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THE FIRST HIGHER STASHEFF–TAMARI ORDERS ARE

QUOTIENTS OF THE HIGHER BRUHAT ORDERS

NICHOLAS J. WILLIAMS

Abstract. We prove the conjecture that the higher Tamari orders of Dimakis

and Müller-Hoissen coincide with the first higher Stasheff–Tamari orders. To

this end, we show that the higher Tamari orders may be conceived as the

image of an order-preserving map from the higher Bruhat orders to the first

higher Stasheff–Tamari orders. This map is defined by taking the first cross-

section of a cubillage of a cyclic zonotope. We provide a new proof that this

map is surjective and show further that the map is full, which entails the

aforementioned conjecture. We explain how order-preserving maps which are

surjective and full correspond to quotients of posets. Our results connect the

first higher Stasheff–Tamari orders with the literature on the role of the higher

Tamari orders in integrable systems.
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1. Introduction

Two of the best known and most widely studied partially ordered sets in mathe-

matics are the Tamari lattice [Tam62] and the weak Bruhat order on the symmet-

ric group. The Tamari lattice appears in a broad range of areas of mathematics,

physics, and computer science [MPS12]. It was introduced by Tamari [Tam62;

HT72] as an order on the set of bracketings of a string. It is the 1-skeleton of

the associahedron, which was famously used by Stasheff in topology to define A∞-

spaces [Sta63]. The weak Bruhat order on the symmetric group was first studied by

statisticians in the 1960s [Sav64; Leh66; YO69] and is now a fundamental part of

Coxeter theory—see [BB05], for example. It furthermore provides a useful frame-

work for studying questions in the theory of social choice [Abe85; Cha89; Abe91;

DKK12]. Both orders also appear in the representation theory of algebras [BK04;

Tho12; Miz14; Iya+18] and the theory of cluster algebras [FZ03; RS16].

These posets have higher-dimensional versions, namely the first higher Stasheff–

Tamari orders S(n, δ) [KV91; ER96] and the higher Bruhat orders B(n, δ + 1)

[MS89a]. These higher posets arise as orders on (equivalence classes of) maximal

chains in the original posets, and then as orders on (equivalence classes of) maximal

chains in those posets, and so on [MS89a; Ram97]. For instance, the elements of

the higher Bruhat order B(n, 2) correspond to reduced expressions for the longest

element in the symmetric group, while the covering relations correspond to braid

moves. In this way, the higher posets encode higher-categorical data latent within

the original posets. Another way of thinking of the higher-dimensional posets is geo-

metrically. The Tamari lattice concerns triangulations of convex polygons, whereas

the first higher Stasheff–Tamari orders concern triangulations of cyclic polytopes;

the weak Bruhat order concerns complexes of edges of hypercubes, whereas the

higher Bruhat orders concern complexes of faces of hypercubes, known as cubil-

lages or fine zonotopal tilings.

The first higher Stasheff–Tamari orders and the higher Bruhat orders have their

own connections with other areas of mathematics. The first higher Stasheff–Tamari

orders occur in the representation theory of algebras [Wil20] and algebraic K-

theory [Pog17]. The higher Bruhat orders were originally introduced to study

hyperplane arrangements [MS89a] and have found application in the theories of

Soergel bimodules [Eli16], quasi-commuting Plücker coordinates [LZ98], and social

choice [GR08]. They are also tightly connected with the quantum Yang–Baxter

equation and its generalisations [DM15, and references therein].

The relation between the Tamari lattice and the weak Bruhat order has been

of significant interest. There is a classical surjection from the latter to the former,

which can be realised as a map from permutations to binary trees. This map arises

in many different places [BW88; BW97; Ton97; LR98; LR02; Rea06]. Kapranov
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and Voevodsky extended this surjection to a map from the higher Bruhat orders to

the first higher Stasheff–Tamari orders f : B(n, δ) → S(n+ 2, δ + 1) [KV91], which

they conjectured was a surjection as well. This remains an open problem despite

some detailed studies [Ram97; Tho03].

In this paper, we consider a closely related map from the higher Bruhat orders

to the first higher Stasheff–Tamari orders g : B(n, δ + 1) → S(n, δ). This map was

first considered as a map of posets in [Tho03], in its dual form, and was itself

considered in [DKK19a, Appendix B]. As a map of sets it was considered and

shown to be surjective in [RS00], using the language of lifting triangulations. We

provide a new proof of surjectivity, and go further by showing that the map is full.

We call order-preserving maps which are both surjective and full quotient maps of

posets.

Theorem A (Theorem 5.3). The map g : B(n, δ + 1) → S(n, δ) is a quotient map

of posets.

Indeed, in this paper we give a new approach to quotients of posets. The quo-

tient of a poset by an arbitrary equivalence relation is not always a well-defined

poset. Previous authors [HS15; CS98; Rea02] have given sufficient conditions for

the quotient to be well-defined which ensure that other structure is also preserved,

such as lattice-theoretic properties. Because the posets we are considering are not

in general lattices [Zie93; Wil20], we instead consider weaker conditions, which are

necessary and sufficient for the quotient to be a well-defined poset. We show that

quotients of posets in this sense correspond to order-preserving maps which are

surjective and full.

Part of the motivation for considering quotient posets in the way that we do stems

from [DM12], where Dimakis and Müller-Hoissen apply an equivalence relation to

the higher Bruhat orders to define the “higher Tamari orders” in order to describe

a class of soliton solutions of the KP equation. In subsequent work [DM15], the

authors make further connections with mathematical physics by using the higher

Tamari orders to define polygon equations, an infinite family of equations which

generalise the pentagon equation. The pentagon equation appears in many different

areas of physics, including the theory of angular momentum in quantum mechanics

[BL81], and conformal field theory [MS89b], as well as several other places [Dri89;

Rog07; FK94]. The polygon equations which generalise the pentagon equation

themselves occur in category theory [KV94; Str98] and as “Pachner relations” in

4D topological quantum field theory [Kas18].

Dimakis and Müller-Hoissen conjectured the higher Tamari orders to coincide

with the first higher Stasheff–Tamari orders. We prove this conjecture by showing

that the higher Tamari orders are given by the image of the map g, as first noted
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in [DKK19a, Appendix B]. We then apply Theorem A; for the two sets of orders to

be equal, it is only necessary for the map g : B(n, δ+1) → S(n, δ) to be a quotient

map of posets in our sense, rather than in any stronger sense. The upshot of our

result is that two far-reaching sets of combinatorics are united. We unite the first

higher Stasheff–Tamari orders, with their connections to the representation theory

of algebras [Wil20], and the higher Tamari orders, which describe classes of KP

solitons [DM12] and from which arise the polygon equations [DM15]. Since the

map g is defined by taking a certain cross-section of a cubillage, our work shows

the connection between [DM12] and the papers [KK21; GPW19], in which KP

solitons are related to cross-sections of three-dimensional cubillages, building on

[KW14; KW13; Hua15]. See also [Gal18; OS19], for more work on cross-sections of

cubillages.

Theorem B (Corollary 5.4). The higher Tamari orders and the first higher

Stasheff–Tamari orders coincide.

Our approach is to use the description of the higher Bruhat orders in terms

of cubillages of cyclic zonotopes and the description of these objects in terms of

separated collections established in [GP17] and studied extensively in [DKK18a;

DKK18b; DKK19a; DKK19b; DKK20]. These tools allow us to construct cubil-

lages which are pre-images under the map g, which is instrumental in the proof of

Theorem A.

This paper is structured as follows. In Section 2, we lay out some notation

and conventions that we use in the paper. We give background on the higher

Bruhat orders and cubillages of cyclic zonotopes in Section 3.1 and on the higher

Stasheff–Tamari orders and triangulations of cyclic polytopes in Section 3.2. In

Section 4 we consider the map g : B(n, δ + 1) → S(n, δ). We give three different

characterisations of this map in Sections 4.1, 4.2, and 4.3, which correspond to the

three different possible interpretations of the higher Bruhat orders. In Section 5,

we lay the necessary groundwork in the theory of quotient posets to make the

statement that g is a quotient map of posets precise. In Section 6 we give a new

proof of the fact that the map g is surjective. We prove in Section 7 that it is full,

and hence a quotient map of posets.

Acknowledgements. This paper forms part of my PhD studies. I would like to

thank my supervisor Professor Sibylle Schroll for her continuing support and atten-

tion. I would also like to thank Mikhail Kapranov for a clarification, Jordan McMa-

hon for helpful comments on an earlier version of this paper, and Hugh Thomas

and Mikhail Gorsky for interesting discussions. I am supported by a studentship

from the University of Leicester.
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2. Terminology and conventions

Here we outline some general terminology and conventions that we use through-

out the paper.

2.0.1. Notation. We use [n] to denote the set {1, . . . , n} and
(
[n]
k

)
to denote the

subsets of [n] of size k. We sometimes refer to such subsets as k-subsets. Given a

set A ⊆ [n] such that #A = k + 1, unless otherwise indicated, we shall denote the

elements of A by A = {a0, . . . , ak}, where a0 < · · · < ak. The same applies to other

letters of the alphabet: the upper case letter denotes the set; the lower case letter

is used for the elements, which are ordered according to their index starting from

0.

2.0.2. Ordering. In this paper, it is convenient for us to consider both the linear

and cyclic orderings of [n]. Unless stated otherwise, it should be assumed that we

refer to the linear ordering on this set.

We denote by (a, b), [a, b] ⊆ [n] respectively the open and closed cyclic intervals.

That is,

(a, b) := {i ∈ [n] | a < i < b is a cyclic ordering},

[a, b] := (a, b) ∪ {a, b}.

The one exception to this is that we will find it convenient to set [a, a − 1] := ∅.

When we have a < b in the linear ordering on [n], we say that [a, b] and (a, b) are

intervals. We call I ⊆ [n] an l-ple interval if it can be written as a union of l

intervals, but cannot be written as a union of fewer than l intervals. We similarly

define cyclic l-ple intervals.

When we refer to the elements ai of a subset A ⊆ [n] with #A = d+ 1, we will

sometimes write i ∈ Z/(d+1)Z to indicate that one should interpret ad+1 as being

equal to a0. That is, if A = {1, 3, 5}, then a0 = 1, a1 = 3, a2 = 5, a3 = 1.

Given a linearly ordered set L and S ⊂ L, we say that an element l ∈ L \ S is

an even gap in S if #{s ∈ S | s > l} is even. Otherwise, it is an odd gap. A subset

S ⊂ L is even if every l ∈ L \ S is an even gap. A subset S ⊂ L is odd if every

l ∈ L \ S is an odd gap.

Let P be a partially ordered set. We say that q covers p in P if p < q and

whenever p 6 r 6 q in P , then r = p or r = q. If q covers p in P then we write

p⋖ q. If P is a finite poset, we have that P is the transitive-reflexive closure of its

covering relations. Hence, in this case one can define P by specifying its covering

relations.

2.0.3. Convex geometry. Recall that a set Γ ⊆ R
δ is convex if, for any x,y ∈ Γ, the

line segment xy between x and y is contained in Γ. Given a set of points Γ ⊆ Rδ,
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the convex hull conv(Γ) is defined to be the smallest convex set containing Γ or,

equivalently, the intersection of all convex sets containing Γ.

A convex polytope is the convex hull of a finite set of points in Rδ. Let ∆ ⊂ Rδ be

a convex polytope. A facet of ∆ is a face of codimension one. The upper facets of

∆ are those that can be seen from a very large positive δ-th coordinate. The lower

facets of ∆ are those that can be seen from a very large negative δ-th coordinate.

A k-face of a polytope is a face of dimension k. A subcomplex of a polytope is a

union of faces of the polytope.

