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1. Introduction

"When you play against Bobby [Fischer],
it is not a question of whether you win or
lose. It is a question of whether you
survive."

−Boris Spassky, World Chess Champion,
1969 - 1972.

Rank-order tournaments are a prevalent aspect of numerous organizations, where performance-

based bonuses and promotions are used to motivate workers to achieve high productivity. Addi-

tionally, companies continually make decisions regarding new hires, and each new addition to the

workforce has the potential to alter the internal dynamics of competition within the firm.

Let’s consider a scenario where an exceptionally talented individual, often referred to as a

“superstar,” is recruited by a Forbes top 500 firm through a lucrative hiring contract worth millions

of dollars. The firm has high expectations for the superstar’s output, and these expectations are

taken into account during salary negotiations. However, such a hiring decision can have ripple

effects in a firm that employs rank-order tournaments.

The existing employees now find themselves in competition with a highly talented superstar for

bonuses, promotions, and other rewards. The overall impact of this new hire becomes uncertain.

On one hand, the existing workers may rise to the challenge and exceed their expected levels of

performance. On the other hand, the intensified competition resulting from the presence of the

superstar could potentially lead to a decline in performance among the existing employees.

In this paper, we analyze the superstar effect using chess data. First, we present two contest

models that capture the direct and indirect superstar effects in chess where exactly two players

compete in every game. Unlike other sports where only one of these two effects is present, both

of these effects coexist in chess. In the first model of direct competition, the superstar player has

higher ability than the second player. This head-to-head competition puts pressure on the second

player, who suffers from choking and intimidation. These choking and intimidation impacts de-

pend on the ability of the superstar: the higher the superstar’s ability, the higher the pressure on her

competitors. Like Sanders and Walia (2012) and Benscheidt and Carpenter (2020), we introduce

the choking impact into the cost function. The intimidation impact is present in the contest success

function. Both choking and intimidation impacts make it more difficult (more costly) to exert effort
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when a player competes against the superstar and as a result the direct theoretical superstar effect

is always negative.

In the second model of indirect effect, two identical-ability players compete against each other

when the superstar is present in the tournament. Players can either falter in the superstar’s pres-

ence or draw inspiration from it, which in turn leads to lower or higher effort in the two-player

competition. Note that even though the intimidation impact of head-to-head competition with the

superstar is absent in this case, the choking impact of the superstar may still be present. We find

that the indirect theoretical superstar effect is neutral. This observation is intuitive: the superstar

affects both identical-ability players equally, and as a result, their chances to beat each other will

not change with the superstar ability.

We then empirically test the superstar effect using five different male and female chess super-

stars who come from different backgrounds and time periods: Magnus Carlsen, Garry Kasparov,

Anatoly Karpov, Bobby Fischer, and Hou Yifan. We analyze more than 2 million move-level ob-

servations from invitation-based elite chess tournaments which took place between 1962 and 2019.

Our main performance indicator is the "Average Centipawn Loss" (ACPL), which is a highly stan-

dardized performance metric unique to chess that shows the amount of error a player commits in a

game by evaluating the quality of each move made. Because of the two-player nature of chess, we

are able to identify direct (individual competition with a superstar) and indirect (performance in a

tournament with a superstar) superstar effects from the data separately. In particular, we test

1. Direct effect: Do players commit more mistakes (than they are expected to) playing head-

to-head against a superstar?

2. Indirect effect: Do players commit more mistakes (than they are expected to) in games

played against each other if a superstar is present in the tournament as a competitor?

In chess, a player’s goal is to find the optimal move(s). Failing to do so would result in mis-

take(s), which the ACPL metric captures. Holding all else constant, a player should be able to

show similar performance in finding the best moves in two "similarly complex" chess positions.

The difficulty of finding the optimal moves is related to two main factors: (1) External factors

impacting a player. For instance, being under pressure can lead the player to choke and exert less

effort, resulting in more mistakes, or (2) The complexity of the position that the player faces. If

both players are willing to take risks, they can opt for keeping more complex positions on the
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board, which raises the likelihood that a player commits a mistake. To isolate the external factors,

we construct a novel complexity metric using an Artificial Neural Network (ANN) algorithm that

is trained on an independent sample with more than 2 million moves. This allows us to control for

board complexity and compare games with similar complexity levels. Under this restriction, if a

player commits more mistakes against the superstar (or in the presence of a superstar) in similarly

complex games, it must be that either (i) the player is intimidated, or (ii) the player chokes under

pressure, or both (i) and (ii).

Our paper is the first in the literature to use observations from chess tournaments to study the

superstar effect. Chess data has a number of distinctive advantages. For example, non-player

related factors are minimal to non-existent in chess since every chess board is the same for all

players. Second, highly precise performance metrics can be utilized with the use of computer

algorithms that can evaluate the quality of each move and estimate the complexity of each unique

chess position. Third, the chess world has seen multiple superstars who existed in different time

periods and come from different backgrounds. Having multiple superstars enables us to uncover

patterns from varying levels of superstar strength.

We find, as the theory suggests, a strong negative direct superstar effect. When players com-

pete head-to-head against the superstar, they commit more mistakes in all specifications and per-

form below their expected level even in similarly complex games. This result can be attributed to

both the choking and the intimidation impacts.

We discover, unlike the neutral theoretical prediction, that the indirect superstar effect de-

pends on the skill gap between the superstar and the competition. We find that if this gap is small,

the indirect superstar effect is positive: players believe they have a chance to win the tournament

and exert more effort which results in an improvement in overall performance. The data shows

that the players ranked just below the superstar based on their rating points experience the largest

improvement in their performance. If the skill gap is large, the indirect superstar effect is negative:

players choke under the pressure of competing in the same tournament with the superstar. The top

players show worse performance with more mistakes and more losses in the presence of a highly

dominant superstar.

Our findings offer valuable insights for organizations: the decision to hire a superstar can result

in both positive and negative spillover effects. If the superstar does not completely overshadow

the rest of the group, there is a potential for overall improvement in organizational performance.
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However, if the skill gap between the superstar and the rest of the group is excessively wide,

negative spillover effects may occur. Managers should carefully weigh the potential benefits of

hiring an exceptionally talented superstar against the potential costs of spillover effects on the

entire organization.

The study of superstars originated with Rosen (1981), who made the initial contribution to

understanding how skills in specific markets can become highly valuable. Subsequent works by

Lazear and Rosen (1981), Green and Stokey (1983), Nalebuff and Stiglitz (1983), and Moldovanu

and Sela (2001) delve into the design of optimal contracts in rank-order tournaments. Prender-

gast (1999) provides a comprehensive review of workplace incentives. More recently, Xiao (2020)

demonstrates the potential for both positive and negative incentive effects when a superstar partic-

ipates in a tournament, highlighting that these effects are influenced by the prize structure and the

skill levels of the participants.

The empirical literature on superstars began with Brown (2011) and encompasses various set-

tings, including professional track and field competitions and swimming. Yamane and Hayashi

(2015) compares the performance of swimmers competing in adjacent lanes and discovers a posi-

tive superstar effect on a swimmer’s performance. This effect is amplified by the visibility of the

competitor’s performance. Notably, in backstroke competitions with limited observability of the

adjacent lane, no effect is observed, while in freestyle competitions with higher observability, the

effect is present. Jane (2015) analyzes swimming competition data in Taiwan and finds that the

presence of faster swimmers in a competition enhances the overall performance of all participating

competitors. Jiang (2020) reveals that swimmers benefit from the presence of a teammate in a

swimming contest.

Contrary to Brown’s findings, Connolly and Rendleman (2014) and Babington et al. (2020)

argue that the adverse superstar effect may not be as pronounced and claim that the result is not

robust to alternative specifications. They suggest that the effect could even work in the opposite

direction, with top competitors potentially bringing out the best in other players’ performance.

Additionally, Babington et al. (2020) provides further evidence from observations in men’s and

women’s FIS World Cup Alpine Skiing competitions, showing minimal to no peer effects when

skiing superstars Hermann Maier and Lindsey Vonn participate in a tournament.

Our empirical observations are consistent with a negative superstar effect reported in Brown

(2011), Connolly and Rendleman (2009) and Tanaka and Ishino (2012), as well as with a positive

5



superstar effect found in Hill (2014).

Topcoder and Kaggle are the two largest crowdsourcing platforms that facilitate online contests,

where contest organizers offer prizes to contestants who excel in finding solutions to challenging

technical problems presented at the start of the contest. Archak (2010) discovers that players in

Topcoder competitions tend to avoid competing against superstars. Examining the impact of in-

creased competition on participant responses, Boudreau et al. (2016) finds that lower-ability com-

petitors tend to respond negatively to competition, while higher-ability players respond positively.

Zhang, Shunyuan and Singh, Param Vir and Ghose, Anindya (2019) suggests that competi-

tions involving superstars may yield future benefits, as competitors can learn from the superstar’s

expertise. This finding resonates with the notion of positive peer effects observed in workplace and

classroom settings, as explored by Mas and Moretti (2009), Duflo et al. (2011), Cornelissen et al.

(2017), Moreira (2019).

Similar to the majority of superstar literature, our paper does not model and analyze the sequen-

tial nature of tournaments. Exploring this interesting topic presents an intriguing avenue for the

future research where a superstar competes in sequential or elimination tournaments. This analysis

will draw from both the superstar literature and existing research on sequential tournaments. See,

for example, Jost and Kräkel (2005), Ryvkin (2009), and Brown and Minor (2014).

There is growing literature studying a broad range of questions using data from chess compe-

titions. For example, Levitt et al. (2011) test whether chess masters are better at making backward

induction decisions. Moul and Nye (2009) show evidence of Soviet collusion in top level chess

tournaments. Gerdes and Gränsmark (2010) test for gender differences in risk-taking and report

that women choose more risk-averse strategies playing against men. Dreber et al. (2013) test the

relationship between attractiveness and risk-taking using chess games. Smerdon et al. (2020) and

Backus et al. (2023) find that female players make more mistakes playing against male opponents

with similar strength. Stafford (2018) has an opposite finding that women perform better against

men with similar Elo ratings. González-Díaz and Palacios-Huerta (2016) report strong influence

of psychology on performance for chess players. Künn et al. (2021) compare cognitive perfor-

mance in remote against in person environments. Klingen and van Ommeren (2022) and Künn

et al. (2023) report indoor air quality impacts on performance and risk-taking behavior of chess

players. Smerdon (2022) finds wearing face masks have detrimental effects on cognitive perfor-

mance. Bertoni et al. (2015) and Strittmatter et al. (2020) study the age dynamics and performance
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with chess players.

