∈ R+

and weighted matrix Mi ∈ Rn×n are the designing parameters
which need to be designed.

Remark 2. Assuming that Lj
k is the Laplacian

matrix associated with the graph Gω
k , then according to

Assumption 3, Lj
k can be disconnected in general and hence

rank(Lj
k) < N − 1. Let Ij

k ⊂ V(t) be the set of nodes

associated with the strongly connected subgraph of Gω
k

referred to as G̃ω
k and L̃j

k is the associated Laplacian matrix.
Obviously, L̃j

k is a semi-positive definite matrix that has only
one zero eigenvalue (i.e., L̃j

k1Nj
k = 0Nj

k
), N j

k ∈ Ij
k. It should

be noted that N j
k is the number of nodes connected to each

other in the subinterval [tjk, t
j+1
k ).

Now we review the following lemma for strongly connected
graphs.

Lemma 1. Consider G̃ω
k is the strongly connected subgraph

of Gω
k and L̃j

k as the Laplacian matrix associated with G̃ω
k . In

other words, L̃j
k is obtained by omitting the rows and columns

corresponding to the isolated nodes in Lj
k at subinterval

[tjk, t
j+1
k ). There exists a unique positive row vector θjk =

[θjk1, · · ·, θ
j
kNj

k
] such that θjkL̃

j
k = 0 and θjk1Nj

k = N j
k . Define

Θj
k := diag {θjk1, · · ·, θ

j
kNj

k
}. Then L̂j

k := Θj
kL̃

j
k + (L̃j

k)
TΘj

k

is the Laplacian of the balanced digraph obtained from G̃ω
k

by ignoring the directions of the edges. It is concluded that
L̂j
k is a positive semi-definite matrix (i.e., 1T

Nj
k

L̂j
k = 0 and

L̂j
k1Nj

k
= 0) [10].

Before giving the main results of the paper, the following
definition is introduced.

Definition 2 [9]. For the linear system given by

ẋ = Ax (5)
y = Cx, (6)

the distributed observer (4) achieves omniscience asymptoti-
cally if for all initial conditions ẑi(0) we have:

lim
t→∞

∥ẑi(t)− x(t)∥ = 0, ∀i ∈ V(t). (7)

Equation (7) indicates that each local observer state ẑi(t)
converges to the system state x(t) asymptotically. The
objective of this paper is to propose sufficient conditions
for the asymptotic omniscience of robust and nonlinear
distributed observers under switching topology.

In order to achieve the observability decomposition for the
pairs (Ci, A), the orthogonal transformation Ti ∈ Rn×n is
introduced. The orthogonal transformation matrix Ti for i ∈
V(t) is designed such that it decomposes the matrices A and
Ci into the canonical form as

A = Ti
[
Aio 0
Air Aiu

]
T T
i , Ci =

[
Cio 0

]
T T
i , (8)

where Cio ∈ Rpi×vi, Aio ∈ Rvi×vi, Air ∈ R(n−vi)×vi,
Aiu ∈ R(n−vi)×(n−vi), vi is the dimension of the observ-
able subspace of the pair (Ci, A) and the pair (Cio, Aio) is
observable.
According to Lemma 4 of [10], if we let L̃j

k ∈ N j
k ×N j

k be
the Laplacian matrix associated with the strongly connected
subgraph G̃ω

k , for all gi > 0, i ∈ Ij
k, there exists ϵ > 0 such

that
(T j

k )
T (L̃j

k ⊗ In)T j
k +Gj

k > ϵInNj
k
, (9)



4

where

T j
k = diag{Ti},

Gj
k = diag{Gi}, Gi =

[
giIvi 0
0 0n−vi

]
, ∀i ∈ Ij

k. (10)

Remark 3. For building T j
k , and Gj

k we ignore the transfor-
mation matrices corresponding to the isolated nodes at the sub-
interval [tjk, t

j+1
k ). Therefore, in forming the matrices in (10)

for each switch, we discard Tis corresponding to the isolated
nodes.

