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Abstract
It is increasingly common for therapies in oncology to be
given in combination. In some cases, patients can benefit
from the interaction between two drugs, although often at
the risk of higher toxicity. A large number of designs to
conduct phase I trials in this setting are available, where the
objective is to select the maximum tolerated dose combination
(MTC). Recently, a number of model-free (also called model-
assisted) designs have provoked interest, providing several
practical advantages over the more conventional approaches
of rule-based or model-based designs. In this paper, we
demonstrate a novel calibration procedure for model-free
designs to determine their most desirable parameters. Under
the calibration procedure, we compare the behaviour of model-
free designs to model-based designs in a comprehensive
simulation study, covering a number of clinically plausible
scenarios. It is found that model-free designs are competitive
with the model-based designs in terms of the proportion of
correct selections of the MTC. However, there are a number of
scenarios in which model-free designs offer a safer alternative.
This is also illustrated in the application of the designs to a
case study using data from a phase I oncology trial.
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Introduction

The aim of phase I clinical trials investigating a single
therapy is to find the highest dose that can be administered
whilst ensuring that patients are at a low risk of serious
side effects. To offer patients a higher chance of successful
treatment, there is willingness to accept a dose that
leads to more toxic responses, commonly labelled as dose-
limiting toxicities (DLTs). The highest dose for which the
treatment has a pre-specified probability of leading to a
toxic outcome (target toxicity) is called the maximum
tolerated dose (MTD). In an analysis of over 400,000
clinical trials conducted between 2000 and 201530, it was
found that 57.6% of all phase I oncology trials successfully
progressed to phase II. It was found that in 73% of trials
excluding oncology, treatments were successful in moving to
phase II, thus demonstrating the importance of successful
dose-finding methods in oncology, where drugs are clearly
harder to develop.
In this work, we consider phase I oncology trials in

which a combination of two therapies are investigated.
Here the objective is to identify a maximum tolerated
dose combination (MTC), the dose combination with a
probability of toxicity closest to the target toxicity. Phase
I oncology trials in this dual-agent setting have recently
provoked notable interest31. In particular, it was found
that immunotherapy, a targeted agent that stimulates
the immune system to fight cancerous cells3, can provide
benefit to patients when administered in combination with
chemotherapy or another targeted agent25. One difficulty
in the dual-agent setting is that the order of toxicity is
unknown for some combinations – if the amount of one
compound in the combination is increased while another is
decreased, it is unknown whether the overall toxicity goes
up or down.
A number of dose-finding methods for dual-agent

combination phase I trials relaxing the monotonicity
assumption on the order of some of the combinations have
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been proposed in the literature. They broadly belong to one
of three categories; rule-based, model-based and model-free
(also known as model-assisted) designs. Rule-based designs
(e.g. 3+3+3 or extensions of this5,8,10) rely on a number of
pre-specified rules to determine when a dose is escalated,
de-escalated and chosen as the MTD. Model-based designs
(e.g. BLRM18, six-parameter model27, Partial Ordering
Continual Reassessment Method28 and the modified
logistic model24) model the relationship between dose
and probability of toxicity through a parametric function.
Through the course of a trial, parameter estimates are
updated to better describe this relationship. The model-
free designs1,14 do not pre-specify any relationship between
dose and toxicity, thus do not rely on any parametric
assumptions in their search for the MTD. However, unlike
rule-based designs, the decision process in which the dose
can be escalated or de-escalated is assisted with a statistical
model.

Despite numerous papers demonstrating flaws in rule-
based designs and their performance in drug combination
trials2,22,26, it was reported that less than 5% of
combination trials in oncology between 2011 and 2013
deviated from rule-based designs23. It is perhaps the
restrictions associated with model-based designs, such
as difficulty of implementation or communication to
clinicians, that have made these less commonly used in real
trials. Recently, model-free designs have attracted attention
due to their practicality29, although these have not yet been
fully evaluated in the literature.

The objective of this work is to review five recently
proposed model-free dose-finding designs for phase I dual-
agent combination studies, namely, the Bayesian Optimal
Interval design11 BOIN, the Keyboard design20 KEY, the
surface-free design13 SFD, the product of independent beta
probabilities design12 PIPE, and the Waterfall design34 .
We evaluate their performance in an extensive simulation
study. We note that some comparison has already
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been investigated by previous authors, for example the
comparison of the Keyboard design to two other designs20.
The novelty in our approach is to compare the methods on
equal grounds. We hence propose a calibration procedure
that selects the parameters of each of the designs that
maximise the proportion of correct selections (subject to
a safety constraint). We compare the performance of these
designs to three model-based designs; the Bayesian Logistic
Regression Model (BLRM), a model-based approach that
uses a two-parameter logistic model for each compound18;
the Partial Ordering Continual Reassessment Method
(POCRM)28; and the modified logistic model24, as well as
a non-parametric optimal benchmark17. We also evaluate
the performance of each of the designs in a case study of
neratinib and temsirolimus6, to highlight the differences
between approaches in a real trial setting of a dose finding
trial from combination therapies.
The rest of the paper continues as follows. We first

provide a review of model-free designs, before using a
novel method to calibrate the parameters of each design
leading to good performance. We then present detailed
results from our simulation study across a wide range of
toxicity scenarios, including the model-based designs for
comparison. Each design is also applied to the real case
study of neratinib and temsirolimus. We finish with a
discussion of our results.

Methodological Review

In this section, we describe the dose escalation procedure
for each of the five model-free approaches in a general
dose-finding trial. It is assumed patients enter the trial in
cohorts, and the dose combination for the next cohort is
assigned once the previous cohort’s responses are available.
We first define the admissible combinations for each design.
These are the dose combinations that are allowable for
assignment for the next cohort of patients based on the
last tested combination. We then describe the details of
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the escalation procedure in each of the designs in the
following setting. Consider a dual-agent trial with I doses
of drug A, denoted dA1 < · · · < dAI and J doses of drug B,
denoted dB1 < · · · < dBJ . Let dij represent the combination
of doses dAi and dBj for i = 1, . . . , I and j = 1, . . . , J . The
total number of patients who receive combination dij and
the number of those who experience a toxic response on dij
during the trial are denoted nij and yij respectively. The
probability of toxic response at dij is written as πij and the
target toxicity is denoted ϕ.

Admissible Combinations

Before deciding on a dose for the next cohort, each design
defines a set of combinations that are admissible; i.e.
combinations that the next cohort could be allocated
to. These are best illustrated with a diagram, Figure 1.
Suppose we are at d22 in Figure 1, indicated by the ‘ ’
symbol. Admissible combinations for the BOIN, Waterfall
and KEY designs are the same combination or adjacent
combinations to the current one (dij → {di−1,j, di+1,j, di,j−1,
di,j+1 }), represented by the ‘#’ symbols.
In addition to these combinations, the SFD and PIPE

also allow for diagonal de-escalation, where the next cohort
is administered a combination that is one dose level lower in
each drug (dij → di−1,j−1), and also allow for anti-diagonal
escalation, meaning the next cohort receives a combination
that is one dose level higher in one drug and one dose level
lower in the other (dij → {di−1,j+1, di+1,j−1 }). These are
depicted by the ‘∗’ symbols in Figure 1, where reaching
d11 requires diagonal de-escalation and reaching d31 or
d13 requires anti-diagonal escalation. The rationale is that
by enabling faster movement across the combination grid,
the design can move to the MTC quickly, and de-escalate
quickly if patients are treated at highly toxic combinations.
All designs prohibit diagonal escalation, where the next

cohort receives a combination one dose level higher in each
drug (dij → di+1,j+1) and no dose levels can be skipped.
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These non-admissible doses are shown by the ’×’ in the
red cells in Figure 1.

[Figure 1 about here.]

The BOIN Design

The Bayesian Optimal Interval (BOIN) design11 uses
the intuitive estimator π̂ij = yij/nij for the probability of
toxicity at combination dij, so that π̂ij is the proportion
of observed toxic responses on dij across the whole trial.
The estimator π̂ij only updates after patient responses are
observed on dij, and is then used to guide dose escalation.
This escalation process is defined by pre-specified values of
λe, λd to which π̂ij is compared after each cohort. Whilst ϕ
is the target toxicity, ϕ1 is the highest toxicity probability
deemed sub-therapeutic and ϕ2 is the lowest toxicity
probability deemed overly toxic. These can be specified
by the clinicians. Values of ϕ1 < λe < ϕ and ϕ2 > λd > ϕ
are chosen to locally minimise the chance of incorrect
escalation and de-escalation decisions during a trial, and
are calculated using constants ϕ1 and ϕ2. λe and λd are
defined in Equation (1):

λe =
log

(
1−ϕ1

1−ϕ

)
log

(
ϕ(1−ϕ1)
ϕ1(1−ϕ)

) and λd =
log

(
1−ϕ
1−ϕ2

)
log

(
ϕ2(1−ϕ)
ϕ(1−ϕ2)

) . (1)

Both λe and λd are invariant to dij, nij and yij, so that
optimising these parameters depends only on constants ϕ,
ϕ1 and ϕ2. After defining λe and λd, the rules for the dose-
finding procedure are as follows:

� If π̂ij ≤ λe, the next combination is chosen from AE ={
d(i+1)j, di(j+1)

}
.