Recall that for Γ,Γ′ ⊆ Rδ, the Minkowski sum of Γ and Γ′ is defined to be

Γ + Γ′ = {x+ y | x ∈ Γ, y ∈ Γ′}.

3. Background

3.1. Higher Bruhat orders. In this section we give the definition of the higher

Bruhat orders. The fundamental definition of the higher Bruhat orders for our

purposes is the description in terms of cubillages of cyclic zonotopes given in [KV91]

and formalised in [Tho03]. After giving this definition, we give the characterisation

of cubillages of cyclic zonotopes established in [GP17] and studied in [DKK18a].

Finally, we explain the original definition of the higher Bruhat orders from [MS89a],

which we will also need.

3.1.1. Cubillages. We first give the geometric description of the higher Bruhat or-

ders due to [KV91; Tho03]. Consider the Veronese curve ξ : R → R
δ+1, given by

ξt = (1, t, . . . , tδ). Let {t1, . . . , tn} ⊂ R with t1 < · · · < tn and n > δ+1. The cyclic

zonotope Z(n, δ + 1) is defined to be the Minkowski sum of the line segments

0ξt1 + · · ·+ 0ξtn ,

where 0 is the origin. The properties of the zonotope do not depend on the exact

choice of {t1, . . . , tn} ⊂ R. Hence, for ease we set ti = i. For k > l we have a

canonical projection map

πk,l : R
k → R

l

(x1, . . . , xk) 7→ (x1, . . . , xl)

which maps Z(n, k) → Z(n, l).

A cubillage Q of Z(n, δ + 1) is a subcomplex of Z(n, n) such that πn,δ+1 : Q →

Z(n, δ+1) is a bijection. Note that Q therefore contains faces of Z(n, n) of dimen-

sion at most δ + 1. We call these (δ + 1)-dimensional faces of Q the cubes of the

cubillage. In the literature, cubillages are often called fine zonotopal tilings—for

example, in [GP17].

After [KV91, Theorem 4.4] and [Tho03, Theorem 2.1, Proposition 2.1] one may

define the higher Bruhat poset B(n, δ + 1) as follows. The elements of B(n, δ + 1)
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consist of cubillages of Z(n, δ + 1). The covering relations of B(n, δ + 1) are given

by pairs of cubillages Q ⋖ Q′ where there is a (δ + 2)-face Γ of Z(n, n) such that

Q \ Γ = Q′ \ Γ and πn,δ+2(Q) contains the lower facets of πn,δ+2(Γ), whereas

πn,δ+2(Q
′) contains the upper facets of πn,δ+2(Γ). Here we say that Q′ is an

increasing flip of Q.

The cyclic zonotope Z(n, δ+1) possesses two canonical cubillages, one given by

the subcomplex Ql of Z(n, n) such that πn,δ+2(Ql) consists of the lower facets of

Z(n, δ+2), which we call the lower cubillage, and the other given by the subcomplex

Qu of Z(n, n) such that πn,δ+2(Qu) consists of the upper facets of Z(n, δ + 2),

which we call the upper cubillage. The lower cubillage of Z(n, δ + 1) gives the

unique minimum of the poset B(n, δ+1), and the upper cubillage gives the unique

maximum.

3.1.2. Separated collections. We now explain how one may characterise cubillages

as separated collections of subsets, as shown in [GP17].

The subsets E ⊆ [n] are naturally identified with the corresponding points ξE :=
∑

e∈E ξe in Z(n, n), where ξ∅ := 0. This represents each vertex of a cubillage

Q as a subset of [n]. For a cubillage Q of Z(n, δ + 1), the collection of subsets

corresponding to its vertices is called the spectrum of Q and is denoted by Sp(Q).

Each cube in Q is viewed as the Minkowski sum of line segments

ξEξE∪{ai}

for some set A with #A = δ+1 and E ⊆ [n] \A. Here we call ξE the initial vertex

of the cube, ξE∪A the final vertex, and A the set of generating vectors.

We say that, given two sets A,B ⊆ [n], A δ-interweaves B if there exist

iδ+1, iδ−1, . . . ∈ B \A and iδ, iδ−2, . . . ∈ A \B such that

i0 < i1 < · · · < iδ+1.

We also say that {iδ+1, iδ−1, . . . } and {iδ, iδ−2, . . . } witness that A δ-interweaves

B. If either A δ-interweaves B or B δ-interweaves A, then we say that A and B

are δ-interweaving. If A δ-interweaves B as above and B \A = {iδ+1, iδ−1, . . .} and

A \ B = {iδ, iδ−2, . . .}, then we say that A tightly δ-interweaves B, in the manner

of [BBG20]. If A and B are not δ-interweaving then we say that A and B are

δ-separated, following [GP17; DKK18a]. We call a collection C ⊆ 2[n] δ-separated

if it is pairwise δ-separated.

If δ = 2d, then being δ-interweaving is the same as being (d + 1)-interlacing in

the terminology of [BBG20] and (d+1)-intertwining in the terminology of [MW20].

We choose new terminology because we wish to have an opposite of δ-separated for

δ odd as well as δ even.
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It follows from [GP17, Theorem 2.7] that the correspondence Q 7→ Sp(Q) gives

a bijection between the set of cubillages on Z(n, δ + 1) and the set of δ-separated

collections of maximal size in 2[n]. In particular, for any cubillage Q of Z(n, δ +

1), we have that #Sp(Q) = Σδ+1
i=0

(
n
i

)
, which is the maximal size of a δ-separated

collection in 2[n].

For A ⊆ [n], if πn,δ+1(ξA) is a boundary vertex of the zonotope Z(n, δ + 1),

then ξA is a vertex of every cubillage of Z(n, δ + 1), and hence A is in every δ-

separated collection in 2[n] of maximal size. Moreover, the subsets A ⊆ [n] such

that πn,δ+1(ξA) is a boundary vertex of the zonotope Z(n, δ+1) are precisely those

subsets which are δ-separated from every other subset of [n]. Hence the subsets of

interest are those which project to the interior of the zonotope Z(n, δ + 1). The

vertices of the zonotope Z(n, δ + 1) are known to be in bijection with the number

of regions of the arrangement of (δ − 1)-spheres associated with the set of points

Ξ = {ξ1, . . . , ξn} on the Veronese curve, see [Bjö+99, Proposition 2.2.2]. Since

no set of δ points of Ξ lie in a linear hyperplane, the number of regions of this

arrangement of (δ − 1)-spheres is the maximal number of

(
n− 1

δ

)
+

δ∑

i=0

(
n

i

)
.

(For instance, see [Com74, Problem 4, p.73].) Hence a cubillage Q of Z(n, δ + 1)

has
δ+1∑

i=0

(
n

i

)
−

((
n− 1

δ

)
+

δ∑

i=0

(
n

i

))
=

(
n− 1

δ + 1

)

vertices which project to the interior of Z(n, δ + 1) if n > δ + 1, and 0 otherwise.

We call a point ξA ∈ Rn an internal point in Z(n, δ + 1) if πn,δ+1(ξA) lies in the

interior of Z(n, δ + 1). We call a vertex ξA of a cubillage Q ⊂ Rn of Z(n, δ + 1)

internal if ξA is an internal point in Z(n, δ+1). Given a cubillage Q of Z(n, δ+1),

we define its internal spectrum ISp(Q) to consist of the elements of Sp(Q) which

correspond to internal vertices of Q.

By [DKK18a, (2.7)], ξA is an internal point in Z(n, δ + 1) if and only if

• δ = 2d and A is a cyclic l-ple interval for l > d+ 1, or

• δ = 2d+ 1 and A is an l-ple interval for l > d+ 2, or a (d+ 1)-ple interval

containing neither 1 nor n.

We will also need the following concepts from [DKK18b]. Given a cubillage Q of

Z(n, δ+1) and a subcomplex M of Q, we say that M is a membrane in Q if M is

a cubillage of Z(n, δ). We say that an edge in a cubillage Q from ξE to ξE∪{i} is an

edge of colour i, where E ⊆ [n] \ {i} is any subset. For a cubillage Q of Z(n, δ+1)

and i ∈ [n], we define the i-pie Πi(Q) to be the subcomplex of Q given by all the

cubes which have an edge of colour i. In [Zie95, Chapter 7], the i-pie is called the

i-th zone.
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Figure 1. 4-contraction
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By [DKK18a; GP17], we can obtain a cubillage Q/i from Q by contracting the

edges of colour i until they have length zero. The cubillage Q/i is known as the

i-contraction of Q. The image of the n-pie Πn(Q) is a membrane in Q/n, but this is

not in general true for 1 < i < n, by [DKK18a, (4.4)]. An example of 4-contraction

is shown in Figure 1. Here the 4-pie is shown in red on the left-hand cubillage,

and this is contracted to zero in the right-hand cubillage, where its image is a

membrane. Note that here we are illustrating cubillages of Z(4, 2) and Z(3, 2) by

their images under the projection maps π4,2 and π3,2 respectively. We will always

illustrate cubillages in this way.

3.1.3. Admissible orders. The original definition of the higher Bruhat orders from

[MS89a] is as follows. Given A ∈
(
[n]
δ+2

)
, the set

P (A) =

{
B
∣∣∣ B ∈

(
[n]

δ + 1

)
, B ⊂ A

}

is called the packet of A. The set P (A) is naturally ordered by the lexicographic

order, where P (A) \ ai < P (A) \ aj if and only if j < i.

An ordering α of
(
[n]
δ+1

)
is admissible if the elements of any packet appear in

either lexicographic or reverse-lexicographic order under α. Two orderings α and

α′ of
(
[n]
δ+1

)
are equivalent if they differ by a sequence of interchanges of pairs of

adjacent elements that do not lie in a common packet. Note that these interchanges

preserve admissibility. We use [α] to denote the equivalence class of α.

The inversion set inv(α) of an admissible order α is the set of all (δ+2)-subsets

of [n] whose packets appear in reverse-lexicographic order in α. Note that inversion

sets are well-defined on equivalence classes of admissible orders.
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The higher Bruhat poset B(n, δ + 1) is the partial order on equivalence classes

of admissible orders of
(
[n]
δ+1

)
where [α] ⋖ [α′] if inv(α′) = inv(α) ∪ {A} for A ∈

(
[n]
δ+2

)
\ inv(α).

One can explain the bijection between cubillages of Z(n, δ + 1) and admissible

orders on
(
[n]
δ+1

)
. Let Q be a cubillage of Z(n, δ+1) corresponding to an equivalence

class [α] of admissible orders on
(
[n]
δ+1

)
. It follows from [Tho03] that the cubes of

Q are in bijection with the elements of
(
[n]
δ+1

)
via sending a cube to its set of

generating vectors. A packet which can be inverted corresponds to a set of lower

facets of πn,δ+2(Γ), where Γ is a (δ + 2)-face Γ of Z(n, n). Inverting the packet

corresponds to an increasing flip: exchanging the lower facets of πn,δ+2(Γ) for its

upper facets.

Hence, a cubillage Q of Z(n, δ+1) is determined once, for every element of
(
[n]
δ+1

)
,

one knows the initial vertex of the cube with that set of generating vectors. Let α

be an admissible order of
(
[n]
δ+1

)
corresponding to a cubillage Q of Z(n, δ + 1) and

let ∆ be the cube of Q with set of generating vectors I and initial vertex ξE . Then,

given e ∈ [n] \ I, we have that e ∈ E if and only if either

• I ∪ {e} /∈ inv(α) and e is an odd gap in I, or

• I ∪ {e} ∈ inv(α) and e is an even gap in I.

This follows from [Tho03, Theorem 2.1] if one swaps the sign convention for δ + 1

odd. This makes the statement simpler and reveals connections with the paper

[DM12], as we explain in Section 4.3. An analogous statement was shown for more

general zonotopes in [GPW19, Lemma 5.13].

