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Abstract

Stabilization plays a central role in improving the qual-

ity of videos. However, current methods perform poorly

under adverse conditions. In this paper, we propose a

synthetic-aware adverse weather video stabilization algo-

rithm that dispenses real data for training, relying solely

on synthetic data. Our approach leverages specially gen-

erated synthetic data to avoid the feature extraction issues

faced by current methods. To achieve this, we present a

novel data generator to produce the required training data

with an automatic ground-truth extraction procedure. We

also propose a new dataset, VSAC105Real, and compare

our method to five recent video stabilization algorithms us-

ing two benchmarks. Our method generalizes well on real-

world videos across all weather conditions and does not

require large-scale synthetic training data. Implementa-

tions for our proposed video stabilization algorithm, gen-

erator, and datasets are available at https://github.com/A-

Kerim/SyntheticData4VideoStabilization WACV 2024.

1. Introduction

Over recent years, we have witnessed an explosion of

videos being recorded and shared on the Internet. How-

ever, most shared videos are unedited and shaky, which

makes them unpleasant to watch. Therefore, video stabi-

lization techniques became essential in the video process-

ing pipeline, gaining momentum as more unedited videos

are being created and shared. Recent video stabilization

approaches perform well under standard conditions but

struggle under adverse ones. Moreover, collecting train-

ing videos in these adverse conditions is hard, dangerous,

and time-consuming. Furthermore, creating photo-realistic

synthetic videos simulating these conditions is complex,

expensive, and poses certain limitations because of the do-

main gap problem between synthetic and real domains.

The training data bottleneck mentioned above causes

many video stabilization methods to be essentially non-

learning-based, commonly adopting affine or homography

matrix estimation in the camera motion estimation step to

extract the camera trajectory. Usually, feature extraction,

description, and matching are involved in this process. Fea-

ture extractors like SIFT [19] and the learning-based ones,

like R2D2 [24] and ASLFeat [20], perform well under stan-

dard conditions, but they may fail under challenging con-

ditions, such as foggy, rainy, and snowy weather, as well

as nighttime scenes. For instance, raindrop and snowflake

particles along with texture-depleted scenes in fog or dark-

ness pose a clear challenge to extract robust features. Fail-

ing to estimate the camera trajectory accurately, in the mo-

tion estimation stage, propagates the error to later steps of

the process, decreasing the quality of the stabilized video.

Synthetic data have shown great progress in the field

of computer vision, captivating numerous researchers who

seek to apply it to diverse computer vision problems [12,

17, 21, 28, 29]. Most importantly, synthetic data holds the

promise of addressing the lack of suitable data for training

supervised learning models. However, we argue that the

potential of synthetic data lies not only in the amount of

generated data for training but also in how we design and

use this data jointly with our methods.

In this paper, we propose a novel synthetic-aware

video stabilization method that leverages synthetic data

and achieves state-of-the-art results using only a small-

scale synthetic dataset. Using specially designed synthetic

videos for training, our algorithm can bypass the feature

extraction step, commonly adopted by video stabilization

methods, and thus be more robust to adverse weather con-

ditions. We leverage the Unity engine to build a simu-

lator that creates three-dimensional photo-realistic virtual

worlds procedurally at run-time. The system automatically

diversifies essential scene attributes like weather condi-

tions, time of the day, and crowdedness. Most importantly,

our simulator generates the required ground-truth training

data for our learning-based video stabilization method. We

also introduce VSAC105Real, a new evaluation dataset



with real adverse weather videos, since available bench-

marks lack these weather conditions.

Our proposed method does not require any real data

for training and is more robust than the state-of-the-art

methods across different weather conditions. To the best

of our knowledge, this is the pioneering work addressing

video stabilization in adverse weather, utilizing synthetic

videos. Despite supervised learning-based approaches [1,

18,30,34] being able to learn parameters like cropping win-

dow, sensitivity, and even to extract discriminative features,

there is no sufficient labeled data for obtaining high-quality

results in any condition. Sourcing, collecting, and annotat-

ing relevant data is cumbersome, time-consuming, error-

prone, costly, and subject to privacy issues.

