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THE TWO HIGHER STASHEFF–TAMARI ORDERS ARE EQUAL

NICHOLAS J. WILLIAMS

Abstract. The set of triangulations of a cyclic polytope possesses two a priori

different partial orders, known as the higher Stasheff–Tamari orders. The

first of these orders was introduced by Kapranov and Voevodsky, while the

second order was introduced by Edelman and Reiner, who also conjectured

the two to coincide in 1996. In this paper we prove their conjecture, thereby

substantially increasing our understanding of these orders. This result also

has ramifications in the representation theory of algebras, as established in

previous work of the author. Indeed, it means that the two corresponding

orders on tilting modules, cluster-tilting objects and their maximal chains are

equal for the higher Auslander algebras of type A.
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1. Introduction

One of the principal reasons to study triangulations is their ability to encode

pertinent information combinatorially. One example here is the famous work of

Gel′fand, Kapranov, and Zelevinsky showing how extremal terms of A-discriminants

are described by regular triangulations of Newton polytopes [GKZ94]. Another

example is given by the result of Stanley that the linear extensions of a poset

correspond to simplices in a triangulation of its order polytope [Sta86].

But nowhere is this ability in sharper relief than in the Tamari lattice [FT67;

HT72; Tam51], a ubiquitous partial order encoded by triangulations of convex

polygons. The Tamari lattice is inescapable when considering weak associativ-

ity conditions [Tam62], where triangulations of convex polygons correspond to the

different possibilities for performing a binary operation on a string. Homotopy

associativity of H-spaces was studied by Stasheff [Sta63] using the associahedron,

a polytope whose 1-skeleton is the Tamari lattice [Tam51; Sta12]. In mathemati-

cal physics, weak associativity conditions occur in open string field theory [Moo55;

KK74; Hat+86], and in the Biedenharn–Elliott identities [Bie53; Ell53]. In algebra,

triangulations of convex polygons correspond to clusters in the type A cluster alge-

bra [FZ03], which is related to incarnations of the Tamari lattice as a partial order

on tilting modules [BK04] or torsion classes [Tho12] for the type A path algebra.

The sequence counting the number of objects of the Tamari lattice is the Catalan

numbers, which is known to enumerate over two hundred different sequences of com-

binatorial objects [Sta15]. The extensive reach of the Tamari lattice into different

areas of mathematics is exhibited in the Tamari memorial festschrift [MPS12].

The first and second higher Stasheff–Tamari orders are two higher-dimensional

versions of the Tamari lattice. Their objects are triangulations of cyclic polytopes,

which are the higher-dimensional analogues of triangulations of convex polygons.

The history of these orders is as follows. In 1991, Kapranov and Voevodsky [KV91]

defined an order on the set of triangulations of a cyclic polytope, called the higher

Stasheff order, to give natural examples of strictly ordered n-categories produced by

a certain iterative construction. In 1996, Edelman and Reiner built upon this work

by introducing the two a priori different higher Stasheff–Tamari orders. Thomas

later proved that the first higher Stasheff–Tamari order of Edelman and Reiner coin-

cided with the higher Stasheff order of Kapranov and Voevodsky [Tho03]. Edelman

and Reiner further conjectured the two higher Stasheff–Tamari orders to coincide

with each other [ER96, Conjecture 2.6], a problem that has remained open since,

despite several papers on the orders [ERR00; Tho02; Tho03; Ram97; RS00; RR12].

One especially beautiful facet of the higher-dimensional orders is that triangula-

tions of (n+1)-dimensional cyclic polytopes are assembled from maximal chains of

triangulations of n-dimensional cyclic polytopes in the first higher Stasheff–Tamari

order [Ram97]. In particular, the objects of the three-dimensional first higher
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Stasheff–Tamari order correspond to equivalence classes of maximal chains in the

Tamari lattice, and the objects of the four-dimensional first higher Stasheff–Tamari

order correspond to equivalence classes of maximal chains in the three-dimensional

order, and so on.

Generalisations of, and variations on, the Tamari lattice is a large subject in

itself, and includes Tamari lattices in other Dynkin types [Tho06], Cambrian lat-

tices [Rea06], lattices of torsion classes of cluster-tilted algebras [GM19], m-Tamari

lattices [BP12; BFP11], ν-Tamari lattices [PV17], Dyck lattices [Knu11; Dis+12],

generalised Tamari orders [Ron12], and Grassmann–Tamari orders [SSW17]. How-

ever, the higher Stasheff–Tamari orders hold a particularly special position amongst

these because, as we have seen, they encode higher-dimensional information hid-

den in the Tamari lattice itself, rather than being only variations on the Tamari

lattice. This furthermore shows the virtues of viewing the Tamari lattice in terms

of triangulations of convex polygons: it brings out these latent higher-dimensional

structures which are obscured by other combinatorial interpretations.

Just as we have seen for triangulations of convex polygons, triangulations of

cyclic polytopes describe phenomena across mathematics. Indeed, triangulations

of cyclic polytopes are often used to define higher-dimensional analogues of struc-

tures that exist for lower-dimensional triangulations. The example of this par excel-

lence is the application of triangulations of cyclic polytopes to define higher Segal

spaces [DK19], see also [Pog17; DJW19]. In integrable systems, regular triangula-

tions of cyclic polytopes describe the evolution of a class of solitary waves modelled

by the Kadomtsev–Petviashvili equation [DM12; Wil21b], see also [Hua15; KK21;

GPW19]. The amplituhedron of Arkani-Hamed and Trnka [AT14] is a cyclic poly-

tope for particular values of its parameters. Here, repeatedly applying the BCFW

recursion [Bri+05] to compute scattering amplitudes produces a triangulation of

this cyclic polytope [BT18]. In algebra, triangulations of cylic polytopes corre-

spond to tilting modules and equivalence classes of (d-)maximal green sequences

for the higher Auslander algebras of type A [OT12; Wil21a]. Triangulations of

cyclic polytopes have also been shown to be in bijection with other combinatorial

objects, such as snug partitions [Tho02] and persistent graphs [FR21].The higher

Stasheff–Tamari orders can be interpreted in terms of these combinatorial objects.

A cyclic polytope is called an alternating polytope if all of its induced subpoly-

topes are cyclic; Sturmfels shows that alternating polytopes correspond naturally

to totally positive matrices [Stu88b], which are of significant interest in both pure

mathematics and applications [And87; Lus98; Pos06].

The two higher Stasheff–Tamari orders are quite different in nature and each

has its own advantages. The first order is more combinatorial and is defined by

means of its covering relations, which are given by “increasing bistellar flips”. The

second order is more geometric and was originally defined by comparing the heights
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of sections induced by triangulations. However, it was shown in [Tho02; Wil21a]

how one may define the second order combinatorially. The second order allows

direct comparison between triangulations, whereas comparing triangulations in the

first order requires one to find a sequence of increasing bistellar flips. On the other

hand, the local structure of the second poset is not clear, because the covering

relations are not known. It is also easier to compute the entire first poset than to

compute the entire second poset. Computing either poset requires computing all the

triangulations of a given cyclic polytope. The most efficient algorithm for doing this

is to start at the minimal triangulation and iteratively compute increasing bistellar

flips [JK18], which is tantamount to computing the first order. To construct the

second order then requires additional computations on top of this.

It is clear that whenever the first higher Stasheff–Tamari order holds between

a pair of triangulations, then the second order must hold too, as was noted in

[ER96]. This is because if a triangulation T ′ is an increasing bistellar flip of a

triangulation T , then the section of T ′ certainly lies above the section of T . But

it is not clear whether the first order should hold whenever the second one does.

Indeed, an analogous result for the higher Bruhat orders has been known to be

false since 1993 [Zie93]. A priori it might be possible for there to exist a pair of

pathological triangulations T and T ′ where the section of T lay below the section

of T ′, and yet T ′ could not be reached by a sequence of increasing bistellar flips

from T .

In this paper, we prove the Edelman–Reiner conjecture that the first higher

Stasheff–Tamari order (61) is equal to the second higher Stasheff–Tamari or-

der (62).

Theorem 1.1 (Theorem 3.10 and Theorem 3.15). Let T and T ′ be triangulations

of the cyclic polytope C(m,n). Then T 61 T
′ if and only if T 62 T

′.

This reveals the remarkable—and somewhat surprising—fact that in order for a

sequence of increasing bistellar flips to exist from a triangulation T to a triangula-

tion T ′, it suffices for the section of T ′ to lie above the section of T . This allows

triangulations to be compared directly in the first order, and thus substantially

increases the ease of working with this poset. An application of this result is that

the orders considered in [Wil21a] on tilting modules and their maximal chains, and

cluster-tilting objects and (d-)maximal green sequences coincide for the higher Aus-

lander algebras of type A. This is an intriguing fact which raises the prospect that

this might be true more generally in higher Auslander–Reiten theory. However,

there are many obstacles to such a proof, principally, the lack of mutability present

in higher Auslander–Reiten theory [OT12].

Our proof of the conjecture is inductive and combinatorial, drawing upon the

results of [Wil21a]. The main difficulty in proving the conjecture is that as the di-

mension of the cyclic polytope grows, increasing bistellar flips become scarce. The



THE TWO HIGHER STASHEFF–TAMARI ORDERS ARE EQUAL 5

key insight of the proof is that one can find increasing bistellar flips inductively

by contracting triangulations, because when one reverses the contraction the small

polytopes in which the flips occur remain small enough to find a new flip. The

difficult step in the proof is then showing that the increasing bistellar flip one has

found respects the second order, which allows one to build a chain of flips between

the two sections. The details of this step differ between even and odd dimensions,

and, accordingly, we deal with the proofs separately for the two different pari-

ties. Understanding how subpolytopes of triangulations behave under expansion

requires extending the theory of contracting and expanding triangulations from

[RS00, Lemma 4.7(i)] to arbitrary vertices, which is of independent interest. In-

deed, this theory is extremely useful in proving new descriptions of triangulations

of cyclic polytopes [Tho02; OT12; Wil21a].

This paper is structured as follows. In Section 2 we give background on the higher

Stasheff–Tamari orders. In Section 3 we prove the Edelman–Reiner conjecture. At

the beginning of this section we give an outline of our proof that the higher Stasheff–

Tamari orders are equal. After proving some preliminary lemmas, we split the proof

of the conjecture into two cases, depending upon whether the cyclic polytope is odd-

dimensional or even-dimensional. In Section 4 we generalise the theory from [RS00,

Lemma 4.7(i)] of contracting and expanding triangulations of cyclic polytopes to

arbitrary vertices. This allows us to prove technical results which are needed for

the proof in Section 3.

2. Background

We first declare some notation. We use [m] to denote the set {1, 2, . . . ,m}.

Similarly, we write [m,n] for { i ∈ N : m 6 i 6 n } and call subsets of this form

intervals. By
(
[m]
k

)
we mean the set of subsets of [m] of size k. When we display

the elements of a subset of [m], we shall always display the elements in order.

Hence, if we write S = {a, b, c, . . . , x, y, z}, we always mean that a < b < c < · · · <

x < y < z. Furthermore, if A ∈
(
[m]
k+1

)
, then, unless indicated otherwise, we shall

find it convenient to denote the elements of A by A = {a0, a1, . . . , ak}. The same

applies to other letters of the alphabet: the upper-case letter denotes the subset;

the lower-case letter is used for the elements, which are ordered according to their

index starting from 0. In an effort to make the notation lighter, we often omit

braces around sets, writing A ∪ x for A ∪ {x} and A \ x for A \ {x}.

2.1. Cyclic polytopes and their triangulations. Our framework for cyclic

polytopes and their triangulations is based on [Ram97] and maintains a sharp

distinction between the combinatorial and the geometric.

2.1.1. Convex polytopes. A subset X ⊂ Rn is convex if for any x, x′ ∈ X, the line

segment connecting x and x′ is contained in X. The convex hull conv(X) of X is
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the smallest convex set containing X or, equivalently, the intersection of all convex

sets containing X.

Let V ⊆ Z>0 be a finite set and |− | : V → Rn be an injective function, which we

call the geometric realisation. We extend the notation to subsets of V by setting

|A| = conv{ |a| : a ∈ A }. We let P = |V | and suppose that the affine span of P

is Rn. A subset P ⊆ Rn of this form is called a (geometric) convex polytope. Given

V ′ ⊆ V , we say that |V ′| is a subpolytope of |V |.

A face of a P is a subset on which some linear functional is maximised. That is,

F ⊆ P is a face of P if there is a vector a ∈ Rn such that

F = {x ∈ P : 〈a,x〉 > 〈a,y〉, ∀y ∈ P },

where ‘〈−,−〉’ denotes the standard inner product. A (geometric) facet of P is a

face of codimension one. A (combinatorial) facet of P is a subset F ⊆ V such that

|F | is a geometric facet of P. The set of faces of a polytope P, along with the

empty set, forms a lattice under inclusion, which is known as the face lattice.

Let v ∈ V be such that |v| is the face of P given by maximising a functional

〈a,−〉. Further, let ǫ > 0 be sufficiently small that, for all w ∈ V \ v, we have that

〈a, |w|〉 < 〈a, |v|〉 − ǫ. The vertex figure of P at v is then the intersection

P\v := P ∩ {x ∈ R
n : 〈a,x〉 = 〈a, |v|〉 − ǫ },

that is, the intersection of P with the hyperplane 〈a,x〉 = 〈a, |v|〉 − ǫ.

A circuit of a polytope P realised geometrically via | − | : V → Rn is a pair,

(Z+, Z−), of disjoint subsets of V which are inclusion-minimal with the property

that |Z+| ∩ |Z−| 6= ∅. In this case, |Z+| and |Z−| intersect in a unique point.

The facets and circuits of the polytope P realised geometrically via |−| : V → Rn

comprise the combinatorial data that we are interested in. If we let FP and ZP be

respectively the set of combinatorial facets ofP and the set of combinatorial circuits

of P, then we say that the triple P = (V,FP,ZP) is a combinatorial polytope.

Remark 2.1. Note that there might exist v ∈ V such that |v| is not a face of P, since

we may have |v| ∈ |V \ v|. Allowing such elements of V is necessary for considering

one-dimensional cyclic polytopes. Hence, strictly, the data we consider comprise a

point configuration rather than a polytope.

2.1.2. Cyclic polytopes. Cyclic polytopes are the higher-dimensional analogues of

convex polygons. General introductions to this class of polytopes can be found in

[Zie95, Lecture 0] and [Grü03, Section 4.7]. Grünbaum writes that the construction

of cyclic polytopes in current use is due to Gale [Gal63] and Klee [Kle63], and that

they were introduced and studied in the 1950s by Gale [Gal55] and Motzkin [Mot57].

The earlier work of Carathéodory [Car07; Car11] is related, but the convex bodies

studied in these papers are not cyclic polytopes: they are the continuous analogues

of even-dimensional cyclic polytopes.
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Figure 1. Cyclic polytopes [ER96, Figure 2]

C(6, 3)

C(6, 2)

C(6, 1)

• • • • • •

•

•

• •

•

•

•

•

• •

•

•

Definition 2.2. The cyclic polytope C(V, n) is the polytope with geometric reali-

sation

| − |n : V → R
n

v 7→ |v|n = pn(tv) := (tv, t
2
v, . . . , t

n
v ),

where {tv0 , tv1 , . . . , tvk} ⊂ R and k + 1 = #V . (Recall our convention that V =

{v0, v1, . . . , vk} and that by writing {tv0 , tv1 , . . . , tvk}, we indicate that tv0 < tv1 <

· · · < tvk .)

When the dimension of the geometric realisation is clear from the context, we

will drop the subscript and write | − | instead of | − |n. In the case where V = [m],

we write C(m,n) := C([m], n). The precise values ti do not affect the combinatorial

properties of the cyclic polytope, so for simplicity we set ti = i. The curve defined

by pn(t) := (t, t2, . . . , tn) ⊂ Rn is called the moment curve.

The facets of C(m,n) come in two different types.

Definition 2.3 ([ER96]). A facet F of C(m,n) is an upper facet if for any a ∈ Rn

such that 〈a,−〉 is maximised on F, we have that an > 0, where an is the n-th

coordinate of a. Dually, a facet F of C(m,n,) is a lower facet if an is negative for

any a such that F maximises 〈a,−〉.
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Equivalently, a facet F of C(m,n) is an upper (lower) facet if any normal vector

to F which points out of the polytope has a positive (negative) n-th coordinate.

Or, more informally, F is an upper (lower) facet if it can be seen from a very large

positive (negative) n-th coordinate. Upper and lower facets of cyclic polytopes can

be characterised combinatorially using the following notions.

Definition 2.4. Given a subset F ⊂ V , we say that an element v ∈ V \ F is an

even gap in F if #{ x ∈ F : x > v } is even. Otherwise, it is an odd gap. A subset

F ⊂ V is even if every v ∈ V \ F is an even gap. A subset F ⊂ V is odd if every

v ∈ [m] \ F is an odd gap.

Theorem 2.5 (Gale’s Evenness Criterion, [Gal63, Theorem 3],[ER96, Lemma 2.3]).

Given a n-subset F ⊂ V , we have that |F | is an upper facet of C(V, n) if and only

if F is an odd subset, and that |F | is a lower facet of C(V, n) if and only if F is an

even subset.

We write

F l(V, n) := {F ⊆ V : |F |n is a lower facet of |V |n }, and

Fu(V, n) := {F ⊆ V : |F |n is an upper facet of |V |n }.

One may likewise characterise the circuits of cyclic polytopes combinatorially.

Definition 2.6 ([OT12, Definition 2.2],[Wil21a]). If A,B ⊆ V are (d+1)-subsets,

then we say that A intertwines B, and write A ≀ B, if

a0 < b0 < a1 < b1 < · · · < ad < bd.