Conversely, given a cubillage Q of Z(n, δ+1), one can determine an equivalence

class of admissible orders of
(
[n]
δ+1

)
. Define a partial order on the cubes of the

cubillage Q by ∆⋖∆′ if πn,2d+1(∆) ∩ πn,2d+1(∆
′) is an upper facet of πn,2d+1(∆)

and a lower facet of πn,2d+1(∆
′). The linear extensions of this partial order then

comprise the admissible orders in the equivalence class [α] corresponding to Q, by

[Zie93, Lemma 2.2] and [MS89a; Tho03].

3.2. Higher Stasheff–Tamari orders. In this section we give the definition of

the first higher Stasheff–Tamari orders. These were originally defined by Kapra-

nov and Voevodsky under the name the higher Stasheff orders in the context of

higher category theory [KV91, Definition 3.3]. This was built upon by Edelman

and Reiner, who introduced the first and second higher Stasheff–Tamari orders in

[ER96]. Thomas later proved that the first higher Stasheff–Tamari orders were the

same as the higher Stasheff orders of Kapranov and Voevodsky [Tho03, Proposition

3.3]. The definition of the first higher Stasheff–Tamari orders is similar in style to

the geometric definition of the higher Bruhat orders using cubillages.
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The moment curve is defined by pt = (t, t2, . . . , tδ) ⊆ Rδ for t ∈ R. Choose

t1, . . . , tn ∈ R such that t1 < t2 < · · · < tn and n > δ + 1. The cyclic polytope

C(n, δ) is defined to be the convex polytope conv(pt1 , . . . , ptn). The properties of

the cyclic polytope do not depend on the exact choice of {t1, . . . , tn} ⊂ R. Hence,

for ease we set ti = i.

A triangulation of the cyclic polytope C(n, δ) is a subcomplex T of C(n, n− 1)

such that πn−1,δ : T → C(n, δ) is a bijection. After [KV91; Tho03], we define the

first higher Stasheff–Tamari poset S(n, δ) as follows. The elements of S(n, δ) are

triangulations of C(n, δ). The covering relations of S(n, δ) are given by pairs of

triangulations T ⋖ T ′ where there is a (δ + 1)-face Σ of C(n, n − 1) such that

T \Σ = T ′ \Σ and πn−1,δ+1(T ) contains the lower facets of πn−1,δ+1(Σ), whereas

πn−1,δ+1(T
′) contains the upper facets of πn−1,δ+1(Σ). Here we say that T ′ is an

increasing flip of T .

The cyclic polytope C(n, δ) possesses two canonical triangulations, one given

by the subcomplex Tl of C(n, n − 1) such that πn−1,δ+1(Tl) consists of the lower

facets of C(n, δ + 1), known as the lower triangulation, and the other given by the

subcomplex Tu of C(n, n− 1) such that πn−1,δ+1(T
′) consists of the upper facets of

C(n, δ + 1), known as the upper triangulation. The lower triangulation of C(n, δ)

gives the unique minimum of the poset S(n, δ) and the upper triangulation gives

the unique maximum.

Given a subset A ⊆ [n] with #A = k + 1, we write |A| := conv(pa0
, . . . , pak

)

for its geometric realisation as a simplex in Rn−1. One may combinatorially de-

scribe the lower facets and upper facets of C(n, δ), and hence the lower and upper

triangulations of C(n, δ − 1). Gale’s Evenness Criterion [Gal63, Theorem 3][ER96,

Lemma 2.3] states that, for F ⊆ [n] with #F = δ, we have that πn−1,δ|F | is an

upper facet of C(n, δ) if and only if F is an odd subset, and that πn−1,δ|F | is a

lower face of C(n, δ) if and only if F is an even subset. We remove excess brackets,

so that here πn−1,δ|F | = πn−1,δ(|F |).

We call a ⌊δ/2⌋-simplex |A| ⊂ R
n−1 internal in C(n, δ) if πn−1,δ|A| does not

lie within a facet of C(n, δ). A ⌊δ/2⌋-simplex |A| of a triangulation T ⊂ Rn−1 of

C(n, δ) is an internal ⌊δ/2⌋-simplex if it is internal in C(n, δ). It is clear that a

triangulation of a convex polygon is determined by the arcs of the triangulation;

similarly, a triangulation of C(n, δ) is determined by the internal ⌊δ/2⌋-simplices

of the triangulation, by a theorem of Dey [Dey93]. Hence, for a triangulation T of

C(n, δ) we denote by

e̊(T ) :=

{
A ∈

(
[n]

⌊δ/2⌋+ 1

) ∣∣∣ |A| is an internal ⌊δ/2⌋-simplex of T

}
.

By [OT12, Lemma 2.1] and [Wil20, Lemma 4.2], given A ∈
( [n]
⌊δ/2⌋+1

)
, we have

that |A| is an internal ⌊δ/2⌋-simplex in C(n, δ) if
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• δ = 2d and A is a cyclic (d+ 1)-ple interval, or

• δ = 2d+ 1 and A is a (d+ 1)-ple interval containing neither 1 nor n.

Observation 3.1. Given A ∈
( [n]
⌊δ/2⌋+1

)
, we have that |A| is an internal ⌊δ/2⌋-simplex

in C(n, δ) if and only if ξA is an internal point in Z(n, δ + 1).

A circuit of a cyclic polytope C(n, δ) is a pair of disjoint subsets X,Y ⊆ [n]

which are inclusion-minimal with the property that πn−1,δ|X | ∩ πn−1,δ|Y | 6= ∅. If

A,B ⊆ [n] are such that A ⊇ X and B ⊇ Y where (X,Y ) is a circuit of C(n, δ), then

we say that πn−1,δ|A| and πn−1,δ|B| intersect transversely in C(n, δ). By [Bre73],

the circuits of C(n, δ) are the pairs (X,Y ) and (Y,X) such that #X = ⌊δ/2⌋+ 1,

#Y = ⌈δ/2⌉+ 1, and X δ-interweaves Y . This also follows from the description of

the oriented matroid given by a cyclic polytope [BL78; Stu88; CD00]. We will later

use the fact that if |A| and |B| are simplices in the same triangulation, then there

is no circuit (X,Y ) such that A ⊇ X and B ⊇ Y [Ram97, Proposition 2.2].

4. Interpretations

In this section we study the map

g : B(n, δ + 1) → S(n, δ).

We give three different interpretations of this map, corresponding to the three

different ways of defining the higher Bruhat orders.

4.1. Cubillages. Here we give our principal definition of the map g. This definition

is geometric and uses the interpretation of B(n, δ + 1) in terms of cubillages. This

was how the map was considered in [DKK19a, Appendix B], where Lemma 4.1 and

Proposition 4.3 were both noted.

Lemma 4.1. If Q is a cubillage of Z(n, δ + 1), then the vertex figure of Q at ξ∅

gives a triangulation of C(n, δ).

Proof. Let Hk denote the affine hyperplane

Hk := {(x1, . . . , xk) ∈ R
k | x1 = 1}.

The vertex figure of the zonotope Z(n, k) at the vertex ξ∅ can be given by the

intersection Z(n, k)∩Hk. It is clear from the definitions of Z(n, k) and C(n, k) that

this intersection is the cyclic polytope C(n, k). The vertex figure of the cubillage

Q of Z(n, δ + 1) at ξ∅ then induces a subcomplex T = Q ∩ Hn of C(n, n − 1).

This subcomplex T is a triangulation of C(n, δ) because we have that πn,δ+1 : Q →

Z(n, δ + 1) is a bijection, which then restricts to a bijection from Q ∩Hn = T to

Z(n, δ + 1) ∩Hδ+1 = C(n, δ). �
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Hence we define the map

g : B(n, δ + 1) → S(n, δ)

Q 7→ Q ∩Hn.

For the purposes of this paper, this is the definition of the map g, and the charac-

terisations in Section 4.2 and Section 4.3 are simply other interpretations.

Remark 4.2. The intersections of cubillages with the hyperplanes given by x1 = l

for l ∈ [n−1] have been the objects of significant study in the literature. For three-

dimensional zonotopes, such cross-sections are dual to plabic graphs [Gal18], which

arise in the combinatorics associated to Grassmannians [Pos06; Pos18]. When the

cubillage is regular, such graphs arise in the study of KP solitons [Hua15; KK21;

GPW19], and it is this connection that lies behind the definition of the higher

Tamari orders in [DM12]. The paper [OS19] studies hypersimplicial subdivisions

and shows that, in general, only a subset of these come from cross-sections of

subdivisions of zonotopes. This means that the analogues of the map g for other

cross-sections of cubillages are not generally surjective. In [DKK18b; DKK19b;

DKK20], rather than studying the intersection of a cubillage with these hyperplanes,

the fragmentation of a cubillage into different pieces cut by these hyperplanes is

studied.

We identify the hyperplane Hn with the space R
n−1, so that we can consider

C(n, n − 1) sitting inside it as usual. In particular, we abuse notation by using

πn−1,δ+1 to denote the restriction πn,δ+2|Hn
: Hn → Hδ+2. This convention is illus-

trated in the following proof, in which we examine how g interacts with increasing

flips.

Proposition 4.3. If Q,Q′ are cubillages of Z(n, δ + 1) such that Q ⋖ Q′, then

either g(Q) = g(Q′) or g(Q)⋖ g(Q′).

Proof. Let Q and Q′ be two cubillages such that Q ⋖ Q′. Let Γ be the (δ + 2)-

face of Z(n, n) which induces the increasing flip, and let the initial vertex of Γ be

ξE = (x1, . . . , xn). Then Q and Q′ differ only in that πn,δ+2(Q) contains the lower

facets of πn,δ+2(Γ) and πn,δ+2(Q
′) contains the upper facets of πn,δ+2(Γ).

The intersection Γ∩Hn consists of more than a single point if and only if E = ∅.

This is because, given (y1, . . . , yn) ∈ Γ, we have y1 > x1 = #E. Hence if #E > 1,

then Γ ∩Hn = ∅; and if #E = 1, then Γ ∩Hn = ξE . Thus if E 6= ∅, then Q and

Q′ both have the same intersection with the hyperplane Hn, so that g(Q) = g(Q′).

If E = ∅, then πn,δ+2(Γ) ∩ Hδ+2 is the (δ + 1)-simplex πn−1,δ+1|A|, where A

is the generating set of Γ. We then have that g(Q) and g(Q′) differ only in that

πn−1,δ+1(g(Q)) contains the lower facets of πn−1,δ+1|A|, whereas πn−1,δ+1(g(Q
′))

contains the upper facets of πn−1,δ+1|A|. Hence g(Q)⋖ g(Q′). �
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Figure 2. The cubillage Q1 of Z(4, 2) intersected with H4.
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Figure 3. The triangulation g(Q1) = T1 of C(4, 1).
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Recall that if (X,6) and (Y,6) are posets, and f : X → Y is map such that we

have f(x) 6 f(x′) whenever x 6 x′, then f is called order-preserving.

Corollary 4.4. The map g : B(n, δ + 1) → S(n, δ) is order-preserving.

Example 4.5. We now give two examples of taking the vertex figure of a cubillage

of Z(n, δ + 1) at ξ∅.

First, consider the cubillage Q1 of Z(4, 2) shown in Figure 2. As we did above,

we can find the vertex figure of Q1 at ξ∅ by intersecting with the hyperplane H4, as

shown. We thus obtain the triangulation g(Q1) = T1 of C(4, 1) shown in Figure 3.

Secondly, consider the cubillage Q2 of Z(4, 3) illustrated in Figure 4. This

cubillage possesses four cubes, two of which share the face highlighted in blue.

The hyperplane H4 is shown here in red. The intersection gives the triangulation

g(Q2) = T2 of C(4, 2) shown in Figure 5.