Hence, our main contributions are three-fold: i) a

novel synthetic-aware video stabilization method, achiev-

ing state-of-the-art results on real videos while trained only

on synthetic videos; ii) a new synthetic data generator ca-

pable of producing specially designed training videos; and

iii) a new video stabilization dataset, VSAC105Real, com-

posed of real videos spanning foggy, rainy, snowy weather,

and nighttime attributes.

2. Related Work

Video Stabilization. Video stabilization methods are

categorized into non-learning-based and learning-based.

Non-learning-based video stabilization methods do not

perform training. For instance, Grundmann et al. [9] sta-

bilize the shaky camera trajectory using L1-norm opti-

mization under constraints, and Bradley et al. [3] address

the stabilization task as a constrained convex optimization

problem. Although these methods do not require training

data for tuning the model’s parameters, they work only un-

der predefined conditions, their parameters must be tuned

manually, and their results tend to be less pleasant.

The learning-based approaches are classified into un-

supervised and supervised approaches. Non-supervised

methods require training videos but do not demand shaky-

stable video pairs. DIFRINT [5], for example, is trained

end-to-end and utilizes frame interpolation to synthesize

middle frames for stabilization. However, supervised

learning approaches require labeled data, which is the main

limitation of applying them to video stabilization. Stab-

Net [30] uses a mechanical stabilizer to generate ground-

truth stable videos to train Convolutional Neural Networks

for video stabilization. The network learns a warping trans-

formation of multi-grids given the shaky and previously

stabilized frames. While Liu et al. [18] apply a learning-

based hybrid-space fusion to compensate for optical flow

inaccuracy, Yu et al. [34] stabilize videos by computing

the per-pixel warp field from the shaky video optical flow.

The previous methods present a partial solution to the

video stabilization problem since they are assumed to work

under normal weather conditions and sufficient illumina-

tion. However, finding resilient features in adverse con-

ditions is rather challenging. For example, rain particles,

foggy weather conditions, and low illumination pose clear

challenges to finding robust features. Thus, it leads to inac-

curate motion estimation and low-quality video stabiliza-

tion. Our video stabilization method belongs to the su-

pervised learning-based category. However, unlike other

methods, we use only synthetic data for training. No

pre-training or fine-tuning on real data is required by our

method, and by using only a small-scale training dataset, it

is more robust than state-of-the-art methods.

Affine and Homography Transformation. Estimating

affine and homography transformations between two im-

ages is common to aligning one image with another. There

are different ways to find these matrices, like applying

a feature extractor (e.g., SIFT [19] and OAN [35]) and

an outlier rejection algorithm (e.g., RANSAC [8] and

MAGSAC [2]) or via learning approaches [6, 36].

Although the traditional feature extraction approach

does well under standard conditions, it performs poorly un-

der challenging scenarios. Supervised approaches cannot

reflect scene parallax [32], and generating suitable train-

ing data is hard. Unsupervised approaches may solve these

problems, but they fail under large baseline alignment,

which makes them impractical for video stabilization un-

der sharp camera movements [36].

In contrast to prior methods, our model learns the affine

transformation through supervised learning on synthetic

training data exclusively. Although it is possible to decom-

pose the homography matrix to extract camera translation,

rotation, and scale, it is inaccurate. Moreover, training a

model to estimate the affine transformation is easier than

estimating the homography. While homography can accu-

rately model camera motion for a few frames, it introduces

artifacts such as skew and perspective distortions as the

number of frames increases [9,15]. Additionally, it overfits

even with some regularization. Thus, utilizing homogra-

phy transformation is harder to train (more parameters and

easier to overfit) and more subject to artifacts.

Synthetic Data Generation. Synthetic data is typically

used to overcome training data scarcity for supervised

learning models [4, 12, 17, 25, 28, 29]. Richter et al. [25]

modified the GTA-V game to generate synthetic data and

the corresponding ground truth for semantic segmentation.

