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Summary

Regression modeling is the workhorse of statistics and there is a vast literature on

estimation of the regression function. It is realized in recent years that in regression

analysis the ultimate aim may be the estimation of a level set of the regression func-

tion, instead of the estimation of the regression function itself. The published work on

estimation of the level set has thus far focused mainly on nonparametric regression,

especially on point estimation. In this paper, the construction of confidence sets for

the level set of linear regression is considered. In particular, 1 − α level upper, lower

and two-sided confidence sets are constructed for the normal-error linear regression. It

is shown that these confidence sets can be easily constructed from the corresponding

1−α level simultaneous confidence bands. It is also pointed out that the construction

method is readily applicable to other parametric regression models where the mean re-
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sponse depends on a linear predictor through a monotonic link function, which include

generalized linear models, linear mixed models and generalized linear mixed models.

Therefore the method proposed in this paper is widely applicable. Real example is

used to illustrate the method.

keywords Confidence sets; linear regression; nonparametric regression; parametric

regression; simultaneous confidence bands; statistical inference.
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1 INTRODUCTION

Decompression sickness (DCS) is an injury caused by rapid change of pressure, such as during

or after water dives. Mild DCS involves symptoms such as muscle or joint pain, while serious

DCS can cause paralysis or death. It is important to understand the relationship between

risk factors, such as the exposure pressure (depth) and exposure duration, and mortality

rate, i.e., the chance of death due to serious DCS. Since adult sheep have a body mass

similar to human they are considered to have a similar DCS susceptibility as humans. A

sheep decompression trial is reported and studied in Li et al. (2008). In the paper, logistic

regression is used to model the mortality rate p as a function of the two covariates exposure

pressure (x1) and exposure duration (x2): log( p
1−p) = β0 +β1x1 +β2x2. Of particular interest

are the values of xxx = (x1, x2)
T that correspond to a relatively low mortality rate, say 0.05,

i.e., the set

{xxx ∈ K : β0 + β1x1 + β2x2 = log (0.05/(1− 0.05)) }

where K ∈ <2 is a pre-specified region of xxx. How to make inference about this set (that

depends on the unknown parameters βi), especially the construction of confidence sets, is

the well known and well studied effective-dose problem; See, for example, Li et al. (2008),

Tompsett et al. (2018), and the references therein for an overview.

A set of potentially more interest is

{xxx ∈ K : β0 + β1x1 + β2x2 ≤ log (0.05/(1− 0.05)) } ,

since one would probably be more interested in identifying all the combinations of x1 and
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x2 for which the mortality rate p is no more than the threshold 0.05. It becomes clear below

that this is a level set. This motivates us to study the construction of confidence sets for a

level set.

In general, let Y = h(xxx) + e where Y ∈ <1 is the response, xxx ∈ <p is the covariate (vector),

h is the regression function, and e is the random error. In regression analysis, there is a

vast literature on how to estimate the regression function h, based on the observed data

(Yi,xxxi), i = 1, . . . , n. In recent years, it is realized that an important problem in regression

is the inference of the λ-level set

Gλ = Gλ(h) = {xxx ∈ K : h(xxx) ≥ λ}

where λ is a pre-specified number, and K ⊂ <p is a given covariate xxx region of interest.

It is argued forcefully in Scott and Davenport (2007) that “In a wide range of regression

problems, if it is worthwhile to estimate the regression function h, it is also worthwhile to

estimate certain level sets. Moreover, these level sets may be of ultimate importance. And

in many classification problems, labels are obtained by thresholding a continuous variable.

Thus, estimating regression level sets may be a more appropriate framework for addressing

many problems that are currently envisioned in other ways”. Other than its application to

the DCS problem alluded to above, one can envisage that, when considering a regression

model of perinatal mortality rate on birth weight, it is interesting to identify the range of

birth weight over which the perinatal mortality rate exceeds a certain λ. Further possible

applications have been pointed out, for example, in Scott and Davenport (2007) and Dau et

al. (2020). Inference of the level set Gλ is an important component of the more general field
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of subgroup analysis (cf. Wang et al., 2007, Herrera et al., 2011, Ting et al., 2020).