Remark 4.6. There is a dual version of the map g, given by

g : B(n, δ + 1) → S(n, δ)

Q 7→ Q ∩Hn,
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Figure 4. The cubillage Q2 of Z(4, 3).
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Figure 5. The triangulation g(Q2) = T2 of C(4, 2).
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where Hn = {(x1, . . . , xn) ∈ Rn | x1 = n− 1}. Given a cubillage Q of Z(n, δ + 1),

the triangulation g(Q) is induced by taking the vertex figure of Z(n, n) at the

vertex ξ[n]. This map was considered in [Tho03, Proposition 7.1]. The dual of

Proposition 4.8 gives that if Q ⋖ Q′, then either g(Q) = g(Q′) or g(Q) ⋗ g(Q′).

Hence g is order-reversing. That is, if Q 6 Q′, then g(Q) > g(Q′).
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4.2. Separated collections. Our second definition of the map uses the character-

isation of cubillages in terms of separated collections and the combinatorial frame-

work for triangulations of cyclic polytopes from [OT12; Wil20]. This is the frame-

work we use to prove that g is a quotient map of posets in Section 6 and Section 7.

Given a triangulation T of C(n, δ), let

Σ(T ) := {A ⊆ [n] | |A| is a simplex of T }.

This can be viewed as the abstract simplicial complex corresponding to T . The

following lemma tells us how the value of g(Q) is determined by Sp(Q).

Lemma 4.7. Let Q be a cubillage of Z(n, δ+1) and T be a triangulation of C(n, δ).

Then g(Q) = T if and only if Sp(Q) ⊇ Σ(T ).

Proof. Suppose that g(Q) = T . Let |A| be a δ-simplex of T . Then there is a cube

∆ of Q such that |A| = ∆ ∩Hn. We must have that the initial vertex of ∆ is ξ∅

and the set of generating vectors is A. Thus if |B| is a face of |A|, then ξB is a

vertex of ∆, and hence B ∈ Sp(Q). Since every simplex of the triangulation T is a

face of a δ-simplex, we have that Sp(Q) ⊇ Σ(T ).

Conversely, suppose that Sp(Q) ⊇ Σ(T ). Let |A| be a δ-simplex of T . Then

2A ⊆ Σ(T ) ⊆ Sp(Q). By [DKK18a, (2.5)], the cube ∆ with initial vertex ∅ and

generating vectors A is therefore a cube of Q. This means that |A| is a δ-simplex

of g(Q), since |A| = ∆ ∩ Hn. Since this is true for any δ-simplex of T , we must

have g(Q) = T . �

In fact, as the following proposition shows, we need only consider ISp(Q) ∩
( [n]
⌊δ/2⌋+1

)
to know the value of g(Q).

Proposition 4.8. Given a cubillage Q ∈ B(n, δ + 1), we have that e̊(g(Q)) =

ISp(Q) ∩
( [n]
⌊δ/2⌋+1

)
.

Proof. It follows immediately from Lemma 4.7 that e̊(g(Q)) ⊆ ISp(Q) ∩
( [n]
⌊δ/2⌋+1

)
,

since if #A = ⌊δ/2⌋+1, then |A| is an internal ⌊δ/2⌋-simplex in C(n, δ) if and only

if ξA is an internal point in Z(n, δ + 1), by Observation 3.1.

To show that e̊(g(Q)) ⊇ ISp(Q) ∩
( [n]
⌊δ/2⌋+1

)
, suppose that we have A ∈(

ISp(Q) ∩
( [n]
⌊δ/2⌋+1

))
\ e̊(g(Q)). Then note that |A| must be an internal ⌊δ/2⌋-

simplex in C(n, δ), since ξA is an internal point in Z(n, δ + 1). However, |A| is

not a ⌊δ/2⌋-simplex of T , so πn−1,δ|A| intersects a ⌈δ/2⌉-simplex πn−1,δ|B| of

πn−1,δ(T ) transversely. This implies that (A,B) is a circuit, and so A and B are

δ-interweaving. But this is a contradiction, since B ∈ Sp(Q) by Lemma 4.7. �

Proposition 4.8 gives an interpretation of the map g in terms of separated col-

lections. We know that a cubillage Q of Z(n, δ + 1) is determined by ISp(Q), and
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likewise a triangulation T of C(n, δ) is determined by e̊(T ). Hence one could also

define g(Q) to be the triangulation T such that e̊(T ) = ISp(Q) ∩
( [n]
⌊δ/2⌋+1

)
.

Example 4.9. We illustrate how to apply the interpretation of g from Proposi-

tion 4.8 to the cubillages from Example 4.5.

Consider the internal spectrum of Q1, as shown in Figure 2. We have ISp(Q1) =

{3, 13, 23}, so ISp(Q1) ∩
(
[4]
1

)
= {3}. This implies that {3} = e̊(g(Q1)) = e̊(T1),

which is indeed the case. Note that having e̊(T1) = {3} defines T1.

Next, consider the internal spectrum of Q2, as shown in Figure 4. We have

ISp(Q2) = {13}, so ISp(Q2) ∩
(
[4]
2

)
= {13}. This implies that {13} = e̊(g(Q2)) =

e̊(T2), which is indeed the case. Note that having e̊(T2) = {13} defines T2.

Remark 4.10. The interpretation of g for separated collections is as follows. We

have that g(Q) is the triangulation T such that

e̊(T ) =

{
[n] \A

∣∣∣ A ∈ C ∩

(
[n]

n− ⌊δ/2⌋ − 1

)}
.

4.3. Admissible orders. In this section we give a way of defining the map g

while interpreting the elements of the higher Bruhat orders as equivalence classes

of admissible orders. We use the following notions, which were used in [DM12] to

define the higher Tamari orders.

Let α be an admissible order of
(
[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Given e ∈ [n] \ I, we say

that I is invisible in P (I ∪ {e}) if either

• I ∪ {e} /∈ inv(α) and e is an odd gap in I, or

• I ∪ {e} ∈ inv(α) and e is an even gap in I.

Otherwise, we say that I is coinvisible in P (I∪{e}). (We note that I being invisible

in P (I ∪ {e}) is equivalent to e being externally semi-active with respect to I, in

the terminology of [GPW19], which applies to more general matroids.)

Then:

• We say that I is invisible in α if there is a e ∈ [n]\ I such that I is invisible

in P (I ∪ {e}).

• We say that I is coinvisible in α if there is a e ∈ [n] \ I such that I is

coinvisible in P (I ∪ {e}).

• We say that I is visible in α if there is no e ∈ [n] \ I such that I is invisible

in P (I ∪ {e}). (Note that this is not the same notion of visibility as in

[DKK19a, Section 9].)

• We say that I is covisible in α if there is no e ∈ [n] \ I such that I is

coinvisible in P (I ∪ {e}).

Given an admissible order α of
(
[n]
δ+1

)
, we use V (α) to denote the elements of

(
[n]
δ+1

)
which are visible in α and V (α) to denote the elements of

(
[n]
δ+1

)
which are

covisible in α. (In [DM15], visible elements are labelled in blue; covisible elements
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are labelled in red; and elements which are neither visible nor covisible are labelled

in green.)

Given an admissible order α of
(
[n]
δ+1

)
, we writeQα for the corresponding cubillage

of Z(n, δ + 1).

Proposition 4.11. Let α be an admissible order of
(
[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then the

cube in Qα with generating set I has initial vertex ξE, where

E = {e ∈ [n] \ I | I is invisible in P (I ∪ {e})}.

Proof. This follows immediately from the correspondence between admissible orders

and cubillages in [Tho03], as described in Section 3.1. �

The following result was noted in [DKK19a, Appendix B].

Corollary 4.12. Let α be an admissible order of
(
[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then

I ∈ V (α) if and only if the cube in Qα with generating set I has initial vertex ξ∅.

This gives us yet another interpretation of the map g.

Corollary 4.13. Given [α] ∈ B(n, δ + 1), we have that g(Qα) is the triangulation

with

{|A| | A ∈ V (α)}

as its set of δ-simplices.

Example 4.14. We continue from Example 4.5 and Example 4.9 and illustrate

how the map g can also be characterised using visibility.

We consider Q1 first. By labelling the cubes of Q1 with the elements of
(
[4]
2

)
, as

shown in Figure 6, it can be seen that the admissible order corresponding to Q1 is

α1 = {23 < 13 < 12 < 14 < 24 < 34}.

We compute that inv(α1) = {123}.

We can then analyse which elements of
(
[4]
2

)
are visible in α1:

• 23: invisible because 123 ∈ inv(α1) and 1 is an even gap in 23;

• 13: visible;

• 12: invisible because 123 ∈ inv(α1) and 3 is an even gap in 12;

• 14: invisible because 124 /∈ inv(α1) and 2 is an odd gap in 14;

• 24: invisible because 234 /∈ inv(α1) and 3 is an odd gap in 24;

• 34: visible.

Note that, as Corollary 4.12 shows, 13 and 34 are precisely the cubes with ξ∅

as their initial vertex. Furthermore, as Corollary 4.13 shows, g(Q1) = T1 is the

triangulation with 1-simplices |13| and |34|.
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Figure 6. Q1 with its cubes labelled.
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We now conduct the same analysis of Q2. The admissible order corresponding

to Q2 is

α2 = {123 < 124 < 134 < 234}.

It is easy to see that inv(α2) = ∅. Hence the visible elements of
(
[4]
3

)
in α2 are as

follows:

• 123: visible;

• 124: invisible because 1234 /∈ inv(α2) and 3 is an odd gap in 124;

• 134: visible;

• 234: invisible because 1234 /∈ inv(α2) and 1 is an odd gap in 234.

Again, it can be seen in Figure 4 that 123 and 134 are precisely the cubes with

ξ∅ as their initial vertex, as shown by Corollary 4.12. Moreover, as Corollary 4.13

shows, g(Q2) = T2 is the triangulation with 2-simplices |123| and |134|.

The dual statements to Proposition 4.11, Corollary 4.12, and Corollay 4.13 are

as follows.

Proposition 4.15. Let α be an admissible order of
(
[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then the

cube in Qα with generating set I has final vertex ξF where

F = [n] \ {e ∈ [n] \ I | I is coinvisible in P (I ∪ {e})}.

Corollary 4.16. Let α be an admissible order of
(
[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then

I ∈ V (α) if and only if the cube in Qα with generating set I has final vertex ξ[n].

Corollary 4.17. Given [α] ∈ B(n, δ + 1), we have that g(Qα) is the triangulation

with

{|A| | A ∈ V (α)}
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as its set of δ-simplices.

5. Quotient maps of posets

Dimakis and Müller-Hoissen use the definition of the map g from Section 4.3 to

define the higher Tamari orders. We restate their definition in the framework of

quotient posets. In this section, we explain our approach to this notion.

Given a poset (X,6) subject to an equivalence relation ∼, the quotient (X/∼, R)

is defined to be the set of ∼-equivalence classes [x] of X , with the binary relation R

defined by [x]R[y] if and only if there exist x′ ∈ [x] and y′ ∈ [y] such that x′ 6 y′.

The quotient of a poset is in general only a reflexive binary relation, not a partial

order, since the relation R is not necessarily transitive or anti-symmetric.

Previous authors have considered various different conditions on the equivalence

relation ∼ which are sufficient to guarantee that the quotient X/∼ is a poset. Stan-

ley considers the case where ∼ is given by the orbits of a group of automorphisms

[Sta84; Sta91]. Two similar notions of congruence which also preserve lattice-

theoretic properties are considered by Chajda and Snášel, and Reading [CS98;

Rea02]. Most recently, Hallam and Sagan [HS15; Hal17] consider homogeneous

quotients in order to study the characteristic polynomials of lattices.