The rest of the paper is organized as follows: Section 2 presents the theory. Section 3 gives

background information on chess and describes how chess data is collected and analyzed. Section

4 provides the empirical design. Section 5 presents the results, and section 6 concludes.

2. Theory

In this section we introduce two contest models that capture the direct and indirect superstar effects

in chess where exactly two players compete in every game. In the first model, which focuses on

the direct competition, the superstar player possesses higher ability than the second player. This

head-to-head competition puts pressure on the second player, leading to choking and intimidation

impacts. The extent of these impacts depends on the superstar’s ability: the greater the superstar’s

ability, the higher the pressure exerted on their competitors. Like Sanders and Walia (2012) and

Benscheidt and Carpenter (2020), we introduce the choking impact into the cost function. The

intimidation impact is present in the contest success function.

In the second model, which focuses on the indirect effect, two players with identical abilities

compete against each other in the presence of a superstar within the tournament. In this scenario,

players have the potential to either falter or draw inspiration from the superstar’s presence, resulting

in lower or higher levels of effort during the two-player competition. It is important to note that

while the intimidation impact of head-to-head competition with the superstar is absent in this case,

the choking impact of the superstar may still be present, affecting the performance of the players.

We test our theoretical predictions in Section 5.

2.1 Direct Superstar Effect: competition against the superstar

Our first model is a two-player Tullock’s contest in which player 1 competes against a superstar,

player 2. Player 1 maximizes his expected payoff, which is the difference between his expected

prize and cost:

max
𝑒1

𝑒1
(𝑒1 + \𝑒2)

𝑉1 − \𝑒1,

where 𝑒𝑖 is the effort of player 𝑖 = 1, 2; 𝑉1 is a monetary or rating prize which player 1 can win; and
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\ ≥ 1 is the ability of the superstar, player 2. We normalize the ability of player 1 at one. There

are intimidation and choking impacts in the model. The intimidation of player 1 is presented in his

contest success function and the choking impact is in his cost function. Note that the ability of the

superstar, \, affects the intimidation and choking impacts: higher ability leads to higher impacts.

Player 2, a superstar, maximizes her expected payoff:

max
𝑒2

\𝑒2
(𝑒1 + \𝑒2)

𝑉2 − 𝑒2,

where 𝑉2 is the prize that player 2 can win. Note that \ is not only the ability of player 2, but also

the ratio of the players’ abilities. The first order conditions for players 1 and 2 are

\𝑒2

(𝑒1 + \𝑒2)2𝑉1 − \ = 0,

and
\𝑒1

(𝑒1 + \𝑒2)2𝑉2 − 1 = 0.

Therefore, in an equilibrium
𝑒2
𝑒1

= \
𝑉2
𝑉1
.

We can state our theoretical results now.

Proposition 1 There exists a unique equilibrium in the two-player superstar contest model, where

players exert the following effort:

(𝑒𝐷1 , 𝑒
𝐷
2 ) =

(
\𝑉1𝑉2

(𝑉1 + \2𝑉2)2𝑉1,
\2𝑉1𝑉2

(𝑉1 + \2𝑉2)2𝑉2

)
.

In the equilibrium, player 𝑖 = 1, 2 wins the contest with the probability 𝑝𝐷
𝑖
, where

(𝑝𝐷1 , 𝑝
𝐷
2 ) =

(
𝑉1

𝑉1 + \2𝑉2
,

\2𝑉2

𝑉1 + \2𝑉2

)
.

Note that probabilities 𝑝𝐷1 and 𝑝𝐷2 illustrate the direct superstar effect and 𝑝𝐷1 (\) is decreasing

with the superstar ability \.

Since everyone expects the superstar to win the competition, her victory is neither surprising

nor too rewarding, whereas the underdog’s victory is special, so we can assume the prize for the
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underdog to be larger than the prize for the superstar in the two-player superstar contest. This prize

structure is also evident in rating point calculations in chess: a lower rated player gains more rating

points if he wins against a higher rated player. In this case, it follows from Proposition 1 that the

underdog exerts higher effort than the superstar in the equilibrium if 𝑉1 > \𝑉2, but the underdog’s

winning chances decrease with the superstar’s ability. We have the following comparative statics

results.

Proposition 2 Suppose that 𝑉1 > 𝑉2. Then, individual superstar equilibrium effort increases with

the superstar ability if \∗ <
√︃
𝑉1
𝑉2

and decreases if \∗ >
√︃
𝑉1
𝑉2
. Individual superstar equilibrium

effort is maximized if the superstar ability is \∗ =
√︃
𝑉1
𝑉2
.

Proposition 3 Suppose that𝑉1 > 3𝑉2. Then, individual underdog equilibrium effort increases with

the superstar ability if \∗ <
√︃

𝑉1
3𝑉2

and decreases if \∗ >
√︃

𝑉1
3𝑉2
. Individual underdog equilibrium

effort is maximized if the superstar ability is \∗ =
√︃

𝑉1
3𝑉2
.

Propositions 2 and 3 give the unique values for the superstar ability that maximize individual

and total equilibrium efforts. Note that a large enough prize must be offered to the underdog in

order to obtain the global maxima for both players. Propositions 2 and 3 suggest superstar ability

and the prize ratio which maximize total effort in the case of direct competition with the superstar.

Figure 1: Contest against the superstar. Equilibrium efforts, 𝑒𝐷1 , 𝑒
𝐷
2 , and winning probability, 𝑝𝐷1 , when 𝑉1 = 𝑉2 = 1

(left figure) and 𝑉1 = 10, 𝑉2 = 1 (right figure). Player 2 is the superstar. 𝑝𝐷2 is omitted in the graphs since
𝑝𝐷2 = 1 − 𝑝𝐷1 . 𝑉1 and 𝑉2 are prizes for the underdog and the superstar, respectively.

Figure 1 illustrates Propositions 2 and 3 and shows how equilibrium efforts (red curve for the

underdog, blue curve for the superstar) and winning probabilities (green curve for the underdog)
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change for different levels of superstar abilities, first if 𝑉1 = 𝑉2 = 1 (left graph), then 𝑉1 = 10

and 𝑉2 = 1 (right graph). When players compete for the same prize, introducing any level of

heterogeneity between the players lowers individual and total efforts.

When the contest designer provides a large enough prize to the underdog, the effort levels

for both players increase as long as the ability ratio is small. As the ability ratio increases, both

players start to decrease their efforts. A very extreme level of heterogeneity in ability results in

both players exerting very low efforts, but the probability of the underdog winning diminishes

with heterogeneity. From our illustrative model, we observe that higher superstar ability, or higher

ability heterogeneity, leads to more pressure on the underdog, who is intimidated and chokes under

this pressure, thereby exerting less effort. This, in turn, results in lower underdog performance.

It is important to emphasize that the condition of Proposition 3, \ <
√︃

𝑉1
3𝑉2

, does not hold if the

superstar ability is high or if the prize difference is not large. In this case, the individual effort is

decreasing with the superstar ability \. At the same time, the direct superstar effect on the player

is always negative, or the probability 𝑝𝐷1 (\) is decreasing with the superstar ability \.

2.2 Indirect Competition: competition against another player when the superstar is in the

tournament

In this section, we consider a two-player contest in which player 1 competes against player 2 in a

tournament where a superstar is present. Then, player i maximizes his expected payoff:

max
𝑒𝑖

𝑒𝑖

(𝑒1 + 𝑒2)
𝑉𝑖 − 𝐴(\)𝑒𝑖,

where 𝑒𝑖 is the effort of player 𝑖 = 1, 2; 𝐴(\) > 0 for any \ ≥ 1; 𝑉𝑖 is a monetary or rating prize

which player i can win. We assume that player i is "influenced" by the presence of the superstar

in the tournament. This influence is modelled by the positive function 𝐴(\). If player i is choking

under the presence of the superstar, then 𝐴′(\) > 0. However, if player i is motivated or encouraged

by the presence of the superstar, then 𝐴′(\) < 0.

The first order condition for player 𝑖 = 1, 2 is

𝑒 𝑗

(𝑒1 + 𝑒2)2𝑉𝑖 − 𝐴(\) = 0,

where 𝑗 ≠ 𝑖.
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Therefore, in an equilibrium

𝑒2
𝑒1

=
𝑉2
𝑉1
.

We can state our main results now.

Proposition 4 There exists a unique equilibrium in the two-player contest model with a superstar,

where players exert the following effort:

(𝑒𝐼1, 𝑒
𝐼
2) =

(
𝑉1𝑉2

(𝑉1 +𝑉2)2
𝑉1
𝐴(\) ,

𝑉1𝑉2

(𝑉1 +𝑉2)2
𝑉2
𝐴(\)

)
.

In the equilibrium, player 𝑖 = 1, 2 wins the contest with the probability 𝑝𝐼
𝑖
, where

(𝑝𝐼1, 𝑝
𝐼
2) =

(
𝑉1

𝑉1 +𝑉2
,

𝑉2
𝑉1 +𝑉2

)
.

From Proposition 4, we have the following comparative statics results.

Proposition 5 The contest winning probabilities 𝑝𝐼1 and 𝑝𝐼2 are independent from the superstar

ability, \.

If players are choking under the presence of the superstar or 𝐴′(\) > 0, then players’ efforts

in the equilibrium are decreasing with the superstar ability, \.

However, if players are encouraged by the presence of the superstar or 𝐴′(\) < 0, then players’

efforts in the equilibrium are increasing with the superstar ability, \.

Note that probabilities 𝑝𝐼1 and 𝑝𝐼2 illustrate the indirect superstar effect, which is neutral here.

This observation is intuitive: the superstar will affect both identical-ability players equally, and as

a result, their chances to beat each other will not change with the superstar ability \.

Figure 2 shows the equilibrium effort for two identical-ability players competing against each

other when a superstar is present in the same tournament and 𝐴(\) = \. The graph on the left-hand

side has identical prizes; the graph on the right has one of the players competing for a larger prize.

There are two main predictions: First, competing in the presence of a superstar results in more

pressure on both participants, who choke under this pressure since 𝐴′(\) > 0, thereby exerting

less effort. Both graphs show that efforts decline monotonically. Second, if one of the players is

competing for a larger prize (the graph on the right), then this player exerts more effort than the
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other player. Lastly, the green line shows a constant win probability with \. This suggests that the

players’ performances are not impacted by the superstar’s presence.

