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TRIANGULATIONS OF PRISMS AND

PREPROJECTIVE ALGEBRAS OF TYPE A

OSAMU IYAMA AND NICHOLAS J. WILLIAMS

Abstract. We show that indecomposable two-term presilting complexes over

Πn, the preprojective algebra of An, are in bijection with internal n-simplices

in the prism ∆n×∆1, the product of an n-simplex with a 1-simplex. We show

further that this induces a bijection between triangulations of ∆n × ∆1 and

two-term silting complexes over Πn such that bistellar flips of triangulations

correspond to mutations of two-term silting complexes. These bijections are

shown to compatible with the known bijections involving the symmetric group.

1. Introduction

Cluster algebras are intimately connected with the combinatorics of triangula-

tions. The simplest example of this is the bijection between the clusters in the

type A cluster algebra and triangulations of a convex polygon [FZ02]. Further

connections were found in the work of Fomin, Shapiro, and Thurston, who defined

cluster algebras using tagged triangulations of surfaces [FST08].

Cluster algebras were first connected with the representation theory of finite-

dimensional algebras in [MRZ03], which led to the definition of cluster categories

of hereditary algebras in [BMR+06]. Another approach to categorifying cluster

algebras uses the representation theory of preprojective algebras [GLS06, GLS07a,

GLS07b, GLS08]. Preprojective algebras have connections with Kleinian singular-

ities [CBH98], Nakajima quiver varieties [Nak94, ST11], and crystal bases [KS97].

Cluster categories were subsequently extended to cluster algebras arising from

triangulations of surfaces in [Ami09]. Since then, the relation between triangulated

surfaces and representation theory in the form of so-called geometric models has

been an active subject of research [BZ11, OPS18, BCSo21, CS20].

The triangulations considered thus far are all two-dimensional and it is natural to

wonder whether similar phenomena exist in higher dimensions. Indeed, a beautiful

connection between representation theory and higher-dimensional triangulations

was found in [OT12], where triangulations of even-dimensional cyclic polytopes

were shown to be in bijection with cluster-tilting objects in higher cluster categories.

In [Wil22] it was shown how odd-dimensional triangulations enter the picture too,

through a bijection with equivalence classes of maximal green sequences.
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High-dimensional polytopes are in general very complicated, but, besides cyclic

polytopes, another example that is well-studied is the Cartesian product ∆m ×∆n

of two simplices. The triangulations of this polytope are interesting for many

reasons. The regular triangulations classify the types of tropical polytopes [DS04].

Furthermore, the secondary polytope of ∆m × ∆n is the Newton polytope of the

product of all minors of an (m + 1) × (n + 1) matrix [BB98], as well as the state

polytope of the Segre embedding of Pm×P
n [Stu91]. Products of simplices are also

related to transportation polytopes from operations research [DLKOS09], and arise

as strategy spaces for two-player games [vdLT82].

In this paper, we show that combinatorics of the prism ∆n×∆1 is closely related

to the representation theory of Πn, the preprojective algebra of An.

Theorem 1.1 (Proposition 3.2, Corollary 3.17, Proposition 3.19). There is a bi-

jection between codimension one internal simplices in ∆n×∆1 and indecomposable

two-term presilting complexes over Πn which induces a bijection between triangu-

lations of ∆n × ∆1 and two-term silting complexes over Πn. Mutations of silting

complexes correspond to bistellar flips of triangulations.

It is already known from [GKZ94, Chapter 7, Section 3C] that triangulations

of ∆n ×∆1 are in bijection with permutations in the symmetric group Sn+1, and

from [Miz14] that permutations in Sn+1 were in bijection with two-term silting

complexes over Πn. We show that our results are compatible with these bijections.

Indeed, to summarise the results of the paper and how they fit in with the literature,

there are bijections

int-simn(∆n ×∆1)←→ ind-2-psiltΠn ←→ ind-τ -rigid-pairΠn

which induce the commutative diagram

Sn+1

2-siltΠnsτ -tiltΠn tri(∆n ×∆1)

Pn(ind-τ -rigid-pairΠn) Pn(ind-2-psiltΠn)

Pn(int-simn(∆n ×∆1))

[Miz14]

[AIR14]

Corollary 3.17

[AIR14]

[GKZ94]

Proposition 3.2

Proposition 3.2

Here

• sτ -tiltΠn is the set of basic support τ -tilting pairs over Πn;

• Pn(ind-τ -rigid-pairΠn) is the set of size-n sets of indecomposable τ -rigid

pairs over Πn;
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• 2-siltΠn is the set of basic two-term silting complexes over Πn;

• Pn(ind-2-psiltΠn) is the set of size-n sets of indecomposable two-term pre-

silting complexes over Πn;

• tri(∆n ×∆1) is the set of triangulations of ∆n ×∆1;

• Pn(int-simn(∆n × ∆1)) is the set of size-n sets of internal n-simplices in

∆n ×∆1;

• ←→ arrows denote bijections;

• 99K arrows denote direct sum decompositions, or decompositions into in-

ternal n-simplices.