If either A ≀B or B ≀A, then we say that A and B are intertwining. That is, we

use ‘are intertwining’ to refer to the symmetric closure of the relation ‘intertwines’.

A collection of (d+ 1)-subsets is called non-intertwining if no pair of the elements

are intertwining.

If A is a d-subset and B is a (d+ 1)-subset, then we also say that A intertwines

B, and write A ≀ B, if

b0 < a0 < b1 < · · · < ad−1 < bd.

Theorem 2.7 ([Bre73]). The circuits of C(V, n) are the pairs (A,B) and (B,A)

such that A is a (⌊n2 ⌋+ 1)-subset, B is a (⌈n2 ⌉+ 1)-subset, and A intertwines B.

This characterisation of the circuits is well-known due to the description of the

oriented matroid given by a cyclic polytope [BL78; Stu88a; CD00].

These combinatorial characterisations of upper and lower facets and circuits

show that these notions are independent of the particular geometric realisation of

C(V, n). Hence, we make the following definition.
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Definition 2.8. We will write F(V, n) for the combinatorial facets of C(V, n),

Z(V, n) for the combinatorial circuits of C(V, n), and C(V, n) for the combinatorial

cyclic polytope consisting of the triple (V,F(V, n),Z(V, n)).

Facets of C(V, n) will also be designated as either upper facets or lower facets,

as dictated by Gale’s Evenness Criterion. As for geometric cyclic polytopes, we

write C(m,n) := C([m], n). If #V = m, then we say that C(V, n) and C(m,n) are

combinatorially equivalent—they only differ by the labels of the vertices. More gen-

erally, two (geometric or combinatorial) polytopes are combinatorially equivalent if

they have isomorphic face lattices.

Remark 2.9. In the literature, the term ‘cyclic polytope’ is sometimes used more

widely to refer to a geometric polytope which is combinatorially equivalent to a

cyclic polytope C(m,n). Here we use the term ‘cyclic polytope’ in the narrower

sense in which we have defined it above: the convex hull of a set of points on the

moment curve.

Another term that appears in the literature is ‘alternating polytope’, which refers

to a polytope P which is combinatorially equivalent to a cyclic polytope C(m,n) in

such a way that this combinatorial equivalence restricts to a combinatorial equiva-

lence between each of the corresponding subpolytopes of P and C(m,n). It is clear

from the definitions that cyclic polytopes in our sense are also alternating polytopes

in this sense. Indeed, when we consider subpolytopes of our cyclic polytopes, we will

use the fact that these are cyclic polytopes under the vertex labelling induced from

the larger polytope. Shemer proves that every polytope combinatorially equivalent

to an even-dimensional cyclic polytope is an alternating polytope [She82], but this

is known not to be true in general—see, for instance, [Stu88b]. See also [BK00].

2.1.3. Triangulations. We now explain our framework for triangulations. We main-

tain our set-up from Section 2.1.1, where V ⊆ Z>0 is a finite subset, with |−| : V →

Rn a geometric realisation giving a geometric polytopeP = |V |, with corresponding

combinatorial polytope P = (V,FP,ZP).

A combinatorial n-simplex in V is a (n + 1)-subset S ⊆ V . The k-faces of

S are the subsets of S of size k + 1. An abstract simplicial complex is a set A

of combinatorial simplices in [m] such that if S, S′ ∈ A, then S 6⊆ S′. The k-

simplices of A are the k-faces of elements of A. An abstract simplicial complex

A′ is an abstract simplicial subcomplex of A if every simplex of A′ is a face of a

simplex of A. Hence, we consider abstract simplicial complexes in terms of maximal

simplices.

Given a (n + 1)-simplex S ⊆ V , if { |s| : s ∈ S } is an affinely independent

set, then |S| is a geometric n-simplex. A collection G of geometric simplices is a

geometric simplicial complex if

|S ∩R| = |S| ∩ |R|
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for all |S|, |R| ∈ G, and if there exist no |S|, |R| ∈ G such that |S| is a face of |R|.

Geometric simplicial subcomplexes are defined analogously to abstract simplicial

subcomplexes.

Definition 2.10. A (geometric) triangulation of the geometric polytope P is a

geometric simplicial complex T such that P =
⋃

|S|∈T |S|.

A (combinatorial) triangulation of the combinatorial polytope P is an abstract

simplicial complex T such that

• for all S ∈ T and all facets F of S, we either have that F is contained in a

facet of P , or there exists R ∈ T \ {S} such that F ⊂ R,

• there is no circuit (Z+, Z−) of P such that Z+ ⊆ S and Z− ⊆ R for

S,R ∈ T .

We use |T | to refer to the geometric simplicial complex corresponding to T .

Proposition 2.11 ([Ram97, Proposition 2.2]). Given an abstract simplicial com-

plex T , we have that T is a combinatorial triangulation of P if and only if |T | is a

geometric triangulation of P.

In this paper we are usually concerned with combinatorial triangulations, but

sometimes we shall need to consider geometric triangulations.

One can use the descriptions of the facets and circuits of C(m,n) to determine

whether or not a collection T of n-simplices gives a triangulation of C(m,n). We

denote the set of triangulations of the cyclic polytope C(m,n) by S(m,n). There

are two triangulations of C(m,n) which are of particular note. Namely, the lower

facets F l([m], n+1) of C(m,n+1) give a triangulation of C(m,n), which is known

as the lower triangulation. Similarly, Fu([m], n+1) gives a triangulation of C(m,n),

which is known as the upper triangulation.

Given a triangulation T of C(m,n) and H ⊆ [m], we say that C(H,n) is a

subpolytope of T if the facets F(H,n) of C(H,n) are a simplicial subcomplex of T .

Equivalently, we have that C(H,n) is a subpolytope of T if and only if {S ∈ T :

S ⊆ H } is a triangulation of C(H,n). We refer to this triangulation as the induced

triangulation of C(H,n).

2.2. The higher Stasheff–Tamari orders. We now come to the definitions of

the two higher Stasheff–Tamari orders. General introductions to these orders can

be found in [RR12] and [DRS10, Section 6.1].

We make some observations to motivate the definition of the first higher Stasheff–

Tamari order. Given H ∈
(
[m]
n+2

)
, we have that C(H,n) has only two triangulations,

namely: the lower triangulation and the upper triangulation. For example, if n = 2,

then C(H,n) is a quadrilateral, with the two possible triangulations given by a

choice of diagonal.
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Definition 2.12 ([ER96]). Suppose that C(H,n) is a subpolytope of T where

H ∈
(
[m]
n+2

)
and the induced triangulation of C(H,n) is the lower triangulation.

Let T ′ = (T \ F l(H,n + 1)) ∪ Fu(H,n + 1); that is, T ′ results from replacing

the induced triangulation of C(H,n) with the upper triangulation. Then T ′ is also

a triangulation of C(m,n) and we say that T ′ is an increasing bistellar flip of T .

Dually, we say that T is a decreasing bistellar flip of T ′. We often simply say

increasing flip or decreasing flip.

Bistellar flips are also known as “Pachner moves” after [Pac91].

Definition 2.13 ([KV91; ER96]). The first higher Stasheff–Tamari order is the

partial order on triangulations of C(m,n) with covering relations such that T ⋖1T
′

if and only if T ′ is an increasing bistellar flip of T . We write S1(m,n) for the poset

on S(m,n) this gives and 61 for the partial order itself.

We now define the second higher Stasheff–Tamari order. Unlike the first higher

Stasheff–Tamari order, this order is defined using the geometric realisation of the

cyclic polytope, although the order itself is independent of the geometric realisation.

In Section 2.3 we shall explain the entirely combinatorial characterisation of the

second higher Stasheff–Tamari order from [Wil21a].

Every triangulation |T | of C(m,n) determines a unique piecewise-linear section

σ|T | : C(m,n)→ C(m,n+ 1)

of C(m,n + 1) by sending each n-simplex |S|n of |T | to |S|n+1 in C(m,n + 1), in

the natural way, recalling the notation |S|n and |S|n+1 from Definition 2.2.

Definition 2.14 ([ER96]). The second higher Stasheff–Tamari order on S(m,n)

is defined by

T 62 T
′ ⇐⇒ σ|T |(x)n+1 6 σ|T ′|(x)n+1 ∀x ∈ C(m,n),

where σ|T |(x)n+1 denotes the (n+ 1)-th coordinate of the point σ|T |(x). We write

S2(m,n) for the poset on S(m,n) this gives.

Given triangulations T ∈ S(m,n) and T ′ ∈ S(m,n + 1), we say that T is a

section of T ′ if T is contained in T ′ as a simplicial subcomplex.

2.3. Combinatorial characterisation. We now explain the results of [Wil21a],

where combinatorial interpretations were given of both higher Stasheff–Tamari or-

ders in the same framework. This makes comparison between the orders much

easier. It is these interpretations of the higher Stasheff–Tamari orders that we use

in this paper to prove that the orders are equivalent.

The combinatorial interpretations of the orders from [Wil21a] require more so-

phisticated combinatorial descriptions of triangulations of cyclic polytopes than

that of Section 2.1.3.



12 NICHOLAS J. WILLIAMS

Definition 2.15. We call a simplex A ⊆ [m] an internal simplex of C(m,n) if A

does not lie within any facet of C(m,n).

It follows from [Dey93] that a triangulation of C(m,n) is determined by its inter-

nal ⌊n/2⌋-simplices, as explained for even dimensions in [OT12, Lemma 2.15] and

for odd dimensions in [Wil21a, Lemma 4.4]. We can thus combinatorially describe

triangulations of cyclic polytopes by characterising when a set of d-simplices in [m]

is the set of internal d-simplices of a triangulation of C(m, 2d) or C(m, 2d+ 1).

In order to do this, we first need to know when A is an internal ⌊n/2⌋-simplex

of C(m,n).

Proposition 2.16 ([OT12, Lemma 2.1(3)] and [Wil21a, Lemma 4.2]). The internal

⌊n/2⌋-simplices of C(m,n) are described as follows.

(1) In even dimensions, A is an internal d-simplex of C(m, 2d) if and only if

(2.1) A ∈ Kd
m :=

{
B ∈

(
[m]

d+ 1

)
: bi 6 bi+1 − 2 ∀i ∈ [d], and bd 6 b0 +m− 2

}
.

(2) In odd dimensions, A is an internal d-simplex of C(m, 2d+ 1) if and only

if

(2.2) A ∈ Jd
m := {B ∈ Kd

m : b0 6= 1, bd 6= m }.

These two facts both follow from applying Gale’s Evenness Criterion. Given a

triangulation T of C(m, 2d) or C(m, 2d+ 1), we write Int(T ) for its set of internal

d-simplices.

Even-dimensional triangulations may be described combinatorially by consider-

ing their sets of internal d-simplices.

Theorem 2.17 ([OT12, Theorem 2.3 and Theorem 2.4]). Given X ⊆ Kd
m, we have

that X = Int(T ) for some triangulation T of C(m, 2d) if and only if #X =
(
m−d−2

d

)

and X is non-intertwining .

In odd dimensions we require the following properties to characterise triangula-

tions combinatorially.

Definition 2.18 ([Wil21a, Definition 4.8]). Let X ⊆ Jd
m and A ∈ X. A (d − 1)-

simplex E is called a support for A if E ≀A and, for any internal d-simplex B ∈ Jd
m

such that B ⊆ A ∪ E, we have that B ∈ X. We say that X is supporting if every

A ∈ X has a support.

Definition 2.19 ([Wil21a, Definition 4.10]). We say that X ⊆ Jd
m is bridging if

whenever

{q0, q1, . . . , qi−1, ai, ai+1, . . . , aj , qj+1, qj+2, . . . , qd} ∈ X, and

{q0, q1, . . . , qi−1, bi, bi+1, . . . , bj, qj+1, qj+2, . . . , qd} ∈ X,
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where possibly i = 0 or j = d, or both, such that {ai, ai+1, . . . , aj}≀{bi, bi+1, . . . , bj},

we have that

{q0, q1, . . . , qi−1, ai, ai+1, . . . , ak−1, bk, bk+1, . . . , bj , qj+1, qj+2, . . . , qd} ∈ X

for all i 6 k 6 j + 1.

The following result then characterises odd-dimensional triangulations combina-

torially.

Theorem 2.20 ([Wil21a, Theorem 4.1]). Given X ⊆ Jd
m, we have that X = Int(T )

for some triangulation T of C(m, 2d+1) if and only if X is supporting and bridging.

Building on this, one can characterise the higher Stasheff–Tamari orders combi-

natorially in terms of the sets Int(T ).

Theorem 2.21 ([Wil21a, Theorem 3.3 and Theorem 3.6]). Given T , T ′ ∈ S(m, 2d),

we have that

• T ⋖1 T
′ if and only if Int(T ) = R ∪ {A} and Int(T ′) = R ∪ {B}, where

A ≀ B;

• T 62 T
′ if and only if for every A ∈ Int(T ), there is no B ∈ Int(T ′) such

that B ≀A.

Theorem 2.22 ([Wil21a, Theorem 5.5 and Corollary 5.14]). Given T , T ′ ∈

S(m, 2d+ 1), we have that

• T ⋖1 T
′ if and only if Int(T ′) = Int(T ) \ {A} for some A ∈ Int(T );

• T 62 T
′ if and only if Int(T ) ⊇ Int(T ′).

Remark 2.23. It is useful to think of increasing bistellar flips in these terms. That

is, in even dimensions, given triangulations T , T ′ with Int(T ) = R ∪ {A} and

Int(T ′) = R∪ {B} and A ≀B, the increasing bistellar flip replaces the d-simplex A

with the d-simplex B inside C(A ∪B, 2d). This is because A is the intersection of

F l(A∪B, 2d+1) and B is the intersection of Fu(A∪B, 2d+1). Here we say that A

is a mutable d-simplex in T . For odd dimensions, suppose that we have T , T ′ with

Int(T ′) = Int(T ) \ {A} for some A ∈ Int(T ). Then there exists a (d + 1)-simplex

B with A ≀ B such that the increasing bistellar flip occurs inside the subpolytope

C(A ∪ B, 2d+ 1). The increasing bistellar flip then replaces the d-simplex A with

the (d + 1)-simplex B inside this subpolytope. This is likewise because A is the

intersection of F l(A ∪ B, 2d + 2) and B is the intersection of Fu(A ∪ B, 2d + 2).

We also say here that A is a mutable d-simplex in T . Under these conceptions, we

think of increasing bistellar flips as replacing one half of a circuit with another.

2.4. Operations on triangulations. Our proof of the equivalence of the orders

is inductive and uses the following operations on triangulations, which were in-

troduced in [Ram97] based on the corresponding operations on oriented matroids
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Figure 2. The contraction operation [4← 5].
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from [BL78]. However, note that our notation and terminology differs from [BL78;

Ram97], and is instead based on [OT12; RS00].

2.4.1. Operations at the first or last vertex.

Definition 2.24. If S ⊆ [m] is a k-simplex, we define the contraction S[m−1← m]

of S by

S[m− 1← m] :=





S if m /∈ S,

(S \m) ∪m− 1 otherwise.

Note that S[m− 1← m] is a (k− 1)-simplex if S ⊇ {m− 1,m}. Given a triangula-

tion T of C(m,n), we define the contraction T [m− 1← m] to be the triangulation

of C(m− 1, n) given by

T [m− 1← m] :=
{
S[m− 1← m] ∈

(
[m−1]
n+1

)
: S ∈ T

}
.

This is indeed a triangulation of C(m− 1, n) by [Ram97, Theorem 4.2(iii)]. This

corresponds to the triangulation obtained from |T | by moving vertex |m| along the

moment curve until it coincides with vertex |m− 1|, as illustrated in Figure 2.

Definition 2.25. Given a triangulation T of C(m,n), we define the deletion T \m

to be the triangulation of C(m− 1, n− 1) given by

T \m := {S \m : S ∈ T , m ∈ S }.

This is indeed a triangulation of C(m − 1, n− 1) by [Ram97, Theorem 4.2(ii)].

This the triangulation induced by |T | on the vertex figure of C(m,n) at |m|, as

illustrated in Figure 3.

These operations behave well with respect to the higher Stasheff–Tamari orders.

Theorem 2.26 ([Ram97, Proposition 5.14], [Tho02, Theorem 4.1]).

(1) The operation [m− 1← m] is order-preserving with respect to both the first

and the second higher Stasheff–Tamari orders.

(2) The operation −\m is order-reversing with respect to both the first and the

second higher Stasheff–Tamari orders.

We shall need to use the following combinatorial characterisations of contraction.
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Figure 3. The deletion operation −\5.
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Proposition 2.27 ([OT12, Lemma 2.23], [Wil21a, Lemma 4.12]).

(1) For a triangulation T ∈ S(m, 2d), we have

Int(T [m− 1← m]) = {A ∈ Kd
m−1 : A = B[m− 1← m] for B ∈ Int(T ) }.

(2) For a triangulation T ∈ S(M, 2d+ 1), we have

Int(T [m− 1← m]) = {A ∈ Int(T ) : ad 6= m− 1 }.

There are analogous operations −[1 → 2] and −\1, which are order-preserving

for both orders.

2.4.2. Operations at middle vertices. In this paper, we also consider contractions of

triangulations at other pairs of vertices besides [1→ 2] and [m− 1← m]. For this

purpose we let [m− 1]v+ := {1, 2, . . . , v − 1, x, y, v + 1, v + 2, . . . ,m− 1}. We also

extend this notation in a natural way to H ⊆ [m−1], so that Hv+ = (H \v)∪{x, y}

if v ∈ H , and H = H otherwise.