Shafaei et al. [28] used photo-realistic games to generate

data for image segmentation and depth estimation. Doso-

vitskiy et al. [7] presented CARLA, an autonomous driv-

ing simulator that provides ground-truth data for semantic

segmentation and depth estimation tasks. Recently, the Ur-

banScene3D simulator was proposed by Liu et al. [17] for



autonomous driving and flying support.

While Sim2RealVS [22] shares some similarities with

our work, it uses GTA-V, a game not originally designed

for synthetic data generation. In contrast, our simulator

was purpose-built for this task, offering greater diversity

and control. Sim2RealVS is limited to GTA-V assets,

while our simulator allows us to procedurally create new

cities for each synthetic video and easily modify or add

scene elements, which is not possible with Sim2RealVS re-

lying on GTA-V. Our work also complements [14] by not

requiring user manipulations. In contrast to [11], which

uses a complex teacher-student network to learn the affine

transformation, we achieve this with a simpler, easier-to-

train architecture. Moreover, unlike [31], our approach

does not require tuning numerous hyper-parameters like

smoothing iterations and multi-planar thresholds.

These previous methods partially solve the data gener-

ation issue because of the lack of control over the gen-

eration process. They fail to randomize scene elements,

leading to less diverse datasets. Our simulator utilizes

procedural content generation to create 3D virtual worlds

and generates special training data for video stabilization.

Our experiments show that generating appropriate train-

ing data and creating a synthetic data pipeline achieve

superior results. Our algorithm provides better results

in real videos even though our simulator does not gen-

erate state-of-the-art photo-realistic videos. Additionally,

our synthetic-aware algorithm and specially designed syn-

thetic data teach the model to accurately estimate the affine

transformation while not being overfitted to the synthetic

data distribution. Thus, it mitigates the domain gap and

achieves satisfactory results on real data.

3. Methodology

Let V = {v1, . . . , vN} be a shaky video composed of N
frames. Our approach aims to generate a stabilized version

V ′ = {v′1, . . . , v
′
N} while preserving the original camera

movement made by the recorder.

Our method has two stages: i) Motion Estimation; and

ii) Trajectory Smoothing. In the former, we train a mo-

tion estimation network using the ground-truth data from

generated synthetic videos to estimate an affine transfor-

mation matrix Ai for every consecutive frames vi and

vi+1. Then, in the latter, we calculate the camera trajec-

tory T̂ = {τ̂1, . . . , τ̂N} from the estimated parameters x̂j

for the pair of frames (vj , vj+1), and after smoothing T̂ ,

we warp and crop frames using transformations retrieved

from the smoothed trajectory T̃ = {τ̃1, . . . , τ̃N}. Figure 1

shows the pipeline.

3.1. Motion Estimation

The first stage of our pipeline estimates the camera mo-

tion throughout the video. Most existing 2D-based stabi-

lization approaches apply key-point feature extraction and

tracking to solve this task [9, 13, 16]. However, both steps

may fail under adverse weather conditions due to repet-

itive textures and partial occlusions caused by rain and

snow particles or textureless objects under foggy weather

or at night. To overcome this issue and properly recover

the camera motion in V , we propose estimating param-

eters tx, ty , θ, and s of an affine transformation ma-

trix A = [s cos θ,−s sin θ, tx; s sin θ, s cos θ, ty] for every

consecutive pair of frames using synthetic data for deep

estimation. Thus, we abdicate the feature extraction pro-

cedure entirely since, using our proposed engine, we can

generate the ground-truth affine transformation needed for

training as described in Section 4.

We use two identical networks for estimating the pa-

rameters: ftr : R4×W×H → R
2, which estimates the x and

y translations xtr = [tx, ty]; and frs : R
4×W×H → R

2,

which predicts the rotation angle and scale xrs = [θ, s],
where W = H = 256 is the center-cropped image width

and height. Note that ftr and frs share the same architec-

ture but not the same weights. Both networks consist of

a feature extractor implemented as four convolutional lay-

ers, a pooling and a dropout layer, and a regressor, which

is a fully connected network composed of three linear lay-

ers that process the extracted features to estimate the pa-

rameters. Figure 1-a shows the number of output chan-

nels of each layer. For each training step, we feed the net-

works with an input I = [vi; vi+1;Oi] ∈ R
4×W×H , where

vi, vi+1 ∈ R
W×H are two consecutive grayscale frames

from the input video V and Oi ∈ R
2×W×H is the dense

Optical Flow (OF) map for the pair (vi, vi+1). Then,

we estimate the parameters for Ai as x̂tr = ftr(I) and

x̂rs = frs(I). To optimize the networks ftr and frs, we

train separately each one using the MSE loss.