This paper is structured as follows. We give background to the paper in Section 2,

first covering representation theory and, in particular, τ -tilting theory, preprojective

algebras of type A, and their relation with Sn+1. We then cover background on

triangulations of ∆n ×∆1 and their relation with Sn+1. We prove our results in

Section 3, first showing the bijection between internal simplices in ∆n × ∆1 and

indecomposable two-term presilting complexes over Πn. We show how this induces a

bijection between triangulations of ∆n×∆1 and two-term silting complexes over Πn.

In order to do this, we make use of a certain factor algebra Πn of Πn and prove

some intermediate lemmas concerning its representation theory. Finally, we show

that our bijections are compatible with the bijections with Sn+1.

2. Background

2.1. Representation theory. In this section, by Λ we mean a finite-dimensional

algebra over a field K, and we write modΛ for the category of right Λ-modules.

We use τ to denote the Auslander–Reiten translate in modΛ. We denote by KΛ :=

Kb(projΛ) the homotopy category of bounded complexes in projΛ.

2.1.1. Support τ-tilting pairs. τ -tilting theory was introduced in [AIR14] as a gen-

eralisation of cluster-tilting theory. A Λ-module M is called τ-rigid if HomΛ(M,

τM) = 0. A pair (M,P ) of Λ-modules where P is projective is called τ-rigid if M

is τ -rigid and Hom(P,M) = 0. A τ -rigid pair (M,P ) is called support τ-tilting if

|M |+ |P | = |Λ|, where |X | denotes the number of non-isomorphic indecomposable

direct summands of X . Here M is called a support τ-tilting module. We call a

τ -rigid pair indecomposable if it is of the form (M, 0) with M indecomposable, or of

the form (0, P ) with P indecomposable. We refer to τ -rigid pairs of the form (0, P )

as shifted projectives. We write sτ -tiltΛ for the set of (isomorphism classes of) ba-

sic support τ -tilting pairs over Λ and ind-τ -rigid-pairΛ for the set of (isomorphism

classes of) basic indecomposable τ -rigid pairs over Λ.

2.1.2. Two-term silting. Two-term silting complexes over Λ are in bijection with

support τ -tilting pairs over Λ and are in many ways nicer to work with [AIR14].

An object T of KΛ is presilting if

HomKΛ
(T, T [i]) = 0

for all i > 0. A presilting complex T is silting if, additionally, thickT = KΛ.

Here thickT denotes the smallest full subcategory of KΛ which contains P and
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is closed under cones, [±1], direct summands, and isomorphisms. For a two-term

complex T to be presilting, it suffices that HomKΛ
(T, T [1]) = 0. Moreover, for a

presilting two-term complex T to be silting, it suffices that |T | = |Λ| by [AIR14,

Proposition 3.3(b)]. We write 2-siltΛ for the set of (isomorphism classes of) two-

term silting complexes over Λ and ind-2-psiltΛ for the set of (isomorphism classes

of) indecomposable two-term presilting complexes over Λ.

Given two-term silting complexes T, T ′ ∈ K[−1,0](projΛ), we say that T ′ is a mu-

tation of T if and only if T = E⊕X,T ′ = E⊕Y , whereX and Y are indecomposable

with X 6∼= Y .

Adachi, Iyama, and Reiten showed that there was a bijection between ind-2-psiltΛ

and ind-τ -rigid-pairΛ which induced a bijection between 2-siltΛ and sτ -tiltΛ [AIR14,

Theorem 3.2]. Here, if (M,P ) is an indecomposable support τ -rigid pair, then

P−1 ⊕ P → P 0 is a two-term presilting complex, where P−1 → P 0 is a minimal

projective presentation of M .

2.1.3. Preprojective algebras of type A. The algebras we are interested in are the

preprojective algebras of type A, which are defined as follows using quivers and

relations. Preprojective algebras were originally defined by Gel′fand and Ponomarev

[GfP79]. They were subsequently generalised to non-simply-laced types in [GLS17].

The preprojective algebra of An, denoted Πn, has quiver Qn

1 2 3 · · · n− 1 n
α1

β1

α2

β2

α3

β3

αn−2 αn−1

βn−2 βn−1

with relations βiαi = αi+1βi+1 for i ∈ {1, 2, . . . , n− 1}, and α1β1 = βn−1αn−1 = 0.

We compose arrows using the convention
γ
−→

δ
−→= γδ. We denote the idempotent at

vertex i by ei and the indecomposable projective Πn-module at vertex i by Pi. The

module Pi is also the indecomposable injective at vertex n− i+ 1.

In order to study the τ -tilting theory of Πn, it will be useful to introduce a

particular quotient of it. We let

z =

n−1∑

i=1

αiβi

in Πn. This is a central element of Πn. We define

Πn = Πn/〈z〉.

Then Πn is the quotient of Πn by the ideal generated by all two-cycles. That

is, Πn = Πn/I, where I = 〈αiβi, βiαi | i ∈ {1, 2, . . . , n − 1}〉. This algebra was

considered in [EJR18, BCZ19, DIR+17]. Denote by P i the projective Πn-module

at vertex i. By [EJR18, Theorem 11], the functor −⊗Πn
Πn : KΠn

→ KΠn
induces

a bijection 2-siltΠn → 2-siltΠn. Given a two-term silting complex P • of Πn, we

write P
•

for the corresponding two-term silting complex over Πn.

