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Abstract

Network data arises through the observation of relational information between a col-
lection of entities. An ubiquitous example of such data are social networks, where
friendships amongst a sample of people are observed. However, there has begun to
appear other subtly different forms of data which also fit this description. Notably,
work in the literature has recently consideredwhen (i) the units of observationwithin
a network are edges or paths, often referred to as interaction networks, with exam-
ples such as emails between people or a series of page visits to a website by a user,
and (ii) one observes a sample of networks, for example, in neuroscience applications,
brain scan data of a single patient is often processed into a network representation,
with a multi-patient study thus leading to a sample of networks.

However, the intersection of (i) and (ii) has presently not been considered, that
is, where a sample of interaction networks are observed. For example, one might
observe a sample of users navigating the same website. Use of currently proposed
methods to analyse such data would either be inappropriate or require one to first
aggregate data into another form, incurring a potential loss of information. Moti-
vated by this gap in the literature, this thesis proposes statistical methods suitable
for the analysis of samples of interaction networks.

In this regard, twomain contributions aremade. Firstly, the problemofmeasuring
the distance between two interaction networks is considered. Distances are an incred-
ibly useful and versatile tool, opening to door to a variety of analyticalmethodologies,
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such as dimension reduction and clustering algorithms. Secondly, building upon this
work, the problem of summarising a sample of interaction networks is considered.
Of particular focus is obtaining analogues of themean and variance in this non-trivial
scenario, that is, where data points are themselves interaction networks. To this end,
a novel Bayesian modelling framework is proposed. Given a user-specified distance
measure, we construct Gaussian-like distributions over the space of interaction net-
works, that is, models parameterised via location and scale. This approach raises
significant computational challenges; not only are resulting posterior distributions
doubly-intractable, but the parameter space includes the space of interaction net-
works, which is both discrete and multidimensional. As such, specialised Markov
chain Monte Carlo (MCMC) algorithms are developed which circumvent these is-
sues, facilitating parameter inference for the proposed models. Crucially, the loca-
tion and scale parameters provide analogues of the mean and variance, respectively,
resulting in the desired summary measures.

Across both pieces of work, simulation studies are undertaken to confirm the
efficacy of proposed methods and to explore their properties. Additionally, their
practical applications are illustrated through example analyses of two open-source
datasets: (i) an in-play football dataset released by StatsBomb, and (ii) a dataset of
user interactions with the location-based social network Foursquare.
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SBM Stochastic blockmodel
LSM Latent space model
RDPG Random dot product graph
ERGM Exponential random graph model
HW Hollywood
SNF Spherical network family
CER Centered Erdős-Rényi
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Chapter 1

Introduction

Network data, in the most general sense, arises through observation of relational in-
formation amongst a collection of entities. A typical example is social network data,
where friendships amongst a sample of people are observed. In this case, people
would correspond to the ‘entities’, whilst friendshipswould represent observed ‘rela-
tional information’. However, this is but one example, and improvements in data col-
lection technologies combined with the inherent connectivity of the world in which
we live has led to the appearance of various other forms of data fitting this descrip-
tion.

This thesis concerns the proposal of statistical methods to analyse a form of net-
work data which has at present not been considered. In particular, it concerns the
setting in which a sample of interaction networks are observed (Figure 1.0.1). At a
high-level, an interaction network consists of a series of paths over a set of vertices
(representing the entities of interest). As a motivating example, consider a user nav-
igating a website. Here vertices correspond to web pages, whilst an interactionmight
represent a single online session, with a user visiting a series of pages in succession.
In this way, a single interaction network would represent the historical website navi-
gation of a single user. For example, a single row of Figure 1.0.1 would represent five

1
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Figure 1.0.1: Visualising a sample of interaction networks. Here each row represents
an observation, consisting of paths over a shared set of vertices. On the right is shown
each observation’s aggregate graph, where the weight of an edge is proportional to
the number of traversals between the given vertices.

observed sessions of one user. Moreover, provided there is more that one user of this
website, this would result in a sample of interaction networks.

When faced with data of this form, that is, a sample wherein each observation
or data point is itself an interaction network, there are various questions one may
consider answering. For example:

• Can we identify clusters of observations which are similar?

• How can we summarise a sample of observations? For example:

– What is an average in this context?

– How can variability of these data be quantified?

• Given two samples, how do we conduct a two-sample hypothesis test? What
about a k-sample hypothesis test?
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• Given covariate information at the level of observations, for example, a user’s
age, is it possible to predict this given an observed interaction network?

One might be inclined to ask what is the benefit of being able to answer such
questions? Of course, this will depend on the specific application, but to provide
some examples, let us return the motivating scenario of analysing website navigation
data. Considering the perspective of the website owner, methods which can answer
the above questions could, for example, be used to inform site improvements. In
particular, clustering could be used to uncover groups of users who interact with the
website in a similarmanner. Combining thiswith summarisation, whichwould assist
interpretation of inferred clusters, an overall picture of the differentways inwhich the
site is being used would be obtained, along with the number of users involved. With
such information, one could identify areas of the site to improve, or use it to inform
the recommendation of relevant content. Moreover, there may be users which one
knows little about, but for which there is some historical website navigation data. In
this case, predictive methods could be used to infer values of interest, such as their
age or area of occupation, which could further inform the personalisation of content.

Thoughmethods have been proposed to answer such questionswhen facedwith a
sample of networks, none have considered samples of interaction networks. Instead,
these methods generally assume observations are represented as graphs, and thus
would require first aggregating observations as shown in Figure 1.0.1, bringing with
it a potential loss of information.

With this, this thesis considers the proposal of novel methodologies capable of
answering such questions whilst respecting the data structure. Towards this end,
two main contributions are made:

1. In Chapter 3, the problem of measuring the dissimilarity of two interaction net-
works is considered. Here various measures are surveyed, drawing on inspi-
ration from areas such as optimal transport and time series analysis. For each
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distance, their practical use is guided by the statement and proof of theoreti-
cal properties along with discussions of computational schemes and their as-
sociated costs. Simulation studies are also undertaken to highlight the relative
strengths and weaknesses of the distances introduced, and what features they
can and cannot capture. Finally, through example data analyses it is illustrated
how distances can be used to both cluster interaction networks and to predict
network-level covariate information;

2. In Chapter 4, the problem of summarising a sample of interaction networks is
considered. Here a novel Bayesian modelling framework is proposed, build-
ing upon the work of Chapter 3. Namely, given a practitioner-specified dis-
tance measure, we construct families of models via location and scale param-
eters, akin to a Gaussian distribution over the space of networks. The loca-
tion and scale parameters can thus operate as analogues of the mean and vari-
ance respectively, providing statistically reasoned answers to questions alluded
to above. To facilitate parameter inference, a specialised Markov chain Monte
Carlo (MCMC) algorithm is proposed, capable of not only circumventing issues
pertaining to double-intractability posterior distributions, but also navigating a
non-trivial discrete multi-dimensional parameter space.

The remainder of this thesis is structured as follows. In Chapter 2, the relevant
literature on statistical network analysis will be reviewed, then, in Chapters 3 and 4,
the two main contributions of this thesis are outlined, as discussed above. Finally,
conclusions are drawn in Chapter 5, including discussion around limitations of the
present work and potential future directions.



Chapter 2

Statistical Network Analysis

Interest in the analysis of network data has grown rapidly in recent decades, resulting
in the development of a burgeoning sub-field thereof often referred to as statistical
network analysis (Salter-Townshend et al., 2012; Kolaczyk and Csárdi, 2014), which,
as the name suggests, seeks to apply statistical methods to the analysis of networks.
In this section, various advances in this area relevant to the contributions of this thesis
will be outlined.

2.1 Graph representation

The ubiquitous approach to analysing network data is to interpret it mathematically
as a graph. A graph consists of two sets G = (E ,V) where V is a set of vertices and
E ⊆ V × V is a set of edges whereby and edge (u, v) ∈ E for u ∈ V and v ∈ V encodes
the presence of a relation from u to v. Considering the general definition of network
data provided in Chapter 1, the vertices represent ‘entities’ whilst edges represent
‘relational information’. For example, in a social network V would represent a group
of people and (u, v) ∈ E would mean person u was friends with person v. Letting
V := |V| denote the size of the vertex set, generally one assumes V = {1, . . . , V }; if
not one can always construct a mapping fromwhatever entities one is considering to

5
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Figure 2.1.1: Visualising different graph types, each with V = {1, . . . , 4} and four
edges, where we have (a) an undirected graph, (b) a directed graph and (c) a di-
rected multigraph.

such values.
A graph can be undirected or directed (Figures 2.1.1a and 2.1.1b), where if undi-

rected then (u, v) ∈ E ⇐⇒ (v, u) ∈ E , so that edges are always reciprocated, whilst in
a directed graph this need not be the case, with edges instead having a direction. Re-
turning to the social network example, an undirected graphwould imply friendships
are alwaysmutual, whereas a directed graph could represent a scenario whereby one
person considers themselves friends with another whilst the other person does not.
Graphs may or may not have self edges, that is, (v, v) ∈ E for some v ∈ V , and an
undirected graph with no self edges is typically referred to as a simple graph.

Graphs can also be weighted, whereby each edge e ∈ E is associated a weight
we, typically assumed to be a positive real value. In the special case where weights
are positive integers we ∈ N the resultant G is also referred to as a multigraph (Fig-
ure 2.1.1c). In this case, one assumes instead that E is amultiset of edges, whereby an
edge can appear more than once, with we representing the multiplicity of the edge e
in the multigraph G.

An alternative representation for graphs frequently used is the adjacency matrix.
For a (non-weighted) graph G the adjacency matrix AG ∈ {0, 1}V×V is defined as
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follows

AG
ij =





1 if (i, j) ∈ E

0 if (i, j) ̸∈ E

that is, a non-zero entry in the (i, j)th entry indicates the presence of the respective
edge in the graph. Observe if G is undirected then AG is symmetric, and moreover if
G is a simple graph then the diagonal entries will all be zero. When G is a weighted
graph AG is defined by letting the non-zero entries be equal to the edge weights, that
is

AG
ij =





we if (i, j) ∈ E

0 if (i, j) ̸∈ E

so that in the special case where G is a multigraph one will have AG ∈ ZV×V
≥0 with AG

ij

denoting the multiplicity of edge (i, j).
The final concept to define is that of a subgraph. We say H = (VH, EH) is a sub-

graph of G if VH ⊆ V and EH ⊆ E , with the following notable examples: (i) triangles,
where three nodes are connected by three edges, for example in Figure 2.1.1a we see
a triangle between vertices 1,2 and 3, and (ii)K-stars, where one central node is con-
nected toK− 1 others with a single edge, for example in Figure 2.1.1a we see a 3-star
between vertices 1,3, and 4.

2.2 Analysing a single network

In the standard scenario, a single network is observed, that is, a single graph G, and
interest is in assessing its structural properties. Popular methods proposed in this re-
gard include the use of descriptive summaries, as well as model-based approaches,
which assume the observed graph was sampled at random from some unknown dis-
tribution. In the following subsections, notable examples of both appearing in the
literature will be outlined.
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2.2.1 Network statistics

Given a network, it is natural to ask what are its distinctive features? How well-
connected is it? Are there particular connective patterns? Are vertices of the network
grouped into communities? These and other questions have motivated the develop-
ment of measures to quantify the presence of different qualitative features within a
network. In this section, some popular measures will be outlined.

The degree of a node v ∈ V , which we denote d(v), is defined to be the num-
ber of incident edges, for example, considering the graph of Figure 2.1.1a, d(1) = 3,
d(2) = 2, d(3) = 3 and d(4) = 2. Note in a directed graph one will typically distin-
guish the direction of incident edges, leading to both in and out degrees. Noticing
the degree is local to a node, towards an overall picture of the whole network, one
can consider what is referred to as the degree sequence, which is simply the vector of
degrees (d(v))v∈V ,which can also be aggregated to form the degree distribution, given
by

DG(k) :=
|{v ∈ V : d(v) = k}|

V

representing the probability a randomly chosen node has degree k. For example,
in a social network one might expect many people to have a few friends along with
perhaps a hand-full of very well-connected people with many friends. This property
would thus manifest itself via a heavy-tailed degree distribution.

Though the degree of a node gives a sense of how well connected it is within the
network, it is somewhat local, considering only its immediate neighbours. As such,
othermeasures have been proposedwhich lookmore globally at the role of the vertex
within the network, often referred to as centralitymeasures. For example, the closeness
centrality of node v ∈ V is given by

CLG(v) =
V − 1∑

u∈V d(u, v)
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where d(u, v) denotes the length of the shortest path in G between vertices u and
v, also known as the geodesic distance. Observe when a node is very well connected
it will have a low geodesic distance to many vertices, leading to a higher closeness
centrality. Moreover, the multiplication by V −1 ensures that CLG(v) ∈ [0, 1], making
it comparable across networks of different size. As with vertex degrees, an overall
picture of the network can be obtained by considering the sequence of centralities
(CLG(v))v∈V or their empirical distribution.

A property also of interest is the propensity for two vertices sharing a common
neighbour of being connected, often referred to a transitivity. Again, one can imagine
this is common in social networks, where the likelihood of two people being friends
might be inflated given they have a friend in common. It can be defined via a ratio of
subgraph counts as follows

T (G) = τ△(G)
τ3(G)

where τ△(G) counts the total number of triangles and τ3(G) counts the total number of
connected triples, that is, 3-stars, representing an empirical estimate of the probability
two nodes are connected given they share a common neighbour.

Finally, often networks exhibit a structure whereby one can partition vertices into
groups such that there are more edges within groups than between them. In the
literature, such groups of vertices are often referred to as “communities”, with this
being referred to the presence of “community structure” in the network. A popular
way to quantify this is via the modularity (Newman and Girvan, 2004). Supposing
that z = (z1, . . . , zV ) is vector which divides the V nodes of G into K communities,
whereby zv = k if vertex v is in the kth community, the modularity essentially mea-
sures how well separated the communities defined by z are. First, let Ekl denote the
proportion of edges in G between communities k and l, whilst also letting ak =

∑
l Ekl

denote the fractions of edges involving a vertex in the kth community. If z partitions
the graph into communities well we expect the sum of within-community propor-
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tions∑K
k=1 Ekk to be large. However, this would have the highest value for the z plac-

ing all vertices in a single community. To combat this, Newman and Girvan (2004)
propose to make a slight adjustment. They note if edges occur randomly with no re-
gard for communities to which vertices belong one would expect Ekl = akal, which
leads to the following definition of the modularity

Q(G, z) :=
K∑

k=1

(Ekk − a2k),

where the adjustment a2k has been included, representing a baseline proportion of
edges one expects within the kth community, given its prominence within the net-
work.

These various summaries provide a means to quantitatively assess some struc-
tural aspect of a given network. Not only is this useful for contrasting and comparing
observed networks, but also provides a means to inform the development of network
models, whereby one can seek to propose models which generate networks exhibit-
ing often-observed features. In the next subsection, some well-known statistical net-
work models that have done exactly this will be outlined.

2.2.2 Statistical network models

The statisticalmodelling approach to analysing a networkG is to assume itwas drawn
at random from some probability distribution p(G|θ) where θ are some unknown
model parameters. The hope is by conducting statistical inference of θ given G one
gains insight regarding some structural aspect of the network. In this section, four
influential models that have been proposed in the literature will be outlined.

Note here the vertex set V is assumed to be fixed, so that only the edges E are
random. For simplicity, it will also be assumed G is a simple graph, that is, an undi-
rected unweighted graphwith no self-edges. In this way, eachmodel will correspond
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to a different distribution p(G|θ) over the discrete space of all simple graphs over the
vertex set V .

Arguably the simplest model is that proposed by Erdős et al. (1960). Known ap-
propriately as the Erdős-Rényi (ER) model, this assumes each edge (v, u) ∈ V × V is
includedwith some fixed probability, independent of all others, which can bewritten
in terms of sampling the entries of the adjacency matrix independently as follows

AG
ij | p ∼ Bernoulli(p)

where p ∈ (0, 1) is the single model parameter denoting the probability of an edge
appearing between any two vertices.

Being such a simple model, the ER model is unable to capture many of the net-
work features mentioned in the previous section, such as transitivity or community
structure. This has motivated the proposal of models which impose some further
structure on how edges are sampled.

One such model is the stochastic block model (SBM), which seeks to engender
community structure in the sampling of edges. We here present the formulation of
Nowicki and Snijders (2001), though there have been various extensions proposed
(see Lee andWilkinson 2019 for an extensive review). This assumes vertices are par-
titioned intoK communities, encoded via the V ×K matrix Z = (z1, . . . ,zV )

T where
zi = (0, . . . , 0, 1, 0, . . . , 0)T with zik = 1 indicating the ith vertex belongs to the kth
community. Given a K ×K matrix B, with Bkl ∈ (0, 1) representing the probability
of an edge between the kth and lth communities, a graph G is then sampled via it
adjacency matrix as follows

AG
ij |B,Z ∼ Bernoulli(zT

i Bzj),

wherematrixmultiplication is used to index the entry ofB corresponding to the com-
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munities of the ith and jth vertices. The model parameters in this case are thus the
matrix B along with the community memberships Z, where the latter are typically
treated a unknown latent variables.

Nowicki and Snijders (2001) approached parameter inference from a Bayesian
perspective, using Beta priors for the entries of B and a combination of Dirichlet
and Multinomial distributions for setting a prior on the community memberships Z,
before using MCMC to obtain samples from the posterior. Others have since consid-
ered alternative approaches to inference, such as variational methods (see Lee and
Wilkinson 2019).

Another influential model is the latent spacemodel (LSM) proposed byHoff et al.
(2002).1 Here, vertices are assumed to be embedded in Euclidean space with those
closer together more likely to be connected. Observe that, thanks to the geometry of
Euclidean space, such a model naturally captures transitivity: if one point is close to
two others, they are also likely to be close. Given chosen dimension d, let the V × d

matrix Z = (z1, . . . ,zV )
T ∈ RV×d denote the latent positions of all vertices, whereby

the ith row zi = (zi1, . . . , zid)
T ∈ Rd denotes the latent position of the ith vertex. For

the LSM model, a graph G is then sampled via its adjacency matrix as follows

AG
ij |α,Z ∼ Bernoulli(pij)

logit(pij) = α− |zi − zj|

where α ∈ R is an intercept parameter controlling density of the network, |zi−zj| de-
notes the Euclidean distance between the ith and jth latent positions, and logit(p) :=

log(p/(1− p)) denotes the logit link function.
Inference in this case regards estimation of α and the latent positions Z. Hoff

et al. (2002) took a Bayesian approach, assuming Gaussian priors for α and the la-
1Hoff et al. (2002) actually considered two models, the latent distance model and latent projection

model, both of which also incorporate covariate information at the level of edges. For simplicity, only
the former will be presented here and the covariate terms left out.
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tent positions before sampling from the posterior via MCMC. This model has also
been extended by Handcock et al. (2007), who assume a Gaussian mixture prior for
the latent coordinates to permit the recovery of community structure, again taking
a Bayesian inference approach via MCMC. Further work has also been done on al-
ternative inferential approaches, such as Salter-Townshend andMurphy (2013), who
consider variational Bayesian inference, Raftery et al. (2012), who proposed a faster
Frequentist-based approach via a likelihood approximation, or more recently Shar-
rock et al. (2023), who proposed particle-based variational inferencemethods for use
in general latent variable models, showing how these can be invoked to fit the LSM.

Another model which has seen recent attention in the literature is the random
dot product graph (RDPG) model. Originally appearing in Young and Scheinerman
(2007), it has since been extensively reviewed by Athreya et al. (2017). Much like
the LSM model, the RDPG model assumes vertices have some latent position in Eu-
clidean space, constructing edge probabilities by relating the latent positions of ver-
tices. However, in contrast with the LSM, the RDPG uses the dot product as a means
to compare two latent positions. Supposing that Z ∈ RV×d denotes a matrix of latent
positions for all vertices, as seen in the LSM model above, the RDPG model samples
a graph G via is adjacency matrix as follows

AG
ij |Z ∼ Bernoulli(zT

i zj),

where since one must have zT
i zj ∈ [0, 1] it is typically assumed the latent positions

lie in a suitably constrained subset of Rd. Recalling the property of the dot product

zT
i zi = |zi||zj| cos(θ)

where θ is the angle between zi and zi (as vectors), observe the probability of two
vertices having an edge is larger when their latent positions are closer in angle. More-
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over, the magnitude of a vertex |zi| increases the probability of edges with all other
vertices, and in this way it reflects the general connectivity of the ith vertex.

Observe the RDPG, in using latent positions in this way, will share many prop-
erties of the LSM. In particular, transitivity will naturally be captured, whilst com-
munity structure can be captured by the clustering of vertices in the latent space.
Moreover, the SBM can also be seen as a special case of the RDPG model: provided
one can write B = B̃B̃T for some B̃ ∈ [0, 1]K×d then, writing B̃ = (b̃1, . . . , b̃K)

T, if the
ith vertex is in the kth community we let zi = b̃k (the kth row of B̃).

Inference for the RDPG model amounts to estimating the unknown latent posi-
tions Z. As outlined in Athreya et al. (2017), this is typically approached from a
Frequentist perspective and achieved via a decomposition of the adjacency matrix
(or a transformation thereof). In this way, this is generally a much faster model to
fit compared with the others presented in this section. Athreya et al. (2017) also es-
tablish consistency results for these estimation procedures, including a result which
says, when the true model is an SBM, as the number of vertices V →∞ the estimated
latent positions will be distributed according to a multivariate Gaussian mixture.

A final model of note is what is typically referred to as the exponential (fam-
ily) random graphmodel (ERGM). Notice the three previous models outlined above
were all conditionally independent, that is, given model parameters (including la-
tent variables), the edges are sampled independently. The ERGM deviates from this
slightly, instead modelling the edges of the graph jointly. In particular, this model
assumes the probability of observing the graph G has the following form

p(G|θ) = exp{θTS(G)− Z(θ)}

where S(G) = (S1(G), . . . , SK(G)) is a vector of practitioner-specified summary statis-
tics, θ = (θ1, . . . , θK) is a vector of associated parameters, and Z(θ) is a normalising
constant. The Si(G) could include for example (i) count of edges, (ii) counts of tri-
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angles, or even (iii) the degree for a single vertex (with a separate statistic for each
vertex). With this, the interpretation of model parameters θ are dependent on the
choice of summary statistics. For example, if Si(G)was the number of triangles, then
a high θi would imply a higher probability of sampling graphs with many triangles.

As discussed in the review of Salter-Townshend et al. (2012), this is sometimes re-
ferred to as the p∗ model, building upon the previously proposed p1 model (Holland
and Leinhardt, 1981), which one arrives at by letting the vector of summary statistic
include (i) the total number of edges in G, (ii) the in and out degrees for each vertex,
and (iii) the total number of reciprocal relations in G (e.g. the number of mutual
friendships).

Inference for the ERGM amounts to estimating the vector of parameters θ. Unfor-
tunately, this is complicated by evaluation of the normalising constant Z(θ) requiring
a summation of p(G|θ) over all graphs, which quickly becomes intractable for graphs
of even modest size. Nonetheless, there have been both Frequentist and Bayesian ap-
proaches proposed which manage to circumvent these issues, including maximum
pseudo-likelihood andMCMC-based approaches, respectively (Salter-Townshend et al.,
2012, Sec. 4).

2.2.3 Edge-exchangeable models

All themodels in the previous section arewhat is knowas vertex-exchangeable, whereby
vertices are seen as the units of observation. This is arguably sensible in many cases.
For example, consider constructing a social network by assessing who is friends with
(or follows) who on a social media platform. To gather data would be to sequentially
include individuals, that is, vertices. In this context, vertex exchangeability essen-
tially says the order in which individuals are included does not matter; the probabil-
ity of observing the resulting network will be the same.

More formally, given some permutation σ of the integers 1 to V , if we let Gσ =
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Figure 2.2.1: Comparing vertex and edge exchangeability. In (a) both (i) and (ii)
would have equal probability under a vertex-exchangeable model, similarly in (b),
where edges are labelled by the order in which they appear, both (i) and (ii) would
have equal probability under an edge-exchangeable model. In both (a) and (b) the
permutation σ = (12)(34) is used, that is, labels 1 and 2 are swapped, as are labels 3
and 4.

(V , Eσ) where Eσ = {(σ(u), σ(v)) : (u, v) ∈ E}, denoting the graph obtained by per-
muting the vertex labels of edges (Figure 2.2.1), then a vertex-exchangeablemodel as-
sumes p(G|θ) = p(Gσ|θσ), where θσ represents the permutation of model parameters
required to ensure congruencewith the newvertex labels. For example, with the SBM
onewouldpermute the rows of the blockmembershipmatrixZσ = (zσ(1), . . . ,zσ(V ))

T,
implying vertices continue to be in the same community though their own label has
changed.

However, it is not necessarily always the case that vertices can naturally be seen
as the units of observation. For example, rather than observing friendships explicitly
one might instead observe physical interactions over time, whereby an edge occurs
if two individuals (vertices) interacted in some way. In this way, edges rather than
vertices represent the units of observation. This has led to the recent proposal of
so-called edge-exchangeable models (Cai et al., 2016; Crane and Dempsey, 2018).

The set-up for these models is as follows. For some (possibly infinite) set of ver-
tices V , it is supposed one observes

S = (I1, . . . , IN)

where Ii = (xi1, . . . , xini
) with xij ∈ V represent paths over vertices, referring to
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S as an interaction sequence, and the Ii as interactions.2 For example, Figure 2.2.1
visualises two interaction sequences, wherein edges are numbered according to the
interaction in which they appeared.

A statistical model in this context thus amounts to specification of probability dis-
tributions p(S|θ) over interaction sequences, with θ being model parameters. Such a
model is said to be edge-exchangeable if p(S|θ) = p(Sσ|θσ)whereSσ = (Iσ(1), . . . , Iσ(N))

for some permutation σ of the integers 1 toN , whilst θσ is again a permutation (if re-
quired) of model parameters ensuring congruence with the new interaction labels.
For example, in Figure 2.2.1 the two visualised interaction sequences are equal up to
a permutation of edge labels via σ = (12)(34), and thus would have equal probability
under an edge-exchangeable model.

An example of an edge-exchangeable model is the Hollywood (HW) model pro-
posed by Crane and Dempsey (2018), which is based around a central “rich-get-
richer” idea. The illustrative example provided therein is that of movie casts (hence
the name), whereby one views each interaction Ii as the cast of a film, with the rich-
get-richer concept here translating to an assumption that the actors most likely to
appear in a film now are those that often appeared in the past. With {νk}k≥1 a prob-
ability distribution over the natural numbers and two model parameters α and θ, the
HW model samples S = (I1, . . . , IN) by sampling each Ii in turn via the following
procedure

1. Sample the length ni ∼ {vk}k≥1 of interaction Ii
2This notation via a sequence of paths is derived from that used byCrane andDempsey (2018). The

use of paths and not just edges (paths of length two) is a slight generalisation allowing the inclusion
of multiple edges in a single step.
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2. Sample Ii = (xi1, . . . , xini
) by drawing xij for j = 1, . . . , ni from

p(xij = v |x<ij) ∝





Dij(v)− α v = 1, . . . , Vij

θ + αVij v = Vij + 1,

where
x<ij = (x11, . . . , x1n1 , x21, . . . , x(i−1)ni−1

, xi1, . . . , xi(j−1))

denotes all sampled vertices up to but not including the jth entry in the ith interaction,
Dij(v) denotes the number of times vertex v has appeared up to but not including the
jth entry of the ith interaction, and Vij denotes the number of unique vertices seen
up to but not including the jth entry of the ith interaction. Here α controls how the
probability of sampling a vertex depends on the number of times it has previously
appeared, whilst θ controls the probability that a new vertex is sampled. Crane and
Dempsey (2018) consider two schemes for the HW model, assuming (i) the vertex
set V is infinite via 0 < α < 1 and θ > −α, and (ii) the vertex set is finite with V <∞

vertices, via α < 0 and θ = −αV . In either case, given this sampling scheme one
can derive p(S|θ) to show it is invariant to the ordering of the interactions, that is, the
HW model is edge-exchangeable. Inference for the HW model is achieved straight
forwardly, with Crane and Dempsey (2018) considering a maximum likelihood ap-
proach.

Though edge-exchangeable models were introduced above via considerations of
observational units, it is worth noting they also have theoretical motivations. In par-
ticular, due to the so-called Aldous-Hoover theorem, any vertex-exchangeable model
is known to produce graphs which are almost surely dense or empty as the number
of vertices V →∞ (Orbanz and Roy, 2014, Sec. 7), whilst it is known that many ob-
served networks exhibit sparsity. Here density and sparsity regard how many edges
are in a network as the number of vertices grow, whereby sparsity occurs when the
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number of edges grows sub-quadratically in the number of vertices. In contrast, many
of the currently proposed edge-exchangeable models are capable of capturing spar-
sity (Cai et al., 2016; Crane and Dempsey, 2018; Williamson, 2016). Moreover, this
has motivated models employing other forms of exchangeability that also engender
sparsity, such as that of Caron and Fox (2017).

Observe also the similarity of an interaction sequence as defined above with the
notion of an interaction network that was introduced in Chapter 1 (Figure 1.0.1). As
will be detailed in Section 2.4, in this thesis an interaction sequence will indeed be
viewed as a representation of an interaction network; though a dual representation
thereof will also be considered that disregards the order of interactions.

2.3 Samples of networks

In the previous section, the problem of analysing a single network (or sequence of
interactions) was considered. However, there has been a recent focus in the literature
on the scenario where one instead observes a sample of networks

G(1), . . . ,G(n)

where each G(i) = (V , E (i)), that is, a sample of graphs sharing a common vertex
set but with possibly different edges. Such data appears frequently in neuroscience,
for example, where network representations are used to represent brain scan data
(Behrens and Sporns, 2012; Chung et al., 2021). There, vertices correspond to brain
regions whilst edges represent some inferred cognitive dependence, and since typi-
cally scans are collected for multiple patients in a single study, a sample of graphs is
observed.

Notice when faced with a sample of networks the inferential questions that arise
differ somewhat from the case where a single network is observed. As seen in Sec-
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tion 2.2, with a single network the general focus is on assessing the structure within.
In contrast, when faced with a sample of networks, one might instead ask the follow-
ing

• What is the ‘average network’?

• How variable are networks about this average?

• Can we test for differences in two samples of networks?

Notice these are questions one might ask in a standard statistical analysis, only they
are being asked of network-valued data. Moreover, they are consistent with those
this thesis considers, as discussed in Chapter 1.

Generally speaking, the methods proposed for analysing a single network are not
fit to provide such insights. This has motivated a string of recent work on approaches
which are; some notable examples of which will now be outlined.

2.3.1 Distances between networks

When faced with a sample of data, of any type, having a notion of distance between
data points immediately opens you up to a variety of statistical tools, such as dimen-
sion reduction methods like multidimensional scaling, which aid visualisation, or
predictive methods like k-nearest neighbours regression. For this reason, the prob-
lem ofmeasuring the distance between two graphs has been considered (Donnat and
Holmes, 2018; Wills and Meyer, 2020).

Donnat and Holmes (2018) recently reviewed various graph distances and their
suitability for the comparison of networks. The simplest distance one can consider is
the Hamming distance, define as follows

dH(G,G ′) :=
∑

i<j

|AG
ij − AG′

ij |,
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whereby one simply counts the number of edges not shared between the two graphs.
Donnat and Holmes (2018) note, however, that the Hamming distance is inherently
local: for each vertex it cares only about its immediate neighbours. It cares not about
the wider role of the vertex in the network, or the overall structure of the graph in
general.

Given this observation, they proposed various other distances which can, in dif-
ferent ways, capture more global differences between graphs. As an example, they
suggest comparing the centrality sequences of each graph via the following

dcentrality(G,G ′) =

√√√√
V∑

v=1

(cv − c′v)
2

where cv and c′v represent some centrality measure of the vth vertex in G and G ′, re-
spectively. For example, one could use the closeness centrality cv = CL(v), as defined
in Section 2.2.1.

2.3.2 Extending single-network models

Notice an analysis based upon the distances of the previous section would generally
be model-free, analogous somewhat to the use of network statistics in the single-
network case (Section 2.2.1). Towards considering amodel-based approach, a natural
route is to extend models proposed for a single network. In this section, we will
discuss the various work that has been done in this direction regarding the models
outlined in Section 2.2.2.

Firstly, the SBMhas been extened, with Sweet et al. (2014) assuming a hierarchical
model where each observation is drawn from an SBMwith its own parameterisation,
whilst Stanley et al. (2016) and Reyes and Rodriguez (2016) consider mixtures of
SBMs. The LSM has also been extended by Sweet et al. (2013), who assumed a hier-
archical model in which each observation is drawn from an LSMwith its own param-
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eter, with these parameters being linked via a prior, Gollini andMurphy (2016), who
assume observations share the same latent coordinates, and Durante et al. (2017),
who take a non-parametric approach, using amixture of LSMs combinedwith shrink-
age priors which induce removal of redundant components and unnecessary dimen-
sions in latent coordinates. Towards extending the RDPG model, Levin et al. (2017)
assume observations are drawn i.i.d. from the sameRDPGmodel, whilst Nielsen and
Witten (2018), Wang et al. (2019) and Arroyo et al. (2021) consider relaxing this i.i.d.
assumption, constructing their models to permit variation in the RDPG parameters
across observations, better capturing heterogeneity. Finally, the ERGM framework
has similarly been extended, where Lehmann andWhite (2021) consider a hierarchi-
cal model (in similar spirit to Sweet et al., 2013), whilst Yin et al. (2022) consider a
finite mixture of ERGMs.

2.3.3 Measurement-error models

In an alternative direction, various works have been proposed which view the sam-
ple of observed networks as ‘noisy’ or perturbed realisations of a single unobserved
ground-truth network. The idea is that perhaps differences observed between net-
works of the sample are due to some natural observational error incurred during
data collection. In this way, we refer collectively to such works as measurement-error
(ME) models.

As an example, we present a model proposed by Le et al. (2018). Suppose that
G = (V , E) represents some ground-truth network. Letting A(1), . . . , A(n) denote the
adjacency matrices of the observed graphs (dropping the superscript notation here
for brevity), this model assumes each A(i) was sampled by randomly perturbing the
edges of G, or equivalently, randomly altering the entries of AG , the ground-truth
adjacency matrix. This is parameterised by two matrices P ∈ [0, 1]V×V and Q ∈

[0, 1]V×V representing false positive and negative probabilities for each edge in the
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ground-truth network, that is

Pij = P(A(k)
ij = 1|AG

ij = 0) and Qij = P(A(k)
ij = 0|AG

ij = 1)

for each k = 1, . . . , n. With this, they assume, given the ground-truth network G and
parameters P andQ, each edge of each observation A(k) was sampled independently
via these probabilities.

Inference in this case becomes estimation of both the ground-truth network G and
the error probability matrices P andQ. Notice the parameter space in general is thus
very large, with P and Q for example having V 2 entries each which must be esti-
mated. To reduce the parameter space somewhat, Le et al. (2018) propose to further
assume the ground-truth G was drawn from an SBM,whilst the P andQ have a block
structure mirroring that of the ground-truth, that is, all edges allocated to the same
block in the model for G will have the same false positive and negative probabilities.
With this, they considered a Frequentist approach to parameter inference, proposing
a scheme based around the expectation maximisation (EM) algorithm to estimate
the ground-truth network G, including parameters of the SBM it was assumed to be
drawn from, and the error matrices P and Q.

As mentioned, others have considered modelling samples of networks in a simi-
lar way. Notably, Newman (2018) and Peixoto (2018), who similarly propose mod-
els that view observations as perturbations of an unknown ground-truth network,
whilst Mantziou et al. (2021) and Young et al. (2022) have considered using the ME
modelling approach as a basis for model-based clustering of networks.

2.3.4 Modelling via distances

As a final example of methods proposed to analyse samples of networks, and ones
closely related to the work of this thesis, there has been the proposal of modelling



CHAPTER 2. STATISTICAL NETWORK ANALYSIS 24

approaches utilising graph distances. Of particular relevance is themodelling frame-
work proposed by Lunagómez et al. (2021). Assuming one has access to a distance
between graphs dG(·, ·), they propose to elicit distributions over the space of graphs
via location and scale. In particular, given a graph Gm, over the same vertex set V as
the observed networks, and γ > 0, they assume each graph G(i) in the sample was
drawn independently with the following probability

p(G|Gm, γ) ∝ exp{−γϕ(dG(G,Gm))}

where ϕ(·) is a monotonically increasing function such that ϕ(0) = 0. Notice this
implies the probability of observing G is highest when G = Gm, and thus Gm is also
referred to as the mode. Notice also the parameter γ, referred to as the dispersion,
controls how fast the probability of G decays as its distance from the mode increases.
In this way, γ controls the scale of the distribution: when γ is higher the probability is
concentrated more around the mode Gm, representing the center of the distribution.

This defines a family of models which they refer to as the Spherical Network Fam-
ily (SNF). It is worth noting this approach draws inspiration from models proposed
outside of the networks literature, notably the Mallows model (Vitelli et al., 2018),
which appears in the context of preference learning, and the complex Watson distri-
bution (Mardia andDryden, 1999), which is used in shape analysis, both ofwhich are
similarly defined by combining an exponential kernel with a distancemetric between
the objects of interest.

Inference for the SNF models amounts to estimation the Gm and γ, which Lu-
nagómez et al. (2021) approach from a Bayesian perspective. Unfortunately, this is
complicated by the normalising constant Z(Gm, γ) =∑G p(G|Gm, γ) being intractable
in general, involving a sum over all graphs (as with the ERGMs in Section 2.2.2).
Nonetheless, they outline an MCMC algorithm which can be used to sample from
the joint posterior. They also note for the special case where dG(·, ·) is taken to be
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the Hamming distance the normalising constant can be evaluated in closed form,
defining what they call the centered Erdős-Rényi model (CER). With this, standard
MCMCalgorithms likeMetropolis-Hasting (MH) can beused, leading tomuch faster
inference.

It is alsoworth noting otherworkswhich have similarly consideredutilising graph
distances to model samples of networks. Most notably, Ginestet et al. (2017), who
considered the problem of k-sample hypothesis testing for networks, deriving limit
results for a specific choice of graph distance, and Josephs et al. (2023), who consid-
ered combining graph distances with a Gaussian process to facilitate prediction of
network-level covariates.

2.3.5 Time series of graphs

Related to the work discussed above on samples of networks are those proposed to
analyse time series of graphs. In this context, one similarly observes a sample of net-
works G(1), . . . ,G(n), only now it is assumed there is an ordering, in the sense that G(t)

is observed before G(t+1), with t being an integer time index. Crucially, whilst the
methods discussed in Sections 2.3.2 to 2.3.4 assumed observed networks were sam-
pled independently, here one instead considers the possibility of temporal dependence
between the observed networks.

In want of analysing such data, a variety of dynamic network models have been
proposed (see the review of Kim et al., 2018). In some ways, the motivation here is
similar to the other works of this section; extracting an informative summary or in-
sight from the observed sample. However, a key difference is the desire to explore for
temporal dependence between graphs, and, in one way or another, all dynamic net-
work models that have been proposed provide some means to extract such insights.

As an example, consider the model proposed by Yang et al. (2011), who extend
the SBM, as seen in the single-network case in Section 2.2, by allowing community
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memberships to vary over time. More precisely, they assume the V vertices are par-
titioned into K communities at each point t in time, encoded via V × K matrices
Zt = (z1t, . . . ,zV t)

T where zit = (0, . . . , 0, 1, 0, . . . , 0)T with zikt = 1 indicating the ith
vertex belongs to the kth community at the tth point in time. As with the standard
SBM presented in Section 2.2, one also specifies a K ×K matrix B, with Bkl ∈ (0, 1)

representing the probability of an edge between the kth and lth communities. Intro-
ducing the shorthand notation A(t) = AG(t) for the adjacency matrix of the tth graph,
this is then assumed to be sampled conditional on B and its associated community
memberships Zt as follows

A
(t)
ij |B,Zt ∼ Bernoulli(zT

itBzjt),

which is equivalent to the formulation of the SBM presented in Section 2.2, only now
the community memberships are time-dependent. With this, given B and the full
sequence of community memberships Z1, . . . , Zn, one can sample a time series of
graphs. To capture temporal dependence, Yang et al. (2011) assume community
memberships follow a Markov chain. In particular, given a K × K transition ma-
trix T , with Tkl denoting the probability of a vertex transitioning from the kth to the
lth community, and an initial distribution π = (π1, . . . , πK), where πk denotes the
probability a vertex is in the kth community at the first time point, it is assumed the
probability of a given sequence of community memberships is given by

p(Z1, . . . , Zn |T,π) = p(Z1 |π)
n∏

t=2

p(Zt |Zt−1, T ),
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where

p(Zt |Zt−1, T ) =
V∏

i=1

p(zit | zi(t−1), T )

=
V∏

i=1

(
K∏

k=1

K∏

l=1

T
zik(t−1)·zilt
kl

)
,

whilst p(Z1 |π) =
∏V

i=1

∏K
k=1 π

zik1
k . Yang et al. (2011) then proposed an EM algorithm

to estimate themodel parametersB, T and π, alongside the communitymemberships
Z1, . . . , Zn, which are also assumed unknown a priori. All together, this model for-
mulation and its associated inference procedure allow one to obtain an interpretable
summary of how the graphs evolve temporally, in particular, how the vertices are par-
titioned into communities at each point in time, and how they move between these
communities.