A key contribution of this paper is the usage of specially

designed synthetic data to learn an affine transformation

matrix. Let Pi = {p1, . . . ,pK} denote the 2D coordi-

nates of K marked points at the frame vi from a generated

synthetic video. Since we can control the camera motion

during the synthetic video generation, we can analytically

determine the new positions of the marked points in frame

vi as they transition to frame vi+1. With these 2K points

in frames vi and vi+1, we can compute an affine transfor-

mation Ai with 4 degrees of freedom using Pi and Pi+1,

then use it as the ground truth for training ftr and frs. We

detail the process of ground truth generation in Section 4.

Finally, with x̂ = [x̂tr, x̂rs] = [t̂x, t̂y, θ̂, ŝ], the esti-

mated parameters for each video frame pair, we com-

pute the estimated camera trajectory T̂ = {τ̂1, . . . , τ̂N−1},

where τ̂i =
∑i

j=1
x̂j , and x̂j represents the estimated pa-

rameters for the pair of frames (vj , vj+1). It is important

to note that, similar to Grundmann et al. [9], we do not di-

rectly use t̂i to warp the shaky images. We warp the frames
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Figure 1. Video stabilization pipeline. Our method estimates the translation, rotation, and scale for each pair of frames of the shaky

video. After computing the camera trajectory, upper (red) and lower (green) bounds are found and averaged, and the Savitzky-Golay filter

is applied to smooth the trajectory. Finally, warping and cropping are performed.

by applying the smoothed affine transformations composed

of the smoothed translation, rotation, and scale parameters.

3.2. Trajectory Smoothing

The next step after estimating the shaky camera trajec-

tory is smoothing it. Unlike other methods, which tackle

the camera trajectory smoothing as an optimization prob-

lem [9], we deploy the Savitzky-Golay filter [27] on the

averaged envelop of the shaky camera trajectory to smooth

it, as described in the sequel.

Given the camera trajectory T̂ , we first calculate the

extremes of T̂ by applying the first-order discrete deriva-

tive. Then, we interpolate the trajectory maxima (T̂max)

and minima (T̂min) values to extract the upper and lower

envelopes, respectively. Quadratic interpolation presented

the best results in our experiments since it makes smooth

interpolations and tends to stay within the ranges of the

interpolation points. The final upper and lower signal en-

velopes are represented as Eup = {eup1 , . . . , eupN−1
} and

Elow = {elow1 , . . . , elowN−1}, respectively.

After obtaining the envelopes, we apply the Savitzky-

Golay filter on the average envelop Ē = (Eup + Elow)/2
to remove the unwanted sudden camera shakiness and cre-

ate the smooth camera trajectory T̃ = {t̃1, . . . , t̃N−1} as

shown in Figure 1-b. The Savitzky-Golay filter smooths

the digital signal by fitting a low-degree polynomial to con-

secutive signal points using linear least squares. This strat-

egy has an advantage over other techniques as it preserves

the signal tendency. Thus, T̃ still maintains the properties

of T̂ while ensuring a smooth camera transition over time.

After that, we calculate the difference between both trajec-

tories δT = T̂ − T̃ . Then, the smoothed affine transforma-

tion parameters X̃ are calculated as X̃ = X̂ − δT , where

X̃ = {x̃1, . . . , x̃N−1} and X̂ = {x̂1, . . . , x̂N−1}, with x̃i

being the smoothed parameters t̃x, t̃y , θ̃, and s̃.

