
ar
X

iv
:2

30
2.

12
21

7v
2 

 [
m

at
h.

R
T

] 
 1

9 
A

pr
 2

02
3

A GEOMETRIC PERSPECTIVE ON

THE τ-CLUSTER MORPHISM CATEGORY

SIBYLLE SCHROLL, ARAN TATTAR, HIPOLITO TREFFINGER,

AND NICHOLAS J. WILLIAMS

We dedicate this paper to the memory of pure mathematics at Leicester.

Abstract. We show how the τ -cluster morphism category may be defined in

terms of the wall-and-chamber structure of an algebra. This geometric perspec-

tive leads to a simplified proof that the category is well-defined.

1. Introduction

The τ -cluster morphism category was introduced under the name ‘cluster mor-

phism category’ by Igusa and Todorov [IT17] for hereditary algebras. The moti-

vation for the introduction of this category was to give a categorical analogue of

the picture space defined in [ITW16]. Indeed, the classifying space of the τ -cluster

morphism category is homeomorphic to the picture space in the hereditary case

[IT17]. The introduction of the τ -cluster morphism category allowed Igusa and

Todorov to show that the picture space is K(π, 1) for π the picture group defined

in [ITW16] by showing the classifying space of the τ -cluster morphism category

is K(π, 1).

Since then, the τ -cluster morphism category has received much attention in the

literature. The definition of the category was extended to τ -tilting-finite algebras

in [BM21a], where it was given the name ‘a category of wide subcategories’. The

name ‘τ -cluster morphism category’ comes from [HI21], where some of the results

of Igusa and Todorov were generalised. The definition of the category was ex-

tended to arbitrary finite-dimensional algebras in [BH21]. The category has also

been studied using silting theory in [Bør21].
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In this paper we show how the τ -cluster morphism category arises naturally

in the context of the g-vector fan of an algebra. The g-vector fan of a finite-

dimensional algebra was first studied in [DIJ19]. It is defined by taking the two-

term presilting complexes and associating a cone to each, which fit together to

form the fan. Cones of two-term presilting complexes nicely encode several prop-

erties, such as whether the silting objects contain common summands, as well as

reflecting the partial order on them [DIJ19]. The g-vector fan is a subfan of the

wall-and-chamber structure of an algebra, which arises from stability conditions in

the sense of King [Kin94, BST19, Asa21]. In the representation-finite hereditary

case, the wall-and-chamber structure of the algebra was intersected with a sphere

around the origin to give the semi-invariant picture studied in [ITW16].

Theorem 1.1 (Theorem 3.11, Corollary 4.6). Let A be a finite-dimensional alge-

bra. Then there exists a category C(A) defined in terms of the g-vector fan of A

which is equivalent to the τ -cluster morphism category of A.

We define the category C(A) in Definition 3.3 and show in Section 4 that it

is equivalent to the τ -cluster morphism category by constructing an intermediate

category which is equivalent to both C(A) and the τ -cluster morphism category.

The difficulty in proving that the τ -cluster morphism category is well-defined lies

in showing that composition in the category is associative. The original proof of

this was given in [BM21a]. More conceptual proofs of this are in given in [BH21]

and [Bør21], the latter based on silting theory. In this paper, using the g-vector

fan, we give a geometrical construction of the τ -cluster morphism category. The

associativity is then a direct consequence of the construction. Our definition of

the category is motivated by [MST23, Proposition 6.5], see Remark 3.5.

This paper is structured as follows. We begin in Section 2 by giving the relevant

background of the paper. This consists of background on τ -tilting theory, the τ -

cluster morphism category, and the g-vector fan of a finite-dimensional algebra. In

Section 3, we introduce the category defined from the g-vector fan of the algebra,

which we show to be equivalent to the τ -cluster morphism category in Section 4.

Acknowledgements. This paper originated from a working group in pure math-

ematics at the University of Leicester. In solidarity with the other former pure

mathematics researchers at the University of Leicester, we dedicate this paper to

them and to pure mathematics.

2. Background

Let A be a finite-dimensional algebra of rank n over a field K and modA the

category of finitely generated A-modules. We assume that every subcategory will

be full and closed under isomorphisms. A subcategory X of modA is functorially

finite if for every object M ∈ modA there are objects XM and MX in X and
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morphisms XM → M andM → MX such that for any Y ∈ X there are surjections

HomA(Y,XM) → HomA(Y,M)

HomA(MX, Y ) → HomA(M,Y )

2.1. τ-tilting theory. In this subsection we give a brief overview of some general

results in τ -tilting theory. For a more comprehensive survey of τ -tilting theory,

see [Tre21].

2.1.1. Torsion pairs. Torsion pairs were introduced by Dickson to generalise the

structure given by torsion and torsion-free abelian groups to arbitrary abelian

categories [Dic66]. A torsion pair is a pair of full subcategories (T ,F) of modA

such that

(1) HomA(T ,F) = 0;

(2) if HomA(T,F) = 0, then T ∈ T ;

(3) if HomA(T , F ) = 0, then F ∈ F .

Here T is called the torsion class and F is called the torsion-free class. More

generally, a full subcategory T is called a torsion class if it is a torsion class in

some torsion pair, and likewise for torsion-free classes.

2.1.2. τ -tilting and τ -rigid pairs. We now define τ -rigid and τ -tilting pairs, fol-

lowing [AIR14, Definition 0.1 and 0.3]. Let M be an A-module and let P be

projective in modA. We say that M is τ -rigid if HomA(M, τM) = 0. The pair

(M,P ) is said to be τ -rigid if M is τ -rigid and HomA(P,M) = 0. We say more-

over that a τ -rigid pair (M,P ) is τ -tilting if |M | + |P | = n. Here we denote by

|X| the number isomorphism classes of direct summands of X . For two τ -rigid

pairs (M,P ) and (N,Q) we say that (M,P ) is a direct summand of (N,Q) if M

is a direct summand of N and P is a direct summand of Q.