III. MAIN RESULTS

A. Distributed Nonlinear Observer without Disturbance

As the first step, for the dynamic system (1) , (2) without
disturbance, i.e. Γd(t) = 0, we suggest a nonlinear distributed
observer with N local observers, having the following dynam-
ics for each local observer at node i:

˙̂xi = Ax̂i + ℸi(yi − Cix̂i) + γMi

Nj
k∑

j=1

αij(t)(x̂j − x̂i)

+ f(t, x̂i, u) +Bu, ∀i ∈ Ij
k.

(11)

where x̂i ∈ Rn is the state estimation of node i and ℸi,
Mi, γ are as defined in (4), and αij(t) is the element of
adjacent matrix A(t) of the time-dependence communication
graph. Note the difference between (11) and classic distributed
Luenberger observer is that αij(t) is time-varying.
The estimation error of each local observer is defined as
ei := x̂i − x, then the following error dynamic of each local
observer is obtained by combining (1) and (11):

ėi = (A− ℸiCi)ei + γMi

Nj
k∑

j=1

αij(t)(ej − ei) + f̃i,∀i ∈ Ij
k.

(12)
where f̃i = f(t, x̂i, u) − f(t, x, u). By stacking the es-
timation error of the local observers in the column vector
e :=col(eT1 , e

T
2 , · · ·, eTNj

k

), the dynamics of the concatenated
error can be defined as (13) below

ė = (∆− γM̄(L ⊗ In))e+ F̃ , (13)

where ∆ = diag{A− ℸ1C1, · · ·, A− ℸNj
k
CNj

k
},

M̄ = diag{M1, · · ·,MNj
k
} , F̃ = col(f̃T1 , f̃

T
2 , · · ·, f̃TNj

k

).

Now, under the Assumptions 1 to 3, for the dynamic system
(1) and (2) without disturbance, the following theorem is intro-
duced which assures the existence of the nonlinear distributed
observer (11).

Theorem 1. The distributed observer (11) can achieve omni-
science asymptotically under the switching topologies Gω

k , ω ∈
ϖ if there exists a positive coupling gain γ ∈ R+ ,
positive definite symmetric matrices Pio ∈ Rvi×vi , Piu ∈

TABLE I
ALGORITHM TO DESIGN NONLINEAR DISTRIBUTED OBSERVER (11)

1 Select an orthogonal matrix Ti for i ∈ Ij
k s.t. (8) holds.

2 Under each switching topology, compute the positive row vec-
tor θjk = [θjk1

, · · ·, θjkN
j
k
] s.t. θjkL̃

j
k = 0 and θjk1N

j
k = Nj

k .

3 Consider gi > 0, i ∈ Ij
k and choose ϵ > 0 s.t. (9) holds.

4 Solve LMI (14) to obtain Pio,Piu,Wi and γ for i ∈ Ij
k .

5 Compute ℸio = P−1
io Wi, and get ℸi and Mi as in (15),

i ∈ Ij
k .

R(n−vi)×(n−vi), and the matrix Wi ∈ Rvi×pi , such that the
following LMI holds for i ∈ Ij

k
Φi + ζ2ηIvi AT

irPiu Pio 0
PiuAir Ψi + ζ2ηIn−vi 0 Piu

Pio 0 −ηIvi 0
0 Piu 0 −ηIn−vi

 < 0,

(14)

where, Φi ∈ Rvi×vi and Ψi ∈ R(n−vi)×(n−vi) are defined
as below
Φi = sym(PioAio) − sym(WiCio)+

γ

θj
ki

giIvi− γ

θj
ki

ϵIvi+2ρPio

and,
Ψi = sym(PiuAiu) − γ

θj
ki

ϵIn−vi + 2ρPiu, and η ∈ R+ is a
positive balance factor.

Then, the gain matrices are obtained from the following
equations:

ℸi := Ti
[

ℸio

0

]
,Mi := Ti

[
P−1
io 0
0 P−1

iu

]
(Ti)T , (15)

where ℸio = P−1
io Wi, i ∈ Ij

k.