Definition 2.28. Given a k-simplex S ⊆ [m− 1]v+, we define

S[x→ v ← y] :=





S if {x, y} ∩ S = ∅,

(S \ {x, y}) ∪ v otherwise.

Given a triangulation T of C([m− 1]v+, n), we then define the contraction T [x→

v ← y] to be the triangulation of C(m− 1, n) given by

T [x→ v ← y] :=
{
S[x→ v ← y] ∈

(
[m−1]
n+1

)
: S ∈ T

}
.

This is indeed a triangulation of C(m−1, n) by [RS00, Theorem 3.3]. Geometri-

cally, it is obtained from |T | by moving |x| and |y| along the moment curve towards

each other until they coincide with each other at a new vertex, which we label |v|.

We choose to relabel [m] as [m − 1]v+ here so that there does not appear to be a

missing vertex after contraction. It is also useful to distinguish between the two

vertices before contraction and the vertex after contraction.
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In order to understand how the contractions [x → v ← y] behave, we will

consider the deletion operation at other vertices too. Indeed, we make the following

definition.

Definition 2.29. Given C(m,n) and v ∈ [m], define the combinatorial vertex figure

at v to be the combinatorial polytope C(m,n)\v = ([m] \ v,Fv([m] \ v, n),Zv([m] \

v, n)), where

Fv([m] \ v, n) = {F ⊆ [m] \ v : F ∪ v ∈ F([m], n) },

and

Zv([m]\v, n) = { (Z−, Z+) : (Z−∪v, Z+) ∈ Z([m], n) or (Z−, Z+∪v) ∈ Z([m], n) }.

Definition 2.30. Given a triangulation T of C(m,n), we define the deletion T \v

to be the triangulation

T \v := {S \ v : S ∈ T , v ∈ S }.

It follows straightforwardly from the definition of C(m,n)\v and the definition

of a combinatorial triangulation that T \v is a triangulation of C(m,n)\v. Note

also that |T \v| may be realised geometrically as the triangulation induced by |T |

on the vertex figure of C(m,n) at v.

Finally, we shall also consider deletions of multiple vertices. Given a triangula-

tion T of C(m,n) and V ⊆ [m], we define the collection of simplices

T \V := {S \ V : S ∈ T , V ⊆ S }.

In the examples we consider here, V will always be a pair of consecutive vertices,

such as {1, 2} or {m− 1,m} in [m], or {x, y} in [m]v+.

3. Equality of the two orders

In this section we prove that the higher Stasheff–Tamari orders are equal. What

we need to establish is that for T , T ′ ∈ S(m,n) with T <2 T
′, then we can find

a triangulation T ′′ either such that T ⋖1 T
′′ 62 T

′, or such that T 62 T
′′ ⋖1 T

′.

See Lemma 3.3 for more detail on this point. Following [Wil21a], we treat the

odd-dimensional cases separately from the even-dimensional cases. The details of

the proof are different for these two cases, but the broad outlines are similar. We

explain these outlines now.

The proof is by induction on the number of vertices of the cyclic polytope

C(m,n), noting that the orders are known to be equal when m 6 n+3 [RR12]. We

start with triangulations T , T ′ of C(m,n) such that T <2 T
′. We perform contrac-

tions to obtain triangulations T [m− 1← m] and T ′[m− 1← m] of C(m− 1, n). In

the case that T [m− 1← m] 6= T ′[m− 1← m], we apply the induction hypothesis

to these triangulations. This provides an increasing flip U of T [m − 1 ← m] such

that U 62 T
′[m − 1 ← m], and hence provides a subpolytope of T [m − 1 ← m]
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combinatorially equivalent to C(n + 2, n). We consider the pre-image of this sub-

polytope in T . If the pre-image of this subpolytope is combinatorially equivalent

to C(n+ 2, n), then we choose the increasing flip inside this subpolytope to obtain

our triangulation T ′. As we show in Lemma 3.4, the only other option is that the

preimage of the C(n+2, n) subpolytope is a subpolytope combinatorially equivalent

to C(n+3, n). This polytope is still relatively small and the triangulations of it are

well-understood, as recorded in Lemma 3.1. We can find an increasing bistellar flip

T ′′ of T which occurs within the induced triangulation of this C(n+3, n) subpoly-

tope. We then show that if we do not have T ′′ 62 T
′, then there is a contradiction

of the existence of the increasing bistellar flip we chose using the induction hypoth-

esis. Deriving this contradiction requires a series of lemmas, and the details differ

between even and odd dimensions.

If T [m − 1 ← m] = T ′[m − 1 ← m], then we instead consider the contractions

T [1→ 2] and T ′[1→ 2]. If T [1→ 2] 6= T ′[1→ 2], then we can apply symmetries of

the cyclic polytope to convert to the case where T [m− 1← m] 6= T ′[m− 1← m].

If we have that both T [1→ 2] = T ′[1→ 2] and T [m−1← m] = T ′[m−1← m],

then one can apply the results of [Wil21a] to show that, since we have T <2 T
′,

there must be a v ∈ [2,m− 2] such that if we relabel the vertices of C(m,n) such

that T , T ′ are triangulations of C([m − 1]v+ , n), then we have that T [x → v ←

y] 6= T ′[x→ v ← y]. Then one can proceed similarly to before.

3.1. Preliminary lemmas. We begin by proving some preliminary lemmas and

recording some known results which we shall need. The proofs of three key lemmas

(Lemma 3.4, Lemma 3.5 and Lemma 3.6) will be postponed to Section 4, which

concerns the theory behind the contraction [x→ v ← y].

The following lemma records the possible triangulations of C(n+3, n) and their

properties. These triangulations are already well understood; for instance, see

[Tho03, Proof of Proposition 9.1]. This lemma can be verified using the results

described in Section 2.3. Recall the sets Kd
m and Jd

m of internal d-simplices for

cyclic polytopes in dimension 2d and 2d+ 1 from (2.1) and (2.2).

Lemma 3.1. The triangulations of C(n+ 3, n) may be described as follows.

(1) If n = 2d, then

(a) C(2d+ 3, 2d) has 2d+ 3 triangulations T1, T2, . . . , T2d+3;

(b) the triangulation Ti is the fan triangulation at the vertex i, that is

Int(Ti) = {A ∈ Kd
2d+3 : i ∈ A };

(c) the poset S1(2d+ 3, 2d) = S2(2d+ 3, 2d) is as shown in Figure 4.

(d) the bistellar flips of the triangulations are as follows:

• T1 possesses two increasing bistellar flips: one which replaces

{1, 3, . . . , 2d+ 1} with {2, 4, . . . , 2d+ 2} and one which replaces

{1, 4, . . . , 2d+ 2} with {3, 5, . . . , 2d+ 3};
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• for i even, Ti admits an increasing flip replacing {1, 3, . . . , i −

3, i, i+2, . . . , 2d+2} with {2, 4, . . . , i− 2, i+1, i+3, . . . , 2d+3};

• for i odd with i /∈ {1, 2d+3}, Ti admits an increasing flip which

replaces {1, 3, . . . , i, i+3, . . . , 2d+2} with {2, 4, . . . , i−1, i+2, i+

4, . . . , 2d+ 3}.

(2) If n = 2d+ 1, then

(a) C(2d+ 4, 2d+ 1) has 2d+ 4 triangulations T1, T2, . . . , T2d+4;

(b) the triangulations Ti have the following sets of internal d-simplices:

Int(T1) = Jd
2d+4,

Int(T2d+4) = ∅,

for i 6= 2d+ 4 even

Int(Ti) =
{
{2, 4, . . . , 2d+ 2},{2, 4, . . . , 2d, 2d+ 3}, . . . ,

{2, 4, . . . , i, i+ 3, i+ 5, . . . , 2d+ 3}
}
,

and for i 6= 1 odd

Int(Ti) =
{
{2, 4, . . . , i− 3,i, i+ 2, . . . , 2d+ 3}, . . . ,

{2, 5, 7, . . . , 2d+ 3}, {3, 5, . . . , 2d+ 3}
}
;

(c) the poset S1(2d+4, 2d+1) = S2(2d+4, 2d+1) is as shown in Figure 4.

(d) the bistellar flips of the triangulations are as follows:

(i) T1 admits two increasing bistellar flips: one from removing

{2, 4, . . . , 2d+ 2} and one from removing {3, 5, . . . , 2d+ 3};

(ii) for i 6= 2d + 4 even, Ti admits an increasing bistellar flip from

removing {2, 4, . . . , i, i+ 3, i+ 5, . . . , 2d+ 3};

(iii) for i 6= 1 odd, Ti admits an increasing bistellar flip from remov-

ing {2, 4, . . . , i− 3, i, i+ 2, . . . , 2d+ 3}.

Example 3.2. We give examples of the triangulations described in Lemma 3.1.

We denote each triangulation Ti by its set of internal d-simplices Int(T ). The poset

S1(7, 4) = S2(7, 4) is shown in Figure 5. The poset S1(8, 5) = S2(8, 5) is shown in

Figure 6.

The following lemma is straightforward, but serves to clarify what needs to be

proven in order to show that the orders are equivalent.

Lemma 3.3. The following are equivalent.

(1) For any pair of triangulations T , T ′ ∈ S(m,n), we have that

T 61 T
′ ⇐⇒ T 62 T

′.
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Figure 4. The higher Stasheff–Tamari posets on S(n+ 3, n)

T1

T2d+2 T3

T2 T2d+1

T2d+3

S1(2d+ 3, 2d) = S2(2d+ 3, 2d)

T1

T2 T2d+3

T2d+2 T3

T2d+4

S1(2d+ 4, 2d+ 1) = S2(2d+ 4, 2d+ 1)

Figure 5. Triangulations of C(7, 4).

{247, 257, 357}

{257, 357, 135} {246, 247, 257}

{146, 246, 247}

{357, 135, 136} {136, 146, 246}

{135, 136, 146}

(2) For any pair of triangulations T , T ′ ∈ S(m,n) such that T <2 T
′, there

exists a triangulation T ′′ ∈ S(m,n) such that

T ⋖1 T
′′ 62 T

′.

(3) For any pair of triangulations T , T ′ ∈ S(m,n) such that T <2 T
′, there

exists a triangulation T ′′ ∈ S(m,n) such that

T 62 T
′′
⋖1 T

′.
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Figure 6. Triangulations of C(8, 5).

∅

{246} {357}

{246, 247} {257, 357}

{246, 247, 257} {247, 257, 357}

{246, 247, 257, 357}

Proof. First note that it is already known from [ER96, Proposition 2.5] that if

T 61 T
′, then T 62 T

′. To show that (1) implies (2) and (3), suppose that we

have T , T ′ ∈ S(m,n) such that T <2 T
′. Then, from (1), it follows that T <1 T

′,

so that we have

T = T0 ⋖1 T1 ⋖1 · · ·⋖1 Tr = T ′.

Hence we have T ⋖1 T1 61 T
′, and so T ⋖1 T1 62 T

′ and (2) holds. Similarly

T 62 Tr−1 ⋖1 T
′, and so (3) holds as well.

We now show that (2) implies (1). We can assume that T <2 T
′, since if T = T ′,

then it is trivial that T 61 T
′. Then, by applying (2), we obtain that there is a

triangulation T1 ∈ S(m,n) such that

T ⋖1 T1 62 T
′.

By applying (2) repeatedly, we obtain a chain

T = T0 ⋖1 T1 ⋖1 · · ·⋖1 Tr = T ′.

This then establishes that T <1 T
′, as desired. The proof that (3) implies (1) is

similar. �

The proof of the following three lemmas will be postponed to Section 4, since

Lemma 3.5 requires substantial groundwork. Lemma 3.4 follows from Lemma 3.5 by

choosing v = m− 1, but, since it does not require the groundwork that Lemma 3.5

does, it will be useful to prove it separately as a preamble to the proof of Lemma 3.5.

Lemma 3.6 is proven in Section 4 since it also concerns contractions [x→ v ← y].

Lemma 3.4. Let T be a triangulation of C(m− 1, n). Suppose that T contains a

cyclic subpolytope C(H,n). Let T̃ be a triangulation of C(m,n) such that T̃ [m−1←

m] = T . Then either

(1) C(H,n) is a subpolytope of T̃ and m− 1 /∈ H,
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(2) C((H \m− 1) ∪m,n) is a subpolytope of T̃ , where m− 1 ∈ H, or

(3) C(H ∪m,n) is a subpolytope of T̃ , where m− 1 ∈ H.

Lemma 3.5. Let T be a triangulation of C(m− 1, n). Suppose that T contains a

cyclic subpolytope C(H,n). Let T̃ be a triangulation of C([m − 1]v+, n) such that

T̃ [x→ v ← y] = T . Then either

(1) C(H,n) is a subpolytope of T̃ and v /∈ H,

(2) C((H \ v) ∪ x, n) is a subpolytope of T̃ , where v ∈ H,

(3) C((H \ v) ∪ y, n) is a subpolytope of T̃ , where v ∈ H, or

(4) C(Hv+, n) is a subpolytope of T̃ , where v ∈ H.

Lemma 3.6. The contraction [x → v ← y] is order-preserving with respect to the

second higher Stasheff–Tamari order. That is, if T̃ and T̃ ′ are triangulations of

C([m − 1]v+, n), with T̃ 62 T̃
′, then T 62 T

′, where T = T̃ [x → v ← y] and

T ′ = T̃ ′[x→ v ← y].

3.2. Odd dimensions. We now prove the equivalence of the orders for odd di-

mensions. We begin by showing some preliminary lemmas which are specific to

odd dimensions. Recall the notion of a support from Definition 2.18.

Lemma 3.7. Let T ∈ S(m, 2d + 1) be a triangulation with a mutable d-simplex

A ∈ Int(T ) which is replaced by the (d+ 1)-simplex B in the increasing flip. Then

B′ = {b1, b2, . . . , bd} is the unique support of A.

Proof. First note that B′ is a support of A. This follows from the fact that every d-

simplex contained in A∪B′, excluding A, contains consecutive entries in A∪B, and

is therefore a d-simplex of T , by virtue of lying on the boundary of C(A∪B, 2d+1),

which is a subpolytope of T .

We now suppose that A possesses a support E = {e1, e2, . . . , ed}. We show

that if ei 6= bi for any i, then T contains a d-simplex which forms a circuit with

a (d + 1)-simplex in the boundary of C(A ∪ B, 2d + 1). This is a contradiction,

since C(A ∪ B, 2d + 1) is a subpolytope of T . The internal (d + 1)-simplices of

C(A ∪ B, 2d + 1) consist of B along with the (d + 1)-simplices which have A as a

face, by Gale’s Evenness Criterion. All other (d+ 1)-simplices in C(A ∪B, 2d+ 1)

lie on the boundary.

Suppose that ei < bi for some i. Then, since E is a support of A, we

have that Int(T ) contains {a0, a1, . . . , ai−2, ei, ai, ai+1, . . . , ad}, which intertwines

{b0, b1, . . . , bi−2, ai−1, bi, bi+1, . . . , bd+1}, which is a boundary (d + 1)-simplex of

C(A∪B, 2d+1). Suppose instead that ei > bi for some i. Then, since E is a support

of A, we have that Int(T ) contains {a0, a1, . . . , ai−1, ei, ai+1, ai+2, . . . , ad} which

intertwines {b0, b1, . . . , bi, ai, bi+2, bi+3, . . . , bd+1}, which is a boundary (d + 1)-

simplex of C(A ∪ B, 2d + 1). Therefore, we must have E = B′, and so B′ is the

unique support of A. �



22 NICHOLAS J. WILLIAMS

The following lemma helps us to understand what supports look like in triangu-

lations of C(2d+ 4, 2d+ 1). This is useful when we expand from C(2d+ 3, 2d+ 1)

subpolytopes to C(2d+ 4, 2d+ 1) subpolytopes.

Lemma 3.8. Let T be a triangulation of C(2d+4, 2d+1) which is neither the upper

triangulation nor the lower triangulation. Let A be the unique mutable d-simplex of

T with E the support of A. Then every internal d-simplex A′ of T has A′ ⊆ A∪E.

Proof. Note first that T has a unique mutable d-simplex by Lemma 3.1. One can

then proceed by direct verification. Suppose that we have the triangulation Ti of

C(2d+4, 2d+1), where i is even and i 6= 2d+4. Hence, as in Lemma 3.1, we have

Int(Ti) is

{
{2, 4, . . . , 2d+ 2}, {2, 4 . . . , 2d, 2d+ 3)}, . . . , {2, 4, . . . , i, i+ 3, i+ 5, . . . , 2d+ 3}

}
.

The mutable (d + 1)-simplex here is A = {2, 4, . . . , i, i + 3, i + 5, . . . , 2d + 3} by

Lemma 3.1. One can verify that this has support E = {3, 5, . . . , i − 1, i + 2, i +

4, . . . , 2d + 2}. Indeed, the internal d-simplices contained in {2, 4, . . . , i, i + 3, i +

5, . . . , 2d + 3} ∪ {3, 5, . . . , i − 1, i + 2, i + 4, . . . , 2d + 2} are precisely Int(T ). This

establishes the claim when i is even, and the case where i is odd is the mirror image

of this. �

The next lemma is the inductive step of the proof of the equivalence of the orders

for odd dimensions. Giving it as a separate lemma simplifies the presentation of

the proof.

Lemma 3.9. Let T , T ′ ∈ S([m− 1]v+, 2d+1) be triangulations such that T <2 T
′

and T [x → v ← y] <2 T
′[x → v ← y]. Suppose that T [x → v ← y] possesses

an increasing flip U such that T [x → v ← y] ⋖1 U 62 T
′[x → v ← y]. Then T

possesses an increasing flip T ′′ such that T ⋖1 T
′′ 62 T

′.