At last, we warp and crop the video frames to compose

the final video. For each video frame vi, we compute its

warped version ṽi by applying a transformation matrix to

every pixel. Formally, we retrieve x̃i from the smoothed

transformations X̃ and use the smoothed parameters t̃x, t̃y ,

θ̃, and s̃ to compose the smoothed affine matrix Ãi. Then,

we crop the warped frames using a predefined virtual crop-

ping window similar to [9] to generate the stabilized video.

4. Synthetic Data and Ground truth

Synthetic Data Generation. There are many synthetic

data generators like CARLA [7] and UrbanScene3D [17]

that simulate photo-realistic and diverse 3D worlds in the

literature. However, generating special data in such en-

gines is cumbersome, and they do not support video sta-

bilization. Therefore, in this paper, we introduce a new

synthetic data generator capable of filling this gap and cre-

ating the required training data for this task. Our genera-

tor supports other computer vision tasks like semantic and

instance segmentation, depth, and pose estimation. How-

ever, this paper focuses on its usability for the video stabi-

lization task. We show that more vital than photo-realistic

and diverse 3D scenes is designing computer vision models

targeted at using synthetic data and generating the appro-

priate data for these models. We control scene aspects in

virtual worlds and generate more suitable training data for

supervised learning algorithms. A shaky synthetic video

is recorded after procedurally creating a 3D virtual world

sampled from a predefined set of 3D models, materials, and

animations. Note that for each video, a new virtual world
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Figure 2. Ground-truth Generation. K points are randomly sampled from the screen space (yellow circles in a). From each of these

points, we cast rays to infinity in the 3D scene space (dashed yellow lines in b) and create hypothetical objects at the intersection of these

rays with the scene (red circles in c). We obtain the affine transformation matrix Ai using the coordinates of the hypothetical objects in

screen space Pi and Pi+1 since they remain stationary in the scene from the frame vi to vi+1.

Figure 3. Samples from the procedurally generated scenes using

the proposed synthetic data generator.

is created to diversify the training data. Figure 3 demon-

strates examples of the generated scenes.

To introduce shakiness to the recording camera, we cre-

ate noise using a predefined noise profile asset. The am-

plitude and frequency of the noise are randomly sampled

from a uniform distribution. The noise is applied to change

the translation and rotation of the recording agent camera.

Ground-truth Generation. The goal of our networks

proposed in Section 3.1 is to infer the affine transformation

matrix, A, given two consecutive frames. Since finding,

collecting, and annotating data is a complex and expensive

process, we generate and use synthetic videos to obtain the

ground truth affine transformation matrices to supervise the

training process.

Our idea works as follows: We first create stationary hy-

pothetical labeled objects in the 3D world scene; then, we

record their coordinates in the screen space of the record-

ing camera. In that way, we can guarantee that the coor-

dinates of these objects in frames (vi, vi+1) correspond to

exactly the same static elements in the 3D world seen by

the recording camera at frames vi and vi+1.

In other words, we create a number of invisible objects

and save their coordinates in the camera space for each

frame. To do so, for each frame, a number of random points

are sampled from the screen camera space. Then, a ray is

cast from each of these points to infinity. At each ray’s

intersection point with the scene, a hypothetical invisible

object is created. The object remains stationary for a num-

ber of seconds before being destroyed. For each frame, the

object’s position in world space is transferred to the cam-

era space. Figure 2 demonstrates how these hypothetical

objects are created. If the hypothetical object is not in the

camera view, or if it exceeds its time limit duration β, it is

removed. Each object is given a Unique Identifier (UID)

over its lifetime. Later in the post-processing stage, for ev-

ery two consecutive frames (vi, vi+1) using the UIDs of

these hypothetical objects and their screen locations, we

calculate the ground-truth affine transformation for each

pair. The process is further clarified as described in Algo-

rithm 1. While generating numerous hypothetical objects

is feasible, our algorithm creates objects within the record-

ing agent’s field of view, enhancing overall performance.

5. Experiments

5.1. Experimental Setup

Synthetic Datasets. Using our generator, we create

two synthetic training datasets: VSNC35Synth and

VSAC65Synth. VSNC35Synth includes 35 videos at 24
fps with an average of 400 frames per video; it covers only

videos in normal weather conditions. The average number

of frames was set to 400 to match the number of frames

in other datasets. VSAC65Synth consists of 65 videos, in-

cluding normal and adverse weather condition videos. The

classes span normal, rainy, foggy, and snowy weather con-

ditions at daytime and night-time.