� If π̂ij > λd, the next combination is chosen from AD ={
d(i−1)j, di(j−1)

}
.

� Otherwise, λe < π̂ij ≤ λd and the next combination is
the same.
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In this way, dose skipping, diagonal escalation and
diagonal de-escalation are prohibited – see the ‘Admissible
Combinations’ section for more details. If the next
combination is to be chosen from an empty AE or AD

(for example the current combination is the highest in
both doses and the design chooses to escalate), then
the next cohort receives the same combination. The
design assumes each patient response is independent, yij ∼
Binomial(nij, πij) and assigns a vague Beta(1,1) prior
distribution to each πij, giving the posterior distribution
for πij as

πij|nij, yij ∼ Beta(yij + 1, nij − yij + 1). (2)

To choose between combinations in the chosen set,
the BOIN design computes the posterior probability
P(πij ∈ (λe, λd)|nij, yij). The combination maximising this
probability is administered to the next cohort. For
combinations yet to be tested, calculating this probability
is based on the vague prior distribution only. In the
event of ties, which is always the case when multiple
potential combinations are yet to be administered, the
next combination is selected at random from the chosen
set. Note that no toxicity information is borrowed between
the combinations under this model as the combinations are
treated independently.
The design uses an overdosing criterion stating that

a combination, and any that are more toxic under
monotonicity, satisfying P(πij > ϕ|nij, yij) ≥ ϵBOIN for
some overdosing probability threshold 0 < ϵBOIN ≤ 1,
cannot be administered to the next cohort. For the BOIN
design, if dij satisfies this condition, dose dij and higher
combinations are eliminated from the trial, and the dose
maximizing P(πij ∈ (λe, λd)|nij, yij) withinAD is chosen for
the next cohort. If combination d11 satisfies the overdosing
criterion, the trial is terminated earlier for safety.
After all patients are treated, estimates of each πij

are calculated via matrix isotonic regression4. The simple
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technique guarantees that estimates of πij at higher
combinations are at least as high as estimates of πij

at lower combinations, which follows the assumption of
monotonicity. The MTC is selected as the combination with
estimated πij closest to ϕ via isotonic regression4.

The Keyboard Design

The Keyboard design (KEY)32 is very similar to the BOIN
design, defining an interval about the target toxicity ϕ,
denoted Itarget = (ϕ−∆1, ϕ+∆2), for constants ∆1,∆2 >
0, which can be chosen by the clinicians. A combination
with estimated toxicity probability within this interval is
said to have acceptable toxicity. The design then divides
the (0,1) space into “keys”, defined as intervals It of equal
length ∆1 +∆2 (allowing for shorter keys at either end
of (0,1)) for t = 1, . . . , T , where T is the number of keys.
The interval Itarget is fixed pre-trial, chosen to minimise the
chance of incorrect escalation and de-escalation decisions.
The KEY design assigns a vague Beta(1,1) prior

distribution to each πij, and assumes that the number
of toxic responses follows a binomial distribution, yij ∼
Binomial(nij, πij). The posterior distribution for each πij

is computed as in Equation 2. Again, this means there is
no borrowing of toxicity information across combinations.
The design then identifies the key It that is most likely to
contain πij, labelled Imax,

Imax = argmax
It:t∈(1,...,T )

P(πij ∈ It|nij, yij). (3)

Once the key Imax is identified, escalation and de-escalation
decisions happen as follows:

� If Imax < Itarget, the next combination is chosen from
AE =

{
d(i+1)j, di(j+1)

}
.

� If Imax > Itarget, the next combination is chosen from
AD =

{
d(i−1)j, di(j−1)

}
.

� If Imax = Itarget, the next combination is the same.
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To choose between combinations in AE (or AD), the design
computes the posterior probability P(πij ∈ Itarget|nij, yij)
for all combinations in AE (or AD). The combination
maximising this probability is administered to the next
cohort. The remainder of the escalation process and the
selection of the MTC is analogous with the BOIN design,
with an identical overdosing rule using ϵKEY and the MTC
chosen via isotonic regression4.
Both the BOIN and KEY designs model dose

combinations independently, however in the following two
designs, the connections between the dose combinations are
also taken into account.

The Surface-Free Design

The surface-free design (SFD)13 does not restrict the
MTC search to a parametric surface and does not require
the order of toxicity between combinations to be known.
The main idea is to parametrise ratios between toxicity
probabilities for different combinations, defining θ = 1−
π11, and θi =

1−πi,j

1−πi−1,j
. Then θ is the probability of a patient

having no toxic response on the lowest dose combination
and θi denotes the ratio between the probability of a
patient having no toxic response on dose combinations
dij and d(i−1)j for j = 2, . . . , J and i = 2, . . . , I. Similarly,

τj =
1−πi,j

1−πi,j−1
is defined as the ratio between the probability

of a patient having no toxic response on dij and di(j−1)

for j = 2, . . . , J and i = 2, . . . , I. Thus, the probability of
toxicity for each combination dij is

πij = 1− θθ2 . . . θiτ2 . . . τj. (4)

Due to monotonicity, each ratio θi, τj ∈ (0, 1) and the
SFD assigns each of these ratios an independent Beta
prior distribution. The hyper-parameters of the prior
distributions can be chosen to match the clinicians’ prior
mean estimates of toxicity probability on each combination
and effective sample sizes.
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After each cohort, the SFD updates the posterior means
for ratios θ, θ2, . . . , θI , τ2, . . . , τJ using Bayes theorem,
which can be related back to πij through Equation (4)
to give estimates of the toxicity probabilities. In this way,
the SFD is borrowing information across various drug
combinations previously collected in the trial to make an
informed decision on escalation. Additionally, the continual
multiplication of Beta random variables implies that πij for
higher combinations has higher variance, allowing for more
cautious escalation at higher combinations. Considering all
neighbouring combinations apart from the one higher in
both doses, the next combination is chosen as the one
with estimated πij closest to ϕ. An overdosing criterion
prohibits any combination from being administered if
P(πij > ϕ|nij, yij) ≥ ϵSFD for some ϵSFD > 0, and the trial
is terminated if this is satisfied for d11.
Once all patients have been treated, the MTC is selected

as the combination with toxicity probability closest to
ϕ. Note that the SFD design is more computationally
intensive than the other model-free designs as MCMC
methods are required to sample from the posterior
distribution.

The PIPE Design

The PIPE design12 differs from the model-free designs
discussed so far in that it was originally proposed to
find the MTC contour, labelled MTCϕ. This is a line
partitioning the combination space into safe and overly
toxic combinations. Those below the contour are believed
to have toxicity probability less than target toxicity ϕ,
whilst those above are believed to have toxicity probability
greater than ϕ.
Assuming the πij are independent, they are assigned

a Beta prior distribution, πij ∼ Beta(aij, bij) for hyper-
parameters aij and bij, for i = 1, . . . , I and j = 1, . . . , J .
Priors can be pre-specified if knowledge on the toxicity
of combinations is available. Assuming each patient is
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independent such that yij ∼ Binomial(nij, πij) ∀i, j, the
posterior for πij can be written as

πij|nij, yij ∼ Beta(yij + aij, nij − yij + bij). (5)

The posterior distribution is only updated after a cohort of
patients is treated on the corresponding combination, but
the MTCϕ is re-estimated regardless of which combination
was tested. The monotonicity assumption means that the
PIPE design needs only to consider contours satisfying this
property, limiting the number of possible contours to

(
I+J
I

)
.

Each contour can be represented by a binary matrix,
where entries are 0 or 1 depending on whether estimates
of the toxicity probability for a combination are below or
above the contour respectively. Let ϑ be the set of all
monotonic contours for an I × J dose combination space
and define Cs ∈ ϑ as the binary matrix representing the
contour s = 1, . . . ,

(
I+J
I

)
.

To estimate the MTCϕ given the current data, the
design calculates the posterior probability of each toxicity
probability being less than or equal to ϕ, that is

pij(ϕ|nij, yij) = P(πij ≤ ϕ|nij, yij, aij, bij), (6)

where the right-hand side of Equation (6) is equal to the
cumulative distribution function of a Beta distribution.
Equation (8) gives the general formula for calculating the
probability that the MTCϕ is defined by the matrix Cs:

P(MTCϕ = Cs|nij, yij) (7)

=
I∏

i=1

J∏
j=1

{1− pij(ϕ|nij, yij)}Cs[i,j] pij(ϕ|nij, yij)
1−Cs[i,j],

(8)

where [i, j] represents the entry in the ith row and jth
column of the binary matrix Cs. The contour maximising
Equation (8) is the contour most likely to be the MTCϕ

given the current data. This contour then assists the
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escalation process by identifying the combinations closest
to it, before the design selects one of these for the next
cohort based on a weighted randomisation procedure.
This involves weighting each combination by the inverse
of their sample size, with the rationale being varied
experimentation around the MTCϕ. Escalation continues
in this way until all patients are treated, at which
point all combinations closest from below the MTCϕ are
recommended for phase II.

