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Abstract

Prior applications of the cerebellar adaptive filter model have included a range of tasks within simulated
and robotic systems. However, this has been limited to systems driven by continuous signals. Here, the
adaptive filter model of the cerebellum is applied to the control of a system driven by spiking inputs,
by considering the problem of controlling muscle force. The performance of the standard adaptive
filter algorithm is compared with the algorithm with a modified learning rule that minimise inputs
and a simple Proportional-Integral-Derivative (PID) controller. Control performance is evaluated in
terms of the number of spikes, the accuracy of spike input locations, and the accuracy of muscle force
output. Results show the cerebellar adaptive filter model can be applied without change to the control
of systems driven by spiking inputs. The cerebellar algorithm results in good agreement between input
spikes and force outputs and significantly improves on a PID controller. Input minimisation can be
used to reduce the number of spike inputs, but at the expense of a decrease in accuracy of spike input
location and force output. This work both extends the applications of the cerebellar algorithm, but
also demonstrates the potential of the adaptive filter model to be used to improve functional electrical
stimulation (FES) muscle control.

1 Introduction

The cerebellum contains up to 80% of all neurons in the human brain, highlighting its importance
(Herculano-Houzel, 2010; Azevedo et al., 2009). The structure of the cerebellum is highly uniform,
with a discrete cerebellar microcircuit that is repeated across the cerebellar cortex (Ito, 1984; Albus,
1971; Eccles, Ito, & Szentágothai, 1967; Marr, 1969). This uniformity has led to the concept of a
‘cerebellar chip’ where a single cerebellar algorithm is implemented in the control of different tasks
(Porrill, Dean, & Anderson, 2013; E. D. Wilson et al., 2021). With the function of each microcircuit
determined both by the uniform internal algorithm, but distinguished by the unique external connec-
tions. Despite the uniformity of its structure, the cerebellum is implicated in a wide range of tasks.
It is traditionally regarded as a motor control structure and strongly associated with adaptive control
and skilled movement (Ito, 1984; Albus, 1971; Marr, 1969; Dean, Porrill, Ekerot, & Jörntell, 2010).
However, there is accumulating evidence that the cerebellum is additionally involved in sensory and
cognitive tasks, including emotion, language and map calibration (Gao et al., 1996; Blakemore, Frith,
& Wolpert, 2001; Murdoch, 2010; Baumann et al., 2015; E. D. Wilson, Anderson, Dean, & Porrill,
2019). This range of tasks, carried out by a brain region with such a uniform structure, is remarkable
and suggests a highly adaptive, general purpose algorithm is being implemented. Such an algorithm
has great potential in the control of robotic and hybrid systems.

The adaptive filter model of the cerebellum (further details provided in the related work section) has
been applied to the control of a number of simulated, and experimental robotic systems. Applications
include: biological control problems (Dean, Porrill, & Stone, 2002; Porrill & Dean, 2007a, 2007b,
2008), sensory processing problems (Anderson et al., 2012; Dean, Anderson, Porrill, & Jörntell, 2013;
E. D. Wilson et al., 2019), and neurorobotic tasks (Lenz et al., 2009; Anderson et al., 2010; E. D. Wilson



et al., 2016, 2021). To, date these applications of the cerebellar adaptive filter model to a range of
different tasks have thus far been limited to robotic and simulated systems driven by continuous signals.