Given a module M , we define the two subcategories

M⊥ := {X ∈ modA : HomA(M,X) = 0},

⊥M := {X ∈ modA : HomA(X,M) = 0}.

For a τ -rigid pair (M,P ), we define two torsion classes T(M,P ) := FacM and

T (M,P ) :=
⊥τM ∩P⊥. We have that T(M,P ) ⊆ T (M,P ), see [AIR14, Subsection 2.2].

These two torsion classes come in two torsion pairs (FacM,M⊥) and (⊥τM ∩

P⊥, Sub τM). We define F(M,P ) = Sub τM and F (M,P ) = M⊥, where likewise

F(M,P ) ⊆ F (M,P ). We can also construct the so-called τ -perpendicular subcategory

of (M,P ), which was first introduced in [Jas15]. This is the category J(M,P ) :=

T (M,P ) ∩ F (M,P ) = M⊥ ∩ ⊥τM ∩ P⊥, which therefore measures the difference

between these two torsion pairs.

A key result in [AIR14] states that there is a bijection between the functorially

finite torsion classes and τ -tilting pairs in modA. Given a τ -rigid pair (M,P )
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we say that the τ -tilting pair associated to T (M,P ) is the Bongartz completion of

(M,P ). In fact, the Bongartz completion of (M,P ) is of the form (M ⊕ T, P ) for

some τ -rigid module T . In this case we say that T is the Bongartz complement

of (M,P ).

2.1.3. τ -tilting reduction. It is shown in [Jas15, Theorem 3.8] that if (M,P ) is a

τ -rigid pair, then there is an equivalence of categories

(2.1) φ : J(M,P ) → modB(M,P ),

between the τ -perpendicular subcategory and the module category of an algebra

B(M,P ) that can be constructed explicitly from (M,P ). The process of going from

the original algebra A to the algebra B(M,P ) is known as τ -tilting reduction and

the algebra B(M,P ) is known as the τ -tilting reduction algebra of A by (M,P ).

A full subcategory W of modA is said to be wide if it is closed under kernels,

cokernels and extensions. An important example of a wide subcategory is the

τ -perpendicular subcategory of a τ -rigid pair. Indeed, it has been shown that

J(M,P ) is a functorially finite wide subcategory of modA for every τ -rigid pair

(M,P ) [BST19, Corollary 3.22] [DIR+18, Theorem 4.12]. Moreover, every wide

subcategory is of this form if and only if A is τ -tilting finite, that is, if there

are finitely many isomorphism classes of indecomposable τ -rigid modules [MŠ17,

Corollary 3.11].

Since the τ -perpendicular subcategories J(M,P ) are equivalent to the module

categories modB(M,P ), they have their own Auslander–Reiten translate τJ(M,P ).

In this context, given a τJ(M,P )-rigid pair (M ′, P ′) inside J(M,P ), the τJ(M,P )-

perpendicular subcategory of (M ′, P ′) is denoted JJ(M,P )(M
′, P ′).

Let W = J(M̃, P̃ ) be a functorially finite wide subcategory of modA, for a

τ -rigid pair (M̃, P̃ ) in modA. Given a τ -rigid pair (M,P ) in W, let

sτ -rigid(M,P )W :=

{
Basic τ -rigid pairs

(N,Q) of W
:

(M,P ) is a direct

summand of (N,Q)

}
.

We further let sτ -rigidW := sτ -rigid(0,0)W. Buan and Marsh [BM21b, BM21a]

show how sτ -rigidJW(M,P ) is related to sτ -rigid(M,P )W, as explained in [BH21,

Section 5]. Namely, there is a bijection

EW
(M,P ) : sτ -rigid(M,P )W → sτ -rigidJW(M,P ).

2.1.4. The τ -cluster morphism category. As we will shortly explain in detail, the

τ -cluster morphism category has as its objects the τ -perpendicular subcategories

of modA, with morphisms given by reduction with respect to τ -rigid pairs in these

categories. Here we follow the approach in [BH21]. Let A be a finite-dimensional

algebra. The τ -cluster morphism category W(A) is defined as follows.

(1) The objects of W(A) are the τ -perpendicular subcategories of modA.
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(2) Given a τ -perpendicular subcategory W ⊆ modA and a basic τ -rigid pair

(M,P ) in W, we define a formal symbol gW(M,P ).

(3) For two τ -perpendicular subcategories W1 and W2 of modA, define

HomW(A)(W1,W2) =

{
gW1

(M,P ) :
(M,P ) is a basic τ -rigid pair in

W1 and W2 = JW1(M,P )

}
.

(4) Given gW1

(M,P ) : W1 → W2 and gW2

(N,Q) : W2 → W3 in W(A), we denote

(Ñ , Q̃) :=
(
EW1

(M,P )

)−1

(N,Q).

The composition of the two morphisms is then defined as

gW2

(N,Q) ◦ g
W1

(M,P ) = gW1

(M⊕Ñ,P⊕Q̃)
.

2.2. The wall-and-chamber structure of an algebra. The τ -tilting theory

of a finite-dimensional algebra with n isomorphism classes of simple modules

{S(1), . . . , S(n)} is related to a certain wall-and-chamber structure of Rn, as we

now explain. We will interpret the τ -cluster morphism category in terms of this

structure.

We denote by K0(A) the Grothendieck group of modA. This is a free abelian

group of rank n. Given an A-moduleM , we write [M ] for the class of M in K0(A),

which we identify with a vector in Z
n via the isomophism Φ : K0(A) → Z

n defined

by Φ([S(i)]) = ei where {e1, . . . , en} is the canonical basis of Rn. If A = KQ/I

is a bounded path algebra of a quiver Q, we have [M ] = dimM , the dimension

vector of M as a quiver representation. In this paper we write dimM = Φ([M ]).