The design uses an overdosing rule which considers the
expected probability of dij being above the most probable
MTCϕ averaged over all monotonic contours. This is
written as

qij =
∑
Cs∈ϑ

Cs[i, j]P(MTCϕ = Cs|Y (m)),

and dij cannot be administered to the next cohort if
qij ≥ ϵPIPE for some ϵPIPE > 0. A trial is terminated if
combination d11 satisfies this condition.

The PIPE design can recommend multiple combinations
for phase II, as it recommends all combinations closest
from below its MTCϕ. For consistency across designs,
in our implementation we ensure only one combination
is recommended as the MTC. Therefore for each
recommended combination, we find the posterior mean
probability of toxicity, which can be calculated using the
posterior distributions in Equation (6). The combination
with posterior mean closest to ϕ is selected as the MTC,
choosing a combination at random in the event of a tie.

The Waterfall Design

The Waterfall design34 also aims at finding the MTC
contour. This design breaks down the two-dimensional
dosing grid into a series of one-dimensional sub-trials. For
the I × J dosing grid, the I sub-trials are as follows:
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SI = {d11, . . . , dI1, dI2, . . . , dIJ},
SI−1 = {dI−1,2, . . . , dI−1,J},
SI−2 = {dI−2,2, . . . , dI−2,J},

. . .

S1 = {d12, . . . , d1J}.

Sub-trials are conducted sequentially using a single-agent
dose-finding method, with the single-agent BOIN design
recommended by the authors.
Firstly, sub-trial SI is conducted, starting at dose d11,

and the first so-called ‘candidate MTD’ for the sub-trial
is found using the single-agent design. The next sub-trial
is chosen based on this candidate MTD. For a candidate
MTD of di∗,j∗, the next sub-trial to be conducted is
Si∗−1. The process of selecting a sub-trial and candidate
MTD is repeated until sub-trial S1 is completed. All
responses are then collated, and matrix isotonic regression
is used to select the dose in each row of the dose grid
with the estimate of toxicity probability closest to the
target, unless all doses in that row are overly toxic. These
dose combinations make up the MTC contour that is
recommended.
Similarly to the PIPE design, since many combinations

are recommended, for consistency we select one MTC based
on the posterior mean probability of each dose combination
that is recommended.

Calibration of Designs

Model-based and model-free designs based on a Bayesian
framework give clinicians more control over their
performance. The PIPE design, the SFD and most model-
based designs allow for knowledge on the toxicity of each
drug from monotherapy trials to be incorporated into the
design through their prior distributions. As the BOIN
and KEY designs assign vague priors to the toxicity
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probabilities, their behaviour is primarily determined by
the pre-defined intervals guiding escalation. Although it is
in theory possible to incorporate historical data through
the prior in the BOIN and KEY designs33, for the purpose
of this comparison, it would defeat the purpose of a design
with all escalation boundaries pre-specified at the design
stage for ease of implementation.

Since for all designs, the hyper-parameter values of the
prior and the values of the intervals have a substantial
effect on the escalation procedure, any attempt to compare
designs objectively must ensure that these values are
specified in a fair way. In this comparison study, the aim of
the novel calibration procedure is to give all designs a set-up
which leads to consistently high proportions of selections
of combinations with toxicity probability close to ϕ in all
scenarios, whilst keeping the number of patients allocated
to unsafe doses low. Therefore, an a priori pre-specified
criterion for selection of the prior parameters is used instead
of the originally subjective proposed parameters for each
model. Please see the Supplementary Materials for the
comparison of calibrated and originally proposed hyper-
parameters.

Each design considered in the comparison is calibrated
using a novel two-stage approach. The first stage of the
calibration is concerned with choosing values for hyper-
parameters that give a good performance in selecting the
MTC without considering safety. The second stage then
focusses on safety, calibrating the overdose rule taking
into account not only good performance in terms of
recommending no combinations when considering an overly
toxic scenario, but also the number of patients who are
treated at unsafe doses. Although using similar principles
to a standard fine-tuning approach, the novelty of this
two-stage calibration is in this lesser subjective but still
intuitive choice of hyper-parameters.

This two-stage calibration procedure based on high
performance and safety is applied for all designs, employing
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a grid search over hyper-parameter or interval values
(depending on the design). At each stage this involves
running simulations over four clinically plausible scenarios
and determining which values lead to superior performance
when averaged across the scenarios. We refer to the priors
resulting in superior performance across the four scenarios
as operational priors. Whilst this procedure gives the
Bayesian designs an opportunity to be compared fairly
against each other through their performance, these priors
can also be applicable in the practical case where no reliable
prior information about the compounds is available.

The first stage of the calibration procedure evaluates
which design inputs lead to superior performance in
recommending the MTC across the four scenarios. The
proportion of correct selections (PCS) is examined in each
scenario. This is the proportion of trials in which a design
selects any combination with a true toxicity probability
of exactly 0.30. To summarise the overall performance
across these four scenarios, the geometric mean PCS is
used. For the remainder of this section, the mean will refer
to the geometric mean. Suppose x1, . . . , xN represent the

PCS in N scenarios. The geometric mean,
(∏N

i=1 xi

)1/N

,

is used instead of the arithmetic mean because it has
the useful property of penalising cases in which PCS are
more dispersed across scenarios. The combination of hyper-
parameter or interval values that result in the highest
geometric mean PCS across the scenarios is chosen. We
note that during the first stage of the calibration procedure,
no overdosing rules are included, meaning no trials are
to be stopped before all patients have been recruited,
because we choose to calibrate the parameter controlling
the overdosing rule in the separate second stage. Once
the first stage of calibration is complete, this will lead
to the selection of intervals for the BOIN, Waterfall and
KEY designs, and operational priors for the PIPE and
SFD designs. The same approach is used to determine the
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operational priors for the BLRM, the POCRM and the
logistic model, which are used as model-based comparators
in the next section.
The second stage of the calibration procedure is for ϵ, the

parameter regulating the overdosing rule in each design.
Calibration of ϵ involves decreasing its value starting from
1, and observing the number of patients treated at overly
toxic doses and the proportion of correct outcomes in the
chosen scenarios. As selecting overly toxic combinations
is more of an ethical concern, as a general rule we take
as a starting point the highest value of ϵ resulting in
at least 85% of trials recommending no combinations
when considering an overly toxic scenario. We acknowledge
this proportion may differ in practice depending on the
clinicians’ judgement. It is important to note that the
interpretation of ϵ differs between designs because of
the construction of each overdosing rule, and should be
accounted for when communicating with clinicians. This
is reflected by subscripts for the individual designs in the
following specifications. The second stage of the calibration
procedure for each design is illustrated in Figure 2. Note
that the proportion of correct selections for all four
scenarios is shown for completeness, although the second
stage of the procedure itself uses this metric only for
scenario 14, where the correct selection is the selection of
no dose combination since all are overly toxic.

Setting

Each design is calibrated in the same setting that is then
explored in the simulation study, representative of a phase
I trial in oncology. There are two drugs with three dose
levels each, which results in nine combinations, and the first
cohort is treated at the lowest combination. The objective
is to select a single combination as the MTC with true
toxicity probability ϕ = 0.30. The sample size is 36 patients
for which are recruited in cohorts of three patients. All
combination-toxicity scenarios are presented in Table 1.
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However, four scenarios are chosen to explore noticeably
different clinical cases, in which the number and location of
the MTCs vary, whilst restricting the number of scenarios
makes the procedure computationally feasible.

[Table 1 about here.]

In stage 1 of the calibration procedure, Scenarios 1, 8,
10 and 13 are chosen to give a diverse range of plausible
scenarios. We have found the procedure to be robust to
changes in these scenarios provided the qualitative features
(e.g. if there is at least one scenario where the optimal
combination is off diagonal) are maintained. The number of
scenarios is chosen to balance computational feasibility and
breadth of differing scenarios. Scenarios 1 and 13 are chosen
to represent the extremes: when the highest combination is
the only true MTC and all others are safe, and when the
lowest combination is the only true MTC and all others
are overly toxic, respectively. Scenario 8 covers situations
in which most combinations are safe but true MTCs do
not lie on the same diagonal. Scenario 10 captures the case
where most combinations are overly toxic and true MTCs
lie on the same diagonal. Note that we often refer to the
set of combinations in a scenario as the combination grid.

In stage 2, simulations are run for each design over
Scenarios 8, 10, 13 and 14 for different values of ϵ. In
Scenarios 8, 10 and 13, the PCS is as previously defined,
whilst in the unsafe Scenario 14 we consider the PCS as the
proportion of trials in which no combinations are selected.
We refer to selecting no combinations in Scenario 14 as the
‘correct outcome’.

We summarize the optimal choice of hyper-parameters
alongside the recommendations from the original proposal
of each design in the online supplementary materials.