The solvability of the LMI (14) is a requirement for the
existence of the nonlinear distributed observer (11).

The design algorithm for the nonlinear distributed observer
problem stated in (11) is listed in Table 1.

Proof. The Lyapunov function candidate is defined as

V ω
k (e) =

Nj
k∑

i=1

θjkie
T
i Piei (16)

with P = diag{P1, · · ·,PNj
k
} and Pi = M−1

i , i ∈ Ij
k.

By differentiating the Lyapunov function (16) along the error
dynamic trajectory (13) yields

V̇ ω
k (e) = eT [(Θj

k ⊗ In)(∆
TP + P∆)− γL̂j

k ⊗ In]e

+ 2eT (Θj
k ⊗ In)PF̃ .

(17)

Considering the Lipschitz condition (3), the following inequal-
ity will result:

f̃i
T
Piei + eTi Pif̃i ≤ η−1eTi PiPiei + ηf̃i

T
f̃i

≤ η−1eTi PiPiei + ηζ2∥x̂i − x∥2

≤ eTi (η
−1PiPi + ηζ2)ei, i ∈ Ij

k

(18)
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Combining (18) and (17) yields

V̇ ω
k (e) ≤ eT [(Θj

k ⊗ In)(∆
TP + P∆+ ζ2ηInNj

k

+ η−1PP)− γL̂j
k ⊗ In]e.

(19)

By applying the Schur complement Lemma to (14), we get
the following inequality[

Φi + ζ2ηIvi + η−1PioPio AT
irPiu

PiuAir Ωi

]
< 0. (20)

Here Ωi = Ψi+ζ
2ηIn−vi+η

−1PiuPiu, Φi and Ψi are defined
as in (14) in Theorem 1. Moreover, by putting (20) and (9)
together the following inequality is derived

diag{Q1, · · ·,QNj
k
} − (T j

k )
T γ(L̂j

k ⊗ In)T j
k ≤ 0, (21)

where

Qi = θjki(

[
ϕi + ζ2ηIvi + η−1PioPio AT

irPiu

PiuAir χi

]
), (22)

χi = ψi + ζ2ηIn−vi + η−1PiuPiu,
ϕi = sym(PioAio)−sym(WiCio) + 2ρPio,
ψi = sym(PiuAiu) + 2ρPiu .
Pre- and post-multiplying of (21) by T j

k and its transpose
yields the following inequality

(Θj
k ⊗ In)(∆

TP + P∆+ ζ2ηInNj
k

+ η−1PP + 2ρP)− γL̂j
k ⊗ In ≤ 0.

(23)

It can be readily inferred from (23) that V̇ ω
k (e) < −2ρV ω

k (e).

As a result, the nonlinear distributed observer (11) obtains
asymptotic omniscience, and all the calculations of the error
dynamic (13) converge to zero asymptotically with the con-
vergence rate of at least ρ > 0.

Remark 4. Both inequalities (9) and (14) are LMIs that
can be mathematically addressed with the LMI Toolbox. The
feasibility of solving these LMIs depends on the nonlinear
Lipschitz constant and cannot be solved if it exceeds the
practical limit. It should also be emphasized that the only
constraint related to the nonlinear term of the described system
(1) is the Lipschitz condition (3), and the only limitation
related to the linear term is the observability. Therefore, the
unobservability problem of the linear part of the system cannot
be solved by working on the nonlinear term.

B. Robust Nonlinear Distributed Observer

Referring to the nonlinear system (1) and (2) with external
disturbance, i.e. Γd(t) ̸= 0, it is possible to ensure the
convergence of the estimation error in the suggested robust
nonlinear observer by adding the following assumptions.