2.1.4. g-vectors. Let P • = P−1 → P 0 be a two-term complex over projectives over

Πn, where P 0 =
⊕n

i=1 P
ri
i and P−1 =

⊕n
i=1 P

si
i . Then the g-vector of P • is

gP
•

:= (r1 − s1, r2 − s2, . . . , rn − sn).
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Note that this is the class of P • in the Grothendieck groupK0(KΠn
) = K0(projΠn),

identified with Z
n. Given a τ -rigid pair (M,P ), we define g(M,P ) := gP

•

where

P • is the corresponding two-term presilting complex. It is known that two-term

presilting complexes and support τ -rigid pairs are uniquely determined by their

g-vectors [AIR14, Theorem 5.5].

2.1.5. Relation with permutations. It was shown in [Miz14] (see also [BIRS09]) that

support τ -tilting modules over Πn were in bijection with permutations in Sn+1.

This was generalised to non-simply-laced types in [FG19, Mur22]. The bijection

is constructed as follows. Define Ii := Πn(1 − ei)Πn, the principal two-sided ideal

of Πn generated by (1 − ei). Then, for w ∈ Sn+1 with reduced expression w =

si1si2 . . . sik , define

Iw = Ii1Ii2 . . . Iik .

The map w 7→ Iw then defines a bijection from Sn+1 to the support τ -tilting

modules over Πn. In the case w = e, the identity permutation, the corresponding

support τ -tilting module is the regular module Πn. We write Pw for the projective

module Pw such that (Iw, Pw) is a support τ -tilting pair.

Convention 2.1. We shall use the convention that the base set for the symmet-

ric group Sn+1 is {0, 1, . . . , n} and that the simple reflection si is given by the

transposition (i− 1 i).

2.2. Convex polytopes. We now give background on the side of the paper con-

cerning triangulations of the prism ∆n ×∆1.

2.2.1. Prisms of simplices. We now explain the relevant background on prisms of

simplices, following [DLRS10, Section 6.2.1]. The prism of the n-simplex ∆n is

the polytope ∆n × ∆1. The particular geometric realisation of this polytope is

not important for the results of this paper, but for the sake of clarity, we take

∆n × ∆1 to be the convex hull of the points given by the column vectors of the

(n+ 3)× (2n+ 2) matrix













1 0 . . . 0 1 0 . . . 0

0 1 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 1 0 0 . . . 1

1 1 . . . 1 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1














.

We label the points given by the first n+1 columns of this matrix by a0, a1, . . . , an

and the points given by the last n + 1 columns by b0, b1, . . . , bn. We write V =

{a0, a1, . . . , an, b0, b1, . . . , bn} for the set of vertices of the prism ∆n × ∆1. One

can specify k-simplices in the prism ∆n ×∆1 by giving subsets of V of size k + 1,

provided the chosen vertices are affinely independent. An internal k-simplex is one

which does not lie in the boundary of ∆n ×∆1. We write int-simn(∆n ×∆1) for

the set of internal n-simplices of ∆n ×∆1.
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2.2.2. Triangulations. We again follow [DLRS10]. A polyhedral subdivision S of

∆n ×∆1 is a set of (n+ 1)-dimensional convex polytopes {L1, . . . , Lr} such that

•
⋃r

i=1 Li = ∆n ×∆1 and

• Li ∩ Lj is a face of both Li and Lj for all i, j.

A polyhedral subdivision T is a triangulation if Li is a simplex for every i. We

write tri(∆n ×∆1) for the set of triangulations of ∆n ×∆1.

One polyhedral subdivision S = {L1, L2, . . . , Lr} refines another polyhedral sub-

division S ′ = {L′
1, L

′
2, . . . , L

′

r′} if for every Li we have Li ⊆ L′
j for some j, and

S 6= S ′. A polyhedral subdivision is an almost triangulation if all of its refinements

are triangulations. Two triangulations T and T ′ are related by a bistellar flip if

there is an almost triangulation S whose only two refinements are T and T ′.

Remark 2.2. Bistellar flips are the generalisation of the operation of flipping a

diagonal inside a quadrilateral in a triangulated convex polygon. Here, the almost

triangulation is given by a subdivision consisting of triangles and one quadrilateral.

The two triangulations of the quadrilateral then give the two refinements of this

subdivision which are the triangulations related by a bistellar flip.

A circuit of ∆n × ∆1 is a pair (Z,Z ′) of two disjoint vertex subsets Z and Z ′

such that conv(Z)∩conv(Z ′) 6= ∅ and such that Z and Z ′ are minimal with respect

to this property. Here ‘conv’ denotes the convex hull. The circuits of ∆n ×∆1 are

given by ({ai, bj}, {aj, bi}) for i 6= j.

2.2.3. Relation with permutations. Triangulations of ∆n×∆1 are in bijection with

permutations in the symmetric group Sn+1, as shown in [GKZ94, Chapter 7, Sec-

tion 3C]. Indeed, for a permutation w = i0i1 . . . in ∈ Sn+1, we have that

{{ai0 , . . . , aij , bij , . . . , bin} | 0 6 j 6 n}

is the set of (n+1)-simplices of the corresponding triangulation, and all triangula-

tions of ∆n ×∆1 arise in this way. For a permutation w ∈ Sn+1, we write Tw for

the corresponding triangulation of ∆n ×∆1.