In nonparametric regression where h is not assumed to have a specific form, point estimation

of Gλ aims to construct Ĝλ to approximate Gλ using the observed data. This has been

considered by Cavalier (1997), Polonik and Wang (2005), Willett and Nowak (2007), Scott

and Davenport (2007), Dau et al. (2020) and Reeve et al. (2021) among others. The main

focus of these works is on large sample properties such as consistency and rate of convergence.

Related work on estimation of level-sets of a nonparametric density function can be found

in Hartigan (1987), Tsybakov (1997), Cadre (2006), Mason and Polonik (2009), Chen et al.

(2017) and Qiao and Polonik (2019). Confidence-set estimation of Gλ aims to construct

sets Ĝλ to contain or be contained in Gλ with a pre-specified confidence level 1− α. Large

sample approximate 1 − α confidence-set estimation of Gλ is considered in Mammen and

Polonik (2013).

In this paper confidence-set estimation of Gλ for linear regression is considered. It is shown

that lower, upper and two-sided confidence-set estimators of Gλ can be easily constructed

from the corresponding lower, upper and two-sided simultaneous confidence bands for a linear

regression function. Simultaneous confidence bands for linear regression have been considered

in Wynn and Bloomfield (1971), Naiman (1984, 1986), Piegorsch (1985a,b), Sun and Loader

(1994), Liu and Hayter (2007) and numerous others; see Liu (2010) for an overview. It is

also pointed out that the method can be directly extended to, for example, the generalized

linear regression models (including the logistic regression for the DCS problem), though the

confidence-set estimations are of asymptotic 1 − α level since the simultaneous confidence

bands are of asymptotic 1 − α level in this case. A related problem is the confidence-set
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estimation of the maximum (or minimum) point of a linear regression model; see Wan et al.

(2015, 2016) and the references therein.

The layout of the paper is as follows. The construction method of confidence-set estimators

is given in Section 2. The method is illustrated with the DCS example in Section 3. Section

4 contains conclusions and a brief discussion. Finally the appendix sketches the proofs of

two theorems in Section 2.

2 Method

The confidence sets for Gλ are constructed in this section. We first consider the normal-error

linear regression model, the results of which can directly be extended to the generalized liner

regression models, for example, by using the asymptotic normality of the estmator of the

regression coefficients.

Let the normal-error linear regression model be given by

Y = h(xxx) + e = β0 + β1x1 + · · ·+ βpxp + e ,

where the independent errors ei = Yi − h(xxxi) have distribution N(0, σ2). From the observed

sample of observations (Yi,xxxi), i = 1, · · · , n, the usual estimator of β = (β0, · · · , βp)T is given

by β̂ = (XTX)−1XTY where X is the n×(p+1) design matrix and Y = (Y1, · · · , Yn)T . The

estimator of the error variance σ2 is given by σ̂2. It is known that β̂ ∼ N(β, σ2(XTX)−1),

σ̂2 ∼ σ2χ2
ν/ν with ν = n−p−1, and β̂ and σ̂2 are independent. In order for both estimators
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β̂ and σ̂2 to be available, the sample size n must be at least n ≥ p+ 2.

Let x̃xx = (1,xxxT )T = (1, x1, · · · , xp)T . Suppose the upper, lower and two-sided 1− α simulta-

neous confidence bands over the covariate region xxx ∈ K are given, respectively, by

P
{
x̃xxTβ ≤ x̃xxT β̂ + c1σ̂m(xxx) ∀xxx ∈ K

}
= 1− α (1)

P
{
x̃xxTβ ≥ x̃xxT β̂ − c1σ̂m(xxx) ∀xxx ∈ K

}
= 1− α (2)

P
{
x̃xxT β̂ − c2σ̂m(xxx) ≤ x̃xxTβ ≤ x̃xxT β̂ + c2σ̂m(xxx) ∀xxx ∈ K

}
= 1− α (3)

where m(xxx) =
√
x̃xxT (XTX)−1x̃xx corresponding to the hyperbolic confidence bands, and c1 > 0

and c2 > 0 are the critical constants to achieve the exact 1 − α confidence level. Whilst

another popular form is m(xxx) = 1, corresponding to the constant-width confidence bands,

the hyperbolic bands are often better than the constant-width band under various optimality

criteria (see, e.g., Liu and Hayter, 2007, and the references therein) and so used throughout

this paper. The critical constants c1 and c2 can be computed by using the method of Liu et

al. (2005, 2008).