[Figure 2 about here.]
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Calibrating the BOIN Design

To guide dose escalation, the BOIN design relies on
the interval (λe, λd) around the target toxicity. Interval
boundaries λe and λd are a function of ϕ, ϕ1 and ϕ2,
where ϕ1 = a1ϕ and ϕ2 = a2ϕ for constants a1 < 1, a2 >
1. To calibrate the design, we run 4000 simulations
for each scenario for pairs (a1, a2) from the sets
a1 = {0.85, 0.80, . . . , 0.40} and a2 = {1.15, 1.20, . . . , 1.60},
resulting in a total of 100 pairs. As constants a1 and a2
deviate further from 1, the interval becomes wider, thus
the design will choose to escalate and de-escalate on fewer
occasions.
The optimal values are found to be a1 = 0.65 and a2 =

1.4, which substituting into Equation (1), we generate the
interval boundaries λe and λd to give the interval (0.245,
0.359) to guide dose escalation. This interval implies that
escalation occurs if πij is below 0.245, de-escalation occurs
if πij is above 0.359, else the combination remains the same.
In the second stage of calibration, we find that as ϵBOIN

decreases, the design benefits more in Scenario 14, where
the proportion of trials in which no combinations are
recommended increases (see Figure 2). For ϵBOIN ≤ 0.84,
over 85% of trials recommend no combinations in Scenario
14. The trade-off in the other scenarios with this ϵBOIN value
is that PCS increases steeply when ϵBOIN increases, as well
as the number of patients treated on overly toxic doses
increasing. Therefore ϵBOIN = 0.84 is chosen.

Calibrating the Keyboard Design

Using a similar method to BOIN, we first calibrate
the parameters which define the interval for KEY.
The interval Itarget = (b1, b2) guides escalation entirely
so is an important component of the design. We
run 4000 simulations across each scenario for pairs
(b1, b2) from the sets b1 = {0.27, 0.25, . . . , 0.19} and b2 =
{0.33, 0.35, . . . , 0.41}, resulting in a total of 25 pairs. Mean
PCS are displayed Figure 2 in the online supplementary
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materials, indicating that interval (0.21, 0.39) yields the
highest mean PCS, which differs from the recommendation
of (0.25, 0.35) in the original paper32. As explained in the
Methodological Review, this means escalation occurs only
if the posterior probability P(πij ∈ (0.03, 0.21)|nij, yij) is
higher than P(πij ∈ (0.21, 0.39)|nij, yij).

In the second stage of calibration, we find that as
ϵKEY decreases, the design benefits more in Scenario 14,
where the proportion of trials in which no combinations
are recommended increases. Choosing ϵKEY = 0.84 leads
to approximately 85% of trials correctly selecting no
combinations in Scenario 14, as shown in Figure 2, in line
with the value obtained for the BOIN design.

Calibrating the Surface-Free Design

The SFD assigns Beta priors to each of its parameters;
the ratios between toxicity probabilities. In this setting,
there are five ratios (θ, θ2, θ3, τ2 & τ3 defined in the
Methodological Review) to parametrise, meaning a total of
10 hyper-parameters for the beta priors must be defined
for the operational priors. Instead of specifying these
directly, we specify a prior mean and prior effective sample
size for each ratio, which can be used to calculate the
corresponding hyper-parameters. To make the calibration
task computationally feasible, we assume that all prior
mean ratios, m, are equal (meaning the increase in dose
corresponds to the same proportion increase in toxicity)
and all effective sample sizes for each ratio, sSFD, are
equal. This drastically reduces the dimensionality of the
grid search. We note, however, that if one has reliable
prior information about the ratio not being equal, one
can calibrate over various ratios being mindful of the
computational complexity of such a calibration. Thus
we only need to calibrate pairs of m and s, which we
choose from sets m = {0.95, 0.925, . . . , 0.85} and sSFD =
{1, 2, . . . , 5}.
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For each pair, we run 1000 simulations (which is lower
than other model-free designs due to the computational
demands of the design) and examine the mean PCS
across the four scenarios. Our results in Figure 4 in the
online supplementary materials show that the mean PCS
is highest for m = 0.875 and sSFD = 4. This is equivalent
to every ratio being assigned the prior distribution
Beta(3.5, 0.5), and corresponds to mean prior toxicity
probabilities on d11 and d33 of 0.125 and 0.487 respectively.
We also note that the SFD has been found to be robust to
small to moderate deviations in these parameters.

For the calibration of ϵSFD, in Figure 2, we found that
ϵSFD = 0.65 resulted in at least 85% of trials selecting no
combinations in Scenario 14. There is evidence to suggest
that increasing or decreasing ϵSFD not only has a sizeable
effect on the PCS in Scenario 13, but also the number of
patients treated at unsafe doses, demonstrating the design
is highly sensitive to changes in its overdosing rule.

Calibrating the PIPE Design

Similar to the SFD, the PIPE designs assigns beta priors to
each πij. A prior mean and prior sample size for each πij are
specified, giving a total of 18 values to specify from which
the hyper-parameters for the beta priors can be calculated.
To make calibration feasible, we assume that prior sample
size sPIPE is equal for each combination and to set the prior
means, we divide the grid of combinations into five diagonal
segments, with toxicity increasing as we move through each
segment. In this way, the design follows the monotonicity
assumption. Like for the SFD, this drastically reduces the
dimensionality of the grid search. To assign a toxicity to
each combination, we specify the toxicity of the lowest
combination, ρ, and the size of the increments in toxicity
between each segment, δ. In the illustration in Figure 3, we
have chosen ρ = 0.05 and δ = 0.025 to construct the grid.

[Figure 3 about here.]
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Our approach involves calibrating three
parameters simultaneously to create operational
priors, and are chosen from the sets ρ =
{0.025, 0.05, 0.075, 0.10}, δ = {0.025, 0.05, 0.075, 0.10}
and sPIPE = {1/72, 1/36, 1/18, 1/9}. For each triple, we run
2000 simulations in each of the four scenarios, which is
fewer than for the BOIN and KEY designs due to the
minor increase in computational expense. We provide one
grid in Figure 5 in the online supplementary materials
to account for mean PCS on each sPIPE value. The triple
sPIPE = 1/18, ρ = 0.05 and δ = 0.025 leads to the highest
mean PCS, although we observe that there were many
triples that resulted in similar values. We note our
choice of prior sample size, sPIPE = 1/18, only differs to
the recommendation of 1/9 in the original paper12. For
prior sample sizes sPIPE ≤ 1/18, the design is found to be
robust. Mean PCS only varies between 37% and 40%,
suggesting that a number of operational priors could lead
to consistently high PCS.

For the second stage of the calibration, the value of ϵPIPE is
varied as shown in Figure 2, and ϵPIPE = 0.50 is chosen as it
provides at least an 85% chance of correctly recommending
no combinations in Scenario 14, as well as balancing the
number of patients treated at unsafe doses in the four
considered scenarios.

Calibrating the Waterfall Design

The calibration of the Waterfall Design is in line with the
calibration of the BOIN design, since the parameters of
escalation are the same. Therefore the values of the hyper-
parameters used for the interval (λe, λd) are the same:
(0.245, 0.359) and the parameter for the safety constraint
is also the same, ϵW = 0.84. For the 3× 3 dosing grid, there
are three sub-trials, the first has 5 dose combinations and
the following two have 2 dose combinations. Therefore to
split the 12 cohorts between the sub-trials, six are allocated
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to the first sub-trial and three to each of the other sub-
trials.

Simulation Study: 3× 3 Dosing Grid

In this section we describe the setting for the simulation
study of 3× 3 dosing grids before presenting the results,
including a comparison to a model-based approach and a
non-parametric optimal benchmark.

Setting

In order to compare the discussed designs, we conduct a
simulation study, performing 2000 simulations of each of
the 15 scenarios depicted in Table 1 for all five designs.
As before, the objective is to select a single combination
as the MTC with true toxicity probability ϕ = 0.30. Any
combination with probability of toxicity greater than 0.33
is labelled as overly toxic, and any combination with
probability of toxicity in the interval [0.16,0.33] is labelled
as acceptable. In this section, the mean refers to the
arithmetic mean unless specified otherwise. All simulations
are performed in R21, with code provided in the online
supplementary materials.
In general, the number of overly toxic combinations

available for selection increases as we move through
Scenarios 1 to 14. Scenario 1 has a single MTC which
is the highest combination available. Scenarios 3 and 4
contain very few overly toxic combinations and have MTCs
on the edge of the grid. Scenario 5 is similar to these,
except its only MTC is located in the centre of the grid.
In Scenarios 2, 6, 7, 8, 9 and 10, there are multiple
combinations to explore which have toxicity probability
ϕ. In particular, Scenarios 8 and 9 aim to investigate
design behaviour when underlying MTCs are not on the
same diagonal. Scenarios 11, 12 and 13 represent settings
in which most combinations are overly toxic, meaning
designs should avoid combinations away from d11. Scenario
14 is of importance because all of its combinations are
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overly toxic, making the trial very unethical. In this
instance, the only correct outcome is to recommend no
combination for phase II. Scenario 15 represents a situation
where all combinations are true MTCs, and is used to
monitor escalation behaviour when combinations are safe
and increasing the dose of either drug does not affect
toxicity.
In order to accentuate the differences in the designs, we

do not implement any accuracy or sufficient information
rules, as these may mask some key elements of the designs.
We focus on the operating characteristics of proportion
of correct selections (PCS) and proportion of acceptable
selections (PAS) as measures of accuracy, and proportion
of overly toxic selections and the number of patients treated
on unsafe dose combinations as measures of safety.