Real Dataset. To evaluate video stabilization methods

under adverse conditions, we created the VSAC105Real

dataset since available benchmarks are missing these at-

tributes. Our dataset is composed of videos collected

from YouTube using search queries like “Fog”, “Rain”,

“Snow”, “Night”, “Adverse”, and “Severe”. We manually

inspected all the videos and selected the ones with shak-
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Algorithm 1: Affine Transformation Ground-truth

Generation
Require: Nframes, T

Ensure : Per frame file containing camera screen

locations of stationary hypothetical objects.

Nframes; ▷ Total number of frames to generate

T ; ▷ Sampling period

while Recording do
for IDframe = 0; IDframe <

Nframes; IDframe++ do

if IDframe%T == 0 then
Points← samplePoints(K); ▷ Sampling

K points on camera screen space

foreach point ∈ Points do
M ← castRayToInfinity(point); ▷

Cast a ray from point to infinity

pointinters← findIntersPoint(M);
▷ Intersection point between the ray

with scene objects

O←
createHypotheticalObject(pointinters);

O.UID← assignObjectUID(O); ▷

Assign O a unique identifier

O.ScreenPos←
Cam.WorldToScreen(O.WorldPos);
▷ Transfer coordinates from world to

screen space

while O is visible and within its

lifetime do
Save(O.ScreenPos);
WaitFewFrames();

Destroy(O);

else
WaitFewFrames();

ing camera movement. Then, we cut the videos to ensure

continuous temporal and query attributes. VSAC105Real

dataset comprises 105 videos spanning normal, rainy,

foggy, snowy, and night-time attributes. Compared to other

datasets, VSAC105Real is better regarding the average

number of frames, the diverse set of challenging attributes,

and the even distribution of videos across the classes,

i.e., 21 videos per class. A visual comparison among

VSAC105Real and other video stabilization datasets is de-

picted in Figure 4. See supplementary material for statisti-

cal comparison among them.

Evaluation Metrics. We use four metrics commonly

used to evaluate video stabilization algorithms [5, 18, 30,

34]: i) the Stability Score, which assesses the smoothness

of the stabilized video; the higher the value, the better;

ii) the Distortion Score, which measures the global distor-

tion caused by a given video stabilization method; iii) the

Cropping Ratio, which describes the ratio of the remaining

frame’s area after stabilization to the original one; and iv)

the Success Rate, which computes the ratio of videos that

were successfully processed and yielded a distortion score

lower than or equal to one.

Baselines. We evaluate five state-of-the-art video sta-

bilizers on two real datasets: VSAC105Real and Selfie

Video [33]. The baselines span non-learning based (Grund-

mann et al. [9]), supervised (StabNet [30]), and unsuper-

vised (DIFRINT [5]) video stabilization methods. Further-

more, we compare our method to Yu et al. [34], which

heavily relies on optical flow since we use optical flow, and

FuSta [18] because it also uses CNNs for video stabiliza-

tion similarly to our approach.

Implementation Details. We trained our method using

only the synthetic data provided by our simulator, i.e.,

VSNC35Synth which contains only normal weather con-

ditions videos. The hypothetical object’s time limit dura-

tion was empirically set to β = 1 second. We trained the

tx and ty translation prediction model (ftr) and rotation θ
and scale s prediction model (frs) for 65 and 2 epochs, re-

spectively, using batches of size M = 40. After 10 epochs,
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we decrease the learning rate of ftr to 1e−5. Our archi-

tecture is fully implemented in PyTorch, and the training

procedure takes 33 hours on a Tesla V100 GPU. For the

smoothing step, a window length, i.e., number of coeffi-

cients, equal to 51 with 1st order polynomial were used as

parameters to the Savitzky-Golay filter as they give better

results. We used FlowNet2 [10, 23] as the OF estimator.