It is worth emphasizing that the three probabilities in (1-3) do not depend on the unknown

parameters β ∈ <p+1 and σ > 0, and that c1 < c2.

From the simultaneous confidence bands in (1-3), define the confidence sets as

Ĝλ,1u =
{
xxx ∈ K : x̃xxT β̂ + c1σ̂m(xxx) ≥ λ

}
, (4)

Ĝλ,1l =
{
xxx ∈ K : x̃xxT β̂ − c1σ̂m(xxx) ≥ λ

}
, (5)

Ĝλ,2u =
{
xxx ∈ K : x̃xxT β̂ + c2σ̂m(xxx) ≥ λ

}
, Ĝλ,2l =

{
xxx ∈ K : x̃xxT β̂ − c2σ̂m(xxx) ≥ λ

}
. (6)
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The following theorem establishes that Ĝλ,1u is an upper, and Ĝλ,1l is a lower, confidence

set for Gλ of exact 1− α level, whilst [Ĝλ,2l, Ĝλ,2u] is a two-sided confidence set for Gλ of at

least 1− α level. A proof is sketched in the appendix.

Theorem 1. We have

inf
β∈<p+1, σ>0

P
{
Gλ ⊆ Ĝλ,1u

}
= 1− α , (7)

inf
β∈<p+1, σ>0

P
{
Ĝλ,1l ⊆ Gλ

}
= 1− α , (8)

inf
β∈<p+1, σ>0

P
{
Ĝλ,2l ⊆ Gλ ⊆ Ĝλ,2u

}
≥ 1− α . (9)

From the definitions in (4-6), it is clear that each set Ĝ·· is given by all the points in K

at which the corresponding simultaneous confidence band is at least as high as the given

threshold λ. Note that each set could be an empty set when λ is sufficiently large, and

become K when λ is sufficiently small. Of course, each set cannot be larger than the given

covariate set K from the definition. Since c1 > 0 and c2 > 0, it is clear that Ĝλ,1l ⊆ Ĝλ,1u

and Ĝλ,2l ⊆ Ĝλ,2u. Since c1 < c2, it is clear that Ĝλ,1u ⊆ Ĝλ,2u and Ĝλ,2l ⊆ Ĝλ,1l. Hence

Ĝλ,2l ⊆ Ĝλ,1l ⊆ Ĝλ,1u ⊆ Ĝλ,2u.

Intuitively, since the regression function x̃xxTβ is bounded from above by the upper simul-

taneous confidence band x̃xxT β̂ + c1σ̂m(xxx) over the region xxx ∈ K, the level set Gλ cannot

be bigger than the set Ĝλ,1u. Similarly, since the regression function x̃xxTβ is bounded from

below by the lower simultaneous confidence band x̃xxT β̂− c1σ̂m(xxx) over the region xxx ∈ K, the

level set Gλ cannot be smaller than the set Ĝλ,1l. Finally, since the regression function x̃xxTβ

is bounded, simultaneously, from below by the lower confidence band x̃xxT β̂ − c2σ̂m(xxx), and

8



from above by the upper confidence band x̃xxT β̂ + c2σ̂m(xxx), over the region xxx ∈ K, the level

set Gλ must contain the set Ĝλ,2l and be contained in the set Ĝλ,2u simultaneously.

Instead of the level set Gλ, the set

Mλ = Mλ(h) = {xxx ∈ K : h(xxx) ≤ λ} (10)

may be of interest in some applications. In this case, one can consider the regression of

−Y on xxx, given by −Y = −h(xxx) + (−e), and hence Mλ becomes the level set G−λ of the

regression function −h(xxx); see the DCS example in Section 3.