Proof. Let the increasing flip from T [x → v ← y] to U consist of replacing the d-

simplex A with the (d+1)-simplex B inside the cyclic subpolytope C(A∪B, 2d+1).

We must then have that A /∈ Int(T ′[x→ v ← y]) since U 62 T
′[x→ v ← y] implies

that Int(T [x→ v ← y])\{A} = Int(U) ⊇ Int(T ′[x→ v ← y]), using Theorem 2.22.

By Lemma 3.5, we have that either

(1) C(A ∪B, 2d+ 1) is a subpolytope of T , where v /∈ A ∪B,

(2) C((A ∪B ∪ x) \ v, 2d+ 1) is a subpolytope of T , where v ∈ A ∪B,

(3) C((A ∪B ∪ y) \ v, 2d+ 1) is a subpolytope of T , where v ∈ A ∪B, or

(4) C((A ∪B)v+, 2d+ 1) is a subpolytope of T , where v ∈ A ∪B.

We deal with each of these cases in turn.

(1) Suppose that C(A ∪ B, 2d + 1) is a subpolytope of T . Then the induced

triangulation of this subpolytope must contain A, since A ∈ Int(T [x → v ← y])

and the contraction does not affect the subpolytope C(A ∪ B, 2d + 1). Since A is
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contained in the subpolytope C(A ∪ B, 2d + 1) of T , we have that T admits an

increasing flip T ′′ where Int(T ′′) = Int(T ) \ A. Furthermore, A /∈ Int(T ′), since

A /∈ Int(T ′[x→ v ← y]). Thus, we have T ⋖1 T
′′ 62 T

′ by Theorem 2.22.

(2) Suppose now that C((A ∪ B ∪ x) \ v, 2d + 1) is a subpolytope of T , where

v ∈ A ∪ B. If v ∈ A, then let Ã = (A ∪ x) \ v. Otherwise, let Ã = A. Then the

induced triangulation of the subpolytope C((A ∪ B ∪ x) \ v, 2d + 1) must contain

Ã, since A ∈ Int(T [x → v ← y]), so there must be a simplex which contracts to

A. Moreover, Ã is contained in the subpolytope C((A ∪ B ∪ x) \ v, 2d + 1) of T ,

so that T admits an increasing flip T ′′ where Int(T ′′) = Int(T ) \ Ã. We also have

that Ã /∈ Int(T ′), because A /∈ Int(T ′[x → v ← y]). Hence T ⋖1 T
′′ 62 T

′ by

Theorem 2.22, as desired.

(3) The case where C((A∪B∪y)\v, 2d+1) is a subpolytope of T with v ∈ A∪B

behaves similarly to the previous case.

(4) Consider now the case where C((A∪B ∪{x, y}) \ v, 2d+1) is a subpolytope

of T . Then the triangulation of this subpolytope induced by T must contain a

d-simplex Ã such that Ã[x → v ← y] = A. This d-simplex Ã must be internal

in C((A ∪ B ∪ {x, y}) \ v, 2d + 1), since A is internal in C(A ∪ B, 2d + 1). Hence

the induced triangulation of C((A ∪ B ∪ {x, y}) \ v, 2d + 1) cannot be the upper

triangulation. Moreover, we cannot have Ã ∈ Int(T ′), since this implies that A ∈

Int(T ′[x→ v ← y]).

Suppose first that the induced triangulation is the lower triangulation Tl of

C((A ∪ B ∪ {x, y}) \ v, 2d + 1). Then, by Lemma 3.1, the lower triangulation Tl

contains two mutable d-simplices, which we call J and K. Suppose that we have

both J,K ∈ Int(T ′). Then, recalling the bridging property from Definition 2.19

and Theorem 2.20, T ′ must contain every internal d-simplex in Tl. But this means

that Ã ∈ Int(T ′). Thus, at least one of J and K is not a d-simplex of T ′. Hence,

let T ′′ be the increasing flip of T defined by removing whichever of J and K is not

a d-simplex of T ′. We therefore have T ⋖1 T
′′ 62 T

′ by Theorem 2.22, as desired.

Now suppose that the induced triangulation of C((A ∪B,∪{x, y}) \ v, 2d+ 1) is

neither the lower triangulation nor the upper triangulation. Then, by Lemma 3.1,

the induced triangulation has a unique mutable d-simplex L. By Lemma 3.7, L has

a unique support E in Int(T ). We then have that Ã ⊆ L ∪ E, by Lemma 3.8.

Suppose that L ∈ Int(T ′). Let E′ be the support of L in Int(T ′). Then, since

Int(T ) ⊇ Int(T ′) by Theorem 2.22, we have that E′ is a support of L in Int(T ).

This implies that E′ = E, by Lemma 3.7. In turn, this implies that Ã ∈ Int(T ′),

which is a contradiction. Therefore, if T ′′ is the triangulation of C(m, 2d+1) such

that Int(T ′′) = Int(T ) \ {L}, then we must have that T ⋖1 T
′′ 62 T

′, as desired.

�

We now have enough preliminaries in place to prove the equivalence of the orders

in odd dimensions.
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Theorem 3.10. Let T , T ′ be triangulations of C(m, 2d+1). Then T 61 T
′ if and

only if T 62 T
′.

Proof. We prove the result by induction on the number of vertices of the cyclic

polytope. We may use the cases where m − (2d + 1) 6 3 as base cases, since the

result is already known for these cases, as noted in [RR12]. Indeed, for m = 2d+2,

the cyclic polytope C(m, 2d+ 1) is a (2d+ 1)-simplex, so the result is trivial. The

result is also clear for m = 2d + 3, since here the cyclic polytope C(m, 2d + 1)

only has two triangulations. Finally, one may check the case where m = 2d+ 4 by

applying the results of [Wil21a] to Lemma 3.1. Hence, from now on, we assume

that m > 2d+ 4.

As in Lemma 3.3, we seek a triangulation T ′′ such that T ⋖1 T
′′ 62 T

′. The

existence of such a triangulation will establish our claim. We now split into three

cases.

(1) Suppose that T [m − 1 ← m] 6= T ′[m − 1 ← m]. Then, by the induction

hypothesis, T [m − 1 ← m] admits an increasing flip U such that T [m − 1 ←

m]⋖1U 62 T
′[m−1← m]. By applying Lemma 3.9 with m−1 and m relabelled as

x and y, we obtain that T possesses an increasing flip T ′′ such that T ⋖1T
′′ 62 T

′.

(2) We now suppose that T [1→ 2] 6= T ′[1→ 2], so that T [1→ 2] <2 T
′[1→ 2].

By [ER96, Proposition 2.11], the permutation

α =

(
1 2 . . . m− 1 m

m m− 1 . . . 2 1

)

on the vertices of the cyclic polytope induces an order-preserving bijection α on both

S1(m, 2d+ 1) and S2(m, 2d+ 1). We then have that α(T [1→ 2]) = α(T )[m− 1←

m] <2 α(T ′)[m − 1 ← m] = α(T ′[1 → 2]). Hence, by applying the previous case,

we obtain a triangulation T ′′ such that α(T ′)⋖1T
′′ 62 α(T ). By applying α again,

we obtain that T ⋖1 α(T
′′) 62 T

′, which resolves this case.

(3) We may now suppose that we are in neither of the previous cases, so that

T [1 → 2] = T ′[1 → 2] and T [m − 1 ← m] = T ′[m − 1 ← m]. Hence, by Proposi-

tion 2.27(2) and its analogue for the contraction [1→ 2], we must have that

{A ∈ Int(T ) : 2 /∈ A } = {A ∈ Int(T ′) : 2 /∈ A },

{A ∈ Int(T ) : m− 1 /∈ A } = {A ∈ Int(T ′) : m− 1 /∈ A },

and so Int(T ) and Int(T ′) only differ in simplices containing both 2 and m−1. Let

A be a simplex such that A ∈ Int(T ) \ Int(T ′). Then {2,m− 1} ⊆ A. There must

be some i ∈ [d] such that ai − ai−1 > 2, otherwise m − 1 = 2d + 2, and we are

supposing that this is not the case because m = 2d+ 3 is a base case.

Relabel [m] as [m − 1]v+, and relabel A correspondingly, such that ai−1 < x <

y < ai and then perform the contraction [x → v ← y]. Lemma 3.6 tells us that

T [x → v ← y] 62 T
′[x → v ← y]. Moreover, T [x → v ← y] <2 T

′[x → v ← y],

since A ∈ Int(T [x → v ← y]) \ Int(T ′[x → v ← y]). By the induction hypothesis,
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there is a increasing flip U of T [x → v ← y] such that T [x → v ← y] ⋖1 U 62

T ′[x→ v ← y]. We then apply Lemma 3.9 to obtain that there exists an increasing

flip T ′′ of T such that T ⋖1 T
′′ 62 T

′.

�

3.3. Even dimensions. We now prove the equivalence of the orders for even di-

mensions, beginning by proving preliminary lemmas specific to this parity.

Lemma 3.11. Let T , T ′ ∈ S(m, 2d) such that T <2 T
′. Suppose that T admits

an increasing flip T ′′ which is the result of replacing the d-simplex A by the d-

simplex B. Then, we have that T ′′ 662 T
′ if and only if {ao0, a1, . . . , ad} ∈ Int(T ′)

for some ao0 such that a0 6 ao0 < b0.

Proof. If T ′′ 662 T
′, then there must exist some J ∈ Int(T ′) such that J ≀ B, by

Theorem 2.21, since T <2 T
′. Because we flip from A to B in T , every internal

d-simplex in A ∪ B, excluding B, must be in Int(T ) by [OT12, Proposition 4.6].

Indeed, they all lie in the facets of the subpolytope C(A ∪ B, 2d). Hence, if there

is a d-simplex K ⊂ A ∪ B such that J ≀ K, then this contradicts T 62 T
′. If we

have ji < ai for some i, then J ≀ (B \ {bi}) ∪ {ai}. Similarly, if, for i 6= 0, we have

ji > ai, then J ≀(B \{bi−1})∪{ai}. Thus, we must have J = {ao0, a1, . . . , ad}, where

ao0 > a0. That a
o
0 < b0 follows from the fact that J ≀B.

Conversely, it is clear that if J = {ao0, a1, . . . , ad} ∈ Int(T ′) such that a0 6 ao0 <

b0, then J ≀ B, so that we have T ′′ 662 T
′. �

We call such a simplex {ao0, a1, . . . , ad} ∈ Int(T ′) where a0 6 ao0 < b0 an ob-

struction to the increasing flip of T which replaces A with B. By Lemma 3.3, in

order to prove the equivalence of the orders in even dimensions, we must find an

increasing flip of T which is not obstructed by T ′. The following lemma allows us

to describe the 2d-simplex lying below the obstructing d-simplex.

Lemma 3.12. Let T , T ′ ∈ S(m, 2d) such that T <2 T
′. Suppose that T admits

an increasing flip via replacing the d-simplex A with the d-simplex B, and that

{ao0, a1, . . . , ad} ∈ T
′, where a0 6 ao0 < b0. Then T ′ contains the 2d-simplex

{ao0, b0, a1, b1, . . . , bd−1, ad}.

Proof. By [OT12, Proposition 2.13], there exists a 2d-simplex S = {ao0, q0, a1, q1,

. . . , qd−1, ad} in T
′. We will show that we must have qi = bi for all i by ruling out

the other cases.

Suppose that qi < bi for some i. Then {a1, a2, . . . , ai, bi, bi+1, . . . , bd} ∈ Int(T ),

since it is in the boundary of C(A∪B, 2d), and {q0, q1, . . . , qi, ai+1, ai+2, . . . , ad} ∈

Int(T ′), since it is contained in S. But this contradicts T <2 T
′ by Theorem 2.21,

since

{q0, q1, . . . , qi, ai+1, ai+2, . . . , ad} ≀ {a1, a2, . . . , ai, bi, bi+1, . . . , bd}.
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Now suppose that qi > bi for some i. Then {b0, b1, . . . , bi, ai+1, ai+2, . . . , ad} ∈

Int(T ), since it is in the boundary of C(A ∪ B, 2d), and we also have that

{ao0, a1, . . . , ai, qi, qi+1, . . . , qd−1} ∈ Int(T ′), since it is contained in S. But this

contradicts T <2 T
′ by Theorem 2.21, since

{ao0, a1, . . . , ai, qi, qi+1, . . . , qd−1} ≀ {b0, b1, . . . , bi, ai+1, ai+2, . . . , ad},

noting that ao0 < b0. Thus qi = bi for all i, as desired. �

We will use the following lemma and its corollary to find the right pair of middle

vertices to contract at in the final case of our proof of the equivalence of the orders

in even dimensions.

Lemma 3.13. Let T , T ′ ∈ S(m, 2d) be triangulations such that T <2 T
′. Suppose

further that both T [1 → 2] = T ′[1 → 2] and T [m − 1 ← m] = T ′[m − 1 ← m].

Then, there exists A ∈ Int(T ) \ Int(T ′) and, for every such A, we have a0 = 1 and

ad = m − 1. Dually, there exists B ∈ Int(T ′) \ Int(T ) and, for every such B, we

have b0 = 2, bd = m.

Proof. Since we know that T 6= T ′, there must exist A ∈ Int(T ) such that

A /∈ Int(T ′). We then have that there is a B ∈ Int(T ) such that A and B are

intertwining. Since T <2 T
′, we must in fact have that A intertwines B, rather

than the other way around, by Theorem 2.21. One may also arrive at this situation

by first choosing B ∈ Int(T ′) such that B /∈ Int(T ). If a0 > 1, then A ∈ T [1→ 2]

and B ∈ T ′[1 → 2], which contradicts the fact that T [1 → 2] = T ′[1 → 2]. Hence

a0 = 1, and we similarly argue that bd = m. We can continue with similar deduc-

tions. If b0 > 2, then T [1 → 2] ∋ {2, a1, a2, . . . , ad} ≀ B ∈ T
′[1 → 2]. Therefore

b0 = 2, and we can likewise reason that ad = m− 1. �

Corollary 3.14. Let T , T ′ ∈ S(m, 2d), with m > 2d + 3, be triangulations such

that T <2 T
′, and both T [1→ 2] = T ′[1→ 2] and T [m−1← m] = T ′[m−1← m].

Then there exists v ∈ [3,m− 2] such that if one relabels [m] as [m− 1]v+, then we

have T [x→ v ← y] <2 T
′[x→ v ← y].

Proof. Since T <2 T
′, there must exist A ∈ Int(T ) and B ∈ Int(T ) such that A ≀B

by Theorem 2.21. By Lemma 3.13, we have that a0 = 1, b0 = 2, ad = m−1, bd = m.

Because m > 2d + 3, we must have [m] \ (A ∪ B) 6= ∅. We may therefore choose

{v, v+1} ⊂ [m] such that #{v, v+1}∩(A∪B) 6 1 and {v, v+1}∩{1, 2,m−1,m} =

∅. We then relabel [m] as [m− 1]v+ so that {v, v+1} becomes {x, y}. We likewise

relabel T , T ′, A, and B. If we let A,B be the respective images of A and B under

the contraction [x → v ← y], then, by our choice of v, we obtain that A ≀ B. By

Lemma 3.6, we obtain that T [x→ v ← y] <2 T
′[x→ v ← y]. �
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We now prove that the orders are equivalent in even dimensions. The structure

of the proof is similar to odd dimensions, but we are not able to extract the in-

ductive step of the proof as a separate lemma, since the details differ between the

contractions [m− 1← m] and [x→ v ← y].

Theorem 3.15. Let T , T ′ be triangulations of C(m, 2d). Then T 61 T
′ if and

only if T 62 T
′.

Proof. As in the odd-dimensional case, we prove the result by induction on the

number of vertices of the cyclic polytope. As noted in [RR12], the result is already

known for m− 2d 6 3, so we use these as the base cases of our induction. One may

also easily verify the result in these cases in the same way as explained in the proof

of Theorem 3.10.

Hence, we suppose for induction that we have triangulations T , T ′ ∈ S(m, 2d),

where m > 2d + 3, such that T <2 T
′. We split into three cases, seeking a

triangulation T ′′ such that T ⋖1 T
′′ 62 T

′.

(1) Suppose that T [m − 1 ← m] 6= T ′[m − 1 ← m], so that T [m − 1 ← m] <2

T ′[m − 1 ← m]. By the induction hypothesis, there exists a triangulation U such

that T [m−1← m]⋖1U 62 T
′[m−1← m]. Let this increasing flip of T [m−1← m]

be given by exchanging a d-simplex A for a d-simplex B. Therefore, we have that

C(A ∪ B, 2d) is a subpolytope of T [m − 1 ← m]. By Lemma 3.4, we have that

either

(a) C(A ∪B, 2d) is a subpolytope of T ,

(b) C(A ∪ B′, 2d) is a subpolytope of T , where B′ = {b0, b1, . . . , bd−1,m} and

bd = m− 1, or

(c) C(A ∪B ∪m, 2d) is a subpolytope of T , in which case bd = m− 1.

We deal with each of these cases in turn.

(a) Suppose first that C(A ∪ B, 2d) is a subpolytope of T . This subpolytope

therefore contains the d-simplex A, since it contains the d-simplex A in T [m −

1 ← m]. Thus T also admits an increasing flip by exchanging A for B to give a

triangulation T ′′. If T ′′ 662 T
′, then Ao = {ao0, a1, . . . , ad} ∈ Int(T ′) where a0 6

ao0 < b0, by Lemma 3.11. But then Ao ∈ Int(T ′[m− 1← m]), since m /∈ Ao, which

contradicts U 62 T
′[m− 1← m]. Hence, in this case we have that T ⋖1 T

′′ 62 T
′,

as desired.