5.2. Results

Figure 5 shows the comparison among the competitors

across different weather conditions in the VSAC105Real

dataset. Our method presented the best values, on average,

in terms of stability average and distortion scores, cropping

ratio, and success rate. We argue that its superiority relates

to the accurate affine transformation matrix estimation and

the smoothing stage. Our algorithm preserves the frame

content while compensating for camera shakiness.

We highlight that our method achieved the highest suc-

cess rate compared to the competitors. All baselines failed

to stabilize most of the shaky videos in foggy weather

conditions due to the nature of participating media. Fog

works as a low-pass filter that removes high-quality fea-

tures. Most video stabilizers depend on resilient features to

estimate the camera trajectory. Even though our model was

not trained on foggy weather conditions, it learned useful

features from both raw images and optical flow.

We also evaluate our model on the Selfie Video

dataset [33], which contains videos under normal weather

conditions and standard illumination. Results are presented

in Table 1. Even though our model was trained from

scratch solely on our synthetic data, it achieved the best

distortion score. For a detailed analysis of computational

time, please see the supplementary material.

Ablation Study. We analyzed the design options and

showed the effectiveness of each component of our

pipeline. The results are reported in Table 2.

First, we assess a variant that uses a single CNN instead

of two, as we proposed in our final model. As a result,

the network was unable to converge well. One problem

could be that the translation losses were larger than others.

However, even with loss weighting applied, the network

could not learn well (Single Network row). We hypothe-

size that the reason is the large value range between trans-

Table 1. Comparison in the Selfie Video dataset [33]. Bold

indicates the best, underline second best, and italic the third.

Method
Stability

Avg. Score↑

Distortion

Score∗

Cropping

Ratio↑

Success

Rate↑

FuSta [18] 0.818 0 .777 0.970 0.970

Grundmann et al. [9] 0.727 0.828 0.848 0.848

StabNet [30] 0.763 0.680 0 .917 0.667

DIFRINT [5] 0.827 0.691 0.912 0 .915

Yu et al. [34] 0.770 0.739 0.909 0.909

Ours 0 .787 0.933 0.939 0.939

↑Higher is better ∗Better closer to 1

Table 2. Ablation study. Performance for different design

choices (best in bold).

Variant
Stability

Avg. Score↑

Distortion

Score∗

Cropping

Ratio↑

Success

Rate↑

Single Network 0.443 0.540 0.557 0.543

SIFT 0.576 0.650 0.670 0.667

No Optical Flow 0.678 0.781 0.829 0.800

Directed Smoothing 0.675 0.828 0.844 0.838

More Data 0.690 0.793 0.850 0.829

Complete Model 0.695 0.845 0.857 0.840

↑Higher is better ∗Better closer to 1

lation (i.e., 0 to image height/width) and scale (i.e., 0 to

1). Even with normalization, a single network struggled to

back-propagate a meaningful error.

To emphasize the advantages of using our learning-

based model for affine transformation matrix estimation

over applying SIFT, we apply SIFT to find the affine trans-

formation matrix while keeping the smoothing part of our

model intact. As expected, standard feature extractors like

SIFT struggle to extract robust features under adverse con-

ditions. Rain and snow particles, low illumination at night,

and foggy weather lead to inaccurate affine transformations

and, thus, low-quality stabilized videos.

To evaluate our smoothing algorithm’s advantages over

l1 directed smoothing, as done in [9], we apply l1 directed

smoothing on the predicted camera trajectory while keep-

ing our learning-based model for the affine transformation

matrix estimation. As expected, the model does not per-

form very well as compared to using our proposed smooth-

ing algorithm (Directed Smoothing row) because ours con-

siders more sophisticated camera paths and is not limited

to constant, linear, and parabolic motions like [9].

To highlight the importance of optical flow in affine

transformation learning, we train a variant using only

grayscale images, i.e., I = [vi; vi+1]. As expected, exclud-

ing optical flow reduced video stabilization quality (see No

Optical Flow row).

To assess the impact of our synthetic data on video sta-

bilization quality, we trained our model from scratch on

more data using VSAC65Synth dataset, encompassing nor-



Table 3. Affine matrix estimation. Comparison among differ-

ent methods for affine matrix estimation on CA-Unsupervised

dataset [36] using l2 distance (best in bold).