3. Results

In this section, we show our main result that there is a bijection between the

sets ind-2-psiltΠn of indecomposable two-term presilting complexes over Πn and

int-simn(∆n × ∆1) of internal n-simplices in ∆n × ∆1 which induces a bijection

between the sets 2-siltΠn of two-term silting complexes over Πn and tri(∆n ×∆1)

of triangulations of ∆n ×∆1.

3.1. Bijection for simplices. We begin by showing the first bijection. We write

seqn+1(a, b) := {a, b}
n+1 \ {an+1, bn+1}

for the set of words of length n + 1 in the alphabet {a, b} which use both letters.

Recall that a facet of a polytope is a face of codimension one.

Lemma 3.1. There is a bijection between int-simn(∆n ×∆1) and seqn+1(a, b).
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Proof. Clearly {a0, a1, . . . , an} and {b0, b1, . . . , bn} both correspond to facets of

∆n×∆1. Furthermore, V \{ai, bi} corresponds to a facet of ∆n×∆1 for all i, since

it is the Cartesian product of a facet of ∆n with ∆1. Thus, an internal n-simplex in

∆n×∆1 is given by choosing ai or bi for each i, excluding the cases {a0, a1, . . . , an}

and {b0, b1, . . . , bn}. Such a set of vertices is, moreover, affinely independent, and so

indeed has an n-simplex as its convex hull. Hence, internal n-simplices in ∆n×∆1

correspond bijectively to words of length n + 1 in the alphabet {a, b} which use

both letters. �

Given X ∈ seqn+1(a, b), we write ∆X for the corresponding internal n-simplex

in int-simn(∆n ×∆1).

Proposition 3.2. The sets int-simn(∆n ×∆1) and ind-τ-rigid-pairΠn are in bijec-

tion with each other. Moreover, the sets int-simn(∆n ×∆1) and ind-2-psiltΠn are

also in bijection with each other.

Proof. We argue in terms of indecomposable τ -rigid pairs. It follows from [Miz14]

that the indecomposable τ -rigid modules over Πn correspond to submodules of

indecomposable injectives—see also [IRRT18]. Thus, the indecomposable τ -rigid

modules with socle i correspond to Young diagrams lying in an (n+1− i)× i grid,

rotated so that the north-west corner of the Young diagram is lying at the bottom.

Such Young diagrams are determined by the path given by their upper contour.

Let us label upwards steps in the path by a and downwards steps in the path by b

and orient the paths from left to right. Such Young diagrams correspond to words

in the alphabet {a, b} with i ‘b’s and n+1−i ‘a’s, such that at least one ‘a’ precedes

a ‘b’. This can be seen in Example 3.4 and Figure 1.

We associate the shifted projective with top i to the word given by i ‘b’s followed

by n+1−i ‘a’s. Such a word gives an empty Young diagram, and so is not included

in the words corresponding to the τ -rigid modules.

We obtain that the indecomposable τ -rigid pairs over Πn are in bijection with

seqn+1(a, b), and so are in bijection with the internal n-simplices in ∆n × ∆1 by

Proposition 3.1.

By [AIR14], we obtain the second statement. �

Given a indecomposable τ -rigid pair (M, 0), we write word(M, 0) for the corre-

sponding word in the alphabet {a, b}, usually abbreviating this to word(M). We

do likewise for word(0, P ).

Remark 3.3. In [IRRT18], it was shown that join-irreducible permutations in Sn+1

were in bijection with τ -rigid modules over Πn. The bijection between τ -rigid

modules and seqn+1(a, b) \ {b
kan+1−k | 1 6 k 6 n} gives a neat way of seeing this.

Indeed, the join-irreducible permutations are the ones with precisely one descent.

That is, if the permutation is i0i1 . . . in ∈ Sn+1, there is some l ∈ {1, 2, . . . , n} such

that

i0 < · · · < il−1 > il < · · · < in.

Such a permutation corresponds to the internal n-simplex ∆X in ∆n × ∆1 with

word X = x0x1 . . . xn where xij = a for j ∈ {0, 1, . . . , l− 1} and xij = b otherwise.
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Figure 1. Indecomposable τ -rigid pairs for Π2

1

2a

a b

1

2a b a

1

2

b a

a

[1]

1

2

a b

b

1

2

b a b

1

2

b

b a

[1]

This then gives a τ -rigid module via Proposition 3.2. Note that the words bkan+1−k

corresponding to shifted projectives do not arise via this construction, since il−1 > il

guarantees that at least one ‘a’ entry lies to the right of a ‘b’ entry.

Example 3.4. We give the example of the indecomposable τ -rigid pairs of Π2, as

shown in Figure 1. We use [1] to denote the indecomposable τ -rigid pairs of the

form (0, P ). The words baa and bba correspond to the indecomposable τ -rigid pairs
(

0,
1
2
)

and

(

0,
2
1
)

.

The internal 2-simplices in ∆2×∆1 are shown in Figure 2. These internal 2-simplices

are in the same position in the figure as their corresponding indecomposable τ -rigid

pairs in Figure 1.

Proposition 3.5. Given a τ-rigid pair (M,P ) of Πn corresponding to an internal

n-simplex x0x1 . . . xn in ∆n×∆1, the g-vector g(M,P ) = (g1, g2, . . . , gn) has entries

gi =







1 if xi−1xi = ab,

−1 if xi−1xi = ba,

0 otherwise.