2.4 Samples of interaction networks

This brings us back to the focus of this thesis: analysing samples of interaction net-
works. As has been shown over the preceding sections, current work has either con-
sideredmodelling a single interaction network, for example via the edge-exchangeable
models (Section 2.2.3), or considered a sample of vertex-observed networks (Sec-
tion 2.3), whereby each network is represented via a graph. It thus appears methods
are yet to be proposed to deal with the scenario in which a sample of interaction net-
works are observed; a gap in the literature which this work intends to address.

2.4.1 Notation

For clarity, the central notation and vernacular that will be adopted throughout the
remainder of this thesis will here be outlined. As alluded to already, an interaction
network (as introduced in Chapter 1) can be represented via an interaction sequence,
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that is
S = (I1, . . . , IN)

where Ii = (xi1, . . . , xini
) are interactions (paths), over the set of vertices V , so that

xij ∈ V for each entry thereof. Observe S encodes an ordering of interactions, in the
sense Ii is assumed to have been observed before Ii+1. As will be seen throughout
this thesis, such information may not always be of interest. As such, we consider also
a parallel representation of an interaction network via an interaction multiset, denoted
as follows

E = {I1, . . . , IN}

where curly braces {} are used to signify this is a multiset, so that the labels of in-
teractions imply nothing with regards to the order in which they were observed.3

Introducing the following notation for the space of interactions

I∗ :=
∞⋃

k=1

Vk,

containing all paths over the vertex set V , the multiset E can also be represented via
a multiplicity function mE : I∗ → Z+, where mE(I) denotes the multiplicity of I in
E . This also allows us to define the support of E in I∗ as follows

Supp(E) := {I ∈ I∗ : mE(I) > 0},

denoting the set of unique interactions in E . As an example, we might have

E = {(1, 2), (1, 2, 3), (1, 2), (2, 3)},
3Observe this use of E clashes slightly the notation for the edge set of a graph introduced Section 2.1.

However, in the remainder of this thesis this notation will be reserved for the representation of an
interaction multiset.
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so that

mE((1, 2)) = 2 mE((1, 2, 3)) = 1 mE((2, 3)) = 1

whilst Supp(E) = {(1, 2), (1, 2, 3), (2, 3)}.
Another key notion is that of the aggregate graph (as in Figure 1.0.1), which col-

lapses a given interaction sequence or multiset into a multigraph summarising ob-
served traversals between vertices. Formally, given interaction sequence S, its ag-
gregate multigraph is denoted GS = (V , ES) where the multiset ES is such that an
edge (v, u) appears in ES each time xij = v and xi(j+1) = u for some 1 ≤ i ≤ N

and 1 ≤ j ≤ ni − 1. Moreover, observe this definition applies readily to interaction
multisets, and we let GE similarly denote the multigraph obtained by aggregating the
interactions of E , an interaction multiset. We also introduce the notation AS and AE

for the associated adjacency matrices of these aggregate multigraphs, as introduced
in Section 2.1.

Since both interaction sequences and multisets represent collections of interac-
tions among a given vertex set, we will refer to them collectively as ‘interaction net-
works’. In this way, they are seen as two alternative representations thereof, albeit
with an interaction sequence containing relatively more information through its en-
coding of order.

A final point of note regards alternative representations of data in this form, and
why the use of interaction networks as presented above is arguably preferable. In-
stead of representing each interaction as a path Ii = (xi1, . . . , xini

) one could in the-
ory collapse this into a graph by aggregating traversals, much like for the aggregate
graphs GS and GE defined above. In particular, one could construct an aggregate
multigraph GIi = (V , EIi) from the path Ii by letting the multiset of edges EIi include
an edge (u, v) each time xij = v and xi(j+1) = u for some 1 ≤ j ≤ ni − 1. One could
also drop the edge multiplicities, resulting in a directed graph. This would induce a
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representation of an observation as either a sequence or multiset of graphs, that is

S = (GI1 , . . . ,GIN ) or E = {GI1 , . . . ,GIN},

where each GIi might be a graph or multigraph over the shared set of vertices, de-
pending on how one has chosen to aggregate the paths. Indeed, doing so would
align with the majority of other works on network data, wherein graph-based repre-
sentations are often employed. Furthermore, notice a sequence of graphs would be
equivalent to a graph time series, which, as was outlined in Section 2.3.5, has already
seen attention in the literature; though this would regard the analysis of a single se-
ries of graphs, whilst we are concerned with analysing a sample of such objects.

However, if the data are truly path-observed, then, aside from being less natural,
a representation via graphs as above also has the potential to be less efficient. Firstly,
since it is possible for two different paths to aggregate to the same graph, there will
be some information lost during this process. Secondly, notice that each graph shares
the same set of vertices, which will typically be those appearing at least once in the
data. In this way, asmore interactions are observed, that is, asN grows, the size of the
vertex set V = |V|would also be expected to grow. Consequently, when representing
observations in this manner, their dimension will grow in two ways with the size of
a dataset; both in the number of interactions and vertices. Moreover, since graph-
based methods often scale in the number of vertices, any approach based upon such
a representation is likely to scale poorly. In contrast, for an interaction network, the
dimension of interactions will stay fixed as the number of interactions grows. As
such, by considering instead a method applicable to interaction networks, there is
potential to obtain an approach which scales better to larger datasets.
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2.4.2 Example datasets

As justification for the applicability of this work, two example datasets which can be
interpreted in this manner will be considered, featuring in the example data analyses
of both Chapters 3 and 4. In particular:

1. In-play football data: shared by StatsBomb,4 this dataset contains high-granularity
information on eventswithin footballmatches, such as passes sent and received,
tackles made and shots taken. Particularly concerned with pass events, we let
V be the set of player positions, such as “left midfielder” or “left back”, con-
structing interactions Ii representing series of uninterrupted passes between
players (as represented by their position), that is, until the ball was lost or went
out of play. With this, a single observation S = (I1, . . . , IN) represents all un-
interrupted pass sequences of a single team in a single match (Figure 2.4.1a).
Moreover, since the dataset has nearly 2,000 matches, each with two teams, this
leads to a sample of nearly 4,000 interaction networks;

2. User check-in data: this is an open-source dataset containing user interactions
with the app Foursquare, a location-based social network (LSBN) where users
‘check-in’ to various venues they visit.5 By letting V denote the set of venue
categories, an interaction Ii is here assumed to represent a single day of check-
ins for a given user, for example Ii = (“Coffee Shop”, “Work”, “Restaurant”)
would imply this user checked-in at venues in these categories in this order.
Over some specified time period, a single observation S = (I1, . . . , IN) repre-
sents all observed days of check-ins for a single user (Figure 2.4.1b). Moreover,
since there is data on many users this will lead to a sample of interaction net-
works. This dataset ismuch larger than the in-play football data, with the global
version (Yang et al., 2015a, 2016), for example, containing check-ins of approx-

4https://github.com/statsbomb/open-data
5https://sites.google.com/site/yangdingqi/home/foursquare-dataset

https://github.com/statsbomb/open-data
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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imately 260,000 users.

2.4.3 Thesis outline

The remainder of this thesis will be structured as follows. In Chapter 3, the prob-
lem of comparing two interaction networks will be considered, which is then built
upon in Chapter 4, where a novel Bayesian modelling framework will be proposed
designed specifically for analysing samples of interaction networks. In both, simula-
tions studies are undertaken to further illustrate concepts and confirm the efficacy of
proposed methods, whilst example analyses of data introduced in the preceding sec-
tion are undertaken to highlight practical applications. These two chapters represent
the main contributions of this thesis, and thus Chapter 5 will turn to the drawing of
conclusions and discussions of future research directions.
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(b) Foursquare check-in data

Figure 2.4.1: Examples of interaction network data that will be considered in subse-
quent chapters. In (a) is shown a sample of interactions from two observations of the
StatsBomb in-play football data, where vertices represent player positions (abbrevi-
ated according to Table 2.4.1), whilst (b) shows the same for two observations of the
Foursquare check-in data, where vertices correspond to venue categories. In both,
edges are labelled to indicate the order in which vertices were visited.



CHAPTER 2. STATISTICAL NETWORK ANALYSIS 34

Position Abbreviation
Secondary Striker ST
Center Forward CF
Left Center Forward LCF
Right Center Forward RCF
Center Attacking Midfield CAM
Right Attacking Midfield RAM
Left Attacking Midfield LAM
Left Wing LW
Right Wing RW
Center Midfield CM
Left Center Midfield LCM
Right Center Midfield RCM
Left Midfield LM

Position Abbreviation
Right Midfield RM
Center Defensive Midfield CDM
Left Defensive Midfield LDM
Right Defensive Midfield RDM
Left Wing Back LWB
Right Wing Back RWB
Center Back CB
Left Back LB
Right Back RB
Left Center Back LCB
Right Center Back RCB
Goalkeeper GK

Table 2.4.1: Abbreviations used for player positions in the StatsBomb dataset, as in-
troduced in Section 2.4.2.



Chapter 3

Distances for Comparing Interaction

Networks

3.1 Introduction

Given observed data, of any structure, a notion of distance between data points can
prove to be an incredibly useful and versatile tool. The case where data points are
themselves interaction networks is no exception. Once a distance has been specified,
an array of methodologies subsequently become available. These include clustering
algorithms such as hierarchical clustering (Izenman, 2008, Sec. 12.3) or HDBSCAN
(McInnes et al., 2017), placing networks into groups; dimension reduction or embed-
ding techniques such as multidimensional scaling (MDS) (Kruskal, 1964) or UMAP
(McInnes et al., 2018), which can be used to embed networks in Euclidean space,
facilitating data visualisation; or predictive algorithms such a k-nearest neighbours
regression (Hastie et al., 2009, Sec. 13.3), which can be used to predict network-level
covariate information.

As discussed in Section 2.3.1, work has already been done regarding distances
between networks with the recent surveys of graph distances (Donnat and Holmes,

35
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2018; Wills and Meyer, 2020). However, it appears no attention has been paid to the
comparison of interaction networks. With present methods, one would be required
to first aggregate these interaction networks to graphs, incurring a potential loss of
information.

Motivated by this apparent gap in the literature, this chapter considers different
ways in which one might go about measuring the dissimilarity of two interaction
networks. This starts with aggregate-based approaches, for example, comparing ob-
servations via their aggregate multigraphs. Subsequently, drawing inspiration from
areas such as optimal transport and time series analysis, distances which better re-
spect the structure of the data are proposed. Given the dual representation of in-
teraction networks (Section 2.4.1), this reduces to the problem of eliciting distances
measures between interaction sequences and multisets. For each distance, theoret-
ical properties are stated and proved, and details regarding computation provided
(summarised in Table 3.2.1). Simulation studies are also undertaken, highlighting
what certain distances can and cannot capture, and illustrating the possible negative
consequences of using an aggregate-based distance over a genuine distance between
interaction networks. Finally, through example data analyses it is illustrated how
the proposed distances can be used in practice to both cluster networks and predict
network-level covariate information, providing answers to questions posed in Chap-
ter 1.

The remainder of this chapter is structured as follows. In Section 3.2, general back-
ground on distance measures is provided. In Section 3.3, the approach of comparing
interaction networks via their aggregates is then outlined. In Section 3.4, the need for
a way to relate interactions of either network is motivated, with two path distances
being introduced to serve this purpose. In Sections 3.5 to 3.8, four genuine distances
between interaction networks are then proposed, each utilising the path distances of
Section 3.4. In particular, Section 3.5 introduces two distances to compare interaction
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multisets, with an associated simulation study in Section 3.6, whilst Section 3.7 and
Section 3.8 similarly regard the introduction of two interaction sequence distances
along with another simulation study. Finally, in Section 3.9 details of example anal-
yses undertaken on data introduced in Section 2.4.2 are provided, before concluding
with discussions in Section 3.10.

3.2 Background on distances

Adistancemeasure over the spaceX is a function d : X ×X → R+, taking as input
two elements of the space and outputting some measure of dissimilarity between
them. It is natural to require that such functions satisfy certain properties, which are
formalised mathematically via the notion of a distance metric.

Definition 3.2.1 (Distance metric): A function d : X ×X → R+ is a distance metric

over the space X if, for any x, y, z ∈X , the following conditions are satisfied

(i) d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles);

(ii) d(x, y) = d(y, x) (symmetry);

(iii) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality);

with the pair (X , d) being referred to as a metric space.

Notice this work is seeking to elicit distance measures between interaction net-
works, and thus hereX of Definition 3.2.1 will correspond to the space of interaction
networks, that is, the space of all interaction sequences or multisets.

We finalise these background details with discussions regarding distance normal-
isation. Given a distance metric d over the space X and some reference element
c ∈X of this space, one can transform d to form a new distance d̄ as follows

d̄(x, y) :=
2d(x, y)

d(x, c) + d(y, c) + d(x, y)
,
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Metric ConditionsDistance Notation (i) (ii) (iii)
Computational

Cost
Vector Hamming & Jaccard dH & dJ é Ë Ë O(V )
Graph Hamming & Jaccard dH & dJ é Ë Ë O (V 2)
Matching distance dM,δ(·) Ë Ë Ë O (N ·M + f(N,M))

Earth mover’s distance dEMD é Ë Ë O
(
Ñ · M̃ + f(Ñ , M̃)

)

Edit distance dE,δ(·) Ë Ë Ë O (N ·M)
Dynamic time warping dDTW é Ë é O (N ·M)

Table 3.2.1: Theoretical properties and computational costs of distances. This con-
cerns comparison of interaction networks with N and M interactions, respectively,
and Ñ and M̃ unique interactions, whilst V denotes the size of the assumed vertex
set, and, for the matching and EMD distances, the function f(·, ·) depends on the
solver used.

which will similarly be a distance metric. Note we leave out any reference to c in this
notation, though one should be aware that by definition d̄ does depend on it. Such
a transformation appears in Donnat and Holmes (2018), where it is referred to as
the Steinhaus transform, and Deza and Deza (2009), referred to as the biotope transform
metric (Section 4.1 therein). Observe that d̄(x, y) ≥ 0 for all x, y ∈ X , being a ratio
of non-negative terms. Moreover, since d is a metric, it obeys the triangle inequality
(iii), implying

d̄(x, y) =
2d(x, y)

d(x, c) + d(y, c) + d(x, y)
≤ 2d(x, y)

d(x, y) + d(x, y)
= 1

and hence one has 0 ≤ d̄(x, y) ≤ 1 for any x, y ∈X , justifying the reference to this as
a normalised distance. As we will see, this transformation can be very useful when
one is trying to compare objects which differ in size.

3.3 Comparing aggregates

Comparison of interaction networks in their raw form, as either sequences or mul-
tisets, is non-trivial. This is thanks in most part to requiring a way of relating the
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interactions from one network with those of the other, and complicated further by
the number of interactions possibly being different. However, a pragmatic solution
which circumvents these issues is to first aggregate observations into another more
amiable form, using distance between these as a proxy for a distance between the
original observations.

There are manyways one could consider aggregating interaction networks. Here,
we consider (i) vectors of vertex counts, and (ii) multigraphs of traversals between
vertices. These can be seen as encoding first-order and second-order information,
respectively. One could in theory go to higher-orders, considering perhaps counts of
length n > 2 subpaths or subsequences. However, for simplicity we consider just (i)
and (ii) in this work.

Given an interaction sequence S = (I1, . . . , IN), with Ii = (xi1, . . . , xini
) and xij ∈

V for vertex set V , towards representing (i) we define vS ∈ ZV
≥0 as follows

vSx :=
N∑

i=1

ni∑

j=1

1[xij = x]

so that vSx denotes the number of times vertex x ∈ V appears in S. In a similar way,
for (ii) we can encode the number of traversals between vertices with the matrix AS ∈

ZV×V
≥0 as follows

AS
xy :=

N∑

i=1

ni−1∑

j=1

1[xij = x] · 1[xi(j+1) = y]

so thatAS
xy denotes the number of times a traversal from x ∈ V to y ∈ V was observed

in S. Observe this is nothing more than the adjacency matrix of the aggregate multi-
graph GS , as defined in Section 2.4.1. Moreover, since both definitions are invariant
to the ordering of paths, an interaction multiset E = {I1, . . . , IN} can be aggregated
in exactly the same way, defining analogues vE ∈ ZV

≥0 and AE ∈ ZV×V
≥0 .

Given two interaction sequences S and S ′, in want of a distance d(S,S ′), we can
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use a distance between their aggregates, that is

d(S,S ′) = d(vS , vS
′
) or d(S,S ′) = d(GS ,GS′)

with d(vS , vS
′
) and d(GS ,GS′) being distances between vectors of counts and multi-

graphs, respectively. Natural choices here are to consider analogues of the Hamming
and Jaccard distances. In particular, we define the Hamming distances in these cases
as follows

dH(v
S , vS

′
) :=

∑

x∈V

|vSx − vS
′

x | dH(GS ,GS′) :=
∑

x∈V

∑

y∈V

|AS
xy − AS′

xy|

whilst the Jaccard distances are now defined by taking the Steinhaus transform of
the Hamming distance, using the zero vector and empty multigraph as reference el-
ements, respectively, leading to the following

dJ(v
S , vS

′
) :=

∑
x∈V |vSx − vS

′
x |∑

x∈V max(vSx , v
S′
x )

dJ(GS ,GS′) :=

∑
x∈V
∑

y∈V |AS
xy − AS′

xy|∑
x∈V
∑

y∈V max(AS
xy, A

S′
xy)

,

a derivation of which can be found in Appendix A.1. Again, notice such distances
between interaction multisets E and E ′ can be defined in exactly the same way.

With these, one has a way to measure the dissimilarity of two interaction net-
works. However, observe the mappings S 7→ vS and S 7→ AS (similarly E 7→ vE

and E 7→ AE for multisets) are not injective. As such, one will typically incur a loss
of information when aggregating interaction networks in this way. Not only is this
wasteful, it has theoretical consequences. Namely, one can have d(vS , vS

′
) = 0 or

d(GS ,GS′) = 0when S ≠ S ′ (similarly d(vE , vE
′
) = 0 or d(GE ,GE ′) = 0when E ̸= E ′ for

multisets), leading to a violation of metric condition (i).
In light of this, over the coming sections distances will be proposed which can

compare interaction networks directly, without the need for aggregation.
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3.4 Comparing interactions

When wanting to elicit a distance between interaction networks, an appealing ap-
proach would be to consider how many interactions are shared (or not shared) be-
tween them. For example, to compare multisets E and E ′ we might consider

dH(E , E ′) :=
∑

I∈I∗
|mE(I)−mE ′(I)|,

that is, the Hamming distance between multisets E and E ′, which would be a gen-
uine distance metric between interaction multisets. However, this essentially views
observations as categorical, whereby interactions are seen as either equal or not. This
is arguably crude, as one expects some interactions to be more similar than others.
Moreover, one would expect the space of interactions I∗ to be large, making it un-
likely E and E ′ will contain exactly the same interactions, though their interactions
may be quite similar.

This points to a need for eliciting distances between interaction networks which
can utilise some form of relational information between interactions, and all the re-
maining distances that will be introduced will do exactly this. In particular, it will
be assumed a distance between interactions is available, that is, dI : I∗ × I∗ → R+

whereby dI(I, I ′)measures the dissimilarity of the two interactions I and I ′. In this
section, we provide two examples of such distances.

Recalling that we consider interactions as paths, this reduces to the problem of
measuring the distance between two paths. Suppose we have two paths

I = (x1, . . . , xn) and I ′ = (y1, . . . , ym)

which we would like to compare. As with the Hamming distance above, a natural
approach is to consider how much these paths have or do not have in common. In
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particular, one can consider common subpaths and subsequences, as illustrated in
Figure 3.4.1. A subpath of I from index i to j is given by the following

Ii:j = (xi, . . . , xj)

where 1 ≤ i ≤ j ≤ n (Figure 3.4.1a). More generally, assume that v = (v1, . . . , vs)

with 1 ≤ v1 < · · · < vs ≤ n, then a subsequence of I is obtained by indexing with v as
follows

Iv = (xv1 , . . . , xvs)

which will be of length s (Figure 3.4.1b). Given two paths, one can further consider
common subpaths and subsequences. A common subpath of I and I ′ occurs when
we have

Ii:j = I ′l:k

for some 1 ≤ i ≤ j ≤ n and 1 ≤ l ≤ k ≤ m, whilst a common subsequence of I and
I ′ occurs when

Iv = I ′u

for some 1 ≤ v1 < · · · < vs ≤ n and 1 ≤ u1 < · · · < us ≤ m. The more similar I and I ′

are, the longer we expect their common subpaths or subsequences to be. Following
this rationale, a distance can be defined by finding maximal common subpaths or
subsequences, that is, ones for which there exist none of larger size. This leads to the
following

dLSP(I, I ′) := n+m− 2δLSP and dLCS(I, I ′) := n+m− 2δLCS

where

δLSP := max{|i : j| = |l : k| : Ii:j = I ′l:k} and δLCS := max{|v| = |u| : Iv = I ′u}
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a b a b a

c d a b a c a d
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I ′ =

(a) Common subpath

a b a b a

c d a b a c a d

I =

I ′ =

(b) Common subsequence

Figure 3.4.1: A comparison of common subpaths and subsequences. In (a) and (b)
we see the same pair of paths, with (a) highlighting a common subpath, as indicated
by shaded (green) entries, whilst (b) shows a common subsequence. In both cases,
these are maximal.

denote the maximum size of a common subpath and subsequence between the two
paths. These distances essentially count the number of entries of I and I ′ not in-
cluded in the common subpath or subsequence. For example, since the subpaths and
subsequences in Figure 3.4.1 aremaximal, we have dLSP(I, I ′) = 7 and dLCS(I, I ′) = 5

in this case.
Both dLCS and dLSP can be shown to satisfy metric conditions (i) to (iii), making

them distance metrics. For a proof, see Appendix A.4.1, whilst for details on how
these distances can be computed, see Appendix A.3.1.

3.5 Comparing interaction multisets

In this section, it will be assumed there are two interaction multisets

E = {I1, . . . , IN} and E ′ = {I ′1, . . . , I ′M}

that are to be compared. Moreover, it is assumed a distance metric dI(·, ·) between
interactions has been specified. Over the next two subsections, two distances which
can be used in this context will be proposed: the matching distance and the earth
mover’s distance.
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3.5.1 Matching distance

At a high-level, the matching distance seeks the ‘best’ pairing of interactions from E
with those from E ′, in particular, one which minimises the total distance of paired
interactions. The distance between E and E ′ is then given by the ‘cost’ of this best
pairing. In this way, the matching distance judges the dissimilarity based upon an
optimal relation between the interactions of either multiset.

This idea builds upon distances proposed in the wider literature. In particular,
similar distances have been proposed by Ramon and Bruynooghe (2001) and Eiter
and Mannila (1997) for the comparison of sets within general metric spaces, though
they considered genuine sets whereas we consider multisets. Of these, Ramon and
Bruynooghe (2001) is most similar, considering also the notion of a matching, as will
now be defined.

Given two multisets E and E ′ a matching (Figure 3.5.1a) is simply a multiset of
pairs

M = {(I, I ′) : I ∈ E , I ′ ∈ E ′}

such that each I ∈ E is matched to at most one I ′ ∈ E ′, and vice versa. Observe by
definition one must have 0 ≤ |M| ≤ min(|E|, |E ′|), that is, we can match at most the
number of interactions in the smallermultiset. Amatchingwhich achieves this upper
bound we say is complete. For example, the matching of Figure 3.5.1a is complete. We
also define the restriction ofM to E as follows

ME := {I ∈ E : ∃ I ′ ∈ E ′, with (I, I ′) ∈M}

so thatME ⊆ E denotes the elements of E which are included in thematchingM. We
also introduce the shorthandMc

E := E \ME to denote the elements of E not included
in the matchingM. With this notion, the matching distance is defined as follows.

Definition 3.5.1 (Matching distance): Given a distance dI(·, ·) between interactions
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and a penalty δ : I∗ → R for unmatched interactions, thematching distance between
E and E ′ is given by

dM,δ(·)(E , E ′) := min
M∈M(E,E ′)





∑

(I,I′)∈M

dI(I, I ′) +
∑

I∈Mc
E

δ(I) +
∑

I′∈Mc
E′

δ(I ′)





whereM(E , E ′) denotes the set of matchings between E and E ′.

Notice dM,δ(·) is defined by finding a matchingM with minimum cost, where the
cost ofM consists of (i) distances between matched interactions, and (ii) penalties
for the interactions of E or E ′ left unmatched. Given the penalty function satisfies
certain conditions, one can show that dM,δ(·) is a distance metric. We summarise this
with the following result, proved in Appendix A.4.2.

Proposition 3.5.2: If dI(·, ·) is a distance metric and the penalty function δ(·) satisfies

• δ(I) > 0 for all I ∈ I∗, and

• |δ(I)− δ(I ′)| ≤ dI(I, I ′) for all I, I ′ ∈ I∗

then the distance dM,δ(·) is a metric between interaction multisets, that is, it satisfies
metric conditions (i) to (iii).

Given Proposition 3.5.2, this raises the question of how to specify the penalty func-
tion. Two examples which satisfy the required conditions are as follows

1. Fixed penalty: let δ(I) = ρ, where ρ > 0 is a chosen constant;

2. Distance-based penalty: let δ(I) = dI(I,Λ)where Λ is the null interaction.

Note in the case where interactions are paths a natural choice for Λ is the empty path,
for which dI(I,Λ) will typically represent the size of I. For example, with the LSP
distance one has dLSP(I,Λ) = n where n is the length of I. It is straightforward to
show that both penalties satisfy the conditions of Proposition 3.5.2, and consequently
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(a) Matching of E and E ′

I1
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I ′1
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I ′4
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µE µE′

(b) Coupling of µE and µE ′

Figure 3.5.1: Example relations found when evaluating multiset distances, with (a)
showing amatchingM of the multisets E = {I1, . . . , I3} and E ′ = {I ′1, . . . , I ′5}, whilst
(b) shows a coupling P of the distributions µE and µE ′ , where the edge from Ii to I ′j
is proportional to Pij , the mass moved from Ii ∈ I∗ to I ′j ∈ I∗, and node (circle)
radii of Ii and I ′i are proportional to µE(Ii) and µE ′(I ′j), respectively. For simplicity,
here we assume the elements of E and E ′ are distinct, so that within µE and µE ′ the
masses are equal.

both resultant distanceswill bemetrics. For brevity, we introduce the following short-
hand for referring to the induced distances: dM,ρ denoting thematching distancewith
δ(I) = ρ, and dM denoting the matching distance with δ(I) = dI(I,Λ). Note a slight
complication with dM,ρ is the need to specify ρ. As such, in Appendix A.2 we provide
guidance on how to set this in practice.

Computation of dM,δ(·) requires finding an optimal matching. Noting this is essen-
tially an assignment problem, one can appeal to solvers thereof, such as the Hungar-
ian algorithm (Kuhn, 1955). Further details can be found in Appendix A.3.2, where
we show how to set-up a suitable assignment problem to be solved. In general, this
involves two key elements (i) evaluating all pairwise distances between E and E ′, and
then (ii) solving an assignment problem via a chosen solver. With this, the matching
distance can be computed with a complexity O(N ·M + f(N,M)), where f(·, ·) is a
solver-dependent term. For example, if optimising over complete matchings via the
Hungarian algorithm (see Appendix A.3.2) we will have f(N,M) = max(N,M)3.

We finish by noting the matching distance as defined in this section can be seen as
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a generalisation of the distance proposed by Ramon and Bruynooghe (2001). In par-
ticular, whilst they considered a specific choice of penalty for unmatched elements,
we have relaxed this, providing conditions on the penalty via Proposition 3.5.2 which
ensure the resulting distance continues to be a metric. Moreover, the distance pre-
sented here regarded multisets, whereas Ramon and Bruynooghe (2001) considered
genuine sets. We also adopt a different approach to computation, recognising this
as an assignment problem, whilst Ramon and Bruynooghe (2001) instead propose a
network-flow optimisation algorithm to compute their distance.

3.5.2 Earth mover’s distance

Though theoretically sound, a drawback of the matching distance is that when E and
E ′ are of different sizes the pairwise information of some paths may be ignored. For
example, in Figure 3.5.1a the two unmatched paths of E ′ are related with nothing
from E . However, if these paths were also somewhat similar to those in E , that would
surely be useful information to incorporate.

Towards proposing a distance which avoids such issues, one can appeal to the
literature on Optimal Transport (OT) (Peyré and Cuturi, 2019), which considers the
problem of measuring the distance between probability distributions over general
metric spaces. In particular, by converting multisets to distributions, an OT-based
distance thereof can serve as a proxy for a distance between the original observations.
Importantly, these distances make use of an underlying distance metric.

We convert a multiset E to a distribution µE : I∗ → [0, 1] via normalisation as
follows

µE(I) :=
mE(I)
|E| , (3.5.1)

so that µE(I) denotes the probability mass located at I ∈ I∗. To measure the dissim-
ilarity of two multisets E and E ′ we consider using an OT-based distance between µE
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and µE ′ , namely, the 1-Wasserstein distance (Peyré and Cuturi, 2019, Prop. 2.2), also
known as the earth mover’s distance (EMD).

Viewing µE and µE ′ as locations of mass within the space I∗, the EMD seeks an
optimal transportation of the mass from one set of locations to the other, where the
cost of transporting a unit of mass from one element to another is proportional to
their pairwise distance. With Supp(E) = {I1, . . . , IÑ} and Supp(E ′) = {I ′1, . . . , I ′M̃}

the unique paths of E and E ′, we let Pij ∈ [0, 1] denote the amount of mass to send
from Ii to I ′j and collate these into the matrix P ∈ [0, 1]Ñ×M̃ representing a complete
specification of the mass transported between the two sets of locations. Observe P

must satisfy the following constraints

M̃∑

j=1

Pij = µE(Ii) (for i = 1, . . . , Ñ) and
Ñ∑

i=1

Pij = µE ′(I ′j) (for j = 1, . . . , M̃)

so that if we start with µE and transport mass viaPwe end upwith µE ′ , and vice versa.
AmatrixP of this form is known as a coupling of µE and µE ′ (Figure 3.5.1b), andwe let
U(µE , µE ′) denote the set of all couplings between the two distributions, which can be
defined as follows. WithµE = (µE(I1), . . . , µE(IÑ))T andµE ′ = (µE ′(I ′1), . . . , µE ′(I ′

M̃
))T

denoting vector representations of the distributions µE and µE ′ , respectively, we have

U(µE , µE ′) := {P ∈ [0, 1]Ñ×M̃ : P · 1M̃ = µE , 1
T
Ñ
·P = µE ′},

where 1d denotes the length d column vector of ones. Collating the required pairwise
distances in the matrixD, whereDij := dI(Ii, I ′j), we define the EMD as follows.

Definition 3.5.3 (Earth mover’s distance): Given a distance dI(·, ·) between interac-
tions, the earth mover’s distance (EMD) between E and E ′ is given by

dEMD(E , E ′) := min
P∈U(µE ,µE′ )

Ñ∑

i=1

M̃∑

j=1

PijDij
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where P and D are defined above.

Since the EMD is known to be a distance metric between probability distribu-
tions (Peyré and Cuturi, 2019, Prop. 2.2), some properties will be naturally inher-
ited. However, thanks to the normalisation enacted when constructing distributions
via eq. (3.5.1), not all of the metric conditions will hold. We summarise this via the
following result, proved in Appendix A.4.2.

Proposition 3.5.4: The earth mover’s distance dEMD satisfies metric conditions (ii)
and (iii), but fails condition (i).

The failure of condition (i) (identity of indiscernibles) occurs when the multisets
are proportional to one another, that is, when there is some C > 0 such thatmE(I) =

C ·mE ′(I) for all I ∈ I∗. However, when E and E ′ and the underlying space I∗ are
all of reasonable size, the chances of this occurring are likely to be low. As such, the
practical consequences are unlikely to be severe; though this will clearly depend on
how one intends to use the distance.

Computation of the EMDreduces to solving a linear optimisationproblem. Specif-
ically, what is known as the transportation problem. As such, one can appeal to liter-
ature on solvers thereof. Details can be found in Ch. 3 of Peyré and Cuturi (2019),
with packages existing in various programming languages implementing these algo-
rithms, such at the Python Optimal Transport (POT) toolbox (Flamary et al., 2021).
Generally, all one needs to do is compute the distancematrixD andprovide this to the
chosen solver. As such, the computational costwill be of the formO(Ñ ·M̃+f(Ñ , M̃)),
with f(·, ·) being a solver-dependent term.

3.6 Simulation study: multiset distances

In this section, and also later in Section 3.8, we consider using simulation to exam-
ine what different distances can and cannot capture. To do so, we parameterise M
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different distributions D1, . . . ,DM , where each Di can randomly generate multisets
or sequences of paths, before assessing whether distances can identify observations
sampled from the same distribution. With this, if theDi are chosen in a suitable way,
deficiencies of certain distances in this regardwill highlight an inability capture some
qualitative aspect of the observations being compared.

3.6.1 Simulation design

We framed the elicitation of distributions Di around the following two questions

• Are there consequences for the information lost through aggregation? (dis-
tances of Section 3.3)

• How do distances cope when observations vary in size?

With these in mind, we consider defining such distributions via mixtures over paths.
In particular, supposingwehave some family of distributions p(I|θ) over paths, where
θ are model parameters, we parameterise K such distributions p(I|θk) where θ =

(θ1, . . . , θK) denotes the K parameters of these distributions, along with the proba-
bility vector τ = (τ1, . . . , τK), where τk denotes the probability we sample from the
kth path distribution. A single sequence or multiset withN paths is then sampled as
follows

• Sample z ∼ Multinomial(N, τ )where z = (z1, . . . , zK)

• Construct θz as follows

θz = (θ1, . . . , θ1︸ ︷︷ ︸
z1

, θ2, . . . , θ2︸ ︷︷ ︸
z2

, . . . , θk, . . . , θk︸ ︷︷ ︸
zK

)

• For i = 1, . . . , N sample Ii via p(I|θzi )

• We can now obtain either
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(a) Sequence: S = (I1, . . . , IN)

(b) Multiset: E = {I1, . . . , IN}

where in (b) we are essentially disregarding the order.

In this way, this procedure can sample both sequences and multisets. When out-
putting a multiset E = {I1, . . . , IN} this can be seen as a sample from a standard
mixture distribution p(I|θ, τ ) =

∑K
k=1 τkp(I|θk) over paths. In contrast, when out-

putting a sequence S = (I1, . . . , IN) the order of θ is preserved: if Ii was sampled via
p(I|θk) and Ij via p(I|θl)with i < j, then one must have k ≤ l.

To elicit path distributions p(I|θ), we consider perturbing a given pathwith noise.
In particular, given some Ĩ = (x̃1, . . . , x̃n) we sample I = (x1, . . . , xm) by randomly
deleting and inserting entries from Ĩ such that a subpath is preserved. Given param-
eters pins ∈ (0, 1) and pdel ∈ (0, 1), we sample I by applying the following random
edits to Ĩ

1. Sample number of deletions and additions1

Deletions: d ∼ TrGeometric(pdel, 0, n− 1) Additions: a ∼ Geometric(pins)

2. Randomly delete entries as follows

• Let d1 ∼ Uniform{0, . . . , d} and let d2 := d− d1

• Delete the first d1 entries and last d2 entries;

3. Randomly insert entries sampled uniformly from V as follows

• Let a1 ∼ Uniform{0, . . . , a} and let a2 := a− a1

• Insert a1 entries at the front and a2 entries at the end.
1Here TrGeometric(p, a, b) denotes a truncated Geometric distribution where a and b represent the

lower and upper bounds (inclusive) respectively.
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By partitioning deletions and insertions in this way notice the sampled path I
will share a subpath with Ĩ. For example, if Ĩ = (1, 2, 3) and (d1, d2) = (1, 0) and
(a1, a2) = (2, 1) we might have I = (4, 3, 2, 3, 5) where here the entries x1, x2 and x5

have been sampled uniformly from V whilst I3:4 = Ĩ2:3, that is, a length 2 subpath
has been preserved. Observe this defines a distribution p(I|Ĩ, pins, pdel) centered on Ĩ
and scaled by pinds and pdel, converging to a pointmass at Ĩ as pins → 1 and pdel → 1.
Finally, note that having separate parameters for insertions and deletions is a desir-
able since deletions will typically be more destructive, leading to paths that have less
in common with Ĩ, whereas insertions simply change the size of the resulting paths.

3.6.2 Study and results

In this study, we construct four distributionsD1, . . . ,D4 over multisets using the path
mixture distribution outlined in Section 3.6.1. The idea is for these mixtures to share
the same components (path distributions) but have different mixing proportions. In
particular, we fix four paths Ĩ1, . . . , Ĩ4 denoting four path ‘types’ around which these
components will be centered, as shown in Figure 3.6.1. We then parameterise four
components via θ = (θ1, . . . , θ4) where θk = (Ĩk, pins, 0.9), where pins is left as a sim-
ulation parameter whilst we fix pdel = 0.9, the parameter controlling the number of
deletions. For the mixing proportions, we consider τ (1), . . . , τ (4) as visualised in Fig-
ure 3.6.1, where α ∈ (0.5, 1) is a further simulation parameter. Finally, to sample N ,
the number of paths in each observation, we consider the following

N ∼ Uniform{20− ν, 20 + ν}

leaving ν as a simulation parameter. This leaves us with three simulation parameters
(i) ν controlling number of paths in each observation, (ii) pins controlling the number
of insertions sampled when perturbing paths, and (iii) α controlling the entropy of
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Figure 3.6.1: Visual summary of multiset simulation set-up. Here we visualise the
four path types Ĩi for i = 1, . . . , 4 (top), whilst below is shown the four different mix-
ture proportion parameters τ (i) for i = 1, . . . , 4, where the kth bar of τ (i) (from the
left) represents τ (i)k , the probability of sampling from p(I|θk), the kth path distribu-
tion.

mixture proportions.
The distances we compare are stated in Table 3.6.1, considering also their nor-

malised versions. For clarity, in the remainder of this work, the following naming
conventions will be adopted when referring to distances: “n-x” denotes the normali-
sation of distance x, that is, via the Steinhaus transform (see Section 3.2), for example,
“n-Matching” would refer the normalisation of dM. Recall the Steinhaus transform is
defined via a reference element of the underlying space. For all distances that will be
referred to in this way, the empty element of the space over which the given distance
is defined will be used as this reference, that is, for distances between interaction
multisets, interaction sequences, or interactions, this will be the empty multiset, se-
quence or path, respectively. When distances also require specification of a distance
between interactions, we signify this via “x{y}” where x denotes the distance and
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Name Description
Matching Matching distance dM
FP-Matching Fixed-penalty matching distance dM,ρ (with ρ = 0.5)
EMD Earth mover’s distance dEMD

Graph-Jaccard /Graph-
Hamming

Hamming and Jaccard distances dH and dJ between
aggregate graphs

Vector-Jaccard / Vector-
Hamming

Hamming and Jaccard distances dH and dJ between
aggregate vectors

Table 3.6.1: Distances considered in multiset simulation study (Section 3.6).

y the underlying interaction distance, for example, “Matching{LSP}” would be the
matching distance dM with dLSP as the ground distance.

Before discussing results, let us lay out some expectations. Firstly, notice we have
chosen the path types Ĩ1, . . . , Ĩ4 (Figure 3.6.1) such that Ĩ1 and Ĩ2 are similar, and
likewise Ĩ3 and Ĩ4 are similar. In particular, they are permutations of one another.
As such, we expect an aggregate-based distance to be unable tomake this distinction,
findingD3 andD4 hard to distinguish. We also expect the EMD to fare better than the
matching distances when ν is higher, since it uses all pairwise information of paths,
whereas the matching distance ignores many unmatched paths. Similarly, we expect
normalised distances to perform better than their un-normalised counterparts when
ν is higher. Finally, distances utilising a normalised distance between interactions are
likely to perform better when the path lengths are more variable, that is, when pins is
lower.

Now, given a set of parameters (ν, pins, α) and a chosen distance, in a single simu-
lation repetition we did the following: (i) sampled n = 50 observations from Di for
i = 1, . . . , 4, leading to 4n = 200 observations in total (ii) computed distance matrix
D ∈ R4n×4n

≥0 , where Dij denotes the distance between the ith and jth observation.
For a qualitative examination, given a computedmatrixD, one can consider using

a dimension reduction algorithm to facilitate visualisation. These algorithms return
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(xi)
4n
i=1 where xi ∈ Rd represents (for the ith data point) a location in Euclidean

space, with the idea being that the pairwise distances or relative structure of the em-
bedded points (xi)

4n
i=1 is in some way congruent with that of D, the observed pair-

wise distances. Crucially, when d = 2 one can plot such embeddings, providing a
visual summary of the overall structure in the data. Such algorithms generally fall
into two categories: those which preserve all pairwise distances, that is, more global
structure, such as MDS (Kruskal, 1964) or PCA (Hotelling, 1933), and those which
favour preservation of more local structure, that is, distances of a given data point
to its closest neighbours, with examples being t-SNE (Van der Maaten and Hinton,
2008; Van Der Maaten, 2014) and UMAP (McInnes et al., 2018). We opted to use
UMAP, which, at a high-level, produces an embedding by optimising the layout of a
k-nearest neighbours graph in Euclidean space. In Figure 3.6.2, we show the UMAP
embeddings resulting from a single simulation run with (ν, pins, α) = (5, 0.7, 0.9) for
four different distances. Here one can observe both the matching and EMD distances
clearly separate samples from the four distributions, whilst the aggregate-based dis-
tances struggle to distinguish those from D3 and D4, as expected.