Model-Based Comparators

To provide a comparison between model-free and model-
based designs, we also consider conventional model-based
approaches in our simulation study, the two-dimensional
Bayesian Logistic Regression Model (BLRM)18, the Partial
Ordering Continual Reassessment Method (POCRM)28,
and a modified design based on the logistic model (referred
to here as the Riviere design)24.
The same proposed calibration procedure as is applied to

the model-free designs is applied to the model-based, with
details provided in the online supplementary materials.
Note that the form of the overdosing rule may be different
for the model-based designs, compared the model-free
designs, as described in their respective original proposals.

Bayesian Logistic Regression Model In this approach, the
toxicity probability for each combination, πij, are modelled
as in Equation 10 for i = 1, . . . , I and j = 1, . . . , J , where
doses dAi and dBj are scaled by reference doses. Let dij
be combination of dAi and dBj , while nij and yij are
the number of patients and toxic responses on each
combination respectively. Parameters α1 and β1 describe
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the toxicity of drug A, α2 and β2 describe the toxicity of
drug B, and η models the interaction between drugs. The
five parameters are assigned normal prior distributions,
and the likelihood is a product of Bernoulli densities,
proportional to

∏I
i=1

∏J
j=1 π

yij
ij (1− πij)

nij−yij . After each
cohort is observed, the joint posterior distribution is
approximated using MCMC methods, and samples of
each parameter are drawn from their full conditional
distributions. Estimates of πij are made by sampling
parameters from their posteriors and substituting these
along with the corresponding doses into Equation 10. Note
that all parameters except η are sampled on the log scale
and then exponentiated since they must be positive.

πij(α1, α2, β1, β2, η|dAi , dBj ) = (9)[
α1(d

A
i )

β1 + α2(d
B
j )

β2 + α1α2(d
A
i )

β1(dBj )
β2
]
exp(ηdAi d

B
j )

1 +
[
α1(dAi )

β1 + α2(dBj )
β2 + α1α2(dAi )

β1(dBj )
β2
]
exp(ηdAi d

B
j )

.

(10)

The BLRM can only escalate to combinations satisfying the
neighbourhood constraint and Escalation With Overdose
Control (EWOC) principle. The neighbourhood constraint
prevents escalation or de-escalation to any combination
that is more than one dose level of either drug away, and
also prevents escalation to a combination in which both
dose levels are higher. For a trial with target toxicity
ϕ = 0.30, the EWOC principle states that dij can only
be administered if P(πij > 0.33) < ϵBLRM. The combination
maximising the probabilistic statement P(0.16 < πij <
0.33) is administered to the next cohort. If no combinations
satisfy the two constraints, the trial is terminated. Once
the sample size has been exhausted, the MTC is selected
from combinations which have been experimented on with
at least six patients, and is the one maximising P(0.16 <
πij < 0.33). The BLRM requires dosing quantities for each
drug to be specified, in all of the implementations of the
BLRM, these doses are 100, 200 and 300mg for each drug.
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Partial Ordering Continual Reassessment Method The
Bayesian Partial Ordering Continual Reassessment Method
(POCRM) 28 generalises the original CRM design to the
setting of combination trials. The POCRM design assumes
that there are R feasible orderings of the combinations
satisfying the monotonicity assumption within each agent.
Let k be the index of the combination, k = 1, . . . , K, r be
the index of ordering, r = 1, . . . , R, qkr be the standardised
regimen level at combination k under the ordering r, and
let πkr be the corresponding probability of a DLT. Then,
the combination-toxicity model takes the form

πkr = q
exp(αr)
kr . (11)

where αr is the (scalar) model parameter under the
ordering r that has a normal prior distribution, N (µ, σ2).
The working models qkr are constructed from standardised
values, q̃k (also known as skeleton) by re-ordering them
according to the order r. The original design proposal
included the possibility of the early stopping if the lower
bound of the η-% approximated confidence interval19 is
above the target toxicity level, ϕ. We refer the reader to
the original publication for further technical details.

Logistic Model by Riviere et.al (2014) Another model-
based approach considered is the modified logistic
model24. Following the recommendation on reducing the
dimensionally of the parametric models in Phase I trials7,
we consider the 3-parameter logistic model (rather than the
original 4-parameter one16) and was found to result in the
same or better, on average, operating characteristics of the
design for small to moderate sample sizes.
Specifically, the combination-toxicity is modelled using

the 3-parameter logistic model

logit (πj,k) = β0 + β1uj + β2vk (12)

where β0 ∈ R, β1 > 0, β2 > 0 are unknown parameters
that denote the intercept (β0) the toxicity effect of agent

Prepared using sagej.cls



Barnett et al 27

1 (β1) and agent 2 (β2), and uj = log
(

pj
1−pj

)
and vk =

log
(

qk
1−qk

)
are the standardised doses of the two agents.

The parameters p1, . . . , pj, and q1, . . . , qk, being the prior
estimates of the toxicity probabilities for the dose levels
of agent 1 and 2, respectively, when administered as
monotherapies. The terms uj and vk are also known as
the skeleton and are unchanged throughout the trial. The
escalation rules follow the ones originally used24. The safety
constraint for the early stopping is taking the form of if
P(π1,1 > ϕ) > ϵlogistic is satisfied then the trial is stopped
earlier.

A Non-Parametric Optimal Benchmark Comparator

While the primary goal of this work is to compare the
performance of different model-free designs to each other,
there is a risk that all methods might perform equally
poorly on some scenarios. In this case, the comparison
of the designs to each other would not identify why the
poor performance is observed – due to the challenging
scenario or due to all designs having difficulties identifying
a particular MTC. To provide context for the comparison
of operating characteristics, we include the performance of
the non-parametric benchmark for combination studies, a
tool that provides an estimate for the upper bound on
the PCS under the given combination-toxicity scenario15,17.
The benchmark takes into account the “difficulty” of a
scenario in terms of how close the toxicity risks for the
combinations (under this scenario) are to the target level
of 30%, and also accounts for the unknown monotonic
ordering in the combination setting. We refer the reader to
the recent work by Mozgunov et al.17 for further technical
details on the benchmark for combinations implementation.

Results

Accuracy Index and Proportions of Correct and Acceptable
Selections The results are presented here in terms of
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proportions of correct and acceptable selections (PCS and
PAS) as defined in the ‘Calibration of Designs’ section. We
also calculate an Accuracy Index, defined in equation (13),
where ρij is the proportion of simulations that select dose
dij as the MTD (see Hirakawa et al.9 for further details).
Table 2 presents these results.

An = 1− I × J ×
∑I

i=1

∑J
j=1 |πij − ϕ| × ρij∑I

i=1

∑J
j=1 |πij − ϕ|

(13)

Figure 4 presents the summary of the operating
characteristics of the considered designs in terms of the
PCS and PAS (with the full set of results given in the
online supplementary materials). Model free designs are
shown in blue, model-based designs in purple, and the non-
parametric benchmark is in black. Scenarios 14 and 15
have been excluded as these have no true MTCs for the
design to select. For scenarios in which the only acceptable
combinations are also correct combinations (Scenarios 6,
9, 10, 11 and 13), the PCS and PAS are equal. The mean
PCS across Scenarios 1-13 for the BOIN, KEY, SFD, PIPE,
Waterfall, BLRM, POCRM and Riviere designs is 39.8%,
42.4%, 41.6%, 31.2%, 32.3%, 40.0%, 32.2% and 48.3%
respectively, whilst the mean PAS are 58.7%, 62.1%, 59.0%,
56.0%, 53.4%, 58.4%, 44.4% and 64.6% respectively.

[Figure 4 about here.]

[Table 2 about here.]

First of all, the benchmark reveals the differences
in how challenging it is to identify the MTC in the
considered scenarios: the PCS for the benchmark varies
between approximately 35% under Scenario 7 to more
than 80% under Scenario 13. As expected, the benchmark
corresponds to the highest average PCS and PAS - 55%
and nearly 70%, respectively. Similarly, under the majority
of scenarios the benchmark corresponds to the highest
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PCS and PAS as it employs the concept of the complete
information. The largest difference between the benchmark
and other designs can be seen under Scenario 13. At the
same time, there are scenarios under which the benchmark
is outperformed by a competing design - this can be a
sign of the design favouring particular combinations under
the calibrated priors - for example under Scenario 7. Since
the aim of the calibration procedure was to obtain a prior
with good operating characteristics across many plausible
scenarios, in the simulation study some scenarios will have
better or worse performance than the benchmark.