Proof. Consider an indecomposable τ -rigid module M over Πn with its dimension

vector displayed as in Figure 1. Let P−1 → P 0 be the projective presentation of M .

The indecomposable projective with top i is a direct summand of P 0 if and only if i

is a peak in the upper contour of M . Similarly, the indecomposable projective with
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Figure 2. Internal 2-simplices in ∆2 ×∆1

a0

a1

a2

b0

b1

b2

a0

a1

a2

b0

b1

b2

a0

a1

a2

b0

b1

b2

a0

a1

a2

b0

b1

b2

a0

a1

a2

b0

b1

b2

a0

a1

a2

b0

b1

b2

top i is a direct summand of P−1 if and only if i is a trough of the upper contour

of M . Since peaks in the upper contour correspond to ba and troughs correspond

to ab, we obtain the result. �

Remark 3.6. Proposition 3.5 gives the g-vector of the indecomposable two-term

silting complex P−1 → P 0 corresponding to an internal n-simplex in ∆n × ∆1,
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and so gives the indecomposable summands of P−1 and P 0. The map P−1 → P 0

can then be described as follows. If the indecomposable summands of P−1 are

Pi1 , Pi2 , . . . , Pil , then P0 must either have l − 1, l, or l + 1 summands. The three

cases behave quite similarly. If P 0 has l + 1 summands Pj1 , . . . , Pjl+1
, then

j1 < i1 < j2 < i2 < · · · < jl < il < jl+1.

Moreover, the component of the map from P−1 → P 0 from Pir to Pjs is zero unless

s ∈ {r, r + 1}, in which case, the component is the map Pir → Pjs which has as

large an image as possible. Such a map is unique up to scalar.

One can therefore use Proposition 3.5 to construct the bijection between the

sets ind-2-psiltΠn and seqn+1(a, b) directly, without using Proposition 3.2. We

also write word(P •) for the word corresponding to an indecomposable two-term

presilting complex P •.

3.2. Representation theory of Πn. In this section, we give some results describ-

ing the representation theory of Πn combinatorially, which will then be used to

prove the relation between Πn and triangulations of ∆n × ∆1. We first note the

following.

Lemma 3.7. Every indecomposable Πn-module is τ-rigid.

Proof. We have from [BCZ19, Proposition 4.1.2] that every indecomposable Πn-

module is a brick, meaning that every non-zero endomorphism is an isomorphism.

It follows from [DIJ19, Theorem 4.1] that every indecomposable Πn-module must

also be τ -rigid, since Πn is representation-finite by [BCZ19, Proposition 4.1.]. �

The indecomposable τ -rigid pairs over Πn can be described in a way analogous

to those of Πn [DIR+17].

Lemma 3.8. There is a bijection between ind-2-psiltΠn, ind-τ-rigid-pairΠn, and

seqn+1(a, b), given in the same way as in Proposition 3.2 and Proposition 3.5.

Proof. This bijection follows from Proposition 3.5 and [EJR18, Theorem 11], which

says that the g-vectors of indecomposable presilting complexes for Πn must be the

same as those for Πn. The bijection between seqn+1(a, b) and ind-τ -rigid-pairΠn

then follows from [AIR14], and it is clear that it can be constructed in a similar

way to Proposition 3.2. �

For indecomposable τ -rigid Πn-modules M and indecomposable presilting com-

plexes P
•

over Πn, we write word(M) and word(P
•

) for the corresponding words

in seqn+1(a, b), as we do with Πn.

Example 3.9. Consider the Π6-module M given by

5
4 6

1 3
2

.
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Then word(M) = aabbbab, using Lemma 3.8 and Proposition 3.2. Furthermore,

using Lemma 3.8 and Proposition 3.5, the projective presentation of M is given by

P 5 → P 2 ⊕ P 6.

Similarly, the Π6-module N given by

3
2 4

has word word(N) = bababaa and projective presentation P 1⊕P 3⊕P 5 → P 2⊕P 4.

The following criterion for identifying the support of an indecomposable Πn-

module from its word is very useful.

Lemma 3.10. An indecomposable Πn-module M with word(M) = x0x1 . . . xn is

supported at vertex j if and only if there exist i and k such that i 6 j < k such that

xi = a and xk = b.

Proof. It suffices to note that the composition factors of M always form an interval

[i+1, k] in [n] and that the first of these composition factors i+1 will occur when

xi is the first occurrence of ‘a’ and the last composition factor k will occur when

xk is the last occurrence of ‘b’. Before the first occurrence of ‘a’ and after the

first occurrence of ‘b’, the contour of the module M will go along the boundary of

the Young diagram, and so M will not be supported at the corresponding simple

module. Between these occurrence, the contour of M never reaches the boundary

of the Young diagram again, so M is supported at all of the simples. �

We can describe the Auslander–Reiten translate over Πn. This can also be seen

from the interpretation of the Auslander–Reiten translate for string algebras in

terms of adding and removing hooks and cohooks from [BR87].

Lemma 3.11. Let M be an indecomposable non-projective Πn-module with

word(M) = ar b w a bs,

where w is some arbitrary, possibly empty, subword, and possibly r = 0 and possibly

s = 0. Then

word(τM) = br aw b as.