To examine what might happen when we vary certain simulation parameters, we
need a single quantitative summary that can be applied to each distance matrix D.
We propose that, in the ideal scenario, almost all of the (n − 1)-nearest neighbours
of a given observation should be sampled from its distribution. With this in mind,
we consider finding the mean proportion of k-nearest neighbours in the same group,
that is, letting ci = j if the ith data point was drawn from Dj , and N i

k denote the
indices of the k-nearest neighbours to the ith data point, with m data points in total
we consider the following

k-MNP :=
1

m

m∑

i=1


1

k

∑

j∈N i
k

1(ci = cj)


 ,
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referring to this as the k mean neighbourhood proportion (k-MNP). Thus, in our
scenario, we take (n− 1)-MNP for each distance as our performance measure.

In Figure 3.6.3 we summarise the (n − 1)-MNP values (averaged over 25 repeti-
tions) for different distances with the simulation parameters ν and pins varying and
α = 0.9 fixed. Here one can see the aggregate-based distances in general perform
poorly relative multiset-based distances, as expected. Moreover, in all cases perfor-
mance deteriorates as observations become more variable size, that is, as ν grows.
However, the EMD does appear to be more robust in this regard, showing less dete-
rioration, as expected. In addition, there appears evidence that normalised distances
indeed tend to perform better than their un-normalised counterparts. Finally, in gen-
eral distances using the normalised LSP between interactions performed better, with
this gap widening as pins → 0, that is, as paths become more variable in size, again
meeting expectations.

To summarise, through this study we have shown the information loss incurred
through aggregation can be detrimental for distinguishing observations. Moreover,
if looking to compare multisets of quite variable sizes the EMD appears to be a good
choice. Finally, where normalisation is possible it is usually helpful, particularly
when comparing objects of very different size.

3.7 Comparing interaction sequences

In this section, we consider the scenario where we have two interaction sequences

S = (I1, . . . , IN) and S ′ = (I ′1, . . . , I ′M)

whichwewould like to compare. Again, it will be assumed that some distancemetric
dI(·, ·) between interactions is available. Over the next two subsections, two distances
will be proposed that are applicable in this case: the edit distance and the dynamic
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Figure 3.6.2: UMAP embeddings for a single multiset simulation run. Here one can
observe the two multiset distances clearly separate samples from the four distribu-
tions, whilst aggregate-based distances struggle to distinguish D3 and D4.

2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rfo

ra
m

nc
e 

M
et

ric

pins = 0.9

2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.4

0.5

0.6

0.7

0.8

0.9
pins = 0.5 EMD{LSP}

n-EMD{LSP}
EMD{n-LSP}
n-EMD{n-LSP}
Matching{LSP}
n-Matching{LSP}
FP-Matching{n-LSP}
n-FP-Matching{n-LSP}
Graph-Hamming
Graph-Jaccard
Vector-Hamming
Vector-Jaccard

2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce
 M

et
ric

pins = 0.2

2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.4

0.5

0.6

0.7

0.8

0.9
pins = 0.1
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time warping distance.

3.7.1 Edit distance

The edit distance, much like the matching distance seen in Section 3.5.1, is defined
via an optimal pairing between interactions of either sequence, that is, one which
minimises the total distance of paired interactions plus a penalty. However, in dis-
tinction from the matching distance, the edit distance must take the ordering of the
sequences into account. As such, it considers a slightly altered form of pairing: a
monotone matching.

Observe the notion of a matching, as introduced in Section 3.5.1 for multisets,
continues to make sense for sequences. In particular, a matching between S and S ′

is a multiset of pairsM = {(I, I ′) : I ∈ S, I ′ ∈ S ′} such that each entry of ei-
ther sequence it paired with at most one from the other. Since sequences have an
ordering we can also consider whether this ordering is preserved by the matching.
In particular, we sayM is monotone if for any (Ii1 , I ′j1) ∈ M and (Ii2 , I ′j2) ∈ M we
have

i1 < i2 ⇐⇒ j1 < j2

which intuitively means no lines cross when one draws the matching (Figure 3.7.1a).
With this, the edit distance is defined as follows.

Definition 3.7.1 (Edit distance): Given a distance dI(·, ·) between interactions and a
penalty δ : I∗ → R for unmatched interactions, the edit distance between S and S ′

is given by

dE,δ(·)(S,S ′) := min
M∈Mm(S,S′)





∑

(I,I′)∈M

dI(I, I ′) +
∑

I∈Mc
E

δ(I) +
∑

I′∈Mc
E′

δ(I ′)





where Mm(S,S ′) denotes the set of monotone matchings of S and S ′.
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Figure 3.7.1: Example relations used to define sequence distances, where (a) shows
an example of amonotonematching of the two sequences S and S ′, used to define the
edit distance, whilst (b) shows a coupling, used to define the dynamic time warping
distance.

Notice Definition 3.7.1 is more-or-less identical to Definition 3.5.1; the only dif-
ference being thatM, the matching over which one is optimising, must be mono-
tone. Provided the penalty function satisfies certain conditions, one can show dE,δ(·)

will be a distance metric, as summarised via the following result (proved in Ap-
pendix A.4.3).

Proposition 3.7.2: If dI(·, ·) is a distance metric and the penalty function δ(·) satisfies

• δ(I) > 0 for all I ∈ I∗, and

• |δ(I)− δ(I ′)| ≤ dI(I, I ′) for all I, I ′ ∈ I∗

then the distance dE,δ(·) is a metric between interaction sequences, that is, it satisfies
metric conditions (i) to (iii).

Regarding choices for the penalty function, we propose to reuse those of Sec-
tion 3.5.1 for the matching distance. Moreover, we introduce analogous short-hand
notation: dE,ρ denoting the edit distance with δ(I) = ρ for constant ρ > 0, and dE de-
noting the edit distance with δ(I) = dI(I,Λ). For guidance on choosing ρ in practice,
see Appendix A.2.
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As with the matching distance, computation of dE,δ(·) requires solving an optimi-
sation problem. However, in this case the task is slightly less computationally costly,
being possible via dynamic programming at a complexity of O(N ·M). For further
details, see Appendix A.3.3.

We finalise these details by noting the edit distance as presented here has close
connections with those appearing elsewhere in the literature. First and foremost, the
edit distance can be seen as an adaptation of the so-called string edit distance pro-
posed byWagner and Fischer (1974) (though our presentation via monotone match-
ings does differ slightly). This string edit distance was originally proposed to com-
pare categorical sequences, but has since be applied in other contexts. Most notably,
with the geometric edit distance (Gold and Sharir, 2018; Fox and Li, 2019), which
adapts the string edit distance for the comparison of time series. Finally, notice the
close connections between the edit distance (Definition 3.7.1) and matching distance
(Definition 3.5.1), with latter essentially an unordered version of the former. As far
as we are aware, this close connection has not been noted in any other applications.

3.7.2 Dynamic time warping

Though the edit distance has the theoretical benefit of being a distance metric, it suf-
fers from the same drawback as the matching distance: when comparing sequences
of different size the pairwise information of some interactions may be ignored. For
example, in Figure 3.7.1awe see four unmatched interactionswhichwill be unrelated
to any interactions from the other sequence. This similarly motivates the need for a
distance without such a feature. As a potential solution, one can consider adapting
another distance often seen in the time series literature: the dynamic time warping
(DTW) distance (Gold and Sharir, 2018).

Like the edit distance, the DTW distance is based upon finding a minimum cost
relation between the two sequences. The DTW, however, considers a so-called cou-
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pling of the two sequences (Figure 3.7.1b).2 A coupling of S and S ′ is a sequence
of pairs C = (p1, . . . , pR), where each pr = (Ii, I ′j) for some with 1 ≤ i ≤ N and
1 ≤ j ≤ M . To be a coupling, C must have the first and last entries paired together,
that is p1 = (I1, I ′1) and pR = (IN , I ′M), and must satisfy the following

pr = (Ii, I ′j) =⇒ pr+1 ∈ {(Ii, I ′j+1), (Ii+1, I ′j), (Ii+1, I ′j+1)},

that is, given Ii and I ′j are paired, one can either (i) pair the next two entries Ii+1

and I ′j+1, or (ii) enact some warping, where an entry from either sequence is paired
with more than one from the other. For example, in Figure 3.7.1b we see warping
for the first and third entries of S . Notice that, in contrast with the edit distance, by
definition every interaction of one sequence will always be coupled with at least one
interaction from the other. With this, the DTW distance is defined as follows.

Definition 3.7.3: Given a distance dI(·, ·) between interactions, the dynamic time
warping distance between S and S ′ is given by the following

dDTW(S,S ′) := min
C∈C(S,S′)




∑

(I,I′)∈C

dI(I, I ′)





where C(S,S ′) denotes the set of couplings between the sequences S and S ′.

Observe, in similar spirit to the edit distance, dDTW is defined by finding a cou-
pling C with minimum cost, where the cost of C is defined by summing the pairwise
distances of coupled interactions. Unfortunately, the DTW distance has certain the-
oretical shortcomings. Namely, it violates the identity of indiscernibles (i) and the
triangle inequality (iii). This we summarise with the following result, a proof of
which can be found in Appendix A.4.

2Note this sequence-based coupling differs from the coupling of distributions used to define the
EMD (Section 3.5.2).
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Proposition 3.7.4: The dynamic time warping distance dDTW satisfies metric condi-
tion (ii) (symmetry), but violates conditions (i) (identity of indiscernibles) and (iii)
(triangle inequality).

Regarding computation, as with the edit distance, the DTW distance can be eval-
uated via dynamic programming at a time complexity of O(N ·M). In fact, the al-
gorithm is almost identical to that used to evaluate the edit distance. Further details
can be found in Appendix A.3.4.

3.8 Simulation study: sequence distances

For this study, we take the set-up used for the multiset simulation and slightly alter
the distributions being sampled from. In particular, we consider again four distribu-
tionsD1, . . . ,D4 parameterised by θ and τ (1), τ (2), τ (3), τ (4) as defined in Section 3.6.2,
but in this case we sample sequences. Recall this implies the ordering of parameters
θ and τ (i) will be reflected in the observations sampled from Di. We also augment
these with four distributions Dσ

1 , . . . ,Dσ
4 defined by applying the permutation σ to

the parameters of each distribution, that is, Dσ
i is parameterised by

θσ =
(
θσ(1), . . . , θσ(4)

)
and τ (i)

σ =
(
τ
(i)
σ(1), . . . , τ

(i)
σ(4)

)
,

where we consider in particular the permutation reversing order, that is, σ(i) = 4 −

i+1 in this case, or equivalently in cyclic notation σ = (14)(23). Observe with this we
expectDi andDσ

i to sample sequences with similar paths, and in similar proportions,
but in a reversed order.

The distances we will compare in this case are shown in Table 3.8.1. Given ob-
servations of the previous simulation (Section 3.6.2), we again expect the aggregate
distances to perform poorly relative to those comparing the complete sequence of in-
teractions. Since DTW is capable or relating a single interaction of one sequence with
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Name Description
Edit Edit distance dE
FP-Edit Fixed-penalty edit distance dE,ρ (with ρ = 0.5)
DTW Dynamic time warping distance dDTW

Graph-Jaccard /Graph-
Hamming

Hamming and Jaccard distances dH and dJ between
aggregate graphs

Vector-Jaccard / Vector-
Hamming

Hamming and Jaccard distances dH and dJ between
aggregate vectors

Table 3.8.1: Distances considered in sequences simulation study (Section 3.8).

more than one from another, one might also expect it to perform better than the edit
distance when objects are of quite different size, as with the EMD in Section 3.6.2. Fi-
nally, we anticipate distances utilising a normalised interaction distance to fare better
when paths are more variable in size, that is, when pins is smaller.

As in Section 3.6.2, we first examine qualitatively some resultant embeddings of a
single simulation scenario. In particular, Figure 3.8.1 shows the UMAP embeddings
resulting from a single simulation run with (ν, pins, α) = (5, 0.7, 0.9) for six different
distances. Note here we include also two multiset distances (matching and EMD)
to highlight how the sequence distances take the order within observations into ac-
count.3 With this, one can observe the sequence distances successfully distinguish
the eight distributions, whilst since both the multiset distances and aggregate-based
distances are invariant to the order of paths, they do not distinguish Dσ

i from Di.
Moreover, as in the study of Section 3.6.2, the aggregate-based distances continue to
confuse samples from D3 and Dσ

3 with those from D4 and Dσ
4 .

As in Section 3.6.2, we again ran a cross-sectional study, varying ν and pins whilst
α = 0.9 was fixed. Figure 3.8.2 summarises the (n − 1)-MNP values (averaged over
25 repetitions) for a variety of sequence distances plus some aggregate-based dis-
tances. As expected, we again see that distances between aggregates perform the
worst (though it does outperform the DTW in some cases, as wewill discuss). More-

3In computing thematching andEMDdistances in this case, we first convert sequences tomultisets.
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over, normalised distances generally perform better, with this being particularly ev-
ident when pins is low. Notice also of the edit distances, the normalisation of dE,ρ
performs best, with is improvement relative to the normalisation of dE growing as
pins decreases, highlighting the benefits of using a normalised interaction distance
when paths are more variable in size.

However, the performance of the DTW in this study is somewhat curious and
appears to contradict entering expectations. Though its performancematches the edit
distance when pins is lower, its various versions perform very badly when pins is high,
that is, when there is very little noise in the path distributions. This is a consequence
of the simulation design and how the DTW treats sequences with the same paths but
in different proportions. Consider the following two interaction sequences

S = (Ĩ1, Ĩ1, Ĩ2, Ĩ3, Ĩ3, Ĩ4) S ′ = (Ĩ1, Ĩ2, Ĩ2, Ĩ3, Ĩ4, Ĩ4),

where Ĩ1, . . . , Ĩ4 are the paths used to parameterise the distributions used in the sim-
ulation (Figure 3.6.1). Notice these contain paths in the same order but in different
proportions, that is, in S the first and third paths are more prevalent, whilst in S ′

the same can be said for the second and fourth. Moreover, these are samples one
might expect from D3 and D4, respectively, if pins ≈ 1 and pdel ≈ 1, that is, if there
was almost no noise in the path distributions. Now, observe one can construct a
coupling between S and S ′ wherein only paths that are equal are paired, implying
dDTW(S,S ′) = 0. This highlights a key feature of the DTW: it views S and S ′ as the
same sequence of paths Ĩ1, . . . , Ĩ4 being visited out of sync. In this way, due to the
simulation set-up, with very little noise at the level of paths it is likely to see sam-
ples fromD1, . . . ,D4 as the same. It will, however distinguish these fromDσ

1 , . . . ,Dσ
4 ,

hence the stable performance around 0.5 when pins = 0.9 in Figure 3.8.2. Since the
cost of coupling is determined by the distance of interactions it pairs together (see
Definition 3.7.3), as the level of noise increases the warping required between such
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out-of-sync sequences becomes more costly. With this, it appears an increase in the
noise at the level of paths allows the DTW to identify sequences sampled from the
same distribution.

To summarise, this study has again emphasised the potential costs of disregard-
ing information by use of an aggregate-based distance. It has also highlighted that of
the edit distances, the fixed-penalty combinedwith a normalised interaction distance
appears to perform best. Moreover, without normalisation some distances can per-
form very badly at identifying sequences from the same distribution when they vary
significantly in size. Finally, for this particular scenario, the DTW struggled to dis-
tinguish some observations, highlighting in particular its treatment of observations
containing similar paths, in the same order, but in different proportions.

3.9 Data analysis

In this section, the applicability of distances discussed over the preceding sections
will be illustrated via an analysis of the two example datasets: (i) the StatsBomb in-
play football data, and (ii) the Foursquare user check-in data. In particular, through
a cluster analysis of the in-play football data we show how distances can be used for
unsupervised learning purposes, whilst with the Foursquare data we consider using
distances as a predictive tool, assessing their efficacy at predicting the country of a
user given only their previous check-in information.

3.9.1 In-play football data

Recall here a single interaction Ii = (xi1, . . . , xini
) represents a series of uninterrupted

passes, with xij ∈ V where V denotes the set of all player positions. With this, a
single data point is either a sequence S = (I1, . . . , IN) or multiset E = {I1, . . . , IN},
representing a full match for a single team.
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Figure 3.8.1: UMAP embeddings for a single run of the sequence simulation. Here,
one can observe the two sequence distances at the top clearly separate observations
from all eight distributions, with this distinction appearing slightly more marked
for the edit distance. As expected, since multiset distances are order-invariant they
cannot distinguish samples fromDσ

i andDi, whilst aggregate distance disregard even
more information and thus further confuse samples fromD3 andDσ

3 with those from
D4 and Dσ

4 .
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Figure 3.8.2: Comparing performance of distances at identifying samples from the
same distribution as simulation parameters ν and pins are varied. Note here a solid
and dashed line of the same color regard the standard and normalised versions of a
given distance.

In this analysis, we consider whether it is possible to partition data points, that
is, football matches, into groups, or clusters. As in the simulation studies of Sec-
tions 3.6 and 3.8, it is possible to get an indication such structure by visualising the
data through use of an embedding method, and again we invoke UMAP for this pur-
pose.

Initially, we compare the embeddings resulting from three different distances: the
EMD (Definition 3.5.3), the normalised fixed-penalty edit distance (Definition 3.7.1),
and the graph Jaccard distance (Section 3.3). Here for the EMD and edit distances,
we opt to consider the normalised LSP as the interaction distance. Figure 3.9.1 shows
the resultant UMAP embeddings obtained given each of these distances, wherein
there appears to be strong indication of clusters.

Focusing on the EMD distance, we now run a cluster analysis. In particular, we
consider applying a clustering algorithm to the embedded data, opting specifically
for HDBSCAN (McInnes et al., 2017). This is a density-based algorithm which, at
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Figure 3.9.1: UMAP embeddings of in-play football data using three different dis-
tances, as indicated above each subfigure.

a high-level, uncovers groups of data points which are tightly packed together. Fig-
ure 3.9.2 visualises the cluster allocations that were obtained, showing a total of 11
clusters. Note HDBSCAN labels some data points as “noise”, meaning they are not
allocated to any cluster.

Towards considering what these clusters might represent, it is possible from the
StatsBombdata to infer the formation a teamwasplaying at any given time in amatch.
Formations represent a tactical choice made by a team, and most importantly deter-
mine the player positions that are used, that is, which vertices are likely to appear. For
example, a “4-4-2” formation consists of four defenders, four midfielders and two at-
tacking forwards. For each cluster, one can consider the proportion matches wherein
a given formation was used (for the majority of the match), as visualised in the bot-
tom of Figure 3.9.2. From this, one can see each cluster appears to be dominated by
a single formation, indicating that clusters perhaps correspond to formations.

However, it appears there are exceptions to this rule: the formations predomi-
nantly appearing clusters 2 and 3 are the same, as is the case for clusters 4 and 5. The
root cause can be revealed by considering what player positions (vertices) are actu-
ally being used by observations within these clusters, as we visualise in Figure 3.9.3.
Herewe can see, though observations in clusters 2 and 3 regardmatcheswhere teams
were, according to the StatsBomb specification, playing the same formation, it ap-
pears they actually used slightly different player positions. Namely, where cluster 2
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Figure 3.9.2: Summarising the clustering of in-play football data. Here the top figure
shows cluster allocations obtained via HDBSCAN applied to the EMD embedding
(Figure 3.9.1), whilst the bottom figure shows, for each cluster, the proportion of
matches in which a given formation was used.

appears to make use of “LDM” (left defensive midfielder) and “RDM” (right defen-
sive midfielder), cluster 3 instead uses “LCM” (left center midfielder) and “RCM”
(right center midfielder). With this, it appears in fact these clusters correspond to
two different styles of the same formation, namely a defensive and attacking version
of the “4-2-3-1”, respectively. Similarly, clusters 4 and 5 appear to correspond to a
defensive and attacking version of the formation “4-4-2”.
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Figure 3.9.3: Examining the player positions (vertices) used by observations within
different clusters. In each subplot, a single horizontal slice corresponds to a single
observation, visualising the proportion of times each player position appears therein
(using abbreviations of Table 2.4.1).

3.9.2 Foursquare check-in data

In this case, a single interaction Ii = (xi1, . . . , xini
) represents a sequence of venue

check-ins made by a single user, where xij ∈ V with V denoting the set of venue
categories. As such, a single observation will represents the whole history of check-
ins for a single user over a given time period.

We considered analysing the global version of the Foursquare dataset (Yang et al.,
2016, 2015a). Unfortunately, this is to large to analyse completely, containing in total
over 200,000 observations. Instead, we randomly sampled 500 users from each of six
countries (Australia, Germany, Japan, Mexico, United Kingdom and United States),
leading to a total of 3,000 observations. Note before doing so we also filtered out
users with less than 10 observed interactions.

In this analysis, we consider assessing whether there is some form of relationship
between the country of a user and their distance. Again, this can be examined visually
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Figure 3.9.4: UMAP embeddings of Foursquare check-in data using four different
distances, as indicated above each subfigure, with user country indicated.

through an embedding. Figure 3.9.4 shows UMAP embeddings obtained with four
different distances with the country of each user indicated. Note in this case we opt
to consider the (normalised) LCS distance to compare interactions. Though there
does not appear to be a strong clustering of data points by country (as there was
by formation in Section 3.9.1), there is some indication of correspondence between
a user’s country and their location in the embedded space, with users from Japan in
particular appearing to be somewhat distinct.

To go beyond this qualitative assessment, we consider how distances outlined in
Sections 3.3, 3.7 and 4.2.1 might perform at predicting the country of user. Given C

countries (C = 6 in this case) we encode the country membership of the ith user
via the vector yi = (0, . . . , 0, 1, 0, . . . , 0), where yic = 1 if the ith user was in the cth
country. Assuming the country of the ith user was unknown, a natural approach
to predict its value is via a k-nearest neighbours (k-NN) classifier, whereby one can
obtain an estimate ŷi = (ŷi1, . . . , ŷic) via

ŷic :=
1

k

∑

j∈N i
k

yjc
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where N i
k denotes the k-nearest neighbours of the ith user (given a choice of dis-

tance), that is, we average the country membership vectors of the ith user’s k-nearest
neighbours. Notice∑C

c=1 ŷic = 1, so that ŷi is a probability vector with ŷic being the
estimated probability of the ith user being a member of the cth country.

To estimate the error of a given k-NN classifier, we considered a leave-one-out
cross-validation approach: for each user we (i) assume its country is unknown and
predict its value via the k-NN classifier (given all others are known), then (ii) return
a measure of prediction error. A single value is then obtained by averaging over all
users. We consider measuring the error of a single prediction ŷi in two ways: (i)
whether the country prediction ĉi = maxc ŷic was correct, and (ii) a comparison with
the true classification vector via∑C

c=1(ŷic − yic)
2, that is, the squared error. With this

(i) leads to an estimated predictive accuracy, whilst (ii) leads to an estimated mean
squared error (MSE).

Figure 3.9.5 shows estimates for the predictive accuracy andMSE obtained in this
manner for various distances and choice of k, the number of neighbours. Here from
the predictive accuracy values one can observe all distances do better than random
guessing, which with C = 6 would have an accuracy of approximately 0.17 in this
case. Thus there does appear in general some correspondence between a users coun-
try and their check-in patterns. It is also interesting to note the best performing dis-
tance, as judged by its best (over all k) MSE and predictive accuracy, is the Jaccard
distance between vectors, an aggregate-based distance, which is followed by the EMD
and the fixed-penalty matching distance. Though this may seem like a negative re-
sult, implying the use of the more complicated measures would be unjustified if pre-
diction was the goal, one should note it could also be that these distances pick-up on
finer aspects in which users from different countries are similar.
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Figure 3.9.5: Estimated MSE and predictive accuracy of k-NN classifier for different
choices of k and distance.

3.10 Discussion

In this chapter, the presently unconsidered problem of comparing interaction net-
works has been addressed. Following discussions of aggregate-based distances, four
distance measures have been proposed which can be used to compare interaction
networks directly, drawing inspiration from those seen in other contexts. Through
simulation studies, the potential deficiencies of aggregate-based distances has been
shown empirically, where distances comparing interaction multisets and sequences
directly could correctly identify similar interaction networks where aggregate-based
distances failed. Moreover, through example data analyses the practical applications
of these distances has be illustrated, highlighting in particular their potential uses for
clustering and prediction of network-level covariate information.

The simulation studies of Sections 3.6 and 3.8 have also highlighted some interest-
ing points. In particular, it was seen in Section 3.6 that when comparing interaction
multisets the EMD appears to do well even when observation have a very different
number of interactions, whilst the matching distance appeared to struggle. More-
over, across both studies, it was seen that normalisation of distances improved there
ability to distinguish observations sampled from the same distribution, particularly
when the size of observations was more variable.

Regarding possible future work, it would be interesting to explore if a distance
between interaction sequences could be proposed that would achieve performance
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in the simulation of Section 3.8 matching that observed for the EMD in Section 3.6. A
possible approach would be to borrow ideas used to define the EMD but introduce
some consideration of interaction order.

Additionally, thoughwe considered very similar simulation studies for sequences
andmultisets, one should note that sequences can differ from one another in farmore
ways than multisets can. With this, the simulation of Section 3.8 is arguably simplis-
tic, essentially assessing if distances can identify interaction sequences which were
‘proportional’ to one another, in the sense they contain similar interactions, in a simi-
lar order, and in similar proportions. As such, if futureworkwas done regarding such
distances, it would be interesting to consider further simulation studies that might
explore how well distances do at identifying other more subtle sequential patterns.

Finally, in Donnat and Holmes (2018) it was seen that graph distances can be dis-
tinguished by whether they take into account more local or global differences. With
the distances proposed here to compare interaction sequences and multisets all util-
ising a distance between interactions, they appear to be inherently local. With this,
it would be interesting to consider what ‘global’ differences might look like for inter-
action networks, and whether distances could be defined that would identify them.
Of course, one could consider using a graph distance between aggregates that cap-
tures global differences. However, it would be interesting to explore whether such
distances could be proposed that would respect the structure of the data. For ex-
ample, one could consider alternative definitions of vertex centrality for interaction
networks, using these as a basis for comparison, as in the centrality-based graph dis-
tances mentioned in Section 2.3.1.



Chapter 4

Modelling Populations of Interaction

Networks via Distance Metrics

4.1 Introduction

Given one has observed a sample of interaction networks, a natural question that
arises is how to summarise it? Do observed networks share anything in common?
How strong is this common ‘theme’ throughout the sample? In this chapter, a new
modelling methodology will be proposed to facilitate a reasoned statistical approach
to answering such questions.

Given the dual representations, an observation ofn interactions networks amounts
to observing

S(1), . . . ,S(n) or E (1), . . . , E (n)

that is, either a sample of interaction sequences or multisets. Towards summarising
these samples, the following questions will be considered (as posed in Chapter 1):

(a) What is an average in this context?

(b) How can variability of these data be quantified?

75
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To approach these questions via current multiple-network methodologies (Sec-
tion 2.3) would require first aggregating observations to graphs. However, such ag-
gregation will lead to a loss of information, restricting the insights that can be ob-
tained. This motivates the proposal of an approach which instead respects the path-
observed nature of the data, requiring no aggregation.

With this, in this chapter a novel Bayesianmodelling frameworkwill be proposed.
Building upon the work of Chapter 3, this utilises distances between interaction net-
works to construct families of models via location and scale, akin to Gaussian distri-
butions over the space of interaction networks. In this way, the location and scale pa-
rameters represent analogues of mean and variance, respectively, inference of which
opens to the door to answering questions (a) and (b).

Inference for the proposed models is complicated somewhat by the presence of
intractable normalising constants, leading to the induced posteriors being doubly-
intractable. Additionally, with the location parameter being itself an interaction net-
work, this leads to a non-trivial multi-dimensional discrete parameter space. As
such, a specialised MCMC algorithm is also proposed, combining the exchange al-
gorithm (Murray et al., 2006), which circumvents normalising constant evaluation,
with the recently proposed involutive MCMC (iMCMC) framework of Neklyudov
et al. (2020), which provides added flexibility in the proposal generation mechanism
necessary to explore the parameter space.

The remainder of this chapter is structured as follows. In Section 4.2, the pro-
posed models are introduced, along with discussions regarding choice of distances
andmodel interpretation. In Section 4.3, a Bayesian approach to inference is then out-
lined, wherein the proposed MCMC algorithm is detailed. Section 4.4 then outlines
three simulation studies confirming the efficacy of the proposed methodology and
inference scheme, before practical applications are illustrated in Section 4.5 via an
example analysis of the Foursquare check-in data (Section 2.4.2). Finally, the chapter



CHAPTER 4. MODELLING POPULATIONS OF INTERACTION NETWORKS 77

concludes with disucssions in Section 4.6.

4.2 Distance-based interaction-network models

We now introduce our proposed models for interaction sequences and multisets. In
defining these models, we draw inspiration from the approach taken in Lunagómez
et al. (2021) for analysing samples of networks, wherein a model for graphs was
constructed via the use of distance metrics between graphs. The approach also has
connections to models beyond the networks literature, including the Mallows model
(Vitelli et al., 2018), proposed to analyse ranks in the context of preference learning,
and the complex Watson distribution (Mardia and Dryden, 1999), which appears in
shape analysis applications.

The core idea is to assume observed data points, be they multisets or sequences,
are ‘noisy’ realisations of some unknown ground truth, with quantification of this
noise being facilitated by a pre-specified distance measure. Equivalently, they can
be seen as Gaussian-like distributions over their respective spaces, controlled by a
location parameter, itself an interaction sequence or multiset, and a real-valued scale
parameter.

4.2.1 Model definitions

Starting with our model for interaction sequences, let S∗ denote the infinite discrete
space consisting of all interaction sequences over the fixed vertex set V , further details
of which can be found in Appendix B.1. Towards eliciting a probability distribution
over S∗, we first endow it with a distance dS : S∗×S∗ → R+, permitting the compar-
ison of elements therein. We then select an element of the space Sm ∈ S∗, referred
to as themode, upon which to center the distribution, before choosing γ > 0, referred
to as the dispersion, controlling the concentration of probability mass in S∗ about the
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mode Sm. In this way, Sm and γ can be seen as location and scale parameters, respec-
tively, analogous to the mean and variance of a Gaussian distribution. A family of
probability distributions can now be defined as follows.

Definition 4.2.1 (Spherical interaction sequence family): Given a distance measure
dS(·, ·) on S∗, mode Sm ∈ S∗ and dispersion parameter γ > 0, the probability of
observing S is given by

p(S | Sm, γ) ∝ exp{−γdS(S,Sm)}, (4.2.1)

and we write
S ∼ SIS(Sm, γ) (4.2.2)

if we assume S was sampled via (4.2.1). This we refer to as the Spherical Interaction
Sequence (SIS) family of probability distributions over S∗ with parameters Sm and
γ.

In a similar manner, for our interaction multiset model E∗ will denote the sample
space, here consisting of all interaction multisets over the fixed vertex set V (fur-
ther details provided in Appendix B.1). Again, we endow E∗ with a distance dE :

E∗ × E∗ → R+, before constructing a distribution over E∗ via location and scale in
exactly the same way. However, in this case our location parameter will be an inter-
action multiset Em ∈ E∗. The resultant family of probability distributions is defined
as follows.

Definition 4.2.2 (Spherical interaction multiset family): Given a distance measure
dE(·, ·) on E∗, mode Em ∈ E∗, and dispersion parameter γ > 0, the probability of
observing E is given by

p(E | Em, γ) ∝ exp{−γdE(E , Em)}, (4.2.3)
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and we write
E ∼ SIM(Em, γ) (4.2.4)

if we assume E was sampled via (4.2.3). This we refer to as the Spherical Interaction
Multiset (SIM) family of probability distributions over E∗ with parameters Em and γ.

Note that in (4.2.2) and (4.2.4) no reference is made to dS(·, ·) or dE(·, ·), even
though the respective distributions clearly depend on them. The reasoning here is
these values are not intended to be model parameters but instead subjective choices
made by the practitioner prior to any analysis. With this, it is assumed throughout
that this distance is known a priori, that is, there is no uncertainty in this regard. In
principal, one could relax this assumption. For example, in the SIS model we might
have assume a distance dS,θ(·, ·) where θ are some distance-specific parameters that
can be learnt alongside the model parameters Sm and γ. This, however, is an added
layer of complexity that will not be considered here.

Observe that both models indeed agree with the intuition of location and scale.
Take for example the SIS model. Examining its probability mass function (4.2.1) we
see an observation S has the highest probability when S = Sm, so that Sm does in-
deed correspond to the mode. Moreover, as S moves away from Sm the distance
dS(S,Sm) increases, and consequently the probability of observing S goes down. In
this way, Sm represents the center of the distribution, controlling it location. Fur-
thermore, the rate at which the probability decreases as one gets further from Sm is
controlled by γ, with larger values leading to a faster decrease. As such, when γ is
larger there will be a greater concentration of probability mass about the mode. In
this way, the dispersion γ controls the scale of the distribution.1

This latter aspect, the control of variance by γ, can be formalised via the entropy.
1In analogy with the Gaussian distribution, γ functions like the inverse of the variance, often re-

ferred to as the precision.



CHAPTER 4. MODELLING POPULATIONS OF INTERACTION NETWORKS 80

Considering the SIS model, this is defined to be

H(Sm, γ) := −E [log p(S | Sm, γ)] ,

which quantifies the uniformity of p(S|Sm, γ), whereby larger values ofH(Sm, γ) im-
ply this distribution is ‘more uniform’ over S∗, with a minimum value ofH(Sm, γ) =

0 attained by a pointmass. The entropy also has an interpretation with regards to
randomness or variance, whereby distributions with a higher entropy are more ran-
dom, that is more variable. It can be shown that with any dS(·, ·) and Sm, the entropy
H(Sm, γ) is a monotonic function of γ (Appendix B.3), agreeing with the intuition
that γ controls the variability of the distribution. This holds similarly for the SIM
model.

The distribution as stated in Definition 4.2.1 is normalised as follows

p(S | Sm, γ) = Z(Sm, γ)−1 exp{−γdS(S,Sm)} (4.2.5)

where
Z(Sm, γ) =

∑

S∈S∗
exp{−γdS(S,Sm)} (4.2.6)

is the normalising constant, often referred to as the partition function. In general, due
toS∗ being an infinite space, this summation is intractable; an aspectwhichwill come
into play significantly when we consider the computational aspects of the method-
ology in later sections. In fact, there is no guarantee that Z(Sm, γ) will even exist
for a given γ. Consequently, for some parameterisations (4.2.5) may be an improper
distribution. This has pragmatic implications when it comes to sampling from these
models. In particular, one can observe a divergence in the size of sampled interaction
networks when γ is low, that is, when attempting to draw observations at random
from these models via sequential sampling algorithms such as MCMC (as will be



CHAPTER 4. MODELLING POPULATIONS OF INTERACTION NETWORKS 81

discussed in Section 4.3.6) the size of samples, both in terms of the number of inter-
actions and the size of individual interactions, will tend to grow with each sample.
For this reason, in practice we recommend working with bounded sample spaces,
which we define in Appendix B.1.2. This effectively places a lid on the possible size
of interaction networks, preventing such behaviour. Note even though such bounded
spaceswill be finite, their size grows significantly. As such, the partition functionwill
continue to be intractable even for moderate choices of the bounds. For further elab-
orations regarding this recommendation, see Appendix B.4.

We finalise these details by noting the key differences between the models pro-
posed here and those considered elsewhere. As mentioned, the models presented
above borrow ideas from the multiple-network modelling approach introduced by
Lunagómez et al. (2021). However, their methodologywas proposed for the scenario
where networks were represented via graphs, that is, not for interaction networks. In
contrast, the models above are applicable to interaction networks, being instead de-
fined over the spaces of interaction sequences or multisets. We also make far more
flexible assumptions regarding the dimensions of objects being considered: we do not
assume observations have a fixed number of interactions, or that interactions have a
fixed length2, whilst Lunagómez et al. (2021) assume the number of vertices are fixed,
so that the size of graphs are effectively bounded. Aswewill see, this raises computa-
tional challenges when it comes to designing algorithms to sample from the models
proposed here, or when attempting to infer their parameters given observed data.
Note also that in Definitions 4.2.1 and 4.2.2 little constraint has been placed on the
properties of the underlying distance measure, whilst Lunagómez et al. (2021) spec-
ify that this must be a distance metric, which, as will be argued in the next section,
is perhaps overly restrictive. Finally, as has been mentioned, the models proposed
here are also similar to those appearing beyond the networks literature, such as the

2In theory, though, as discussed, it is recommended that in practice one constrains the space.
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Mallows model (Vitelli et al., 2018) and the complex Watson distribution (Mardia
and Dryden, 1999). Again, the key difference is the space upon which we define our
models.

4.2.2 Distance measures

Evidently, use of the models defined in Section 4.2.1 requires specification of dis-
tances dS and dE between interaction sequences and multisets. In this section, we
provide guidance on choosing such distances, highlighting the properties or features
one should take into account, before discussing which of the distances introduced in
Chapter 3 are most suitable.

Desirable properties

When considering whether a distance might be used within either of the models
proposed in Section 4.2.1, one should firstly consider its theoretical properties. As
discussed in the previous section, currently no restriction has been placed on the
distance measures being used within the models of Definitions 4.2.1 and 4.2.2. How-
ever, considering the metric conditions (i) to (iii), having a distance is which does
not satisfy the identity of indiscernibles (i) will be undesirable. The reason being
that such distances are likely to result in models which are unidentifiable, compli-
cating parameter inference and making them of little practical use. However, for the
remaining two metric conditions, namely symmetry (ii) and the triangle inequality
(iii), there is no theoretical reason why they need to hold for the given distance to
be used within the model. Nonetheless, there are practical consequences that should
be borne in mind. Regarding the symmetry condition (ii), it should be noted that
the proposed models only use one ‘side’ of the chosen distance, and thus a different
model will be defined depending on which way round the distance is evaluated. For
example, considering the SIS model, notice the probability p(S | Sm, γ) of (4.2.1) in-
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cludes dS(S,Sm) in its evaluation. However, one could quite easily include dS(Sm,S)

instead, which, for an asymmetric distance, would parameterise a different model. It
seems unlikely that an asymmetric distance would be of interest, but if in such a case,
one should take care in light of this fact. For the triangle inequality (iii), to reinforce
the claim it need not hold, it is worth noting that a multivariate Gaussian with no
correlation effectively uses a squared Euclidean distance, which does not satisfy the
triangle inequality. Nonetheless, one should be careful that such distances continue
to imply sensible modelling assumptions. Moreover, distances which do not satisfy
the triangle inequality may induce a geometry on the underlying space that differs
somewhat from distances which do, which could potentially have consequences for
the computational schemes that will be introduced in subsequent sections, wherein
we will attempt to navigate such spaces via sampling algorithms.

In addition to theoretical concerns, the computational cost of the distance should
also be taken into account. As will be seen in later sections, distances feature heavily
in our computational schemes, both to sample from our models and to conduct infer-
ence for their parameters. As such, these algorithmswill be sped-up or slowed-down
quite significantly depending on how costly the chosen distance is to compute.

Finally, one should consider modelling assumptions implied by a given distance.
This can at times be subtle, and distances which prove useful in other applications
may be unsuitable for use with these models. As a knock-on effect, the choice of
distance will influence the interpretations of model parameters (as will be illustrated
in the next section), most notably the mode, that is, Sm for the SIS model and Em

for the SIM model. As such, a distance which results in an easily interpretable value
thereof will be beneficial.
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Example distances

Of the distances in introduced in Chapter 3, it seems the edit and matching distances
(Definitions 3.5.1 and 3.7.1) are the most suitable choices, for two main reasons: (i)
both are distances metrics, and thus have strong theoretical properties, in particular,
they satisfy metric condition (i), the identity of indiscernibles, and (ii) they lead to
natural parameter interpretations, as will be illustrated in Section 4.2.3.

Note both the edit andmatching distance require specification of a distance dI(·, ·)
between interactions, and a penalty δ(·) for unmatched interactions. Regarding the
interaction distance, both the LSP and LCS distances (Section 3.4) can be invoked.
Moreover, as will be shown in Section 4.2.3, each implies slightly different modelling
assumptions, in turn providing inferences which are subtly different. In terms of
the penalty δ(·), recall the two proposals of Chapter 3, namely (i) a fixed-penalty,
whereby δ(I) = ρ for some constant ρ > 0, and (ii) a distance-based penalty, where
δ(I) = dI(I,Λ), where Λ represents the null interaction, which typically corresponds
in some way to the size of I. Though both are valid, we argue that (i) is not suitable
for use within our proposed models, opting instead for the distance-based penalty
(ii). A justification for this will now be outlined.