By 〈−,−〉, we mean the standard inner product on R
n.

Recall the notion of stability from [Kin94]. Given v ∈ R
n, we say that a non-

zero A-module M is v-semistable if 〈v, dimM〉 = 0 and 〈v, dimN〉 > 0 for every

factor module N of M . If M is v-semistable and 〈v, dimN〉 6= 0 for all proper

factor modules N of M , we say that M is v-stable. The stability space of an

A-module M is then defined to be

D(M) := {v ∈ R
n : M is v-semistable}.

The wall-and-chamber structure of the algebra A is the cone complex
⋃

M∈modA\{0}

D(M).

Intersecting this cone complex with a sphere around the origin gives what was

called the “semi-invariant picture” in the representation-finite hereditary case in

[ITW16].

To investigate the wall-and-chamber structure, it is useful to consider the fol-

lowing torsion and torsion-free classes from [BKT14, Subsection 3.1]—see also
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[Bri17, Lemma 6.6]. For v ∈ R
n, we have the torsion classes

T v = {M ∈ modA : 〈v, dimN〉 ≥ 0 for every quotient N of M}

and

Tv = {M ∈ modA : 〈v, dimN〉 > 0 for every quotient N 6= 0 of M},

and we have the torsion-free classes

Fv = {M ∈ modA : 〈v, dimL〉 6 0 for every submodule L of M}

and

Fv = {M ∈ modA : 〈v, dimL〉 < 0 for every submodule L 6= 0 of M}.

Moreover, both (T v,Fv) and (Tv,Fv) are torsion pairs [BKT14, Proposition 3.1].

Following [Asa21], we say that v, v′ ∈ R
n are TF-equivalent if T v = T v′ and

Fv = F v′ . It is clear that TF-equivalence is an equivalence relation. Moreover, it

was shown in [Asa21, Lemma 2.14] that every TF-equivalence class is convex, and

hence connected, in R
n. The category of v-semistable objects is Wv = T v ∩ Fv.

It follows from [BST19, Proposition 3.24] that Wv is always a wide subcategory

of modA. Note that, by definition T v = T v′ and F v = Fv′ for every v, v′ in every

TF-equivalence class E. By abuse of notation, we denote by T E the torsion class

T v for any v ∈ E. Likewise, we denote by FE the torsion-free class Fv for every

v ∈ E. In particular, we can associate to each TF-equivalence E the subcategory

WE = T E ∩ FE ⊂ modA. These subcategories will be instrumental in defining

the τ -cluster morphism category from the wall-and-chamber structure.

2.2.1. From τ -tilting theory to the wall-and-chamber structure. Let M be an A-

module. Choose the minimal projective presentation

P−1 −→ P0 −→ M −→ 0

ofM , where P0 =
⊕n

i=1 P (i)ai and P−1 =
⊕n

i=1 P (i)bi and {P (1), P (2), . . . , P (n)}

is a complete set of isomorphism-class representatives of the indecomposable pro-

jective A-modules. Then the g-vector of M is defined as

gM = (a1 − b1, a2 − b2, . . . , an − bn).

The g-vector of a τ -rigid pair (M,P ) is defined as gM − gP .

Remark 2.1. We note that g-vectors can also viewed as the elements of the

Grothendieck group of an extriangulated category K [−1,0](projA) which is nat-

urally associated to A, see [PPPP19, Proof of Proposition 4.44].

Consider now a basic τ -rigid pair (M,P ) where M =
⊕k

i=1Mi and P =⊕t

j=k+1 Pj are the decomposition of M and P as sums of indecomposable mod-

ules, respectively. We define the polyhedral cones C(M,P ) and C(M,P ) associated to
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(M,P ) to be the sets

C(M,P ) =

{ k∑

i=1

αig
Mi −

t∑

j=k+1

αjg
Pj : αi > 0 for every 1 6 i 6 t

}
,

C(M,P ) =

{ k∑

i=1

αig
Mi −

t∑

j=k+1

αjg
Pj : αi ≥ 0 for every 1 6 i 6 t

}
,

where {gM1, . . . , gMk ,−gPk+1, . . . ,−gPt} is the set of g-vectors for the indecompos-

able summands of (M,P ). Note that C(M,P ) coincides with the closure of C(M,P )

with respect to the canonical topology in R
n. It is shown in [DIJ19] that the set

⋃

(M,P )∈sτ -rigidA

C(M,P )

forms a polyhedral fan in R
n.

It is shown in [BST19, Asa21] that if (M,P ) is a τ -rigid pair, then the cone

C(M,P ) is a TF-equivalence class and, moreover,

WC(M,P )
= J(M,P ).

That is, the wide subcategory associated to the cone C(M,P ) is the τ -perpendicular

subcategory of (M,P ). Furthermore, [Asa21, Theorem 4.7] shows that an algebra

is τ -tilting-finite if and only if every TF-equivalence class is of the form C(M,P ) for

a τ -rigid pair (M,P ).

2.2.2. τ -tilting reduction and the wall-and-chamber structure. The relation be-

tween the wall-and-chamber structures and τ -tilting reduction is studied in [Asa21,

Section 4], as we now explain. See also [AHI+22]. Following [Asa21, Section 4],

for a τ -rigid pair (M,P ), we define a subset N(M,P ) ⊂ R
n by

N(M,P ) := {v ∈ R
n : T(M,P ) ⊆ Tv ⊆ T v ⊆ T (M,P )}.

If v ∈ N(M,P ), then F v ⊆ F (M,P ), and so Wv ⊆ J(M,P ). It is clear from the

definition that N(M,P ) is a union of TF-equivalence classes in R
n. It can be thought

of as the union of the TF-equivalence classes surrounding C(M,P ).