(b) If C(A ∪ B′, 2d) is a subpolytope of T , then we may exchange A for B′. If

there is an obstruction to this, then we get a contradiction in a similar way to the

previous case.

(c) Finally, suppose that C(A ∪B ∪m, 2d) is a subpolytope of T , in which case

bd = m−1. The triangulation of this subpolytope induced by T must contain the d-

simplex A, since m−1 /∈ A but A ∈ Int(T [m−1← m]). Since C(A∪B∪m, 2d) is a

cyclic polytope combinatorially equivalent to C(2d+3, 2d), all the triangulations of

C(A∪B∪m, 2d) are fan triangulations, by Lemma 3.1. The possible triangulations
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of C(A∪B∪m, 2d) then consist of the fan triangulations determined by the elements

ai ∈ A, since we must have that A is a d-simplex of the induced triangulation of the

subpolytope. By Lemma 3.1, the fan triangulation ofC(A∪B∪m, 2d) at ai possesses

an increasing flip at the d-simplex J = {a0, a1, . . . , ai, bi+1, bi+2, . . . , bd}, which is

then exchanged for the d-simplex K = {b0, b1, . . . , bi−1, ai+1, ai+2, . . . , ad,m}.

Let T ′′ be the triangulation resulting from performing this increasing flip

on T . If T ′′ 662 T
′, then Jo = {ao0, a1, . . . , ai, bi+1, bi+2, . . . , bd} ∈ Int(T ′)

where a0 6 ao0 < b0, by Lemma 3.11. By Lemma 3.12, we conclude that

{ao0, b0, a1, b1, . . . , ai, ai+1, bi+1, . . . , ad, bd} is a 2d-simplex of T ′. Consequently,

Ao = {ao0, a1, . . . , ad} ∈ Int(T ′). This implies that Ao ∈ Int(T ′[m − 1 ← m]),

which obstructs the flip from T [m − 1 ← m] to U . But we assumed that

U 62 T
′[m − 1 ← m] using the induction hypothesis. We therefore conclude

that we cannot have Jo ∈ Int(T ′). This means that we have T ⋖1 T
′′ 62 T

′, as

desired.

(2) We now suppose that T [1 → 2] 6= T ′[1 → 2]. By [ER96, Proposition 2.11],

the permutation

α =

(
1 2 . . . m− 1 m

m m− 1 . . . 2 1

)

on the vertices of the cyclic polytope induces an order-reversing bijection α on both

S1(m, 2d) and S2(m, 2d). We then have that α(T [1 → 2]) = α(T )[m − 1← m] >2

α(T ′)[m − 1 ← m] = α(T ′[1 → 2]). Hence, by applying the previous case, we

obtain a triangulation T ′′ such that α(T ′) ⋖1 T
′′ 62 α(T ). By applying α again,

we obtain that T 62 α(T ′′)⋖1 T
′, which resolves this case, noting Lemma 3.3.

(3) We may now suppose that we have both T [m − 1 ← m] = T ′[m − 1 ← m]

and T [1 → 2] = T ′[1 → 2]. Since we are assuming that m > 2d + 3, we can

apply Corollary 3.14 and relabel [m] as [m − 1]v+ in such a way that we have

T [x → v ← y] <2 T
′[x → v ← y]. By the induction hypothesis, we obtain that

there exists an increasing flip U of T [x→ v ← y] such that T [x→ v ← y]⋖1 U 62

T ′[x → v ← y]. Suppose that this increasing bistellar flip replaces the d-simplex

A with the d-simplex B. Hence we have that C(A ∪B, 2d) is a subpolytope of the

triangulation T [x→ v ← y].

Note then that

(T [x→ v ← y])[1→ 2] = (T [1→ 2])[x→ v ← y]

= (T ′[1→ 2])[x→ v ← y]

= (T ′[x→ v ← y])[1→ 2].

This follows from [RS00, Theorem 3.4], but can also be seen directly. We similarly

reason that

(T [x→ v ← y])[m− 2← m− 1] = (T ′[x→ v ← y])[m− 2← m− 1].
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Using these observations, we can deduce the values of the first and last elements of

A and B. We know that A /∈ Int(T ′[x→ v ← y]), since U is obtained from T [x→

v ← y] by replacing A with B, and U 62 T
′[x→ v ← y]. By applying Lemma 3.13

to A, we obtain that a0 = 1 and ad = m− 2. This implies that bd = m− 1. Since

A /∈ Int(T ′[x → v ← y]), but (T [x → v ← y])[1 → 2] = (T ′[x → v ← y])[1 → 2],

we must have {2, a1, a2, . . . , ad} ∈ Int(T ′[x→ v ← y]). But {2, a1, a2, . . . , ad} is an

obstruction to the flip from T [x → v ← y] to U unless b0 = 2. We thus conclude

that b0 = 2.

By Lemma 3.5, we have that either

(a) C(A ∪B, 2d) is a subpolytope of T and v /∈ A ∪B,

(b) C((A ∪B ∪ x) \ v, 2d) is a subpolytope of T , where v ∈ A ∪B,

(c) C((A ∪B ∪ y) \ v, 2d) is a subpolytope of T , where v ∈ A ∪B, or

(d) C((A ∪B)v+, 2d) is a subpolytope of T , where v ∈ A ∪B.

We deal with each of these cases in turn.

(a) We suppose that C(A ∪ B, 2d) is a subpolytope of T and v /∈ A ∪ B. The

induced triangulation of this subpolytope must contain the d-simplex A, since it

contains the d-simplex A in T [x→ v ← y]. We hence perform an increasing flip on

T by replacing A with B inside this subpolytope, obtaining a triangulation T ′′.

We claim that T ′′ 62 T
′. If not, then, by Lemma 3.11, there exists an obstruction

Ao = {ao0, a1, . . . , ad} ∈ Int(T ′), where a0 6 ao0 < b0. But, since a0 = 1, b0 = 2,

we must have that ao0 = a0. This means that A ∈ Int(T ′), which implies that

A ∈ Int(T ′[x→ v ← y]), which contradicts the fact that U 62 T
′[x→ v ← y].

(b) The case where C((A ∪B ∪ x) \ v, 2d) is a subpolytope of T and v ∈ A ∪B

is largely analogous to the previous case, although there are additional details. We

let Ã ∪ B̃ = (A ∪ B ∪ x) \ v, where Ã ≀ B̃. Hence, we have Ã[x → v ← y] = A

and B̃[x → v ← y] = B. We must have that the induced triangulation of the

subpolytope C(Ã∪B̃, 2d) contains the d-simplex Ã, since the induced triangulation

of the subpolytope C(A ∪ B, 2d) of T [x → v ← y] contains A. We hence perform

an increasing flip on T by replacing Ã with B̃ inside this subpolytope, obtaining a

triangulation T ′′.

We claim that T ′′ 62 T . If not, then, by Lemma 3.11, there exists an obstruction

Ao = {ao0, ã1, . . . , ãd}, where ã0 6 ao0 < b̃0. Since 1 < 2 < x < y in the ordering

on [m − 1]v+, by our choice of x and y from Corollary 3.14, we must have that

ã0 = a0 = 1 and b̃0 = b0 = 2, and so bo0 = b0 = 1 and Ao = Ã. This means

that Ã ∈ Int(T ′), and so A ∈ Int(T ′[x → v ← y]). This contradicts the fact that

U 62 T
′[x→ v ← y].

(c) The case where C((A∪B∪y)\v, 2d+1) is a subpolytope of T and v ∈ A∪B

is analogous to the previous case.

(d) We finally suppose that C((A ∪ B)v+, 2d) is a subpolytope of T , where

v ∈ A ∪ B. We label the vertices of this subpolytope by H = {h1, h2, . . . , h2d+3}.
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From what we deduced about the first and last values of A and B, we know that

h1 = 1, h2 = 2, h2d+2 = m− 2, h2d+3 = m− 1.

Using the notation of Lemma 3.1, there are two cases to consider, depending

upon whether the triangulation of C(H, 2d) is Th2i
for i such that 2 6 i 6 d + 1,

or Th2i−1
for i such that 1 6 i 6 d + 1. We know that the triangulation of this

subpolytope contains an internal d-simplex Ã such that Ã[x→ v ← y] = A. Since

1 < 2 < x < y in the order on [m−1]v+, we must have that ã0 = a0 = 1. Moreover,

we must have that Ã ⊆ {h1, h2, . . . , h2d+2}, since ad < bd. Hence, the triangulations

Th2
and Th2d+3

are excluded because they do not contain any internal simplices with

1 as a vertex, while we know that ã0 = 1.

If the triangulation of C(H, 2d) is Th2i
for i > 1, then, by Lemma 3.1, there

exists an increasing flip given by replacing J = {h1, h3, . . . , h2i−3, h2i, h2i+2, . . . ,

h2d+2} with K = {h2, h4, . . . , h2i−2, h2i+1, h2i+3, . . . , h2d+3}. Since h1 = 1 and

h2 = 2, if this flip is obstructed, it must be because J ∈ Int(T ′). If this is the case,

then by Lemma 3.12, we have that {h1, h2, . . . , h2i−3, h2i−2, h2i, h2i+1, . . . , h2d+2}

is a 2d-simplex of T ′. But we must have Ã ⊆ {h1, h2, . . . , h2i−3, h2i−2, h2i, h2i+1,

. . . , h2d+2}, since Ã ∈ Int(Th2i
), and so h2i−1 /∈ Ã. This means that Ã ∈ Int(T ′),

which implies that A ∈ Int(T ′[x → v ← y]). This contradicts the fact that U 62

T ′[x → v ← y], and so we conclude that the increasing flip given by replacing J

with K cannot be obstructed. Hence if T ′′ is the triangulation resulting from this

flip, then we have T ⋖1 T
′′ 62 T

′. The case where the triangulation of C(H, 2d)

is Th2i−1
for i > 1 behaves similarly. Thus, in all cases we are able to construct a

triangulation T ′′ such that T ⋖1 T
′′ 62 T

′, as desired.

�

4. Expanding triangulations

We now wish to prove Lemma 3.4 and Lemma 3.5. To do this, we need to under-

stand the set of triangulations T̃ which transform into T under some contraction.

In particular, we need to understand what the pre-image of a subpolytope of T

looks like within T̃ . We need to rule out the possibility that this pre-image is a

strange collection of simplices which does not itself triangulate a subpolytope.

The pre-images of triangulations under the contraction [m − 1 ← m] are well-

understood due to [RS00, Lemma 4.7(i)], which states that such triangulations T̃

are in bijection with sections of the vertex figure T \(m−1). By symmetry, one can

apply the same theory for contractions [1→ 2]. In this section we show how one can

extend the theory to all contractions, that is, for any contraction [x → v ← y] of

C([m−1]v+, n). This general case is more challenging, because the vertex figures of

C(m− 1, n) are less well-behaved at vertices which are not 1 or m− 1. Considering

this general case is necessary for proving Lemma 3.5.
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We also adopt the opposite perspective to contraction, where we think of the

triangulation T of expanding to T̃ . Under this perspective, we are trying to under-

stand the triangulations T̃ of C(m,n) to which T can expand when one expands

the cyclic polytope C(m− 1, n) at a particular vertex. The question then becomes

how subpolytopes of T behave under expansion.

4.1. Expansion at the first or last vertex. We begin by illustrating how the

theory of [RS00, Lemma 4.7(i)] works, and then show how it can be used to prove

Lemma 3.4. The result [RS00, Lemma 4.7(i)] states that, given a triangulation T ∈

S(m − 1, n), triangulations T̃ of C(m,n) such that T̃ [m − 1 ← m] = T are in

bijection with sections of the vertex figure T \(m − 1). This bijection operates as

follows.
{

T̃ ∈ S(m,n) :

T̃ [m−1← m] = T

}
←→ {Sections W of T \(m− 1) }

T̃ 7−→ T̃ \{m− 1,m}

T ◦ ∪ W ∗ {m− 1,m}

∪T \(m− 1)+ ∗ (m− 1)

∪T \(m− 1)− ∗m

7−→ W

Here

• T ◦ is the set of n-simplices of T which contain neither m − 1 nor m as a

vertex.

• T \(m− 1)+ is the set of (n− 1)-simplices S of T \(m− 1) such that |S|n−1

is above |W|n−1 with respect to the (n− 1)-th coordinate.

• T \(m− 1)− is the set of (n− 1)-simplices S of T \(m− 1) such that |S|n−1

is below |W|n−1 with respect to the (n− 1)-th coordinate.

Note that the sets T \(m − 1)+ and T \(m − 1)− are defined with respect to a

geometric realisation. Recall that T \(m− 1) is a triangulation of C(m− 2, n− 1),

so our geometric realisation is | − |n−1. These sets, of course, do not depend upon

the particular geometric realisation of C(m− 2, n− 1) given by the choice of points

on the moment curve.

We now demonstrate how this result works, using an example.

Example 4.1. We consider the triangulation T of C(5, 3) with 3-simplices

{1234, 1245, 2345}. Here we abbreviate by writing the simplices as strings, so

that 1234 = {1, 2, 3, 4}. The triangulations T̃ of C(6, 3) such that T̃ [5 ← 6] = T

are in bijection with the sections of the triangulation T \5. We have that T \5 is a

triangulation of C(4, 2) which can be realised geometrically as the triangulation of

the vertex figure of C(5, 3) at |5|. The triangulations |T | and |T \5| are illustrated

in Figure 7.

The triangulation T \5 has three sections W1,W2,W3, which are illustrated in

Figure 8. By [RS00, Lemma 4.7(i)], these sections correspond to triangulations
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Figure 7. The triangulation |T | of C(5, 3) and the triangulation |T \5|
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Figure 8. Sections of |T \5|
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T̃1, T̃2, T̃3 of C(6, 3) such that T̃i[5← 6] = T , and

T̃i = T
◦ ∪ (Wi ∗ {5, 6}) ∪ (T \5+ ∗ 5) ∪ (T \5− ∗ 6).

Hence one may compute that

T̃1 = {1234} ∪ {1256, 2356, 3456}∪ {1245, 2345}∪∅,

T̃2 = {1234} ∪ {1256, 2456}∪ {1245} ∪ {2346},

T̃3 = {1234} ∪ {1456} ∪∅ ∪ {1246, 2346}.

We now show how one may apply the result of [RS00, Lemma 4.7] to prove

Lemma 3.4.

Proof of Lemma 3.4. As above, by [RS00, Lemma 4.7(i)], triangulations T̃ of

C(m,n) such that T̃ [m− 1← m] = T are in bijection with sectionsW of T \m− 1.

Moreover, given a section W of T \m − 1, the corresponding triangulation T̃ has

the set of n-simplices

T ◦ ∪ (W ∗ {m− 1,m}) ∪ (T \m− 1+ ∗ (m− 1)) ∪ (T \m− 1− ∗m).

The set-up of Lemma 3.4 gives us that T contains a cyclic subpolytope C(H,n).

Let TH be the induced triangulation of the subpolytope C(H,n) in T . If m−1 /∈ H ,

then we have TH ⊆ T
◦, so that C(H,n) is a subpolytope of T̃ . Hence, assume that
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m − 1 ∈ H . This means that C(H \m − 1, n) is a subpolytope of T \m − 1, with

induced triangulation TH\m− 1. There are then three options:

(1) The subpolytope C(H \m− 1, n) lies below the section |W|.

(2) The C(H \m− 1, n) lies above the section |W|.

(3) The section |W| intersects C(H \m− 1, n).

In case (1), we have that TH\m− 1 ⊆ T \m− 1−, so that C((H \m− 1) ∪m,n) is

a subpolytope of T̃ . In case (2), we reason similarly that C(H,n) is a subpolytope

of T̃ .

For case (3), we have that W induces a section WH of TH\m − 1. By [RS00,

Lemma 4.7(i)], we have that the section WH of TH gives us a triangulation T̃H of

C(H ∪m,n). Moreover, the triangulation T̃H of C(H ∪m,n) has simplices

T ◦
H ∪ (WH ∗ {m− 1,m}) ∪ (TH\m− 1+ ∗ (m− 1)) ∪ (TH\m− 1− ∗m).

It is then clear that T ◦
H ⊆ T

◦,WH ⊆ W , TH\m−1
+ ⊆ T \m−1+, and TH\m−1

− ⊆

T \m− 1−. Hence T̃H is a subtriangulation of T̃ , which gives us that C(H ∪m,n)

is a subpolytope of T̃ . �

However, we also wish to prove the analogue of Lemma 3.4 for expansion at

vertices other than 1 and m, namely Lemma 3.5. The difficulty is that [RS00,

Lemma 4.7(i)] does not apply to these other vertices. Nevertheless, we consider the

following example, which suggests that a version of [RS00, Lemma 4.7(i)] ought to

hold at these vertices too. We spend most of the remainder of this section proving

this more general version of [RS00, Lemma 4.7(i)], which we then use to prove

Lemma 3.5.

Example 4.2. We proceed in the opposite direction to Example 4.1. That is,

we consider the same triangulation T of C(5, 3), but now directly compute the

triangulations T̃ of C([5]2+, 3) such that T̃ [x→ 2← y] = T . We then analyse the

triangulated vertex figure T \2 to see if there is a correspondence.

By direct computation, there are four triangulations T̃ of C([5]2+, 3) such that

T̃ [x→ 2← y] = T , namely

T̃1 = ∅ ∪ {1xy3, xy35} ∪ {1x34, 1x45, x345}∪∅,

T̃2 = ∅ ∪ {1xy3, xy34, xy45} ∪ {1x34, 1x45} ∪ {y345},

T̃3 = ∅ ∪ {1xy4, xy45} ∪ {1x45} ∪ {1y34, y345},

T̃4 = ∅ ∪ {1xy5} ∪∅ ∪ {1y34, 1y45, y345}.