Whilst these conditions are sufficient to guarantee that the quotient poset is

well-defined, none of them are necessary. In this paper we are interested only in

the minimal conditions which provide that the quotient poset is well-defined, and

not in whether the quotient also preserves other properties. These necessary and

sufficient conditions are as follows.

Proposition 5.1. The quotient X/∼ is a poset if and only if

(1) if there exist x1 ∼ x and y1 ∼ y such that x1 6 y1, and x2 ∼ x and y2 ∼ y

such that x2 > y2, then x ∼ y, and

(2) given x, y, z ∈ X such that there exist x1 ∼ x and y1 ∼ y such that x1 6 y1,

and y2 ∼ y and z2 ∼ z such that y2 6 z2, then there exist x3 ∼ x and

z3 ∼ z such that x3 6 z3.

Proof. Condition (1) is equivalent to the relation R being anti-symmetric. Condi-

tion (2) is equivalent to the relation R being transitive. �

If both condition (1) and condition (2) hold, then we write 6 instead of R, to

acknowledge that the relation gives us a partial order. In this case, we say that

∼ is a weak order congruence on the poset X . Note that, in particular, order

congruences [Rea02; CS98] and the equivalence relations which give homogeneous

quotients [HS15; Hal17] are weak order congruences.
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If ∼ is a weak order congruence, so that X/∼ is a poset, then we have a canonical

order-preserving map

X → X/∼

x 7→ [x].

Indeed, for any order-preserving map of posets f : X → Y , one can consider the

equivalence relation on X defined by x ∼ x′ if and only if f(x) = f(x′). We

then define the image of f to be the quotient f(X) = X/∼. We identify the

∼-equivalence class [x] of X with the element f(x) ∈ Y , so that f(X) ⊆ Y and

the quotient relation on f(X) is a subrelation of the partial order on Y . If the

equivalence relation ∼ on X is a weak order congruence, so that the image f(X) is

a well-defined poset, then we say that the map f is photogenic.

We say that a map f : X → Y is full if whenever f(x1) 6 f(x2) in Y , there exist

x′1, x
′
2 ∈ X such that x′1 6 x′2, with f(x

′
1) = f(x1) and f(x

′
2) = f(x2). (In [CS98],

maps which are full and order-preserving are called strong.)

Proposition 5.2. Let X and Y be posets with f : X → Y an order-preserving

map. Then the relation on f(X) is anti-symmetric. Furthermore, if f is full, then

the relation on f(X) is transitive, and so f is photogenic. Finally, f(X) = Y as

posets if and only if f is surjective and full.

Proof. Suppose that x1, x2 ∈ X are such that [x1]R[x2] and [x2]R[x1]. Since f

is order-preserving, this implies that f(x1) 6 f(x2) and f(x2) 6 f(x1). Hence

f(x1) = f(x2) and so x1 ∼ x2. Thus R is anti-symmetric.

Now suppose that f is full. Let x1, x2, x3 ∈ X be such that [x1]R[x2] and

[x2]R[x3]. This implies that f(x1) 6 f(x2) and f(x2) 6 f(x3), since f is order-

preserving. Hence f(x1) 6 f(x3). Since f is full, there exist x′1, x
′
3 ∈ X such that

x′1 6 x′3, with f(x′1) = f(x1) and f(x′3) = f(x3). Hence [x1]R[x3], and so R is

transitive.

Finally, it is clear that f(X) = Y as sets if and only if f is surjective. Then f

being full and order-preserving is equivalent to having [x1] 6 [x2] in f(X) if and

only if f(x1) 6 f(x2) in Y . �

Therefore, every quotient of a poset by a weak order congruence gives an order-

preserving map which is surjective and full, and, conversely, every order-preserving

map which is surjective and full gives a quotient by a weak order congruence. Hence,

if an order-preserving map f is surjective and full, then we say that f is a quotient

map of posets.

With this technical framework in mind, the higher Tamari order T (n, δ + 1)

[DM12] is defined to be the image of the map g : B(n, δ+1) → S(n, δ), or, explicitly,

the quotient of B(n, δ+ 1) by the relation defined by Q ∼ Q′ if and only if g(Q) =
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g(Q′). That this is equivalent to [DM12, Definition 4.7] follows from Corollary 4.13.

Note that it is not evident that T (n, δ + 1) is a well-defined poset, since it is not

clear that the map g is photogenic. However, in Section 7 we shall prove that g is

full, which implies that g is photogenic by Proposition 5.2, since we already know

that g is order-preserving by Corollary 4.4. In Section 6, we give a new proof of

the fact that g is surjective, originally known from [RS00, Theorem 3.5]. Therefore,

the results of the two subsequent sections entail the following theorem.

Theorem 5.3. The map g : B(n, δ + 1) → S(n, δ) is a quotient map of posets.

Hence, we obtain by Proposition 5.2 that the higher Tamari orders are indeed

the same posets as the first higher Stasheff–Tamari orders.

Corollary 5.4. T (n, δ + 1) ∼= S(n, δ).

6. Surjectivity

We now give a new construction showing that the map g is a surjection. Our

strategy is to explicitly show that g is a surjection when δ is even, and then to use

this to deduce the case where δ is odd. Given a triangulation T of C(n, 2d), we will

construct a cubillage QT of Z(n, 2d+ 1) such that g(QT ) = T . We will define QT

by specifying its internal spectrum.

Convention 6.1. In this section and in Section 7, we will frequently be using

arithmetic modulo n. In particular, given a set S ∈
(

[n]
2d+2

)
, we have s0 − s2d+1 ≡

s0 − s2d+1 + n (mod n), which is an element of [n].

For I ⊆ [n], we write I = J ⊔ J ′ if I = J ∪ J ′ and there are no j ∈ J, j′ ∈ J ′

such that j, j′ are cyclically consecutive. Given a cyclic l-ple interval I = [i0, i
′
0] ⊔

· · · ⊔ [il−1, i
′
l−1], we use the notation Î := {i0, . . . , il−1} from [MW20]. We claim

that the collection of subsets

U(T ) =
{
I ⊆ [n] | |Î| is a d′-simplex of T for d′ > d

}

defines the internal spectrum of a cubillage on Z(n, 2d + 1). This is similar to

the construction in [MW20, Theorem 3.8]. In order to show that U(T ) is the

internal spectrum of a cubillage, we must show that it is 2d-separated and that

#U(T ) =
(
n−1
2d+1

)
. We begin by showing that U(T ) is 2d-separated, for which we

need the following lemma. This generalises one direction of [MW20, Lemma 3.7],

although the proof in op. cit. requires only minor changes.

Lemma 6.2. Let I, J ⊆ [n]. Then I δ-interweaves J only if there exist subsets

X ⊆ Î and Y ⊆ Ĵ such that #X = ⌊δ/2⌋ and #Y = ⌈δ/2⌉, and X δ-interweaves

Y .
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Proof. We let δ = 2d, since the case δ = 2d+ 1 behaves similarly.

Let I = [i0, i
′
0] ⊔ · · · ⊔ [ir, i

′
r] and J = [j0, j

′
0] ⊔ · · · ⊔ [js, j

′
s]. Suppose that

I 2d-interweaves J , and let A ⊆ I \ J and B ⊆ J \ I witness this. For any

0 6 p < q 6 d we cannot have both ap ∈ [it, i
′
t] and aq ∈ [it, i

′
t], since this

implies that bp, . . . , bq−1 ∈ [it, i
′
t] ⊆ I, which contradicts B ∩ I = ∅. Hence, for all

0 6 k 6 d, let tk be such that ak ∈ [itk , i
′
tk
] and let uk be such that bk ∈ [juk

, j′uk
].

Moreover, since B ∩ I = ∅, we have bk ∈ (i′tk , itk+1
), and similarly ak ∈ (j′uk−1

, juk
)

for k ∈ Z/(d+ 1)Z. Then

it0 6 a0 < ju0
6 b0 < it1 6 a1 < · · · < itd 6 ad < jud

6 bd,

and so

it0 < ju0
< it1 < · · · < itd < jud

.

Letting X = {it0, . . . , itd} and Y = {ju0
, . . . , jud

} gives us the desired result. �

Lemma 6.3. The collection U(T ) is 2d-separated.

Proof. Suppose that there exist I, J ∈ U(T ) such that I and J are 2d-interweaving.

By Lemma 6.2, we have X ⊆ Î and Y ⊆ Ĵ such that X and Y are δ-interweaving.

But this implies that Î and Ĵ each contain one half of a circuit (X,Y ) for C(n, 2d).

This is a contradiction, since, by construction of U(T ), |Î| and |Ĵ | are both simplices

of the triangulation T of C(n, 2d). �

We must now show that #U(T ) =
(
n−1
2d+1

)
. We use induction for this, showing

that the size of U(T ) is preserved by increasing flips of T , which requires the

following lemma.

Lemma 6.4. Let |S| be a (2d+1)-simplex inducing an increasing flip of a triangu-

lation T of C(n, 2d) and denote Sl = {s0, s2, . . . , s2d} and Su = {s1, s3, . . . , s2d+1}.

Then the following two sets have the same cardinality:

Il(S, n) =
{
I ⊆ [n] | Sl ⊆ Î ⊂ S

}
,

Iu(S, n) =
{
I ⊆ [n] | Su ⊆ Î ⊂ S

}
.

Here we use the symbol ‘⊂’ to denote proper subsets.

Proof. Note that we may instead consider

I ′
l(S, n) :=

{
I ⊆ [n] | Sl ⊆ Î ⊆ S

}
,

I ′
u(S, n) :=

{
I ⊆ [n] | Su ⊆ Î ⊆ S

}
.

This is because

I ′
l(S, n) \ Il(S, n) = I ′

u(S, n) \ Iu(S, n) =
{
I ⊆ [n] | Î = S

}
.

Hence if #I ′
l(S, n) = #I ′

u(S, n), then #Il(S, n) = #Iu(S, n).
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We prove the claim by explicit enumeration. Let

I = [s0, s
′
0] ∪ [s1, s

′
1] ∪ [s2, s

′
2] ∪ · · · ∪ [s2d, s

′
2d] ∪ [s2d+1, s

′
2d+1].

Then I ∈ I ′
l(S, n) if and only if, for all i ∈ Z/(d+ 1)Z,

s′2i ∈ [s2i, s2i+1 − 1] and s′2i+1 ∈ [s2i+1 − 1, s2i+2 − 2].

Recall that our convention here is that if s′j = sj − 1, then [sj , s
′
j ] = ∅. Similarly,

I ∈ I ′
u(S, n) if and only if, for all i ∈ Z/(d+ 1)Z,

s′2i ∈ [s2i − 1, s2i+1 − 2] and s′2i+1 ∈ [s2i+1, s2i+2 − 1].

Therefore,

#I ′
l(S, n) = #I ′

u(S, n) =
∏

i∈Z/(d+1)Z

(s2i+1 − s2i)(s2i+2 − s2i+2)

=
∏

j∈Z/(2d+2)Z

(sj+1 − sj).

�

This allows us to prove that our 2d-separated collection U(T ) is the right size

to be the internal spectrum of a cubillage.

Lemma 6.5. Given a triangulation T of C(n, 2d), we have that #U(T ) =
(
n−1
2d+1

)
.

Proof. We prove the claim by induction on increasing flips of the triangulation. This

is valid since every triangulation of a cyclic polytope can be reached via a sequence

of increasing flips from the lower triangulation by [Ram97, Theorem 1.1(i)].

For the base case, let Tl be the lower triangulation of C(n, 2d). By Gale’s Even-

ness Criterion, the 2d-simplices of Tl are given by 1 together with d disjoint pairs of

consecutive numbers. Therefore, the only d′-simplices of Tl with d
′ > d which have

no cyclically consecutive entries are the internal d-simplices. Hence if I ∈ U(Tl),

then |Î| is an internal d-simplex of Tl. Moreover, the internal d-simplices of Tl are

given by (d+ 1)-subsets which are cyclic (d+ 1)-ple intervals and contain 1.