Let B = B(M,P ) be the τ -tilting reduction of A with respect to (M,P ). Further,

let {X1, X2, . . . , Xm} be the simple objects of J(M,P ). When we use the term

‘simple object’, we mean the simple objects of J(M,P ) as an abelian category,

rather than the simple A-modules which lie in J(M,P ). There is a linear map

π = π(M,P ) : R
n → R

m defined

(2.2) π(v)i =
〈v, dimXi〉

di
,

where π(v)i means the i-th coordinate of π(v) and di = dimK EndA(Xi). The map

π has the following properties [Asa21, Lemma 4.4, Theorem 4.5], recalling from

Subsection 2.1.3 (2.1) the equivalence of categories φ:
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(1) The restriction π|N(M,P )
: N(M,P ) → R

m is surjective.

(2) For any v ∈ N(M,P ), we have

φ(T v) = T π(v), φ(Fv) = Fπ(v),

φ(Tv) = Tπ(v), φ(Fv) = Fπ(v), φ(Wv) = Wπ(v).

(3) For any v ∈ N(M,P ) and L ∈ J(M,P ), the wall D(φ(L)) coincides with

π(D(L) ∩N(M,P )).

(4) The map π induces a bijection between TF-equivalence classes in N(M,P )

and TF-equivalence classes for modB(M,P ) in R
m.

This interpretation of τ -tilting reduction will be key to our construction of the

τ -cluster morphism category in terms of the wall-and-chamber structure.

3. A category associated to the wall-and-chamber structure

We begin by constructing a poset from the set of TF-equivalence classes of the

form C(M,P ) in the wall-and-chamber structure for a τ -rigid pair (M,P ). We then

use this poset to construct a category C(A), which we later show to be equivalent

to the τ -cluster morphism category. To this end, we denote by TFA the set of all

TF-equivalence classes in the wall-and-chamber structure of A of the form C(M,P )

for a τ -rigid pair (M,P ) in modA.

Proposition 3.1. The relation E 6 E ′ if E ⊆ E ′ for TF-equivalence classes

E,E ′ ∈ TFA induces a partial order on TFA.

Proof. It is clear that the relation 6 is reflexive. To show that the relation 6 is

transitive, suppose that E,E ′, E ′′ ∈ TFA such that E 6 E ′ and E ′ 6 E ′′. Then

E ⊂ E ′ ⊂ E ′′ = E ′′, and so E 6 E ′′. To show anti-symmetry, note that, since

the TF-equivalence classes are disjoint, we have that if E 6 E ′, then E ⊆ E ′ \E ′,

and so E has dimension strictly smaller than E ′. This implies that the relation

6 must be anti-symmetric. �

Note that this is in fact the standard partial order on the strata of a stratified

topological space—see, for instance, [Woo10, Section 2.1].

It is a well-known fact that every poset can be seen as a category where the

objects of the category correspond to the elements of the set. The morphisms

are determined by the partial order: that is, there is a unique morphism E → E ′

whenever E 6 E ′. In particular, we have that TFA with the partial order defined

above gives rise to a category. Note that in this case the category TFA always has

an initial object, namely the TF-equivalence C(0,0), consisting only of the origin of

R
n, and no terminal object. We write fEE′ for the unique morphism from E to

E ′ which exists when E 6 E ′.

Lemma 3.2. Let E,E ′ ∈ TFA. Then E 6 E ′ if and only if E ′ ⊆ NE.
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Proof. Let E and E ′ be TF-equivalence classes in TFA such that E 6 E ′. By

definition of TFA, E = C(M,P ) and E ′ = C(M ′,P ′) for some τ -rigid pairs (M,P )

and (M ′, P ′). We have that C(M,P ) ⊆ C(M ′,P ′). Hence, by taking limits inside E ′,

we have that T E′ ⊆ T E and FE′ ⊆ FE. Indeed, given M ∈ T E′, we have that

〈v, dimN〉 > 0 for every quotient N of M and all v ∈ E ′. Since any w ∈ E is

a limit of a sequence {vk}k∈N ⊂ E ′, we must have that 〈w, dimN〉 > 0 for every

quotient N of M and all w ∈ E as well. The argument for torsion-free classes is

similar. The inclusion of torsion-free classes here implies that TE ⊆ TE′, and so

we obtain that

TE ⊆ TE′ ⊆ T E′ ⊆ T E,

which precisely gives us that E ′ ⊆ NE .

To show the converse, suppose that E ′ ⊆ NE . Then, by definition, we have

that

TE ⊆ TE′ ⊆ T E′ ⊆ T E.

Moreover, there are τ -rigid pairs (M,P ) and (M ′, P ′) such that E = C(M,P ) and

E ′ = C(M ′,P ′). It follows from [AIR14, Proposition 2.9] that (M,P ) is a direct

summand of the τ -tilting pairs (T,Q) and (T ,Q) corresponding to TE′ and T E′,

respectively. But it also follows from [AIR14, Proposition 2.9] that the maximal

common direct summand of (T,Q) and (T ,Q) is precisely (M ′, P ′). Hence (M,P )

is a direct summand of (M ′, P ′). Then by construction we obtain that C(M,P ) ⊂

C(M ′,P ′). In other words, E 6 E ′. �

Given a TF-equivalence class E, we write νE : Rn → span{E}⊥ for the projec-

tion onto the orthogonal complement of the vector subspace span{E}. We now

define our category C(A).

Definition 3.3. We define the category C(A) as follows.

(A) The objects of C(A) are equivalence classes [E] of objects of TFA under

the equivalence relation where E ∼ E ′ if WE = WE′, recalling that these are the

wide subcategories associated to the TF-equivalence classes in Subsection 2.2.

(B) Given objects [E] and [F ] of C(A), we have that HomC(A)([E], [F ]) consists

of equivalence classes of objects in
⋃

E′∈[E],F ′∈[F ]

HomTFA
(E ′, F ′)

under the equivalence relation where fEF ∼ fE′F ′ if and only if νE(F ) = νE′(F ′).