The following argument will regard use of the edit distance within the SIS model,
but it should be noted that similar reasoning can be be applied to the use of thematch-
ing distancewithin the SIMmodel. The key point is that adoption of the fixed penalty
within the edit distance will lead to a distribution of probability over the underlying
space which implies unrealistic modelling assumptions. Suppose we have assumed
the edit distance dE,δ(·) (Definition 3.7.1), with a penalty function given by δ(I) = ρ,
where ρ > 0 is a fixed constant. Suppose also the mode Sm = (Im1 , . . . , ImNm) and
dispersion γ have been fixed, and consider an observation S = (I1, . . . , IN) drawn
from the SIS model with these parameters, that is S ∼ SIS(Sm, γ). Moreover, assume
S is such that N > Nm, that is, S has more paths than the mode. Since S has more
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paths, at least one of these must be unmatched when evaluating dE,δ(·)(S,Sm) (as in
Figure 3.7.1a). Assuming that the ith path in S is such an unmatched path, writing

SI = (I1, . . . , Ii−1, I, Ii+1, . . . , IN),

denoting S with the ith path given by I, consider now the conditional distribution
of this path given the others, that is

p(I|S−i,Sm, γ)

where here we use the notation S−i to denote all the paths of S excluding the ith,
making clear that we are conditioning on their values. This distribution, over the
space of paths, can be obtained directly from the probability of SI implied by the
model, namely

p(I | S−i,Sm, γ) ∝ exp{−γdE,δ(·)(SI ,Sm)}

∝ exp{−γ · δ(I)}

= exp{−γρ}

∝ 1

(4.2.7)

where here we use the fact that since I is not included in the matching it features in
dE,δ(·)(S,Sm) only via its penalty. Notice that (4.2.7) implies each path I is equally
likely, under the assumed model. Though this may seem innocuous, notice if con-
sidering the model over the infinite space of interaction networks, this conditional
distribution will be over the infinite space of all paths. In this case, (4.2.7) will actu-
ally be an improper distribution, since its normalising constantwill involve an infinite
sum of constants. Moreover, this necessarily implies the whole unconditional distri-
bution (of the model) will also improper. Even if we consider bounding the space,
as discussed in Section 4.2.1, in assigning equal probability to all paths therein, the
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distribution (4.2.7)will imply a higher probability of I being of long length, by virtue
of their prevalence. For example, if we have V = |V| vertices, there will be V k paths
of length k, and V k+1 paths of length k + 1, which would imply the probability of I
being length k+1will be V times higher than the probability its being length k. This
is a very odd assumption to make and unlikely to hold in practice.

For these reasons, we recommend not using a fixed penalty within the edit or
matching distances, opting instead for one which somehow takes the size of the path
being penalised into account, such as the distance-based penalty. This way, the dis-
tribution of probability in the underlying space can be better controlled, avoiding the
undesirable properties illustrated above.

4.2.3 Model interpretation

We now look to provide some intuition for our proposed models, examining their
features visually by plotting some randomly sampled observations. Here we will (i)
illustrate the role of γ in controlling level of noise, (ii) strike a comparison between the
SIS an SIMmodels, showing how the assumptions regarding order of pathsmanifests
itself in observations, and (iii) compare models with different distance metrics, in
particular, those with different choices for the distance between interactions.

Note it is somewhat non-trivial to sample from themodels defined in Section 4.2.1,
and we must rely on an MCMC algorithm to do so. The details of this algorithm
will be outlined later (in Section 4.3.6), when we turn to the problem of parameter
inference. For now, we note it is via this algorithmwhich the observations illustrated
in this section were drawn.

Figure 4.2.1 summarises these sampled observations. Here we have two tables,
showing samples from SIS and SIM models respectively. These are further divided,
showing samples from each model with different assumed distances. In particu-
lar, the edit distance dE and matching distance dM were used for the SIS and SIM
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Figure 4.2.1: Example samples drawn from our models. Each table cell visualises
three randomly drawn samples from a given model with the dispersion parameter γ
varying. A commonmode was used for each model, as displayed at the top. The edit
andmatching distanceswere assumed, for the SIS and SIMmodels, respectively, with
different choices of path distance, as indicated on the left-hand tabs. For each sam-
ple, shaded entries indicate those matched with the mode, as implied by the optimal
matchings and maximal common subsequences or subpaths found during distance
evaluation, whilst underlined entries indicate unmatched entries or errors.
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model respectively, with dLCS and dLSP as the interaction distances, as indicated in
Figure 4.2.1 via the left-hand tabs. Within each cell, we show three samples from the
associated model with increasing values for the dispersion, that is, for the SIS model
we show samples S1,S2,S3 where Si ∼ SIS(Sm, γi), whilst for the SIMmodelwe show
E1, E2, E3 where Ei ∼ SIM(Em, γi), where the γi were increasing. The mode parameter
for these models was fixed throughout and is shown at the top of Figure 4.2.1, that is,
Sm = ((1, 1, 1), (2, 2, 2), (3, 3, 3)) for the SISmodels and Em = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}

for the SIM models. The vertex set was also assumed to be V = {1, . . . , 7}. Finally,
entries have been highlighted to show how observations associate with the mode.
In particular, shaded entries indicate those shared with the mode, whilst underlined
entries represent errors. These were obtained from the optimal matchings and com-
mon subsequences or subpaths found when evaluating the distance of these samples
to the mode.

Considering first the role of γ in controlling noise, this can be observed through
the presence of a larger number of underlined entries for observations drawn with
lower γ values, that is, those towards the bottom of each cell. Notice how this follows
from the location and scale structure of the model, as discussed in Section 4.2.1: as
γ decreases the probability becomes less concentrated about the mode, leading to a
higher probability of entries not being shared.

Notice also, for all models, each sampled observation contains paths with shaded
entries that can bematchedwith exactly one in themode. Take, for example, the sam-
ple at the very bottom. Here the second path has three shaded entries (1, 1, 1)which
one can see is equal to the first path of the mode. Similarly, the fourth and fifth paths
of this observation can be matched with the second and third of the mode. This
feature, whereby paths in the observations are matched with a path of the mode, is
a consequence of using the edit and matching distances, which, as seen in Defini-
tions 3.5.1 and 3.7.1, are defined by such matchings.



CHAPTER 4. MODELLING POPULATIONS OF INTERACTION NETWORKS 89

Turning now to comparing the SIS and SIM models, notice how the SIS model
preserves the order of paths in the mode, that is, they feature in the same order in
sampled observations (albeit with some noise). In contrast, with the SIM model the
order of paths within sampled observations is not necessarily consistent with the
mode, for example, in the top observation in the lowest cell. Notice this is expected,
since for the SIMmodel, being a distribution over multisets, two samples equal up to
a permutation of path order would be considered the same.

A final point of note regards how the choice of distance, and the modelling as-
sumptions this implies, manifests itself. Comparing samples drawn fromboth the SIS
and SIMmodels with different choices for the distance between interactions, one can
observe different structure in the error or noise, particularly evident as γ decreases.
In particular, when dLCS is assumed the paths of the mode appear as subsequences of
those in the sampled observations, whilst when dLSP is assumed they instead feature
as subpaths.

Now, observe features outlined above will alter the interpretation of model pa-
rameters in each case, most notably the mode. In particular, by the reasoning above,
in using the edit and matching distances, the paths of the mode will each be related
to at most one path within each sample. With SIS model these paths appear (with
noise) in the same order in the observed samples as they do in themode, whilst in the
SIM model the order of the mode and the samples need not be congruent. As such,
for the SIS model Sm represents a sequence of paths often appearing in the observa-
tions, whilst for the SIM model Em represents a collection of paths often appearing in
the observations (in any order). Moreover, with dLCS as the distance between paths,
the paths of the mode represent subsequences appearing within the samples, whilst
if using the dLSP they will represent subpaths. All together, these imply a different
role and interpretation for the mode in each case.
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4.3 Bayesian inference

Given an assumed model, the goal of inference is to discern which parameters are
likely to have generated the observed data. In our case, this amounts to inferring
the mode and dispersion parameters. We approach this task via a Bayesian perspec-
tive, first assuming prior distributions for model parameters before incorporating
observed data to form the posterior. Through a specialised MCMC algorithm, we
subsequently obtain samples from the posterior upon which to base our inference.
In this section, we provide details regarding each of these aspects.

For brevity, we give details regarding the interaction-sequence models (Defini-
tion 4.2.1) only, noting the approach taken for themultiset models is almost identical,
albeit with a change of notation and someminor alterations to theMCMCalgorithms.
Full details of inference for the interaction-multiset models analogous to those given
below can be found in Appendix B.7.

4.3.1 Priors, hierarchical model and posterior

In specifying a prior for themode, we assume itwas itself sampled froman SISmodel,
that is

Sm ∼ SIS(S0, γ0) (4.3.1)

where (S0, γ0) are specified hyperparameters. For the dispersion γ, we simply require
a distribution p(γ)whose support is a subset of the non-negative reals. For example,
we typically take γ ∼ Gamma(α0, β0) with (α0, β0) being hyperparameters. Given
these specifications, an observed sample {S(i)}ni=1 is thus assumed to be drawn via

S(i) | Sm, γ ∼ SIS(Sm, γ) (for i = 1, . . . , n)

Sm ∼ SIS(S0, γ0)

γ ∼ p(γ).

(4.3.2)
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Figure 4.3.1: Summary of our MCMC scheme to sample from the SIS posterior. We
first update the mode via the iExchange algorithm, doing an edit allocation move
with probability β, or a path insertion and deletion move otherwise. We then update
the dispersion via the exchange algorithm.

The likelihood of the sample {S(i)}ni=1 is given by

p({S(i)}ni=1 | Sm, γ) =
n∏

i=1

p(S(i) | Sm, γ)

= Z(Sm, γ)−n exp

{
−γ

n∑

i=1

dS(S(i),Sm)

}
,

and we have the following posterior, up to a constant of proportionality

p(Sm, γ | {S(i)}ni=1) ∝ p({S(i)}ni=1 | Sm, γ)p(Sm)p(γ)

∝ Z(Sm, γ)−n exp

{
−γ

n∑

i=1

dS(S(i),Sm)

}

× exp{−γ0dS(Sm,S0)}p(γ).

(4.3.3)

4.3.2 Sampling from the posterior

To sample from the posterior (4.3.3), we use a component-wise MCMC algorithm
which alternates between sampling from the two conditional distributions

p(Sm | γ, {S(i)}ni=1) and p(γ | Sm, {S(i)}ni=1). (4.3.4)
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Since the normalising constant Z(Sm, γ) depends on the parameters of interest this
implies (4.3.3) is doubly-intractable (Murray et al., 2006; Møller et al., 2006). Such
termswill also persist in both conditionals above,making themalso doubly-intractable.
This precludes the use of standard MCMC algorithms such as Metropolis-Hastings
and necessitates use of the exchange algorithm proposed by Murray et al. (2006).

A high-level summary of our scheme is visualised in Figure 4.3.1. For the disper-
sion conditional, being a distribution over the real line, we can apply the exchange
algorithm directly. In contrast, the mode Sm is a discrete object, the dimensions of
which can vary both in terms of the number of paths and their lengths. This makes
the sample space for themode conditional far less trivial, and sowe considermerging
the exchange algorithmwith the involutiveMCMC (iMCMC) framework of Neklyu-
dov et al. (2020); defining what we call the iExchange algorithm (Appendix B.5). To
fully explore the sample space, we mix together two iExchange moves. In particular,
with probability β, we enact a move perturbing the paths currently present, whilst
with probability (1− β) we attempt a move which varies the number of paths.

4.3.3 Updating the dispersion

Here we outline our MCMC scheme to sample from the dispersion conditional. In
this instance, we suppose Sm is fixed and q(γ′|γ) is some proposal density. In a single
iteration, given current state γ we do the following

1. Sample a proposal γ′ from q(γ′|γ)

2. Sample an auxiliary dataset {S∗
i }ni=1 of size n (same as observed data) where

S∗
i

i.i.d.∼ SIS(Sm, γ′),
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3. Evaluate the following probability

α(γ, γ′) = min

{
1,

p(γ′|Sm, {S(i)}ni=1)p({S∗
i }ni=1|Sm, γ)q(γ|γ′)

p(γ|Sm, {S(i)}ni=1)p({S∗
i }ni=1|Sm, γ′)q(γ′|γ)

}
(4.3.5)

4. Move to state γ′ with probability α(γ, γ′), staying at γ otherwise.

For the proposal q(γ′|γ) we consider sampling γ′ uniformly over a ε-neighbourhood
of γ with reflection at zero. More specifically, we first sample γ∗ ∼ Uniform(γ−ε, γ+

ε) and then let γ′ = γ∗ if γ∗ > 0 and let γ′ = −γ∗ otherwise.
This is a direct application of the exchange algorithm (Murray et al., 2006) and

as such the resultant Markov chain admits p(γ | Sm, {S(i)}ni=1) as its stationary distri-
bution. Moreover, this is what one might call an “exact-approximate” MCMC algo-
rithm, in the sense that (asymptotically) samples drawn thereof will be distributed
according to the desired target, meaning that one could in theory obtain exact sam-
ples given infinite resource. A closed form of (4.3.5) and derivation thereof can be
found in Appendix B.6.1.

Observe this algorithm requires the ability to sample from the model. As has al-
ready been noted in Section 4.2.3, this is non-trivial for our proposed models. How-
ever, it is possible to instead sample from these approximately via MCMC, and an
algorithm to do so will be outlined in Section 4.3.6. By replacing the exact sampling
above with approximate MCMC-based samples, we will consequently end-up with
a slightly different algorithm. Crucially, the resulting algorithm will be approximate
as opposed to exact-approximate, that is to say, even in the theoretical limit, sam-
ples will not necessarily be distributed according to the desired target but instead
an approximation thereof. However, as the auxiliary samples look more like an i.i.d.
sample, one will get closer to the respective exact-approximate algorithm. Thus, one
can in theory get arbitrarily close to the exact-approximate scheme by taking steps to
reduce the bias of theMCMC-based auxiliary samples, such as introducing a burn-in
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period or taking a lag between samples.

4.3.4 Updating the mode

We now outline our MCMC scheme to sample from the mode conditional. The key
difference here is in the proposal generation mechanism, which follows the iMCMC
algorithm (Neklyudov et al., 2020) in using a combination of random sampling and
deterministic maps. Here we assume the dispersion γ is fixed and Sm denotes our
current state. Instead of specifying a proposal density, one defines auxiliary variables
u ∈ U , a deterministic function f : S∗ × U → S∗ × U and a conditional distribution
q(u | Sm) over auxiliary variables. The function f must also be an involution, meaning
that is acts as its own inverse, that is, f−1 = f . A single iteration now consists of the
following

1. Sample u ∼ q(u|Sm)

2. Invoke involution f(Sm, u) = ([Sm]′, u′), obtaining proposal [Sm]′

3. Sample auxiliary dataset {S∗
i }ni=1 of size n where

S∗
i

i.i.d.∼ SIS([Sm]′, γ)

4. Evaluate the following probability

α(Sm, [Sm]′) = min

{
1,

p([Sm]′ | γ, {S(i)}ni=1)p({S∗
i }ni=1 | Sm, γ)q(u′ | [Sm]′)

p(Sm | γ, {S(i)}ni=1)p({S∗
i }ni=1 | [Sm]′, γ)q(u | Sm)

}

(4.3.6)

5. Move to state [Sm]′ with probability α(Sm, [Sm]′), staying at Sm otherwise.

Much like the proposal density of aMetropolis-Hasting or exchange algorithm, the u,
f(Sm, u) and q(u | Sm) represent free choices. We consider mixing together two such
specifications, details of which we provide in the next section.
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This scheme represents an instance of what we call the iExchange algorithm (Al-
gorithm 9, Appendix B.5). As shown in Appendix B.5, this can be seen as a special
case of the iMCMC algorithm. As such, this represents an exact-approximateMCMC
algorithmwith the resultant Markov chain admitting p(Sm|γ, {S(i)}ni=1) as its station-
ary distribution. Note the iExchange algorithm as defined inAppendix B.5 includes a
Jacobian term in the acceptance probability which we do not include above. The rea-
soning being that since both S∗ and U are discrete spaces and f(S, u) is a one-to-one
function (since it is invertible) such terms are not required.

As with the dispersion update of the previous section, notice this similarly re-
quires the ability to obtain exact samples from the model. Again, since we cannot do
this in general, we propose to draw these samples via an MCMC algorithm that will
be outlined in Section 4.3.6. Consequently, the resultant algorithm will again be ap-
proximate rather than exact-approximate, but will approach the exact-approximate
algorithm the closer the MCMC samples get to an i.i.d. sample.

4.3.5 Mode update moves

We now give details regarding two iExchange specifications for themode conditional
updates. In the first, we keep the number of paths fixed, varying only the path lengths
or what we call the inner dimension. For example, in the context of the Foursquare
data, this would amount to altering a particular sequence of check-ins. In the second,
we look to vary the number of paths or what we call the outer dimension. For example,
in the Foursquare data this would equate to introducing or removing a whole day of
check-ins.

Edit allocation

Supposing Sm = (I1, . . . , IN) is our current state, the main idea of this move is to
allocate a number of “edits” to each path in Sm. These edits consist of inserting and
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Figure 4.3.2: Illustrating the edit allocation move. Shaded entries indicate deletions
and insertions, whilst bars visualise allocation of edits to paths. Bar height is propor-
tional to the number of edits allocated to a path z, whilst the green (top) portion of
the bar denotes the number of insertions a and the pink (bottom) portion represents
the number of deletions d.

deleting entries, where if the number of insertions and deletions are unbalanced,
paths of smaller or larger sizes relative to the current state will be proposed, thus
varying the inner dimension. For an illustration, see Figure 4.3.2.

We now give descriptive details of this proposal generation mechanism and show
how it can be cast in the light of iMCMC. First, we specify the total number of edits
to be made, denoting this δ ∈ Z≥1. Next, we specify an allocation of these edits to the
paths of Sm, denoting this z = (z1, . . . , zN), where zi ∈ Z≥0 denotes the number of
edits allocated to the ith path such that∑N

i=1 zi = δ. For example, in Figure 4.3.2 we
have δ = 7 and z = (3, 1, 3, 0).

Given zi we edit the ith path Ii to obtain a corresponding proposal I ′i in the follow-
ing manner. First, we partition the zi edits between deletions and insertions, letting
di ∈ {0, . . . ,min(ni, zi)} denote the number of deletions, where ni denotes the length
of the ith path, with ai = zi − di then denoting the number of insertions. Note, we
cannot delete more entries than are present, hence the restriction di ≤ min(ni, zi).

The penultimate step is to specify which entries to delete and where to insert new
entries, which we denote via subsequences. Introducing the notation [n] = (1, . . . , n),
we define subsequence of [n] of size m to be a vector v = (v1, . . . , vm) such that
1 ≤ v1 < v2 < · · · < vm ≤ n. Now, we let vi be a subsequence of [ni] of size di
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denoting the entries of Ii to be deleted, whilst v′
i is subsequence of [mi] of size ai,

denoting the location of entries to be inserted in I ′i, where mi = ni − di + ai de-
notes the length of I ′i. For example, considering the first path in Figure 4.3.2 we have
I1 = (a, b, a, b, a) and I ′1 = (d, a, b, a) with v1 = (4, 5) and v′

1 = (1) indexing the dele-
tions and insertions respectively. The final step is to specify entries to insert, which
we denote yi = (yi1, . . . , yiai) where yij ∈ V . For example, in Figure 4.3.2 we have
y1 = (d).

Given the information above, one can enact the specified deletions and insertions,
mapping to a proposal [Sm]′ = (I ′1, . . . , I ′N). This can be viewed in the iMCMC
framework as follows. First, collate all this information into the auxiliary variable
u = (δ, z, u1, . . . , uN) where ui = (di,vi,v

′
i,yi). Now, if we write the required involu-

tion as follows
f(Sm, u) = (f1(Sm, u), f2(Sm, u)) = ([Sm]′, u′),

then in enacting the specified edit operations we have effectively defined the first
component f1(Sm, u) = [Sm]′. The second component we define as follows

f2(Sm, u) = (δ, z, u′
1, . . . , u

′
N)

where
u′
i = (zi − di,v

′
i,vi, (Ii)vi

) (4.3.7)

where (Ii)vi
= (xiv1 , . . . , xivdi

) is the subsequence of Ii indexed by vi = (v1, . . . , vdi).
On an intuitive level, u′

i parameterises the edits to the ith path Ii which are exactly
the opposite of those parameterised by ui, namely we delete zi − di entries indexed
by v′

i, then insert entries (Ii)vi
at locations indexed by vi. In this way, enacting the

operations parameterised by u′ will take us back to Sm, that is

f1([Sm]′, u′) = Sm,
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furthermore observe that reapplying the operations of (4.3.7) to u′
i itself takes us back

to ui

(zi − (zi − di),vi,v
′
i, (I ′i)v′

i
) = (di,vi,v

′
i,yi) = ui

where yi = (I ′i)v′
i
since v′

i indexed where the entries yi were inserted in I ′i. This
implies

f2([Sm]′, u′) = (δ, z, u1, . . . , uN)

and hence
f(f(Sm, u)) = f([Sm]′, u′) = (Sm, u),

that is, f(Sm, u) is indeed an involution.
Regarding the auxiliary distribution q(u|Sm), we consider the following

δ ∼ Uniform{1, . . . , νed}

z | δ ∼Multinomial(δ ; 1/N, . . . , 1/N)

di | zi ∼ Uniform{0, . . . ,min(zi, ni)} (for i = 1, . . . , N)

whilst vi and v′
i are drawn uniformly and the entry insertions yi are assumed to be

sampled from some general distribution q(yi|Ii), which we typically take to be the
uniformdistribution overV . The only tuningparameter here is νed, which controls the
aggressiveness of proposals, with larger values leading tomore edits being attempted
on average.

Further details, including examples of possible insertion distributions q(yi|Ii) and
derivations of key terms appearing the acceptance probability (4.3.6), can be found
in Appendix B.6.3.
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Path insertion and deletion

With this move we look to vary the outer dimension, that is, the number of paths.
Similar to Section 4.3.5, we consider doing so by random deletion and insertion. The
difference in this case is that we delete and insert whole paths (see Figure 4.3.3).

In particular, with Sm = (I1, . . . , IN) denoting our current state, we first choose
a total number of insertions and deletions ε ∈ Z≥1. Next, we partition these, letting
d ∈ {0, . . . ,min(N, ε)} denote the number of deletions, leaving a = ε − d insertions.
For example, in Figure 4.3.3we have ε = 3, d = 2 and a = 1. Next, we choose locations
of deletions and insertions. In particular, we let v be a length d subsequence of [N ]

denoting which paths of Sm are to be deleted, whilst v′ is a length a subsequence of
[M ], where M = N − d + a, denoting where inserted paths will be located in our
proposal [Sm]′. For example, in Figure 4.3.3 we have v = (2, 4) and v′ = (3). Finally,
for each i = 1, . . . , a we choose some path I∗i to insert into entry v′i of [Sm]′. For
example, in Figure 4.3.3 we have a single path I∗1 = (c, b, b, a) which we insert to the
third entry.

As in Section 4.3.5, given the information above we can insert and delete the cor-
responding paths to obtain a proposal [Sm]′. Collating this into the auxiliary variable
u = (ε, d,v,v′, I∗1 , . . . , I∗a) this can similarly be seen as defining the first component
of the required involution. The second component we define a follows

f2(Sm, u) := (ε, ε− d,v′,v, Iv1 , . . . , Ivd) = u′

a b a b aSm = c d c d c a b c d c a b b a

a b a b a[Sm]′ = a b c d c c b b a

Figure 4.3.3: Illustrating path insertion and deletion move, where given current state
Sm the proposal [Sm]′ is obtained by deleting and inserting the highlighted paths.
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which intuitively parameterises the exact opposite set of operations to u, namely
where we make ε total insertions and deletions but instead delete ε − d = a paths
indexed by v′, before inserting the paths (Iv1 , . . . , Ivd) (of Sm) into locations indexed
by v. As such, we have the following

f1([Sm]′, u′) = Sm,

and, furthermore, reapplying the second component just defined leads to

f2([Sm]′, u′) =
(
ε, ε− (ε− d),v,v′, I ′v′1 , . . . , I

′
v′ε−d

)

= (ε, d,v,v′, I∗1 , . . . , I∗a)

= u

using the fact that I ′v′i = I
∗
i , since by definition I∗i was inserted to the (v′i)th entry of

[Sm]′. Altogether this implies

f(f(Sm, u)) = f([Sm]′, u′) = (Sm, u),

that is, f(Sm, u) is an involution.
Regarding sampling of auxiliary variables, we consider the following

ε ∼ Uniform{1, . . . , νtd}

d | ε ∼ Uniform{0, . . . ,min(N, ε)}

whilst we sample v and v′ uniformly and assume path insertions I∗i are drawn from
some general distribution over paths q(I|Sm). This leaves two tuning parameters, νtd
and q(I|Sm), which in combination facilitate control over the aggressiveness of pro-
posals. In particular, νtd controls the number of deletions and insertions attempted,
whilst q(I|Sm) affects how impactful each of these insertions anddeletions are. Again,
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further details, including key terms needed for evaluating acceptance probabilities,
can be found in Appendix B.6.4.

4.3.6 Sampling auxiliary data

Both algorithms to target the conditionals outlined in Sections 4.3.3 and 4.3.4 require
exact sampling of auxiliary data from appropriate interaction-sequence models. Un-
fortunately, we cannot do this in general. Instead, we consider replacing this with
approximate samples obtained via an iMCMC algorithm.

In particular, suppose we would like to obtain samples from an SIS(Sm, γ)model.
Assuming thatS denotes the current state, and auxiliary variablesu, involution f(S, u)
and auxiliary distribution q(u|S) have be defined, in a single iteration we do the fol-
lowing

1. Sample u ∼ q(u|S)

2. Invoke involution f(S, u) = (S ′, u′)

3. Evaluate the following probability

α(S,S ′) = min

{
1,

p(S ′ | Sm, γ)q(u′ | S ′)

p(S, | Sm, γ)q(u | S)

}
(4.3.8)

4. Move to state S ′ with probability α(S,S ′), staying at S otherwise.

where p(S|Sm, γ) denotes the likelihood as given in (4.2.1). Towards specifying u,
f(u,S) and q(u|S), we now recycle the moves of Section 4.3.4, again mixing these to-
getherwith some proportion β ∈ (0, 1). Note, as in Section 4.3.4, we omit the Jacobian
term in the acceptance probability above since we are working with discrete spaces.

In sampling auxiliary data in this manner, we now have two MCMC-based ele-
ments: what one might call the outer MCMC algorithm, navigating the parameter
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space, and the inner MCMC algorithm, sampling auxiliary data. We note this ap-
proach has been considered by others. In particular, Liang (2010) proposed the so-
called double Metropolis-Hastings algorithm which replaces the exact samples of
the exchange algorithm with those obtained via a Metropolis-Hasting scheme. The
difference in our case is use of the more general iMCMC framework, be that in the
outer MCMC scheme (as in the iExchange algorithm), or the inner MCMC scheme
(as outlined above).

4.4 Simulation studies

In this section, simulation studies undertaken to confirm the efficacy of the proposed
methodology and inference scheme will be outlined. In the first two, the posterior
concentration is examined, exploring how this is affected by variability of observed
data and structural features of the mode. In the third, convergence of the posterior
predictive is assessed via a missing data problem. In each, we will be working with
the interaction-sequence models.

4.4.1 Posterior concentration

Given the observed data were generated by an SIS model at known parameters, one
expects the posterior to concentrate about these values as the sample size grows, that
is, the posterior should be consistent. The next two simulation studies will serve to not
only confirm this, but also, in assuming the given posterior is indeed consistent, con-
firm the efficacy of our proposedMCMC algorithms at approximating this posterior.
In addition, we explore what can impact the rate of posterior convergence, consid-
ering both the variability of the observed data and features of the true underlying
mode parameter.

The high-level approach is the following. Given true mode Sm
true and dispersion
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Figure 4.4.1: A summary of our first simulation (Section 4.4.1), where the top plot
visualises the scale of the SIS model used therein, in particular, for different values
of γ it shows {dS(S(i),Sm

true)}1000i=1 where S(i) ∼ SIS(Sm
true, γ), sampled via the iMCMC

scheme of Section 4.3.6. The remaining two plots summarise simulation outputs for
each pair (γtrue, n), where the middle shows distributions of d̄, the average distance to
the truemode, whilst the bottom shows (γ̄−γtrue), the bias of the dispersion posterior
mean relative to the truth.
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γtrue, we draw a sample {S(i)}ni=1 where

S(i) ∼ SIS(Sm
true, γtrue)

before obtaining samples {(Sm
i , γi)}mi=1 from the posterior p(Sm, γ|{S(i)}ni=1). We then

assess the behaviour of these posterior samples via the following summarymeasures

d̄ :=
1

m

m∑

i=1

dS(Sm
i ,Sm

true) γ̄ :=
1

m

m∑

i=1

γi

where ideally d̄ should be close to zero and γ̄ ≈ γtrue. By repeating this a number of
times for different n and evaluating these summaries we can thus get a sense of how
the posterior is concentrating about the true parameters.

Now, recall the dispersion works inversely to the variance, in that lower values
lead to more variable data (Figure 4.4.1, top). Intuitively, when the data is more vari-
able it will be harder to discern the true mode Sm

true, and thus we expect d̄ to decrease
more slowly for lower values of γtrue. Alternatively, as can be seen in Figure 4.4.1,
when γtrue is smaller the difference of their parameterised distributions (as described
by the distribution of distances to themode) becomesmoremarked relative to neigh-
bouring values. As such, we might also expect smaller values for the dispersion to
be easier to recover.

To explore for such properties, we varied γtrue and nwhilst keeping Sm
true fixed. In

particular, we considered γtrue = 3.5, 3.7, 4.0, 4.3, 4.6, 4.9 (highlighted in Figure 4.4.1,
top) and n = 25, 50, 75, 100. The distance we took to be dS = dE with dI = dLCS

between paths. The number of vertices was fixed to V = 20, and the sample space
constrained to be finite as defined in Appendix B.1.2, assuming at most L = 20 paths
in any observation, with each path being of length at most K = 10.

The mode Sm
true of length N = 10 was fixed throughout, sampled from the Holly-
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wood model of Crane and Dempsey (2018). In particular, we drew

Sm
true ∼ Hollywood(α, θ, ν)

where

α = −0.3 θ = 0.3V ν = TrPoisson(3, 1, K),

where TrPoisson(λ, a, b) denotes a truncated Poisson distribution with λ > 0 the pa-
rameter of a standard Poisson, whilst 0 ≤ a < b ≤ ∞ are the lower and upper bounds.
Note this set-up for the Hollywood model, with α < 0 and θ = −V α, corresponds
to the finite setting, implying the sampled interaction sequences will have at most V
vertices.

Regarding priors, we considered an uninformative set-up with (S0, γ0) = (Ŝ, 0.1)

where
Ŝ := argmin

S∈{S(i)}ni=1

n∑

i=1

d2S(S(i),S)

denotes the sample Fréchet mean, whilst we took γ ∼ Uniform(0.5, 7.0). Here we
note the sample {S(i)}ni=1 used to obtain Ŝ will be different in each repetition of the
simulation, and consequently so will Ŝ .

Now, for each pair (γtrue, n)we (i) sampled n observations from an SIS(Sm
true, γtrue)

model, using the iMCMC scheme outlined in Section 4.3.6, with a burn-in period of
50,000 and taking a lag of 500 between samples (ii) obtained m = 250 samples from
the posterior using the component-wiseMCMC scheme of Section 4.3.2, with a burn-
in period of 25,000 and taking a lag of 100 between samples3 (iii) evaluated summary
measures d and γ̄.

We repeated (i)-(iii) 100 times in each case, the results of which are summarised
in Figure 4.4.1. Consulting themiddle plot, we observe that d̄ decreases with n across

3One must also parameterise the MCMC algorithm used to sample the auxiliary data. These were
tuned by considering acceptance probabilities observed when sampling from an SIS(Smtrue, γtrue) dis-
tribution.
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all cases, indicating a concentration of the posterior about the true mode. Further-
more, this decrease is more gradual for lower values of γtrue, agreeing with intuition.
Turning to the bottom plot, the most obvious feature is bias in γ̄ relative to the truth.
Note this is expected, since we have used approximate MCMC samples within our
component-wise scheme of Section 4.3.2. We do, however, see a reduction in this bias
as the sample size grows. Furthermore, for the larger values of n we begin to see a
clearer difference in the variance of γ̄ across different values of γtrue. In particular, the
variance appears to be smaller for lower values of γtrue, agreeing with the intuition
that these are easier to estimate.

4.4.2 Effect of mode structure

Herewe exploredwhether structural features of themodemight impact its inference.
Adopting the same modelling set-up as the previous simulation, but in this case fix-
ing the true dispersion to γtrue = 4.5, we re-sampled the mode in each repetition via

Strue ∼ Hollywood(α,−αV, ν)

where we again take V = 20 and ν = TrPoisson(3, 1, K), whilst α < 0.
The key idea underlying the Hollywood model is a ‘rich get richer’ assumption

made when sampling vertices. This results in α admitting an interpretation regard-
ing the heavy-tailed nature of vertex counts. In particular, for a given interaction
sequence S and vertex v ∈ V one can define an analogue of the vertex degree (often
defined for graphs) as follows

kS(v) := # times v appears in S,

which thus implies, for each S, a sample {kS(v) : v ∈ V , kS(v) > 0}, similar in spirit
to the degree distribution. Now, α can be seen to control the heavy-tailedness of



CHAPTER 4. MODELLING POPULATIONS OF INTERACTION NETWORKS 107

this distribution (see Figure 4.4.2), whereby when α is low one tends to see vertices
appearing a similar number of times, whilst when α is larger these counts become
disproportionately focused on a smaller subset of vertices.

We considered α = −α̃ where α̃ = 1.35, 0.75, 0.35, 0.12, 0.06, 0.03, 0.01 (details on
how these were chosen can be found in Appendix B.2.1) and n = 25, 50, 75, 100. For
each pair (α, n) in a single repetition we (i) sampled Strue ∼ Hollywood(α,−αV, ν),
(ii) sampled n observations from an SIS(Strue, γtrue) model (iii) obtained m = 250

samples from the posterior, and (iv) evaluated summaries. For (ii) and (iii) we used
exactly the same MCMC set-up as in the previous simulation.

Figure 4.4.3 summarises the output of 100 repetitions for each pair (α, n). For
each α, we see values for d̄ closer to zero as n grows, indicating concentration about
the true mode. Furthermore, α shows no clear sign of impacting this concentration.
Regarding the dispersion posterior mean γ̄, as in the previous simulation we observe
bias relative to the truth, with this bias reducing as n grows. Furthermore, this is the
same across all α, with no clear sign that α affects the inference of these values.

4.4.3 Posterior predictive efficacy

A desirable feature of the posterior predictive is a growing resemblance of the true
data generating distribution as the sample size increases. In this simulation, we con-
sidered exploring for such behaviour in the context of a missing data problem.

Suppose we have an observation S in which a single entry is missing, for example

S = ((1, 2, 1, •), (2, 3, 4, 3), (1, 2, 2, 1, 2, 3))

with • denoting the unknown entry. Towards predicting its value, let Sx denote the
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α = −2.0 α = −0.5 α = −0.1

Figure 4.4.2: Visualising the role of α in the Hollywood model. Each plot shows
an aggregate multigraph GS where S ∼ Hollywood(α,−αV, ν) with V = 10, ν =
TrPoisson(3, 1, 10) and α varying. Edge thickness reflects edge multiplicity, whilst
vertex size is proportional to kS(v).
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Figure 4.4.3: Summary of our second simulation (Section 4.4.2), where for each pair
(α, n) the top subplot shows the distribution of d̄, the average distance to the true
mode, whilst the bottom shows the distribution of γ̄, the posterior mean dispersion.
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observation obtained by taking this entry to be x ∈ V , that is

Sx = ((1, 2, 1, x), (2, 3, 4, 3), (1, 2, 2, 1, 2, 3)),

and consider assigning a probability to each x ∈ V of being the true entry. If one
knew S ∼ SIS(Sm, γ), then such a distribution could be obtained by comparing the
relative probability of Sx for each x ∈ V , in particular we could consider

p(x|Sm, γ,S−x) :=
1

Z(Sm, γ,S−x)
exp{−γdS(Sx,Sm)}

with Z(Sm, γ,S−x) =
∑

x∈V exp{−γdS(Sx,Sm)} the normalising constant, where we
introduce the notation S−x to indicate that we are conditioning on the other known
entries (and implicitly also on the dimensions of the observation). We refer to this as
the true predictive for x ∈ V .

In practice, with the true distribution unknown, one can instead leverage an ob-
served sample {S(i)}ni=1 by averaging with respect to the posterior as follows

p(x|{S(i)}ni=1,S−x) =
∑

Sm∈S∗

∫

R+

p(x|Sm, γ,S−x)p(Sm, γ|{S(i)}ni=1)dγ,

defining the posterior predictive for x ∈ V , which itself can be approximated using a
sample {(Sm

i , γi)}mi=1 from the posterior via

p̂(x|{S(i)}ni=1,S−x) :=
1

m

m∑

i=1

p(x|Sm
i , γi,S−x),

a derivation of which can be found in Appendix B.2.2. To now predict x, one can for
example take the maximum a posteriori (MAP) estimate

x̂ = argmax
x∈V

p̂(x|{S(i)}ni=1,S−x).
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In this simulation, we considered assessing the agreement of the true and posterior
predictive as n grows by examining how often their predictions were equal. We
adopted the same modelling set-up as Section 4.4.1, jointly varying the dispersion
and sample size, in this case considering γtrue = 3.7, 4.2, 4.5, 4.9 and n = 25, 50, 75, 100.
However, in a slight deviation we here re-sampled the mode in each repetition from
a fixed Hollywood model.

For a given pair (γtrue, n) and a pre-specified number of test samples ntest, in a
single repetition we (i) sampled mode Strue ∼ Hollywood(α,−αV, ν), with α =

−0.35 (V and ν as in Sections 4.4.1 and 4.4.2) (ii) sampled training and testing data
{S(i)}n+ntest

i=1 from an SIS(Strue, γtrue) model, (iii) obtained a sample {(Sm
i , γi)}mi=1 from

the posterior p(Sm, γ|{S(i)}ni=1), that is, using the n training samples, (iv) for each
i = n+1, . . . , n+ntest and for each entry of S(i) (that is, each entry of each interaction)
we assumed it to be missing and obtained predictions with both p̂(x|{S(i)}ni=1,S−x)

and p(x|Sm,S−x) viaMAP estimates, and finally (v) returned the proportion of times
these predictions were equal.4 For (ii) and (iii) we used the same MCMC schemes
as previous simulations.

Figure 4.4.4 summarises the output of 100 repetitions for each pair (γtrue, n), with
ntest = 100 in each repetition. For each γtrue, we see the predictions of the posterior
predictive are more often in accordance with those of the true predictive distribu-
tion as the number of training samples increases. Moreover, when γ is lower, that is,
the observed data is more variable, the discrepancy between the true and posterior
predictive tends to be larger. Observe this is expected, given the observed behaviour
of the first posterior concentration simulation (Section 4.4.1), wherein the posterior
concentrated more slowly when γ was lower. In summary, the posterior predictive
appears to better resemble the true data generating distribution as the sample size

4Note both the true and posterior predictive can have multiple values achieving the maximum
defining the MAP estimate. To test for equality in these scenarios we thus compared the set of values
achieving this maximum, whereby the two predictions would be considered equal if these sets were
equal.
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Figure 4.4.4: Summary of posterior predictive simulation (Section 4.4.3). Here we
summarise the proportion of times the true and posterior predictions coincidedwhen
predicting missing entries of sampled test data, with boxplots showing the distribu-
tion of these proportions over 100 repetitions.

grows, as was expected.

4.5 Data analysis

In this section, the applicability of the proposed methodology will be illustrated via
an example analysis of the Foursquare check-in data (Section 2.4.2). Asmentioned in
Section 4.1, an alternative approach to ours is to first aggregate observations to form
graphs before applying a suitable graph-based method. As such, we compare our
inference with some graph-based estimates. Note that in aggregating observations to
form graphs one implicitly makes the assumption that the order of interaction arrival
is irrelevant. Hence, for fairnesswe opt tomake this comparisonwith our interaction-
multiset model.

4.5.1 Data background and processing

For this analysis, we consider a version of the Foursquare data containing check-ins
for users from New York and Tokyo (Yang et al., 2015b), focusing in particular on
those in New York, looking at one month of check-in data over the period from 12
April to 12 May 2012.
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As discussed in Section 2.4.2, here vertices correspond to venue categories, with
a single interaction representing a sequence of check-ins made by a given user dur-
ing a single day. However, compared with the analysis of Chapter 3, here a slightly
different set of venue category labels was considered. In particular, note the venue
category labels have a hierarchical structure, for example, the category “Jazz Club”
is a subcategory of “Music Venue”, which is itself a subcategory of “Arts & Entertain-
ment”. Those given by Yang et al. (2015b), and used in Chapter 3, were the lowest-
level, that is, “Jazz Club” in the example above. In this analysis, the highest-level
venue category was instead used, that is, “Arts & Entertainment” in this example.