By [DKK18a, (4.2)(ii)], the internal spectrum of the lower cubillage of Z(n, 2d+

1) consists of all cyclic (d + 1)-ple intervals which contain 1. It is then straight-

forward to see that U(T ) is indeed the internal spectrum of the lower cubillage of

Z(n, 2d+ 1) when T is the lower triangulation of C(n, 2d). Therefore, we have in

this case that #U(T ) =
(
n−1
2d+1

)
.

For the inductive step, we suppose that we have a triangulation T ′ obtained by

performing an increasing flip induced by a (2d + 1)-simplex |S| on a triangulation

T for which the induction hypothesis holds. Then Il(S, n) contains precisely the

subsets I such that πn−1,2d+1|Î| is contained in a lower facet of πn−1,2d+1|S| but

not any upper facets, by Gale’s Evenness Criterion. Similarly, Iu(S, n) contains
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precisely the subsets I such that πn−1,2d+1|Î| is contained in an upper facet of

πn−1,2d+1|S| but not any lower facets. Hence

U(T ′) = (U(T ) \ Il(S, n)) ∪ Iu(S, n),

and so #U(T ) = #U(T ′) by Lemma 6.4. The result then follows by induction. �

Hence we obtain that g is a surjection in even dimensions.

Theorem 6.6. The map g : B(n, δ + 1) → S(n, δ) is a surjection for even δ.

Proof. Let δ = 2d and let T be a triangulation of C(n, 2d). By Lemma 6.3,

Lemma 6.5, and the correspondence between cubillages and separated collections

from [GP17], we have that the collection U(T ) is the internal spectrum of a cu-

billage QT of Z(n, 2d + 1). Moreover, g(QT ) = T by Proposition 4.8, since if

#A = d+ 1, then A ∈ U(T ) if and only if |A| is an internal d-simplex of T . �

Example 6.7. We give an example of the construction used to prove Theo-

rem 6.6. Consider the triangulation T of the hexagon C(6, 2) which has arcs

e̊(T ) = {13, 15, 35}.

Then we have

U(T ) = {13, 15, 35,

134, 125, 356, 135,

1345, 1235, 1356}.

Note the presence of 135 ∈ U(T ), since |135| is a 2-simplex of T . One can check

that U(T ) is 2-separated. Furthermore, #U(T ) = 10 =
(
5
3

)
=
(
6−1
2+1

)
, as desired.

We thus obtain the cubillage QT which is defined by ISp(QT ) = U(T ). It then

follows from Proposition 4.8 that g(QT ) = T ; compare Example 4.9. Hence T has

a pre-image under g.

We now use this result to show that the map g must be a surjection for odd δ.

Following many authors, given a set S of subsets of [n], we denote by S ∗ (n + 1)

the set

S ∗ (n+ 1) = {A ∪ {n+ 1} | A ∈ S}.

Theorem 6.8. The map g : B(n, δ + 1) → S(n, δ) is a surjection for odd δ.

Proof. Let δ = 2d + 1. Let T be a triangulation of C(n, 2d + 1). We show that

there exists a cubillage QT of Z(n, 2d + 2) such that Sp(QT ) ⊇ Σ(T ). Consider

the triangulation T̂ of C(n + 1, 2d + 2) defined in [Ram97, Definition 4.1]. By

Theorem 6.6, there is a cubillage Q′ of Z(n+ 1, 2d+ 3) such that g(Q′) = T̂ . By

definition of T̂ , we have that Σ(T )∪Σ(T )∗(n+1) ⊆ Σ(T̂ ) ⊆ Sp(Q′). By [DKK18a,

Lemma 5.2], if we take the (n + 1)-contraction of Q′ then we get a membrane M
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in Q′/(n + 1) as the image of the (n + 1)-pie, and we have that Sp(M) ⊇ Σ(T ).

We therefore define QT = M, recalling that M is a cubillage of Z(n, 2d+ 2). By

Lemma 4.7, we must have that g(QT ) = T . �

Corollary 6.9. The map g : B(n, δ + 1) → S(n, δ) is a surjection.

Remark 6.10. In [KV91, Theorem 4.10], Kapranov and Voevodsky gave a map

f : B(n, δ) → S(n + 2, δ + 1) which they stated was a surjection. A proof of this

statement remains unfound. It was shown in [Tho03, Proposition 7.1] that there is

a factorisation

B(n, δ) S(n, δ − 1),

S(n+ 2, δ + 1)

f

g

where g is the dual map to g from Remark 4.6 and the dotted map is a surjection

by [Ram97, Corollary 4.3].

The map f should not only be a surjection, but also a quotient map of posets, as

we show is true of the map g in this paper. This was shown for δ = 1 by Reading

[Rea06], drawing upon [BW97]. However, note that f cannot in general realise

S(n + 2, δ + 1) as a quotient of B(n, δ) by an order congruence in the sense used

in [Rea06]. This is because the equivalence classes of an order congruence must be

intervals, but [Tho03, Section 6] shows that the fibres of the map f are not always

intervals. Hence f can only be a quotient map of posets in a more general sense,

such as that considered in this paper.

7. Fullness

We now show that the map g is full, and hence is a quotient map of posets. To do

this, we must show that if T 6 T ′ for triangulations T , T ′ of C(n, δ), then there are

cubillages Q,Q′ of Z(n, δ + 1) such that g(Q) = T , g(Q′) = T ′, and Q 6 Q′. We

follow the approach of Section 6, whereby we work explicitly for even-dimensional

triangulations, and then use this to show the result for odd dimensions. Indeed, we

show that for triangulations T , T ′ of C(n, 2d) with T 6 T ′, we have QT 6 QT ′ .

For this, it suffices to show that if T ⋖ T ′, then QT < QT ′ . To do this, we find a

sequence of increasing flips from QT to QT ′ .

We wish to continue working in the framework of separated collections, as in

Section 6. Hence, we must show what the covering relations of the higher Bruhat

orders are in this framework.

Theorem 7.1. Given cubillages Q,Q′ of Z(n, δ + 1) we have that Q ⋖ Q′ if and

only if Sp(Q′) = (Sp(Q) \ {A})∪{B}, where A δ-interweaves B. Moreover, in this

case A tightly δ-interweaves B.
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Proof. The forwards direction follows from [DKK19a, Proposition 8.1]. Namely, if

the increasing flip from Q to Q′ is induced by the face Γ of Z(n, n), then Γ has a

vertex ξA and a vertex ξB such that A tightly δ-interweaves B, πn,δ+2(ξA) is only

contained in the lower facets of πn,δ+2(Γ), πn,δ+2(ξB) is only contained in the upper

facets of πn,δ+2(Γ), and every other vertex of πn,δ+2(Γ) is contained in at least one

lower facet and at least one upper facet. Hence, Sp(Q′) = (Sp(Q) \ {A}) ∪ {B},

where A tightly δ-interweaves B.

We now prove the backwards direction, supposing that Sp(Q′) = (Sp(Q)\{A})∪

{B}, where A δ-interweaves B. Let A′ ⊆ A \ B and B′ ⊆ B \ A witness the fact

that A δ-interweaves B.

We consider first the case where δ = 2d. We begin by proving that A′ = A \ B

and B′ = B \ A, so that A tightly 2d-interweaves B. The vertex ξA must be an

internal vertex in the cubillage Q, since subsets corresponding to boundary vertices

are contained in every 2d-separated collection. Therefore, ξA must be a vertex of

at least two cubes in Q, and so must have at least 2d + 2 edges emanating from

it. The subsets at the other end of each of these edges must be 2d-separated from

B, so the edges must either add elements of B′ or remove elements of A′. Since

#A′ ∪B′ = 2d+ 2, the edges emanating from ξA in Q must be precisely the edges

which remove elements of A′ and add elements of B′. Now suppose that there exists

a ∈ A \ (A′ ∪ B). Then a ∈ (b′i−1, b
′
i) for some i ∈ Z/(d + 1)Z. But this implies

that A \ {a′i} δ-interweaves B, which contradicts the fact that the edge from ξA to

ξA\{a′

i
} is in the cubillage Q. Hence A′ = A \B. The argument that B′ = B \A is

similar.

Therefore ξA is incident to 2d + 2 edges in the cubillage, where d + 1 of the

edges add elements of B′ and d+ 1 of the edges remove elements of A′. The cubes

with ξA as a vertex are generated by a choice of 2d+ 1 of these edges. If P is the

union of cubes in Q with ξA as a vertex, then P is a set of facets of a (2d + 2)-

face Γ of Z(n, n) which has initial vertex ξA∩B and which is generated by A′ ∪B′.

By [DKK19a, Proposition 8.1], πn,δ+2(P) gives the lower facets of πn,δ+2(Γ), since

πn,δ+2(P) consists of all the facets of πn,δ+2(Γ) which contain πn,δ+2(ξA). Since,

likewise, the upper facets of πn,δ+2(Γ) are precisely those containing πn,δ+2(ξB),

we obtain that Q′ is an increasing flip of Q.

For δ = 2d + 1, the argument is similar. We deduce that ξA has 2d + 3 edges

emanating from it in Q, d + 1 of which remove elements of A′ and d+ 2 of which

add elements of B′. To show that A′ = A \B and B′ = B \A, the only extra thing

to consider is the possibility that we have a ∈ A \ (A′ ∪ B) such that a < b′0 or

a > b′d+1. But in the first instance here, we have that B δ-interweaves A ∪ {b′d+1},

since

a < b′0 < a′0 < b′1 < · · · < b′d < a′d.
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But this is a contradiction, since we know that the edge from ξA to ξA∪{b′
d+1

} is

in Q. In the second instance, we have that B δ-interweaves A ∪ {b′0}, when we

know that the edge from ξA to ξA∪{b′
0
} is in Q. The remainder of the case where

δ = 2d− 1 is similar. �

In the setting of the above theorem, we say that (A,B) is the exchange pair of

the flip and that we exchange A for B. Using this characterisation of increasing

flips, it can be seen that, in order to show that QT 6 QT ′ , we must show that

we can gradually exchange the elements of Sp(QT ) \ Sp(QT ′) for the elements of

Sp(QT ′) \ Sp(QT ). If |S| is the simplex inducing the increasing flip from T to

T ′, then Sp(QT ) \ Sp(QT ′) = Il(S, n) and Sp(QT ′) \ Sp(QT ) = Iu(S, n), as in

Lemma 6.5. Hence, we will define a sequence of exchanges which replaces Il(S, n)

with Iu(S, n). To show that our sequence of exchanges works, we will need the

following lemma.

Lemma 7.2. Let

I = [s0, s
i
0] ∪ [s1, s

i
1] ∪ · · · ∪ [s2d, s

i
2d] ∪ [s2d+1, s

i
2d+1]

and

J = [s0, s
j
0] ∪ [s1, s

j
1] ∪ · · · ∪ [s2d, s

j
2d] ∪ [s2d+1, s

j
2d+1].

Then I 2d-interweaves J if and only if, for all r,

sj2r < si2r and si2r+1 < sj2r+1.

Proof. If we have that, for all r, sj2r < si2r and si2r+1 < sj2r+1, then we have that

{si0, s
i
2, . . . , s

i
2d} ⊆ I \ J and {sj1, s

j
3, . . . , s

j
2d+1} ⊆ J \ I with

si0 < sj1 < si2 < sj3 < · · · < si2d < sj2d+1.

Hence I 2d-interweaves J .