Recall that the Hom-set HomTFA
(E ′, F ′) equals {fE′F ′} if E ′ 6 F ′, and is empty

otherwise.

(C) Given a morphism [fEF ] ∈ HomC(A)([E], [F ]) and a morphism [fFG] ∈

HomC(A)([F ], [G]), the composition [fFG] ◦ [fEF ] is defined to be [fEG].
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Remark 3.4. The equivalence relations on objects and morphisms of TFA to form

the category C(A) coincide with the gluing rules used to construct the picture

space [ITW16, Definition 3.2.1].

Remark 3.5. Morphisms in the τ -cluster morphism category are given by the so-

called signed τ -exceptional sequences introduced in [BM21b], see also [MT20]. The

construction of C(A) in Definition 3.3 is motivated by [MST23, Proposition 6.5]

where it was shown, in the notation of Subsection 2.1.4, that if W1 = J (M ′, P ′)

and gW1

(M,P ) : W1 → W2 is a morphism in W(A), then M and P are v-semistable

objects for every v ∈ C(M ′,P ′).

Note that it is not yet clear that composition is well-defined, for two reasons.

(1) It is not clear how to compose morphisms [fEF ] and [fF ′G] where F ∼ F ′.

In order to be able to do this, one would need to find TF -equivalence

classes E ′ ∈ [E], F ′′ ∈ [F ], G′ ∈ [G] and morphisms fE′F ′′ ∼ fEF and

fF ′′G′ ∼ fF ′G, which would give the composition as [fE′G′].

(2) It is not clear that composition respects the equivalence relation. For

instance, given fEF ∼ fE′F ′ and fFG ∼ fF ′G′ , it is not clear that fEG ∼

fE′G′ .

In order to resolve these issues, we first show that equivalent TF-equivalence

classes have the same linear span. This means that the projection maps onto their

orthogonal complements are also the same. Hence, it makes sense to compare

νE(F ) and νE′(F ′) when E ∼ E ′. In order to show this, we show how the linear

span of a TF-equivalence class may be described in terms of the associated wide

subcategory.

Lemma 3.6. Let E be a TF-equivalence class. Then

{dimX : X a simple object in WE}

is a basis of span{E}⊥.

Proof. We use the fact that E = C(M,P ) for a τ -rigid pair (M,P ). We then

have that span{E} is the span of the g-vectors of the indecomposable summands

of (M,P ). These g-vectors are linearly independent by [AIR14, Theorem 5.1].

Hence dim span{E} = |M | + |P |, and so dim span{E}⊥ = n− |M | − |P |.

We then note that J(M,P ) is equivalent to modB(M,P ), the category of mod-

ules over the τ -tilting reduction algebra. This moreover induces an isomorphism

of Grothendieck groups K0(J(M,P )) ∼= K0(modB(M,P )). We then have that

K0(modB(M,P )) ∼= Z
n−|M |−|P | with a basis given by the dimension vectors of the

simple modules, and so K0(J(M,P )) = K0(WE) ∼= Z
n−|M |−|P | with a basis given

by the dimension vectors of the simple objects. The result then follows from the

fact that K0(J(M,P )) ⊆ span{E}⊥, by definition of WE . �
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Corollary 3.7. Let E and E ′ be TF-equivalence classes such that [E] = [E ′].

Then

(1) span{E}⊥ = span{dimM : M ∈ WE};

(2) span{E}⊥ = span{E ′}⊥;

(3) span{E} = span{E ′};

(4) νE = νE′.

Proof. Claim (1) follows from Lemma 3.6. Indeed, it is obvious that

span{dimX : X a simple object in WE} ⊆ span{dimM : M ∈ WE},

whilst the definition of WE gives us that

span{E}⊥ ⊇ span{dimM : M ∈ WE}.

Statement (2) then follows from (1), since if [E] = [E ′], then WE = WE′. State-

ments (3) and (4) are then easy consequences. �

We show that using the orthogonal projection ν is equivalent to using the map

π from Subsection 2.2.2.

Lemma 3.8. Let E and E ′ be TF-equivalence classes such that E ∼ E ′ with E 6

F and E ′ 6 F ′ for some TF-equivalence classes F and F ′. Then νE(F ) = νE′(F ′)

if and only if πE(F ) = πE′(F ′).

Proof. First let {X1, X2, . . . , Xm} be the set of simple objects of WE = WE′

with di = dimEndA Xi. Then let (M,P ) be the τ -rigid pair with E = C(M,P ).

Furthermore let T = T1 ⊕ · · · ⊕ Tm be the Bongartz complement of (M,P ). We

denote the g-vectors of T1, T2, . . . , Tm by g1, g2, . . . , gm, and the g-vectors of the

indecomposable direct summands of (M,P ) by gm+1, gm+2, . . . , gn. By [AIR14,

Theorem 5.1], {g1, g2, . . . , gn} forms a basis of Rn.

We will describe νE using this basis, and then use this to compare νE to πE .

Note first that 〈gi, dimXj〉 = 0 for any m + 1 6 i 6 n, since gi ∈ span{E}

and dimXj ∈ span{E}⊥. Moreover, 〈gi, dimXj〉 = djδij for 1 6 i 6 m by, for

instance, [Asa21, Proof of Lemma 4.4(2)], see also [Tre19, Lemma 3.3]. Hence, we

have that

ν(gi) =
m∑

j=1

〈gi, dimXj〉

dj
νE(gj)

for all i. This implies that

ν(v) =

m∑

j=1

〈v, dimXj〉

dj
νE(v)

for all v ∈ R
n, as {g1, g2, . . . , gm} is a basis. Moreover, since νE(gi) = 0 form+1 6

i 6 n, we have that span{E}⊥ must have basis {νE(g1), νE(g2), . . . , νE(gm)}, as



12 SCHROLL, TATTAR, TREFFINGER, AND WILLIAMS

the image of νE must be the whole of span{E}⊥, which has dimension m. Hence,

let ρE : span{E}⊥ → R
m be the isomorphism of vector spaces sending νE(gi) 7→ ei.