A key difference with biological systems is the way in which information is coded and transmitted.
The brain uses spikes to transmit information between neurons. It is thought that neurons encode infor-
mation either via their firing rate, or the precise timing of spikes, or a combination (Masuda & Aihara,
2002; Yu, Li, & Tan, 2018; Panzeri, Brunel, Logothetis, & Kayser, 2010; Gütig, 2014; Brette, 2015).
Although there is debate to whether the rate or temporal code is dominant for processing information,
the essential role that spikes play in information transmission is well established. However, to date, the
cerebellar adaptive filter model has not been tested in systems driven by spiking inputs. This is the
key gap that this contribution aims to address. In this paper, we consider if the adaptive filter model
of the cerebellum can be applied without change to the control of a system driven by spike inputs. In
particular, the problem of controlling biological muscle using spiking inputs is considered. This work
establishes if the cerebellar chip concept of the cerebellar adaptive filter algorithm can be extended to
systems activated by spike inputs, thus increasing the generalisabilty of the adaptive filter algorithm of
cerebellar function. In addition, the cerebellar algorithm has promise for hybrid systems control. For
example, it could potentially be applied to improve Functional Electrical Stimulation (FES) control,
where muscles of those with paralysed or weakened function are stimulated via electrodes (Peckham,
Knutson, et al., 2005). To date, a number of control approaches have been utilised for FES control,
as summarised in Barbosa, Temporão, & Meggiolaro, 2021. These include classic control techniques
such as the PID controller (Rouhani, Same, Masani, Li, & Popovic, 2017); intelligent extensions to
the PID controller, where techniques are used to update boudville2018development,qiu2014intelligent
or augment (Chen, Chen, Hsiao, Kuo, & Lai, 2005) the PID controller ; other intelligent control tech-
niques, such as neural networks (Griffis, Le, Stubbs, & Dixon, 2021; Sharma, Gregory, Johnson, &
Dixon, 2011) and fuzzy controllers (Poboroniuc et al., 2018) and Modern and Robust Control Tech-
niques (Mohammed, Poignet, Fraisse, & Guiraud, 2012; Kirsch, Alibeji, & Sharma, 2017; Oliveira et
al., 2017). However, the cerebellar algorithm has not been considered. The biological plausibility,
simplicity and adaptive nature of the cerebellar adaptive filter algorithm make it a potential candidate
for use in FES control.

This contribution assess whether we can apply the cerebellar adaptive filter algorithm, without
change, to the problem of controlling biological muscle. To do this, we use a simulated model of
muscle that takes a spike train as an input and gives the isometric muscle force as an output. An
integrate-and-fire model is used to generate spiking inputs from a continuous signal. These spiking
inputs are used as an input to the muscle model. The cerebellar adaptive filter, in combination with
a fixed brainstem controller, is used to control the force response to match a desired response. We
evaluate the performance, both in terms of the estimated spike input numbers and location, and in
terms of the accuracy of the controlled muscle force. The performance of the cerebellar controller is
compared to using a PID feedback controller. The PID feedback controller was chosen as a comparator
for consistency with other papers on advanced FES control. Although PID controllers have generally
been shown to under perform in comparison to other more intelligent and adaptive control techniques
(Boudville et al., 2018; Qiu et al., 2014; Wannawas, Shafti, & Faisal, 2022), it is common practice
to compare developed FES control algorithms to the basic PID controller as a benchmark. There
are numerous other control algorithms that have been applied to FES control, making the choice of
controller to use in comparisons difficult and somewhat arbitrary, so we choose to use a PID controller
for comparison, as is standard.

Results show that the cerebellar algorithm performs better in terms of both the accuracy of spike
input locations and the accuracy of muscle force output. We show that the cerebellar algorithm can
also be easily adapted to reduce inputs to the muscle. The amount of input is critically important to
minimise in FES applications, which are highly effected by muscle fatigue (Ibitoye, Hamzaid, Hasnan,
Abdul Wahab, & Davis, 2016). Including input minimisation shows that for similar output force errors,
the number of spike inputs could be reduced by around 20% when comparing the cerebellar adaptive
filter algorithm to a conventional PID controller. This work demonstrates the promise and potential
application of the cerebellar adaptive filter model to FES control. Due to the close synergies with
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the biological counterpart, a cerebellar inspired algorithm to improve FES control has great potential.
The work also extends the generalisability of the adaptive filter model of the cerebellum and is the
first step in applying the cerebellar algorithm to systems driven by spiking inputs.

2 Related Work

Key existing approaches to modelling cerebellar function and their usages are described in this section.

2.1 Computational Approaches to Modelling Cerebellar Function

A number of computational approaches have been suggested and utilised to model cerebellar function.
Generally, these approaches can be categorised as: (i) Descriptive models which focus on neural dy-
namics and are often based on compartmental models (Bower & Beeman, 2012; De Schutter & Bower,
1994; Gleeson, Steuber, & Silver, 2007); (ii) Look-up tables, such as the cerebellar model articulation
computer (CMAC) (Albus, 1971), this historic approach is now little used; (iii) Olivary models, where
cerebellar output is driven by inputs from the inferior olive to the Purkinje cell (Jacobson, Rokni, &
Yarom, 2008; Torben-Nielsen, Segev, & Yarom, 2012) and; (iv) Marr–Albus models (Marr, 1969; Albus,
1971), which include many variations (Kawato & Gomi, 1992; Schweighofer, Arbib, & Dominey, 1996;
Medina & Mauk, 2000), and in particular, the adaptive filter model of cerebellar function (Fujita, 1982;
Dean et al., 2010) and cerebellum-inspired spiking neural network models (Luque, Garrido, Carrillo,
Tolu, & Ros, 2011; Vijayan & Diwakar, 2022).