Assumption 4: Associated with each node for a given
positive definite symmetric matrix Pi, there exists a vector
ZT

i ∈ Rpi ,∀i ∈ Ij
k such that

ΓTPi = ZiCi. (24)

This assumption is known as the matching condition [20]
where Ci and Γ are output and disturbance matrices with

known values, respectively. The proposed robust distributed
observer for each node is defined as

˙̂xi = Ax̂i + ℸi(yi − Cix̂i) + γMi

Nj
k∑

j=1

αij(t)(x̂j − x̂i)

+ f(t, x̂i, u) + ∫i +Bu, ∀i ∈ Ij
k,

(25)

where ∫i ∈ Rn is a discontinuous function defined as [19]

∫i =

{
−P−1

i CT
i ZT

i ZiCieiD

∥ZiCiei∥ ∥ZiCiei∥ ≠ 0

0 ∥ZiCiei∥ = 0.
(26)

By subtracting (1) from (25), the error dynamic of each local
observer is given by

ėi = (A−ℸiCi)ei+γMi

Nj
k∑

j=1

αij(t)(ej−ei)+ f̃i+∫i−Γd(t).

(27)
By stacking the estimation error of the local observers in a
column vector as in (13), the global estimation error dynamic
can be found as

ė = ∆e− γM̄(L̃j
k ⊗ In)e+ F̃ + S − Λd(t). (28)

In (28), S := col(∫T1 , ∫T2 , · · ·, ∫TNj
k

) and Λ ∈ Rn.Nj
k which is

formed by superimposing N j
k same distribution matrix.

Theorem 2. For the dynamic system (1) and (2) with the
external disturbance under the Assumptions 1 to 4, let θjki > 0,
i ∈ Ij

k be defined as in Lemma 1, gi > 0, i ∈ Ij
k, and ϵ > 0

be chosen such that the inequality (9) is satisfied. For a given
error convergence rate ρ > 0, assuming that the coupling
gain γ ∈ R+, the matrix Wi ∈ Rvi×pi , Zi ∈ R1×pi , and
the positive definite symmetric matrices Pio ∈ Rvi×vi , and
Piu ∈ Rn−vi×n−vi can be found to satisfy the set of LMIs
in (14). Then, there exists matrices ℸi and Mi , i ∈ Ij

k,
the coupling gain γ ∈ R+, and the discontinuous function
∫i ∈ Rn, i ∈ Ij

k, such that the error dynamic (28) converges
to zero with convergence rate of ρ.

Proof. Differentiating the Lyapunov function (16) along the
system error dynamics (28) yields

V̇ω(e) = eT [(Θj
k ⊗ In)(∆

TP + P∆)−
γL̂j

k ⊗ In]e+ 2eT (Θj
k ⊗ In)P(F̃ + S − Λd(t)). (29)

Considering (24) and the discontinuous function (26), it can
be shown that

2eTi Pi∫i − 2eTi PiΓd(t) ≤ −2
eTi C

T
i ZT

i ZiCieiD

∥ZiCiei∥
+ 2∥ΓTPiei∥D

≤ 2(−∥ZiCiei∥+ ∥ZiCiei∥)D = 0.
(30)

According to (30), similar to the proof of Theorem (1) we can
achieve (23) and finally V̇ ω

k (e) < −2ρV ω
k (e).

As a result, the robust nonlinear distributed observer (25)
obtains asymptotic omniscience, converging all the calcula-
tions of the error dynamic (28) to zero asymptotically with a
convergence rate of at least ρ > 0.
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Remark 5. To design a robust distributed observer, the
matching condition is a constraint and the magnitude of the
disturbance should not be excessively exceeded.

Remark 6. To prove the stability of the overall system,
it is required to define a comprehensive Lyapunov function
that is a union of all Lyapunov functions for each sub-
interval defined in Theorem 2. The issue with stability, when
the switch happens, is that the system will experience some
level of uncertainty. Since this uncertainty is in the form of
a sign function it is considered a bounded uncertainty and
appears in the Laplacian matrix next to other uncertainties in
relation (27). Since the distributed observer design proposed
in this paper is designed to be robust against such bounded
uncertainties, the stability of the closed-loop system can still
be guaranteed.