The data was also further filtered prior to analysis. Firstly, it is clearly possible
a user might only check-in to a single venue on a given day. Since our analysis is
based on interaction multisets and concerns the movements of users between venue
categories, such observations provide little information. Furthermore, such observa-
tions will be disregarded when aggregating to form graphs, and therefore would not
feature in any of the graph-based approaches with which we intend to compare. As
such, we considered only days where a user had checked-in to at least two venues. To
further ensure each observation contained enough information, we considered only
users with at least 10 observed days of check-ins. This left a total of 402 observations.

It was also necessary to filter these even further to avoid the inclusion of outliers
which might lead to degenerative behaviour. In particular, it was seen that the in-
clusion of a few observations of significantly different size (for example, with many
more interactions), or observations which shared little in common with the others,
could result in an inferred mode that was empty, that is, an interaction network with
no interactions. Clearly, such an inference provides little insight, making this an un-
desirable scenario. In addition, the MCMC scheme in such cases often showed poor
mixing. For these reasons, we used the distancemetric in themodel fit (thematching
distance in this case) to select a subset of 100 data points to analyse. In particular, we



CHAPTER 4. MODELLING POPULATIONS OF INTERACTION NETWORKS 113

used the normalised version of this distance, that is, via the Steinhaus transform (see
Section 3.2), which ensured the observations that were selected shared something in
common. For further details, see Appendix B.8.1.

4.5.2 SIM model fit

Following data processing, we were left with a sample of multisets {E (i)}ni=1, where
each E (i) =

{
I(i)1 , . . . , I(i)

N(i)

}
denotes the data of the ith user, with I(i)j denoting a

single day of their check-ins. Recalling the inferential questions of interest outlined
in Section 4.1, we now use our methodology to obtain (a) an average multiset of
paths, and (b) a measure of variability.

In particular, using the Bayesian inference approach outlined in Appendix B.7,
we fit our SIM model to these data. We made use of the matching distance dM, with
the LSP distance dLSP between paths. As seen in Section 4.2.3, a consequence of as-
suming this distance is that our inferred mode will contain paths often appearing
as subpaths in the observed data. For our priors, we assumed Em ∼ SIM(Ê , 3.0),
with Ê denoting the sample Fréchet mean of the observed data {E (i)}ni=1, whilst we
assumed γ ∼ Gamma(5, 1.67). Via our MCMC scheme, we then obtained a sam-
ple {(Emi , γi)}Mi=1, from the posterior p(Em, γ|{E (i)}ni=1), obtaining a total of M = 500

samples with a burn-in period of 25,000 and taking a lag of 50 between samples.
Given the posterior sample {(Emi , γi)}Mi=1, we subsequently obtained point esti-

mates (Êm, γ̂), with the mode estimate Êm functioning as our desired average, and
γ̂ a measure of data variability. In particular, we considered the following

Êm = argmin
E∈{Em

i }Mi=1

M∑

i=1

d2M(Emi , E) γ̂ =
1

M

M∑

i=1

γi

that is, the Fréchet mean for the mode and the arithmetic mean for the dispersion,
both obtained from their respective posterior samples.
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As mentioned, due to our choice of distance, the inferred mode Êm represents a
collection of pathways frequently seen together in the observed data. To visualise
this, we consider plotting the paths of Êm alongside those of its two nearest observa-
tions. Supposing the data points have been labelled such that E (1) and E (2) denote the
first and second nearest neighbours of Êm with respect to dM, writing these as follows

Êm =
{
Îm1 , . . . , ÎmNm

}
E (1) =

{
I(1)1 , . . . , I(1)N1

}
E (2) =

{
I(2)1 , . . . , I(2)N2

}
,

Figures 4.5.1 to 4.5.3 visualise the paths of Êm, E (1) and E (2) alongside one another.
In each, the paths of E (1) and E (2) have been aligned in accordance with the optimal
matching found when evaluating their distance from Êm via dM. In particular, in the
jth row we plot Îmj alongside I(1)j and I(2)j , denoting the paths matched to Îmj when
evaluating dM(Êm, E (1)) and dM(Êm, E (2)), respectively. The paths of E (1) and E (2) not
matched to any of Êm are then shown in the remaining rows.

Here one can observe paths of Êm do indeed appear as subpaths within those of
E (1) and E (2). In fact, in first three rows of Figure 4.5.1 they are equivalent, that is Îmj =

I(1)j = I(2)j , whilst for the remaining rows of Figure 4.5.1 and those of Figures 4.5.2
and 4.5.3 we begin to see differences in the observed paths relative to those of the
estimated mode, however, in almost all cases, the paths in the mode Îmj continue to
feature as subpaths of both I(1)j and I(2)j . Note also that no paths in Êm are of length
greater than two. At face value this might seem to imply use of this method gains
nothing over a graph-based approach. However, as we illustrate in the next section,
the subtle difference is that our inference is unambiguous.

It it worth noting that as an alternative to Êm, one could instead use the sample
Fréchet mean Ê directly as a summary. However, when the data is quite variable
this sample mean, being itself an observation, is likely to differ in some ways from
the other observations. In contrast, the inferred mode Êm contains only paths which
have appeared in some manner within many observations. In this way, our estimate
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Êm can be seen as a pruned version of Ê , where the common theme present in all
observations has been extracted.

For the dispersion, we have γ̂ ≈ 3.02, with a trace-plot of the posterior samples
{γi}Mi=1 from which this estimate was obtained shown in the left-hand plot of Fig-
ure 4.5.4. To aide interpretation of γ̂, the right hand plot of Figure 4.5.4 visualises
the distribution of dM(E , Êm) where E ∼ SIM(Êm, γ) for different values of γ, each
boxplot summarising 1,000 samples drawn from the respective multiset model via
our iMCMC algorithm (Appendix B.7.5). A comparison with our estimate γ̂ shows
that we expect the distance of samples to the mode to be around 25 (from γ = 3.0),
which, since we used the matching distance, can be seen as the average number of
edit operations required to transform the mode into an observation. Considering the
mode has 18 entries in total (9 paths of length two), this implies a reasonable amount
of variability in the observed data.

4.5.3 Comparison with graph-based inferences

As alluded to already, an alternative to applying ourmethodology is to apply a graph-
based method to aggregated observations. As such, we consider striking a compar-
ison between this approach and ours. The intention here is twofold. On one hand,
to show the graph-based inferences are not too dissimilar from that obtained via our
approach. Whilst on the other, that our approach goes beyond the graph-basedmeth-
ods, in so far as producing an inferencewhich is unambiguous regarding the presence
of higher-order information in the observed data.

Given the observed sample {E (i)}ni=1, one can obtain a sample of graphs {G(i)}ni=1

via aggregation, namely, by letting G(i) = GE(i) , the multigraph obtained by aggre-
gating the paths of E (i), as outlined in Section 2.4.1. Note some multiple-network
methods require graphs, not multigraphs. However, a graph can be obtained natu-
rally from a multigraph by simply removing edge multiplicities, including an edge
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Figure 4.5.1: A subset of paths from our point estimate Êm for the Foursquare data,
alongside those of E (1) and E (2), its two nearest neighbours. Paths are aligned accord-
ing to the optimal matching found when evaluating dM(Êm, E (i)) for each neighbour
E (i). For each observed path I(i)j , dashed pink edges and pink vertices indicate differ-
ences with Îmj , with edges labels indicating the order of vertex visits. The remaining
paths can be seen in Figures 4.5.2 and 4.5.3.
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Figure 4.5.2: Paths of our point estimate Êm for the Foursquare data, alongside those
of E (1) and E (2), its two nearest neighbours. The remaining paths can be seen in Fig-
ures 4.5.1 and 4.5.3.
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of E (1) and E (2), its two nearest neighbours. The remaining paths can be seen in Fig-
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Figure 4.5.4: Summary of inference for the dispersion for the Foursquare data. Left
shows a trace-plot of the posterior samples {γi}mi=1, whilst the right plot summarises
the distribution of distances to the inferred mode for different values of γ, aiding
interpretation of our estimate γ̂.
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if it was observed at least once. In what follows, both aggregation schemes will be
considered.

In the same way that our estimate Êm summarises the sample {E (i)}ni=1, one can
consider obtaining a multigraph or graph Ĝ which summarises the sample {G(i)}ni=1.
This can be achieved through a variety of different approaches, the choice of which
will depend on whether the G(i) are graphs or multigraphs.

In the case where each G(i) is a graph, each associated adjacency matrix AG(i) will
be a binary matrix. With this, a simple model-free summary of this sample of graphs
is the majority vote, which we denote ĜMV, where an edge is included if it was ob-
served in at least one half of the observations. More formally, ĜMV can be defined in
terms of its adjacency matrix as follows

AĜMV
ij = 1(Āij ≥ 0.5),

where Ā is the real-valued matrix with entries Āij =
1
n

∑n
k=1A

G(k)

ij , that is, the entry-
wise average of the observed adjacency matrices. As a model-based alternative, we
turn to the centered Erdös-Rényi (CER) model of Lunagómez et al. (2021), which
is defined as follows. Given graph Gm and parameter 0 < α < 0.5 we say G ∼
CER(Gm, α) if the graph G was sampled, via its adjacency matrix, as follows

AG
ij |AGm

ij , α = |AGm

ij − Zij| where Zij
i.i.d.∼ Bern(α),

that is, for each possible edge in Gm with probability αwe flip it, that is, either remove
it, or insert it if not present. Using this, we assumed the following hierarchical model

G(i) | Gm, α ∼ CER(Gm, α) (for i = 1, . . . , n)

Gm ∼ CER(G0, α0)

α ∼ 0.5 · Beta(β1, β2)
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where G0 (a graph), 0 ≤ α0 ≤ 0.5, β1 > 0 and β2 > 0 denote hyperparameters. For
this analysis, we assumed G0 = ĜMV and α0 = 0.5, leading to a uniform distribution
over the space of graphs for the prior on Gm, whilst we took β1 = β2 = 1, similarly
leading to the uniform distribution over the interval (0, 0.5) for the prior on α. Fol-
lowing the scheme of Lunagómez et al. (2021), we drew a sample {(Gmi , αi)}Mi=1 from
the posterior p(Gm, α|{G(i)}ni=1) via MCMC, obtaining the desired summary via the
sample Fréchet mean

ĜCER = argmin
G∈{Gm

i }

n∑

i=1

d2H(G,Gmi )

where dH denotes the Hamming distance between graphs (Lunagómez et al., 2021;
Donnat and Holmes, 2018). Figures 4.5.5a and 4.5.5b show these two graph sum-
maries, ĜCER and ĜMV, respectively, for the Foursquare data, where it transpires that
ĜCER = ĜMV.

In the case where each G(i) is a multigraph, and thus each AG(i) is a matrix of non-
negative integers, an analogous model-free summary can be obtained by rounding
the entries of Ā to the nearest integer. Referring to this as the roundedmean estimate
and denoting it ĜRM, it can be defined formally via its adjacency matrix as follows

AĜRM
ij = ⌊Āij⌋+ 1(Āij − ⌊Āij⌋ ≥ 0.5),

where the notation ⌊x⌋ for x ∈ R denotes the floor function. As a model-based ap-
proach, we consider using the SNF model proposed by Lunagómez et al. (2021).
Though originally proposed to model graphs, it can be readily extended to handle
multigraphs (see Appendix B.8.2). Use of the SNF, like our models, requires speci-
fication of a distance metric between graphs. We considered the Hamming distance,
as defined in Section 3.3, that is

dH(G,G ′) =
∑

i,j

∣∣∣AG
ij − AG′

ij

∣∣∣ ,
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which essentially counts the number of edges not shared by the two multigraphs.
Adopting the notation G ∼ SNF(Gm, γ)when a graph G is drawn from the SNFmodel
with mode Gm (a multigraph) and dispersion γ > 0, we assumed the following hier-
archical model

G(i) | Gm, γ ∼ SNF(Gm, γ) (for i = 1, . . . , n)

Gm ∼ SNF(G0, γ0)

γ ∼ Gamma(α, β)

where G0 (amultigraph), γ0 > 0, α > 0 and β > 0 are hyperparameters. For this anal-
ysis, we took G0 to be the sample Fréchet mean of the observed multigraphs {G(i)}ni=1

with respect to the distance d1, whilst we let γ0 = 0.1, α = 3 and β = 1. Again, we ob-
tained a sample {(Gmi , γi)}Mi=1 from the posterior p(Gm, γ|{G(i)}ni=1) via MCMC, before
invoking the sample Fréchet mean to obtain the desired summary

ĜSNF = argmin
G∈{G(i)}ni=1

n∑

i=1

d21(G,Gmi ).

Note that the posterior here will be doubly-intractable, necessitating use of a spe-
cialisedMCMC algorithm. Lunagómez et al. (2021) adopted the algorithm of Møller
et al. (2006), however, since here we consider multigraphs, we cannot apply their
scheme directly. Instead, we took an alternative approach via the exchange algorithm
(Murray et al., 2006), details of which can be found in Appendix B.8.2. Visualisa-
tions of these two multigraph summaries, ĜSNF and ĜRM, can be seen in Figures 4.5.5c
and 4.5.5d, respectively.

Comparing the graph-based methods amongst themselves, we see a slight vari-
ation in the signal they uncover. For example, in taking edge multiplicities into ac-
count, the multigraph-based estimate ĜRM introduces edges which did not appear
in either of the graphs ĜCER and ĜMV, generally involving the node corresponding to
food venues. Conversely, the SNF-based estimate ĜSNF appears to instead disregard
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Figure 4.5.5: A comparison with graph-based inferences. Here (e) shows GÊm , the
aggregate multigraph of our point estimate Êm of Section 4.5.2, whilst (a)-(d) show
alternative inferences obtained via graph-based approaches outlined in Section 4.5.3.
Note that (a) and (b) are graphs, whilst (c)-(e) are multigraphs, with edge thickness
proportional to their weight.
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edges which appear in ĜCER and ĜMV.
To compare these summaries with our estimate Êm one can consider its aggregate

multigraph GÊm , as shown in Figure 4.5.5e. Observe this appears to sit somewhere
in between the multigraph and graph summaries, appearing to have some degree of
similaritywith each, aswe intended to confirm. Moreover, a common theme seems to
appear (for all summaries). Namely, that visits to food venues feature strongly, often
followed or preceded by a visit to another food venue or some other venue category,
with shopping venues being a prevalent choice.

Naturally, one is inclined to ask if the aggregation of our estimate GÊm is not too
dissimilar to these other graph-based summaries, then what does one gain by taking
our approach? Recalling that Êm denotes a multiset of paths, we argue this contains
more information regarding the signals present in the observed data than any graph-
based summary, assuming the data were truly path-observed. This comes back to a
point made in Section 4.1, namely that when one aggregates paths a loss of informa-
tion is incurred, which will in turn limit the conclusions one can draw concerning the
original data. For example, consider the CER-based summary ĜCER of Figure 4.5.5a,
where we see the following two edges

e1 = (recreation, food) e2 = (food, shops).

This could imply at least two things. Perhaps many users went from a recreation
venue to a food venue, and separately, that is, on a different day, from a food venue
to a shopping venue. Alternatively, maybe many users traced the path recreation→
food → shops in a single day. Both are possibilities, and from a graph-based sum-
mary there is no way of knowing which is the case. However, in directly estimating
a collection of paths, we can make such distinctions. For example, considering our
estimate Êm for the Foursquare data (Figures 4.5.1 to 4.5.3), it appears we are in the
former case, since no paths therein are of length greater than two.
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4.6 Discussion

To summarise, in this chapter a novel Bayesianmodelling framework capable of analysing
samples of interaction networks has been proposed, without the need to perform any
aggregation of observations. This has been supplemented with specialised MCMC
schemes, facilitating inference for the proposed models. Through simulation stud-
ies, efficacy of the methodology and inference scheme have been confirmed, whilst
its applicability has been illustrated via an analysis of the Foursquare check-in data,
highlighting how answers to inferential questions (a) and (b) posed in Section 4.1
can be obtained. Moreover, in comparing with graph-based methods we highlighted
the extra information one subtly gains by taking our approach.

Regarding future work, there are a few ways one might consider building upon
what has been proposed here. Firstly, a natural extension is to consider a mixture
model, with our SIS or SIMmodels functioning asmixture components, whichwould
allow one to capture heterogeneity in the observations and provide an model-based
approach to clustering interaction networks.

Secondly, on a more pragmatic note, one could also take steps to scale-up our
approach computationally. For example, one might be able to circumvent the need
to use the exchange algorithm if the normalising constant for a particular distance
metric was derived, as was the case for the CER model in Lunagómez et al. (2021).

One could also consider alternative modelling approaches. For example, if one is
able to make an exchangeability assumption for each observation, that is, the order in
which paths arrive is not of interest, then a model reminiscent of the latent Dirichlet
allocation (LDA) model (Blei et al., 2003) would be a possibility. This would assume
each observation was drawn from some mixture distribution over paths (as in the
simulation studies of Chapter 3), with mixture components being shared between
observations but mixture proportions differing. This would also have a natural non-
parametric extension via the hierarchical Dirichlet process (HDP) (Teh et al., 2006).
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It would be interesting to see how the inferences from such an approach compare
with ours, at least qualitatively, and whether there would be any computational ben-
efits. More tangentially, one could also follow the path laid in the wider literature on
multiple networks and consider extendingmodels designed to analyse a single inter-
action network, for example, themodels of Crane andDempsey (2018) orWilliamson
(2016).

Finally, recall from Section 4.5.1 that to avoid unwanted degenerative behaviour it
was necessary to remove outliers from the data before using the proposed method-
ology, in particular, those of vastly different size or that shared little in common with
the other observations. This is a somewhat crude approach, and relies heavily on how
one determines which observations are outliers. As such, it would be interesting to
explore whether a more reasoned approach could be taken by instead handling these
outliers within the modelling framework. An approach might be to assume that ob-
servations were either drawn from an SIS or SIM model with some probability β, or
from some other outliermodelwith probability (1−β), where this outliermodel need
not be an SIS or SIM model. Alternatively, perhaps a different modelling approach,
such as those mentioned in the previous paragraph, is better suited to handling such
outliers.



Chapter 5

Conclusions

In this thesis, the currently unconsidered problem of analysing samples of interaction
networks has been addressed. In particular, through the work outlined in Chapters 3
and 4, methods have been proposed which can provide answers to the questions
posed in Chapter 1. Namely, in Chapter 3 a variety of distance measures which can
be used to compare interaction networks were proposed, which, as was illustrated
via example data analyses, can be used to both cluster networks and predict network-
level covariate information. Building upon this work, a novel modelling framework
was then proposed in Chapter 4, leading to a statistically reasoned approach to the
problem of summarising a sample of interaction networks.

5.1 Limitations

Of course, any method is not without its limitations, with those proposed here being
no exception. Of prominence in this regard would be the complexity that has been
introduced, both conceptually and computationally. In terms of computational cost,
this includes both the distances proposed in Chapter 3, all of which involved solving
some form of optimisation problem during evaluation, and the computationally in-
tensive MCMC scheme required to fit the models proposed in Chapter 4. This limits
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the size of datasets that can be analysed. In addition, the model introduced in Chap-
ter 4 is itself arguably conceptually complex and hard to interpret, in turn making
communication of results a challenge. A driver for this is the manner in which as-
sumptions of a given model are often subtly wrapped-up in the choice of distance,
with distances that may serve uses in other tasks being unsuitable. For example, as
alluded to in Section 4.2.2, it is not recommend to use the fixed-penalty matching
and edit distances, though they appeared to perform well in the simulation studies
of Chapter 3.

A second limitation regards sensitivity to outliers. As seen in the data analysis of
Chapter 4, before using the proposed methodology care had to be taken to correctly
filter the data (see Section 4.5.1), necessary since this was sensitive to the inclusion of
observations which differed significantly from the rest. This included the presence of
observations whichwere of very different size, perhaps with only a few or verymany
interactions, and observations which shared very little in common with the others.
Such sensitivities thus limit the applicability of the proposed approach.

5.2 Future work

Aside from the proposalsmade in the discussions of Chapters 3 and 4, there are some
further ways in which the work of this thesis could be built upon.

Firstly, related to the limitations alluded to above regarding sensitivity to outliers,
it would be interesting to consider modelling approaches which can suitably handle
the scenario where observations have a very different number of interactions. For
example, considering the Foursquare data, there may be very many users with only
a few observed interactions (days of check-ins), alongside users with verymany. In a
way, one would expect to knowmore about the latter, since one hasmore data, whilst
there would be more uncertainty for users with only a few interactions. Considering
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how one might handle having such varying observation-wise uncertainty would be
an interesting avenue to explore.

One could also consider modelling approaches that take into account covariate
information at the level of networks. This would, for example, provide an alterna-
tive to the distance-based approach seen in the Foursquare analysis of Chapter 3.
Methods that could provide deeper insights or be more interpretable than such a
non-parametric approach would be particularly useful.

Finally, note for both datasets considered in this thesis it would be possible to ob-
tain the time at which each interaction was observed. For example, in the Foursquare
data this might be the specific day on which it was observed, whilst in the football
data this would be the time during the match. This could motivate more involved
modelling approaches that take into account such temporal information. With this,
one could then consider questions regarding the interdependence between time and
the structure of observed interactions.



Appendix A

Appendix to Chapter 3

A.1 Deriving Jaccard distances

In this section, we derive the Jaccard distance between vectors of counts and multi-
graphs defined in Section 3.3. Recall, given an interaction network S over vertex set
V with V = |V|, we have vS ∈ ZV

≥0 denoting the vector of vertex counts, AS ∈ ZV×V
≥0

the matrix of vertex traversals, and GS the multigraph defined by AS .
We first derive dJ(v

S , vS
′
) by applying the Steinhaus transform (see Section 3.2)

to the Hamming distance dH defined in Section 3.3, using c = 0V , where 0V ∈ ZV
≥0

denotes the vector of zeros, as the reference element

dJ(v
S , vS

′
) =

2dH(v
S , vS

′
)

dH(vS ,0V ) + dH(vS
′ ,0V ) + dH(vS , vS

′)

=
2
∑

x∈V |vSx − vS
′

x |∑
x∈V |vSx |+

∑
x∈V |vS′

x |+
∑

x∈V |vSx − vS′
x |

=

∑
x∈V |vSx − vS

′
x |∑

x∈V max(vSx , v
S′
x )

where here we have used the identity |x|+ |y|+ |x−y| = 2 ·max(x, y) for any x, y ∈ R.
The same approach can be applied to derive dJ(GS ,GS′), the Jaccard distance be-

tween multigraphs. The reference element in this case will be the empty multigraph
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G0, that is, the multigraph with no edges, which is encoded via the matrix of zeros
0V,V ∈ ZV×V

≥0 . This leads to following

dJ(GS ,GS′) =
2dH(GS ,GS′)

dH(GS ,G0) + dH(GS′ ,G0) + dH(GS ,GS′)

=
2
∑

x∈V
∑

y∈V |AS
xy − AS′

xy|∑
x∈V
∑

y∈V |AS
xy|+

∑
x∈V
∑

y∈V |AS′
xy|+

∑
x∈V
∑

y∈V |AS
xy − AS′

xy|

=

∑
x∈V
∑

y∈V |AS
xy − AS′

xy|∑
x∈V
∑

y∈V max(AS
xy, A

S′
xy)

wherewe again invoke the identity |x|+|y|+|x−y| = 2·max(x, y) for any x, y ∈ R.

A.2 Fixed penalties for the matching and edit distances

Both dM,ρ and dE,ρ require specifying the parameter ρ > 0, denoting the fixed penalty
to be incurred for any interactions which are left unmatched. In this section, we pro-
vide guidance on how one can consider setting this parameter in practice.

Our recommendation is the same for both the fixed-penalty edit and matching
distances. Observe, within either distance, when optimising over matchings one will
compare the following two scenarios

I

I ′

dI(I, I′)

I

I ′

2ρ

that is, for some pair of interactions I and I ′, we could choose to match them or leave
themboth unmatched, where the highlighted terms below show the cost contribution
in each case. With this, we can see if

dI(I, I ′) > 2ρ

then it would actually be better, that is, less costly, to leave these two interactions
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unmatched. Following the rationale that we want to maximise the pairwise infor-
mation of interactions, we would ideally like to avoid scenarios where interactions
are left unmatched. As such, in want of avoiding the case above, this implies the
following lower bound on ρ

ρ ≥ dI(I, I ′)
2

,

which we would ideally like to hold for any I ∈ I∗ and I ′ ∈ I∗. Note for the fixed-
penalty matching distance dM,ρ this bound can also be obtained by considering those
values of ρ for which a complete optimal matching is guaranteed to exist (see Propo-
sition A.3.1).

Notice achieving this lower bound on ρ is possible provided the distance dI(·, ·)

is bounded. In particular, if there exists some K > 0 such that dI(I, I ′) ≤ K for all
I ∈ I∗ and I ′ ∈ I∗, then we will have the bound ρ ≥ K/2. Moreover, observe that as
ρ→∞ the distances dM,ρ and dE,ρ will be driven more by penalisation terms and less
by the pairwise distances of matched interactions. Again appealing to the rationale
that we want to maximise the use of pairwise information, this implies adopting ρ =

K/2would the best choice in this scenario.
What if dI(·, ·) is not bounded? In this case, dM,ρ and dE,ρ are still applicable (and

still distance metrics) with ρ essentially representing a threshold: only interactions
with a distance that is less than 2ρ will matched. In this way, there is no explicit
recommendation for how to set ρ in this case, being a slightly more subjective choice.
However, a pragmatic solution would be to use the observed distribution of pairwise
distances to inform this choice.
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A.3 Distance computation

A.3.1 Path distances

The LCS distance dLCS, like the edit distance (Appendix A.3.3), is a special case of
the string edit distance proposed by Wagner and Fischer (1974). Thus, the dynamic
programming algorithmproposed therein can be applied, in this case at a complexity
O(n ·m)where n and m are the lengths of the paths being compared.

In particular, suppose we are comparing I = (x1, . . . , xn) and I ′ = (y1, . . . , ym).
Using the subpath notation Ik:l = (xk, . . . , xl), to compute the LCS distance we incre-
mentally evaluate dLCS(I1:i, I ′1:j), that is, the LCS distance between truncations of the
two paths, until i = n and j = m. This is done via the following recursive formula

dLCS(I1:i, I ′1:j) = min





dLCS(I1:(i−1), I ′1:j) + 1

dLCS(I1:i, I ′1:(j−1)) + 1

dLCS(I1:(i−1), I ′1:(j−1)) + 2 · 1(xi ̸= yj),

where 1(·) is the identity function, which follows directly from the definition of the
LCS distance. Letting

Cij = dLCS(I1:(i−1), I ′1:(j−1))

this equates to filling up an (n+ 1)× (m+ 1) matrix C via the following formula

C(i+1)(j+1) = min





Ci(j+1) + 1

C(i+1)j + 1

Cij + 2 · 1(xi ̸= yj),

where the distance is then given by dLCS(I, I ′) = C(n+1)(m+1), that is, the final entry
of the constructed matrix. For pseudocode of the resulting algorithm to compute
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dLCS see Algorithm 5, with a lighter-memory version outlined in Algorithm 6, which
essentially stores only the current and previous rows of C.

Note, in Wagner and Fischer (1974) they set-up the problem in terms of substi-
tution costs, whereby γ(a → b) denotes the cost of substituting entry a for b, whilst
γ(a→ Λ) denotes the cost of deleting a, with Λ denoting the null entry, so that simi-
larly γ(Λ→ a) denotes the cost of insertion. In this notation, the LCS distance as we
define it equates to

γ(a→ b) =





0 if a = b

2 otherwise

whilst γ(a→ Λ) = γ(Λ→ a) = 1 for all entries a.
The approach we use to evaluate dLSP is slightly different, though its complexity

continues to beO(n·m). In this case, we essentially scan over I = (x1, . . . , xn) and I ′ =
(y1, . . . , ym) and keep track of the common subpaths seen. Formally, we construct an
n×mmatrix Q incrementally via the following recursive formula

Q(i+1)(j+1) =





Qij + 1 if xi = yj

0 otherwise
,

where when common subpaths appear between I and I ′ one will see increments
in Q diagonally. The maximum length of a subpath can thus be obtained by taking
the element-wise maximum of Q, that is δLSP = maxij Qij , which can then be used
to evaluate dLSP (see definition in Section 3.4). We summarise this in Algorithm 7,
where we keep track of the maximum inQ as it is filled. A lighter-memory algorithm
is also outlined in Algorithm 8, making use of the fact we only need to know the
current and previous rows of Q.
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A.3.2 Matching distance

Asmentioned in Section 3.5.1, evaluating dM,δ(·)(E , E ′) (Definition 3.5.1) requires solv-
ing an optimisation problem. In particular, finding an optimalmatching. As outlined
therein, we consider casting this as an assignment problem, which can then be solved
with known algorithms, such as the Hungarian algorithm (Kuhn, 1955).

The assignment problem is as follows. Supposing that one has two sets

A = {a1, . . . , an} and B = {b1, . . . , bn},

both of size n, one considers pairing elements of set A with those of set B in an ‘op-
timal’ way, where the objective is defined by assigning a cost to each possible pair-
ing. Note the labelling of elements here is arbitrary but will serve a purpose in what
follows, allowing us to index set elements. The cost of all possible pairings is sum-
marised via the n×nmatrix C, where Cij > 0 denotes the cost incurred when ai ∈ A

is paired with bj ∈ B. A specific pairing of set elements can be encoded via a per-
mutation σ ∈ Sn, where Sn denotes the set of all permutations on n symbols, with
σ(i) = j implying that ai ∈ A has been paired with bj ∈ B. With this, the assignment
problem seeks a permutation with minimal cost, that is

min
σ∈Sn

n∑

i=1

Ci,σ(i),

the solution of which may not be unique. Observe that though A and B are typically
assumed to be sets, this formulation works equally well if they are multisets (as we
will consider).

Towards evaluating the matching distance, we set-up a cost matrix C such that
the optimal solution found via the Hungarian algorithm coincides with an optimal
matching in accordance with Definition 3.5.1. Here we consider two scenarios. In
the first, more general case, we will optimise over all matchings (including those
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which match nothing). In the second scenario, we will optimise over only complete
matchings. The second case is a smaller optimisation problem, making it easier to
solve and thus preferable. However, it is not guaranteed that an optimal matching
will be complete. Thus the former will work in all cases, but the latter may result in
a sub-optimal solution in some scenarios. To guide this, we provide a result which
says when it is okay to use the latter approach.

Optimising over all matchings

Suppose we have two interaction multisets

E = {I1, . . . , IN} E ′ = {I ′1, . . . , I ′M}

and we are seeking to evaluate dM,δ(·)(E , E ′). If we see E and E ′ as the sets of the as-
signment problem, it is somewhat natural to represent the matching of set elements:
we let σ(i) = j if (Ii, I ′j) ∈ M. However, we also need to encode the possibility for
an element of either set to be left unmatched. This can be handled by effectively aug-
menting each set with some dummy elements which, if paired to, will represent an
interaction being unmatched. Using the notation above we would assume

A = {a1, . . . , an} B = {b1, . . . , bn}

= {I1, . . . , IN ,Λ, . . . ,Λ︸ ︷︷ ︸
M

} = {I ′1, . . . , I ′M ,Λ, . . . ,Λ︸ ︷︷ ︸
N

}

where Λ represents a dummy element, so that, if say Ii is paired with a Λ this will
be interpreted as Ii being unmatched, and the same for elements of E ′. Notice also
with A there are M dummy elements added to E , so that all M elements of E ′ could
in theory be matched with a dummy element, that is, all elements of E ′ could be left
unmatched. Similarly, in B there are N dummy elements added to E ′, so that all
elements of E could be unmatched. Moreover, with this both A and B are now of the
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same size n = N +M , as required for the assignment problem.
With this, the interpretation of a permutation σ ∈ Sn in terms of a matching be-

tween E and E ′ is a follows

• If σ(i) = j ≤M for i ≤ N then Ii ∈ E has been matched with I ′j ∈ E ′;

• If σ(i) > M for i ≤ N then Ii ∈ E has been unmatched;

• If σ(i) = j ≤M for i > N then I ′j ∈ E ′ has been left unmatched;

• If σ(i) > M for i > N then an dummy element has been paired with a dummy
element.

With this, each σ encodes a matchingMσ of E and E ′ given by the following

Mσ = {(Ii, I ′σ(i)) : 1 ≤ i ≤ N, σ(i) ≤M}.

With the sets to be paired defined, all that remains is to lay out the correct (N +

M)× (N +M) cost matrix, which in this case is defined as follows

Cij =





dI(Ii, I ′j) if i ≤ N and j ≤M

δ(I ′j) if i > N and j ≤M

δ(Ii) if i ≤ N and j > M

0 if i > N and j > M

where dI(·, ·) is the chosen ground distance and δ(·) the chosen penalty term for un-
matched elements. Notice the cost of pairing two dummy elements is zero. To see
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why C takes this form, consider the cost it implies for a given matchingMσ, that is

Cost(Mσ) =
N+M∑

i=1

Ci,σ(i)

=
∑

(I,I′)∈Mσ

dI(I, I ′) +
∑

I∈(Mσ)cE

δ(I) +
∑

I′∈(Mσ)cE′

δ(I ′)

wherewe have simply applied the definition ofC as above. Comparing this withDef-
inition 3.5.1, one can see that C encodes the required matching cost to be minimised
when evaluating dM,δ(·). Thus, if every matching is represented by every pairing of
A and B, and the costs are equivalent, then the optimal solutions will coincide. This
means any optimal σ∗ found for the given C will define an optimal matchingMσ∗

which can be used to evaluate dM,δ(·). With this, the steps to evaluate dM,δ(·)(E , E ′) are:
(i) construct C as above, (ii) pass C to a solver, such as the Hungarian algorithm,
returning an optimal permutation σ∗ and then finally (iii) translate σ∗ to an optimal
matchingMσ∗ to evaluate the distance.

Optimising over complete matchings

In the previous section, we set-up an assignment problem which optimise over all
matchings, including those which match no elements. However, there are scenarios
where this is unnecessary. In particular, in some cases one actually needs to only op-
timise over completematchings. This allows us to set-up a slightly smaller assignment
problem, which will typically be quicker to solve.

Recall amatchingM of the twomultisets E and E ′ is complete if all elements of the
smaller set are included, that is, if |M| = min(|E|, |E ′|). Now, the main motivation for
this second evaluation approach is the following result (proved in Appendix A.4.2).

Proposition A.3.1: Given two interaction multisets E and E ′, if the following holds

δ(I) + δ(I ′) ≥ dI(I, I ′)
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for all I ∈ E and I ′ ∈ E ′, then there exists a complete optimal matching achieving the
optimum defining the matching distance dM,δ(·) (Definition 3.5.1).

As a consequence of Proposition A.3.1, if the conditions therein are satisfied then
it suffices to find an optimal complete matching. As such, in what follows we show
how an assignment problem can again be set up to enact this optimisation.

Suppose that, without loss of generality, the two multisets to be compared

E = {I1, . . . , IN} and E ′ = {I ′1, . . . , I ′M}

are such that N ≤ M , that is, E is the smaller of the two (when they are of different
size). As such, a complete matching between E and E ′ will match all elements of E
to a unique element of E ′, whilst some elements of E ′ may be left unmatched. With
this, we set-up the following sets for the assignment problem

A = {a1, . . . , an} B = {b1, . . . , bn}

= {I1, . . . , IN ,Λ, . . . ,Λ︸ ︷︷ ︸
M−N

} = {I ′1, . . . , I ′M}

where Λ represents a dummy element such that I ′j ∈ E ′ being paired with Λ is in-
terpreted as this interaction being left unmatched. Observe that in comparison with
the set-up of Appendix A.3.2, we need only augment the smaller of the twomultisets
with dummy variables. Notice again we have A and B being of the same size, in par-
ticular n = M , that is, the size of the larger multiset. In this case, the interpretation
of a permutation σ is as follows

• If σ(i) = j for i ≤ N then Ii ∈ E has been matched with I ′j ∈ E ′;

• If σ(i) = j for i > N then I ′j ∈ E ′ has been left unmatched.
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which again encodes a matchingMσ of E and E ′ given by the following

Mσ = {(Ii, I ′σ(i)) : 1 ≤ i ≤ N},

which in this case will be complete, since all elements of E are included inMσ.
In this case, we construct theM ×M cost matrix as follows

Cij =





dI(Ii, I ′j) if i ≤ N

δ(I ′i) if i > N

where dI(·, ·) is the chosen ground distance and δ(·) the penalty for unmatched inter-
actions. Notice, as in Appendix A.3.2, this cost matrix C is such that

Cost(Mσ) =
M∑

i=1

Ci,σ(i)

=
∑

(I,I′)∈Mσ

dI(I, I ′) +
∑

I′∈(Mσ)cE′

δ(I ′),

which, sinceMσ is complete, is in accordancewith the cost function beingminimised
in evaluating dM,δ(·)(E , E ′). Thus any optimal σ∗ found for cost matrix C of this form
will map to an optimal complete matchingMσ∗ which can be used to evaluate the
matching distance, provided the conditions of Proposition A.3.1 hold. With this, the
steps to evaluate dM,δ(·)(E , E ′) (when the necessary conditions hold) are: (i) construct
C as above (ii), passC to a solver, returning an optimal permutation σ∗, then (iii)map
σ∗ to an optimal complete matchingMσ∗ to evaluate the distance.

We finalise these details by noting when the conditions of Proposition A.3.1 will
hold for the example penalty functions provided in Section 3.5.1. In particular, we
have

• Fixed penalty: if δ(I) = ρ for some constant ρ > 0, then when comparing two
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multisets E and E ′ the conditions will hold provided

ρ ≥ 1

2

(
max

I∈E,I′∈E ′
dI(I, I ′)

)
,

thus placing a lower bound of ρ values whichwill result in completematchings;

• Distance-based penalty: if δ(I) = dI(I,Λ), where Λ represents the null inter-
action, then the conditions will always hold since

dI(I,Λ) + dI(Λ, I ′) ≥ dI(I, I ′),

following since dI(·, ·) satisfies the triangle inequality, as it is a distance metric.

This implies, dM can always be evaluated by optimising over complete matchings,
whilst dM,ρ can be evaluated in this manner only if the above bound on ρ is satisfied.

A.3.3 Edit distance

The edit distance (Definition 3.7.1) can be seen as a special case of the so-called string
edit distance introduced by Wagner and Fischer (1974). As such, to evaluate it the
dynamic programming algorithm proposed therein can be invoked.

Suppose we have two interaction sequences

S = (I1, . . . , IN) and S ′ = (I ′1, . . . , I ′M)

and are seeking to evaluate dE,δ(·)(S,S ′). Introducing the notation Sk:l = (Ik, . . . , Il),
the approach is to incrementally evaluate dE,δ(·)(S1:i,S ′

1:j), that is, the distance be-
tween truncations of S and S ′, repeating this until i = |S| and j = |S ′|. This is done
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via the following recursive result

dE,δ(·)(S1:i,S ′
1:j) = min





dE,δ(·)(S1:(i−1),S ′
1:j) + δ(Ii)

dE,δ(·)(S1:i,S ′
1:(j−1)) + δ(I ′j)

dE,δ(·)(S1:(i−1),S ′
1:(j−1)) + dI(Ii, I ′j),

(A.3.1)

which relates the distance between S1:i and S ′
1:j to distances between slight trun-

cations thereof. The key point here is this recursive result comes straight from the
definition of the edit distance, where the three cases correspond to three different
scenarios: (i) the ith entry of S is unmatched, (ii) the jth entry of S ′ is unmatched,
and (iii) the ith entry of S is matched with the jth entry of S ′.

Letting Cij = dE,δ(·)(S1:(i−1),S ′
1:(j−1)), incremental evaluation of eq. (A.3.1) can be

seen as filling up an (N + 1) × (M + 1) matrix C either row-by-row or column-by-
column according to the following formula

C(i+1)(j+1) = min





Ci(j+1) + δ(Ii)

C(i+1)j + δ(I ′j)

Cij + dI(Ii, I ′j),

where the final entry C(N+1)(M+1) corresponds to the desired distance. Note the first
column and row can be specified as follows

Ci1 = dE,δ(·)(S1:i,S ′
1:0) C1j = dE,δ(·)(S1:0,S ′

1:j)

=
i∑

k=1

δ(Ik) =

j∑

k=1

δ(I ′k)

for i = 2, . . . , N and j = 2, . . . ,M , which follow by seeing S1:0 and S ′
1:0 as empty se-

quences, so that when measuring the distance of these to S ′
1:j and S1:i (respectively)
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all entries thereof will be left unmatched, since there are no entries to be matched to.
Finally, when both i = 1 and j = 1 we will have C11 = dE,δ(·)(S1:0,S ′

1:0) = 0, since
we can see this as the distance of the empty sequence to itself. All together, these
represent initial conditions from which repeated application of eq. (A.3.1) will take
us to the desired result.

Algorithm 1 outlines pseudocode for an algorithm to evaluate dE,δ(·)(S,S ′) by fill-
ing the matrix C in this manner. However, observe that when updating a row (or
column) of C one only needs to know the previous row (or column). As such, we
only need to store the current and previous row (or column), leading to an algorithm
which uses less memory and is typically faster. Pseudocode of this light-memory al-
ternative is given in Algorithm 2.