Proof. Let P−1 → P 0 →M → 0 be the projective presentation of M . Then there

is an exact sequence 0 → τM → νP−1 → νP 0. Note that ν sends a projective

at a given vertex to the injective at the same vertex. Hence, τM has an injective

presentation by the injectives at the same vertices as the projectives in the projective

presentation ofM . Using the dual of Lemma 3.8, we conclude that the lower contour

of τM is given by word(M). Hence, word(τM) is obtained from word(τM) as shown

in Figure 3, which establishes the result. (The cases where only one of r and s is

non-zero are easily extrapolated from those shown in the figure.) �

Example 3.12. We give an example where we compute the Auslander–Reiten

translate of an indecomposable Πn-module. We consider the Π5-module M given

by

1 3
2 4

.
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Figure 3. Illustration of Lemma 3.11

a a

b b

w

war

br

bs

as

r 6= 0 and s 6= 0 case

a a

b b
w

w

r = 0 and s = 0 case

Figure 4. Illustration of Example 3.12

1

2

3

4

3

4

5

Then word(M) = aababa, so word(τM) = bbaabb. Hence τM is the module

3 5
4
.

This can be visualised in Figure 4.

The following description of submodules and factor modules of indecomposable

Πn-modules is key. Here,

X = u
i

bv

means that b = xi, where X = x0 . . . xn. We use Π[i+1,j] to denote the algebra Πj−i

with the vertex set given by [i+ 1, j] := {i+ 1, i+ 2, . . . , j}, in the natural way.

Lemma 3.13. Let M be an indecomposable Πn-module. Then M has a submodule

supported on the vertices {i+1, . . . , j} if and only if one of the following four cases

hold.

(1) word(M) = bs a u
i

b w
j
a v b ar, where possibly r = 0 or s = 0.

(2) word(M) = bi
i
aw

j
a v b ar, where possibly r = 0 or i = 0.

(3) word(M) = bs a u
i

b w
j

b an−j, where possibly s = 0 or j = n.

(4) word(M) = bi
i
aw

j

b an−j, where possibly i = 0 or j = n.

In each case, if L is the Π[i+1,j]-module corresponding to the Πn-submodule of M ,

then word(L) = awb. Note that w is possibly empty, as are u and v.

Dually, M has a factor module supported on the vertices {i + 1, . . . , j} if and

only if one of the following four cases hold.
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(1) word(M) = bs a u
i
aw

j

b v b ar, where possibly r = 0 or s = 0.

(2) word(M) = bi
i
aw

j

b v b ar, where possibly r = 0 or i = 0.

(3) word(M) = bs a u
i
aw

j

b an−j, where possibly s = 0 or j = n.

(4) word(M) = bi
i
aw

j

b an−j, where possibly i = 0 or j = n.

In each case, if N is the Π[i+1,j]-module corresponding to the Πn-submodule of M ,

then word(N) = awb. Again, w is possibly empty, as are u and v; and possibly

r = 0 or s = 0.

Proof. We focus on the submodule case. The four cases correspond as follows.

(1) i 6= 0 and j 6= n and M is supported on i and j + 1.

(2) i = 0 or M is not supported on i, but j 6= n and M is supported on j + 1.

(3) i 6= 0 and M is supported at i, but j = n or M is not supported on j + 1.

(4) i = 0 or M is not supported at i, and j = n or M is not supported at j+1.

These cases are clearly exhaustive. We deal with them one by one. We let

word(M) = x0x1 . . . xn.

Case (1): It follows from Lemma 3.10 that if M is supported on i and j + 1,

then ‘a’ must occur before i and ‘b’ must occur after j. Since the vector subspace

L of M supported on {i+ 1, . . . , j} is a submodule, then we must have xi = b and

xj = a if L is to be closed under the action of Πn.

Case (2): As in case (1), we conclude that ‘b’ occurs after j, and that xj = a. If

i = 0, then s = 0; moreover, x0 = xi = a by Lemma 3.10, since M is supported on

i+1 by assumption. If i 6= 0, then, since M is not supported on i, by Lemma 3.10,

we must have that x0 . . . xi−1 = bi.

Cases (3) and (4) can be shown in a similar way to case (2). In all cases, we

have that word(L) = awb by Lemma 3.10, since L is sincere by assumption, and

must have the shape prescribed by the word w.

The dual cases concerning a factor module of M follow similarly. Case (1) is

straightforwardly dual. In case (2), one can reason that x0 . . . xi = bia in the same

way to in the submodule case. Showing that xj . . . xn = vbas is then done in the

same way as in the factor module case (1). The remaining cases can be done in an

analogous way. �

We can now prove a criterion for non-vanishing of HomΠn
(N, τM) 6= 0 for inde-

composable Πn-modules M and N .

Lemma 3.14. Let M and N be indecomposable Πn-modules with word(M) =

x0x1 . . . xn and word(N) = y0y1 . . . yn. Then HomΠn
(N, τM) 6= 0 if and only

if there exist i and j such that xi = b, xj = a, yi = a, and yj = b.

Proof. First note that if M is projective, then τM = 0, so HomΠn
(N, τM) = 0. In

this case, word(M) = albn−l+1 for some l ∈ {1, 2, . . . , n}, so it is clear that there

can be no i < j with xi = b and xj = a.