Method RT↓ LT↓ LL↓ SF↓ LF↓ Average↓

ORB [26] + RANSAC [8] 9.24 14.63 12.27 11.36 7.20 10.94
ORB [26] + MAGSAC [2] 10.11 19.79 12.48 11.86 7.85 12.42
ORB [26] + LMEDS 9.78 40.11 12.02 10.84 7.01 15.95

SIFT [19] + RANSAC [8] 10.63 11.70 13.37 11.75 6.44 10.78
SIFT [19] + MAGSAC [2] 10.75 10.97 12.99 11.09 6.35 10.43
SIFT [19] + LMEDS 10.47 9.72 13.04 10.14 5.88 9.85

Supervised [6] 8.39 9.33 8.63 10.29 5.92 8.51
Unsupervised [36] 7.05 7.60 6.84 7.42 3.84 6.55

Ours 4.55 5.58 5.68 5.17 9.73 6.14

↓ Lower is better

mal and adverse weather conditions, day and night videos.

The results indicated no significant improvement over the

method trained on VSNC35Synth (Complete Model row).

Therefore, a few synthetic videos with accurate ground

truth are sufficient to train the model.

To investigate the accuracy of our estimated affine

transformation matrix, we compare our learning-based

affine transformation estimation with several estimation

approaches, including the traditional ones like ORB and

SIFT with RANSAC, MAGSAC, and LMEDS for outliers

rejection, the supervised, and the unsupervised ones. Tra-

ditional approaches estimate the affine transformation di-

rectly, but supervised and unsupervised methods are de-

signed to estimate the homography matrix. Thus, we ex-

tract the affine transformation from their estimated ho-

mography for a fair comparison. We utilize the dataset

of [36], which contains 4,200 pairs of images where each

image-pair includes six matching human-annotated pairs of

points. It covers regular texture (RT), low texture (LT), low

light (LL), small foregrounds (SF), and large foregrounds

(LF). We use l2 distance to measure the error between the

warped and ground-truth points similar to [32, 36].

Table 3 demonstrates the generalizability of our affine

estimation model, which is better on both standard and

challenging conditions. The dataset used in this experi-

ment includes challenging images, such as low-texture im-

ages similar to images under foggy or snowy weather con-

ditions and images at low illumination similar to the ones

at nighttime. These results demonstrate the ability of our

affine estimator of learning to extract robust features under

challenging conditions.

Figure 6 shows a qualitative comparison among our

model, traditional (e.g., SIFT and ORB), supervised [6],

and unsupervised [36] methods, demonstrating examples

of low texture pair of images. While other methods fail

under such challenging conditions because they were man-

ually tuned for standard settings or not trained with data

under adverse conditions, our method performs well be-

cause it learned how to extract resilient features using our

SIFT ORB OursUnsupervised Supervised

Figure 6. Qualitative comparison for affine transformation esti-

mation.

Figure 7. Classes coverage by threshold. Number of times the

metrics values for classes in Figure 5 are above each threshold.

Our method presents the highest metrics coverage, achieving the

best results compared to other video stabilization methods.

specially designed synthetic data.

Additionally, we present in Figure 7 a new metric

that computes the coverage of classes. The figure shows

the number of classes (i.e., fog, night, normal, rain, and

snow) whose output values achieved a result above differ-

ent thresholds (i.e., 0.1 to 0.9 with a 0.1 step). As expected,

our method presents the highest coverage as the thresh-

old values increase, achieving the best results compared to

other video stabilization methods.

6. Conclusion

Recent video stabilization methods struggle under ad-

verse conditions. In this paper, we proposed a synthetic-

aware video stabilization method that requires only syn-

thetic data for training, surpassing all other baselines. We

also provided one real dataset for video stabilization under

adverse conditions and two synthetic datasets for training

produced by our novel synthetic data generator. Currently,

we are randomly and manually diversifying the synthetic

data generation parameters. In the future, we intend to use

active learning to guide this generation process.
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