The variety of performances across the scenarios
demonstrates the variability between the different designs
in different settings. Considering the model-free designs,
on average the KEY design has the highest proportion
of both correct and acceptable selections, but is vastly
outperformed in some scenarios by the SFD design. In
five of the scenarios, the KEY has the highest PCS out
of all the model-free designs, being superior in scenarios
with few overly toxic combinations. However, for example
in Scenario 11, where the MTC is the middle dose of drug
A and lowest dose of drug B, the SFD outperforms the
next best performing design by 19.2%. The PIPE design
shows poor performance in many scenarios, most notably
in Scenario 1 where the PCS is 5.5% and PAS is 54.0%. A
likely reason is that for the PIPE design, the choice of MTC
must be below the MTC contour, and a scenario where the
true MTC is the highest dose combination gives rise to
underestimation since we cannot explore above the true
MTC contour. In addition, the procedure discussed in the
Methodological Review of the PIPE design to choose one
MTC from the recommended set will make our results differ
from those originally reported by Mander and Sweeting12,
where a ‘correct selection’ was defined as the MTC being
in the set of recommended doses. Although the Waterfall
design also recommends a set of doses, the performance in
the simulations is better than that of the PIPE design.
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Although it has poor performance in Scenario 1, where
the MTC is the highest dose combination, it is the best
performing design in Scenarios 9 and 13.
When considering the model-based designs as a

comparator, we see that in many scenarios these
outperform the KEY. For example, in Scenario 1 where
the MTC is the highest combination, all of the model based
designs achieve a PCS at least 20% higher than the next
best performing design, the KEY. In fact, when including
these designs in the comparison, the KEY is only the best
performing design in one scenario, Scenario 8. The SFD
does however outperform the model-based designs in some
cases, with the model-based designs having the highest PCS
in Scenarios 1, 2, 3, 5, 7 and 11 and the SFD is the best
performing in Scenarios 6, 10 and 12.
In terms of the Accuracy Index, the SFD, BLRM and

Riviere designs show the highest mean value, supporting
the collective evidence that these are the most accurate
designs in selecting the MTC.

Proportions of Overly Toxic Selections Figure 5 illustrates
the proportion of overly toxic selections for each design.
Scenarios 1 and 15 have no overly toxic combinations,
so the proportion is zero for these cases. Model-free
designs showed lower proportions of overly toxic selection
than model-based designs in many scenarios. We observe
that the POCRM recommends the most overly toxic
combinations on average by far, in 36.8% of trials. It stands
out in multiple scenarios with a very high percentage of
simulated trials recommending overly toxic doses. In 10
scenarios this is over 30%, highlighting how aggressive this
approach is.

[Figure 5 about here.]

Of the model-free designs, the SFD has the highest
percentage, in 20.4% of trials. In scenarios 5, 9 and 12, it
recommends overly toxic combinations in over 25% of the
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simulated trials and in 9 of the scenarios, it is the model-
free design with the highest proportion of overly toxic
recommendations. This is evidence of the trade-off between
selecting combinations close to ϕ and the willingness to
recommend more overly toxic combinations.
The PIPE design demonstrates a very low proportion of

overly toxic selections with a mean of 9.2% across the 13
scenarios, 6.2% below any of the other designs. It has the
lowest in all but four scenarios. This is a further illustration
of the feature of the design to recommend combinations
near but lower than the estimated MTC contour.
A focus on Scenario 14, where all dose combinations

are overly toxic, shows the BLRM is the most efficient
at stopping for safety, with 93.7% of simulations not
recommending any dose combination. Noticeably, the
Waterfall design is the least efficient at stopping for safety
in this scenario.

Number of Patients Treated at Overly Toxic Combinations
Figure 6 outlines the mean number of patients treated at
overly toxic combinations in Scenarios 1-15 for each design.
Note that we report the number rather than proportion of
patients, as this will also give insight into how effectively
each design stops for safety.

[Figure 6 about here.]

The most notable feature of these results are the large
number of patients treated at overly toxic combinations
by the model-based designs. This aggressive escalation
is driven by the informative prior, calibrated to give
high values of PCS. We refer the reader to the online
supplementary materials where an alternative BLRM prior
leading to more conservative escalation (but considerably
lower PCS and PAS) is explored.
The SFD, KEY and BOIN have reasonable performance,

with the Waterfall design showing a strong performance
with the lowest overall mean number of patients treated on
overly toxic doses of five patients.

Prepared using sagej.cls



32 Journal Title XX(X)

Careful attention must again be paid to Scenario 14,
where all dose combinations are overly toxic. The PIPE
design treats an average of 20 patients per trial, over six
cohorts, which is an unacceptable level of exploration in
such a scenario. In this scenario, we also consider that
although the BLRM showed good performance in stopping
early for safety in the highest number of simulated trials, it
also has a high number of patients treated on average before
stopping. The Waterfall design has the fewest patients
treated by far, with an average of five patients, but this
leads to the erroneous recommendation of a dose in a large
proportion of simulated trials.
We see that overall the model-free approaches are more

conservative in their escalation than the model-based
designs, with fewer patients treated on unsafe doses,
with no noticeable increase in PCS. Of the model-free
approaches, the SFD shows the most promising PCS over
the different scenarios, at the cost of somewhat higher
overly toxic selections. It is also worth noting that the
SFD has a substantially higher computational cost than
the other model-free designs.

Simulation Study: Alternative Dosing Grids

All of the simulations so far have concerned a dosing grid
whereby there are three levels of each drug. However, it
may alternatively be the case where there are differing
numbers of dose levels for the two drugs. The most common
being two levels of one drug and three or four of the other.
Therefore in this section, we consider two alternative dosing
grid sizes: 2× 3 and 2× 4.

Setting

Six additional scenarios are considered for the alternative
dosing grids, outlined in Table 3. Scenarios 16-18 have a
2× 3 dosing grid and are chosen to be similar to scenarios
10, 9 and 6, but without the highest dose of drug A in order
to explore the behaviour of the smaller grid. Scenarios 19-21
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have a 2× 4 dosing grid, with Scenarios 19 and 21 having
an MTD at the fourth dose level of drug B and Scenario
20 similar to Scenario 18, but with the fourth dose level of
drug B unsafe.
The priors and intervals used in each design are

equivalent to those used for the 3× 3 dosing grid, meaning
that hyper-parameter values are the same. The cohort size
remains three patients, with a maximum of 12 cohorts. For
the Waterfall design, 8 cohorts are allocated to the first
sub-trial and 4 cohorts to the second sub-trial.

[Table 3 about here.]

Results

We again compare the designs’ operating characteristics
in terms of performance of selecting correct and acceptable
dose combinations, and safety in terms of patients allocated
to overly toxic doses and selection of overly toxic doses.
Table 4 gives the accuracy index for the designs across

the six scenarios, calculated using Equation 13. It shows a
similar trend to the 3× 3 dosing grid, with the SFD giving
the best overall performance of the model-assisted designs,
and PIPE giving the poorest performance, let down by
scenarios where the MTC is high in the dosing grid.

[Table 4 about here.]

Figure 7 shows the percentage of correct and acceptable
selections for the alternative dosing grid scenarios. In
scenarios 16 and 17, the benchmark illustrates that these
2× 3 dosing grid scenarios are less difficult than their 3× 3
comparators. In Scenario 16, all designs perform at least as
well as in the 3× 3 case with the SFD performing the best
in Scenario 16 and the Keyboard and Waterfall performing
the best in Scenario 17, however in Scenario 17, the PIPE
design performs slightly worse. PIPE performs considerably
worse in Scenario 18, where it is evident that in the 3× 3
grid, dose d31 was frequently chosen, and when the third
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dose level of drug A is removed, the other MTCs are not
chosen as frequently. The benchmark shows that the 2× 4
dosing grid scenarios are more challenging than the other
sizes of grid, however most designs give a high level of PCS,
apart from the PIPE design. However, the PIPE design
does give the highest levels of PAS in the 2× 4 dosing grid
scenarios.
Figures 8 and 9 show the percentage of overly toxic

selections and the number of patients treated at overly
toxic combinations for scenarios 16-21 respectively. There
is a clear trend that the model-based designs have a higher
percentage of overly toxic selections, with the PIPE design
showing a very low percentage, substantially lower than all
designs apart from in Scenario 21, where it has the same
level as the Waterfall design. There is a similar trend in
the mean number of patients treated on overly toxic doses,
with the PIPE design showing the smallest average overall,
and POCRM and Riviere showing the highest. Scenario
20 has many more patients treated on unsafe doses than
Scenario 18 in all but the SFD, PIPE and BLRM designs.
This indicates that for the other five designs, escalation to
the fourth dose level of drug B was restricted by the grid
rather than the design itself.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