A.3.4 Dynamic time warping distance

Evaluation of the dynamic time warping distance (Definition 3.7.3) can be achieved,
as with the edit distance (Appendix A.3.3), via dynamic programming. In fact, the
algorithm is almost identical to that used for the edit distance, differing only in the
underlying recursive formula used. We note the implementation we use here was
drawn from Gold and Sharir (2018), Section 3.

Suppose we have two interaction sequences

S = (I1, . . . , IN) and S ′ = (I ′1, . . . , I ′M)

and are seeking to evaluate dDTW(S,S ′). Adopting the notation Sk:l = (Ik, . . . , Il),
one evaluates dDTW(S1:i,S ′

1:j) incrementally until i = N and j = M via the following
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recursive result

dDTW(S1:i,S ′
1:j) = dI(Ii, I ′j) + min





dDTW(S1:(i−1),S ′
1:j)

dDTW(S1:i,S ′
1:(j−1))

dDTW(S1:(i−1),S ′
1:(j−1))

which follows directly from the definition of the DTW distance. Note here one is
essentially comparing three possibilities: (i) warping on the jth entry of S ′, that is,
I ′j being paired with more than one element of S, (ii) warping on the ith entry of
S, and (iii) no warping, with Ii and I ′j being paired only with each other. Note the
dI(Ii, I ′j) term comes out front of the min term since by definition Ii and I ′j (the last
entries of these truncated sequences) must be paired.

Introducing the notation Cij = dDTW(S1:(i−1),S ′
1:(j−1)), the incremental computa-

tion can be seen as filling-up the (N + 1) × (M + 1) matrix C either row-by-row or
column-by-column via the following recursive formula

C(i+1)(j+1) = dI(Ii, I ′j) + min





Ci(j+1)

C(i+1)j

Cij

with dDTW(S,S ′) = C(N+1)(M+1). Aswith evaluating the edit distances (AppendixA.3.3),
we must also pre-specify the first row and column of C. Here we again assume
C11 = 0whilst

C(i+1)1 =∞ (for i = 1, . . . , N) C1(j+1) =∞ (for j = 1, . . . ,M).

To see why these conditions are used, consider obtaining the second column entries,
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that is
Ci2 = dDTW(S1:(i−1),S ′

1:1).

Observe that since S ′
1:1 = (I ′1) is a sequence with a single entry, the only valid cou-

pling here is where I ′1 is paired with every entry of S1:(i−1). By opting for the above
choice of initial values within C one ensures this occurs via the recursive formula. In
particular, if one considers filling the second column of C, one has

C22 = dI(I1, I ′1) + min





∞

∞

0

so we choose the third option, paring the first two entries with no warping, whilst
for i > 2we have

Ci2 = dI(I1, I ′1) + min





C(i−1)2

∞

∞

where here we choose the first option, which corresponds to warping on the first
entry of S, that is, I ′1 being paired with more than one element of S. The same rea-
soning can be used to justify the initial values of the first row by considering filling
the second row of C.

Algorithm 3 outlines the algorithm which fills the matrix C via this recursive for-
mula to obtain the desired distance. As with the edit distance, this procedure only
requires knowledge of the previous and current row, and hence a lighter memory
alternative can also be used, as detailed in Algorithm 4.
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A.4 Proofs

A.4.1 Path distances

Proof that dLCS and dLSP are distances are metrics. Let us first prove that dLCS is a metric.
Recall the LCS distance (defined in Section 3.4) between paths I and I ′ is given by

dLCS(I, I ′) = n+m− δLCS

where n andm are the lengths of I and I ′, and δLCS is the maximum length of a com-
mon sequence between them. Consider now the first metric condition (i) (identity
of indiscernibles). Here we will use the following fact: δLCS ≤ n and δLCS ≤ m, fol-
lowing since a common subsequence cannot include more entries than are present in
either path. Now, assuming that

dLCS(I, I ′) = n+m− 2δLCS = 0 (A.4.1)

we claim this implies n = m. To see this, notice if we assume n < m this implies

n+m > 2n ≥ 2δLCS

where we have used the fact δLCS ≤ n. Notice this contradicts eq. (A.4.1). A similar
contradiction will be found if we assume n > m, and consequently we must have
n = m. Substituting this into eq. (A.4.1) leads to δLCS = n = m which implies that I
and I ′ share a common subsequence of the same length as themselves, that is I = I ′.
This proves one direction. For the converse case, if I = I ′ then it should be clear that
the maximum common subsequence will be that including all their entries, that is
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δLCS = n = m and hence

dLCS(I, I ′) = n+m− 2δLCS = 0,

thus proving condition (i) holds for the LCS distance.
It should be clear the symmetry condition (ii) follows trivially from the inherent

symmetry in the definition of a common subsequence.
Finally, we turn to the triangle inequality (iii). Assume we have three paths

IX = (x1, . . . , xn) IY = (y1, . . . , ym) IZ = (z1, . . . , zk)

and that δXY , δZY and δXY are such that

dLCS(IX , IY ) = n+m− 2δXY dLCS(IX , IZ) = n+ k − 2δXZ

dLCS(IZ , IY ) = m+ k − 2δZY

then, if the triangle inequality holds, we have

dLCS(IX , IY ) ≤ dLCS(IX , IZ) + dLCS(IZ , IY )

which is equivalent to the following

n+m− 2δXY ≤ (n+ k − 2δXZ) + (m+ k − 2δZY )

which is true if and only if (by rearranging terms)

δXZ + δZY − k ≤ δXY , (A.4.2)

thus, if we show eq. (A.4.2) holds the implications will trace back to show the the
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triangle inequality also holds. Towards doing so, we consider a finding the common
subsequence between IX and IY induced by that between IX and IZ and between
IY and IZ , which will allow us to obtain the desired lower bound.

To aide this exposition we introduce some notation. In particular, for two subse-
quences v and u of [n] = (1, . . . , n) we can extend the notion of unions and intersec-
tions used for sets, that is v ∪u and v ∩u respectively, where ifw = v ∩u then each
entry wi appears in both v and u, whilst ifw = v ∪u then each wi appears in at least
one of u and v. For example, if we have n = 5 and u = (1, 3, 5) and v = (1, 2, 5) then
u ∩ v = (1, 5) whilst u ∪ v = (1, 2, 3, 5). Moreover, with |v| denoting the length of
subsequence v, the following will hold

|v|+ |u| − |v ∩ u| = |v ∪ u|,

which can be seen as analogous to the inclusion-exclusion identity for sets.
Now suppose that we have indexing subsequences uXZ , vXZ , uZY and vZY such

that

IXvXZ
= IZuXZ

IZvZY
= IYuZY

with |uXZ | = |vXZ | = δXZ and |uZY | = |vZY | = δZY , that is, these index maximal
common subsequences. Observe the intersection uXZ ∩ vZY defines a subsequence
of IZ which is shared with both IX and IY , and consequently, if we let vXY and uXY

denote indices of the associated subsequences of IX and IY , respectively, we have

IXvXY
= IYuXY
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that is, these index a common subsequence of IX and IY . Moreover, if we let

δ∗ := |vXY | = |uXY | = |uXZ ∩ vZY |,

denoting the size of this induced common subsequence, then by the inclusion-exclusion
identity above we have

δXZ + δZY − δ∗ = |uXZ |+ |vZY | − |uXZ ∩ vZY | = |uXZ ∪ vZY | ≤ k

where the inequality here follows since uZX∪vZY is an indexing subsequences of IZ ,
which is of length k. This rearranges to the following

δXZ + δZY − k ≤ δ∗,

and finally, using the fact that δ∗ ≤ δXY by definition of δXY as the maximal length of
a common subsequence between IX and IY , we thus have

δXZ + δZY − k ≤ δXY ,

confirming eq. (A.4.2) holds, as desired. Consequently, the LCS distance satisfies
metric condition (iii). This completes the proof that dLCS is a distance metric.

We now consider proving dLSP is also a distance metric. Firstly, regarding the
identity of indiscernibles (i), one can use exactly the same argument as for the LCS
distance above. For brevity, we will avoid repeating this and henceforth assume this
condition holds. Similarly, the symmetry condition (ii) again follows trivially from
the symmetry of common subpaths.

To show dLSP satisfies the triangle inequality (iii)we canuse almost the same argu-
ment outlined above for the LCS distance. In particular, one can show that eq. (A.4.2)
holds, where in this case δXZ , δZY and δXY denote maximal subpath sizes. A key dif-
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ference here is that we must obtain an induced subpath rather than subsequence. If
we introduce the shorthand notation (i : j) = (i, . . . , j) where 1 ≤ i ≤ j ≤ n, de-
noting the subpath of [n] from i to j (notice this is consistent with notation used in
Section 3.4), then as with subsequences we can define natural generalisations of the
interaction and union of two subpaths, in particular

(i : j) ∩ (l : k) = (max(i, l) : min(j, k)) (i : j) ∪ (l : k) = (min(i, l) : max(j, k)),

and moreover if |(i : j)| = j − i + 1 denotes subpath length we will again have the
following inclusion-exclusion identity

|(i : j)|+ |(l : k)| − |(i : j) ∩ (l : k)| = |(i : j) ∪ (l : k)|.

With these, one can directly adapt the argument used to show dLCS satisfied the tri-
angle inequality. In particular, any two optimal common subpaths between IX and
IZ and between IZ and IY will induce a common subpath between IX and IY , in
turn providing the required bound. For brevity, we do not repeat this here, assuming
henceforth that metric condition (iii) holds.

Thus conditions (i) to (iii) hold for both the LCS and LSP distances, completing
the proof.

A.4.2 Multiset distances

Proof of Proposition 3.5.2 (Matching distance is a metric). To aid this exposition, write
dM,δ(·)(E , E ′) (Definition 3.5.1) in terms of its cost function as follows

dM,δ(·)(E , E ′) = min
M∈M(E,E ′)

Cost(M)
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where
Cost(M) =

∑

(I,I′)∈M

dI(I, I ′) +
∑

I∈Mc
E

δ(I) +
∑

I′∈Mc
E′

δ(I ′),

denotes the cost of the matchingM. We first show metric condition (i) (identity of
indiscernibles) holds. If we assume E = E ′ then one can construct a matchingM∗ by
pairing equivalent elements of E and E ′, leading to the following upper bound

dM,δ(·)(E , E ′) ≤ Cost(M∗)

=
∑

(I,I′)∈M∗

dI(I, I ′)

= 0

where the second line follow sinceM∗ includes all elements of E and E ′ and thus no
penalty terms will appear, whilst the third line follows sinceM∗ matches equivalent
elements and hence, using the fact dI(·, ·) satisfies the identity of indiscernibles, all
pairwise distances will be zero. Now, since dI(·, ·) ≥ 0 and δ(·) > 0 by assumption,
dM,δ(·)(E , E ′) is a sum of positive values, implying also that dM,δ(·)(E , E ′) ≥ 0. Together
these imply dM,δ(·)(E , E ′) = 0.

Conversely, assume that dM,δ(·)(E , E ′) = 0. This implies both the sum of pairwise
distances and penalisation terms must be zero. Since by assumption δ(I) > 0 this
implies there must be no penalty terms, that is, all elements of E and E ′ must be
included in the matching. Thus, withM∗ the optimal matching, we have

dM,δ(·)(E , E ′) =
∑

(I,I′)∈M∗

dI(I, I ′)

= 0,

which, since dI(·, ·) is non-negative, implies

dI(I, I ′) = 0 ∀ (I, I ′) ∈M∗,
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which in turn implies
I = I ′ ∀ (I, I ′) ∈M∗,

since dI(·, ·) satisfies the identity of indiscernibles. Hence, we have E = E ′, thus con-
firming that dM,δ(·) satisfies metric condition (i).

The symmetry condition (ii) follows trivially from the symmetry of dI(·, ·) (since
it is a metric) and the penalisation terms.

Finally, we prove that dM,δ(·) satisfies metric condition (iii) (triangle inequality).
Assuming we have three multisets

EX = {IX1 , . . . , IXnX
} EY = {IY1 , . . . , IYnY

} EZ = {IZ1 , . . . , IZnZ
}

we seek to show that

dM,δ(·)(EX , EY ) ≤ dM,δ(·)(EX , EZ) + dM,δ(·)(EZ , EY ).

LetM∗
XZ andM∗

ZY denote optimal matchings for dM,δ(·)(EX , EZ) and dM,δ(·)(EZ , EY )

respectively, so that

dM,δ(·)(EX , EZ) = Cost(M∗
XZ) dM,δ(·)(EZ , EY ) = Cost(M∗

ZY )

and observe these induce a matchingMXY of EX and EY as follows

MXY := {(IX , IY ) : (IX , IZ) ∈M∗
XZ and (IZ , IY ) ∈M∗

ZY for some IZ ∈ EZ}

that is, we pair elements of EX and EY if they were paired to the same elements of
EZ . For example, Figure A.4.1 shows two cases of optimal matchingsM∗

XZ andM∗
ZY

along with the matchingMXY they induce (which turns out to be the same in both
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cases). Notice by definition of dM,δ(·) we have

dM,δ(·)(EX , EY ) ≤ Cost(MXY ),

and so the triangle inequality will follow if we can show the following holds

Cost(MXY ) ≤ dM,δ(·)(EX , EZ) + dM,δ(·)(EZ , EY ). (A.4.3)

To prove eq. (A.4.3) we show every possible term on the LHS is less than or equal
to some unique terms appearing on the RHS. The key terms appearing on the LHS are
(i) pairwise distances formatched elements (ii) penalisation of unmatched elements.

Considering first (i), by definition ofMXY each pair (IX , IY ) ∈ MXY is associ-
ated with some unique (IX , IZ) ∈ M∗

XZ and (IZ , IY ) ∈ M∗
ZY , that is, there is some

element IZ ∈ EZ which both IX and IY are matched to. Furthermore, since dI(·, ·) is
a distance metric it satisfies the triangle inequality, and so

dI(IX , IY ) ≤ dI(IX , IZ) + dI(IZ , IY ),

and thus each pairwise distance of matched elements on the LHS of eq. (A.4.3) is less
than or equal to some unique terms on the RHS.

For (ii) consider first the penalisation terms for elements of EX not included in
the matchingMXY , that is δ(IX) for IX ∈ (MXY )

c
X . We now seek to show that each

δ(IX) is less than or equal to some unique terms appearing on the RHS of eq. (A.4.3).
For IX to not be inMXY one of two things must have happened

Case 1: As illustrated in Figure A.4.1a, onemay have (IX , IZ) ∈M∗
XZ for some IZ ∈ EZ

with (IZ , IY ) ̸∈ M∗
ZY for any IY ∈ EY

=⇒ a term on the RHS of dI(IX , IZ) + δ(IZ)
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EX EY EX EZ

dI(IX , IZ)

EZ EY

δ(IZ)δ(IX)

M∗
XZ M∗

ZYMXY

(a) An element of EX is left unmatched inMXY (induced matching) because the
element it was matched with in EZ was left unmatched inMZY .

EX EY EX EZ EZ EY

δ(IX)δ(IX)

M∗
XZ M∗

ZYMXY

(b) An element of EX is left unmatched inMXY (inducedmatching) because it was
also unmatched inMXZ .

Figure A.4.1: Examples of (a) Case 1 and (b) Case 2 appearing when proving that
dM,δ(·) satisfies the triangle inequality (Proposition 3.5.2). In each subfigure, we have
three matchings of the multisets EX , EY and EZ , where the two right-most matchings
are example optimal matchings which induce the left-most matching of EX and EY .
In both cases, an element of EX is left unmatched in the induced matching.
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which will also be unique to the pair (IX , IZ). Now, since by the assumption
|δ(IX)− δ(IY )| ≤ dI(IX , IY ) for all IX , IY ∈ I∗, we have that

δ(IX) ≤ dI(IX , IZ) + δ(IZ)

as desired;

Case 2: Alternatively, as shown in Figure A.4.1b, we might have (IX , IZ) ̸∈ M∗
XZ for

any IZ ∈ EZ
=⇒ a term on the RHS of δ(IX),

and thus in this case we trivially have

δ(IX) ≤ δ(IX).

In both cases, we have a term on the LHS of eq. (A.4.3) which is less than or equal
to some unique terms on the RHS. Notice this argument can be applied similarly to
the penalisation terms for elements of EY not in the matchingMXY . For brevity we
will not repeat this here, and henceforth assume all penalisation terms for EY are less
than or equal to some unique terms on the RHS of eq. (A.4.3).

All together, we have every termon the LHSof eq. (A.4.3), both pairwise distances
and penalties, being less than or equal to some unique terms on the RHS, proving the
inequality holds. As a consequence, dM,δ(·) satisfies the triangle inequality, completing
the proof.

Proof of Proposition A.3.1 (Completeness of matchings). To aid this exposition, write dM,δ(·)(E , E ′)

in terms of its cost function as follows

dM,δ(·)(E , E ′) = min
M∈M(E,E ′)

{Cost(M)}
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where
Cost(M) =

∑

(I,I′)∈M

dI(I, I ′) +
∑

I∈Mc
E

δ(I) +
∑

I′∈Mc
E′

δ(I ′),

denotes the cost of the matchingM. Towards proving this result, assume that any
matchingM∗ for which

Cost(M∗) = min
M∈M(E,E ′)

{Cost(M)} = dM,δ(·)(E , E ′),

is not complete, seeking a contradiction. There may bemore than one suchmatching,
sowithout loss of generality, letM∗ denote any one of these optimalmatchings. Since
M∗ is not complete, theremust be a currently unmatched pair, that is, (Ĩ, Ĩ ′) such that
Ĩ ∈ E and Ĩ ′ ∈ E ′ but Ĩ ̸∈ M∗

E and Ĩ ′ ̸∈ M∗
E ′ . One can now define a new matching

M∗∗ by augmentingM∗ as follows

M∗∗ =M∗ ∪ {(Ĩ, Ĩ ′)}

for which

Cost(M∗∗) =
∑

(I,I′)∈M∗∗

dI(I, I ′) +
∑

I∈(M∗∗)cE

δ(I) +
∑

I′∈(M∗∗)cE′

δ(I ′),

=
∑

(I,I′)∈M∗

dI(I, I ′) + dI(Ĩ, Ĩ ′) +
∑

I∈(M∗∗)cE

δ(I) +
∑

I′∈(M∗∗)cE′

δ(I ′),

≤
∑

(I,I′)∈M∗

dI(I, I ′) + δ(Ĩ) + δ(Ĩ ′) +
∑

I∈(M∗∗)cE

δ(I) +
∑

I′∈(M∗∗)cE′

δ(I ′),

=
∑

(I,I′)∈M∗

dI(I, I ′) +
∑

I∈(M∗)cE

δ(I) +
∑

I′∈(M∗)cE′

δ(I ′),

= Cost(M∗)

(A.4.4)
where in the third line we invoke the assumption that

δ(I) + δ(I ′) ≥ dI(I, I ′)
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for all I ∈ E and I ′ ∈ E ′ (as in Proposition A.3.1). Since M∗ was optimal, we
must also have Cost(M∗) ≤ Cost(M) for all matchingsM, which combined with
eq. (A.4.4) implies Cost(M∗∗) = Cost(M∗), that is,M∗∗ is also an optimal matching.
Moreover, we have |M∗∗| = |M∗|+1. Now, either (i)M∗∗ is complete, or (ii) we can
repeat this augmentation, increasing the matching cardinality until it is complete.
Either way, we arrive at a matching with is both optimal and complete, contradict-
ing our assumption that all optimal matchings were not complete. The result now
follows by contradiction.

Proof of Proposition 3.5.4 (EMD metric conditions). In what follows we will use the no-
tation dW1(µE , µE ′) for the 1-Wasserstein distance between the distributions µE and µE ′ ,
which is known to be a distance metric (Peyré and Cuturi, 2019, Prop. 2.2). Ob-
serve that by our definition of the EMD between multisets (Definition 3.5.3) we have
dEMD(E , E ′) = dW1(µE , µE ′).

The conditions (ii) and (iii) are inherited naturally. Firstly, we have

dEMD(E , E ′) = dW1(µE , µE ′)

= dW1(µE ′ , µE)

= dEMD(E ′, E)

where the second line follows since dW1 is a metric between distributions, verifying
that condition (ii) holds. Secondly, for any multisets E , E ′ and E ′′ we have

dEMD(E , E ′) = dW1(µE , µE ′)

≤ dW1(µE , µE ′′) + dW1(µE ′′ , µE ′)

= dEMD(E , E ′′) + dEMD(E ′′, E ′)

where again the second line follows since dW1 is a metric. Thus condition (iii) also



APPENDIX A. APPENDIX TO CHAPTER 3 157

holds.
We now showmetric condition (i) does not hold. To do so, let E be a multiset and

define E ′ via its multiplicity function as follows

mE ′(I) = C ·mE(I)

where C ∈ Z+, so that E ′ and E are proportional. Observe that if C > 1 then E ̸= E ′

whilst
µE ′(I) = mE ′(I)

|E ′| =
C ·mE(I)
C · |E| = µE(I)

for any I ∈ I∗, that is, µE = µE ′ . Consequently, we have E ̸= E ′ and

dEMD(E , E ′) = dW1(µE , µE ′) = 0,

thus providing a counterexample, confirming that condition (i) does not hold. This
completes the proof.

A.4.3 Sequence distances

Proof of Proposition 3.7.2 (Edit distance is a metric). To aid this exposition, write dE,δ(·)(S,S ′)

(Definition 3.7.1) in terms of its cost function as follows

dE,δ(·)(S,S ′) = min
M∈Mm(S,S′)

{Cost(M)}

where
Cost(M) =

∑

(I,I′)∈M

dI(I, I ′) +
∑

I∈Mc
S

δ(I) +
∑

I′∈Mc
S′

δ(I ′),

denotes the cost of the matchingM. First we consider metric condition (i) (identity
of indiscernibles). Supposing we have S = (I1, . . . , In) and S ′ = (I ′1, . . . , I ′m) with
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S = S ′, this implies that n = m and

Ii = I ′i for i = 1, . . . , n

that is, all interactions are equal. As such, we can trivially construct a monotone
matchingM∗ by pairing equivalent interactions, that is

M∗ = {(I1, I ′1), . . . , (In, I ′n)}, (A.4.5)

which leads to the following upper bound

dE,δ(·)(S,S ′) ≤ Cost(M∗)

=
n∑

i=1

dI(Ii, I ′i) = 0.

Now, since dI(·, ·) is a metric we have dI(I, I ′) ≥ 0, whilst δ(I) > 0 also by assump-
tion, which together imply dE,δ(·)(S,S ′) ≥ 0 for any sequences S and S ′. These two
bounds combine to imply that when S = S ′ we have dE,δ(·)(S,S ′) = 0, proving one
direction of metric condition (i).

For the converse case, wefirst assume that dE,δ(·)(S,S ′) = 0, which implies both the
sum of pairwise distances and penalisation terms must be zero (since all are sums
of non-negative values). Moreover, since δ(I) > 0 this implies there must be no
penalty terms. Thus ifM∗ is an optimal monotone matching then it must contain all
entries of S and S ′. Observe this also implies S and S ′ must be of the same length.
Furthermore, the only possible monotone matching which includes all entries of both
sequences is that defined in eq. (A.4.5), which implies

dE,δ(·)(S,S ′) = Cost(M∗)

=
n∑

i=1

dI(Ii, I ′i) = 0,



APPENDIX A. APPENDIX TO CHAPTER 3 159

where we have applied the definition of dE,δ(·)(S,S ′) directly, using the fact that since
M∗ is the only possibly monotone matching of S and S ′ it must be optimal. Now,
since dI(I, I ′) ≥ 0 (since dI(·, ·) is a metric), this implies

dI(Ii, I ′i) = 0 for i = 1, . . . n,

and since dI(·, ·) itself satisfies the identity of indiscernibles, this implies

Ii = I ′i for i = 1, . . . , n

from which we can conclude S = S ′. This proves the converse case, confirming that
dE,δ(·) satisfies metric condition (i).

The symmetry condition (ii) follows trivially from the symmetry of dI(·, ·) and
the penalisation terms.

Finally, we confirm metric condition (iii) (triangle inequality) is satisfied. The
approach is almost identical to that applied in the proof of Proposition 3.5.2 (Ap-
pendix A.4.2) with one key difference: we must ensure all matchings are monotone.
Given three interaction sequences

SX = (IX1 , . . . , IXnX
) SY = (IY1 , . . . , IYnY

) SZ = (IZ1 , . . . , IZnZ
)

we seek to show that

dE,δ(·)(SX ,SY ) ≤ dE,δ(·)(SX ,SZ) + dE,δ(·)(SZ ,SY ).

WithM∗
XZ andM∗

ZY denoting optimal monotone matchings for dE,δ(·)(SX ,SZ) and
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dE,δ(·)(SZ ,SY ) respectively, that is

dE,δ(·)(SX ,SZ) = Cost(M∗
XZ) dE,δ(·)(SZ ,SY ) = Cost(M∗

ZY )

observe these induce a matchingMXY of SX and SY as follows

MXY = {(IXi , IYj ) : (IXi , IZk ) ∈M∗
XZ and (IZk , IYj ) ∈M∗

ZY for some IZk ∈ SZ}

that is, we match entries of SX and SY if they were matched to the same entry of SZ .
We now confirmMXY is a monotone matching. Recall thatMXY is monotone if

for any pairs (IXi1 , IYj1) and (IXi2 , IYj2) inMXY we have

i1 < i2 ⇐⇒ j1 < j2.

To show this holds, observe by definition ofMXY there exists IZk1 and IZk2 in SZ such
that

(IXi1 , IZk1) ∈M∗
XZ (IZk1 , IYj1) ∈M∗

ZY

(IXi2 , IZk2) ∈M∗
XZ (IZk2 , IYj2) ∈M∗

ZY

Furthermore, sinceM∗
XZ andM∗

ZY are monotone we have

i1 < i2 ⇐⇒ k1 < k2 and k1 < k2 ⇐⇒ j1 < j2

which therefore implies

i1 < i2 ⇐⇒ k1 < k2 ⇐⇒ j1 < j2,

as required. HenceMXY is also monotone. With the induced matching being mono-
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tone, observe that by definition of dE,δ(·) we have the following

dE,δ(·)(SX ,SY ) ≤ Cost(MXY )

which implies the triangle inequality will hold if we can show the following inequal-
ity is satisfied

Cost(MXY ) ≤ dE,δ(·)(SX ,SZ) + dE,δ(·)(SZ ,SY ). (A.4.6)

Observe this is almost identical to the scenario in the proof of Proposition 3.5.2 (Ap-
pendix A.4.2), where the inequality of eq. (A.4.3) was shown to hold to prove that
dM,δ(·) satisfied the triangle inequality. Since the induced matching here is the same
used therein, albeit applied to sequences rather thanmultisets, an identical argument
can be used show that eq. (A.4.6) holds. For brevity, we will not repeat these steps
here, assuming henceforth that eq. (A.4.6) holds, implying dE,δ(·) satisfies the triangle
inequality and completing the proof.

Proof of Proposition 3.7.4. For ease of reference, recall the DTW distance between se-
quences S and S ′ is given by

dDTW(S,S ′) := min
C∈C(S,S′)




∑

(I,I′)∈C

dI(I, I ′)





where C(S,S ′) denotes the set of couplings between S and S ′.
Observe the symmetry condition (ii) follows trivially from the symmetry of the

ground distance dI(·, ·), by virtue of it being a metric.
All that remains is to show both conditions (i) and (iii) are violated. In both

cases, we do so by providing counterexamples. Beginning with (i) (identity of indis-
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cernibles), consider the following two sequences

SX = (IX1 ) SY = (IY1 , IY2 )

= (Ĩ) = (Ĩ, Ĩ)

where Ĩ ∈ I∗ denotes an arbitrary interaction. Clearly, we have SX ̸= SY . However,
there is only one valid coupling of SX and SY , namely CXY = ((IX1 , IY1 ), (IX1 , IY2 )),
implying the DTW distance between SX and SY is given by

dDTW(SX ,SY ) =
∑

(IX ,IY )∈CXY

dI(IX , IY )

= dI(IX1 , IY1 ) + dI(IX1 , IY2 )

= dI(Ĩ, Ĩ) + dI(Ĩ, Ĩ) = 0

thus violating condition (i).
Turning now to condition (iii) (triangle inequality), consider the following three

sequences
SX = (IX1 , IX2 ) SY = (IY1 ) SZ = (IZ1 )

= (Ĩ, Ĩ) = (Ĩ ′) = (Ĩ)

where Ĩ, Ĩ ′ ∈ I∗ with Ĩ ≠ Ĩ ′. Now, the only valid coupling of SX and SZ is given
by CXZ = ((IX1 , IZ1 ), (IX2 , IZ1 )), similarly the only coupling of SZ and SY is given by
CZY = ((IZ1 , IY1 )), whilst for SX and SY this will be CXY = ((IX1 , IY1 ), (IX2 , IY1 )). This
therefore implies

dDTW(SX ,SY ) =
∑

(IX , IY )∈CXY

dI(IX , IY )

= dI(IX1 , IY1 ) + dI(IX2 , IY1 )

= dI(Ĩ, Ĩ ′) + dI(Ĩ, Ĩ ′)

= 2dI(Ĩ, Ĩ ′)
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whilst

dDTW(SX ,SZ) + dDTW(SZ ,SY ) =
∑

(IX ,IZ)∈CXZ

dI(IX , IZ) +
∑

(IZ ,IY )∈CZY

dI(IZ , IY )

=
[
dI(IX1 , IZ1 ) + dI(IX2 , IZ1 )

]
+
[
dI(IZ1 , IY1 )

]

=
[
dI(Ĩ, Ĩ) + dI(Ĩ, Ĩ)

]
+
[
dI(Ĩ, Ĩ ′)

]

= dI(Ĩ, Ĩ ′)

which, since dI(Ĩ, Ĩ ′) > 0 (as Ĩ ≠ Ĩ ′ and dI(·, ·) is a metric) implies

dDTW(SX ,SY ) = 2dI(Ĩ, Ĩ ′) > dI(Ĩ, Ĩ ′) = dDTW(SX ,SZ) + dDTW(SZ ,SY )

and thus (iii) is violated, as desired. This completes the proof.

A.4.4 Pseudocode

Algorithm 1: Evaluating edit distance dE,δ(·)
Data: Interaction sequences S = (I1, . . . , IN) and S ′ = (I ′1, . . . , I ′M)
Result: dE,δ(·)(S,S ′) (Definition 3.7.1)
C ∈ R(N+1)×(M+1);
C11 = 0;
C(i+1)1 = Ci1 + δ(Ii) (for i = 1, . . . , N);
C1(j+1) = C1j + δ(I ′j) (for j = 1, . . . ,M);
for i = 1, . . . , n do

for j = 1, . . . ,m do

C(i+1)(j+1) = min





Cij + dI(Ii, I ′j)
Ci(j+1) + δ(Ii)
C(i+1)j + δ(I ′j)

end
end
return C(N+1)(M+1)



APPENDIX A. APPENDIX TO CHAPTER 3 164

Algorithm 2: Evaluating edit distance dE,δ(·) (light memory)
Data: Sequences S = (I1, . . . , IN) and S ′ = (I ′1, . . . , I ′M)
Result: dE,δ(·)(S,S ′) (Definition 3.7.1)
Zprev, Zcurr ∈ R(M+1);
Zprev

1 = 0, Zcurr
1 = 0;

Z
prev
i+1 = Z

prev
i + δ(I ′i) (for i = 1, . . . ,M);

for i = 1, . . . , n do
Zcurr

1 = Zcurr
1 + δ(Ii);

for j = 1, . . . ,m do

Zcurr
j+1 = min





Z
prev
j + dI(Ii, I ′j)

Z
prev
j+1 + δ(Ii)

Zcurr
j + δ(I ′j)

end
Zprev = Zcurr

end
return Zcurr

M+1

Algorithm 3: Evaluating dynamic time warping distance dDTW

Data: Sequences S = (I1, . . . , IN) and S ′ = (I ′1, . . . , I ′M)
Result: dDTW(S,S ′) (Definition 3.7.3)
C ∈ R(N+1)×(M+1);
C11 = 0;
C(i+1)1 =∞ (for i = 1, . . . , N);
C1(j+1) =∞ (for j = 1, . . . ,M);
for i = 1, . . . , N do

for j = 1, . . . ,M do
C(i+1)(j+1) = dI(Ii, I ′j) + min{Cij, C(i+1)j, Ci(j+1)}

end
end
return C(N+1)(M+1)
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Algorithm 4: Evaluating dynamic time warping distance dDTW (light mem-
ory)
Data: Sequences S = (I1, . . . , IN) and S ′ = (I ′1, . . . , I ′M)
Result: dDTW(S,S ′) (Definition 3.7.3)
Zprev, Zcurr ∈ R(M+1);
Zprev

1 = 0, Zcurr
1 =∞;

Z
prev
i+1 =∞ (for i = 1, . . . ,M);

for i = 1, . . . , N do
for j = 1, . . . ,M do

Zcurr
j+1 = dI(Ii, I ′j) + min{Zprev

j , Zcurr
j , Zprev

j+1 }
end
Zprev = Zcurr

end
return Zcurr

M+1

Algorithm 5: Evaluating LCS distance dLCS

Data: Paths I = (x1, . . . , xn) and I ′ = (y1, . . . , ym)
Result: dLCS(I, I ′) (Section 3.4)
C ∈ Z+

(n+1)×(m+1);
C11 = 0;
C(i+1)1 = i (for i = 1, . . . , n);
C1(j+1) = j (for j = 1, . . . ,m);
δ = 0;
for i = 1, . . . , n do

for j = 1, . . . ,m do

C(i+1)(j+1) = min





Ci(j+1) + 1

C(i+1)j + 1

Cij + 2 · 1(xi ̸= yj),

end
end
return C(n+1)(m+1)
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Algorithm 6: Evaluating LCS distance dLCS (light memory)
Data: Paths I = (x1, . . . , xn) and I ′ = (y1, . . . , ym)
Result: dLSP(I, I ′) (Section 3.4)
Zprev, Zcurr ∈ Z(m+1)

+ ;
Zprev

i+1 = Zcurr
i+1 = i (for i = 0, . . . ,m);

for i = 1, . . . , n do
Zcurr

1 = Zcurr
1 + 1;

for j = 1, . . . ,m do

Zcurr
j+1 = min





Zprev
j+1 + 1

Zcurr
j + 1

Zprev
j + 2 · 1(xi ̸= yi)

end
Zprev = Zcurr;

end
return Zcurr

m+1

Algorithm 7: Evaluating LSP distance dLSP
Data: Paths I = (x1, . . . , xn) and I ′ = (y1, . . . , ym)
Result: dLSP(I, I ′) (Section 3.4)
Q ∈ Z+

(n+1)×(m+1);
Q11 = 0;
Q(i+1)1 = 0 (for i = 1, . . . , n);
Q1(j+1) = 0 (for j = 1, . . . ,m);
δ = 0;
for i = 1, . . . , n do

for j = 1, . . . ,m do
if xi = yj then

Q(i+1)(j+1) = Qij + 1
δ = max

(
z,Q(i+1)(j+1)

)

else
Q(i+1)(j+1) = 0

end
end

end
return n+m− 2δ
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Algorithm 8: Evaluating LSP distance dLSP (light memory)
Data: Paths I = (x1, . . . , xn) and I ′ = (y1, . . . , ym)
Result: dLSP(I, I ′) (Section 3.4)
Zprev, Zcurr ∈ Z(m+1)

+ ;
Zprev

i+1 = Zcurr
i+1 = 0 (for i = 0, . . . ,m);

δ = 0;
for i = 1, . . . , n do

for j = 1, . . . ,m do
if xi = yj then

Zcurr
j+1 = Zprev

j + 1

δ = max
(
z, Zcurr

j+1

)

else
Zcurr

j+1 = 0

end
end
Zprev = Zcurr

end
return n+m− 2δ
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Appendix to Chapter 4

B.1 Sample spaces

In this section, we formally define the sample spaces of the SIS and SIM models in-
troduced in Section 4.2.1. In addition, we define the some finite versions thereof ob-
tained by bounding dimensions, whichwe recommendworkingwith in practice. For
further elaboration on this recommendation, including justifications of the rationale,
an outline of how to alter our MCMC algorithms to ensure the bound constraints are
met, and discussions on how to choose the bounds in practice, see Appendix B.4.

B.1.1 Infinite spaces

Recall from Definitions 4.2.1 and 4.2.2 that the SIS and SIM models define distribu-
tions over the spaces of all interaction sequences and multisets, respectively. Given
the vertex set V we first define the space of all interactions, that is, paths, as follows

I∗ := {(x1, . . . , xn) : xi ∈ V , n ≥ 1},

168
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withwhichwe can define the space of interaction sequencesS∗ in the followingman-
ner

S∗ := {(I1, . . . , IN) : Ii ∈ I∗, N ≥ 1},

moreover, with ES denoting the multiset obtained from the sequence S by disregard-
ing the order of paths therein, the space of interaction multisets E∗ can be defined as
follows

E∗ := {ES : S ∈ S∗}

where here we abuse notation slightly, since we can have ES = ES′ for S ≠ S ′ (when
equal up to a permutation of interactions), but we just assume such values have been
included once and so E∗ is a set and not a multiset.

Note that E∗ also admits another interpretation as a partitioning ofS∗ into equiva-
lence classes. To see this, first define an equivalence relation on S∗ via permutations,
in particular we write S p∼ S ′ if there is some permutation σ such that S ′ = Sσ, where
Sσ = (Iσ(1), . . . , Iσ(N)) is the interaction sequence obtained by permuting the interac-
tions of S via σ. Now, observe that each E ∈ E∗ can be seen as an equivalence class
of interaction sequences obtained via p∼, that is

E = {S ∈ S∗ : S p∼ S̃}

where S̃ denotes some arbitrary ordering of the interactions of E . Thus, E∗ is in a
sense the union of such sets and partitions S∗.

B.1.2 Bounded spaces

In this section, we define bounded analogues of the infinite spaces introduced the in
preceding section. With regards to the objects we consider, there are two things we
can bound: (i) the size of paths and (ii) the number of paths. Referring to these as the
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inner and outer dimensions respectively, we specify two integersK and L bounding
their values and define our sample spaces accordingly. Assuming that the vertex set
V is fixed, and K ∈ Z≥1 we let

I∗
K := {(x1, . . . , xn) : xi ∈ V , 1 ≤ n ≤ K}

denote the space of paths up to length K, and then with L ∈ Z≥1 we let

S∗
K,L := {(I1, . . . , IN) : Ii ∈ I∗

K , 1 ≤ N ≤ L},

denote the space of interaction sequences with at most L paths of length at most K.
The analogous bounded space of interaction multisets in then given by

E∗
K,L := {ES : S ∈ S∗

K,L},

where as in the definition of E∗ in Appendix B.1.1 one can have ES = ES′ for S ̸= S ′,
but we here just assume such values have been included once, and so E∗

K,L is indeed
a set, not a multiset.

B.2 Simulation studies: extra details

This section contains supporting details for the simulation studies of Section 4.4. In
particular, we discuss howparameterswere chosen for the simulation of Section 4.4.2,
and provide a derivation for the posterior predictive approximation used in Sec-
tion 4.4.3.
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B.2.1 Posterior concentration parameter choices

Recall that in the simulation of Section 4.4.2 we resampled the true mode via

Strue ∼ Hollywood(α,−αV, ν)

where V = 20 and ν = TrPoisson(3, 1, 10), whilst α < 0 we varied. As mentioned in
Section 4.4.2, the parameter α can be seen to control the tail of the vertex count dis-
tribution. As such, rather than choosing α on an even grid we instead consult a sum-
mary measure quantifying the ‘heavy-tailedness’ of the degree distribution, before
choosing values so as to evenly represent different structures for Strue (as quantified
by this degree distribution).

For a given observation S, recall the following definition

kS(v) := # times v appears in S,

which for each S implies a sample {kS(v) : v ∈ V , kS(v) > 0}, similar to the de-
gree distribution. The summarymeasure we considered was the 95% quantile of this
sample.

Through simulation, we examined how α controls the expected value of this 95%
quantile (expected sinceS is sample randomly from aHollywoodmodel). In particu-
lar, for a range ofα values, we (i) drewa sample {S(i)}ni=1, fromaHollywood(α,−αV, ν)
model, taking ν and V as above, drawing a total of N = 10 paths in each case, then
(ii) for i = 1, . . . , n we evaluated the 95% quantile of the sample {kS(i)(v) : v ∈

V , kS(i)(v) > 0}, before returning the mean value of these quantiles.
Figure B.2.1 summarises the output with n = 1000 samples, where circular mark-

ers show themean quantiles. Towards choosing simulation parameters, we next con-
structed a function mapping all α < 0 to an expected quantile via a linear interpola-
tion, as shown in Figure B.2.1 by the dashed line, which allowed us to select α (red
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Figure B.2.1: Summary of Hollywood model simulation used to select parameters
for simulation of Section 4.4.2. Plot shows simulated mean degree distribution 95%
quantiles for Hollywood(α,−αV, ν) model, where V = 20, ν = TrPoisson(3, 1, 10)
and α varies. Via linear interpolation (dashed line), we choose α values (crosses) to
get an even spread over the expected degree distribution quantiles.

crosses) providing an even spread of expected degree-distribution 95% qauntiles.