Figure 2: Identical-ability players compete against each other when the superstar is present in the same tournament
and 𝐴(\) = \. Equilibrium efforts, 𝑒𝐼1, 𝑒

𝐼
2, when 𝑉1 = 𝑉2 = 1 (left figure) and 𝑉1 = 10, 𝑉2 = 1 (right figure). Players

have identical abilities. 𝑉1 and 𝑉2 are prizes for each player. Analytically, 𝑝𝐼1 = 𝑝𝐼2 = 0.5 for 𝑉1 = 𝑉2 = 1 and
𝑝𝐼1 = 0.91, 𝑝𝐼2 = 0.09 for 𝑉1 = 10, 𝑉2 = 1.

3. Data

3.1 Chess: Background

"It is an entire world of just 64 squares."

−Beth Harmon, The Queen’s Gambit,
Netflix Mini-Series (2020)

Chess is a two-player game with origins dating back to 6th century AD. Chess is played over

a 8x8 board with 16 pieces for each side (8 pawns, 2 knights, 2 bishops, 2 rooks, 1 queen, and 1

king). Figure 3 shows a chess board. Players make moves in turns, and the player with the white

pieces moves first. The ultimate goal of the game is to capture the enemy king. A game can end in

three ways: white player wins, black player wins, or the game ends in a draw.

The possible combinations of moves in a chess game is estimated to be more than the number

of atoms in the universe. However, some moves are better than others. With years of vigorous

training, professional chess players learn how to find the best moves by employing backward-

induction and calculating consequences of moves to a certain complexity level. Failing to find the
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Figure 3: A chess board

best move(s) in a position would result in a "blunder" or a "mistake" which typically leads to the

player losing their game at the top level if a player commits multiple blunders or mistakes. The

player who performs better overall is the player who manages to find the correct moves more often.

The standard measure of player strength in chess is the Elo rating system first adopted by FIDE

(The International Chess Federation) in 1970. This system was created by the Hungarian physicist

Arpad Elo (Elo 1978). Elo considers the performance of a player in a given game as a random

variable normally distributed around her unobservable true ability. Each player gets a starting Elo

rating which is updated according to the outcome of each game via

𝐸𝐿𝑂𝑅,𝑡+1 = 𝐸𝐿𝑂𝑅,𝑡 + 𝐾
[
𝑆𝑖 − 𝐸𝑡

(
𝑆𝑖 | 𝑅𝑖, 𝑅 𝑗

) ]
, (1)

where 𝑆𝑖 is the outcome of a game such that 𝑆𝑖 = 1 if player 𝑖 wins the game, 𝑆𝑖 = 0 if player 𝑖 loses

the game, and 𝑆𝑖 = 1/2 if the game ended in a draw. 𝐸𝑡
(
𝑆𝑖 | 𝑅𝑖, 𝑅 𝑗

)
is the expected probability

of player 𝑖 winning the game given the Elo ratings of the two players 𝑅𝑖 and 𝑅 𝑗 which equals

𝐸
(
𝑆𝑖 | 𝑅𝑖, 𝑅 𝑗

)
= Φ

(
𝑅𝑖−𝑅 𝑗

400

)
where Φ(.) is the c.d.f. of the normal distribution. 𝐾 is a parameter

for rate of adjustment.

This rating system allows comparisons of players’ strengths. For instance, every month, FIDE

publishes Elo ratings of all chess players. The Top 10 players are considered the most elite players

in the world who earn significant amounts of prizes and sponsorships. Moreover, chess titles have

specific Elo rating requirements. For instance, the highest title in chess, Grandmaster, requires the

13



player to have an Elo rating 2500 or higher. Note that our sample consists of the very elite chess

players, often called "Super GMs", with Elo ratings higher than 2700 in most cases.

Over the past decades, computer scientists have developed algorithms, or "chess engines" that

exploit the game-tree structure of chess. These engines analyze each possible tree branch to come

up with the best moves. The early chess engines were inferior to humans. After a few decades,

however, one chess engine developed by IBM in the 1990s, Deep Blue, famously defeated the

world chess champion at the time, Garry Kasparov, in 1997. This was the first time a world chess

champion lost to a chess engine under tournament conditions. Since then, chess engines have

passed well beyond the human skills. Currently, Stockfish 15 is the strongest chess engine with an

Elo rating of 3531. In comparison, the current world chess champion, Magnus Carlsen, has an Elo

rating of 2862. We use Stockfish in our analyses.

In addition to finding the best moves in a given position, a chess engine can be used to analyze

the games played between human players. The quality of a move can be measured numerically

by evaluating the move chosen by a player and comparing it to the list of moves suggested by the

chess engine. If the move played by a player is considered a bad move by the engine, then that

move is assigned a negative value with its magnitude depending on the engine’s evaluation. We

explain in detail in Section 3.4.

3.2 Chess Superstars

The first official world chess champion is Wilhelm Steinitz who won the title in 1886. Since

Steinitz, there have been sixteen world chess champions in total. Among these sixteen players, four

have shown an extraordinary dominance over their peers: Magnus Carlsen, Garry Kasparov, Ana-

toly Karpov, and Bobby Fischer. In his classic series, "My Great Predecessors", Kasparov (2003)

gives in-depth explanations about his predecessors, outlining qualities of each world champion be-

fore him. In this paper, we consider the "greatest of the greatest" world champions as "superstars"

in their eras. We present evidence why these players were so dominant and considered "superstars"

in their eras. Specifically, we define a superstar as a player who satisfies the following conditions:

(i) be the world chess champion; (ii) win at least 50% of all tournaments participated in (Note that,

for comparison, Tiger Woods won 24.2 percent of his PGA Tour events.); (iii) maintain an Elo

rating at least 50 points above the average Elo rating of the world’s top 10 players (this condition

14



must hold for the post-1970 era when Elo rating was introduced); (iv) have a substantially high

Elo rating such that winning an elite tournament is not sufficient to gain Elo rating points. We

define an elite tournament, a tournament which has (1) at least two players from the world’s Top

10 and (2) the average Elo rating in the tournaments is within 50 points of the average Elo rating

in tournaments with a superstar.

Magnus Carlsen is the current world chess champion, who first became champion in 2013 at

age 22. He reached the highest Elo rating ever achieved in history. Garry Kasparov was the world

champion from 1985-2000 and was the number one ranked chess player for 255 months, setting a

record for maintaining the number one position for the longest duration of time. (For comparison,

Tiger Woods was the number one ranked player in the world for a total of 683 weeks, the longest

ever in golf history.) Anatoly Karpov was the world champion before Kasparov in the years 1975-

1985. He won over 160 tournaments, which is a record for the highest number of tournaments won

by a chess player.

Bobby Fischer was the world champion before Karpov between 1972 - 1975, winning all U.S.

championships he played in from 1957 (at age 14) to 1966. Fischer won the 1963 U.S. chess

championship with a perfect 11 out of 11 score, a feat no other player has ever achieved.

In addition to the four male superstars, our sample includes a female chess superstar: Hou

Yifan, a four time women’s world chess champion between the years 2010-2017. She played three

women’s world chess championship matches in this period and did not lose a single game against

her opponents, dominating the tournaments from 2014 until she decided to stop playing in 2017.

Figures A.2–A.6 show how the four world chess champions: Carlsen, Kasparov, Karpov and

Hou Yifan performed compared to their peers across years. The Elo rating difference between each

superstar and the average of world’s top 10 players in each corresponding era is about 100 points.

This rating gap is very significant, especially at top-level competitive chess. For instance, the ex-

pected win probabilities between two players with a gap of 100 Elo rating points are approximately

64%-36%.

Figures A.12–A.16 show individual tournament performances across years for each superstar

with the vertical axis showing whether the superstar gained or lost rating points at the end of a

tournament. For instance in 2001, Kasparov played in four tournaments and won all of them. In

one of these tournaments, he even lost rating points despite winning. For the world’s strongest

player, winning a tournament is not sufficient to maintain or gain rating points. Figures A.12–

15



A.16 show cases where the superstar won a tournament, but nevertheless lost rating points. The

superstar must typically win a tournament by a large margin to maintain their #1 rating level.

Table 1 presents statistics showing the superstars’ dominance. Panels A-E include the World’s

Top 10 chess players for the corresponding era and a summary of their tournament performances.

For example, Magnus Carlsen participated in 35 tournaments with classical time controls between

2013 and 2019, winning 21 of them. This 60% tournament win rate is two times higher than

World’s #2 chess player, Fabiano Caruana, who has a tournament win rate of 30%. A more extreme

case is Anatoly Karpov, who won 26 out of 32 tournaments, which converts to an 81% tournament

win rate while the runner up Jan Timman had a tournament win rate of 20%.
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3.3 ChessBase Mega Database

Our data comes from the 2020 ChessBase Mega Database containing over 8 million chess games

dating back to the 1400s. Every chess game is contained in a PGN file which includes information

about player names, player sides (White or Black), Elo ratings, date and location of the game,

tournament name, round, and the moves played. An example of a PGN file and a tournament table

is provided in the appendix. See Table A.2 and Figure A.1.

Table A.1 in the appendix provides a summary of variables used and their definitions. Table 2

presents the summary statistics for each era with tournaments grouped according to the superstar

presence. In total, our study analyzes over 2 million moves from approximately 25,000 games

played in over 300 tournaments between 1962 and 2019. A list of the tournaments is provided in

the online appendix.