Conversely, suppose that I 2d-interweaves J , and let X ⊆ I \ J and Y ⊆ J \ I

witness this. We cannot have both xp, xq ∈ [st, s
i
t] for p 6= q, since this implies that

yr ∈ [st, s
i
t] for p 6 r < q. Furthermore, we cannot have both xp ∈ [st, s

i
t] and

yp ∈ [st, s
j
t ], since we must have either [st, s

i
t] ⊆ [st, s

j
t ] or [st, s

j
t ] ⊆ [st, s

i
t]. By the

pigeonhole principle and the fact that x0 < y0, we deduce that xr ∈ [s2r, s
i
2r] and

yr ∈ [s2r+1, s
j
2r+1] for all r. But this implies that sj2r < si2r and si2r+1 < sj2r+1 for

all r. �

It is now useful for us to obtain an explicit map for the bijection from Lemma 6.4.

This allows us to construct the sequence of exchanges which replaces Il(S, n) with

Iu(S, n).
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Construction 7.3. Given S ∈
(

[n]
2d+2

)
, we define

I(S, n) = Il(S, n) ∪ Iu(S, n),

I ′(S, n) = I ′
l(S, n) ∪ I ′

u(S, n).

In order to get a convenient parametrisation of these sets, we define a map

φ :
∏

i∈Z/(2d+2)Z

[0, si+1 − si] → 2[n]

(n0, n1, . . . , n2d+1) 7→
⋃

i∈Z/(2d+2)Z

[si, si + ni − 1].

We abbreviate n = (n0, n1, . . . , n2d+1). Then

• φ(n) ∈ I ′
l(S, n) if and only if n2i−1 < s2i − s2i−1 and n2i > 0 for all

i ∈ Z/(d+ 1)Z;

• φ(n) ∈ I ′
u(S, n) if and only if n2i < s2i+1 − s2i and n2i+1 > 0 for all

i ∈ Z/(d+ 1)Z;

• φ(n) ∈ Il(S, n) if and only if n2i−1 < s2i − s2i−1 and n2i > 0 for all

i ∈ Z/(d+1)Z, and there exists a j ∈ Z/(d+1)Z such that either n2j+1 = 0

or n2j = s2j+1 − s2j ;

• φ(n) ∈ Iu(S, n) if and only if n2i < s2i+1 − s2i and n2i+1 > 0 for all

i ∈ Z/(d+1)Z, and there exists a j ∈ Z/(d+ 1)Z such that either n2j = 0,

or n2j−1 = s2j − s2j−1.

We then obtain an explicit bijection by defining a map

ψ : Il(S, n) → Iu(S, n)

as follows. Let I ∈ Il(S, n) such that I = φ(n) and let t = (−1, 1,−1, 1, . . . ,−1, 1).

Further, define

λI = max



λ ∈ Z>0

∣∣∣ n+ λt ∈
∏

i∈Z/(2d+2)Z

[0, si+1 − si]



 .

By construction,

φ(n + λIt) ∈ Iu(S, n),

since we must either have some j ∈ Z/(d + 1)Z such that s2j − λI = 0, or some

j ∈ Z/(d + 1)Z such that s2j−1 + λI = s2j − s2j−1, otherwise λI would not be

maximal. Therefore define

ψ(I) = φ(n + λIt).

It can be seen that the map ψ is a bijection because one may define its inverse

as follows. Let J ∈ Iu(S, n) such that J = φ(n). Then let

µJ = max



µ ∈ Z>0

∣∣∣ n− µt ∈
∏

i∈Z/(2d+2)Z

[0, si+1 − si]



 .
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By construction,

φ(n − µJt) ∈ Il(S, n),

since we must either have some j ∈ Z/(d+ 1)Z such that n2j+1 − µJ = 0, or some

j ∈ Z/(d+ 1)Z such that n2j + µJ = s2j+1 − s2j . It is then clear that

ψ−1(J) = φ(n − µJt).

Theorem 7.4. Given triangulations T , T ′ of C(n, 2d) such that T ⋖T ′, there exist

cubillages Q0, . . . ,Qr of Z(n, 2d+ 1) such that Q0 = QT , Qr = QT ′ and

Q0 ⋖Q1 ⋖ · · ·⋖Qr,

so that QT 6 QT ′ .

Proof. Suppose that the increasing flip of T which gives T ′ is induced by the

(2d+1)-face |S| of C(n, n−1). Then ISp(QT )\ ISp(QT ′) = Il(S, n) and ISp(QT ′)\

ISp(QT ) = Iu(S, n). Let R = ISp(QT ) \ Il(S, n) = ISp(QT ′) \ Iu(S, n). Hence we

must find a sequence of flips starting at QT which gradually replaces Il(S, n) with

Iu(S, n).

The flips of cubillages we wish to perform are as follows. Given φ(n) ∈ Il(S, n),

we make the sequence of exchanges

φ(n) ; φ(n + t) ; · · · ; φ(n+ (λφ(n) − 1)t) ; φ(n+ λφ(n)t),

where φ(n) ; φ(n + t) means that we remove φ(n) and replace it with φ(n + t).

Hence the set of exchange pairs in our sequence of flips from QT to QT ′ is

{(φ(n+ rt), φ(n + (r + 1)t) | φ(n) ∈ Il(S, n), 0 6 r < λφ(n)}.

Wemust show that there is an order in which we can make these exchanges such that

after each exchange we still have a 2d-separated collection. Here each exchange gives

an increasing flip by Theorem 7.1. Note further that φ(n+ rt) and φ(n+ (r+1)t)

are tightly 2d-interweaving, as we know must be the case from Theorem 7.1.

Our exchanges give a bijection

I ′(S, n) \ Iu(S, n) → I ′(S, n) \ Il(S, n)

φ(n) 7→ φ(n+ t).

Hence, we have one exchange per element of I ′(S, n)\Iu(S, n). By Construction 7.3,

we have that φ is a bijection between [1, s1 − s0]× [0, s2− s1 − 1]× · · · × [1, s2d+1−

s2d]× [0, s0 − s2d+1 − 1 + n] and I ′(S, n) \ Iu(S, n). The set [1, s1 − s0] × [0, s2 −

s1 − 1]× · · · × [1, s2d+1 − s2d]× [0, s0 − s2d+1 − 1 + n] is a lattice under the order

given by

(n0, n1, . . . , n2d+1) 6 (n′
0, n

′
1, . . . , n

′
2d+1)
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if and only if for all j

n′
2j 6 n2j and n2j+1 6 n′

2j+1,

since this is just the usual product order, but reversed on coordinates with even

index.

We claim that any linear extension n1 < · · · < nr of this lattice gives an order on

I ′(S, n)\Iu(S, n) such that if C0 := Sp(QT ) and Ci := (Ci−1\{φ(n
i)})∪{φ(ni+t)},

then Ci is 2d-separated for all i. Note first that we always must have φ(ni) ∈ Ci−1.

This is because either φ(ni) ∈ Il(S, n) or φ(ni − t) ∈ I ′(S, n) \ Iu(S, n). Hence,

either φ(ni) ∈ C0, or φ(n
i) is the result of an earlier exchange, since ni − t < ni in

our order.

Now suppose that Ci is not 2d-separated for some i. We may choose the min-

imal i for which this is the case. We first show that no element of I ′(S, n) is

2d-interweaving with any element of R. Suppose, on the contrary, that there ex-

ist I ∈ I ′(S, n) and J ∈ R such that I and J are 2d-interweaving. Then, by

Lemma 6.2, we have X ⊆ Î and Y ⊆ Ĵ such that #X = #Y = d + 1 and X and

Y are 2d-interweaving. We have that X ⊆ Î ⊆ S, and since #X = d+ 1, we must

have either X 6⊇ Su, or X 6⊇ Sl. If X 6⊇ Su, then X ⊆ F for a 2d-simplex |F | of

T , by Gale’s Evenness Criterion. This gives a contradiction, since |F | and |Ĵ | are

both simplices of T and (X,Y ) is a circuit. One can derive a similar contradiction

using T ′ when X 6⊇ Sl.

Therefore, if Ci is not 2d-separated, it must be because φ(ni + t) is 2d-

interweaving with an element I ∈ I(S, n) ∩ Ci. By Lemma 7.2, we must have

I = [s0, s
′
0] ∪ [s1, s

′
1] ∪ · · · ∪ [s2d+1, s

′
2d+1] ∈ Ci \ {φ(n

i + t)} = Ci−1 \ {φ(n
i)}

such that either s2j +(ni
2j − 1)− 1 < s′2j and s′2j+1 < s2j+1 +(ni

2j+1 +1)− 1 for all

j, or s′2j < s2j + (ni
2j − 1)− 1 and s2j+1 + (ni

2j+1 + 1)− 1 < s′2j+1 for all j. In the

latter case, we also have that s′2j < s2j + ni
2j − 1 and s2j+1 + ni

2j+1 − 1 < s′2j+1, so

that φ(ni) also 2d-interweaves I, which means that Ci−1 is not 2d-separated. This

contradicts i being the minimal index such that this was the case. In the former

case, we have that I precedes φ(ni) in our chosen order on I ′(S, n) \ Iu(S, n). This

means that I must have already been exchanged, which is also a contradiction.

Therefore, we have cubillages Q0, . . . ,Qr such that Ci = Sp(Qi) for each i. By

Theorem 7.1, we have

Q0 ⋖Q1 ⋖ · · ·⋖Qr.

By construction, we have that Q0 = QT and Qr = QT ′ . �

Example 7.5. We give an example of the construction used to prove Theorem 7.4.

(1) Consider the triangulation T of the heptagon C(7, 2) given by e̊(T ) =

{13, 16, 35, 36}. We perform the increasing flip on this triangulation induced by
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the simplex |1236|, thereby obtaining the triangulation T ′ of C(7, 2) with e̊(T ′) =

{16, 26, 35, 36}.

We have

ISp(QT ) = {13, 16, 35, 36,

126, 134, 136, 346, 356, 367,

1236, 1345, 1346, 1367, 3467, 3567,

12346, 13456, 13467, 13567}

and

ISp(QT ′) = {16, 26, 35, 36

126, 236, 267, 346, 356, 367,

1236, 1367, 2346, 2367, 3467, 3567,

12346, 13467, 13567, 23467}.

Moreover,

ISp(QT ) \ ISp(QT ′) = Il(1236, 7) = {13, 134, 136, 1345, 1346, 13456}

and

ISp(QT ′) \ ISp(QT ) = Iu(1236, 7) = {26, 236, 267, 2346, 2367, 23467}.

We illustrate how we can gradually replace elements of Il(1236, 7) in ISp(QT ) with

the elements of Iu(1236, 7), whilst ensuring that the collection remains 2-separated.

The coordinate parameterisation of I ′(1236, 7) by φ gives

φ(1, 0, 1, 0) = 13,

φ(1, 0, 2, 0) = 134,

φ(1, 0, 1, 1) = 136,

φ(1, 0, 3, 0) = 1345,

φ(1, 0, 2, 1) = 1346,

φ(1, 0, 3, 1) = 13456,

φ(0, 1, 0, 1) = 26,

φ(0, 1, 1, 1) = 236,

φ(0, 1, 0, 2) = 267,

φ(0, 1, 2, 1) = 2346,

φ(0, 1, 1, 2) = 2367,

φ(0, 1, 2, 2) = 23467.
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The bijection ψ : Il(1236, 7) → Iu(1236, 7) in this case gives

13 = φ(1, 0, 1, 0) 7→ φ(0, 1, 0, 1) = 26,

134 = φ(1, 0, 2, 0) 7→ φ(0, 1, 1, 1) = 236,

136 = φ(1, 0, 1, 1) 7→ φ(0, 1, 0, 2) = 267,

1345 = φ(1, 0, 3, 0) 7→ φ(0, 1, 2, 1) = 2346,

1346 = φ(1, 0, 2, 1) 7→ φ(0, 1, 1, 2) = 2367,

13456 = φ(1, 0, 3, 1) 7→ φ(0, 1, 2, 2) = 23467.