B.2.2 Posterior predictive for missing entries

Here we show how one can obtain an approximation for the missing-entry posterior
predictive using a sample from the posterior, as used in Section 4.4.3. First, observe
that any sample {(Sm

i , γi)}mi=1 from the posterior implies the following atomic approx-
imation thereof

p̂(Sm, γ|{S(i)}ni=1) =
1

m

m∑

i=1

1(Sm = Sm
i ) · δ(γ − γi) (B.2.1)

where δ(·) is the Dirac delta function.
As in Section 4.4.3, with Sx denoting the observation with missing entry filled in

to be x, then given some parameters (Sm, γ) we have the true predictive for x given
by

p(x|Sm, γ,S−x) :=
1

Z(Sm, γ,S−x)
exp{−γdS(Sx,Sm)}
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with
Z(Sm, γ,S−x) =

∑

x∈V

exp{−γdS(Sx,Sm)}.

The posterior predictive is now obtained by averaging with respect to the posterior

p(x|{S(i)}ni=1,S−x) =
∑

Sm∈S∗

∫

R+

p(x|Sm, γ,S−x)p(Sm, γ|{S(i)}ni=1)dγ,

which we can now approximate by substituting in (B.2.1) as follows

p̂(x|{S(i)}ni=1,S−x) :=
∑

Sm∈S∗

∫

R+

p(x|Sm, γ,S−x)p̂(Sm, γ|{S(i)}ni=1)dγ

=
∑

Sm∈S∗

∫

R+

p(x|Sm, γ)

(
1

m

m∑

i=1

1 (Sm = Sm
i ) δ(γ − γi)

)
dγ

=
1

m

m∑

i=1

p(x|Sm
i , γi),

which is exactly as stated in Section 4.4.3.
A pragmatic note here is that as the posterior concentrates the number of unique

values in the sample {Sm
i }mi=1 will typically not be too large. Sincewe need only evalu-

ate the distancemetric (which is typically quite costly) at these values, this predictive
is feasible to evaluate.

B.3 Montonicity of the entropy

Here we examine the entropy for the SIS and SIM model families (Definitions 4.2.1
and 4.2.2 respectively), in particular, we confirm it is monotonic with respect to the
dispersion.
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For the SIS model, recall the entropy is given by

H(Sm, γ) = −E[log p(S|Sm, γ)]

= −
∑

S∈S∗
log

(
exp{−γdS(S,Sm)}

Z(Sm, γ)

)
exp{−γdS(S,Sm)}

Z(Sm, γ)

= −
( ∑

S∈S∗
−γdS(S,Sm)

exp{−γdS(S,Sm)}
Z(Sm, γ)

− logZ(Sm, γ)
∑

S∈S∗

exp{−γdS(S,Sm)}
Z(Sm, γ)

)

= γ

(∑

S∈S∗
dS(S,Sm)

exp{−γdS(S,Sm)}
Z(Sm, γ)

)
+ logZ(Sm, γ)

= γ × E[dS(S,Sm)] + logZ(Sm, γ).

Unfortunately, aswas the case for the normalising constantZ(Sm, γ) (Section 4.2.3),
since S∗ is infinite we have no guarantee thatH(Sm, γ)will exist. However, what we
can say is that, when H(Sm, γ) exists, it is monotonic in γ. To show this, we first
differentiate H(Sm, γ) with respect to γ

∂

∂γ
H(Sm, γ) =

∂

∂γ
E[dS(S,Sm)] + E[dS(S,Sm)] +

∂

∂γ
logZ(Sm, γ)
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where one has

∂

∂γ
logZ(Sm, γ) =

∂
∂γ
Z(Sm, γ)

Z(Sm, γ)

=
1

Z(Sm, γ)

∂

∂γ

(∑

S∈S∗
exp {−γdS(S,Sm)}

)

=
1

Z(Sm, γ)

∑

S∈S∗

∂

∂γ
exp {−γdS(S,Sm)}

=
1

Z(Sm, γ)

∑

S∈S∗
(−dS(S,Sm)) exp {−γdS(S,Sm)}

= −
∑

S∈S∗
dS(S,Sm)

1

Z(Sm, γ)
exp {−γdS(S,Sm)}

= −E[dS(S,Sm)],

(B.3.1)

thus implying
∂

∂γ
H(Sm, γ) =

∂

∂γ
E[dS(S,Sm)].

Now, we have

∂

∂γ
E[dS(S,Sm)] =

∂

∂γ

(
1

Z(Sm, γ)

∑

S∈S∗
dS(S,Sm) exp{−γdS(S,Sm)}

)

= −
∂
∂γ
Z(Sm, γ)

Z(Sm, γ)2

(∑

S∈S∗
dS(S,Sm) exp{−γdS(S,Sm)}

)

− 1

Z(Sm, γ)

(∑

S∈S∗
dS(S,Sm)2 exp{−γdS(S,Sm)}

)

= −
∂
∂γ
Z(Sm, γ)

Z(Sm, γ)2

(∑

S∈S∗
dS(S,Sm) exp{−γdS(S,Sm)}

)

− 1

Z(Sm, γ)

(∑

S∈S∗
dS(S,Sm)2 exp{−γdS(S,Sm)}

)

= −
∂
∂γ
Z(Sm, γ)

Z(Sm, γ)
E[dS(S,Sm)]− E[dS(S,Sm)2] (B.3.2)

= E[dS(S,Sm)]2 − E[dS(S,Sm)2] (B.3.3)
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= Var[dS(S,Sm)],

where (B.3.3) follows from (B.3.2) by applying (B.3.1). Now, observe that if ∂
∂γ
H(Sm, γ) >

0 this impliesH(Sm, γ) is monotonic in γ, as desired. By the derivations above, this is
equivalent to saying we have monotonicity provided Var[dS(S,Sm)] > 0. This result
essentially says we have monotonicity of the entropy with respect to γ provided our
distribution is not a point mass.

Similar derivations can be obtained for the multiset models (Definition 4.2.2) by
a simple change of notation. For brevity, we do not repeat this here.

B.4 Bounding dimensions

Aswementioned in Section 4.2.1, in practice we recommend constraining the sample
spaces to be finite, as defined in Appendix B.1.2. In this section, we will illustrate
why we make this recommendation. We will also elaborate on how one might go
about choosing the necessary bounds and discuss how our MCMC algorithms can
be slightly altered to respect the imposed dimension constraints.

To illustrate the need for constraining the sample space we will show via simula-
tion what can go wrong. In particular, we will show that one can, in certain scenar-
ios, observe a divergence in dimension when sampling from models over an infinite
space. We note the following will regard the SIS model, but analogous behaviour
will be observable for the infinite version of the SIM model. Suppose we would like
to sample from the SIS model of Definition 4.2.1 over the infinite space S∗ of all inter-
action sequences. As we have mentioned in Section 4.3.6, we cannot do this exactly,
but we can obtain approximate samples via our iMCMC algorithm proposed therein.
With this, for a givenmodeSm and dispersion γ, we can obtain a chain (Si)Mi=1 approx-
imating a sample from the SIS model with these parameters, that is, a chain targeting
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Figure B.4.1: Illustrating divergence in dimension for the SIS model over an infinite
space. Each trace summarises an MCMC chain sampling from an SIS(Sm, γ) model
over the space S∗ with the dispersion γ set at different values. Here we observe, for
γ low enough, the number of paths (outer dimension) diverges.

the following

p(S|Sm, γ) ∝ exp{−γdS(S,Sm)}. (B.4.1)

Figure B.4.1 summarises three such chains drawn with different values for the dis-
persion, where for each sample Si = (I(i)1 , . . . , I(i)Ni

) we plot the number of paths Ni,
or what we call the outer dimension. In each case, we initialised the chains at the
mode Sm, with a lag of 1 between samples and no burn-in. Here one can clearly see
the dimensions of samples tends to be larger as γ decreases. Moreover, when γ = 3.5

the dimension appears to diverge, showing a clear upward trend.
Why does this happen? Observe that as γ goes to zero p(S|Sm, γ) of (B.4.1) will

converge to the uniform distribution over the space S∗. Though this might seem
innocuous, one must remember that there are far more interaction sequences with
large dimensions. For example, if S has n entries in total across all its paths, then
there are V n possible choices thereof. As such, with a uniform distribution over S∗,
the probability of sampling an observation with large dimensions will be higher than
those with smaller dimensions, leading to the observed divergence.

This implies there is always a chance, if γ is low enough, that the dimensions will
diverge. This will inevitably cause computational issues when sampling from these
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models via our iMCMC algorithm. Even if one does not first run out of memory, the
cost of evaluating the distance dS(S,Sm) is very likely to grow with the dimension
of S, significantly slowing down the sampling time. This becomes ever more signif-
icant in the context of the algorithms we proposed to sample from the posterior in
Section 4.3. Recall that in updating the dispersion (Section 4.3.3) we must sample
auxiliary data from the model at γ and γ′, the current value and the proposal, which
we do via our iMCMC algorithm as above. Consequently, there is the chance one
may have proposed a γ′ for which the dimension will blow up when sampling the
auxiliary data. Moreover, obtaining such samples will generally be more computa-
tionally cumbersome, increasing the time taken to obtain the auxiliary data, in turn
slowing down the time taken to obtain the posterior samples. Ultimately, the result
will be a posterior sampling scheme which is unstable and unpredictable in terms of
run time.

This motivates our recommendation to constrain the sample space to S∗
K,L ⊆ S∗,

as defined in Appendix B.4, where K and L represent the maximum path length
and number of paths respectively. This will effectively place a lid on the possible
dimension of samples, removing the possibility of divergence in dimensions. Note to
sample frommodels over such constrained spaces we can use the exact sameMCMC
algorithms used in the infinite case. All one must do is set the probability of values
outside of S∗

K,L to zero, that is for each S ∈ S∗ let

p(S|Sm, γ) ∝





exp{−γdS(S,Sm)} if S ∈ S∗
K,L

0 if S /∈ S∗
K,L

defining a distribution over the infinite spaceS∗ whichwe can targetwith ourMCMC
algorithm. Observe that, within theMCMCalgorithm, if we are currently at state S ∈
S∗

K,L any proposal S ′ /∈ S∗
K,L will always be rejected, since its acceptance probability

will evaluate to zero. Hence we will obtain only samples from the constrained space,
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as desired.
With the recommendation of bounding sample spaces comes the question of how

to choose these bounds. We note this is only a question of interest when one is con-
sidering inference.1 In this case, we will have observed a sample

S(1), . . . ,S(n)

which we assume was drawn i.i.d. via

S(i) ∼ SIS(Sm, γ)

where Sm and γ are some unknown model parameters. Notice assuming bounds K
and L implies we must have S(i) ∈ S∗

K,L for each of the observed samples. In this
way, this informs the following thresholds for possible choices of K and L

K ≥ max
i=1,...,n

{
max

j=1,...,N(i)
n
(i)
j

}
L ≥ max

i=1,...,n
N (i)

where N (i) is the number of paths in the ith observation and n
(i)
j is the length of the

jth path in the ith observation. As such, we recommend choosing bounds either
at or close these thresholds, and indeed this is what we did for the data analysis of
Section 4.5.

We finalise these discussions by noting that in constraining the sample space one
can actually alter the interpretation of γ in the resultingmodel, in the sense that draws
from the model with the same value of γ but different choices for K and L can look
quite different in terms of the samples they generate. Though this might seem prob-
lematic, we note that the same applies to different choices of distance dS(·, ·), the flex-

1If one is instead just sampling from themodel, for example to examine the behaviour of the model
with a particular distance dS(·, ·), then the bounds can be set to personal preference, or the infinite
space assumed, with the awareness that dimensions could diverge.



APPENDIX B. APPENDIX TO CHAPTER 4 180

ibility of which is a key feature of our proposed methodology. In this way, one must
accept that the interpretation of γ is context dependent. In any case, a pragmatic way
to interpret an inferred value thereof is to instead use simulations from the model as
we did in Section 4.5.2.

B.5 The iExchange algorithm

In this section, we outline the iExchange algorithm (Algorithm 9), a generalisation
of exchange algorithm (Murray et al., 2006) obtained by incorporating the proposal
generating mechanism of the iMCMC algorithm (Neklyudov et al., 2020). As we
show, the iExchange algorithm is itself an iMCMC algorithm (with a particular form
of involution), providing the necessary theoretical justification. For completeness,
we give background details regarding both the exchange and iMCMC algorithms,
before showing how they can be combined.

Algorithm 9: Involutive exchange (iExchnage) algorithm
Input: target density p(θ|x) ∝ p(θ)γ(x|θ)/Z(θ)
Input: auxiliary density q(u|θ)
Input: involution f(θ, u), i.e. f−1(θ, u) = f(θ, u)
initialise θ
for i = 1, . . . , n do

sample u ∼ q(u|θ)
invoke involution (θ′, u′) = f(x, u)
sample y ∼ p(y|θ′)
evaluate α(θ, θ′) = min

{
1, p(θ

′)γ(x|θ′)γ(y|θ)q(u′|θ′)
p(θ)γ(x|θ)γ(y|θ′)q(u|θ)

∣∣∣∂f(θ,u)∂(θ,u)

∣∣∣
}

θi =

{
θ′ with probability α(θ, θ′)

θ with probability 1− α(θ, θ′)

θ ← θi
end

Let us first set the context. We have some data x which is assumed to have been
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drawn via a model p(x|θ), where θ denote parameters, taking the following form

p(x|θ) = γ(x|θ)
Z(θ)

(B.5.1)

where Z(θ) = ∫ γ(x|θ)dx denotes its normalising constant, assumed to be intractable.
If one is taking a Bayesian approach to inference and has specified a prior p(θ), this
leads to the following posterior

p(θ|x) = p(x|θ)p(θ)
p(x)

(B.5.2)

where p(x) =
∫
p(x|θ)p(θ)dθ is the marginal probability of the data, which in most

cases is also intractable. Due to these two elements of intractability, such posteriors
are often referred to as doubly-intractable (Murray et al., 2006). For example, the
posteriors resulting from both our SIS and SIM models are doubly-intractable.

A typical approach to circumvent the intractability present in Bayesian posterior
distributions is to use MCMC algorithms to sample from them, with the Metropolis-
Hastings (MH) algorithm being a prevalent choice. However, for doubly-intractable
posteriors, many standard MCMC algorithms are not feasible. To illustrate, consider
using the MH algorithm. Here, with θ the current state and q(θ′|θ) some proposal
density, in a single iteration one would sample proposal θ′ from q(θ′|θ) and accept
this with the following probability

α(θ, θ′) = min

{
1,

p(θ′|x)q(θ|θ′)
p(θ|x)q(θ′|θ)

}

= min

{
1,

γ(x|θ′)/Z(θ′)p(θ′)q(θ|θ′)
γ(x|θ)/Z(θ)p(θ)q(θ′|θ)

}
,

(B.5.3)

so that, starting from some initial state θ0 one obtains a sample {θi}mi=1 which is (ap-
proximately) distributed according to p(θ|x). However, though the marginal prob-
ability p(x) cancels out in (B.5.3), the normalising constants Z(θ) and Z(θ′) do not.
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Moreover, since these are by assumption intractable, α(θ, θ′) cannot be evaluated, rul-
ing out use of the MH algorithm.

This necessitates the proposal of specialised MCMC algorithms to sample from
doubly-intractable posterior distributions, and herein lies the motivation for the ex-
change and iExchange algorithms.

B.5.1 Exchange algorithm

In this section, we give a high-level overviewof the exchange algorithm(Algorithm10),
proposed by Murray et al. (2006). This is similar in structure to MH algorithm, but
with some extra sampling in each iteration. Namely, one samples so-called auxiliary

data, which subsequently appears in the acceptance probability, inducing cancellation
of intractable normalising constants. Effectively, it targets an augmented distribution
which admits the posterior of interest as its marginal (Murray et al., 2006).

As in the MH algorithm, we have some proposal distribution q(θ′ | θ) which is
pre-specified. We also introduce an auxiliary data set y which lies in the same space
as the observed data x. Now, given current state θ a single iteration consists of the
following

1. Sample proposal θ′ via q(θ′ | θ)

2. Sample auxiliary data y | θ′ via p(y | θ′) of (B.5.1) (sample from the model)

3. Evaluate acceptance probability

α(θ, θ′) = min

{
1,

p(θ′|x)q(θ|θ′)p(y|θ)
p(θ|x)q(θ′|θ)p(y|θ′)

}

= min

{
1,

p(θ′)γ(x|θ′)γ(y|θ)q(θ|θ′)
p(θ)γ(x|θ)γ(y|θ′)q(θ′|θ)

} (B.5.4)

4. With probability α(θ, θ′)we move to state θ′, otherwise we stay at θ.
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Observe the absence of normalising constants here makes α(θ, θ′) tractable. Re-
peating this a number of times, as summarised in Algorithm 10, produces a Markov
chain admitting p(θ |x) as its stationary distribution (Murray et al., 2006). An alter-
native justification to that given by Murray et al. (2006) comes by viewing this as an
instance of iMCMC, which we detail in the next section.

Algorithm 10: Exchange algorithm
Input: target density p(θ|x) ∝ p(θ)γ(x|θ)/Z(θ)
Input: proposal distribution q(θ′|θ)
initialise θ;
for i = 1, . . . , n do

sample θ′ via q(θ′|θ)
sample y via p(y|θ′) (from the model)
evaluate α(θ, θ′) = min

{
1, p(θ

′)γ(x|θ′)γ(y|θ)q(θ|θ′)
p(θ)γ(x|θ)γ(y|θ′)q(θ′|θ)

}

θi =

{
θ′ with probability α(θ, θ′)

θ with probability 1− α(θ, θ′)

θ ← θi
end
Output: sample {θi}ni=1

B.5.2 Involutive MCMC (iMCMC)

The iMCMC algorithm of Neklyudov et al. (2020) considers the problem of sampling
from a general target distribution p(x) over some space X , for example, this might be
our posterior from (B.5.2) (replacing x with θ). Like all MCMC algorithms, it does
so by sampling a Markov chain admitting p(x) as its stationary distribution, using
in particular a combination of random sampling and involutive deterministic maps.
The result is a very general framework which includes many well-known MCMC
algorithms as special cases.

As the name suggests, iMCMC uses a particular type of deterministic function
know as an involution. This is a function which serves as its own inverse, that is, if
f : X → X then one has f−1(x) = f(x). Equivalently, a composition f with itself
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leads to the identity
f(f(x)) = x.

Towards targeting p(x) one introduces auxiliary variables u ∈ U with conditional
density q(u|x) over an auxiliary space U (which need not be equal toX ), augmenting
the target as follows

p(x, u) = p(x)q(u|x)

which is now a distribution over X × U . Observe this admits p(x) as its marginal
and hence one can obtain samples thereof by targeting p(x, u) and disregarding the
u samples. To do so, suppose an involution f : X × U → X × U has been speci-
fied along with the auxiliary distribution q(u|x). In structure reminiscent of the MH
algorithm, a single iteration consists of the following. With current state (x, u), an
auxiliary variable u ∈ U is first drawn from q(u|x), before the involution f is invoked
to get a proposal (x′, u′) = f(x, u), which is subsequently accepted with the following
probability

α ((x, u), (x′, u′)) = min

{
1,

p(f(x, u))

p(x, u)

∣∣∣∣
∂f(x, u)

∂(x, u)

∣∣∣∣
}

= min

{
1,

p(x′)q(u′|x′)

p(x)q(u|x)

∣∣∣∣
∂f(x, u)

∂(x, u)

∣∣∣∣
}
,

leading to aMarkov chain admitting p(x, u) as its stationary distribution (Neklyudov
et al., 2020, Proposition 2).

Observe that since auxiliary variables u are resampled in each iteration they do
not need to be stored, and can instead be discarded as the algorithm proceeds. In this
way, one may also drop their reference in the acceptance probability denoting this
simply α(x, x′). This leads to the algorithm to target p(x) as outlined in Algorithm 11.

As mentioned, many known MCMC algorithms can be written in this form. For
example, if one assumes U = X , with q(x′|x) the auxiliary distribution and f(x, x′) =

(x′, x) the involution defined by swapping entries, then one obtains the Metropolis-
Hastings algorithm with proposal distribution q(x′|x). Further examples of MCMC
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Algorithm 11: Involutive MCMC (iMCMC)
Input: target density p(x)
Input: auxiliary density q(u|x)
Input: involution f(x, u)
initialise x;
for i = 1, . . . , n do

sample u ∼ q(u|x)
invoke involution (x′, u′) = f(x, u)

evaluate α(x, x′) = min
{
1, p(x

′)q(u′|x′)
p(x)q(u|x)

∣∣∣∂f(x,u)∂(x,u)

∣∣∣
}

xi =

{
x′ with probability α(x, x′)

x with probability 1− α(x, x′)
x← xi

end
Output: sample {xi}ni=1

algorithms which can be cast in the iMCMC framework are given in Neklyudov et al.
(2020), Appendix B.

Another iMCMC special case which is of relevance to us is the exchange algo-
rithm. To see this, we let u = (θ′,y), where y denotes the auxiliary data, as seen in
Appendix B.5.1. Moreover, we define our involution as follows

f(θ, u) = (θ′, (θ,y)),

that is, we simply swap θ ↔ θ′. Observe we have

f(f(θ, u)) = f(f(θ, (θ′,y))

= f(θ′, (θ,y))

= (θ, (θ′,y))

= (θ, u)

so that f is indeed an involution. We now derive the Jacobian term. For convenience,
drop the inner parenthesis and write (θ, u) = (θ, θ′,y), for which we have f(θ, θ′,y) =
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(θ′, θ,y). Now, we have

∂f(θ, θ′,y)

∂(θ, θ′,y)
=




∂f1
∂θ

∂f1
∂θ′

∂f1
∂y

∂f2
∂θ

∂f2
∂θ′

∂f2
∂y

∂f3
∂θ

∂f3
∂θ′

∂f3
∂y



=




∂θ′
∂θ

∂θ′
∂θ′

∂θ′
∂y

∂θ
∂θ

∂θ
∂θ′

∂θ
∂y

∂y
∂θ

∂y
∂θ′

∂y
∂y



=




0 1 0

1 0 0

0 0 1




and taking determinants

∣∣∣∣
∂f(θ, θ′,y)

∂(θ, θ′,y)

∣∣∣∣ = 1 ·

∣∣∣∣∣∣∣

0 1

1 0

∣∣∣∣∣∣∣
+ 0 + 0 = 1.

Finally, with q(θ′|θ) denoting the proposal density of the exchange algorithm, define
the auxiliary distribution as follows

q(u|θ) = q(θ′|θ)p(y|θ′)

where p(y|θ′) is the likelihood of auxiliary data y under the assumed model (B.5.1).
With these elements, an iMCMC algorithm targeting p(θ|x)would (i) sample u from
q(u|θ), which amounts to first sampling θ′ from q(θ′|θ), before drawing y from p(y|θ′),
and (ii) accept θ′ with probability

α(θ, θ′) = min

{
1,

p(θ′|x)p(u′|θ′)
p(θ|x)p(u|θ)

∣∣∣∣
∂f(θ, u)

∂(θ, u)

∣∣∣∣
}

= min

{
1,

p(θ′)γ(x|θ′)γ(y|θ)q(θ|θ′)
p(θ)γ(x|θ)γ(y|θ′)q(θ′|θ)

∣∣∣∣
∂f(θ, θ′,y)

∂(θ, θ′,y)

∣∣∣∣
}

= min

{
1,

p(θ′)γ(x|θ′)γ(y|θ)q(θ|θ′)
p(θ)γ(x|θ)γ(y|θ′)q(θ′|θ)

}
,

which is nothing more than the exchange algorithm (Algorithm 10).
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B.5.3 Defining the iExchange algorithm

We now define our extension of the exchange algorithm. We will assume that an
iMCMC scheme to target p(θ|x) has been defined, that is, auxiliary variables u, in-
volution f(θ, u) = (θ′, u′) and conditional distribution q(u|θ) have all been specified.
When the posterior is doubly-intractable, in general one will not be able to imple-
ment this algorithm due to the intractability of the acceptance probability. However,
in spirit of the exchange algorithm, we can choose auxiliary variables and their condi-
tional distribution to induce cancellation of normalising constants in the acceptance
probability.

In particular, we let ũ = (u,y), where y denotes an auxiliary dataset lying in the
same space as x. Now, writing f(θ, u) = (f1(θ, u), f2(θ, u)) = (θ′, u′) we define an
involution g(θ, ũ) as follows

g(θ, ũ) = g(θ, (u,y)) = (f1(θ, u), (f2(θ, u),y))

= (θ′, (u′,y))

for which we have
g(g(θ, ũ)) = g(θ′, (u′,y))

= (f1(θ
′, u′), (f2(θ

′, u′),y))

= (θ, (u,y))

= (θ, ũ)

that is, g is indeed an involution. Now, as in Section B.5.3, drop the inner parenthesis
and write (θ, ũ) = (θ, u,y). The Jacobian is now given by

∂g(θ, ũ)

∂(θ, ũ)
=

∂g(θ, u,y)

∂(θ, u,y)
=




∂g1
∂θ

∂g1
∂u

∂g1
∂y

∂g2
∂θ

∂g2
∂u

∂g2
∂y

∂g3
∂θ

∂g3
∂u

∂g3
∂y



=




∂f1
∂θ

∂f1
∂u

∂f1
∂y

∂f2
∂θ

∂f2
∂u

∂f2
∂y

∂f3
∂θ

∂f3
∂u

∂f3
∂y



=




∂f1
∂θ

∂f1
∂u

0

∂f2
∂θ

∂f2
∂u

0

0 0 1
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and taking determinants we get the following

∣∣∣∣
∂g(θ, ũ)

∂(θ, ũ)

∣∣∣∣ = 1 ·

∣∣∣∣∣∣∣




∂f1
∂θ

∂f1
∂u

∂f2
∂θ

∂f2
∂u




∣∣∣∣∣∣∣
+ 0 + 0 =

∣∣∣∣
∂f(θ, u)

∂(θ, u)

∣∣∣∣ .

The final element to define is the auxiliary distribution. Given current state θ we
consider sampling ũ = (u,y) as follows: (i) sample u from q(u|θ), then (ii) sample
y from p(y|θ′) (the model) where θ′ = f1(θ, u). This leads to the following auxiliary
density

q(ũ|θ) = q(u|θ)p(y|θ′).

All the elements of an iMCMC algorithm have now been defined, a single iteration of
which consists of the following. Given current state θ, we first sample ũ = (u,y) via
q(ũ|θ) as above. We then invoke involution g(θ, ũ) = (θ′, ũ′) = (θ′, (u′,y)), generating
a proposal θ′ which we accept with the following probability

α(θ, θ′) = min

{
1,

p(g(θ, ũ))

p(θ, ũ)

∣∣∣∣
∂g(θ, ũ)

∂(θ, ũ)

∣∣∣∣
}

= min

{
1,

p(θ′|x)q(ũ′|θ′)
p(θ|x)q(ũ|θ)

∣∣∣∣
∂g(θ, ũ)

∂(θ, ũ)

∣∣∣∣
}

= min

{
1,

p(θ′|x)q(u′|θ′)p(y|θ)
p(θ|x)q(u|θ)p(y|θ′)

∣∣∣∣
∂f(θ, u)

∂(θ, u)

∣∣∣∣
}

= min

{
1,

p(θ′)γ(x|θ′)γ(y|θ)q(u′|θ′)
p(θ)γ(x|θ)γ(y|θ′)q(u|θ)

∣∣∣∣
∂f(θ, u)

∂(θ, u)

∣∣∣∣
}
,

where as in the exchange algorithmwe observe cancellation of normalising constants
thanks to the introduction of auxiliary data. Note the Jacobian term here concerns
the involution of the original iMCMC scheme to sample from p(θ|x), and thus the
key difference here is the introduction of auxiliary data. The result is what we call
the iExchange algorithm (Algorithm 9).
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B.6 Bayesian inference: extra details

In this sectionweprovide extra details concerning ourMCMCscheme for the interaction-
sequence models outlined in Section 4.3, including explicit specification of proposal
distributions, involutions and auxiliary distributions, derivations of closed-form ac-
ceptance probabilities and pseudocode.

B.6.1 Dispersion conditional

The dispersion conditional can be obtained directly from (4.3.3) by conditioning on
the mode Sm, in particular we have

p(γ|Sm, {S(i)}ni=1) ∝ Z(Sm, γ)−n exp

{
−γ

n∑

i=1

dS(S(i),Sm)

}
p(γ). (B.6.1)

To target (B.6.1) we use the exchange algorithm of Murray et al. (2006) (see Ap-
pendix B.5.1 for background details). As a proposal q(γ′|γ) we consider sampling γ′

uniformly over a ε-neighbourhood of γ with reflection at zero, this is, we first sample
γ∗ ∼ Uniform(γ − ε, γ + ε) and then let γ′ = γ∗ if γ∗ > 0 and let γ′ = −γ∗ otherwise.
The density is thus given by the following (for γ > 0)

q(γ′|γ) =





1
2ε

if γ′ > 0 and γ + γ′ > ε

1
ε

if γ′ > 0 and γ + γ′ < ε

0 if γ′ ≤ 0.

(B.6.2)

whilst q(γ′|γ) = 0 for γ ≤ 0. Observe this proposal is symmetric, in that q(γ′|γ) =

q(γ|γ).
Now, a single iteration consists of the following. Assuming γ is our current state,

we first sample proposal γ′ from q(γ′|γ). Next, we sample auxiliary data {S∗
i }ni=1 i.i.d.
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from the appropriate model, namely

S∗
i ∼ SIS(Sm, γ′) (for i = 1, . . . , n),

which we note implies

p({S∗
i }ni=1 | Sm, γ′) = Z(Sm, γ′)−n exp

{
−γ′

n∑

i=1

dS(S∗
i ,Sm)

}
.

Finally, we accept this proposal with the following probability

α(γ, γ′) = min {1, H(γ, γ′)}

where

H(γ, γ′) =
p(γ′|Sm, {S(i)}ni=1)p({S∗

i }ni=1|Sm, γ)

p(γ|Sm, {S(i)}ni=1)p({S∗
i }ni=1|Sm, γ′)

q(γ|γ′)

q(γ′|γ)

= exp

{
−(γ′ − γ)

(
n∑

i=1

dS(S(i),Sm)−
n∑

i=1

dS(S∗
i ,Sm)

)}
p(γ′)

p(γ)
,

where we note normalising constants of the (conditional) posterior and auxiliary
data cancel one another out, whilst the proposal density terms cancel due to its sym-
metry.

B.6.2 Mode conditional

By conditioning on γ in (4.3.3) we get the following form for the mode conditional
posterior

p(Sm|γ, {S(i)}ni=1) ∝ Z(Sm, γ)−n exp

{
−γ

n∑

i=1

dS(S(i),Sm)− γ0dS(Sm,S0)
}
,



APPENDIX B. APPENDIX TO CHAPTER 4 191

which as outlined in Section 4.3.4we target via the iExchange algorithm(Algorithm9).
For further details on the iExchange algorithm, including justification as an instance
of iMCMC, please see Appendix B.5.

Supposing that auxiliary variables u, involution f(Sm, u) and auxiliary distribu-
tion q(u|Sm) have all be specified, a single iteration of the iExchange algorithm in this
case consists of the following. With γ fixed and Sm denoting our current state we
first sample auxiliary variable u according to q(u|Sm). We then invoke the involution
f(Sm, u) = ([Sm]′, u′), which generates our proposal [Sm]′. Next, we sample auxiliary
data {S∗

i }ni=1 i.i.d. where
S∗
i ∼ SIS([Sm]′, γ).

Finally, we accept [Sm]′ with the following probability

α (Sm, [Sm]′) = min {1, H(Sm, [Sm]′)}

where

H(Sm, [Sm]′) =
p([Sm]′ | γ, {S(i)}ni=1)

p(Sm | γ, {S(i)}ni=1)

p({S∗
i }ni=1 | Sm, γ)

p({S∗
i }ni=1 | [Sm]′, γ)

q(u′ | [Sm]′)

q(u | Sm)

= exp

{
− γ

(
n∑

i=1

dS(S(i), [Sm]′)−
n∑

i=1

dS(S(i),Sm)

)

− γ

(
n∑

i=1

dS(S∗
i ,Sm)−

n∑

i=1

dS(S∗
i , [Sm]′)

)

− γ0 (dS([Sm]′,S0)− dS(Sm,S0))
}
q(u′ | [Sm]′)

q(u | Sm)

(B.6.3)

where the ratio q(u′ | [Sm]′)/q(u | Sm) is move-dependent. Again, we have the normal-
ising constants of the conditional posterior and auxiliary data cancelling one another
out.
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B.6.3 Edit allocation move

Supposing that Sm = (I1, . . . , IN) denotes the current state, recall that for this move
we have an auxiliary variable given by

u = (δ, z, u1, . . . , uN)

where (i) δ denotes the total number of edits (entry insertions and deletions), (ii)
z = (z1, . . . , zN) denotes the allocation of edits to paths, that is, zi ∈ Z≥0 is the number
of edits allocated to the ith path, where ∑N

i=1 zi = δ, and (iii) ui = (di,vi,v
′
i,yi)

describes the edits to the ith path, where di is the number of deletions, vi and v′
i are

subsequences indexing entry insertions and deletions and yi denotes entries to be
inserted. Given these auxiliary variables and some current state Sm, as outlined in
Section 4.3.5, this move has involution

f(Sm, u) = ([Sm]′, u′)

returning (i) [Sm]′ = (I ′1, . . . , I ′N), denoting the proposed new state and (ii) u′ =

(zi−di,v′
i,vi, (Ii)vi

), denoting the auxiliary variables parameterising the reversemove
back to Sm.

A key termappearing in the acceptance probability of thismove, as seen in (B.6.3),
is the following ratio

q(u′ | [Sm]′)

q(u | Sm)

where q(u|Sm) denotes the assumed distribution of auxiliary variables u given cur-
rent state Sm. Towards deriving this ratio, recall the following assumptions stated in
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Section 4.3.5

δ ∼ Uniform{1, . . . , νed}

z | δ ∼Multinomial(δ ; 1/N, . . . , 1/N)

di | zi ∼ Uniform{0, . . . ,min(zi, ni)} (for i = 1, . . . , N),

whilst it is assumed the indexing subsequences vi and v′
i are sampled uniformly.

Regarding this latter assumption, recall that vi is a length di (number of deletions)
subsequence of [ni] (ni is the length of Ii), whilst v′

i is a length ai := zi − di (number
of insertions) subsequence of [mi], wheremi = ni−di+ai (length of the ith proposed
path I ′i). Thus sampling these uniformly implies

q(vi|di) =
(
ni

di

)−1

q(v′
i|di, zi) =

(
mi

ai

)−1

.

Finally, regarding sampling entry insertions we for now assume these are drawn via
some general distribution which may be dependent on the current state, namely we
assume each yi was drawn via q(y|Ii). Together this implies the following closed
form for the auxiliary distribution

q(u|Sm) = q(δ)q(z|δ)
N∏

i=1

q(di)q(vi|di)q(v′
i|di, zi)q(yi|Ii)

=
1

νed

(
1

N

)δ N∏

i=1

1

min(ni, zi) + 1

(
ni

di

)−1(
mi

ai

)−1

q(yi|Ii).
(B.6.4)

whilst if ([Sm]′, u′) = f(Sm, u) has been obtained by the involution of this move we
have

q(u′|[Sm]′) = q(δ)q(z|δ)
N∏

i=1

q(ai)q(v
′
i|ai)q(vi|ai, zi)q((Ii)vi

|I ′i)

=
1

νed

(
1

N

)δ N∏

i=1

1

min(mi, zi) + 1

(
mi

ai

)−1(
ni

di

)−1

q((Ii)vi
|I ′i),

(B.6.5)
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and thus the ratio of (B.6.5) and (B.6.4) is given by the following

q(u′|[Sm]′)

q(u|Sm)
=

N∏

i=1

min(ni, zi) + 1

min(mi, zi) + 1

q((Ii)vi
|I ′i)

q(yi|Ii)
. (B.6.6)

We finalise these details on the edit allocation move with a discussion on entry
insertion distributions. The simplest option here is to sample entries uniformly over
the vertex set V . In this case, with V = |V|, we have

q(yi|Ii) =
(
1

V

)ai

(B.6.7)

which implies

q((Ii)vi
|I ′i)

q(yi|Ii)
=

(
1

V

)di−ai

=

(
1

V

)2di−zi

=

(
1

V

)ni−mi

any of which can be plugged into (B.6.6).
As an alternative choice, one can consider informing the entry insertions from

observed data. This approach is based on the following assumption: If two vertices
have been observed in the samepath acrossmany observations then the probability of
proposing one given the other is already present should be higher within theMCMC
algorithm.

To reflect this assumption in a proposal, we first extract the necessary information
from the observed data. Letting

S(1), . . . ,S(n)

denote the observed sample we construct a co-occurrence matrix A ∈ ZV×V
≥0 , defined
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as follows

Avv′ = #observations with an interaction containing both v and v′

= |{k : ∃ I ∈ S(k) with v, v′ ∈ I}|

where v ̸= v′, whilst for v = v′ we let

Avv = #observations with an interaction containing v at least twice

= |{k : ∃ I ∈ S(k) with v ∈ I at least twice}|,

which can be seen as the adjacency matrix of a weighted graph describing the co-
occurrence structure observed in the data. Now, given A we construct a probability
matrix P ∈ RV×V by normalising the rows, that is

Pvv′ = Avv′/Zv

where Zv =
∑

v′∈V Avv′ is the normalising constant of the vth row. Intuitively, the
entry Pvv′ can be seen as the probability of observing v′ in an interaction given v

is known to already be present. We consider using P to inform entry insertions as
follows. Suppose that Ii = (xi1, . . . , xini

) denotes the path being edited, with vi de-
noting the subsequence of [ni] indexing which entries are to be deleted. Introduce
the notation vc

i for the complement of vi, which is the subsequence of [ni] containing
the entries not in vi. For example, with v = (1, 2, 5) ∈ [5] we would have vc = (3, 4).
Now, observed that (Ii)vc

i
denotes the entries of Ii not being deleted, that is, those

being preserved. Our approach is to now propose entries which have often been
observed in the data alongside those being preserved. Since each unique preserved
entry has an associated distribution over V given by the respective row of P, we can
consider mixing these distributions together with equal weight to form an entry pro-
posal distribution. In particular, we sample entry insertions for the ith path i.i.d. via
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the following
q(y|Ii) ∝

∑

v∈(Ii)vc
i

Pvy.

One can also introduce a tuning parameter to control the extent to which propos-
als are informed by the data. In particular, withα > 0 first alter the probabilitymatrix
as follows

Pα
vv′ ∝ Pvv′ + α

which normalises to

Pα
vv′ =

Pvv′ + α

1 + V α
,

forwhichPα
vv′ → 1/V asα→∞, that is, the rows converge to the uniformdistribution

over V . We can now define an analogous insertion distribution

qα(y|Ii) ∝
∑

v∈(Ii)vc
i

Pα
vy

where as α→∞ this will converge to a mixture of uniform distributions over V , that
is, also a uniform distribution. In this way, one has a proposal which is informed by
the data, but becomes less informed as the tuning parameter α→∞.

We finish with a note regarding evaluation of (B.6.6) for this informed proposal.
Supposing that I ′i is ith path in the proposal [Sm]′ (obtained by deleting di entries
of Ii indexed by vi, and inserting entries yi at locations indexed by v′

i), then observe
we have (Ii)vc

i
= (I ′i)(v′

i)
c (preserved entries) which thus implies qα(y|Ii) = qα(y|I ′i).

Consequently we can write the following

qα((Ii)vi
|I ′i)

qα(yi|Ii)
=

qα((Ii)vi
|Ii)

qα(yi|Ii)

and hence only the single mixed distribution qα(y|Ii) needs to be constructed. This
is helpful to bare in mind when evaluating (B.6.6).
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B.6.4 Path insertion and deletion move

Supposing that Sm = (I1, . . . , IN) denotes the current state, recall that for this move
we have an auxiliary variable given by

u = (ε, d,v,v′, I∗1 , . . . , I∗a)

where (i) ε denotes the total number of paths to be inserted or deleted, (ii) d de-
notes the number of paths to be deleted, implying a = ε − d insertions, (iii) v and
v′ denote subsequences indexing path deletions and insertions respectively, and (iv)
(I∗1 , . . . , I∗a) denote the paths to be inserted. Given these auxiliary variables and some
current state Sm, as outlined in Section 4.3.5, this move has involution

f(Sm, u) = ([Sm]′, u′)

returning (i) [Sm]′ = (I ′1, . . . , I ′M), denoting the proposed new state and (ii) u′ =

(ε, ε−d,v′,v, Iv1 , . . . , Ivd), denoting the auxiliary variables parameterising the reverse
move back to Sm.