Table 2: Summary statistics for all samples

years: 2013-2019 years: 1995-2001

with Carlsen without Carlsen with Kasparov without Kasparov

variable mean sd mean sd mean sd mean sd

ACPL 16.580 10.755 17.818 11.783 21.101 12.436 21.592 13.235
Complexity 26.784 5.309 27.040 5.419 27.189 5.656 26.850 5.811
TotalBlunder .179 .508 .229 .576 .279 .635 .317 .684
TotalMistake 1.432 1.797 1.682 1.943 1.879 1.903 1.922 2.028
win .173 .378 .204 .403 .228 .419 .234 .423
draw .654 .476 .592 .491 .545 .498 .533 .499
loss .173 .378 .204 .403 .228 .419 .234 .423
ELO 2759 47.13 2714 80 2615 57.53 2590 55.97
Moves 43.031 15.682 45.198 17.682 39.537 17.294 39.635 16.810

#of tournaments =35 =37 =22 =43

#of games =1,336 =1,774 =805 =1,793

#of moves =114,898 =160,362 =61,936 =139,469

Notes: Superstar player observations are exluded in each sample. Data comes from Chessbase Mega Database 2020.
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Table 2: Summary statistics for all samples (cont.)

years: 1987-1994 years: 1976-1983

with Kasparov

& Karpov

without Kasparov

& Karpov
with Karpov without Karpov

ACPL 20.762 12.068 21.592 13.235 21.777 13.501 23.099 14.091
Complexity 27.139 5.555 26.850 5.811 25.461 5.873 26.007 5.787
TotalBlunder .264 .603 .317 .684 .271 .639 .327 .727
TotalMistake 1.821 1.902 1.922 2.028 1.850 2.040 2.061 2.089
win .221 .415 .234 .423 .223 .416 .251 .433
draw .561 .496 .533 .499 .553 .497 .499 .500
loss .218 .413 .234 .423 .224 .417 .250 .433
ELO 2615 60.68 2590 55.97 2558 68.05 2531 76.24
Moves 39.537 17.294 39.635 16.810 36.699 17.542 37.964 17.118

#of tournaments =11 =37 =32 =39

#of games =635 =1,989 =1,882 =3,593

#of moves =50,212 =157,668 =138,223 =273,351

years: 1962-1970 years: 2014-2019

with Fischer without Fischer with Hou Yifan without Hou Yifan

ACPL 24.017 15.634 25.284 15.670 22.466 14.500 21.128 12.301
Complexity 25.835 5.599 26.077 5.747 27.193 5.225 27.162 5.045
TotalBlunder .342 .768 .349 .746 .405 .736 .380 .755
TotalMistake 2.173 2.128 2.311 2.254 2.341 2.344 2.267 2.209
win .254 .435 .250 .433 .270 .444 .241 .428
draw .492 .500 .500 .500 .459 .499 .519 .500
loss .254 .435 .250 .433 .270 .444 .241 .428
ELO* . . . . 2493 72.50 2499 43.43
Moves 38.126 16.458 36.112 15.628 45.823 19.041 46.179 17.511

#of tournaments =15 =82 =4 =6

#of games =1,657 =7,826 =220 =374

#of moves =126,288 =565,078 =20,162 =34,542

Notes: Superstar player observations are exluded in each sample. Data comes from Chessbase Mega Database 2020.
∗: Elo rating system was first adopted by FIDE beginning 1970.
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3.4 Measuring Performance

3.4.1 Average Centipawn Loss

We follow Guid and Bratko (2006) and Regan et al. (2011) and obtain computer evaluations for

mistakes committed by each player in a given game. A chess game 𝑔 consists of moves 𝑚 ∈

{1, . . . , 𝑀} where player 𝑖 makes an individual move 𝑚𝑖𝑔. A chess engine can evaluate a given

position by calculating layers with depth 𝑛 at each decision node and make suggestions about the

best moves to play. Given a best move is played, the engine provides the relative (dis)advantage

in a given position 𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟
𝑖𝑔𝑚

. This evaluation is then compared to the actual evaluation score

𝐶
𝑝𝑙𝑎𝑦𝑒𝑟

𝑖𝑔𝑚
once a player makes his or her move. The difference in scores reached via the engine’s top

suggested move(s) and the actual move a player makes can be captured by

𝑒𝑟𝑟𝑜𝑟𝑖𝑔𝑚 =

���𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑖𝑔𝑚
− 𝐶 𝑝𝑙𝑎𝑦𝑒𝑟

𝑖𝑔𝑚

��� . (2)

If the player makes a top suggested move, the player has committed zero error, i.e., 𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟
𝑖𝑔𝑚

=

𝐶
𝑝𝑙𝑎𝑦𝑒𝑟

𝑖𝑔𝑚
. We can think of chess as a game of attrition where the player who makes less mistakes

eventually wins the game. While staying constant if top moves are played, the evaluation shows

an advantage for the opponent if a player commits a mistake by playing a bad move.

We then take the average of all the mistakes committed by player 𝑖 in game 𝑔 via

𝑒𝑟𝑟𝑜𝑟𝑖𝑔 =

∑𝑀
𝑚=1

���𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑖𝑔𝑚
− 𝐶 𝑝𝑙𝑎𝑦𝑒𝑟

𝑖𝑔𝑚

���
𝑀

, (3)

which is a widely accepted metric named Average Centipawn Loss (ACPL). ACPL is the average

of all the penalties a player is assigned by the chess engine for the mistakes they committed in a

game. If the player plays the best moves in a game, his ACPL score will be small where a smaller

number implies the player performed better. On the other hand, if the player makes moves that are

considered bad by the engine, the player’s ACPL score would be higher.

We used Stockfish 11 in our analyses with depth 𝑛 = 19 moves. For each move, the engine was

given half a second to analyze the position and assess |𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟
𝑖𝑔𝑚

− 𝐶 𝑝𝑙𝑎𝑦𝑒𝑟

𝑖𝑔𝑚
|. Figure A.7 shows an

example of how a game was analyzed. For instance, at move 30, the computer evaluation is +3.2,

which means that the white player has the advantage by a score of 3.2: roughly the equivalent of
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being one piece (knight or bishop) up compared to his opponent. If the white player comes up with

the best moves throughout the rest of the game, the evaluation can also stay 3.2 (if the black player

also makes perfect moves) or only go up leading to a possible win toward the end of the game.

In the actual game, the player with the white pieces lost his advantage by making bad moves and

eventually lost the game. The engine analyzes all 162 moves played in the game and evaluates the

quality of each move. Dividing the sum of mistakes committed by player 𝑖 to the total number of

moves played by player 𝑖 gives the player-specific ACPL score.

3.4.2 Board Complexity

Our second measure that reinforces our ACPL metric is "board complexity" which we obtain via

an Artificial Neural Network (ANN) approach. The recent developments with AlphaGo and Alp-

haZero demonstrated the strength of using heuristic-based algorithms that perform at least as good

as the traditional approaches, if not better. Instead of learning from self-play, our neural-network

algorithm "learns" from human players. Sabatelli et al. (2018) and McIlroy-Young et al. (2020)

are two recent implementations of such architecture. To train the network, we use an independent

sample published as part of a Kaggle contest consisting of 25,000 games and more than 2 million

moves, with Stockfish evaluation included for each move. The average player in this sample has

an Elo rating of 2280, which corresponds to the "National Master" level according to the United

States Chess Federation (USCF).

𝑧2 𝑤2 Σ 𝑓

Activation
function

𝑦

Output

𝑧1 𝑤1

𝑧3 𝑤3

Weights

Bias

𝑏

Inputs

Figure 4: Example of a simple perceptron, with 3 input units (each with its unique weight) and 1 output unit.

The goal of the network is to predict the probability of a player making a mistake with its

magnitude. This task would be trivial to solve for positions that were previously played. How-
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𝑧1

𝑧2

...

𝑧𝑁

𝑦
(1)
1

𝑦
(1)
2

...

𝑦
(1)
𝑚 (1)

. . .

. . .

. . . 𝑦
(𝑘)
1

𝑦
(𝑘)
2

...

𝑦
(𝑘)
𝑚 (𝑘)

𝑦
(𝑘+1)
1

input layer
1st hidden layer 𝑘 th hidden layer

output layer

Figure 5: Network graph of a multilayer neural network with (𝑘 + 1) layers, 𝑁 input units, and 1 output unit. Each
neuron collects unique weights from each previous unit. The 𝑘 th hidden layer contains 𝑚 (𝑘) neurons.

ever, each chess game reaches a unique position after the opening stage which requires accurate

extrapolation of human play in order to predict the errors. This approach is vastly different than

traditional analysis with an engine such as Stockfish. Engines are very strong and can find the

best moves. However, they cannot give any information about how a human would play in a given

situation because they are designed to find the best moves without any human characteristics. Our

neural-network algorithm is specifically designed to learn how and when humans make mistakes in

given positions from analyzing mistakes committed by humans from a sample of 2 million moves.

We represent a chess position through the use of its 12 binary features, corresponding to the 12

unique pieces on the board (6 for White, 6 for Black). A chess board has 8 × 8 = 64 squares.

We split the board into 12 separate 8 × 8 boards (one for each piece) where a square gets "1" if

the piece is present on that particular square and gets "0" otherwise. In total, we represent a given

position using 12 × 8 × 8 = 768 inputs. We add one additional feature to represent the players’

turn (white to move, or black to move) and thus have 768 + 1 = 769 inputs in total per position.

We use a network architecture with three layers. The layers have 1048, 500, and 50 neurons, each

with its unique weight. In order to prevent over-fitting, a 20% dropout regularization on each layer

is used. Each hidden layer is connected with the Rectified Linear Unit (ReLU) activation function.

The Adam optimizer was used with a learning rate of 0.001. Figures 4–5 illustrate.

The neural network "learns" from 25,000 games by observing each of the approximately two

million positions and estimates the optimal weights by minimizing the error rate that results from
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each possible set of weights with the Gradient Descent algorithm. A set of 1,356,612 optimal

weights uniquely characterizes our network. We use two networks to make a prediction on two

statistics for a given position: (i) probability that a player commits an error and (ii) the amount

of error measured in centipawns. For a full game, the two statistics multiplied (and averaged out

across moves) gives us an estimate for the ACPL that each player is expected to get as the result of

the complexity of the game

𝐸 (𝑒𝑟𝑟𝑜𝑟𝑖𝑔) =

∑︁
𝑀

𝑚=1
𝑃

(���𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑖𝑔𝑚
− 𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑖𝑔𝑚

��� > 0
) ���𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑖𝑔𝑚

− 𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑖𝑔𝑚

���
𝑀

, (4)

where
���𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑖𝑔𝑚

− 𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑖𝑔𝑚

��� is the expected centipawn loss in a given position predicted by the

neural network. We test our network’s performance on our main "superstars" sample. The mean

ACPL for the whole sample with 35,000 games is 25.87, and our board complexity measure,

which is the expected ACPL that we obtained through our network, is 26.56. The reason why

our network −which was trained with games played at on average 2280 Elo level− makes a close

estimate for the ACPL in the main sample is that the estimates come from not a single player

with Elo rating 2280, but rather from a "committee" of players with Elo rating 2280 on average.

Hence, the network is slightly "stronger" compared to an actual 2280 player. Figure A.10 shows

a scatterplot of ACPL and the expected ACPL. The slope coefficient is 1.14, which implies that a

point increase in our complexity measure results in a 1.14 point increase in the actual ACPL score.

The highest ACPL prediction of the network is 50.2 while about 8% of the sample has an actual

ACPL > 50.2. These extreme ACPL cases are under-predicted by the network due to the network’s

behavior as a "committee" rather than a single player, where the idiosyncratic shocks are averaged

out. Figure A.11 shows the distributions of ACPL and the expected ACPL.

The board complexity measure addresses the main drawback of using only ACPL scores. The

ACPL score of a player is a function of his or her opponent’s strength and their strategic choices.