Note that in this example, we have that I ′
l(1236, 7) = Il(1236, 7) and I ′

u(1236, 7) =

Iu(1236, 7), since we cannot have Î = 1236 for any subset I. Thus we consider the

lattice on I ′(1237, 6) \ Iu(1237, 6) = Il(1236, 7) given by

(1, 0, 1, 1)

(1, 0, 1, 0) (1, 0, 2, 1)

(1, 0, 2, 0) (1, 0, 3, 1)

(1, 0, 3, 0),

which is
136

13 1346

134 13456

1345.

Note here that we place minimal element of the lattice at the bottom. Therefore,

by Theorem 7.4, we may perform the exchanges replacing φ(n) by φ(n + t) in an

order given by any linear extension of

136 ; 267

13 ; 26 1346 ; 2367

134 ; 236 13456 ; 23467

1345 ; 2346.

Note here that we first make the exchange at the bottom of the lattice, and then

move up.
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(2) We now give an example where we do not have I(S, n) = I ′(S, n). This

example is somewhat larger than the previous example, so we do not go through it

in the same level of detail.

Indeed, we do not consider full triangulations, but only the set Il(1357, 8), which

we wish to replace with the set Iu(1357, 8). Here we have I
′
l(1357, 8) = Il(1357, 8)∪

{1357} and I ′
u(1357, 8) = Iu(1357, 8) ∪ {1357}. The sequence of exchanges from

Il(1357, 8) to Iu(1357, 8) is given by the bijection φ(n) 7→ φ(n+t) from I ′(1357, 8)\

Iu(1357, 8) to I ′(1357, 8) \ Il(1357, 8).

Any sequence of exchanges done in the order of any linear extension of the

following lattice will preserve 2-separatedness. One can check that this is the lattice

from the proof of Theorem 7.4.

1357 ; 3478

135 ; 347 157 ; 378 13567 ; 34578 12357 ; 13478

15 ; 37 1356 ; 3457 1567 ; 3578 1235 ; 1347 1257 ; 1378 123567 ; 134578

156 ; 357 12356 ; 13457 125 ; 137 12567 ; 13578

1256 ; 1357

Note that here, since 1357 ∈ I ′(1357, 8) \ Il(1357, 8), but 1357 /∈ Iu(1357, 8), we

have that 1256 ; 1357 ; 3478. That is, 1357 is only an intermediate subset in the

sequence of exchanges from Il(1357, 8) to Iu(1357, 8).

We now show the result for odd dimensions.

Theorem 7.6. Given triangulations T , T ′ of C(n, 2d+ 1) such that T ⋖ T ′, there

exist cubillages Q0, . . . ,Qr of Z(n, 2d+ 2) such that Q0 = QT , Qr = QT ′ and

Q0 ⋖Q1 ⋖ · · ·⋖Qr,

so that QT 6 QT ′ .

Proof. We start, as in the proof of Theorem 6.8, by considering the triangulations

T̂ , T̂ ′ of C(n + 1, 2d+ 2). By [Ram97, Proposition 5.14(i)], we have that T̂ ′ < T̂ .

By Theorem 7.4, there exist cubillages Q′
s ⋖ · · ·⋖Q′

0 of Z(n+ 1, 2d+ 3) such that

Q′
s = QT̂ ′ and Q′

0 = QT̂ .

As in the proof of [DKK18a, Lemma 5.2], we have that the (n + 1)-contraction

of Q′
i gives a membrane Mi, which is a cubillage of Z(n, 2d+ 2). As in the proof

of Theorem 6.8, we have that Ms = QT ′ and M0 = QT . We claim that for each i

we either have Mi = Mi+1 or Mi ⋖Mi+1.

Consider the increasing flip which takes Q′
i+1 to Q′

i. Suppose this increasing

flip is induced by a (2d + 4)-face Γ of Z(n + 1, n + 1) which has A as its set of
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generating vectors. If n+1 /∈ A, then the increasing flip does not affect the (n+1)-

pie, so that Mi = Mi+1. Hence, suppose instead that n + 1 ∈ A. Let the lower

facets of πn+1,2d+4(Γ) consist of the cubes πn+1,2d+4(∆j), where ∆j is generated

by A \ {aj}, noting that we must have a2d+3 = n + 1. Similarly, let the upper

facets of πn+1,2d+4(Γ) consist of the cubes πn+1,2d+4(∆
′
j), where ∆′

j is generated

by A \ {aj}.

Then, it is well-known that for j < k the cubes πn+1,2d+4(∆j) and πn+1,2d+4(∆k)

intersect in an upper facet of πn+1,2d+4(∆k) and a lower facet of πn+1,2d+4(∆j),

while the cubes πn+1,2d+4(∆
′
j) and πn+1,2d+4(∆

′
k) intersect in an upper facet of

πn+1,2d+4(∆
′
j) and a lower facet of πn+1,2d+4(∆

′
k). This is because the increasing

flip corresponds to inverting the packet of A: the cubes ∆j and ∆′
j correspond

to the sets A \ {aj}; these must be ordered lexicographically for ∆j and reverse-

lexicographically for ∆′
j .

Contracting the (n + 1)-pie of Q′
i+1 sends the cubes ∆j for j < 2d + 3 to their

facet generated by A \ {aj, n+ 1}, which is precisely the intersection ∆j ∩∆2d+3.

By the above paragraph, this projects to an upper facet of πn+1,2d+4(∆2d+3).

Hence the part of Mi+1 which lies within Γ/(n+ 1) consists of the upper facets of

πn+1,2d+4(∆2d+3/(n+1)). Here we use Γ/(n+1) to denote the image of Γ/(n+1)

under the (n+1)-contraction, and so forth. Similarly, we have that the part of Mi

which lies within Γ/(n + 1) consists of the lower facets of πn+1,2d+4(∆
′
2d+3/(n +

1)). We then have that Γ/(n + 1) = ∆2d+3/(n + 1) = ∆′
2d+3/(n + 1), and so

Mi ⋖ Mi+1. This is since Mi and Mi+1 only differ within Γ/(n + 1), because

Q′
i+1 and Q′

i only differ within Γ. Moreover, πn,2d+3(Mi+1) contains the up-

per facets of πn,2d+3(Γ/(n + 1)), whereas πn,2d+3(Mi) contains the lower facets

of πn,2d+3(Γ/(n+1)). This argument is illustrated in Figure 7; compare [DKK19a,

Figure 7].

This gives a chain of cubillages QT = M0 = Q0 ⋖ · · · ⋖ Qr = Ms = QT ′ by

applying the result of the above paragraph to the chain Q′
s ⋖ · · · ⋖ Q′

0. Here the

cubillages Q0, . . . ,Qr are the cubillages M0, . . . ,Ms with the duplicates removed,

corresponding to the cases above where Mi = Mi+1. �

By putting together Theorem 6.6, Theorem 6.8, Theorem 7.4, and Theorem 7.6,

this finally establishes Theorem 5.3, and hence also Corollary 5.4.
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Figure 7. An illustration of the argument of Theorem 7.6.

∅

1

12

123

1234

234

34

4

3

13

23
Qi+1 ∅

1

12

123

3

13

23Mi+1

∅

1

12

123

1234

234

34

4

3

13

134

Qi
∅

1

12

123

3

13

23 Mi

[Abe91] James Abello. The weak Bruhat order of SΣ consistent sets, and Cata-

lan numbers. SIAM J. Discrete Math. 4.1 (1991), pp. 1–16. issn: 0895-

4801. doi: 10.1137/0404001.

[BB05] Anders Björner and Francesco Brenti. Combinatorics of Coxeter

groups. Vol. 231. Graduate Texts in Mathematics. Springer, New

York, 2005, pp. xiv+363. isbn: 978-3540-442387; 3-540-44238-3.

[BBG20] Karin Baur, Dusko Bogdanic, and Ana Garcia Elsener. Cluster cate-

gories from Grassmannians and root combinatorics. Nagoya Math. J.

240 (2020), pp. 322–354. doi: 10.1017/nmj.2019.14.

[Bjö+99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White,

and Günter M. Ziegler. Oriented matroids. Second. Vol. 46. Ency-

clopedia of Mathematics and its Applications. Cambridge Univer-

sity Press, Cambridge, 1999, pp. xii+548. isbn: 0-521-77750-X. doi:

10.1017/CBO9780511586507.

https://doi.org/10.1137/0404001
https://doi.org/10.1017/nmj.2019.14
https://doi.org/10.1017/CBO9780511586507


REFERENCES 37

[BK04] Aslak Bakke Buan and Henning Krause. Tilting and cotilting for quiv-
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[CS98] Ivan Chajda and Václav Snášel. Congruences in ordered sets. Math.

Bohem. 123.1 (1998), pp. 95–100. issn: 0862-7959.

[Dey93] Tamal Krishna Dey. On counting triangulations in d dimensions. Com-

put. Geom. 3.6 (1993), pp. 315–325. issn: 0925-7721.doi: 10.1016/0925-7721(93)90005-Q.

[DKK12] Vladimir I. Danilov, Alexander V. Karzanov, and Gleb Koshevoy. Con-

dorcet domains of tiling type. Discrete Appl. Math. 160.7-8 (2012),

pp. 933–940. issn: 0166-218X. doi: 10.1016/j.dam.2011.08.001.

[DKK18a] Vladimir I Danilov, Alexander V Karzanov, and Gleb A Koshevoy. Cu-

billages on cyclic zonotopes, membranes, and higher separation. 2018.

arXiv: 1810.05517.

https://doi.org/10.1016/j.jpaa.2003.11.004
https://doi.org/10.1016/0095-8956(78)90080-1
https://doi.org/10.1007/BF02764601
https://doi.org/10.2307/2000946
https://doi.org/10.1090/S0002-9947-97-01838-2
https://doi.org/10.1006/eujc.1999.0317
https://doi.org/10.1016/0925-7721(93)90005-Q
https://doi.org/10.1016/j.dam.2011.08.001
https://arxiv.org/abs/1810.05517


38 REFERENCES

[DKK18b] Vladimir I Danilov, Alexander V Karzanov, and Gleb A Koshevoy.

On interrelations between strongly, weakly and chord separated set-

systems (a geometric approach). 2018. arXiv: 1805.09595.

[DKK19a] V. I. Danilov, A. V. Karzanov, and G. A. Koshevoy. Cubillages on

cyclic zonotopes. Russ. Math. Surv. 74.6 (2019), pp. 1013–1074. issn:

0042-1316. doi: 10.1070/rm9879.

[DKK19b] Vladimir I Danilov, Alexander V Karzanov, and Gleb A Koshevoy.

The weak separation in higher dimensions. 2019. arXiv: 1904.09798.

[DKK20] Vladimir Danilov, Alexander Karzanov, and Gleb Koshevoy. The pu-

rity phenomenon for symmetric separated set-systems. 2020. arXiv:

2007.02011.

[DM12] Aristophanes Dimakis and Folkert Müller-Hoissen. KP solitons, higher

Bruhat and Tamari orders. Associahedra, Tamari lattices and related

structures. Ed. by Folkert Müller-Hoissen, Jean Marcel Pallo, and Jim

Stasheff. Vol. 299. Progress in Mathematical Physics. Tamari memorial
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quantum Plücker coordinates (1998), pp. 85–108.

[Miz14] Yuya Mizuno. Classifying τ -tilting modules over preprojective algebras

of Dynkin type. Math. Z. 277.3-4 (2014), pp. 665–690. issn: 0025-5874.

doi: 10.1007/s00209-013-1271-5.

[MPS12] Folkert Müller-Hoissen, Jean Marcel Pallo, and Jim Stasheff, eds. As-

sociahedra, Tamari lattices and related structures. Vol. 299. Progress

in Mathematical Physics. Tamari memorial Festschrift. Birkhäuser/
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