Note that {νE(g1), . . . , νE(gm)} is the unique basis of span{E}⊥ such that

〈νE(gi), dimXj〉 = djδij . Then this basis depends only on WE = WE′. It is

then clear from the definition of πE from Subsection 2.2.2 that πE = ρEνE . Then

because ρE only depends uponWE = WE′ and span{E} = span{E ′}, we also have

that πE′ = ρEνE′. Since ρE is an isomorphism, it follows that νE(F ) = νE′(F ′) if

and only if πE(F ) = πE′(F ′). �

We now show that our category C(A) is in fact a well-defined category. We first

solve problem (1).

Lemma 3.9. Given morphisms [fEF ] and [fF ′G′ ] where F ∼ F ′, there exists a

morphism fFG ∼ fF ′G′ with G ∼ G′.

Proof. Since F ∼ F ′, we know that the projection of the fan NF under νF must be

equal to the projection of the fan NF ′ under νF ′ by Lemma 3.8 and the properties

of π described in Subsection 2.2.2. Hence, we must have that νF ′(G′) must be

equal to νF (G) for some cone G in NF . Since then F 6 G by Lemma 3.2, this

then gives the morphism fFG such that fFG ∼ fF ′G′. �

Now we solve problem (2).

Lemma 3.10. Let [E], [F ], and [G] be objects of C(A) with morphisms [fEF ] and

[fFG]. Suppose that we further have E ′ ∈ [E], F ′ ∈ [F ], and G′ ∈ [G], and that

there are morphisms fE′F ′ ∈ [fEF ] and fF ′G′ ∈ [fFG]. Then [fEG] = [fE′G′].

Proof. We must show that fE′G′ ∼ fEG, that is, νE′(G′) = νE(G). Since νE(F ) =

νE′(F ′), we may choose w ∈ F and w′ ∈ F ′ such that νE(w) = νE′(w′). Then, let

v ∈ νF (G) = νF ′(G′).

The generating vectors of G consist of those of F along with other vectors

which have components in span{F} and its orthogonal complement. Hence, since

v ∈ νF (G) and w ∈ F , there exists ǫ > 0 such that w + ǫv ∈ G. Indeed, the

vectors in νF (G) are those which are orthogonal to F and point into G from any

point in F , recalling that all these cones are open. Likewise, there exists ǫ′ > 0

such that w′ + ǫ′v ∈ G′. If we take δ = min{ǫ, ǫ′}, then we have both w+ δv ∈ G

and w′ + δv ∈ G′. We then obtain that

νE(w + δv) = νE(w) + δνE(v)

= νE′(w′) + δνE′(v)

= νE′(w′ + δv).

Thus νE(G) ∩ νE′(G′) 6= ∅. The images of cones under νE and νE′ are either

disjoint or equal by Lemma 3.8 and Subsection 2.2.2. Hence, we conclude that we

must have νE(G) = νE′(G′). This implies that fE′G′ ∼ fEG, as desired. �
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Figure 1. The Auslander–Reiten quiver of A.

D(1)

D(1)

D(2)

D(2)

D
(
1
2

)

D
(
2
1

)

Figure 2. The wall-and-chamber structure of A.

As a consequence we have the following.

Theorem 3.11. The set of equivalence classes [E] of objects of TFA together

with the morphisms defined as in Definition 3.3 gives rise to a well-defined cate-

gory C(A).

Example 3.12. Let Q be the quiver

1 2
α

β

and let A = KQ/〈βα〉. The Auslander–Reiten quiver of A can be found in Fig-

ure 1, its wall-and-chamber structure in Figure 2 and its g-vector fan in Figure 3.

In this case we have that all the TF-equivalence classes in the wall-and-chamber

structure of A are of the form C(M,P ) for some τ -rigid pair (M,P ) in modA.

The objects of C(A) are as follows:
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g

2
1
2

−g

2
1
2

g
1
2

−g
1
2

g1

g0

g2

Figure 3. The g-vector fan of A.

U =
[
C(0,0)

]
, V =

[
C(1,0)

]
,W =

[
C(0,2)

]
,

X =
[
C(1

2, 0
)] =

[
C(

0, 12

)], Y =
[
C(2

1
2
, 0

)] =
[
C(

0,
2
1
2

)],

Z =
[
C(

1,
2
1
2

)] =
[
C(

1⊕1
2, 0

)] =
[
C(

2, 12

)] =
[
C(

2⊕
2
1
2
, 0
)] =

[
C(

1
2⊕

2
1
2
, 0
)] =

[
C(

0, 12⊕
2
1
2

)].

Let us study the Hom sets HomC(A)(U,X) and HomC(A)(X,Z) in more detail.

By definition, we have that

HomC(A)(U,X) =

{
fC(0,0)C(1

2,0
) , fC(0,0)C(

0, 12

)
}
/ ∼ .

Since B(0, 0) = A and, as we noted in Subsection 2.2.2, π(0,0) restricts to a bijection

of the TF-equivalance classes in N(0,0) = R
n and TF-equivalence classes of modA

in R
n we conclude that fC(0,0)E′ = fC(0,0)E if and only if E = E ′. Thus,

HomC(A)(U,X) =

{[
fC(0,0)C(1

2,0
)],

[
fC(0,0)C(

0,12

)]
}
.

Now let us consider HomC(A)(X,Z), which is the set
{
fC(1

2, 0
)C(

1
2⊕

2
1
2
, 0
) , fC(1

2, 0
)C(

1⊕1
2, 0

) , fC(
0, 12

)C(
2, 12

) , fC(
0,12

)C(
0,
1
2⊕

2
1
2

)
}
/ ∼ .
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First observe that span{C(1
2, 0

)} = span{(0,−1)} and span{C(
0, 12

)} = span{(0, 1)}.