Here we have split up the simplices into sets according to whether they have the

vertex x, y, or both. Now let

Wi = {A : A ∪ {x, y} ∈ T̃i },
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Figure 9. The triangulation |T | of C(5, 3) and the triangulation |T \2|
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Figure 10. Sections of |T \2|
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so that

W1 = {13, 35},

W2 = {13, 34, 45},

W3 = {14, 45},

W4 = {15}.

Consider these sets of simplices as subcomplexes of T \2. We obtain the results

shown in Figure 10 using geometric realisations. Note further that the simplices of

the triangulation T̃i which have x as a vertex correspond to the simplices of T \2

which are above the section, and the simplices of the triangulation T̃i which possess

y as a vertex correspond to the simplices of T \2 which are below the section.
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This suggests that there ought to be a version of [RS00, Lemma 4.7(i)] for ex-

pansion at vertices v such that 1 < v < m. However, there are several outstanding

issues.

(1) The vertex figures C(m,n)\v are not generally cyclic polytopes for 1 < v <

m, as can be seen from Figure 9 and Figure 10.

(2) It is not clear how to define the orientation on the vertex figure C(m,n)\v,

that is, how to decide what the upper and lower facets of C(m,n)\v are.

The orientation of C(5, 3)\2 from Figure 10 may look very natural, with |13|

and |35| as lower facets and |15| as the sole upper facet. But it is not clear

where this comes from, because |123| is a lower facet of C(5, 3), whereas

|125| and |235| are upper facets.

(3) Likewise, it is not clear how to orient the simplices in the triangulation.

From Figure 10, it seems that |345| has lower facet |35| and upper facets

|34|, |45|, whereas |134| has lower facets |13|, |34| and upper facet |14|. But

is not immediately obvious what the basis for this is.

(4) Finally, it is not obvious how to define sections of a triangulation of the

vertex figure C(m,n)\v. Moreover, if one can define the right notion of a

section, it is not clear whether such sections will be triangulations of lower-

dimensional cyclic polytopes, given that the vertex figures themselves are

not cyclic polytopes.

Over the course of this section we shall show how to resolve all these issues and

prove the analogue of [RS00, Lemma 4.7(i)] at vertices which are not 1 or m. We

first show how one can orient the vertex figures C(m,n)\v, that is, decide which

the upper and lower facets of C(m,n)\v are. This explains the natural orientation

we arrived at in Figure 10, and solves issue (2). Next we apply the same logic to

the simplices of the triangulation, thereby answering (3).

This gives us a partial order on the simplices of T \v. Using this, we derive

the relevant notion of a section within the triangulation T \v. We show that, in

fact, our sections are triangulations of C([m] \ v, n − 2), solving issue (4). This

culminates in our proving the following proposition, which is the analogue of [RS00,

Lemma 4.7(i)], showing that point (1) is not a problem.

Proposition 4.3. Let T be a triangulation of C(m,n). There is a bijection between

triangulations T̃ of C([m]v+, n) such that T̃ [x→ v ← y] = T and sections of T \v,

given by
{
T̃ ∈ S([m]v+, n) :

T̃ [x→ v ← y] = T

}
←→ { Sections W of T \v}

T̃ 7−→ T̃ \{x, y}

T ◦ ∪ (W ∗ {x, y})

∪(T \v+∗x)∪(T \v−∗y)
7−→ W .
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Remark 4.4. It suffices to prove Proposition 4.3 for n odd. For n even it already

follows from [RS00, Lemma 4.7(i)], since in this case the cyclic permutation i 7→

i+(m−v) defines an automorphism of C(m,n) which sends vertex v to vertex m—

see [KW03]. Hence one may apply [RS00, Lemma 4.7(i)] to the vertex v as if it were

vertex m, which gives Proposition 4.3 in this case. But for n odd this permutation

does not define an automorphism, and so more work needs to be done. Indeed, the

fact that, for n odd and v ∈ [2,m− 1], C(m,n)\v is not a cyclic polytope precludes

this permutation from giving an automorphism.

The methods of this section may still be applied to even-dimensional cyclic poly-

topes. One can check that this is equivalent to considering C(m, 2d) subject to the

given automorphism. However, restricting our attention to n odd allows us to

simplify some proofs.

Proving Proposition 4.3 requires theory for working with triangulated vertex

figures and their sections. Developing this theory is the task of Sections 4.2, 4.3,

4.4, and 4.5. The purpose of everything we prove in these sections is ultimately to

derive Proposition 4.3, and in turn to apply this proposition to prove Lemma 3.5.

Remark 4.5. Proposition 4.3 and [RS00, Lemma 4.7(i)] are reminiscent of the single-

element extension theorem of Las Vergnas for oriented matroids [Las78] [Bjö+99,

Section 7.1] [RZ94, Theorem 4.1.(1)]. However, it does not seem that they follow

from this result in any obvious way.

4.2. Facets of vertex figures. Our first task is to find the correct orientation of

the vertex figure C(m, 2d + 1)\v, that is: a classification of its facets into lower

facets and upper facets. It is important to note that, as in Example 4.2, this will

not generally match the orientation of C(m, 2d+ 1). That is to say, if F is a lower

facet of C(m, 2d+ 1)\v according to our orientation, then F ∪ v will not generally

be a lower facet of C(m, 2d+ 1).

Recall from Gale’s Evenness Criterion that a facet F of C(m, 2d + 1) can be

expressed uniquely as a union of disjoint pairs of consecutive numbers along with

either 1 or m. Hence, given v ∈ [2,m − 1], and a facet F of C(m,n) such that

v ∈ F , we can talk about the pair of consecutive entries that v lies in, which must

either be {v − 1, v} or {v, v + 1}. We then define the upper and lower facets of

C(m, 2d+ 1)\v as follows.

Definition 4.6. Let v ∈ [2,m− 1] and let F be a facet of C(m, 2d+ 1) such that

v ∈ F . Then F \ v is a facet of C(m, 2d+ 1)\v.

• If the other element in the pair with v in F is v+1, then we say that F \ v

is a lower facet of C(m, 2d+ 1)\v.

• If the other element in the pair with v in F is v− 1, then we say that F \ v

is an upper facet of C(m, 2d+ 1)\v.
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The following lemma indicates why our orientation of the vertex figure C(m, 2d+

1)\v is the correct one when it comes to considering expansion. A lower facet F

of C(m, 2d + 1)\v should always lie below the section, and hence should always

become a facet F ∪ y of C([m]v+, 2d+ 1).

Lemma 4.7. We have that F is a lower facet of C(m, 2d + 1)\v if and only if

F ∪ y is a facet of C([m]v+, 2d + 1). Dually, we have that F is an upper facet of

C(m, 2d+ 1)\v if and only if F ∪ x is a facet of C([m]v+, 2d+ 1).

Proof. If F ∪ v is an even subset of [m] and v is in a pair with v + 1, then F ∪ y

will be an even subset of [m]v+. Conversely, if F ∪ y is either an even or an odd

subset of [m]v+ where F ⊆ [m]\v, then y must be in a pair with v+1, since x /∈ F .

Consequently F ∪ v is either an even or an odd subset of [m] with v in a pair with

v + 1. The analogous claim for upper facets follows by a similar argument. �

One can also describe the upper and lower facets of C(m, 2d + 1)\v using the

following, which can be seen as a generalisation of Gale’s Evenness Criterion.

Lemma 4.8. Let F ⊆ [m] \ v. Then

• F is a lower facet of C(m, 2d + 1)\v if and only if #{ i ∈ F : j < i < v }

is even for all j ∈ [v − 1] \ F and #{ i ∈ F : v < i < j } is odd for all

j ∈ [v + 1,m] \ F ; and

• F is an upper facet of C(m, 2d+ 1)\v if and only if #{ i ∈ F : j < i < v }

is odd for all j ∈ [v − 1] \ F and #{ i ∈ F : v < i < j } is even for all

j ∈ [v + 1,m] \ F .

Proof. We only show the first claim, since the second claim is similar. Suppose that

F is a lower facet of C(m, 2d+ 1)\v. Then F ∪ v is a facet of C(m, 2d+ 1) and v

occurs in a pair with v + 1. Let j ∈ [v − 1] \ F . There are then a whole number of

pairs of consecutive numbers between j and v, so #{ i ∈ [m] : j < i < v } is even.

Let j ∈ [v+1,m] \F . Then the elements of F between j and v consist of v+1 and

a set of pairs of consecutive numbers, so #{ i ∈ [m] : v < i < j } is odd.

Suppose now that F is such that #{ i ∈ [m] : j < i < v } is even for all

j ∈ [v − 1] \ F and #{ i ∈ [m] : v < i < j } is odd for all j ∈ [v + 1,m] \ F .

Then we must have v + 1 ∈ F , since otherwise we can choose j = v + 1, and

#{ i ∈ [m] : v < i < v + 1 } = 0. The remaining elements of F must consist of

disjoint pairs of consecutive numbers and possibly 1 or m, otherwise we can find

gaps in F which contradict our assumption. Moreover, F cannot contain both 1

and m, since F must have 2d + 1 elements. This gives that F ∪ v is a facet of

C(m, 2d + 1) where v occurs in a pair with v + 1. Hence F is a lower facet of

C(m, 2d+ 1)\v. �

The following lemma describes the significance of the intersections of upper and

lower facets of the vertex figure C(m,n)\v. It is analogous to the easily-verified
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fact that the facets of C(m,n) correspond precisely to the (n− 1)-simplices which

are intersections of a lower facet and an upper facet of C(m,n+ 1).

Lemma 4.9. If G ∈
(
[m]\v
2d−1

)
and G = F∩F ′, where F is an upper facet of C(m, 2d+

1)\v and F ′ is a lower facet of C(m, 2d+1)\v, then G is a facet of C([m]\v, 2d−1).

Proof. Let

j = max{ i ∈ [m] \ F : i < v },

j′ = max{ i ∈ [m] \ F ′ : i < v },

k = min{ i ∈ [m] \ F : v < i },

k′ = min{ i ∈ [m] \ F ′ : v < i }.

We cannot have j = j′, since #{ i ∈ F : j < i < v } is odd, whereas #{ i ∈ F ′ :

j′ < i < v } is even. Therefore, suppose that j < j′. This implies that j′ ∈ F , so

that F = G ∪ j′. Hence, k′ /∈ F , so that k < k′ and F ′ = G ∪ k′.

Then #{ i ∈ G : j′ < i < v } = #{ i ∈ F ′ : j′ < i < v }, which is even,

and #{ i ∈ G : v < i < k } = #{ i ∈ F : v < i < k }, which is also even.

Furthermore, #{ i ∈ G : j < i < j′ } is even, since #{ i ∈ F : j < i < v } is odd

and #{ i ∈ F ′ : j′ < i < v } is even. Similarly, #{ i ∈ G : k < i < k′ } is even.

Thus, G∩ [1, j] consists of a set of disjoint pairs along with possibly 1, since this

is true of F and F ′; G∩ [j, j′] is an interval of even length; G∩ [j′, k] is an interval in

[m]\v of even length; G∩ [k, k′] is an interval of even length; and G∩ [k′,m] consists

of a disjoint union of pairs, along with possibly m. Consequently, G satisfies Gale’s

Evenness Criterion, and so is a facet of C([m] \ v, 2d+1). The case where j′ < j is

similar. �

Corollary 4.10. If G = F ∩ F ′, where F is an upper facet of C(m, 2d+ 1)\v and

F ′ is a lower facet of C(m, 2d+1)\v, then G∪{x, y} is a facet of C([m]v+, 2d+1).

Proof. This follows from Gale’s Eveness Criterion and Lemma 4.9. If G is an even

(respectively, odd) subset of [m] \ v, then G ∪ {x, y} is an even (respectively, odd)

subset of [m]v+. Adding a pair of consecutive entries cannot change the parities of

any gaps. �

4.3. Orienting the simplices. We now show how one can similarly orient the

simplices of the triangulation T \v, which allows us to introduce a partial order on

these simplices.

We first explain the logic of our orientation of the simplices of T \v. Given a

triangulation T of C(m − 1, 2d + 1), we wish to understand the different triangu-

lations T̃ of C([m − 1]v+, 2d + 1) such that T̃ [x → v ← y] = T . We consider

the triangulated vertex figure T \v. It is clear that T \v contains T̃ \{x, y} as a

simplicial subcomplex. We would like to think of these simplicial subcomplexes as
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sections which divide T \v into a part where x ← v under expansion and a part

where v → y under expansion.

However, it is not clear geometrically which part of T \v lies above T̃ \{x, y} and

which part lies below. Hence, we look to characterise this combinatorially instead.

Note that for every 2d-simplex S of T \v, we must have that S∪v is a simplex of T ,

so that S ∪ x is a (2d + 1)-simplex of T̃ , or that S ∪ y is a (2d + 1)-simplex of T̃ .

But we cannot have both, since S ∪ {x, y} can be decomposed into two halves of a

circuit, one of which is contained in S ∪ x, and the other of which is contained in

S ∪ y, since x and y are adjacent in S ∪ {x, y}. We therefore orient the simplices of

the triangulated vertex figure T \v as follows.

Definition 4.11. Let S be a 2d-simplex of T \v. Then S ∪{x, y} consists of 2d+3

distinct vertices, and so uniquely gives two halves of a circuit of C([m]v+, 2d+ 1),

which we denote (S− ∪ x, S+ ∪ y). Then we say that S \ s is an lower facet of S if

s ∈ S+, and an upper facet of S if s ∈ S−.

One can also translate this definition of the upper and lower facets of simplices

of T \v into an evenness criterion, which can be deduced straightforwardly from the

definition.

Lemma 4.12. Let S be a 2d-simplex of T \v and let s ∈ S. Then

(1) if s < v, then S \ s is

(a) a lower facet of S if #{ i ∈ S : s < i < v } is even, and

(b) an upper facet of S if #{ i ∈ S : s < i < v } is odd;

(2) if v < s, then S \ s is

(a) a lower facet of S if #{ i ∈ S : v < i < s } is odd, and

(b) an upper facet of S if #{ i ∈ S : v < i < s } is even.

By comparing with Lemma 4.8, we see that our notion of the upper and lower

facets of a simplex of T \v matches our notion of the upper and lower facets of

C(m, 2d+ 1)\v.

Lemma 4.13. Let T be a triangulation of C(m, 2d+ 1). Let S,R be 2d-simplices

of T \v. Then S ∩ R cannot be both a lower facet of S and a lower facet of R.

Similarly, S ∩R cannot be both an upper facet of S and an upper facet of R.

Proof. We only show the first claim, since the second claim is similar. Suppose that

F is both a lower facet of S = F ∪ s and a lower facet of R = F ∪ r. Without loss

of generality, assume that s < r. If s < r < v or v < s < r, then are are an even

number of elements f ∈ F such that s < f < r, by Lemma 4.12. If s < v < r, then

there are an odd number of elements f ∈ F such that s < f < r, by Lemma 4.12.

We have #F ∪{s, r, v} = 2d+3, and so there is a circuit (Z,Z ′) of C(m, 2d+1)

such that Z∪Z ′ = F ∪{s, r, v}. Suppose, without loss of generality, that s ∈ Z. By

the previous paragraph, we must then have r ∈ Z ′. Hence the simplices F ∪ {s, v}
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and F ∪{r, v} each contain one half of a circuit, which contradicts their both being

simplices of T . �

In the manner of [Ram97, Definition 5.7], we may now define a relation on the

set of 2d-simplices of T \v. Given two 2d-simplices S,R, we write that S
v
⋖R if and

only if S ∩ R is an upper facet of S and a lower facet of R. We show that
v
6 is a

partial order using the method of [Ram97, Corollary 5.8]: we define a total order

on the simplices of T \v and show that
v
6 is a sub-order of it. This means that every

triangulation of C(m, 2d+ 1)\v which comes from a triangulation of C(m, 2d+ 1)

is stackable, in the sense of [RS00, Definition 2.13].

To each S ∈
(
[m]\v
2d+1

)
, we assign a unique string by

Γ:

(
[m] \ v

2d+ 1

)
→ {o, ∗, e}m−1

Γ(S) := (γv+1(S), γv+2(S), . . . , γm(S), γ1(S), γ2(S), . . . , γv−1(S)),

where

γj(S) =






∗ if j ∈ S

if j /∈ S






if j < v




e if #{ b ∈ S : j < b < v } is even,

o if #{ b ∈ S : j < b < v } is odd,

if v < j




e if #{ b ∈ S : v < b < j } is even,

o if #{ b ∈ S : v < b < j } is odd.

We then denote by � the lexicographic order on
(
[m]\v
2d+1

)
induced by Γ and the

ordering of the letters o ≺ ∗ ≺ e.

Lemma 4.14. Let T be a triangulation of C(m, 2d+ 1) and consider the triangu-

lated vertex figure T \v. Let S and R be 2d-simplices of T \v such that S
v
⋖R, with

S \ {s} = R \ {r}.

(1) If we have v < s < r in the cyclic ordering, then γr(S) = e and γs(R) = e.

(2) If we have v < r < s in the cyclic ordering, then γr(S) = o and γs(R) = o.

(3) For j /∈ S ∪ R, we have that γj(S) 6= γj(R) if and only if j lies between s

and r in the ordering v + 1, v + 2, . . . , n, 1, 2, . . . , v − 1.

Proof. By Lemma 4.12, the fact that S
v
⋖R implies that

if s < v, then #{ i ∈ S : s < i < v } is odd, and

if v < s, then #{ i ∈ S : v < i < s } is even,

and

if r < v, then #{ i ∈ R : r < i < v } is even, and

if v < r, then #{ i ∈ R : v < i < r } is odd.