For instance, if both players find it optimal to not take any risks, they can have a simple game

where players make little to no mistakes, resulting in low ACPL scores. Yet, this would not imply

that players showed a great performance compared to their other −potentially more complex−

games. Being able to control for complexity of a game enables us to compare mistakes committed

in similarly-complex games.
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3.4.2 Game outcomes

The third measure we use is game-level outcomes. Every chess game ends in a win, a loss, or a

draw. The player who wins a tournament is the one who accumulates more wins and fewer losses,

as the winner of a game receives a full point toward his or her tournament score. A draw brings

half a point, while a loss brings no points in a tournament. In other words, a player who has more

wins in a tournament shows a higher performance. In terms of losses, the opposite is true. If a

player has many losses in a tournament, their chances to win the tournament are slim. Of course,

a draw is considered better than a loss and worse than a win.

4. Empirical Design

We test the direct (head-to-head) superstar effect using the following specification:

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 𝑗 = 𝛼0 + 𝛼1𝐴𝑔𝑎𝑖𝑛𝑠𝑡𝑆𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑖 𝑗 +𝚽𝑿𝒊 𝒋 + [𝑖 + 𝜖𝑖 𝑗 , (5)

where 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 𝑗 is the performance of player 𝑖 in their game 𝑗 measured by the methods

discussed in section 3.4. 𝐴𝑔𝑎𝑖𝑛𝑠𝑡𝑆𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑖 𝑗 equals one if player 𝑖 in their game 𝑗 plays against

a superstar. 𝚯𝑿𝒊 𝒋 contains player and game level controls. [𝑖 are player fixed effects. 𝜖𝑖 𝑗 is

an idiosyncratic shock. In this specification, 𝛼1 captures the effect of head-to-head competition

against a superstar.

Our second specification tests the indirect effect by comparing a player’s performance in a

tournament where a superstar is present with their performance in a tournament without a superstar.

This can be captured by the following specification:

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 𝑗 𝑘 = 𝛽0 + 𝛽1𝑆𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑘 +𝚯𝑿𝒊 𝒋 𝒌 + [𝑖 + 𝜖𝑖 𝑗 𝑘 , (6)

where 𝑆𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑘 is an indicator for the superstar being present in tournament 𝑘 . 𝚯𝑿𝒊 𝒋 𝒌 contains

player, game, tournament level controls. 𝜖𝑖 𝑗 𝑘 is an idiosyncratic shock. Having a negative sign

for 𝛽1 would indicate that the superstar presence is associated with an adverse effect. We break

down (6) by the tournament participants’ rating quartiles at the time of their tournament to study

the heterogeneous effects of the superstar’s presence with the following specification:
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𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 𝑗 𝑘 = 𝜙0 + 𝜙1𝑆𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑘 × 𝐻𝑖𝑔ℎ𝐸𝐿𝑂𝑖𝑘 + 𝜙2𝑆𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑘 × 𝑀𝑖𝑑𝐸𝐿𝑂𝑖𝑘

+ 𝜙3𝑆𝑢𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑘 × 𝐿𝑜𝑤𝐸𝐿𝑂𝑖𝑘 + 𝜙4𝐻𝑖𝑔ℎ𝐸𝐿𝑂𝑖𝑘 + 𝜙5𝑀𝑖𝑑𝐸𝐿𝑂𝑖𝑘

+𝚯𝑿𝒊 𝒋 𝒌 + [𝑖 + 𝜖𝑖 𝑗 𝑘 , (7)

where 𝐻𝑖𝑔ℎ𝐸𝐿𝑂𝑖𝑘 equals one if player 𝑖 has an Elo rating within the top quartile in the Elo rating

distribution of the tournament participants at the time of tournament 𝑘 . 𝑀𝑖𝑑𝐸𝐿𝑂𝑖𝑘 captures the

second and third quartiles, and 𝐿𝑜𝑤𝐸𝐿𝑂𝑖𝑘 captures the bottom quartile.

The main variation in the superstar’s participation in elite tournaments comes from the super-

star’s inability to participate in all available elite tournaments in a given year. There are multiple

sources that create variation for the superstar’s presence: (1) Candidate tournaments: some elite

tournaments are run to determine the challenger against the world champion for the world champi-

onship title, which by definition implies that the world champion cannot participate. (2) National-

ity: some elite tournaments are run to determine a national champion. If the world champion has a

different nationality, he or she is not allowed to attend. (3) World Championship match years. If a

World Championship match is planned to take place, the superstar (who is the champion) decreases

participation in elite tournaments. (4) Political: For Soviet-era champions such as Karpov and Kas-

parov, traveling to an elite tournament outside the U.S.S.R. requires getting travel approval from

the government, which limits their ability to participate in more than what they receive permission

for.

It is possible that players may face a different prize or have different motivations depending

on whether the event is for national championship, candidacy, or an event where the superstar is

participating. However, for all the tournaments mentioned, players need to seriously prepare and

exert as much effort as possible both before and during the tournament due to the potential of losing

rating points in any game during the event. A minuscule drop in effort or concentration can lead to

a loss which will result in losing valuable rating points. These points are an important determinant

of a player’s elite status and future invitations.

Linnemer and Visser (2016) document self-selection in chess tournaments with stronger play-

ers being more likely to play in tournaments with higher prizes. A central difference between
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their sample and ours is the level of tournaments, with their data coming from the World Open

tournament, which is an open tournament with non-master participants with Elo ratings between

1400-2200. Meanwhile, our sample consists of players from a much more restricted sample with

only the most elite Grandmasters having Elo ratings often above 2700. Moreover, each high-level

tournament in our sample is invitation based; i.e., tournament organizers send invitations to a se-

lect group of strong players (10-12 players in each tournament). These restrictions work against

selection problems.

Moreover, another potential threat to our identification is if non-superstar elite players de-

cline invitations strategically to play in elite tournaments in a way that avoids playing (and losing)

against the superstar. Avoiding the superstar is not an optimal strategy for several reasons: (1)

Declining an invitation to play in an elite tournament (where the superstar is participating) means

declining a guaranteed prize. Elite tournaments pay out higher prizes relative to other chess events,

often times including an “appearance fee”. (2) Playing in the same tournament with the superstar

promotes the player in the media which can create opportunities for the player to sign more spon-

sorship and endorsement deals. (3) Declining an invitation to play may reduce the chance of being

invited again to a future event by the same organizer. Typically, an emergency or a conflict in

schedule is a reason one might decline an elite tournament invitation. In all other cases, an elite

player whose livelihood depends on tournament prizes and endorsements has very strong incen-

tives to accept the invitation and participate.

It is important to emphasize that we do not have a controlled experiment where a designer

randomly assigns a superstar to tournaments. Such a study would be impossible to conduct as

a field experiment, and the results from an experimental study could have little external validity.

With this word of caution, we believe that our results still provide valuable information on how

contest participants respond to superstars through a collection of correlative evidence from multiple

superstars with varying dominance.

5. Results

Table 3 shows the performance of non-superstar players playing against a superstar for each sam-

ple. There is a distinct pattern that is true for all superstars: playing against them is associated with

a higher ACPL score, more blunders, more mistakes, lower chances to win, and higher chances to
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lose. What is more, games played against superstars are more complex. This higher complexity

could be due to the superstar’s willingness to reach more complex positions in order to make the

ability-gap more salient. It could also be linked to a non-superstar player taking more risk. Taken

as a whole, players commit more blunders and mistakes, holding board complexity constant. For

instance, a player who plays against Fischer shows an ACPL that is 4.4 points higher compared

to his games against other players with a similar complexity level. The probability estimates are

10 percentage points less for a win, 18 percentage points less for a draw, and 28 percentage points

higher for a loss compared to his typical games.

This finding verifies our theoretical observations that the direct effect is always negative: the

superstars in our sample show dominance over their peers. Moreover, Hou Yifan demonstrates

the strongest domination, with Fischer closely following behind. The magnitudes for ACPL, win,

and loss probabilities are larger for these players compared to other superstars such as Carlsen,

Kasparov, and Karpov.

To illustrate, Kasparov (2003) shares an observation of Karpov’s direct effect on other players

during a game in Moscow in 1974: "Tal, who arrived in the auditorium at this moment, gives an

interesting account: "The first thing that struck me (I had not yet seen the position) was this: with

measured steps Karpov was calmly walking from one end of the stage to the other. His opponent

was sitting with his head in his hands, and simply physically it was felt that he was in trouble.

’Everything would appear to be clear,’ I thought to myself, ’things are difficult for Polugayevsky.’

But the demonstration board showed just the opposite! White was a clear exchange to the good

− about such positions it is customary to say that the rest is a matter of technique. Who knows,

perhaps Karpov’s confidence, his habit of retaining composure in the most desperate situations,

was transmitted to his opponent and made Polugayevsky excessively nervous."

Hou Yifan’s level of dominance is not seen in any of our other samples consisting of male

superstars. A potential explanation for why the most dominant superstar in our sample is a female

chess player could be related to the Central Limit Theorem. There are much fewer female chess

players than male chess players. A smaller sample has higher variance, making it more likely to

produce outliers. See Bilalić et al. (2009) for a discussion of this phenomenon.

We now turn to the indirect superstar effect. Table 4 shows the impact of superstar presence

for all samples aggregated. We focus on each superstar in Table 5 (and Figure 6) where we break

down each superstar’s sample and regress Equation 6 separately for each superstar. We present
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Table 3: Performance against a superstar.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Complexity
# of

games

# of

moves

Against Carlsen 1.868*** 0.080*** 0.174** -0.069*** -0.100*** 0.169*** 0.172 3,316 294,876
2013-2019 (0.449) (0.026) (0.085) (0.015) (0.023) (0.025) (0.252)

Against Kasparov 2.667*** 0.116*** 0.272*** -0.105*** -0.068* 0.173*** 1.575*** 2,689 212,347
1995-2001 (0.578) (0.041) (0.101) (0.012) (0.035) (0.034) (0.364)

Against Kasparov/Karpov 2.685*** 0.151*** 0.205** -0.108*** -0.077*** 0.185*** -0.423 2,764 219,567
1987-1994 (0.659) (0.030) (0.096) (0.015) (0.028) (0.032) (0.314)

Against Karpov 3.011*** 0.175*** 0.109 -0.101*** -0.094*** 0.196*** 0.623** 5,198 427,503
1976-1983 (0.558) (0.034) (0.082) (0.012) (0.023) (0.024) (0.256)

Against Fischer 4.410*** 0.148*** 0.232 -0.106*** -0.179*** 0.285*** 2.635*** 9,430 702,544
1962-1970 (0.873) (0.041) (0.142) (0.020) (0.031) (0.039) (0.364)

Against Hou Yifan 4.490** 0.211*** 0.539 -0.113*** -0.212*** 0.325*** 0.748* 616 56,718
2014-2019 (1.591) (0.046) (0.451) (0.032) (0.036) (0.031) (0.352)

Against Superstar 2.887*** 0.125*** 0.207*** -0.099*** -0.084*** 0.183*** 0.666*** 23,614 1,825,871
1962-2019 (0.263) (0.013) (0.041) (0.007) (0.012) (0.014) (0.155)

Notes: All regressions include player and year fixed effects, round fixed effects, event site fixed effects, board complexity
measured by our neural-network algorithm (except in column (7) where it is the outcome variable), opponent ACPL, player’s side
(white or black), and number of moves played. Clustered standard errors (clustered by tournament) are shown in parentheses.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

the results together with our estimates of the effect on the top quartile of players from Equation 7.