Thus, for (x, y) ∈ R
2, νC(1

2, 0
)(x, y) = (x, 0) = νC(

0, 12

)(x, y). We also compute

C(
1
2⊕

2
1
2
, 0
) = {(x, y) ∈ R

2 : x, y < 0},

C(
1⊕1

2, 0
) = {(x, y) ∈ R

2 : y < 0, 0 < x < −y},

C(
2, 12

) = {(x, y) ∈ R
2 : y > 0,−y < x < 0}, and

C(
0, 12⊕

2
1
2

) = {(x, y) ∈ R
2 : x, y > 0}.

Together, we see that

νC(1
2, 0

)C(
1
2⊕

2
1
2
, 0
) = {(x, 0) ∈ R

2 : x < 0} = νC(
0, 12

)C(
2, 12

) and

νC(1
2, 0

)C(
1⊕1

2, 0
) = {(x, 0) ∈ R

2 : x > 0} = νC(
0, 12

)C(
0, 12⊕

2
1
2

).

Hence, we have that

HomC(A)(U,X) =

{[
fC(1

2,0
)C(

1
2⊕

2
1
2
,0
)
]
=

[
fC(

0, 12

)C(
2, 12

)],

[
fC(1

2,0
)C(

1⊕1
2,0

)
]
=

[
fC(

0, 12

)C(
0,
1
2⊕

2
1
2

)
]}

.

We do not compute the rest of the category C(A) here. In Example 4.3 we compute

an equivalent category.

4. Relation with the τ-cluster morphism category

We now show that the category C(A) that we defined in the previous section is

equivalent to the τ -cluster morphism category W(A). In order to do this, we first

define the following poset, which we also view as a category, just as with TFA.

Definition 4.1. Let T(A) be the poset whose objects are basic τ -rigid pairs over

A, with (M,P ) 6 (N,Q) if M is a direct summand of N and P is a direct

summand of Q. In this case, we write h
(N,Q)
(M,P ) for the unique morphism which

exists from (M,P ) to (N,Q).

In a similar way to how we proceeded in the previous section, we may define a

quotient of this category as follows.

Definition 4.2. Let Q(A) be the category defined as follows.

(A) The objects of Q(A) are equivalence classes of objects of T(A) under the

equivalence relation where (M,P ) ∼ (N,Q) if and only if J(M,P ) = J(N,Q).
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(0, 0)

(1, 0) (2, 0) (12, 0) (0, 12) (
2
1
2
, 0) (0,

2
1
2
)

(1,
2
1
2
) (1 ⊕ 1

2, 0) (2, 12) (2 ⊕
2
1
2
, 0) (12 ⊕

2
1
2
, 0) (0, 12 ⊕

2
1
2
)

Figure 4. The Hasse quiver of T(A).

(B) The morphisms HomQ(A)

(
[(M,P )], [(N,Q)]

)
consist of

⋃

(M ′,P ′)∈[(M,P )]
(N ′,Q′)∈[(N,Q)]

HomT(A)((M
′, P ′), (N ′, Q′))

under the equivalence relation where

h
(M⊕M̂ ,P⊕P̂ )
(M,P ) ∼ h

(M ′⊕M̂ ′,P ′⊕P̂ ′)
(M ′,P ′)

if and only if

EmodA
(M,P ) (M̂, P̂ ) = EmodA

(M ′,P ′)(M̂
′, P̂ ′),

noting that J(M,P ) = J(M ′, P ′) due to the context.

(C) The composition of [h
(M⊕M ′,P⊕P ′)
(M,P ) ] and [h

(M⊕M ′⊕M ′′,P⊕P ′⊕P ′′)
(M⊕M ′,P⊕P ′) ] is defined to

be [h
(M⊕M ′⊕M ′′,P⊕P ′⊕P ′′)
(M,P ) ].

Example 4.3. As in Example 3.12, we consider the quiver Q

1 2
α

β

and the algebra B = KQ/〈βα〉. Figure 4 shows Hasse quiver of the poset T(A)

and in Figure 5 we show the category Q(A). In that diagram, non-black arrows

with the same label (or colour) are in the same equivalence class of morphisms.

Morphisms from the initial object, I = [(0, 0)] to the terminal object, T , are

obtained by concatenation of arrows under the equivalence relation that (I →

X → T ) ∼ (I → Y → T ) if and only if the head of the arrows of X → T and

Y → T point at the same representative of the equivalence class T .

Instead of showing directly that the category Q(A) is well-defined, we show this

by showing that it is equivalent to the τ -cluster morphism category W(A).
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[(0, 0)]

[(1, 0)] [(2, 0)] [(12, 0)] [(0, 12)] [(
2
1
2
, 0)] [(0,

2
1
2
)]

[(1,
2
1
2
)] [(1 ⊕ 1

2, 0)] [(2, 12)] [(2 ⊕
2
1
2
, 0)] [(12 ⊕

2
1
2
, 0)] [(0, 12 ⊕

2
1
2
)]

b

a

ab

d

c d

c

Figure 5. The category Q(A).

Proposition 4.4. The τ -cluster morphism category W(A) is equivalent to the

category Q(A).

Proof. We define a functor F : Q(A) → W(A). On objects, F sends the equiv-

alence class [(M,P )] to J(M,P ). The equivalence relation ensures that this is

well-defined. On morphisms,

F : [h
(M⊕M̂ ,P⊕P̂ )
(M,P ) ] 7−→ gW(N,Q)

where W = J(M,P ) and (N,Q) = EmodA
(M,P ) (M̂, P̂ ). Again, the equivalence relation

on morphisms ensures that this is well-defined.