We consider the case where v < s < r is a cyclic ordering.
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(1) Within this set of cases, we first suppose that v < s < r. Then

#{ i ∈ R : v < i < s } = #{ i ∈ S : v < i < s },

which is even, and

#{ i ∈ S : v < i < r } = #{ i ∈ R : v < i < r }+ 1,

which is even. Therefore γs(R) = e and γr(S) = e. Moreover, if j /∈ S ∪ R, then

γj(S) 6= γj(R) if and only if s < j < r in the cyclic ordering.

(2) If r < v < s, then

#{ i ∈ R : v < i < s } = #{ i ∈ S : v < i < s },

which is even, and

#{ i ∈ S : r < i < v } = #{ i ∈ R : r < i < v },

which is even. Therefore γs(R) = e and γr(S) = e. Moreover, if j /∈ S ∪ R, then

γj(S) 6= γj(R) if and only if s < j < r in the cyclic ordering.

(3) If s < r < v, then

#{ i ∈ R : s < i < v } = #{ i ∈ S : s < i < v } − 1,

which is even, and

#{ i ∈ S : r < i < v } = #{ i ∈ R : r < i < v },

which is even. Therefore γs(R) = e and γr(S) = e. Moreover, if j /∈ S ∪ R, then

γj(S) 6= γj(R) if and only if s < j < r in the cyclic ordering.

The cases where v < r < s is a cyclic ordering are similar. �

Corollary 4.15. The relation
v
6 is a partial order.

Proof. We show that S
v
6 R implies that S � R. For this it suffices to show

that S
v
⋖ R implies that S � R. If v < s < r in the cyclic ordering, then, by

Lemma 4.14(3), it suffices to consider γs(S) and γs(R) in order to compare Γ(S)

and Γ(R) in the lexicographic order, since this is the first entry that differs. Then

we have γs(S) = ∗ and γs(R) = e by Lemma 4.14(1) so that S � R. Similarly, if

v < r < s in the cyclic ordering, then we consider γr(S) = o and γr(R) = ∗, so that

S � R likewise. We conclude that S
v
6 R implies that S � R. This entails that

v
6

is a partial order, since � is a total order. �

Recall that L is a lower set for a partial order 6 on a set P if L is a subset of P

such that whenever p ∈ L and p′ 6 p, we also have p′ ∈ L. The notion of an upper

set of a partial order is defined dually. These concepts, together with our partial

order
v
6, allow us to characterise the set of simplices in T \v where x ← v under

expansion and the set of simplices where v → y under expansion.
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Lemma 4.16. Let T be a triangulation of C(m, 2d+ 1) with T̃ a triangulation of

C([m]v+, 2d+1) such that T̃ [x→ v ← y] = T . Let L be the set of 2d-simplices S of

T \v such that S ∪ y is a (2d+ 1)-simplex of T̃ and let U be the set of 2d-simplices

R of T \v such that R ∪ x is a (2d+ 1)-simplex of T̃ . Then L is a lower set for
v
6,

U is an upper set for
v
6, and L ∪ U = T \v with L ∩ U = ∅.

Proof. It is clear that L ∪ U must comprise all of the 2d-simplices of T \v. This is

because if S is a 2d-simplex of T \v, then S ∪ v is a (2d+ 1)-simplex of T , and so

either S ∪ x or S ∪ y is a (2d + 1)-simplex of T̃ . Then, as we argued earlier, we

cannot have L ∩ U 6= ∅, since then both S ∪ x and S ∪ y are (2d + 1)-simplices

of T̃ . But this is prevented by the circuit (S− ∪ x, S+ ∪ y) of Definition 4.11, as

S ∪ x ⊇ S− ∪ x and S ∪ y ⊇ S+ ∪ y.

We now show that L is a lower set for
v
6. We suppose that R ∈ L and S ∈ T \v

are such that S
v
⋖R. Let F = S ∩R, which is an upper facet of S and a lower facet

of R. Suppose for contradiction that S ∪ x is a (2d+ 1)-simplex of T̃ . Then F ∪ x

is a 2d-simplex of T̃ . Since F is a lower facet of R, we have that F ∪ x ⊇ R− ∪ x,

where (R− ∪ x,R+ ∪ y) is the circuit from Definition 4.11. Since R ∈ L, we have

that R∪ y ∈ T̃ . But then, R∪ y ⊇ R+ ∪ y, so that both halves of (R− ∪ x,R+ ∪ y)

are contained in simplices of T̃ , which is a contradiction. Hence L is a lower set,

which also implies that U is an upper set. �

4.4. Sections of vertex figures. We now show how our partial order on the 2d-

simplices of T \v allows us to define the notion of a section of T \v. We then prove

fundamental properties of sections of T \v which will enable us to prove that they are

in bijection with triangulations T̃ of C([m]v+, 2d+1) such that T̃ [x→ v ← y] = T .

Definition 4.17. Given a lower set L of (T \v,
v
6), we let U = (T \v) \ L be the

upper set which is its complement, and define the associated section W(L) to be

the abstract simplicial complex given by the set of (2d − 1)-simplices W of T \v

such that either

• W = A ∩B where A ∈ L and B ∈ U , or

• W is an upper facet of C(m, 2d+ 1)\v and an upper facet of A ∈ L, or

• W is a lower facet of C(m, 2d+ 1)\v and a lower facet of B ∈ U .

We show that sections of T \v are triangulations of C([m] \ v, 2d − 1), just as

sections of T \m are triangulations of C(m−1, n−2) for triangulations T of C(m,n).

Recall our notation for facets of cyclic polytopes and facets of vertex figures of cyclic

polytopes from Definition 2.8 and Definition 2.29, respectively.

Lemma 4.18. For a triangulation T of C(m, 2d + 1), sections of T \v are trian-

gulations of C([m] \ v, 2d− 1).

Proof. We prove the claim by induction on #L. In the base case, we have that

L = ∅, so that W(L) = F l
v([m] \ v, 2d + 1). Hence, we must show that F l

v([m] \
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v, 2d+1) is a triangulation of C([m]\v, 2d−1). We must first show that there is no

circuit (A,B) of C([m] \ v, 2d− 1) such that A and B are both faces of simplices in

F l
v([m] \ v, 2d+1). If this were the case, then either (A∪x,B ∪ y) or (A∪ y,B ∪x)

would be a circuit of C([m]v+, 2d+1). But this contradicts Lemma 4.7, which gives

that A ∪ y and B ∪ y must be contained in lower facets of C([m]v+, 2d+ 1), which

cannot contain halves of circuits.

We now show that the facets of the (2d− 1)-simplices in F l
v([m] \ v, 2d+ 1) are

either shared with other (2d − 1)-simplices of F l
v([m] \ v, 2d + 1), or are facets of

C([m] \ v, 2d − 1). Let S ∈ F l
v([m] \ v, 2d + 1) and let s ∈ S, so that S \ s is a

facet of S. We have that S ∪ v is a facet of C(m, 2d + 1), so we must have that

(S \ s)∪ v = (S ∪ v)∩ (R∪ v) for a facet R∪ v of C(m, 2d+1). Hence S \ s = S ∩R

for a facet R ∈ Fv([m] \ v, 2d + 1). If R ∈ F l
v([m] \ v, 2d + 1), then we are done.

Otherwise, R ∈ Fu
v ([m]\v, 2d+1), and so S\s = S∩R is a facet of C([m]\v, 2d−1)

by Lemma 4.9. This establishes the base case.

Now, to show the inductive step, we suppose that we have a section W(L) such

that #L 6= ∅. Choose a simplex S ∈ L which is maximal in L with respect to
v
6.

Then L′ := L \ S is a lower set of
v
6 and, by the induction hypothesis, W(L′) is a

triangulation of C([m] \ v, 2d− 1). It follows from Definition 4.17 and the fact that

S is maximal in L that W(L) = (W(L′) \ F l
v(S, 2d+ 1)) ∪ Fu

v (S, 2d+ 1).

Let Se = {s0, s2, . . . , s2d} and So = {s1, s3, . . . , s2d−1}. Then either (Se ∪x, So∪

y) is a circuit of C([m]v+, 2d+1) or (So ∪x, Se ∪ y) is a circuit of C([m]v+, 2d+1).

Hence, either F l
v(S, 2d+ 1) = {S \ s : s ∈ So } = F

u(S, 2d− 1), or F l
v(S, 2d+ 1) =

{S \ s : s ∈ Se } = F l(S, 2d − 1). Then, respectively, either W(L) = (W(L′) \

Fu(S, 2d− 1))∪F l(S, 2d− 1)) orW(L) = (W(L′) \F l(S, 2d− 1))∪Fu(S, 2d− 1)).

In the former case, W(L) is an increasing bistellar flip of W(L′) as a triangulation

of C([m] \ v, 2d− 1); in the latter case, W(L) is a decreasing bistellar flip of W(L)

as a triangulation of C([m] \ v, 2d − 1). Since bistellar flips send triangulations of

C([m] \ v, 2d − 1) to triangulations of C([m] \ v, 2d − 1), we have in either case

that W(L) is a triangulation of C([m] \ v, 2d − 1). The result then follows by

induction. �

We obtain the following result, which will be useful in showing how sections of

T \v correspond to expanded triangulations.

Corollary 4.19. Let T be a triangulation of C(m, 2d+ 1) with W(L) a section of

T \v. Then there exists no circuit (A ∪ x,B ∪ y) of C([m]v+, 2d + 1) such that A

and B are both simplices in W(L).

Proof. If there were simplices A and B of W(L), such that (A ∪ x,B ∪ y) was a

circuit of C([m]v+, 2d + 1), then (A,B) would be a circuit of C([m] \ v, 2d − 1),

which would contradict Lemma 4.18. �
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Referring back to Proposition 4.3, this corollary allows us to show that the

simplicesW(L)∗ {x, y} do not contain any circuits. However, we also need to show

that there can be no circuits betweenW(L)∗{x, y} and T \v−∗y, andW(L)∗{x, y}

and T \v+ ∗ x, for which we need the following definition and lemma, which uses

Corollary 4.19 in its proof. Of course, we also need that there can be no circuits

between T \v− ∗ y and T \v+ ∗ x, which we subsequently deduce from this.

Definition 4.20. Let T be a triangulation of C(m, 2d + 1) with W(L) a section

of T \v and A a simplex of T \v. Then we say that A is submerged by W(L) if A

is contained in a simplex of L or a simplex of W(L). Similarly, we say that A is

supermerged by W(L) if A is contained in a simplex of U or a simplex of W(L).

These are analogues for vertex figures of C(m, 2d + 1) of the usual notions of

submersion and supermersion from [ER96; Wil21a] respectively. These usual no-

tions are defined for C(m,n) by comparing heights with respect to the (n + 1)-th

coordinate. For C(m,n)\v it is not clear what direction one should use to com-

pare heights, so we recreate the notions combinatorially using the partial order
v
6.

We now prove the following lemma concerning submersion. There is clear intu-

ition behind the result: it should be seen as analogous to one direction of [Wil21a,

Proposition 3.7].

Lemma 4.21. Let T be a triangulation of C(m, 2d + 1) with W(L) a section of

T \v. Then there exists no circuit (A∪ x,B ∪ y) of C([m]v+, 2d+ 1) such that A is

a simplex of W(L) and B is submerged by W(L).

Proof. Suppose for contradiction that we are in the situation described and that

there exists a circuit (A ∪ x,B ∪ y) of C([m]v+, 2d+ 1) such that A is a simplex of

W(L) and B is submerged by W(L).

We show the result by induction on #L. In the base case we have L = ∅, and

so both A and B must be simplices of W(L). But this contradicts Corollary 4.19.

For the inductive step, we may assume that L 6= ∅, and so choose S ∈ L which

is maximal, so that L′ := L \ S is a lower set with associated section W(L′). By

the induction hypothesis, the claim holds for W(L′), which is equal to (W(L) \

Fu
v (S, 2d+ 1)) ∪ F l

v(S, 2d+ 1).

We have that A is a simplex of W(L) and B is submerged by W(L), but we

cannot have this for W(L′) by the induction hypothesis. Hence, we must either

have that A is not a simplex of W(L′) or that B is not submerged by W(L′). In

the latter case, we must have that A is contained in upper facets of S but no lower

facets, and in the former case we must have that B is contained in upper facets

of S but no lower facets. Note that at most one of these cases can hold, since in

the first case A must contain the intersection of the upper facets of S, and in the

second case B must contain the intersection of the upper facets of S, whereas A

and B are disjoint. We consider each of these cases in turn.



THE TWO HIGHER STASHEFF–TAMARI ORDERS ARE EQUAL 45

Suppose first that B is contained in upper facets of S but no lower facets. This

means that B is a simplex of ofW(L). But A is also a simplex ofW(L), so that we

have a circuit (A∪ x,B ∪ y) of C([m]v+, 2d+1) where A and B are both simplices

of W(L). This contradicts Corollary 4.19.

Suppose now that A is only contained in upper facets of S. We must have that

either A is the intersection of the upper facets of S, or that S has d+1 upper facets

and A is a d-simplex contained in all but one of these facets. Note that this latter

case is not possible for triangulations of cyclic polytopes, where 2d-simplices always

have d upper facets, but it is possible for triangulations of vertex figures of cyclic

polytopes: see the simplex |345| in Figure 10. Simplices of the triangulated vertex

figure are sometimes upside-down, as it were.

If A is the intersection of the upper facets of S, then we have that S = J ∪ A

where (J ∪ x,A ∪ y) is a circuit of C([m]v+, 2d + 1). If a, b, j are the smallest

elements of the respective sets which are greater than v (or simply the smallest if

no elements are greater than v), then we have that j < a < b is a cyclic ordering

by considering the circuits (J ∪ x,A ∪ y) and (A ∪ x,B ∪ y). We then obtain that

((A\a)∪{j, x}, B∪y) is a circuit of C([m]v+, 2d+1). This contradicts the induction

hypothesis, since B is submerged by W(L′) and (A \ a) ∪ j is a simplex of W(L′),

because it lies in the lower facet S \ a of S.

We now must consider the case where S has d + 1 upper facets and A is a d-

simplex contained in all but one of these facets. Hence, let S = J ∪ A = S− ∪ S+,

where (S− ∪ x, S+ ∪ y) is a circuit and J ∩ A = ∅. By assumption, we have that

A ⊇ S+, and

#S+ = d, #S− = d+ 1,

#A = d+ 1, #J = d.

This also implies that #B = d, by considering the circuit (A ∪ x,B ∪ y). We must

have that at least one of s−0 and s−d is not an element of A, since #A ∩ S− = 1.

Suppose that s−0 /∈ A; the other case behaves similarly. Here we have s−0 < s+0 =

a0 < b0. We then have that ((A\a0)∪{s
−
0 , x}, B∪y) is a circuit of C([m]v+, 2d+1)

with the lower facet S \ a0 of S containing (A \ a0) ∪ s−0 . Thus (A \ a0) ∪ s−0 a

simplex of W(L′), giving a contradiction, because B is submerged by W(L′). This

concludes the proof. �

We now apply Lemma 4.21 to prove the following lemma. The intuition here is

that if we have that (A∪x,B∪y) is a circuit of C([m]v+, 2d+1), then B is “above”

A in the triangulated vertex figure T \v, and so there can be no section W(L) of

T \v where B is submerged by W(L) and A is supermerged by W(L).

Lemma 4.22. Let T be a triangulation of C(m, 2d + 1) with W(L) a section of

T \v. Then there exists no circuit (A∪ x,B ∪ y) of C([m]v+, 2d+ 1) such that A is

supermerged by W(L) and B is submerged by W(L).
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Proof. Suppose for contradiction that we are in the situation described and that

there exists a circuit (A∪ x,B ∪ y) of C([m]v+, 2d+1) such that A is supermerged

by W(L) and B is submerged by W(L). Suppose that A is not a face of a simplex

of W(L). Then there is a simplex S ∈ U := (T \ v) \L such that the lower facets of

S are all (2d− 1)-simplices of S and none of them contain A as a face. We obtain

that L′ = L ∪ S is also a lower set, with A still supermerged by W(L′) and B still

submerged by W(L′). By repeating this process, we may assume that A is a face

of a simplex of W(L). But this contradicts Lemma 4.21. �

4.5. Expansion at other vertices. We can now derive the main result of this

section, namely, that the different triangulations which may result from expansion

at the vertex v are in bijection with the sections of T \v. We prove our bijection in

two halves, showing first that every expanded triangulation gives us a section.

Lemma 4.23. Let T be a triangulation of C(m, 2d+ 1) with T̃ a triangulation of

C([m]v+, 2d+ 1) such that T̃ [x → v ← y] = T . Let L be the set of 2d-simplices S

of T \v such that S ∪ y is a (2d+ 1)-simplex of T̃ . Then W(L) = T̃ \{x, y}.

Proof. To start, note that by Lemma 4.16, the complement U of L in T \v consists

of the 2d-simplices S such that S ∪ x is a (2d+ 1)-simplex of T̃ .

We first prove that T̃ \{x, y} ⊆ W(L). Let W be a (2d− 1)-simplex of T̃ \{x, y}.

Then W ∪ {x, y} is a (2d+ 1)-simplex of T̃ . We have that W ∪ x is either a facet

of C([m]v+, 2d + 1) or a facet of R ∪ x where R ∈ U . Likewise, either W ∪ y is a

facet of C([m]v+, 2d+ 1) or a facet of S ∪ y where S ∈ L.