The confidence sets given in (4-6) for the normal-error linear regression can be generalized to

other models that involve a linear predictor x̃xxTβ. In generalized linear models, linear mixed

models and generalized linear mixed models (cf. McCulloch and Searle, 2001 and Faraway,

2016), for example, the mean response E(Y ) is often related to a linear predictor x̃xxTβ by a

given monotonic link function L(·), that is, L[E(Y )] = x̃xxTβ. Since L(·) is monotone, the set of

interest {xxx ∈ K : E(Y ) ≥ L0}, for a given threshold L0, becomes either {xxx ∈ K : x̃xxTβ ≥ λ }

or {xxx ∈ K : x̃xxTβ ≤ λ }, where λ = L(L0), depending on whether the function L(·) is

increasing or decreasing. However, when the distribution of β̂ is asymptotically normal

N(β, Σ̂), the simultaneous confidence bands of the forms in (1-3) are of approximate 1− α

level; see, e.g., Liu (2010, Chapter 8). As a result, the corresponding confidence sets of the

forms in (4-6) are of approximate 1− α level too. See the DCS example in the next section.

Now suppose that the value of λ is not pre-specified, that is, one might be interested in the

confidence sets for Gλ for several different values of λ. Of course one can use the results
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above to construct a confidence set, Ĝλ,1l say, for each given value of λ. The question is

“what is the joint confidence level of the confidence sets {Ĝλ1,1l ⊆ Gλ1}, {Ĝλ2,1l ⊆ Gλ2}, · · ·

for a sequence of λ-values λ1, λ2, · · · ?” The theorem below asserts that the joint confidence

level is at least 1− α, the proof of which is also sketched in the appendix.

Theorem 2. We have

inf
β∈<p+1, σ>0

P
{
Gλ ⊆ Ĝλ,1u ∀λ ∈ <1

}
= 1− α , (11)

inf
β∈<p+1, σ>0

P
{
Ĝλ,1l ⊆ Gλ ∀λ ∈ <1

}
= 1− α , (12)

inf
β∈<p+1, σ>0

P
{
Ĝλ,2l ⊆ Gλ ⊆ Ĝλ,2u ∀λ ∈ <1

}
≥ 1− α . (13)

3 Wisconsin-Madison sheep dive trial

In the Wisconsin-Madison sheep dive trial, 1108 dives were performed and recorded. Fol-

lowing Li et al. (2008), logistic regression is used to model the relationship between the

mortality rate p and the two covariates x1, the log base 10 exposure depth, and x2, the log

base 10 exposure duration: logit(p) = β0 + β1x1 + β2x2; here logit(p) = log(p/(1− p)) which

is monotone increasing in p ∈ (0, 1). Based on the recorded data, the MLE β̂ = (β̂0, β̂1, β̂1)
T

is calculated to be (−19.253, 14.196, 3.758)T and the approximate covariance matrix of β̂ is

Î−1 =


5.0004779 −5.5146133 −0.8322975

−5.5146133 7.1346280 0.7606109

−0.8322975 0.7606109 0.1648114

 .

10



Hence β̂ has approximate normal distribution N3(β, Î−1).

A major goal of this study as described in Li et al. (2008) was to determine the ranges of

dive depth and duration that correspond to relatively low mortality rates. This knowledge

will be invaluable for safety in human dives. Set p = .05 as a threshold of low mortality rate.

From the recorded 1108 dives, the minimum value of x1 is min(x1) = 0.314 the maximum

value of x1 is max(x1) = 0.714, min(x2) = 1.301 and max(x2) = 3.158. Hence it is important

to identify the set

{xxx ∈ K : β0 + β1x1 + β2x2 ≤ logit(0.05) } =
{
xxx ∈ K : −x̃xxTβ ≥ −logit(0.05)

}

where K = {xxx = (x1, x2)
T : 0.314 ≤ x1 ≤ 0.714, 1.301 ≤ x2 ≤ 3.158 }. The set above is

just the λ-level set of the regression function −x̃xxTβ with λ = −logit(0.05). So the method

of Section 2 can be used to construct the confidence sets in (4-6) for this Gλ.