Case Study

The simulation studies gave insight into the operating
characteristics of each design, however for further insight
into the escalation behaviour, we apply each method to
an example case study. We consider a phase I oncology
(breast and lung cancer) study enrolling patients to
dosing combinations of four dose levels of neratinib and
temsirolimus6. A total sample size of 60 patients (cohorts
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of size 2 or 3) were treated on 12 of 16 possible dosing
combinations. Results from 52 patients were included and
10 DLTs were observed, with full results of the trial
displayed in Table 5.
In order to strengthen the case that our conclusions

are generalizable with less risk of selective reporting, the
purpose of this case study is not to investigate whether
each design chooses the same MTC as the real study did.
The purpose is to give an illustration of how each design
explores the dosing grid, given identical patient responses.
In order to use the calibrated prior specifications, and in

line with the simulation study, we restrict the dosing grid
to three doses of each drug, removing the lowest dose of
temsirolimus and the highest dose of neratinib. We also fix
the cohort size to three patients and maximum total sample
size to 36.
To ensure a fair comparison between designs, we define

a fixed set of 36 ordered patient responses for each dose
combination. The first patient responses in this set are the
true yij DLT responses and nij − yij non-DLT responses, in
a random permutation (note that this is the same random
permutation for each of the methods). The remaining
36− nij responses are generated in the following way. Each
patient has an individual probability of DLT, generated
from Beta(1 + yij, 1 + nij − yij). Then a binary response
is generated with this probability. Where there were no
patients assigned to the dose combination in the real
study, the individual P(DLT) is generated from a Beta(3,3)
distribution, to indicate the dose combination is unsafe,
since this is the reason the combination was not escalated
to. This process uses the information from the real study,
but also introduces enough variability in the subsequent
responses to account for the small sample size.

[Table 5 about here.]

Table 5 displays the results of each of the methods,
with the number of patients treated at each combination,
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the number of DLTs observed, and the concluded MTC
highlighted in bold.

The BOIN and KEY designs show very similar
exploration, first escalating in neratinib, then temsirolimus.
The highest combination is not explored, as the
combinations with the next lowest dose of each drug were
considered unsafe. The only difference is that the KEY
assigns one more cohort to the 200mg/50mg combination,
even when the previous cohort had 2/3 observed DLT
responses.

The PIPE design explores differently, not escalating to
the highest dose of temsirolimus at all, even though only
1/12 DLT responses were observed on the 160mg/50mg
combination. The SFD explores more of the highest
dose of temsirolimus, although still not the highest
combination. An interesting observation here is that the
final recommended dose has observed 4/9 DLT responses,
a level that would generally be an unsafe standard. This is
in line with the simulation results that showed this design
to have the highest level of overly toxic selections. The
Waterfall design explores the entire dosing grid apart from
the highest dose combination 200mg/75mg, a more even
spread of patients across the grid than the other model-
free designs.

The BLRM is executed with two prior distributions,
the calibrated prior and the alternative, more realistic
based on safety concerns, prior. Surprisingly, both show
a more aggressive escalation than the model free designs,
with patients allocated to the highest combination. The
calibrated prior gives the most aggressive approach with
a second cohort assigned to a dose, even when the first
observed 2/3 DLT responses. This also means that for this
prior, the dosing grid is not as well explored as some of
the model-free designs, as the lowest dose of temsirolimus
is only explored in combination with the lowest dose of
neratinib. For the calibrated prior, these results are in line
with the simulation study, where the BLRM had on average
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the most patients treated on overly toxic doses and also a
high proportion of overly toxic recommendations. However,
even the alternative prior shows more aggressive escalation
than the model-free designs in this case study. Both the
POCRM and the Riviere design had a balanced exploration
of the dose grid.
The case study highlights some key differences in the

approaches, illustrating how both the escalation schemes
and final recommendation differ. Particularly of note is the
somewhat aggressive behaviour of not de-escalating when
observing 2/3 observed DLT responses, and recommending
a final dose combination with 4/9 observed DLT responses
from both the SFD and calibrated prior BLRM. This
behaviour, that could be considered unsafe, is not
necessarily obvious from simulation results and underlines
the importance of studying the individual escalations in
an example case study. It is also important to consider
that in practice, such a statistical approach is a guidance
for dose recommendation that should be supported by
an overall evaluation of the safety, pharmacokinetics and
clinical rationale.

Discussion

This paper provides a review of a wide range of combination
designs in phase I oncology, exploring the more recently
proposed model-free designs in detail, as well as providing
a novel approach for the calibration of such designs.
The comprehensive simulation study we conduct suggests
that model-free designs are competitive with the model-
based designs in terms of the proportion of correct
combinations selected. The operating characteristics of
model-free designs in a number of scenarios suggest
they offer a safer alternative. The case study example
highlighted the key differences in how the methods explore
the dosing grid given the same patient responses, with
more aggressive approaches missing the lower doses, and
conservative approaches missing the higher ones.
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The discussed results depend upon the specification of
the intervals for the BOIN, KEY andWaterfall designs, and
the operational priors for the PIPE, SFD, POCRM, Riviere
and BLRM designs, which were calibrated using a novel
approach. This included calibrating the overdosing rules
in each design to reduce the risk of recommending overly
toxic combinations for phase II. Naturally, our work does
not allow for comparison between designs when complete
and reliable prior information on the toxicity of each drug
is available. In practice, the PIPE, SFD, POCRM, Riviere
and BLRM designs can exploit this prior knowledge to help
the escalation process.

The calibration procedure, although novel in approach,
is relatively straightforward to implement. It does
however highlight the computational intensity of the
different methods. Both the BLRM and SFD are very
computationally intensive, with the calibration procedure
taking substantially longer than for any of the other
designs. It has shown great promise in specifying prior
distributions that yield high PCS values, removing the
subjectivity from the specification.

Moreover, our simulations do not allow for the early
selection of an MTC. For example, if at least 9 patients
are treated at a combination and the next cohort is
recommended to be treated at this combination, then a
trial could be stopped and this combination selected as the
MTC. We acknowledge this rule is useful to reduce sample
sizes, especially in scenarios where the true MTC is a low
dose combination. One of the advantages of model-based
approaches is that they allow for selection of unplanned
intermediate doses. This is an advantage that was not used
in the simulation study, but must be considered in practice.

An additional area of interest for such dose-finding
studies is the sample size and cohort size. Conducting
a sensitivity analysis on both of these for each design
would be an excellent opportunity to investigate whether
designs can still achieve high PCS with fewer patients, or
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significantly higher PCS with extra patients, and whether
a larger or smaller cohort size would lead to better
exploration of the dosing grid.

Finally, we conclude this comparison with an overview
of recommendations for the use of each design in the
context of this work. The BOIN and KEY designs give
a balanced approach, with a good level of PCS and PAS
across a range of scenarios. Overly toxic explorations and
selections are also well balanced across scenarios. The PIPE
design is more cautious in its selection, with a consistently
low proportion of overly toxic selections, although at the
cost of also recommending correct combinations a lower
proportion of the time. The Surface Free design offers
a high PCS and PAS and a generally low number of
patients treated at overly toxic selections, but this must
be balanced with the high proportion of overly toxic
selections. The Waterfall design is most cautious in its
allocation of patients, with a similar level of overly toxic
recommendations as KEY and BOIN. However, the overall
PCS and PAS are somewhat lower than the other designs.
The model-based designs provide the most aggressive
approach with a calibrated prior, with a large number of
patients treated on overly toxic doses, however a good level
of PCS and PAS. For the BLRM, with an alternative,
intuitive prior, the number of overly toxic explorations is
reduced, but at the cost of the high PCS values.

Data Availability Statement

The data that supports the findings of this research are
available in Table 5 of this article, originally from Gandhi
et al.6, with all other data simulated according to the
specifications described.
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dA4 × × × ×
dA3 ∗ # × ×
dA2 #  # ×
dA1 ∗ # ∗ ×

dB1 dB2 dB3 dB4

Figure 1. Illustration for I = J = 4 of the admissible combinations for each
design. The ‘ ’ symbol illustrates the current dose combination at d22, the
symbol ‘#’ represents dose combinations achieved through
escalation/de-escalation in one drug only and the symbol ‘∗’ represents dose
combinations achieved through diagonal de-escalation or anti-diagonal
escalation.
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(e) Surface-Free: Patients treated
at overly toxic doses
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(g) PIPE: Patients treated at
overly toxic doses
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Figure 2. Calibration of ϵ for the five designs
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Figure 3. Constructing prior mean toxicity probabilities when calibrating the
PIPE design.

Prepared using sagej.cls



46 Journal Title XX(X)

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean
Scenario

%
 R

ec
om

m
en

da
tio

n

Selection

Acceptable

Correct

Design

BOIN

KEYBOARD

S−F

PIPE

WATERFALL

BLRM

POCRM

RIVIERE

Benchmark

Percentage of Correct & Acceptable Selections

Figure 4. An illustration of the PCS and PAS for Scenarios 1-13 for each
design. The solid bars measure the PCS and the more transparent bars
measure the PAS. The rightmost group of bars show the means.
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Figure 5. An illustration of the proportion of overly toxic selections across
Scenarios 1-15 for each design. The rightmost group of bars show the means.
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Figure 6. An illustration of the number of patients treated at overly toxic
combinations during trials in Scenarios 1-15 for each design. The rightmost
group of bars show the means.