Note that we cannot both have that W ∪ x is a facet of C([m]v+, 2d + 1) and

that W ∪ y is a facet of C([m]v+, 2d + 1). To see this, suppose that W ∪ x is an

upper facet, so that it is an odd subset. This means that x is an even gap in W ∪y,

since, by assumption, y is an odd gap in W ∪ x. Hence, if W ∪ y is a facet of

C([m]v+, 2d+1), then x must be the only gap in W ∪y, otherwise W ∪y must have

both odd and even gaps. This means that C([m]v+, 2d + 1) is a (2d + 1)-simplex,

and so C(m, 2d+1) is degenerate. The case where W ∪x is a lower facet is similar.

Hence, we either have that

• W ∪ x is facet of R ∪ x where R ∈ U and W ∪ y is a facet of S ∪ y where

S ∈ L, or

• W∪x is a facet of R∪x where R ∈ U andW∪y is a facet of C([m]v+, 2d+1),

or

• W ∪ x is a facet of C([m]v+, 2d + 1) and W ∪ y is a facet of S ∪ y where

S ∈ L.

Hence, in all cases W ∈ W(L), by applying Lemma 4.7 and using Definition 4.17.

We now prove that W(L) ⊆ T̃ \{x, y}. Suppose that W is a (2d − 1)-simplex

of W(L). We claim that W ∪ {x, y} is a (2d + 1)-simplex of T̃ . By the following

reasoning, we have that both W ∪ x and W ∪ y are 2d-simplices of T̃ .
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• If W = R ∩ S where R ∈ L and S ∈ U , then we have that R ∪ y and S ∪ x

are (2d+ 1)-simplices of T̃ by definition of L and U .

• If W is an upper facet of C(m, 2d+1)\v and an upper facet of R for R ∈ L,

then W∪x is a 2d-simplex of T̃ by Lemma 4.7 and R∪y is a (2d+1)-simplex

of T̃ by definition of L.

• IfW is a lower facet of C(m, 2d+1)\v and a lower facet of S for S ∈ U , then

W ∪ y is a 2d-simplex of T̃ by Lemma 4.7 and R ∪ x is a (2d+ 1)-simplex

of T̃ by definition of U .

We now show that W ∪ {x, y} is a (2d + 1)-simplex of T̃ by applying [Wil21a,

Lemma 4.4], which states that it suffices to check that d- and (d + 1)-faces of

W ∪ {x, y} are in T̃ . Let A ⊆ W ∪ {x, y} be such that #A = d + 1. If x, y ∈ A,

then A lies on the boundary of C([m]v+, 2d+1) by Gale’s Evenness Criterion, so A

is a d-simplex of T̃ . If x /∈ A, then A is a d-face of W ∪ y, which we already know

is a (2d− 1)-simplex of T̃ . The case where y /∈ A may be treated similarly.

Now let B ⊆W ∪{x, y} such that #B = d+2. Every d-face of B is a d-simplex

of T̃ , by what we have just argued. If x, y ∈ B, then B cannot be half of a circuit

of C([m]v+, 2d + 1), since x and y are consecutive in [m]v+. Applying [Wil21a,

Lemma 4.4] then gives that B is a (d + 1)-simplex of T̃ . If, on the other hand,

x /∈ B (alternatively, y /∈ B), then B is a (d + 1)-face of W ∪ y (alternatively,

W ∪ x), which we know is a 2d-simplex of T̃ . Therefore, by [Wil21a, Lemma 4.4],

W ∪{x, y} is a (2d+1)-simplex of T̃ , and so W is a (2d−1)-simplex of T̃ \{x, y}. �

We now show the other half of the bijection, namely, that one can construct an

expanded triangulation from every section.

Lemma 4.24. Let T be a triangulation of C(m, 2d+1) withW(L) a section of T \v.

Then there is a triangulation T̃ of C([m]v+, 2d + 1) such that T̃ [x → v ← y] = T

and T̃ \{x, y} =W(L).

Proof. Suppose that we are in the situation described and let U be the complement

of L in T \v. We define T̃ to consist of the (2d+ 1)-simplices

T̃ = T ◦ ∪ (W(L) ∗ {x, y}) ∪ (U ∗ x) ∪ (L ∗ y),

where T ◦ = {Q ∈
(

[m]
2d+2

)
: Q ∈ T , v /∈ Q }. It is evident from the definition

of T̃ that T̃ [x → v ← y] = T and T̃ \{x, y} = W(L). We now show that T̃ is a

triangulation of C([m]v+, 2d+1) by explicitly verifying that it satisfies the definition

of a combinatorial triangulation from Definition 2.10.

We first verify that, for any simplex Q of T̃ and any facet F of Q, either F is a

facet of C([m]v+, 2d+ 1) or a facet of another (2d+ 1)-simplex of T̃ .

(1) Suppose first that Q ∈ T ◦.

If F is a facet of C(m, 2d + 1) in T , F will be a facet of C([m]v+, 2d + 1) in

T̃ . Suppose instead that F is a facet of Q′ for some simplex Q′ in T . Then, if
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v /∈ Q′, then Q′ ∈ T ◦ ⊆ T̃ . On the other hand, if v ∈ Q′, then either (Q′ \ v) ∪ x

or (Q′ \ v) ∪ y is a (2d+ 1)-simplex of T̃ , and F is a facet of either of these.

(2) Suppose now that Q ∈ U ∗ x.

If x /∈ F , then Q = F ∪ x. Then F ∪ v is a (2d + 1)-simplex of T , where F is

either a facet of C(m, 2d+ 1), or a facet of a (2d+ 1)-simplex Q′, where v /∈ Q′. If

F is a facet of C(m, 2d + 1), then F is a facet of C([m]v+, 2d+ 1). If F is a facet

of a (2d+ 1)-simplex Q′ in T , then Q′ ∈ T ◦, and F is a facet of Q′ in T̃ .

If x ∈ F , then in T \v, F \ x is either a facet of C(m, 2d + 1)\v, or a facet of

some 2d-simplex S distinct from Q \ x. We consider these two cases in turn.

If F \ x is a facet of C(m, 2d + 1)\v, then it is either an upper facet or a lower

facet. In the former case, by Lemma 4.7, F is a facet of C([m]v+, 2d + 1). In

the latter case, since F \ x is a facet of Q \ x and Q ∈ U , we have that F \ x is

in the section W(L). This then means that F is a facet of the (2d + 1)-simplex

(F \ x) ∪ {x, y} in T̃ .

If F \ x = (Q \ x) ∩ S for some 2d-simplex S, then either S ∈ U , or S ∈ L. If

S ∈ U , then S ∪ x is a (2d+ 1)-simplex of T distinct from Q with F as a facet. If

S ∈ L, then F \ x ∈ W(L). In this case (F \ x) ∪ {x, y} is a (2d+ 1)-simplex of T̃

and it has F as a facet.

(3) The case where Q ∈ L ∗ y is similar to the previous case.

(4) Finally, suppose that Q ∈ W(L) ∗ {x, y}.

If x /∈ F , then Q = F ∪ x. We have that F \ y is a (2d − 1)-simplex of T \v,

and is therefore either both a facet of C(m, 2d + 1)\v and a facet of a 2d-simplex

S of T \v, or a shared facet of two 2d-simplices R and S of T \v. Note also that

F \ y ∈ W(L), since Q ∈ W(L) ∗ {x, y}.

If F \ y is both a facet of C(m, 2d + 1)\v and a facet of a 2d-simplex S, then

either F \ y is a lower facet or it is an upper facet. If it is a lower facet, then F is

a facet of C([m]v+, 2d+ 1). If it is an upper facet, then we must have S ∈ L, since

F \y ∈ W(L). Consequently, S∪y is a (2d+1)-simplex of T̃ , and F is a facet of it.

If F \ y is a shared facet of two 2d-simplices S and R in T , then we may suppose

without loss of generality that S ∈ L and R ∈ U , since we know that F \y ∈ W(L).

We then have that F is a shared facet of Q and S ∪ y in T̃ .

The case when y /∈ F is similar to the case where x /∈ F .

If x, y ∈ F , then let W = Q \ {x, y}, so that W ∈ W(L). Then G = F \ {x, y} is

a facet of W . Since, by Lemma 4.18, W(L) is a triangulation of C([m] \ v, 2d− 1),

then there either exists W ′ ∈ W(L) such that W ∩W ′ = G, or that G is a facet

of C([m] \ v, 2d + 1). In the second case, we are done immediately by applying

Corollary 4.10, which gives us that F = G ∪ {x, y} is a facet of C([m]v+, 2d + 1).

In the first case, we have that W ′ ∪ {x, y} ∈ W(L) ∗ {x, y} and that F is a shared

facet between Q and W ′ ∪ {x, y}.
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We must now show that there can be no pair of (2d+1)-simplices S,R in T̃ such

that S ⊇ Z− and R ⊇ Z+, where (Z−, Z+) is a circuit of C([m]v+, 2d+1). Suppose

for contradiction that there does exist such a pair of (2d+ 1)-simplices S and R.

We use the fact that T̃ [x → v ← y] = T . This implies that any such circuit

(Z−, Z+) must degenerate under the contraction [x → v ← y], since otherwise we

would obtain a circuit in T . This means that we have x ∈ Z± and y ∈ Z∓. Hence

we only need to consider the cases where

(1) S ∈ U ∗ x and R ∈ L ∗ y;

(2) S ∈ U ∗ x and R ∈ W(L) ∗ {x, y};

(3) S ∈ W(L) ∗ {x, y} and R ∈ L ∗ y; and

(4) S,R ∈ W(L) ∗ {x, y}.

But each case gives a contradiction to Lemma 4.22, or the more specific instances of

Lemma 4.21 and Corollary 4.19. Hence, we obtain that T̃ is indeed a triangulation

of C([m]v+, 2d+ 1). �

Proof of Proposition 4.3. The proposition now follows by putting together the re-

sults Lemma 4.23, Lemma 4.24, and using Remark 4.4. �

Now, using Proposition 4.3, we can apply the argument of Lemma 3.4 to the

contraction [x→ v ← y].

Proof of Lemma 3.5. By Proposition 4.3, triangulations T̃ of C([m]v+, n) such that

T̃ [x→ v ← y] = T are in bijection with sections W(L) of T \v. Moreover, given a

section W(L) of T \v, the corresponding triangulation T̃ has the set of n-simplices

T ◦ ∪ (W(L) ∗ {x, y}) ∪ (L ∗ x) ∪ (U ∗ y),

where T ◦ denotes the n-simplices of T which do not contain v and U is the com-

plement of L in T \v.

The set-up of Lemma 3.5 gives us that T contains a cyclic subpolytope C(H,n).

We let TH be the induced triangulation of this subpolytope in T . If v /∈ H , then

TH ⊆ T
◦, so C(S, n) is a subpolytope of T̃ . Hence, we assume that v ∈ H . There

are then three options:

(1) TH\v ⊆ L.

(2) TH\v ⊆ U .

(3) TH\v has non-empty intersection with both L and U .

In case (1) we have that C((H \ v) ∪ y, n) is a subpolytope of T̃ . In case (2), we

have that C((H \ v) ∪ x, n) is a subpolytope of T̃ .

In case (3), let LH = L ∩ TH and UH = U ∩ TH . Then LH is a lower set of

the restriction of
v
6 to TH\v. We then obtain a section W(LH) of TH\v, and it

is straightforward to see that W(LH) consists of the (2d − 1)-simplices of W(L)

which are also (2d − 1)-simplices of TH\v. By Proposition 4.3, we have that the
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section W(LH) of TH\v gives us a triangulation T̃H of C(Hv+, n). Moreover, the

triangulation T̃H of C(Hv+, n) has simplices

T ◦
H ∪ (W(LH) ∗ {x, y}) ∪ (UH ∗ x) ∪ (LH ∗ y).

It is then clear that T ◦
H ⊆ T

◦,W(LH) ⊆ W(L), UH ⊆ U , and LH ⊆ L. Hence T̃H is

a subtriangulation of T̃ , which gives us that C(Hv+, n) is a subpolytope of T̃ . �

4.6. Order-preservation. We finish the section by showing that the contraction

[x → v ← y] is order-preserving with respect to the second order. To do this,

we show how this operation may be interpreted combinatorially, and then use this

interpretation to show that it is order-preserving.

Lemma 4.25. Let T̃ be a triangulation of C([m]v+, n) with v ∈ [2,m− 1] and let

T = T̃ [x→ v ← y]. Then

Int(T ) = {A ∈ K⌊n/2⌋
m : A = Ã[x→ v ← y] for some Ã ∈ Int(T̃ ) }.

Note that this lemma applies to both n even and n odd. If n is odd and A ∈

K
⌊n/2⌋
m is such that A = Ã[x→ v ← y] for some Ã ∈ Int(T̃ ), then we automatically

have that A ∈ J
⌊n/2⌋
m , since Ã ∈ J

⌊n/2⌋
[m]v+

.

Proof. It is immediate that

Int(T ) ⊇ {A ∈ K⌊n/2⌋
m : A = Ã[x→ v ← y] for some Ã ∈ Int(T̃ ) }

from the definitions of Int(T ) and T̃ [x→ v ← y].

We now show that

Int(T ) ⊆ {A ∈ K⌊n/2⌋
m : A = Ã[x→ v ← y] for some Ã ∈ Int(T̃ ) }.

If A ∈ Int(T ), then there must exist a simplex Ã of T̃ such that Ã[x→ v ← y] = A.

Without loss of generality, we may assume that {x, y} 6⊆ Ã, since in this case we

may remove either x or y from Ã and still have Ã[x → v ← y] = A. But then we

must have that Ã is an internal ⌊n/2⌋-simplex, since A is an internal ⌊n/2⌋-simplex.

Hence, Ã ∈ Int(T̃ ), as desired. �

We can now show that [x → v ← y] is order-preserving with respect to the

second order.

Proof of Lemma 3.6. We split into two cases depending on whether n is odd or

even so that we can use the combinatorial interpretations of the second higher

Stasheff–Tamari order from Theorem 2.21 and Theorem 2.22.

We first let n = 2d. We show that if T 662 T
′, then T̃ 662 T̃

′. Suppose that there

exists B ∈ Int(T ′) and A ∈ Int(T ) such that B ≀A. Then we have that B̃ ∈ Int(T̃ ′)

and Ã ∈ Int(T̃ ), with A = Ã[x→ v ← y] and B = B̃[x→ v ← y], by Lemma 4.25.

Then we also must have have B̃ ≀ Ã, since at most one of A and B can contain v.

This implies that T̃ 662 T̃
′, as desired.
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We now let n = 2d+ 1. We shall show that if T̃ 62 T̃
′, then Int(T ) ⊇ Int(T ′).

Let A ∈ Int(T ′). Then A = Ã[x → v ← y] for some Ã ∈ Int(T̃ ′) by Lemma 4.25.

Since Int(T̃ ) ⊇ Int(T̃ ′), we then have that Ã ∈ Int(T̃ ), which implies that Ã[x →

v ← y] = A ∈ Int(T ), as desired. �

References

[And87] T. Ando. “Totally positive matrices”. Linear Algebra Appl. 90 (1987),

pp. 165–219.

[AT14] N. Arkani-Hamed and J. Trnka. “The Amplituhedron”. J. High Energ.

Phys. 10 (2014).
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Springer, Basel, 2012, pp. 391–423.

[DRS10] J. A. De Loera, J. Rambau, and F. Santos. Triangulations. Vol. 25.

Algorithms and Computation in Mathematics. Structures for algorithms

and applications. Springer-Verlag, Berlin, 2010, pp. xiv+535.

[Ell53] J. P. Elliott. “Theoretical Studies in Nuclear Structure. V. The Matrix

Elements of Non-Central Forces with an Application to the 2p-Shell”.

Proceedings of the Royal Society of London. Series A, Mathematical and

Physical Sciences 218.1134 (1953), pp. 345–370.

[ER96] P. H. Edelman and V. Reiner. “The higher Stasheff–Tamari posets”.

Mathematika 43.1 (1996), pp. 127–154.

[ERR00] P. H. Edelman, J. Rambau, and V. Reiner. “On subdivision posets of

cyclic polytopes”. Vol. 21. 1. Combinatorics of polytopes. 2000, pp. 85–

101.

[FR21] V. Froese and M. Renken. “Persistent graphs and cyclic polytope tri-

angulations”. Combinatorica (2021).

[FT67] H. Friedman and D. Tamari. “Problèmes d’associativité: Une structure

de treillis finis induite par une loi demi-associative”. J. Combinatorial

Theory 2 (1967), pp. 215–242.

[FZ03] S. Fomin and A. Zelevinsky. “Y -systems and generalized associahedra”.

Ann. of Math. (2) 158.3 (2003), pp. 977–1018.



REFERENCES 53

[Gal55] D. Gale. “On convex polyhedra”. Bull. Amer. Math. Soc. 61.6 (1955).

Abstract 794, pp. 505–574.

[Gal63] D. Gale. “Neighborly and cyclic polytopes”. Proc. Sympos. Pure Math.,

Vol. VII. Amer. Math. Soc., Providence, R.I., 1963, pp. 225–232.

[GKZ94] I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants,

resultants, and multidimensional determinants. Mathematics: Theory &
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Basel, 2012, pp. xx+433.

[OT12] S. Oppermann and H. Thomas. “Higher-dimensional cluster combina-

torics and representation theory”. J. Eur. Math. Soc. (JEMS) 14.6

(2012), pp. 1679–1737.

[Pac91] U. Pachner. “P.L. homeomorphic manifolds are equivalent by elemen-

tary shellings”. European J. Combin. 12.2 (1991), pp. 129–145.

[Pog17] T. Poguntke. Higher Segal structures in algebraic K-theory. 2017.

arXiv: 1709.06510.

[Pos06] A. Postnikov. Total positivity, Grassmannians, and networks. 2006.

arXiv: math/0609764.
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