From Section 2, simultaneous confidence bands for −x̃xxTβ over xxx ∈ K need to be constructed

first in order to construct the confidence sets. Note, however, only approximate 1 − α

confidence bands of the forms in (1-3), with σ̂ = 1, ν =∞ and (XTX)−1 replaced with Î−1,

can be constructed by using the approximate normal distribution N3(β, Î−1) of β̂. Hence

the confidence sets for Gλ are also of approximate 1 − α level. For 1 − α = 95% and K

given above, the critical values c1 and c2 are computed to be 2.483 and 2.728, respectively,

by using the method of Liu et al. (2005) (see also Liu, 2010, Section 3.2).

Figure 1(a) plots the 1-sided upper simultaneous confidence band for −x̃xxTβ and the hori-

zontal plane at height λ = −logit(0.05) over the rectangular region K.
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(a) 1-sided upper confidence band
and the level plane

(b) 1-sided upper confidence set Ĝλ,1u

(c) 1-sided lower confidence set Ĝλ,1l (d) 2-sided confidence set [Ĝλ,2l, Ĝλ,2u]

Figure 1: The 95% confidence sets in sheep dive example, given by the shaded regions.
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Figure 1(b) plots the 1-sided upper confidence set Ĝλ,1u, with the region K given by the

rectangle in solid line and −x̃xxTβ = −logit(0.05) given by the dashed line. Note that the

curvilinear-boundary of Ĝλ,1u is given by the projection, to the xxx-plane, of the intersection

between the horizontal plane at height −logit(0.05) and the 1-sided upper simultaneous

confidence band over the region xxx ∈ K in Figure 1(a). The upper confidence set Ĝλ,1u tells

us that, with 95% confidence level, within K only those dives with xxx in Ĝλ,1u may have

mortality rate smaller than or equal to 0.05. Hence a dive with xxx ∈ K\Ĝλ,1u should be

considered too dangerous in terms of mortality rate.

Similarly, Figure 1(c) plots the 1-sided lower confidence set Ĝλ,1l in the xxx-plane. Note that

the curvilinear-boundary of Ĝ1l is given by the projection, to the xxx-plane, of the intersection

between the horizontal plane at height −logit(0.05) and the 1-sided lower simultaneous

confidence band for −x̃xxTβ over the region K. The lower confidence set Ĝλ,1l tells us that,

with 95% confidence level, dives with xxx ∈ Ĝλ,1l have mortality rate smaller than or equal to

0.05. Hence these dives may be considered ‘safe’.

Figure 1(d) plots the two-sided confidence set [Ĝλ,2l, Ĝλ,2u] in the xxx-plane. Note that the

curvilinear-boundaries of [Ĝλ,2l, Ĝλ,2u] are given by the projection, to the xxx-plane, of the

intersection between the horizontal plane at height −logit(0.05) and the two-sided confidence

band for −x̃xxTβ over the region K. The two-sided confidence set tells us that, with 95%

confidence level, dives with xxx ∈ K\Ĝλ,2u are considered as dangerous, dives with xxx ∈ Ĝλ,2l

are considered as safe, and dives with xxx ∈ Ĝλ,2u are possibly dangerous, in terms of mortality.

If one feels mortality rate 0.05 is too high, one may want to try 0.01, for example, and

construct the corresponding confidence set Ĝλ,2l. Indeed one can construct confidence sets
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Ĝλ1,2l, Ĝλ2,2l, · · · for any sequence of λ1, λ2, · · · . Theorem 2 guarantees that the simultaneous

confidence level of this sequence of lower confidence sets is still 1− α = 95%.

4 CONCLUSION AND DISCUSSION

In this paper, the construction of confidence sets for the level set of linear regression is

considered. Upper, lower and two-sided confidence sets of level 1−α are constructed for the

normal-error linear regression. It is shown that these confidence sets are constructed from

the corresponding 1 − α level simultaneous confidence bands. Hence these confidence sets

and simultaneous confidence bands are closely related.