As seen in the acceptance probability (B.6.3), a key move-dependent term is the
following ratio

q(u′ | [Sm]′)

q(u | Sm)

where q(u|Sm) denotes the assumed distribution of auxiliary variables u given cur-
rent state Sm. Towards deriving this ratio for this move, recall the following assump-
tions stated in Section 4.3.5

ε ∼ Uniform{1, . . . , νtd}

d | ε ∼ Uniform{0, . . . ,min(N, ε)}

whilst we sample indexing subsequences v and v′ uniformly and assume path inser-
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tions are drawn via some general distribution q(I|Sm). In this instance, recall that v
is a subsequence of [N ] of size d, whilst v′ is a subsequence of [M ] of size a, where
M = N − d+ a is the length of [Sm]′. Sampling these uniformly thus implies

q(v|d) =
(
N

d

)−1

q(v′|ε, d) =
(
M

a

)−1

leading to the following closed form

q(u|Sm) = q(ε)q(d|ε)q(v|d)q(v′|ε, d)
a∏

i=1

q(I∗i |Sm)

=
1

νtd

1

min(N, ε) + 1

(
N

d

)−1(
M

a

)−1 a∏

i=1

q(I∗i |Sm)

whilst, if ([Sm]′, u′) = f(Sm, u) has been obtained by the involution above, we have

q(u′|[Sm]′) = q(ε)q(a|ε)q(v′|a)q(v|ε, a)
d∏

i=1

q(Ivi |[Sm]′)

=
1

νtd

1

min(M, ε) + 1

(
M

a

)−1(
N

d

)−1 d∏

i=1

q(Ivi |[Sm]′).

Taking the ratio of these leads to the following

q(u′|[Sm]′)

q(u|Sm)
=

min(N, ε) + 1

min(M, ε) + 1

∏d
i=1 q(Ivi |[Sm]′)∏a
i=1 q(I ′v′i |S

m)
, (B.6.8)

which can be substituted into (B.6.3) to evaluate the acceptance probability of this
move (here we again use the fact I ′v′i = I

∗
i ).

We finalise by discussing possible choices for the path insertion distribution. The
simplest approach is to combine a distribution on path lengthwith uniform sampling
of entries. In particular, to sample some path I = (x1, . . . , xm)we (i) sample its length
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m via some distribution q(m) (ii) sample entries xi uniformly from V . This implies

q(I|Sm) = q(I) = q(m)

(
1

V

)m

where V = |V|, which can be substituted into (B.6.8).
One can also consider informing entry insertions from observed data. With

S(1), . . . ,S(n)

a sample, for each v ∈ V we let

cv = |{k : ∃ I ∈ S(k) with v ∈ I}|

denote the number of observations with at least one path containing the vertex v.
Normalising this leads to

pv =
cv∑

v ∈ Vcv

which can be seen as the probability a randomly selected observation contains v.
Introducing the parameter α > 0we let

qα(v) ∝ pv + α

which normalises to
qα(v) =

pv + α

1 + αV
.

One can now use this to sample path entries, namely to sample I = (x1, . . . , xm) we
(i) sample length m via some q(m), (ii) sample entries xi via qα(xi). Observe that
if α = 0 we have qα(v) = pv, and the entry insertion distribution is fully informed
by the data, whilst as α → ∞ we have qα(v) → 1/V , and we recover uniform entry
insertions.
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B.6.5 Model sampling

In this section we provide supporting details regarding our iMCMC algorithm to
sample from the SIS models outlined in Section 4.3.6. Recall that for the SIS model
(Definition 4.2.1) the (normalised) probability of observing S is given by

p(S|Sm, γ) =
exp {−γdS(S,Sm)}

Z(Sm, γ)
,

implying the following closed form for the acceptance probability (4.3.8)

α(S,S ′) = min {1, H(S,S ′)} (B.6.9)

where
H(S,S ′) =

p(S ′|Sm, γ)

p(S|Sm, γ)

q(u′|S ′)

q(u|S)

= exp

{
−γ
(
dS(S ′,Sm)− dS(S,Sm)

)}
q(u′|S ′)

q(u|S) ,

where the value of q(u′|S ′)/q(u|S)will depend on the iMCMC specification.
Asmentioned in Section 4.3.6, we consider re-using the iMCMCmoves of our iEx-

change schemeused to sample from themode conditional (Appendices B.6.3 andB.6.4).
For ease of reference, we summarise the corresponding ratios for each move:

• Edit allocation - suppose thatu, f(u,S) and q(u|S) are defined as inAppendix B.6.3
(replacing Sm with S and [Sm]′ with S ′)with a uniform entry insertion distribu-
tion (B.6.7). WithS = (I1, . . . , IN) the current state, supposingu = (δ, z, u1, . . . , uN)

has been sampled via q(u|S)mapping to (S ′, u′) = f(S, u)we will have

q(u′|S ′)

q(u|S) =
N∏

i=1

min(ni, zi) + 1

min(mi, zi) + 1

(
1

V

)ni−mi

(B.6.10)

where ni and mi denote the lengths of the ith path in S and S ′ respectively;

• Path insertion and deletion - suppose that u, f(u,S) and q(u|S) are defined
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as in Appendix B.6.4 (again using S and S ′ instead of Sm and [Sm]′). With
S = (I1, . . . , IN) the current state, supposing u = (ε, d,v,v′, I∗1 , . . . , I∗a) (where
a = ε − d) has been sampled via q(u|S) mapping to (S ′, u′) = f(S, u) with
S ′ = (I ′1, . . . , I ′M)we will have

q(u′|S ′)

q(u|S) =
min(N, ε) + 1

min(M, ε) + 1

∏d
i=1 q(Ivi |S ′)∏a
i=1 q(I ′v′i |S)

. (B.6.11)

Asmentioned in Section 4.3.6, we follow the approach used for the posteriormode
conditional and consider mixing together these two iMCMC moves with some pro-
portion β ∈ (0, 1), left as a tuning parameter.

B.7 Bayesian inference for multiset models

Here we detail the approach to inference for the interaction-multiset models (Defi-
nition 4.2.2). This is very similar to the interaction-sequence models outlined in Sec-
tion 4.3, with priors, hierarchical model and posterior are all being essentially the
same (albeit with different notation). Computationally, we again useMCMC to sam-
ple from the posterior, adapting the scheme proposed for the interaction-sequence
models.

B.7.1 Priors, hierarchical model and posterior

To specify priors, we follow Section 4.3.1 and assume the mode was itself sampled
from an SIM model, namely

Em ∼ SIM(E0, γ0)

where (E0, γ0) are hyperparameters, whilstwe assume the dispersionwas drawn from
some distribution p(γ) whose support is a subset of the non-negative reals. Given
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these specifications, an observed sample {E (i)}ni=1 is assumed to be drawn via

E (i) | Em, γ ∼ SIM(Em, γ) (for i = 1, . . . , n)

Em ∼ SIM(E0, γ0)

γ ∼ p(γ).

The likelihood of {E (i)}ni=1 is given by

p({E (i)}ni=1 | Em, γ) =
n∏

i=1

p(E (i) | Em, γ)

= Z(Em, γ)−n exp

{
−γ

n∑

i=1

dE(E (i), Em)
}

which implies a posterior given by

p(Em, γ | {E (i)}ni=1) ∝ p({E (i)}ni=1 | Em, γ)p(Em )p(γ)

= Z(Em, γ)−n exp

{
−γ

n∑

i=1

dE(E (i), Em)
}

exp{−γ0dE(Em, E0)}p(γ).

(B.7.1)

B.7.2 Posterior sampling

As for the interaction-sequence models, we consider sampling from the posterior
(B.7.1) via component-wise MCMC algorithm, alternating between sampling from
the two conditionals

p(Em | γ, {E (i)}ni=1) and p(γ | Em, {E (i)}ni=1)

in both ofwhich the normalising constant of (B.7.1)will persist, making themdoubly-
intractable (Murray et al., 2006; Møller et al., 2006) and motivating the use of the
exchange and iExchange algorithms.
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There are twokeydifferences here comparedwith the setting of Section 4.3. Firstly,
themode in this instance is amultiset, implying themode conditional is a distribution
over multisets rather than sequences. Secondly, to induce the required cancellation
of normalising constants, sampling of auxiliary data in the exchange (or iExchange)
algorithms must be from the multiset models.

In both cases, the challenge lies in sampling from distributions over multisets (of
paths). As will be seen in subsequent sections, a solution can be found by first ex-
tending these to distributions over sequences, before using the iMCMC-based algo-
rithms proposed for the interaction-sequence models (Section 4.3 and appendix B.6)
to target them.

B.7.3 Dispersion conditional

Conditioning on Em in (B.7.1) we have the following

p(γ | Em, {E (i)}ni=1) ∝ Z(Em, γ)−n exp

{
−γ

n∑

i=1

dE(E (i), Em)
}
p(γ)

which to target we follow Section 4.3.3 and appendix B.6.1 and use the exchange al-
gorithm (Murray et al., 2006). For the proposal q(γ′|γ)we again consider sampling γ′

uniformly over a ε-neighbourhood of γ with reflection at zero (see Appendix B.6.1).
With this choice of proposal, a single iteration consists of the following. Assuming γ

is the current state, we first sample proposal γ′ via q(γ′|γ). Next, we sample auxiliary
data {E∗i }ni=1 i.i.d. from the appropriate multiset model, namely

E∗i ∼ SIM(Em, γ′) (for i = 1, . . . , n),
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for which we have

p({E∗i }ni=1 | Em, γ′) = Z(Em, γ′)−n exp

{
−γ′

n∑

i=1

dE(E∗i , Em)
}
.

Finally, we accept this proposal with the following probability

α(γ, γ′) = min{1, H(γ, γ′)} (B.7.2)

where

H(γ, γ′) =
p(γ′ | Em, {E (i)}ni=1)p({E∗i }ni=1 | Em, γ)
p(γ | Em, {E (i)}ni=1)p({E∗i }ni=1 | Em, γ′)

q(γ|γ′)

q(γ′|γ)

= exp

{
−(γ′ − γ)

(
n∑

i=1

dE(E (i), Em)−
n∑

i=1

dE(E∗i , Em)
)}

p(γ′)

p(γ)
,

where, as inAppendix B.6.1, normalising constants of the (conditional) posterior and
auxiliary data cancel one another out, whilst the proposal density terms cancel due
to its symmetry.

B.7.4 Mode conditional

Conditioning on γ in (B.7.1) we have the following

p(Em | γ, {E (i)}ni=1) ∝ Z(Em, γ)−n exp

{
−γ

n∑

i=1

dE(E (i), Em)− γ0dE(Em, E0)
}
, (B.7.3)

which is a distribution over E∗, that is, the space of multisets. To re-use the iExchange
scheme of Section 4.3.4 we instead need a distribution over the space of interaction
sequences S∗. To this end, we extend (B.7.3) to a distribution over interaction se-
quences.

Consider the general problem of extending some distribution π(E) over E∗ to one
over S∗. Firstly, observe each E is associated with a set of sequences, obtained by
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placing the interactions of E in different orders. More formally, E can be seen as
equivalence class of sequences (see Appendix B.1). As such, one can consider as-
signing equal probability to each unique ordering of E . In particular, for S ∈ S∗ we
let

π̃(S) = 1

A(E)π(E)

where E is the multiset obtained from S by disregarding the order of interactions,
and A(E) denotes the number of unique orderings of the paths in E .

The form of A(E) can be obtained as follows. Suppose that E consists of N paths,
with Ñ ≤ N unique paths. Without loss of generality label the unique paths 1 to Ñ

and let wi denote the multiplicity of the ith path. Now, if each path of E is different
there are N ! possible ways to order them. However, if there are repeated paths this
will include double counting. Therefore, in general we must further divide by (wi)!

leading to the familiar multinomial term

A(E) :=
(

N

w1, . . . , wÑ

)
=

N !

w1! · · ·wÑ !
. (B.7.4)

Through this reasoning we can extend (B.7.3) as follows

p̃(Sm | γ, {E (i)}ni=1) =
1

A(Em)p(E
m | γ, {E (i)}ni=1) (B.7.5)

where now Sm ∈ S∗ and Em is the multiset obtained from Sm by disregarding the
order of paths.

We can now reuse the iExchange algorithm of Section 4.3.4 and appendix B.6.2
to target (B.7.5). However, note the normalising constant appearing in (B.7.3), and
hence also in (B.7.5), is that of an SIM model. Thus, for the iExchange algorithm
to induce the necessary cancellation auxiliary data must be sampled from an SIM
model.
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A single iteration of the resultant algorithm consists of the following. Suppose
that Em denotes our current state and γ is fixed. We first construct an interaction
sequence Sm by placing the interactions of Em in an arbitrary order. Now, assum-
ing u, q(u|Sm) and f(Sm, u) is some iMCMC specification as used in Section 4.3, we
sample auxiliary variables u via q(u|Sm), before invoking the involution to obtain
([Sm]′, u′) = f(Sm, u), where [Sm]′ denotes our proposal. By now disregarding the
order of interactions in [Sm]′, we obtain a proposal [Em]′. We then sample auxiliary
data {E∗i }ni=1 i.i.d. where

E∗i ∼ SIM([Em]′, γ)

which implies

p({E∗i }ni=1 | [Em]′, γ) = Z([Em]′, γ)−n exp

{
−γ

n∑

i=1

dE(E∗i , [Em]′)
}
,

before accepting [Em]′ with the following probability

α(Em, [Em]′) = min {1, H(Em, [Em]′)} (B.7.6)

where

H(Em, [Em]′) = p̃([Sm]′ | γ, {E (i)}ni=1)

p̃(Sm | γ, {E (i)}ni=1)

p({E∗i }ni=1 | Em, γ)
p({E∗i }ni=1 | [Em]′, γ)

q(u′ | [Sm]′)

q(u | Sm)

=

1
A([Em]′)p([Em]′ | γ, {E (i)}ni=1)

1
A(Em)

p(Em | γ, {E (i)}ni=1)

p({E∗i }ni=1 | Em, γ)
p({E∗i }ni=1 | [Em]′, γ)

q(u′ | [Sm]′)

q(u | Sm)

=
A(Em)
A([Em]′) exp

{
− γ

(
n∑

i=1

dE(E (i), [Em]′)−
n∑

i=1

dE(E (i), Em)
)

− γ

(
n∑

i=1

dE(E∗i , Em)−
n∑

i=1

dE(E∗i , [Em]′)
)

− γ0 (dE([Em]′, E0)− dE(Em, E0))
}
q(u′ | [Sm]′)

q(u | Sm)

(B.7.7)
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where here Sm and [Sm]′ correspond to those used above to generate the proposal
[Em]′. Again, we observe cancellation of normalising constants due to the introduc-
tion of auxiliary data. We also see the introduction of a combinatorial term, namely

A(Em)
A([Em]′) =

N !(w′
1! · · ·w′

M̃
!)

M !(w1! · · ·wÑ !)
(B.7.8)

where N and M are the cardinalities of Em and [Em]′ with Ñ and M̃ unique paths,
respectively, where wi is the multiplicity of the ith unique path in Em and w′

i is the
multiplicity of the ith unique path in [Em]′.

Clearly, this all depends on a particular iMCMC specification (auxiliary variables,
involution and auxiliary distribution). For this we can use the edit allocation (Sec-
tion 4.3.5 and appendix B.6.3) and interaction insertion anddeletion (Appendix B.6.4)
moves, which we again mix together with proportion β ∈ (0, 1), left as a tuning pa-
rameter. A pseudocode summary of the resulting algorithm to update the mode can
be seen in Algorithm 18.

One pragmatic note to be made here is that computationally it is often easier to
workwith sequences thanmultisets, since the former can be stored as a vector. To this
end, one can store observations as sequences of paths but interpret them as multisets
of paths. Furthermore, we can take the order inwhich they are stored as the ‘arbitrary
order’ referred to inAlgorithm18, and in thisway thewhole algorithm can be enacted
on vectors of paths, simply interpreting the output samples as multisets of paths.

B.7.5 Model sampling

The exchange-based algorithms to update Em and γ both require exact sampling of
auxiliary data from the SIM models. As for the interaction-sequence models (Sec-
tion 4.3.6), this is not possible in general. As such, we replace this with approximate
samples obtained via an MCMC algorithm.
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Towards proposing a suitable MCMC algorithm, we follow the reasoning of Ap-
pendix B.7.4 and extend the target distribution (over multisets of paths) to one over
sequences of paths, before appealing to the iMCMC scheme proposed to sample from
the SIS models (Section 4.3.6 and appendix B.6.5). Recalling that for the SIM model
(Definition 4.2.2) the (normalised) probability of observing E ∈ E∗ is given by

p(E|Em, γ) = 1

Z(Em, γ) exp{−γdE(E , E
m)},

we can assign any S ∈ S∗ the following probability

p̃(S|Em, γ) = 1

A(E)p(E|E
m, γ) (B.7.9)

where E is multiset obtain from S by disregarding order, and A(E) is as defined in
(B.7.4), thus defining an extended distribution over S∗.

We can now target (B.7.9) via iMCMC as in Section 4.3.6. In particular, suppose
that one would like to sample from an SIM(Em, γ)model. With u, q(u|S) and f(S, u)

some iMCMC specification as used therein, and E the current state, a single iteration
of will consist of the following

1. Construct interaction sequence S by placing the paths of E in an arbitrary order

2. Sample u ∼ q(u|S)

3. Invoke involution f(S, u) = (S ′, u′)

4. Disregard order in S ′ to obtain proposed multiset E ′

5. Evaluate the following probability

α(E , E ′) = min

{
1,

p̃(S ′|Em, γ)
p̃(S|Em, γ)

q(u′|S ′)

q(u|S)

}
(B.7.10)

6. Move to state E ′ with probability α(E , E ′), staying at E otherwise.
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Clearly, this is conditional upon the choice of iMCMC specification. Here, we
follow Section 4.3.6 and recycle the edit allocation (Section 4.3.5 and Appendix B.6.3)
and path insertion/deletion moves (Section 4.3.5 and Appendix B.6.4), again mixing
them together with proportion β ∈ (0, 1), left as a tuning parameter.

A closed form for (B.7.10) can bederived as follows. Writingα(E , E ′) = min{1, H(E , E ′)}

we have

H(E , E ′) = p̃(S ′|Em, γ)
p̃(S|Em, γ)

q(u′|S ′)

q(u|S)

=

1
A(E ′)p(E ′|Em, γ)

1
A(E)p(E|Em, γ)

q(u′|S ′)

q(u|S)

=
A(E)
A(E ′) exp

{
−γ
(
dE(E ′, Em)− dE(E , Em)

)}
q(u′|S ′)

q(u|S)

where
A(Em)
A([Em]′) =

N !(w′
1! · · ·w′

M̃
!)

M !(w1! · · ·wÑ !)

with N and M the cardinalities of E and E ′ with Ñ and M̃ unique paths, respec-
tively, where wi the multiplicity of the ith unique path in E and w′

i the multiplicity of
the ith unique path in E ′. As when sampling from the interaction-sequence models
(Appendix B.6.5), the ratio q(u′|S ′)/q(u|S) will be move dependent and identical to
those appearing in Appendix B.6.5, namely (B.6.10) for the edit allocation move and
(B.6.11) for the path insertion/deletion move. The whole procedure to sample from
the SIM models is summarised in the pseudocode of Algorithm 19.

Finallywe note that, as for the interaction-sequencemodels, by using approximate
as opposed to exact sampling in the exchange-based algorithms of Appendix B.7.3
and Appendix B.7.4 we will no longer target the true posterior, but instead an ap-
proximation thereof. This approximation can be improved, however, by obtaining
samples which look ‘more exact’, often achievable by increasing the burn-in period
and/or introducing a lag between samples (b and l of Algorithm 19).
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B.8 Data analysis

In this section, we provide details supporting the data analysis of Section 4.5. This
includes further details on the data and how it was processed, and extra information
regarding the integer-weighted extension of the SNFmodel (Lunagómez et al., 2021)
used in Section 4.5.3.

B.8.1 Foursquare data processing

The data analysed in Section 4.5 was obtained from the New York and Tokyo data set
of Yang et al. (2015b)2, which contains a total of 10 months of check-in activity (from
12 April 2012 to 16 February 2013). Each check-in has an associated time stamp, GPS
location and venue category information. In particular, for each city, there is a tsv file
containing the following columns

1. User ID - unique identifier for the user, e.g. 479

2. Venue ID - unique identifier for the venue, e.g. 49bbd6c0f964a520f4531fe3

3. Venue category ID - unique identifier for the venue category, e.g.
4bf58dd8d48988d127951735

4. Venue category name - name for venue category, e.g. Arts & Crafts

5. Latitude & longitude - geographical location for venue, e.g. (40.41,-74.00)

6. UTC time - time of check-in, to the second, e.g. Tue Apr 03 18:00:09 +0000

2012

7. Time zone offset - the offset of local time from UTC for venue (in minutes), e.g.
-240

2https://sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_46

https://sites.google.com/site/yangdingqi/home/foursquare-dataset#h.p_ID_46
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As outlined in Section 2.4.2, we converted this raw data to a sequence or multiset
of paths. In particular, we let the vertices V denote venue categories with a path then
representing a day of check-ins for a given user. Notice not all of the information
above is required to enact this operation. In particular, all one requires are user IDs,
venue category names (or IDs) and local time (a function of UTC and time zone
offset).

Venue category hierarchy

As discussed in Section 4.5, the venue categories have a hierarchical structure. For ex-
ample a venue of category “Tram Station” is a sub-category of “Train Station”, which
is itself a sub-category of “Travel & Transport”, implying a hierarchical label given
by “Travel & Transport > Train Station > Tram Station”. As it comes, the data set of
Yang et al. (2015b) uses low-level category names (“Tram Station”), whilst we con-
sider the highest-level (“Travel & Transport”). However, we do note that Yang et al.
(2015b) do not appear to have used the lowest level in all cases.

To get the hierarchical category nameswemadeuse of information on the Foursquare
site (see here). Note that since the release of this data set it appears that Foursquare
have changed how they label venues, thus there is another set of venue category
names (see here). However, the data set of Yang et al. (2015b) appears to be congru-
ent with the former. Using this information we were able to essentially ‘fill-in’ the
higher-level category labels for each category name appearing in the data set of Yang
et al. (2015b), mapping their low-level labels to top-level ones.

Data filtering

As mentioned in Section 4.5, we analysed only a subset of 100 data points. This was
due to issues causes by the presence of outliers. In this subsection, we outline exactly
how this subset of data points was chosen.

https://developer.foursquare.com/docs/legacy-foursquare-category-mapping
https://developer.foursquare.com/docs/categories
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Following processing of the raw data we were left with a sample of interaction
multisets {E (i)}ni=1 with n = 928. As we discussed in Section 4.5.1, after some initial
filtering, including the removal of all length one paths and observations with less
than 10 paths, we were left with n = 402 observations. To get the final n = 100

data points we further subset these data by making use of a distance metric between
observations.

Suppose that dE is some distance between interaction multisets, then one can
choose a subset of size m as follows: find the data point which has the smallest total
distance to its m nearest neighbours, taking this neighbourhood as the subset. More
formally, introducing the notationNm(E) for the indices of them nearest neighbours
of E with respect to dE in the sample, we let

E∗ = argmin
E∈{E(i)}ni=1


 ∑

i∈Nm(E)

dE(E , E (i))


 ,

with the desired subset then being given by {E (i)}i∈Nm(E∗).
Regarding the choice of distance dE , we opted for that used in the model-fit,

namely the matching distance with an LSP distance between paths. Moreover, since
the observationswere of quite different sizes, we used the normalised version thereof
(via the Steinhaus transform, as seen in Section 3.2). To see why using this nor-
maliseddistance is sensible an example is helpful. Consider comparing E = {(1, 1, 1)}

with the following two observations

E (1) = {(2, 2, 2)} E (2) = {(1, 1, 1), (2, 2, 2), (2, 2, 2)}.

Observe that E (1) shares nothing in commonwith E whilst E (2) and E share a common
path, namely (1, 1, 1). As such, intuitively we might say E (2) is more similar to E than
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E (1) is, that is, its distance should be lower. However, in this case we will have

dM(E , E (1)) = 6 dM(E , E (2)) = 6

which appears to contradict this intuition. The problem here is the difference in the
observation sizes; though E (2) is more similar to E it is also larger, hence pushing up
its distance. However, by taking sizes into account, the normalised distances evaluate
to

d̄M(E , E (1)) =
2× 6

3 + 3 + 6
d̄M(E , E (2)) =

2× 6

3 + 9 + 6

= 1 =
2

3

which better agrees with the intuition that E (2) is closer to E . As such, if we use the
normalised distancewe are likely to select a sample of data pointswhich share aspects
in common, hence providing an underlying signal which our method can uncover.
If we instead used the regular distance it is possible we may choose a sample of data
which has no such common signal, causing our method to output inferences of little
interest.

B.8.2 Multigraph SNF model

Here we provide extra details regarding the generalisation of the SNF models (Lu-
nagómez et al., 2021) used in Section 4.5.3. In particular, we extend the SNF to model
multigraphs. Let V = {1, . . . , V } denote the fixed set of vertices, and let G = (V , E)

denote a multigraph (directed or undirected, and possibly with self-loops), where E
is a multiset of edges, so that an edge (i, j) can appear more than once in E . A multi-
graph G can also be represented uniquely by its adjacency matrix AG ∈ ZV×V

≥0 , where
AG

ij ∈ Z≥0 denotes the multiplicity of the edge (i, j) in E .
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To define a model, we place a probability distribution over all multigraphs (over
the vertex set V). This space, which we denote G , can be defined via the one-to-one
correspondence with adjacency matrices as follows

G = {G : AG ∈ ZV×V
≥0 },

so that we seek to assign each G ∈ G a probability. Following the same rationale as
the SNF models (and the models of this paper), we construct this model via location
and scale. Moreover, this is done with the use of distance metrics, this time between
multigraphs. We have two parameters, the mode Gm ∈ G (location) and the dis-
persion γ > 0 (scale). We also assume that a distance metric has been pre-specified
dG(G,G ′), quantifying the dissimilarity of any two multigraphs G and G ′. Given this,
we assume the probability of G ∈ G is, up to proportionality, the following

p(G|Gm, γ) ∝ exp{−γϕ(dG(G,Gm))} (B.8.1)

where ϕ(·) is a non-negative strictly increasing function with ϕ(0) = 0. The notation
G ∼ SNF(Gm, γ) is used when G is assumed to have been sampled from this proba-
bility distribution. The normalising constant of (B.8.1) is given by the following

Z(Gm, γ) =
∑

G∈G

exp{−γϕ(dG(G,Gm))},

which, with G being an infinite space, will in general be intractable.
Note this ismore-or-less identical the SNFmodels seen in Lunagómez et al. (2021),

Definition 3.4. The only differences being (i) the sample spaceG is nowallmuligraphs
over V , and (ii) the distance metrics dG(·, ·) are between multigraphs.

Supposing that a sample of multigraphs {G(i)}ni=1 has been observed, as discussed
in Section 4.5.3, we can use this mutligraph-based SNF to construct the following
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hierarchical model
G(i) ∼ SNF(Gm, γ) (for i = 1, . . . , n)

Gm ∼ SNF(G0, γ0)

γ ∼ p(γ)

where G0 ∈ G and γ0 > 0 are hyperparameters, and p(γ) denotes a prior for the dis-
persion. The goal of inference is to now estimate Gm and γ, representing notations of
average and variance, respectively, and can be achieved by sampling from the poste-
rior via MCMC. The posterior in this case is given by the following

p(Gm, γ|{G(i)}ni=1) ∝
(

n∏

i=1

p(G(i)|Gm, γ)
)
p(Gm)p(γ)

= Z(Gm, γ)−n exp

{
−γ

n∑

i=1

ϕ(dG(G(i),Gm))
}

× exp {−γ0ϕ(dG(Gm,G0))} p(γ),

which, since Z(Gm, γ) is intractable and depends on the parameters being sampled,
is doubly-intractable (Murray et al., 2006). As such, to sample from it one must use a
specialisedMCMC algorithm. Since we are dealing with multigraphs, we cannot ap-
ply the scheme proposed by Lunagómez et al. (2021) directly, and instead propose an
alternative approach via the exchange algorithm (Murray et al., 2006). In particular,
we considered a component-wise MCMC algorithm which alternates between sam-
pling from the two conditionals (i) p(γ|Gm, {G(i)}ni=1), and (ii) p(Gm|γ, {G(i)}ni=1). For
(i) we apply the exchange algorithm directly, whilst for (ii) do an exchange-within-
Gibbs step, updating each edge in turn in a single repetition.

We first outline the procedure to update the dispersion. Assume that q(γ′|γ) de-
notes a suitable proposal density. With Gm fixed and current state γ, first sample
proposal γ′ from q(γ′|γ). Next, sample auxiliary data {G∗i }ni=1 i.i.d. where G∗i ∼
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SNF(Gm, γ′) and then accept γ′ with the following probability

α(γ′, γ) = min

{
1,

p(γ′|Gm, {G(i)}ni=1)
∏n

i=1 p(G∗i |Gm, γ)q(γ|γ′)

p(γ|Gm, {G(i)}ni=1)
∏n

i=1 p(G∗i |Gm, γ′)q(γ′|γ)

}

= min {1, H(γ′, γ)}

where

H(γ′, γ) = exp

{
− (γ′ − γ)

(
n∑

i=1

ϕ(dG(G(i),Gm))−
n∑

i=1

ϕ(dG(G∗i ,Gm))
)}

× p(γ′)

p(γ)

q(γ|γ′)

q(γ′|γ) .
(B.8.2)

For the proposal q(γ′|γ) we consider sampling uniformly over a ε-neighbourhood of
γ with reflection at zero (see Appendix B.6.1, Eq. B.6.2), for which one has q(γ′|γ) =

q(γ|γ′).
To update the mode, we consider a exchange-within-Gibbs scheme, whereby we

scan through all edges, propose newmultiplicities and accept these with some prob-
ability. Assume one has defined a proposal q(x′|x), which proposes a new edge mul-
tiplicity x′ ∈ Z≥0 given current value x ∈ Z≥0. With γ fixed and current state Gm,
with Am its adjacency matrix (abbreviating notation for readability), we first gen-
erate proposal Gm′ by proposing a new multiplicity for edge (i, j). More precisely,
letting x = Am

ij denote the current multiplicity, we sample x′ from q(x′|x), then con-
struct proposal Gm′ via its adjacency matrix Am′ , defined to be

Am′
kl =





x′ if (k, l) = (i, j)

Am
kl else

that is,Am′ is equal toAm with the (ij)th entry altered from x to x′. Note this stepwill
alter if we are considering undirected multigraphs, where we must let Am′

ij = Am′
ij =

x′, since the adjacency matrices must be symmetric. However, in the remainder of
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these details it will be assumed the multigraphs are directed. Given proposal Gm′ ,
we next sample auxiliary data {G∗i }ni=1 i.i.d. where G∗i ∼ SNF(Gm′

, γ) and then accept
Gm′ with the following probability

α(Gm′
,Gm) = min

{
1,

p(Gm′|γ, {G(i)}ni=1)
∏n

i=1 p(G∗i |Gm, γ)q(x|x′)

p(Gm|γ, {G(i)}ni=1)
∏n

i=1 p(G∗i |Gm′ , γ)q(x′|x)

}

= min
{
1, H(Gm′

,Gm)
}

where

H(Gm′
,Gm) = exp

{
− γ

(
n∑

i=1

ϕ(dG(G(i),Gm
′
))−

n∑

i=1

ϕ(dG(G(i),Gm))
)

− γ

(
n∑

i=1

ϕ(dG(G∗i ,Gm))−
n∑

i=1

ϕ(dG(G∗i ,Gm
′
))

)

− γ0

(
ϕ(dG(Gm

′
,G0))− ϕ(dG(Gm,G0))

)}q(x|x′)

q(x′|x) .

(B.8.3)

The steps above update the multiplicity of a single edge (i, j). In a single iteration of
updating the mode Gm, we consider looping over each (i, j) ∈ V × V , updating their
multiplicity in this manner, leading to what can be seen as an exchange-within-Gibbs
step for sampling from p(Gm|γ, {G(i)}ni=1).

For the proposal q(x′|x), we consider uniform sampling over a ν-neighbourhood
of x with reflection as zero. More precisely, given current state x ∈ Z≥0, sample
proposal x′ via

1. Sample x∗ ∼ Uniform(A)where

A = {j ∈ Z : x− ν ≤ j ≤ x+ ν} \ {x}

is the ν-neighbourhood of x in Z, excluding x, then

2. If x∗ ≥ 0 let x′ = x∗, else let x′ = −x∗,
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for which one has

q(x′|x) =





0 if x = x′

1
ν

if x+ x′ ≤ ν

1
2ν

else

and hence q(x′|x) = q(x|x′), which will lead to cancellation of such terms in (B.8.3).
Finally, we note that both of these schemes to sample from p(Gm|γ, {G∗i }ni=1) and

p(γ|Gm, {G(i)}ni=1) require the ability to obtain an i.i.d. sample {G∗i }ni=1 where G∗i ∼
SNF(Gm, γ) for some given (Gm, γ). Unfortunately, this cannot be done in general.
However, we can replace this with approximate MCMC-based samples, exactly as
we did for our interaction-sequence and interaction-multiset models (Section 4.3.6).
To do so, we re-use the scheme above (without auxiliary sampling).

In particular, with current state G, we update edge (i, j) as follows. Letting x =

AG
ij , we sample x′ from q(x′|x) (via ν-neighbourhood as above), constructing proposal
G ′ via its adjacency matrix

AG′
kl =





x′ if (k, l) = (i, j)

AG
kl else

that is, G ′ is equivalent to G with the multiplicity of edge (i, j) flipped from x to x′.
We then accept G ′ with the following probability

α(G,G ′) = min

{
1,

p(G ′|Gm, γ)q(x|x′)

p(G|Gm, γ)q(x′|x)

}

= min

{
1, exp

{
− γ (ϕ(dG(G ′,Gm))− ϕ(dG(G,Gm)))

}q(x|x′)

q(x′|x)

}
.

Note this will update a single edge (i, j). One could now follow the approach
used to update the mode Gm, looping over all edges in turn. However, in this case we
opt to instead choose a single edge at random to update. That is, in a single iteration,
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we choose (i, j) uniformly from V × V , and update it as above. This can be seen as a
Gibbs sampler with a randomised sweep strategy (Levine and Casella, 2006).

B.9 Pseudocode

Algorithm 12: SIS posterior component-wise MCMC
Input: observed data {S(i)}ni=1

initialise (Sm
0 , γ0)

for i = 1, . . . ,m do
// Update gamma

γi = dispersion update(Sm
i−1, γi−1) // (Algorithm 13)

// Update mode

Sm
i = mode update(Sm

i−1, γi) // (Algorithm 14)

end
Output: sample {(Sm

i , γi)}mi=1

Algorithm 13: SIS posterior dispersion conditional accept-reject
Input: (Sm

i , γi)

Output: γi+1

Function dispersion update(Sm
i , γi):

let (Sm, γ) = (Sm
i , γi)

sample γ′ via q(γ′|γ) of (B.6.2) // Sample proposal

sample {S∗
i }ni=1 i.i.d. from SIS(Sm, γ′) // Sample auxiliary data

evaluate α = α(γ, γ′) of (B.6.1) // Acceptance probability

γi+1 =

{
γ′ with probability α

γ with probability (1− α)

return γi+1 // Accept/reject proposal

end
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Algorithm 14: SIS posterior mode conditional accept-reject
Input: (Sm

i , γi)

Output: Sm
i+1

function mode update(Sm
i , γi):

let (Sm, γ) = (Sm
i , γi)

sample z ∼ Bernoulli(β)
if z = 1 then

// Edit allocation move

let u, f(u,Sm) and p(u|Sm) be as in Appendix B.6.3
sample u via p(u|Sm) // Sample auxiliary variable

([Sm]′, u′) = f(Sm, u) // Invoke involution

sample {S∗
i }ni=1 i.i.d. from SIS([Sm]′, γ) // Sample auxiliary data

α = α(Sm, [Sm]′) of (B.6.2), using ratio (B.6.6) // Acceptance

probability

else
// Path insertion & deletion move

let u, f(u,Sm) and p(u|Sm) be as in Appendix B.6.4
sample u via p(u|Sm) // Sample auxiliary variable

([Sm]′, u′) = f(Sm, u) // Invoke involution

sample {S∗
i }ni=1 i.i.d. from SIS([Sm]′, γ) // Sample auxiliary data

α = α(Sm, [Sm]′) of (B.6.2), using ratio (B.6.8) // Acceptance

probability

end

Sm
i+1 =

{
[Sm]′ with probability α

Sm with probability (1− α)
// Accept/reject proposal

return Sm
i+1

end
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Algorithm 15: SIS model iMCMC sampling
Input: (Sm, γ) (model parameters)
Input: νed, νtd, p(I|S), β (MCMC tuning parameters)
Input: m (sample size), b (burn-in), l (lag)
initialise S;
initialise i = 1;
while i ≤ m do

sample z ∼ Bernoulli(β)
if z = 1 then

// Edit allocation move

let u, f(u,S) and p(u|S) be as in Appendix B.6.3
sample u via p(u|S)
(S ′, u′) = f(S, u)
evaluate α = α(S,S ′) of (B.6.9) using (B.6.10)

else
// Path insertion & deletion move

let u, f(u,S) and p(u|S) be as in Appendix B.6.4
sample u via p(u|S)
(S ′, u′) = f(S, u)
evaluate α = α(S,S ′) of (B.6.9) using (B.6.11)

end
// Accept/reject proposal

S =

{
S ′ with probability α

S with probability (1− α)

// Store sample (accounting for lag and burn-in)

if (i > b) and (i mod l = 1) then
Si ← S
i = i+ 1

end
end
Output: {Si}mi=1

Algorithm 16: SIM posterior component-wise MCMC
Input: observed data {E (i)}ni=1

initialise (Em0 , γ0)

for i = 1, . . . ,m do
// Update gamma

γi = dispersion update(Emi−1, γi−1) // (Algorithm 17)

// Update mode

Emi = mode update(Emi−1, γi) // (Algorithm 14)

end
Output: sample {(Emi , γi)}mi=1
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Algorithm 17: SIM posterior dispersion conditional accept-reject
Input: (Sm

i , γi)

Output: γi+1

Function dispersion update(Emi , γi):
let (Em, γ) = (Emi , γi)

sample γ′ via q(γ′|γ) of (B.6.2) // Sample proposal

sample {E∗i }ni=1 i.i.d. from SIM(Em, γ′) // Sample auxiliary data

evaluate α = α(γ, γ′) of (B.7.2) // Acceptance probability

γi+1 =

{
γ′ with probability α

γ with probability (1− α)

return γi+1 // Accept/reject proposal

end
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Algorithm 18: SIM posterior mode conditional accept-reject
Input: (Emi , γi)

Output: Emi+1

function mode update(Emi , γi):
let (Em, γ) = (Emi , γi)

obtain Sm from Em // Place paths in arbitrary order

sample z ∼ Bernoulli(β)
if z = 1 then

// Edit allocation move

let u, f(u,Sm) and p(u|Sm) be as in Appendix B.6.3
sample u via p(u|Sm) // Sample auxiliary variable

([Sm]′, u′) = f(Sm, u) // Invoke involution

obtain [Em]′ from [Sm]′ // Disregard order

sample {E∗i }ni=1 i.i.d. from SIM([Em]′, γ) // Sample auxiliary data

α = α(Em, [Em]′) of (B.7.6), using ratio (B.6.6) // Acceptance

probability

else
// Path insertion & deletion move

let u, f(u,Sm) and p(u|Sm) be as in Appendix B.6.4
sample u via p(u|Sm) // Sample auxiliary variable

([Sm]′, u′) = f(Sm, u) // Invoke involution

obtain [Em]′ from [Sm]′ // Disregard order

sample {E∗i }ni=1 i.i.d. from SIM([Em]′, γ) // Sample auxiliary data

α = α(Em, [Em]′) of (B.7.6), using ratio (B.6.8) // Acceptance

probability

end

Emi+1 =

{
[Em]′ with probability α

Em with probability (1− α)
// Accept/reject proposal

return Emi+1

end
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Algorithm 19: SIM model iMCMC sampling
Input: (Em, γ) (model parameters)
Input: νed, νtd, p(I|S), β (MCMC tuning parameters)
Input: m (sample size), b (burn-in), l (lag)
initialise E ;
initialise i = 1;
while i ≤ m do

obtain S from E // Place paths in arbitrary order

sample z ∼ Bernoulli(β)
if z = 1 then

// Edit allocation move

let u, f(u,S) and p(u|S) be as in Appendix B.6.3
sample u via p(u|S) // Sample auxiliary variable

(S ′, u′) = f(S, u) // Invoke involution

obtain E ′ from S ′ // Disregard order

α = α(E , E ′) of (B.7.10) using (B.6.10) // Acceptance probability

else
// Path insertion & deletion move

let u, f(u,S) and p(u|S) be as in Appendix B.6.4
sample u via p(u|S) // Sample auxiliary variable

(S ′, u′) = f(S, u) // Invoke involution

obtain E ′ from S ′ // Disregard order

α = α(E , E ′) of (B.7.10) using (B.6.11) // Acceptance probability

end
// Accept/reject proposal

E =

{
E ′ with probability α

E with probability (1− α)

// Store sample (accounting for lag and burn-in)

if (i > b) and (i mod l = 1) then
Ei ← E
i = i+ 1

end
end
Output: {Ei}mi=1
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