We show that F respects composition. Here we take composable morphisms

[h
(M⊕M ′,P⊕P ′)
(M,P ) ] and [h

(M⊕M ′⊕M ′′,P⊕P ′⊕P ′′)
(M⊕M ′,P⊕P ′) ]

in Q(A). We must show that the composition of the images of these morphisms

under F is equal to the image of [h
(M⊕M ′⊕M ′′,P⊕P ′⊕P ′′)
(M,P ) ], their composition inQ(A).

We have that

F [h
(M⊕M ′,P⊕P ′)
(M,P ) ] = gW(N ′,Q′)

where W = J(M,P ) and (N ′, Q′) = EmodA
(M,P ) (M

′, P ′); and

F [h
(M⊕M ′⊕M ′′,P⊕P ′⊕P ′′)
(M⊕M ′,P⊕P ′) ] = gW

′

(N ′′,Q′′)

where W ′ = J(M ⊕M ′, P ⊕P ′) and (N ′′, Q′′) = EmodA
(M⊕M ′,P⊕P ′)(M

′′, P ′′). Since we

also have W ′ = JW(N ′, Q′) by [BH21, Theorem 6.4], which generalises [BM21a,

Theorem 4.3], we have that these two morphisms

gW(N ′,Q′) : W → W ′

gW
′

(N ′′,Q′′) : W
′ → JW ′(N ′′, Q′′)
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are indeed composable. Then, letting (Ñ ′′, Q̃′′) =
(
EW
(N ′,Q′)

)−1

(N ′′, Q′′), we have

that the composition of these two morphisms is gW
(N ′⊕Ñ ′′,Q′⊕Q̃′′)

, since, again by

[BH21, Theorem 6.4], we have that JW ′(N ′′⊕Q′′) = JW((N ′⊕ Ñ ′′, Q′⊕ Q̃′′). But

then we have precisely that

F [h
(M⊕M ′⊕M ′′,P⊕P ′⊕P ′′)
(M,P ) ] = gW

(N ′⊕Ñ ′′,Q′⊕Q̃′′)
,

since W = J(M,P ) and (N ′ ⊕ Ñ ′′, Q′ ⊕ Q̃′′) = EmodA
(M,P ) (M

′ ⊕M ′′, P ′ ⊕ P ′′). This

is because (N ′, Q′) = EmodA
(M,P ) (M

′, P ′) and

(Ñ ′′, Q̃′′) =
(
EW
(N ′,Q′)

)−1
(N ′′, Q′′)

=
(
EW
(N ′,Q′)

)−1
EmodA
(M⊕M ′,P⊕P ′)(M

′′, P ′′)

=
(
EW
(N ′,Q′)

)−1
EW
(N ′,Q′)E

modA
(M,P ) (M

′′, P ′′)

= EmodA
(M,P ) (M

′′, P ′′).

Here the penultimate step follows from [BM21a, Theorem 5.9] or [BH21, Theo-

rem 6.12].

It is clear that F is essentially surjective, since every τ -perpendicular category

emerges from a τ -rigid object by definition. It is likewise clear that F is full, since

the E maps are bijections. Hence F is an equivalence of categories, as desired. �

Theorem 4.5. The category Q(A) is equivalent to the category C(A) defined from

the wall-and-chamber structure.

Proof. We define a functor G from Q(A) by sending [(M,P )] to C(M,P ) and

[h
(M⊕M̂,P⊕P̂ )
(M,P ) ] to [fC(M,P )C(M⊕M̂,P⊕P̂ )

].

We first show that the functor G is well-defined on objects. We have that

[(M,P )] = [(M ′, P ′)] if and only if J(M,P ) = J(M ′, P ′). Moreover, we have that

WC(M,P ) = J(M,P ) and that C(M,P ) ∼ C(M ′,P ′) if and only if WC(M,P )
= WC(M′ ,P ′)

.

Consequently, G is well-defined on the objects [(M,P )] of Q(A), since it gives

equivalent TF-equivalence classes no matter which equivalence-class representa-

tive one chooses in [(M,P )].

We now show that the functor G is well-defined on morphisms. We have that

[h
(M⊕M̂ ,P⊕P̂ )
(M,P ) ] = [h

(M⊕M̂ ′,P⊕P̂ ′)
(M,P ) ]

if and only if

EmodA
(M,P ) (M̂, P̂ ) = EmodA

(M,P ) (M̂
′, P̂ ′).

We have that

[fC(M,P )C(M⊕M̂,P⊕P̂ )
] = [fC(M,P )C(M⊕

̂M′,P⊕
̂P ′)
]

if and only if

νC(M,P )
(C(M⊕M̂,P⊕P̂ )) = νC(M,P )

(C
(M⊕M̂ ′,P⊕P̂ ′)

).
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By Lemma 3.8, we have that this is the case if and only if

πC(M,P )
(C(M⊕M̂,P⊕P̂ )) = πC(M,P )

(C(M⊕M̂ ′,P⊕P̂ ′)).

By [Asa21, Lemma 4.4], we have that this is the case if and only if

EmodA
(M,P ) (M̂, P̂ ) = EmodA

(M,P ) (M̂
′, P̂ ′),

as desired. This also shows that the functor G is faithful.

The functorG is essentially surjective by construction, since every TF-equivalence

class is of the form C(M,P ) for some τ -rigid pair (M,P ). The functor G is moreover

full, since the TF-equivalence classes giving morphisms in C(A) are cones in TFA,

which all arise from τ -rigid pairs (M,P ). Hence, the functor G is an equivalence

of categories. �

Corollary 4.6. The category C(A) defined from the wall-and-chamber structure

is equivalent to the τ -cluster morphism category W(A).
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zu Köln, Weyertal 86-90, 50931 Cologne, Germany

Email address : schroll@math.uni-koeln.de

Abteilung Mathematik, Department Mathematik/Informatik der Universität
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