It is noteworthy that the sample size n only needs to satisfy ν = n−p−1 ≥ 1, i.e. n ≥ p+2,

so that the regression coefficients β and the error variance σ2 can be estimated. So long as

n ≥ p + 2, the theorem in Section 2 holds. A larger sample size n will make the confidence

sets closer to the level set, which is similar to the usual confidence sets for the mean of a

normally-distributed population. Hence the method for linear regression provided in this

paper is much simpler than that for nonparametric regression and density level sets (cf.

Mammend and Polonik, 2013, Chen et al., 2017, Qiao and Polonik, 2019).

In Theorem 1 in Section 2, the minimum coverage probability over the whole parameter space

β ∈ <p+1 and σ > 0 is sought since no assumption is made about any prior information

on β or σ > 0. If it is known a priori that β and σ are in a restricted space, then the

usual estimators β̂ and σ̂ should be replaced by the maximum likelihood estimators over the

restricted space, and the minimum coverage probability should also be over this restricted
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space. This situation becomes more complicated and is beyond the scope of this paper.

It is also pointed out that the construction method is readily applicable to other paramet-

ric regression models where the mean response depends on a linear predictor through a

monotonic link function. Examples are generalized linear models, linear mixed models and

generalized linear mixed models. The illustrative example in Section 3 involves a generalized

linear model. Therefore the method proposed in this paper is widely applicable.

We are unable to establish thus far whether the two-sided confidence set [Ĝλ,2l, Ĝλ,2u] is of

confidence level 1−α exactly. Construction of a two-sided confidence set of exact confidence

level 1 − α is clearly of interest and warrants further research. We are actively researching

on this.
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6 Appendix

In this appendix proofs of the two theorems in Section 2 are sketched.

15



First, consider Theorem 1. For proving the statement in (7), we have

{
Gλ ⊆ Ĝλ,1u

}
=

{
∀xxx ∈ Gλ : xxx ∈ Ĝλ,1u

}
=

{
∀xxx ∈ Gλ : x̃xxT β̂ + c1σ̂m(xxx) ≥ λ

}
=

{
∀xxx ∈ Gλ : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ λ− x̃xxTβ

}
⊇

{
∀xxx ∈ Gλ : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}
⊇

{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}

where the second equation follows directly from the definition of Ĝλ,1u, the first “⊇” follows

directly from the definition of Gλ, and the second “⊇” follows directly from the fact that

Gλ ⊆ K. It follows therefore

P
{
Gλ ⊆ Ĝλ,1u

}
≥ P

{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}
= 1− α (14)

where the last equality is directly due to the fact that x̃xxT β̂+c1σ̂m(xxx) is an upper simultaneous

confidence band for x̃xxTβ over xxx ∈ K of exact 1− α level, as given in (1).

Next we show that the minimum probability over β ∈ <p+1 and σ > 0 in statement (7) is

1 − α, attained at β = (λ, 0, . . . 0)T . At β = (λ, 0, . . . 0)T , we have Gλ = K and λ = x̃xxTβ,
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and so

{
Gλ ⊆ Ĝλ,1u

}
=

{
∀xxx ∈ K : xxx ∈ Ĝλ,1u

}
=

{
∀xxx ∈ K : x̃xxT β̂ + c1σ̂m(xxx) ≥ λ

}
=

{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ λ− x̃xxTβ

}
=

{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}

which gives

P
{
Gλ ⊆ Ĝλ,1u

}
= P

{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}
= 1− α . (15)

The combination of (14) and (15) proves the statement in (7).

Now we prove the statement in (8). For a given set A ⊆ K, let Ac denote the complement
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set within K, i.e. Ac = K\A. We have