Going back to Table 3 and the direct effect, the least dominant superstar in our sample was Carlsen,

and the most dominant superstar was Hou Yifan. Even though the theory suggests that the indirect

effect has to be neutral, the data shows that this effect depends on the intensity of the superstar:

Moving from Carlsen to Hou Yifan, we observe increases in the committed mistakes; in blunders;

in the loss rates; and decreases in win rates. When the gap between the superstar and the rest of the

participants is not too wide, all players perform better, but as the gap widens, performance drops.

The indirect effect is amplified for the top players. For example, Hou Yifan’s presence is associated

with an ACPL score that is 5 points higher; 13 percentage points less chances of winning; 18

percentage points higher chances of losing. The top players are those who are arguably impacted

the most by the superstar’s presence, as they have the highest ex-ante probability to win the event

in the absence of the superstar.

Another situation with intense competition is when two superstars, Kasparov and Karpov, both

participate in a tournament. This means that for a given player, he or she will have to face both

Kasparov and Karpov and perform better than both of them in order to win the tournament. This
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tough competition appears to be not associated with higher ACPL or more blunders, or mistakes.

The top quartile of players experience more losses with marginal significance. The results have

suggestive evidence of a spillover effect: the win rate for all players is positive and significant.

Potentially, the rest of the group could attain slightly more wins and fewer losses as a result of a

worsened performance by the top quartile players.

Table 4: Performance in tournaments with and without a Superstar (overall effect).

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Complexity

Superstar effect for

Top 25% players 0.133 0.012 0.022 -0.008 0.008 0.000 0.302**
(0.265) (0.015) (0.047) (0.010) (0.014) (0.011) (0.136)

Mid 50% players -0.067 0.003 -0.051* -0.005 0.012 -0.007 0.168*
(0.186) (0.011) (0.028) (0.006) (0.009) (0.007) (0.092)

Bottom 25% players -0.279 -0.026* 0.058 0.001 0.013 -0.014 -0.009
(0.323) (0.015) (0.046) (0.008) (0.012) (0.012) (0.149)

Number of moves 1,045,441 1,045,441 1,045,441 1,045,441 1,045,441 1,045,441 1,045,441

Number of games 13,067 13,067 13,067 13,067 13,067 13,067 13,067

Notes: Superstars’ games are excluded. Top 25% is defined as having an Elo rating in the top 25% among the
competitors at the time of the tournament. Bottom 25% is defined as having an Elo in the bottom quartile. All
regressions include player and year fixed effects, round fixed effects, average Elo rating in the tournament,
player’s Elo rating, board complexity measured by our neural-network algorithm, opponent ACPL, player’s side
(white or black), and number of moves played. Fischer’s sample is excluded due to Elo rating system not being
in use during his period, preventing identification of rating quartiles of players. Clustered standard errors
(clustered by tournament) are shown in parentheses.
∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

Players perform better if they face only Kasparov or Karpov in the tournament compared to

facing both superstars at once. With one superstar, either Kasparov or Karpov in the tournament,

players play more accurately and manage to get more wins with substantial gains in the ACPL score

and less mistakes committed. The improvement is the strongest for the top quartile of players. For

example, the top players show approximately 1.7 lower ACPL scores in tournaments with either

Kasparov or Karpov. These two superstars’ samples are where the indirect effects are the most

positive for the players. The number of superstars in the tournament seems to matter to players:

facing one superstar instead of two at once lowers the barrier for victory, and the players respond

positively.

Lastly, Carlsen’s presence is correlated with a slight positive indirect effect on his competitors’

performance. This indirect effect is similar, albeit slighly weaker than facing Kasparov or Karpov
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alone. Players play more accurately and make fewer mistakes under higher challenges with more

complex positions. The positive indirect effect is present on all tournament participants.

Table 5: Performance in tournaments with and without a superstar for all and top players.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Complexity
# of
games

# of
moves

All Top All Top All Top All Top All Top All Top All Top
Carlsen present -0.751 -0.080 0.015 0.040 -0.143* -0.128 -0.001 0.010 0.054* 0.022 -0.053* -0.032 0.506* 0.756** 3,110 275,260
2013-2019 (0.592) (0.698) (0.026) (0.032) (0.084) (0.097) (0.027) (0.031) (0.029) (0.038) (0.028) (0.032) (0.266) (0.362)
Kasparov present -0.563 -1.770** -0.055* -0.113** 0.027 -0.078 0.020 0.017 0.032 0.090** -0.053** -0.107*** 0.002 0.563 2,588 200,560
1995-2001 (0.526) (0.785) (0.028) (0.043) (0.079) (0.108) (0.013) (0.026) (0.025) (0.035) (0.023) (0.030) (0.458) (0.544)
Kasparov&Karpov present -0.265 -0.277 -0.039 -0.059 -0.088 -0.087 0.034* 0.029 -0.029 -0.080** -0.005 0.051 0.377 0.632 2,619 207,482
1987-1994 (0.501) (0.988) (0.046) (0.061) (0.080) (0.159) (0.019) (0.029) (0.023) (0.036) (0.020) (0.039) (0.323) (0.476)
Karpov present -0.748 -1.721** -0.062** -0.074** -0.069 -0.252* 0.018 0.031 -0.007 -0.021 -0.009 -0.010 0.331 0.816** 5,028 377,902
1976-1983 (0.522) (0.782) (0.025) (0.036) (0.096) (0.148) (0.014) (0.027) (0.016) (0.032) (0.019) (0.033) (0.257) (0.349)
Fischer present+ 0.700** 1.479** 0.026 0.053* 0.055 0.275*** -0.029** -0.081** -0.005 0.050* 0.034** 0.031 -0.536*** -0.816** 9,299 677,962
1962-1970 (0.352) (0.694) (0.018) (0.031) (0.054) (0.100) (0.013) (0.031) (0.010) (0.027) (0.014) (0.027) (0.148) (0.329)
Hou Yifan present 2.036* 5.242** 0.020 0.039 0.157 0.946*** -0.062 -0.137** 0.033 -0.047 0.029 0.184** 0.659 1.052 594 54,704
2014-2019 (1.061) (2.262) (0.093) (0.129) (0.184) (0.319) (0.038) (0.055) (0.041) (0.065) (0.052) (0.088) (0.495) (0.869)
Aggregate effect -0.201 0.133 -0.021* 0.012 -0.004 0.022 0.006 -0.008 -0.012 0.008 0.007 0.000 -0.118 0.302** 23,238 1,793,870

(0.211) (0.265) (0.011) (0.015) (0.032) (0.047) (0.006) (0.010) (0.008) (0.014) (0.008) (0.011) (0.105) (0.136)

Notes: Superstars’ games are excluded. The rows report the coefficients for each superstar’s presence effect on all and top players in their
eras separately. A top player is defined as having an Elo rating in the top 25% among the competitors at the time of the tournament. All
regressions include player and year fixed effects, round fixed effects, event site fixed effects, average Elo rating in the tournament (except for
pre-1970 games, Elo rating was adopted in 1970 by FIDE), player’s Elo rating (except pre-1970 games), board complexity measured by our
neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves played. Clustered standard errors (clustered
by tournament) are shown in parentheses.
+: Since no Elo rating information was available in Fischer’s era, we define the top players as the top chess players in the world from
1962-1970 other than Fischer. These players are Tigran Petrosian, Viktor Korchnoi, Boris Spassky, Vasily Smyslov, Mikhail Tal, Mikhail
Botvinnik, Paul Keres, Efim Geller, David Bronstein, and Samuel Reshevsky. Kasparov (2003) provides a detailed overview on each of
these players.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Why do players commit more mistakes playing against other non-superstar players when a

superstar is participating in the tournament? A superstar creates a mental pressure on players. The

literature documents detrimental effects of stress and pressure on performance. See Heaton and

Sigall (1991), Ariely et al. (2009), Yu (2015), González-Díaz and Palacios-Huerta (2016) among

others. Neuropsychological mechanisms vary from choking due to loss of focus to over-arousal

in high stake situations. Playing in the tournament with a superstar creates such a high pressure

situation.

We find that when the superstar is present, the top players play more complex games against

other non-superstar players. However, they end up committing more mistakes, resulting in more

losses.
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Figure 6: Coefficients for superstar presence for top players over different superstars.

Note: The figure presents the coefficients in Table 5 with 95% confidence intervals for each superstar in the
sample. The superstars are sorted by their intensity levels on the x-axis using Table 3 as reference. The order
is ascending from left to right.



6. Conclusion

The empirical superstar literature finds evidence for both positive and negative superstar effects.

In golf, players perform poorly in tournaments where a highly talented competitor is present. In

the 100-meter running and swimming contests, performance improves if a superstar is present. In

this paper, we analyze elite chess tournaments going back to 1960s. We show theoretically and

empirically that the direct superstar effect is always negative. We find that even though the indirect

effect is supposed to be neutral in theory, the chess data demonstrate that this effect depends on the

intensity of the superstar. If the skill gap between the superstar and other players is small (large),

the indirect superstar effect is positive (negative).

The takeaway for firms seeking to hire a superstar employee is that such hiring decision may

introduce a positive or negative effect on workplace performance depending on the skill gap. If

the gap is too large, there may be a negative spillover effect from hiring a superstar employee.

In these cases, a highly skilled team member hurts competition and creates an adverse effect on

the rest of the team members. If a team member is forced to compete head-to-head against the

superstar, the manager can similarly expect under-performance due to direct superstar effect. Such

adverse effects can occur not just in workplaces, but in many other environments. For example,

in a classroom, a superstar student may discourage other students from learning under high peer

competition. If rank order tournaments were to be employed in an organization, it is critical for the

designer to ensure that the skill heterogeneity among their members is not too large.
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Appendix (For Online Publication)

Table A.1: Variables list

Variable Name Variable Meaning

Superstar Present =1 if a superstar is present in a tournament.
Against Superstar =1 if a game is played against a superstar.