Excluding the case where M is projective, we have that HomΠn
(N, τM) 6= 0

if and only if there is a non-zero factor module of N which is a submodule of
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τM , namely the image of the non-zero map. Hence, this is the case if and only if

word(τM) falls into one of the submodule cases of Lemma 3.13 and word(N) falls

into one of the factor module cases. Hence, there exist i and j such that yi = a

and yj = b, whilst word(τM) falls into one of the following cases.

(1) word(τM) = bs a u
i

b w
j
a v b ar, where possibly s = 0 or r = 0.

(2) word(τM) = bi
i
aw

j
a v b ar, where possibly i = 0 or r = 0.

(3) word(τM) = bs a u
i

b w
j

b an−j , where possibly s = 0 or j = n.

(4) word(τM) = bi
i
aw

j

b an−j , where possibly i = 0 or j = n.

Applying Lemma 3.11, we have these four cases holds if and only if the correspond-

ing one of the following four options hold for word(M).

(1) word(M) = as b u
i

b w
j
a v a br, where possibly s = 0 or r = 0.

(2) word(M) = ai
i

bw
j
a v a br, where possibly i = 0 or r = 0.

(3) word(M) = as b u
i

b w
j
a bn−j , where possibly s = 0 or j = n.

(4) word(M) = ai
i

bw
j
a bn−j , where possibly i = 0 or j = n.

Thus, if any of these four cases hold, then we have xi = b and xj = a.

Conversely, if we have xi = b, xj = a, yi = a, and yj = b, then we can choose i

and j as close together as possible. It follows that xi . . . xj = bwa and yi . . . yj = awb

for some common, possibly empty, subword w, otherwise we can find some i and

j closer together. Then word(M) must lie in one of the cases above and word(N)

must lie in one of the factor module cases in Lemma 3.13. One can then apply

Lemma 3.11 and the logic runs backwards. �

The proof is related to the description of maps between string modules in [CB89].

3.3. Bijection for triangulations. The next result shows how extensions between

indecomposable presilting complexes are encoded in the words of the corresponding

internal n-simplices.

Proposition 3.15. Suppose that P • and Q• are indecomposable two-term presilting

complexes over Πn, where word(P •) = X = x0x1 . . . xn and word(Q•) = Y =

y0y1 . . . yn. Then HomKΠn
(P •, Q•[1]) 6= 0 if and only if there exist i and j with

i < j such that xi = b, xj = a, yi = a, and yj = b.

Proof. By [EJR18, Theorem 11], we have that HomKΠn
(P •, Q•) 6= 0 if and only

if HomK
Πn

(P
•

, Q
•

) 6= 0, so we reason in terms of Πn instead. Let (M,M ′) and

(N,N ′) be the indecomposable τ -rigid pairs over Πn corresponding to P
•

and Q
•

.

We first deal with the cases where either M = 0 or N = 0. If N = 0, then

Q
•

= (Q
−1
→ 0) and Y = bkan+1−k. Then HomK

Πn
(P

•

, Q
•

[1]) = 0 and there can

be no i < j with yi = a and yj = b, which solves this case.

If M = 0 and N 6= 0, then, by [AIR14], we have that HomK
Πn

(P
•
, Q

•
) 6= 0

if and only if HomΠn
(M ′, N) 6= 0. We have that M ′ = P k for some k. Hence

HomΠn
(M ′, N) 6= 0 if and only if N is supported at the vertex k, which is the

case if and only if there exist i 6 k < j such that yi = a and yj = b. Since

X = word(0, P k) = bkan+1−k, we have that xi = b and xj = a, as desired.
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We can now assume that M ′ = 0 and N ′ = 0, so that HomKΠn
(P

•

, Q
•

) 6= 0 if

and only if HomK
Πn

(N, τM) 6= 0. By Lemma 3.14, this is the case if and only if

there exist i and j with i < j such that xi = b, xj = a, yi = a, and yj = b. �

This proposition therefore gives a simple criterion for the existence of an exten-

sion between indecomposable presilting complexes over Πn and Πn.

Corollary 3.16. Suppose that P • and Q• are indecomposable two-term presilting

complexes over Πn corresponding to internal n-simplices ∆X and ∆Y in ∆n ×∆1.

Then P • ⊕ Q• is presilting if and only if ∆X and ∆Y do not intersect in their

interiors.

Proof. The circuits of ∆n×∆1 correspond to ({ai, bj}, {aj, bi}) where i 6= j. These

are crossing diagonals in the face {ai, aj , bi, bj} of ∆n × ∆1. Since internal n-

simplices ∆x0x1...xn
and ∆y0y1...yn

intersect in their interiors precisely if each con-

tains one half of a circuit, we obtain that these simplices intersect if and only if

there exist i and j such that xi = yj = a and xj = yi = b. The result then follows

by Proposition 3.15. �

Corollary 3.17. There are bijections between tri(∆n×∆1), 2-siltΠn, and sτ-tiltΠn.