Prepared using sagej.cls



FIGURES 49

0

25

50

75

16 17 18 19 20 21 Mean
Scenario

%
 R

ec
om

m
en

da
tio

n
Selection

Acceptable

Correct

Design

BOIN

KEYBOARD

S−F

PIPE

WATERFALL

BLRM

POCRM

RIVIERE

Benchmark

Percentage of Correct & Acceptable Selections

Figure 7. An illustration of the PCS and PAS for Scenarios 16-21 for each
design. The solid bars measure the PCS and the more transparent bars
measure the PAS. The rightmost group of bars show the means.
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Figure 8. An illustration of the percentage of overly toxic selections across
Scenarios 16-21 for each design. The rightmost group of bars show the
means.
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Figure 9. An illustration of the number of patients treated at overly toxic
combinations during trials in Scenarios 16-21 for each design. The rightmost
group of bars show the means.
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Scenario 1

dB1 dB2 dB3
dA1 0.05 0.10 0.15

dA2 0.10 0.15 0.20

dA3 0.15 0.20 0.30

Scenario 2

dB1 dB2 dB3
dA1 0.05 0.10 0.15

dA2 0.10 0.20 0.30

dA3 0.20 0.30 0.45

Scenario 3

dB1 dB2 dB3
dA1 0.02 0.05 0.10

dA2 0.10 0.15 0.20

dA3 0.20 0.30 0.45

Scenario 4

dB1 dB2 dB3
dA1 0.05 0.10 0.15

dA2 0.10 0.20 0.30

dA3 0.20 0.45 0.60

Scenario 5

dB1 dB2 dB3
dA1 0.02 0.05 0.15

dA2 0.20 0.30 0.45

dA3 0.45 0.55 0.65

Scenario 6

dB1 dB2 dB3
dA1 0.10 0.15 0.30

dA2 0.15 0.30 0.45

dA3 0.30 0.45 0.60

Scenario 7

dB1 dB2 dB3
dA1 0.10 0.20 0.45

dA2 0.15 0.30 0.50

dA3 0.30 0.50 0.60

Scenario 8

dB1 dB2 dB3
dA1 0.05 0.10 0.20

dA2 0.10 0.20 0.30

dA3 0.30 0.45 0.55

Scenario 9

dB1 dB2 dB3
dA1 0.10 0.15 0.30

dA2 0.30 0.40 0.50

dA3 0.40 0.50 0.60

Scenario 10

dB1 dB2 dB3
dA1 0.15 0.30 0.45

dA2 0.30 0.45 0.55

dA3 0.45 0.55 0.65

Scenario 11

dB1 dB2 dB3
dA1 0.02 0.05 0.10

dA2 0.30 0.45 0.60

dA3 0.45 0.60 0.75

Scenario 12

dB1 dB2 dB3
dA1 0.20 0.30 0.45

dA2 0.45 0.50 0.55

dA3 0.65 0.70 0.75

Scenario 13

dB1 dB2 dB3
dA1 0.30 0.45 0.50

dA2 0.45 0.50 0.55

dA3 0.50 0.55 0.60

Scenario 14

dB1 dB2 dB3
dA1 0.45 0.50 0.55

dA2 0.50 0.55 0.60

dA3 0.55 0.60 0.65

Scenario 15

dB1 dB2 dB3
dA1 0.10 0.10 0.10

dA2 0.10 0.10 0.10

dA3 0.10 0.10 0.10

Table 1. Toxicity scenarios to evaluate the combination designs. Rows and
columns refer to the dose of drug A and B respectively. True MTCs are in
bold and ‘acceptable’ combinations are underlined.
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Scenario BOIN KEYBOARD S-F PIPE Waterfall BLRM POCRM Riviere

1 0.538 0.541 0.489 0.003 0.205 0.728 0.790 0.767
2 0.484 0.482 0.375 0.042 0.352 0.538 0.251 0.568
3 0.394 0.422 0.345 0.148 0.287 0.435 0.225 0.482
4 0.487 0.477 0.362 0.207 0.326 0.462 0.156 0.437
5 0.416 0.461 0.472 0.362 0.358 0.653 0.180 0.699
6 0.558 0.528 0.578 0.343 0.461 0.493 0.364 0.562
7 0.535 0.549 0.556 0.384 0.378 0.579 0.420 0.611
8 0.539 0.541 0.515 0.258 0.415 0.390 0.178 0.449
9 0.490 0.525 0.603 0.339 0.533 0.350 0.303 0.498
10 0.619 0.646 0.723 0.634 0.517 0.690 0.478 0.663
11 0.329 0.378 0.604 0.380 0.418 0.475 0.330 0.697
12 0.722 0.704 0.723 0.744 0.671 0.798 0.480 0.668
13 0.842 0.854 0.812 0.911 0.842 0.887 0.796 0.794
14 0.903 0.909 0.932 0.938 0.822 0.957 0.908 0.898
15 0.040 0.013 0.032 0.018 0.040 0.008 0.029 0.029
Mean 0.527 0.535 0.541 0.381 0.442 0.563 0.393 0.588

Table 2. Values of the Accuracy Index (13) for each of the designs across
Scenarios 1-15.
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Scenario 16

dB1 dB2 dB3
dA1 0.10 0.30 0.45
dA2 0.30 0.45 0.60

Scenario 17

dB1 dB2 dB3
dA1 0.10 0.15 0.30
dA2 0.30 0.45 0.60

Scenario 18

dB1 dB2 dB3
dA1 0.10 0.20 0.30
dA2 0.15 0.30 0.50

Scenario 19

dB1 dB2 dB3 dB4
dA1 0.10 0.15 0.20 0.30
dA2 0.30 0.40 0.50 0.60

Scenario 20

dB1 dB2 dB3 dB4
dA1 0.10 0.20 0.30 0.40
dA2 0.20 0.30 0.40 0.50

Scenario 21

dB1 dB2 dB3 dB4
dA1 0.15 0.20 0.25 0.30
dA2 0.40 0.45 0.50 0.55

Table 3. Alternative dosing grid toxicity scenarios to evaluate the
combination designs. Rows and columns refer to the dose of drug A and B
respectively. True MTCs are in bold and ‘acceptable’ combinations are
underlined.
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Scenario BOIN KEYBOARD S-F PIPE Waterfall BLRM POCRM Riviere

16 0.545 0.577 0.745 0.289 0.447 0.657 0.431 0.689
17 0.535 0.549 0.568 0.241 0.567 0.533 0.206 0.375
18 0.418 0.444 0.495 0.079 0.459 0.612 0.192 0.520
19 0.524 0.497 0.451 0.371 0.505 0.428 0.111 0.345
20 0.366 0.392 0.520 0.229 0.326 0.478 0.307 0.475
21 0.404 0.330 0.397 0.294 0.372 0.386 0.154 0.349
Mean 0.465 0.465 0.529 0.250 0.446 0.516 0.233 0.459

Table 4. Values of the Accuracy Index (13) for each of the designs across
the alternative dosing grid scenarios.
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Raw Trial Data Temsirolimus
15mg 25mg 50mg 75mg

120mg 0/2 0/4 1/5 0/4
Neratinib 160mg 1/4 1/4 0/5 3/6

200mg 0/4 1/8 1/2
240mg 2/4

BOIN Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/0 0/0
Neratinib 160mg 1/6 0/6 3/6

200mg 2/12 2/3 0/0

KEY Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/0 0/0
Neratinib 160mg 1/6 0/6 3/6

200mg 2/9 3/6 0/0

SFD Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/0 0/6
Neratinib 160mg 1/6 0/6 4/9

200mg 0/3 2/3 0/0

PIPE Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/0 0/0
Neratinib 160mg 1/3 1/12 0/0

200mg 2/15 2/3 0/0

Waterfall Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/3 0/6
Neratinib 160mg 1/6 0/3 3/6

200mg 1/6 2/3 0/0

BLRM (c) Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/3 0/6
Neratinib 160mg 0/0 0/9 4/9

200mg 0/0 0/0 5/6

BLRM (a) Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/3 0/6
Neratinib 160mg 0/0 0/9 4/12

200mg 0/0 0/0 2/3

POCRM Temsirolimus
25mg 50mg 75mg

120mg 0/3 1/6 4/12
Neratinib 160mg 0/3 1/6 0/0

200mg 0/0 2/6 0/0

Riviere Temsirolimus
25mg 50mg 75mg

120mg 0/3 0/0 2/6
Neratinib 160mg 0/3 1/9 2/3

200mg 0/3 5/9 0/0

Table 5. Results for each of the designs applied to the case study, including
the raw trial data of the study by Gandhi et al. 6. Each entry represents
yij/nij . The MTC as chosen by each design is highlighted in bold. In the
case of the BLRM, (c) indicates the calibrated prior hyper-parameters were
used and (a) indicates the alternative values were used.
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