ELO Elo rating of a player.

ACPL Average Centipawn Loss of a player in a
game.

TotalBlunder Total number of blunders committed by a
player in a game. A move is considered a
blunder if the change in centipawn score is
more than 300 centipawns.

TotalMistake Total number of mistakes committed by a
player in a game. A move is considered a
mistake if the change in centipawn score is
between 100-300 centipawns.

Complexity The board complexity metric estimated via
an Artificial Neural Network algorithm.

win =1 if a player wins his or her game.
draw =1 if a games ends in a draw.
loss =1 if a player loses his or her game.
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Table A.1: Variables list (cont.)

Variable Name Variable Meaning

white =1 if a player’s side is white.

moves Total number of moves played by a player
in a game.

Round-robin tournament An invitation based tournament system
with a limited number of participants. Each
participant plays against participants once
or twice, depending on the tournament
length. The participant who accumulates
the highest number of points wins the tour-
nament.

Swiss tournament A tournament system that is typically used
in open tournaments with a large pool of
participants. Following the results of the
first round, winners are paired with other
winners. Towards the end of the tourna-
ment, strongest players with the highest
number of scores get paired. The partici-
pant who accumulates the highest number
of points wins the tournament.
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Table A.2: An example pgn file.

[Event "GRENKE Chess Classic"]
[Site "Karlsruhe GER"]
[Date "2019.04.20"]
[EventDate "2019.04.20"]
[Round "1"]
[Result "0-1"]
[White "Vincent Keymer"]
[Black "Magnus Carlsen"]
[ECO "A56"]
[WhiteElo "2516"]
[BlackElo "2845"]
[PlyCount "162"]

1 d4 Nf6 2 c4 c5 3 d5 g6 4 Nc3 d6 5 e4 Bg7 6 Nf3 O-O 7 Be2 e5 8 O-O Ne8 9 Ne1 f5
10 eXf5 gXf5 11 f4 Nd7 12 Nd3 e4 13 Nf2 BXc3 14 bXc3 Ndf6 15 Be3 Ng7 16 Qe1 Bd7
17 Nd1 Ba4 18 h3 BXd1 19 QXd1 Qe8 20 Kf2 Qg6 21 Rg1 Kh8 22 a4 Rg8 23 Qf1 Nfh5
24 g3 Raf8 25 Qg2 Qf6 26 Rac1 Qd8 27 Qh2 Nf6 28 g4 Nd7 29 g5 Qa5 30 g6 h6 31 Rb1
Rb8 32 Qg3 Qd8 33 Ke1 Ne8 34 Kd2 Nf8 35 Bf2 Qe7 36 Ke3 Qf6 37 Kd2 NXg6 38 h4
Ne7 39 Qh3 RXg1 40 RXg1 Qf7 41 h5 Nf6 42 Bh4 b6 43 Rb1 Qf8 44 Rg1 Qf7 45 Rb1
Qg7 46 Rg1 Qf8 47 Kc2 Nfg8 48 Kd2 Qf7 49 Kc2 Rf8 50 Kd2 Qe8 51 Ra1 Rf7 52 a5
bXa5 53 RXa5 Nc8 54 Ra1 Qf8 55 Rb1 Nb6 56 Rg1 Rg7 57 RXg7 KXg7 58 Qg3+ Kh8 59
Qg6 a5 60 Bf1 a4 61 Kc2 a3 62 Kb3 Na4 63 Bh3 Qg7 64 QXg7+ KXg7 65 BXf5 Nf6 66
KXa3 NXc3 67 Bf2 Ne2 68 Ka4 NXh5 69 Ka5 Nf6 70 Kb6 Kf7 71 Kc7 Ke7 72 Be3 Nd4
73 Bg6 h5 74 Bf2 Nf3 75 Bf5 Nd2 76 Bh4 e3 77 Bd3 Nf3 78 BXf6+ KXf6 79 KXd6 h4 80
Kc7 Nd4 81 Kc8 e2 0-1

42



Figure A.1: An example of an invitation-based round robin tournament table from the sample.

Note: The tournament table is obtained from Chessbase Mega Database 2020.

Figure A.2: Elo ratings of top chess players between 2013-2019.

Note: The blue line shows the average Elo rating of top chess players other than Carlsen (World ranking
2−10). Elo rating data is obtained from Chessbase Mega Database 2020.
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Figure A.3: Elo ratings of top chess players between 1995-2001.

Note: Elo rating data is obtained from Chessbase Mega Database 2020.

Figure A.4: Elo ratings of top chess players between 1987-1994.

Note: Elo rating data is obtained from Chessbase Mega Database 2020.
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Figure A.5: Elo ratings of top chess players between 1976-1983.

Note: Elo rating data is obtained from Chessbase Mega Database 2020.

Figure A.6: Elo ratings of top female chess players between 2014-2019.

Note: Judit Polgar is considered the strongest female chess player of all time, however
she stopped competing in female tournaments in 1990 when she was 14 years old. Hou Yifan stopped
competing in female tournaments after 2017. Elo rating data is obtained from FIDE available online at
https://ratings.fide.com
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Figure A.7: Computer evaluation of a game played by Carlsen in 2019.

Note: The game was played between Vincent Keymer (White) and Magnus Carlsen (Black) on April 20,
2019 during the first round of Grenke Chess Classic 2019. Keymer’s Average Centipawn Loss (ACPL)
was 35.22 and Carlsen’s 26.17, calculated by using Equation 3. A higher ACPL means the player made
more mistakes according to the chess engine. The chess engine used for evaluations is Stockfish 11 with
a depth of 19 moves.
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Figure A.8: Complexity evaluation of a game played by Carlsen in 2019 using an Artificial Neural
Network (ANN) algorithm.

Note: The game was played between Vincent Keymer (White) and Magnus Carlsen (Black) on April 20,
2019 during the first round of Grenke Chess Classic 2019. Keymer’s Average Centipawn Loss (ACPL)
was 35.22 and Carlsen’s 26.17 using our algorithm. Our neural-network board complexity estimate
assigns an expected ACPL score of 34.87. This score is substantially higher than the sample average,
26.56. The game is within the top 10% of the sample in terms of complexity.
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Figure A.9: A position from Keymer vs. Carlsen (2019).

8 0Z0Z0Z0Z
7 Z0Z0Z0j0
6 0Z0o0m0o
5 Z0oPZBZP
4 0ZPZpO0A
3 J0m0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Note: This position is from Vincent Keymer (White) vs. Magnus Carlsen (Black), Grenke Chess Classic
2019 (white to play). Our neural-network algorithm calculates the probability of making an error as 0.52
(about twice as high as the sample average) in an amount of 65 centipawns. In the game, white
blundered (by playing Bf2) in an amount of 180 centipawns, according to Stockfish. Before this blunder,
the position was a forced draw.

Figure A.10: Scatterplot of board complexity and ACPL scores.

Note: The board complexity measure is obtained via a neural-network algorithm. It is the "expected
ACPL score" according to the AI, depending on the complexity of a game. The estimated slope is 1.14
for the overall sample of 32,000 games and 2.1 million moves.
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Figure A.11: Distribution of ACPL and board complexity scores.

Note: The board complexity measure is obtained via a neural-network algorithm. It is the "expected ACPL score"
according to the AI which depends on the complexity of a game. The average ACPL score in the sample is 25.49 and
the board complexity score is 26.57 for the overall sample with 32,000 games and 2.1 million moves. The
neural-network was trained with an independent sample consisting of 25,000 games and 2 million moves with games
played between players with "National Master" ranking on average.
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Figure A.12: Carlsen’s tournament performance (classical)

Note: Carlsen’s Elo rating data is obtained from FIDE. Bars above (below) count the number of tournaments in
which Carlsen gained (lost) Elo rating at the end of the tournament.

Figure A.13: Kasparov’s tournament performance (classical)

Note: Kasparov’s Elo rating data is obtained from Chessbase Mega Database 2020. Bars above (below) count the
number of tournaments in which Kasparov gained (lost) Elo rating at the end of the tournament.
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Figure A.14: Kasparov and Karpov’s tournament performance (classical)

Note: Kasparov’s and Karpov’s Elo rating data are obtained from Chessbase Mega Database 2020. Bars above
(below) count the number of tournaments in which both Kasparov and Karpov gained (lost) Elo rating at the end of
the tournament.

Figure A.15: Karpov’s tournament performance (classical)

Note: Karpov’s Elo rating data is obtained from Chessbase Mega Database 2020. Bars above (below) count the
number of tournaments in which Karpov gained (lost) Elo rating at the end of the tournament.
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Figure A.16: Hou Yifan’s tournament performance (classical)

Note: Hou Yifan’s Elo rating data is obtained from Chessbase Mega Database 2020. Bars above (below) count the
number of tournaments in which Hou Yifan gained (lost) Elo rating at the end of the tournament.
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Table A.17: List of tournaments (classical)

Year Tournament Name

Panel A. Carlsen Present

2019 GCT Croatia 2019, Grenke Chess Classic 2019, Gashimov Memorial 2019, Norway Chess 2019,

Sinquefield 2019, Tata Steel 2019

2018 Gashimov Memorial 2018, Sinquefield 2018, Biel 2018, Norway Chess 2018,

Grenke Chess Classic 2018, Tata Steel 2018

2017 London Classic 2017, Norway Chess 2017, Sinquefield 2017, Grenke Chess Classic 2017,

Tata Steel 2017

2016 Norway Chess 2016, Tata Steel 2016, Bilbao Masters 2016

2015 London Classic 2015, Sinquefield 2015, Norway Chess 2015, Gashimov Memorial 2015,

Grenke Chess Classic 2015, Tata Steel 2015

2014 Norway Chess 2014, Zuerich Chess Challange 2014, Sinquefield 2014, Gashimov Memorial 2014

2013 Moscow Tal Memorial 2013, Norway Chess 2013, Candidates Tournament 2013,

Tata Steel 2013, Sinquefield 2013

Panel B. Carlsen Not Present

2019 U.S. Championship 2019, Dortmund 2019

2018 Candidates Tournament 2018, U.S. Championship 2018, Dortmund 2018

2017 U.S. Championship 2017, Dortmund 2017, Gashimov Memorial 2017

2016 London Classic 2016, Sinquefield 2016, Gashimov Memorial 2016, Candidates Tournament 2016,

Moscow Tal Memorial 2016, U.S. Championship 2016, Dortmund 2016

2015 Dortmund 2015, Zuerich Chess Challenge 2015, Tbilisi FIDE GP 2015,

Khanty-Mansiysk FIDE GP 2015, Capablanca Memorial 2015, U.S. Championship 2015

2014 Beijing Sportaccord Basque 2014, London Classic 2014, Tashkent FIDE GP 2014,

Dortmund 2014, Tata Steel 2014, U.S. Championship 2014, Candidates Tournament 2014,