Proof. It follows from [AIR14, Proposition 3.3] and [Aih13] that two-term silting

complexes over Πn are precisely two-term presilting complexes over Πn with n

non-isomorphic indecomposable summands. Hence, by Proposition 3.2 and Propo-

sition 3.15, we have that two-term silting complexes over Πn correspond to col-

lections of n internal n-simplices in ∆n × ∆1 which do not intersect each other’s

interiors. It follows from [GKZ94, Chapter 7, Proposition 3.10(a)] that triangula-

tions of ∆n×∆1 correspond to sets of n internal n-simplices which do not intersect

each other’s interiors. �

Given a support τ -tilting pair (M,P ) over Πn, we write T (M,P ) for the corre-

sponding triangulation of ∆n×∆1. Likewise, we write T (P
•) for the triangulation

of ∆n ×∆1 corresponding to a two-term silting complex P • over Πn.

Example 3.18. In each row of Figure 5, we show a support τ -tilting pair over Π2, a

two-term silting complex over Π2, a permutation in S3, a pair of three-letter words

in the alphabet {a, b}, and a triangulation of ∆2 ×∆1, all of which correspond to

each other under the bijections.

Proposition 3.19. Under the bijection between 2-siltΠn and tri(∆n ×∆1), muta-

tions of two-term silting complexes correspond to bistellar flips of triangulations.

Proof. Since two-term silting complexes are related by mutation if and only if they

differ by only one indecomposable summand, it follows from Corollary 3.17 that

two silting complexes are related by a mutation if and only if the corresponding

triangulations differ by only one codimension one internal simplex. In turn, it is

then true that two triangulations T and T ′ are bistellar flips of each other if and only

if they differ by an internal n-simplex. Indeed, if T and T ′ are two triangulations,
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Figure 5. Support τ -tilting pairs, two-term silting complexes,

permutations, words, and triangulations of ∆2 ×∆1
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with S the subdivision given by their common internal n-simplices, then S is an

almost triangulation if and only if it contains n− 1 internal n-simplices. �

3.4. Compatibility with permutations. In this section, we show that our bijec-

tion between the support τ -tilting pairs sτ -tiltΠn and triangulations tri(∆n ×∆1)

is compatible with the existing bijections between Sn+1 and sτ -tiltΠn and between

Sn+1 and tri(∆n ×∆1).

Proposition 3.20. For all w ∈ Sn+1, we have that T (Iw , Pw) = Tw.

Proof. We show this by induction on the length of w. The base case is the identity

permutation e. We have that Te has (n+ 1)-simplices

{{a0, . . . , aj , bj , . . . , bn} | 0 6 j 6 n}.

The internal n-simplices of this triangulation are

{{a0, . . . , aj , bj+1, . . . , bn} | 0 6 j < n}.

We have that (Ie, Pe) = (Πn, 0), and by Proposition 3.2, the word corresponding

to the indecomposable projective Pj is

a . . . a
︸ ︷︷ ︸

j

b . . . b
︸ ︷︷ ︸

n−j

.

These are the words of the internal n-simplices of Te, so we have Te = T (Ie, Pe).

We now suppose that we have w ∈ Sn+1 such that w = w′si for some i, so

that Iw = Iw′Ii. Hence, Iw is obtained from Iw′ by removing composition fac-

tors in the top given by Si, the simple Πn-module at the vertex i. Given an

indecomposable summand M ′ of Iw′ , we have, by Proposition 3.5 that Si oc-

curs in the top of M ′ if and only if xi−1xi = ab for word(M ′) = x0x1 . . . xn.

Then, if M is the corresponding indecomposable summand of Iw , we have that

word(M) = x0x1 . . . xi−2baxi+1 . . . xn.

On the other hand, considering the permutations, if we let w′ = k0 . . . kj−1(i −

1)kj+1 . . . kl−1ikl+1 . . . kn, then w = k0 . . . kj−1ikj+1 . . . kl−1(i− 1)kl+1 . . . kn. Note

that, by assumption, we have j < l, since the length of w is greater than the length

of w′. Using the description of Tw and Tw′ from Section 2.2.3, we have that if

X = x0x1 . . . xn is the word of a simplex in Tw′ , then ∆X is a simplex of Tw too

if and only if xi−1xi = aa or xi−1xi = bb. Furthermore, if xi−1xi = ab, then

x0 . . . xi−2baxi+1 . . . xn is the word of a simplex in Tw. The case xi−1xi = ba is not

possible since i−1 precedes i in w. Comparing with the previous paragraph, we see

that the summands of (Iw′ , Pw′) which change to give (Iw, Pw) correspond to the

internal n-simplices of Tw′ which change to give Tw. Moreover, the change in the

words of the simplices corresponds precisely to the change in the upper contours

of the summands of the τ -tilting pair. Hence, we obtain that T (Iw , Pw) = Tw and

the result follows by induction. �

Remark 3.21. Note that our results therefore also give a different way of obtaining

the support τ -tilting pair over Πn corresponding to a permutation in Sn+1 to the

description from [Miz14]. Namely, given a permutation, one uses the description
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of the corresponding triangulation of ∆n × ∆1 from Section 2.2.3 to obtain a set

of words in seqn+1(a, b). One then uses Proposition 3.2 to translate this into a

support τ -tilting pair over Πn by using these words to give the upper contours of

the indecomposable τ -rigid summands. This does not require a reduced expression

for the permutation, whereas the description from [Miz14] does.
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