IV. SIMULATION EXAMPLES

Example 1: We consider a nonlinear system with four
measurement nodes. In this case, the dynamic system (1) and
(2) can be represented with the following matrices

A =


−1 0 0 0 0 0
−1 1 1 0 0 0
1 −2 −1 −1 1 1
0 0 0 −1 0 0
−8 1 −1 −1 −2 0
4 −0.5 0.5 0 0 −4

 , B = 0,

C =


1 0 0 2 0 0
2 0 0 1 0 0
2 0 1 0 0 1
0 0 0 2 0 0
1 0 2 0 0 0
2 0 4 0 0 0


C1 =

[
1 0 0 2 0 0
2 0 0 1 0 0

]
C2 =

[
2 0 1 0 0 1

]
C3 =

[
0 0 0 2 0 0

]
C4 =

[
1 0 2 0 0 0
2 0 4 0 0 0

]
and

f(x) =


cos(x1)
sin(x3)
x21
0
0
0

 , d(t) = 0.

These four nodes transmit information over a communication
network described through a switching communication net-
work Gσ(t) illustrated by two digraphs in Figs 1, and governed
by the following switching signal:

σ(t) =

{[
0, if kTk ≤ t < (k + 1

3 )Tk
1, if (k + 1

3 )Tk ≤ t < (k + 1)Tk.

]
(31)

where k = {0, 1, 2, ...}, and Tk = 3.

1

32

4

(a) G0
k

1

32

4

(b) G1
k

Fig. 1. Switching Topology of the Graph used for Example 1.

It can be seen from Fig.1 that the subgraphs of G0
k and

G1
k are strongly connected, and the union of G0

k and G1
k is

uniformly strongly connected. Therefore, Assumption 3 is
satisfied. By choosing the decay rate ρ = 1 and solving LMI
(14), the coupling gain is γ = 190.9510. The gain matrices of
the three local observers in the first switch are computed as:

ℸ1 =


136.4019 −59.5304

0 0
0 0

82.7251 −148.0247
0 0
0 0

 ,ℸ2 =


4.5737

−23.9247
−4.1396
−4.1417
−18.5646
2.1322

 ,

ℸ3 =



0
0
0
0

8.4388
0
0


,

M1 = 10−2


18.5 0 0 0 0 0
0 55.0 −28.9 0 36.0 16.5
0 −28.9 72.6 0 −0.02 −85.2
0 0 0 18.5 0 0
0 36.0 −0.02 0 360.1 −225
0 16.5 −85.2 0 −225 475



M2 = 10−3


4.8 1.1 −10.9 −10.7 −7.1 2.9
1.1 43.5 −9.6 −15.4 19.9 −2.1

−10.9 −9.6 27.6 26.2 13.3 −7.1
−10.7 −15.4 26.2 30.2 10.0 −6.2
−7.1 19.9 13.3 10.0 24.8 −7.2
2.9 −2.1 −7.1 −6.2 −7.2 4.7



M3 = 10−2


18.7 5.1 −6.3 0 11.8 0.7
5.1 58.3 −25.1 0 57.2 −19.7
−6.3 −25.1 64.9 0 −16.1 −59.4
0 0 0 0.01 0 0

11.8 57.2 −16.1 0 342.2 −250
0.7 −19.7 −59.4 0 −250 459


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Fig. 2. The real and estimated value of state x by Node 1.
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Fig. 3. The real and estimated value of state x by Node 2.

Note that θ0k1 = θ1k1, since the positive vectors θ0k = [1, 1, 1]
and θ1k = [1, 1]. Therefore, the gain matrices of Node 1 are
not changed in the second switch. The gain matrices of Node
4 in the second switch are computed as follows:

ℸ4 =


0.0114 0.0480
−5.2081 −8.4560
0.7703 1.2551
2.0676 3.2027
−2.6674 −4.1432
0.6896 1.2903

 ,

M4 = 10−3


2.2 1.5 −1.1 −6.1 −7 1.9
1.5 15.9 −2.9 −11 2.9 0.4
−1.1 −2.9 1.2 3.9 2.3 −0.9
−6.1 −11 3.9 21.8 17.9 −5.7
−7 2.9 2.3 7.9 31.6 −8.8
1.9 0.4 −0.9 −5.7 −8.8 4.2

 ,

The simulation results are plotted in Figs. 2-5. The figures are
showing the real and estimated states by each agent.
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Fig. 4. The real and estimated value of state x by Node 3.
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Fig. 5. The real and estimated value of state x by Node 4.