{
Ĝλ,1l ⊆ Gλ

}
=

{
Gc
λ ⊆ Ĝc

λ,1l

}
=

{
∀xxx ∈ Gc

λ : xxx ∈ Ĝc
λ,1l

}
=

{
∀xxx ∈ Gc

λ : x̃xxT β̂ − c1σ̂m(xxx) < λ
}

=
{
∀xxx ∈ Gc

λ : x̃xxT (β̂ − β)− c1σ̂m(xxx) < λ− x̃xxTβ
}

⊇
{
∀xxx ∈ Gc

λ : x̃xxT (β̂ − β)− c1σ̂m(xxx) ≤ 0
}

⊇
{
∀xxx ∈ K : x̃xxT (β̂ − β)− c1σ̂m(xxx) ≤ 0

}

where the third equation follows directly from the definition of Ĝλ,1l (or Ĝc
λ,1l), the first “⊇”

follows directly from the definition of Gλ (or Gc
λ), and the second “⊇” follows directly from

the fact that Gc
λ ⊆ K. It follows therefore

P
{
Ĝλ,1l ⊆ Gλ

}
≥ P

{
∀xxx ∈ K : x̃xxT (β̂ − β)− c1σ̂m(xxx) ≤ 0

}
= 1− α (16)

where the last equality is directly due to the fact that x̃xxT β̂−c1σ̂m(xxx) is a lower simultaneous

confidence band for x̃xxTβ over xxx ∈ K of exact 1− α level, as given in (2).

Next we show that the minimum probability over β ∈ <p+1 and σ > 0 in statement (8)

is 1 − α, attained at β = (λ−, 0, . . . 0)T , where λ− denotes a number that is infinitesimally
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smaller than λ. At β = (λ−, 0, . . . 0)T , we have Gc
λ = K and so

{
Ĝλ,1l ⊆ Gλ

}
{
Gc
λ ⊆ Ĝc

λ,1l

}
=

{
∀xxx ∈ Gc

λ : xxx ∈ Ĝc
λ,1l

}
=

{
∀xxx ∈ K : xxx ∈ Ĝc

λ,1l

}
=

{
∀xxx ∈ K : x̃xxT β̂ − c1σ̂m(xxx) < λ

}
=

{
∀xxx ∈ K : x̃xxT (β̂ − β)− c1σ̂m(xxx) < λ− x̃xxTβ

}
=

{
∀xxx ∈ K : x̃xxT (β̂ − β)− c1σ̂m(xxx) < 0

}

which gives

P
{
Ĝλ,1l ⊆ Gλ

}
= P

{
∀xxx ∈ K : x̃xxT (β̂ − β)− c1σ̂m(xxx) < 0

}
= 1− α . (17)

The combination of (16) and (17) proves the statement in (8).

The statement (9) can be proved by combining the arguments that establish (14) and (16)

above to establish that

{
Ĝλ,2l ⊆ Gλ ⊆ Ĝλ,2u

}
⊇
{
∀xxx ∈ K : −c2σ̂m(xxx) ≤ x̃xxT (β̂ − β) < c2σ̂m(xxx)

}
;

details are omitted here to save space. Unfortunately, a least favorable configuration of β

that achieves the coverage probability 1 − α cannot be identified in this case, and so 1 − α

is only a lower bound on the confidence level.
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Now consider Theorem 2. For proving the statement in (11), we have

{
Gλ ⊆ Ĝλ,1u ∀λ ∈ <1

}
= ∩λ∈<1

{
Gλ ⊆ Ĝλ,1u

}
⊇ ∩λ∈<1

{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}
(18)

=
{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}

where the“⊇” in (18) follows directly from the proof of the statement in (7) above, and

the second “=” follows directly since each set in (18) has nothing to do with λ. It follows

therefore

P
{
Gλ ⊆ Ĝλ,1u ∀λ ∈ <1

}
≥ P

{
∀xxx ∈ K : x̃xxT (β̂ − β) + c1σ̂m(xxx) ≥ 0

}
= 1− α . (19)

On the other hand, it is clear that
{
Gλ ⊆ Ĝλ,1u ∀λ ∈ <1

}
⊆
{
Gλ ⊆ Ĝλ,1u

}
and so

inf
β∈<p+1, σ>0

P
{
Gλ ⊆ Ĝλ,1u ∀λ ∈ <1

}
≤ inf

β∈<p+1, σ>0

P
{
Gλ ⊆ Ĝλ,1u

}
= 1− α . (20)

The combination of (19) and (20) clearly gives the statement in (11).

The statements in (12-13) of Theorem 2 can be proved in a similar way, and so the details

are omitted to save space.
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