Baku FIDE GP 2014, Capablanca Memorial 2014, Bergomo ACP Golden Classic 2014

2013 Paris FIDE GP 2013, Dortmund 2013, Thessaloniki FIDE GP 2013,

Zug FIDE GP 2013, Beijing FIDE GP 2013, Zuerich Chess Challenge 2013,

Grenke Chess Classic 2013, Capablanca Memorial 2013, U.S. Championship 2013
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Table A.18: List of tournaments (classical)

Year Tournament Name

Panel A. Kasparov Present

2001 Astana 2001, Zuerich 2001, Linares 2001, Corus Wijk aan Zee 2001

2000 Fujitsu Siemens Giants 2000, Sarajevo Bosnia 2000, Linares 2000, Corus Wijk aan Zee 2000

1999 Sarajevo Bosnia 1999, Linares 1999, Hoogovens Wijk aan Zee 1999

1998 Linares 1998

1997 Tilburg 1997, Novgorod 1997, Linares 1997

1996 Las Palmas 1996, Dos Hermanas 1996, Amsterdam Euwe Memorial 1996

1995 Horgen 1995, Amsterdam Euwe Memorial 1995, Novgorod 1995

Riga Tal Memorial 1995

Panel B. Kasparov Not Present

2001 Sigeman & Co 2001, Biel 2001, Dortmund 2001, Pamplona 2001, Dos Hermanas 2001

2000 Japfa Classic 2000, Dortmund 2000, Sigeman & Co 2000, Biel 2000

1999 Pamplona 1999, Lost Boys Amsterdam 1999, Dortmund 1999, Sigeman & Co 1999

Dos Hermanas 1999, Biel 1999

1998 Hoogovens Wijk aan Zee 1998, Tilburg 1998, Dortmund 1998, Madrid 1998, Pamplona 1998

1997 Hoogovens Merrillville 1997, Hoogovens Wijk aan Zee 1997, Sigeman & Co 1997, Ubeda 1997,

Dos Hermanas 1997, Lost Boys 1997, Dortmund 1997, Madrid 1997, Belgrade Investbank 1997

1996 Koop Tjuchem 1996, Donner Memorial 1996, Hoogovens Wijk aan Zee 1996,

Tilburg 1996, Dortmund 1996, Dos Hermanas 1996, Madrid 1996

1995 Belgrade Investbank 1995, Donner Memorial 1995, Biel 1995, Madrid 1995,

Dos Hermanas 1995, Groningen 1995, Dortmund 1995
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Table A.19: List of tournaments (classical)

Year Tournament Name

Panel A. Kasparov & Karpov Both Present

1994 Linares 1994

1993 Linares 1993

1992
1991 Reggio Emilia 1991, Tilburg 1991, Amsterdam Euwe Memorial 1991, Linares 1991

1990
1989 World Cup Skelleftea 1989

1988 USSR Championship 1988, World Cup Belfort 1988, Optiebeurs Amsterdam 1988

1987 Brussels 1987

Panel B. Kasparov & Karpov Neither Present

1994 Donner Memorial 1994, Dortmund 1994, Hoogovens Wijk aan Zee 1994, Groningen 1994,

Munich 1994

1993 Antwerp 1993, Amsterdam VSB 1993, Madrid 1993, Las Palmas 1993, Munich 1993

1992 Alekhine Memorial 1992, Amsterdam Euwe Memorial 1992, Hoogovens Wijk aan Zee 1992,

Groningen 1992, Munich 1992

1991 World Cup Reykjavik 1991, Hoogovens Wijk aan Zee 1991, Groningen 1991, Munich 1991

1990 Tilburg 1990, Hoogovens Wijk aan Zee 1990, Prague 1990, Groningen 1990, Munich 1990

1989 Hoogovens Wijk aan Zee 1989, Groningen 1989, Munich 1989, Amsterdam Euwe Memorial 1989

1988 Amsterdam Euwe Memorial 1988, OHRA Amsterdam 1988, Linares 1988, Hastings 1988

1987 Belgrade Investbanka 1987, Hoogovens Wijk aan Zee 1987, Interpolis 1987,

OHRA Amsterdam 1987, Reykjavik 1987
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Table A.20: List of tournaments (classical)

Year Tournament Name

Panel A. Karpov Present

1983 Interpolis 1983, International DSB Mephisto GM 1983, USSR Final 1983,

Bath 1983, Linares 1983

1982 Interpolis 1982, Turin 1982, Hamburg 1982, London Phillips 1982,

Mar del Plata Clarin Masters 1982

1981 IBM Herinnerungs Toernooi 1981, Moscow 1981, Linares 1981

1980 Buenos Aires 1980, Interpolis 1980, IBM Kroongroep 1980,

Bugojno 1980, Bad Kissingen 1980

1979 Interpolis 1979, Waddinxveen KATS 1979, Montreal International 1979,

GER International 1979

1978 Bugojno 1978

1977 Interpolis 1977, October Revolution 1977, Las Palmas 1977, GER International 1977

1976 USSR Final 1976, Montilla 1976, Manila Marlboro 1976, Amsterdam 1976,

Skopje Solidarnost 1976

Panel B. Karpov Not Present

1983 Jakarta International 1983, Hoogovens Wijk aan Zee 1983

1982 Bugojno 1982, Moscow Interzonal 1982, Las Palmas Interzonal 1982, Toluca Interzonal 1982,

Niksic International 1982, Hoogovens Wijk aan Zee 1982

1981 Las Palmas 1981, Interpolis 1981,

Hoogovens Wijk aan Zee 1981

1980 Buenos Aires 1980, London Phillips 1980, Hoogovens Wijk aan Zee 1980, Las Palmas 1980,

Reykjavik International 1980

1979 Buenos Aires Clarin 1979, Riga Interzonal 1979, Buenos Aires Interzonal 1979, Vidmar Memorial 1979,

IBM 1979, Hoogovens Wijk aan Zee 1979, Buenos Aires Konex 1979

1978 Interpolis 1978, Reykjavik International 1978, Hoogovens Wijk aan Zee 1978, Las Palmas 1978

IBM 1978, Clarin 1978

1977 Geneve 1977, Vidmar Memorial 1977, Hoogovens Wijk aan Zee 1977, IBM 1977

1976 Interzonal 1976, Las Palmas 1976, Reykjavik International 1976, Hoogovens Wijk aan Zee 1976,

IBM 1976



Table A.21: List of tournaments (classical)

Year Tournament Name

Panel A. Fischer Present

1970 Interzonal 1970, Buenos Aires 1970, Rovinj Zagreb 1970

1969
1968 Vinkovci 1968, Nathanya 1968,

1967 Skopje 1967, Monaco Grand Prix 1967

1966 Piatigorsky Cup 1966, U.S. Championship 1966

1965 U.S. Championship 1965, Capablanca Memorial 1965

1964
1963 U.S. Championship 1963

1962 U.S. Championship 1962, Candidates Tournament 1962, Interzonal 1962

Panel B. Fischer Not Present

1970 Vinkovci 1970, IBM Amsterdam 1970, Budapest 1970, Sarajevo 1970, Caracas 1970,

Hoogovens Wijk an Zee 1970, Costa del Sol 1970, Skopje 1970, Rubinstein Memorial 1970,

Christmas Congress 1970

1969 Monaco Grand Prix 1969, Hoogovens Wijk an Zee 1969, Venice 1969

U.S. Championship 1969, Palma de Mallorca 1969, IBM Amsterdam 1969, Sarajevo 1969,

Christmas Congress 1969, Rubinstein Memorial 1969, Capablanca Memorial 1969

1968 Rubinstein Memorial 1968, Christmas Congress 1968, Palma de Mallorca 1968,

U.S. Championship 1968, Bamberg 1968, IBM Amsterdam 1968, Sarajevo 1968

Hoogovens Wijk an Zee 1968, Monaco Grand Prix 1968, Skopje 1968

1967 Winnipeg 1967, October Revolution Leningrad 1967, October Revolution Moscow 1967,

Capablanca Memorial 1967, Palma de Mallorca 1967, Sarajevo 1967, Hoogovens Beverwijk 1967,

Christmas Congress 1967, Rubinstein Memorial 1967, Venice 1967, IBM Amsterdam 1967

1966 IBM Amsterdam 1966, Sarajevo 1966, Palma de Mallorca 1966

Hoogovens Beverwijk 1966, Venice 1966, Rubinstein Memorial 1966, Christmas Congress 1966

1965 ZSK International 1965, Zagreb 1965, Mer del Plata 1965,

IBM Amsterdam 1965, Sarajevo 1965, Hoogovens Beverwijk 1965,

Christmas Congress 1965, Rubinstein Memorial 1965

1964 Buenos Aires 1964, Capablanca Memorial 1964, Rubinstein Memorial 1964,

Interzonal 1964, IBM Amsterdam 1964, Sarajevo 1964, Hoogovens Beverwijk 1964,

Christmas Congress 1964, ZSK International 1964

1963 Piatigorsky Cup 1963, Alekhine Memorial 1963, IBM Amsterdam 1963, Sarajevo 1963, Hoogovens

Beverwijk 1963, Rubinstein Memorial 1963, Christmas Congress 1963, Capablanca Memorial 1963

1962 Mer del Plata 1962, Sarajevo 1962, Hoogovens Beverwijk 1962,

Rubinstein Memorial 1962, Christmas Congress 1962, Capablanca Memorial 1962



Table A.22: List of tournaments (classical)

Year Tournament Name

Panel A. Hou Yifan Present

2015 Monte Carlo FIDE GP 2015

2014 Lopota FIDE GP 2014, Khanty-Mansiysk FIDE GP 2014,

Sharjah FIDE GP 2014

Panel B. Hou Yifan Not Present

2019 Skolkovo FIDE GP 2019, Saint Louis Cairns Cup 2019

2016 Khanty-Mansiysk FIDE GP 2016, Chengdu FIDE GP 2016,

Batumi FIDE GP 2016, Tehran FIDE GP 2016
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