Example 2: In the second numerical example we assume the
system matrices in (1) and (2) are defined as

A =

−1 0 1
1 −2 0
0 0 −1

 , C =

−2 2 1
1 0 1
1 −1 1

 =

C1

C2

C3


B = 0 , fT (x) = [ 0 0 sin(x1) ] .

These three nodes transmit information over a communi-
cation network described by the switching graph in Fig. 6,
which is dictated by the switching signal introduced in (31).
Subgraphs of G0

k and G1
k in Fig. 6 are strongly connected

as presented in Example 1, and the union of G0
k and G1

k

is uniformly strongly connected. Therefore, Assumption 3 is

1

32

(a) G0
k

1

32

(b) G1
k

Fig. 6. Switching Topology of the Graph used for Example 2.
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Fig. 7. The estimation error of states without applying ∫i, i ∈ N .

satisfied. The disturbance signal is defined as d = sin(πt)
and the disturbance input matrix Γ is given by ΓT =[0, 0, 4].
The initial conditions for all local observers are set to zero.
By applying the synthesis method proposed in Theorem 2 and
under the matching condition (24), the set of LMIs (14) can
be solved and γ = 0.0353. The gain matrices of the robust
nonlinear distributed observer (25) for Nodes 1 and 2 in the
first switch are calculated as:

ℸ1 =

 −0.0334
0.0334
−0.0753

 ,ℸ2 =

 1.1790
0

1.4978

 ,
M1 =

 124.3712 124.0414 0.3158
124.0414 124.3712 −0.3158
0.3158 −0.3158 0.7024

 ,

M2 =

 0.5892 0 −0.3328
0 50.6320 0

−0.3328 0 0.7304

 ,

Z1 = 0.0020,Z2 = 0.0031.

The gain matrices of the Node 3 in the second switch are computed
as follows:

ℸ3 =

 0.0272
−0.0272
0.0638

 ,M3 =

 53.2666 52.9255 0.3039
52.9255 53.2666 −0.3039
0.3039 −0.3039 0.7199

 ,

Z3 = 0.0018.

Note θ0k1 = θ1k1, since the positive vectors θ0k = [1, 1] and θ1k =
[1, 1]. Therefore, the gain matrices of Node 1 are not changed in the
second switch. The results of state estimation error before and after
applying the robust term in the nonlinear distributed observer (25)
are plotted in Figs. 7 and 8, respectively. It shows the efficacy of
the proposed robust distributed observer in eliminating the effect of
sinusoidal disturbance.

V. CONCLUSIONS

This paper investigates the design problem of a robust and non-
linear distributed observer for a class of Lipschitz nonlinear dynamic
systems in the presence of nonlinear uncertainty and bounded dis-
turbance. The topology assumed for the communication network
of the distributed system does not remain connected all the time
and the network may go under temporary communication failure.
All local observers are not necessarily observable, however, it is
assumed that the whole system is collectively observable. The design
problem is formulated in the form of an LMI to calculate the observer
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Fig. 8. The estimation error of states after applying ∫i, i ∈ N .

gains under time-varying switching topology so that the observer
error dynamics become asymptotically omniscient. The effect of
nonlinear uncertainties and norm-bounded disturbance are mitigated
by introducing a discontinuous robust term. The illustrative numerical
results prove the efficacy of the proposed robust distributed observer
method when matched uncertainty affects the dynamics of each
individual agent. In future work, we are going to apply the proposed
method for estimating the states of cooperative robots.
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