2.2 Adaptive Filter Model of the Cerebellum

The adaptive filter model of the cerebellum is emerging as a leading computational model of cerebellar
function, capable of representing both forward and inverse models (Porrill et al., 2013).

The adaptive filter model has been utilised for motor control by embedding it in a recurrent loop
architecture. In this architecture, a desired reference signal is passed to a fixed element B (representing
the brainstem) to give a motor command. This motor command is used as an input to the adaptive
cerebellar element (C). The output of C is used as a correction to the input to B (as in Figure 1e).
The advantages of such a recurrent connectivity, in contrast with a forward architecture, are discussed
in (Porrill & Dean, 2007b) and (Porrill et al., 2013). To summarise, using the recurrent architecture
enables the available sensory error to be used directly to drive adaptation, as opposed to needing to
estimated the motor error, which is usually unavailable. This motor error signal is usually unavailable
as it requires having the desired motor command as well as the actual motor command. Although, in
the simulations presented here the desired motor signal is available as we know the plant model exactly,
this is not commonly the case. For example, if the controller was being used for FES applciation the
desired motor command is the one that would produce the exact force or movement required so that
the plant output matches the desired output. However, to know this, we would need an exact model
of the plant, which we are unlikely to have. Especially for non-linear, biological, real-world systems.

A key concept of the adaptive filter model of cerebellar function, is the chip metaphor. That
is, the model can be implemented without change in a number of different tasks, with the different
functionality afforded by different external connections, but with the internal algorithm kept the same.
As stated in the introduction, this model has been applied to a number to different tasks within
simulated and robotic systems.

In summary, advantages of the adaptive filter model of cerebellar function include: (i) that it is
a simple homogenous representation which is easy to implement and analyse; (ii) the learning rule is
biologically plausible; (iii) when used within a biologically inspired recurrent architecture, rather than
use the unavailable motor-error signal to drive adaptation, it uses the available sensory error.

The adaptive filter model, used in this contribution, is a high-level functional systems model of the
cerebellum. How in practice the signals are generated by the neural system at the spiking level is not
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considered here. However, it has been shown that the granular-layer recuressive neural network can
in principle generate the outputs necessary to implement an adaptive filter (Rössert, Dean, & Porrill,
2015). There is also existing evidence supporting the idea that the granule layer performs complex
signal decomposition and the computational principles that underlie many functional models of the
adaptive filter (Dean et al., 2010).

2.3 Spiking Cerebellar Models

Cerebellum-inspired spiking neural network models have been developed and applied to several different
tasks (Fruzzetti et al., 2022; Vijayan & Diwakar, 2022; Vijayan et al., 2017; Luque et al., 2011).
Applications of such models include pattern classification and trajectory prediction, particularly robot
arm trajectory prediction. These spiking models consider how signals are reconstructed from the
neuronal behaviour. In the model input stimuli (Mossy Fibres (MF)) and cerebellar neurons (Granule
Cells (Grc) , Golgi Cells (CoC) and Purkinjie Cells (PC) ) are reconstructed using extended integrate
and fire models. For each feature, a set of n-neurons is used. For example, in (Vijayan & Diwakar,
2022) for a dataset with 4 features the network consisted of 28MFs, 371 GrCs, 1 GoC and 1 PC. As
a learning mechanism, error based learning, as in the adaptive filter is used in which the predicted
output is compared to actual output to find errors. However, in contrast, these spiking models have
considered using both sensory and motor errors (Luque et al., 2011).

The core ideas behind adaptive filter models and spiking cerebellar models are not dissimilar. The
key difference between the models being the level of detail in the implementation. The adaptive filter
model, used in this contribution, is a high-level functional system models of the cerebellum. In compar-
ison, spiking cerebellar models, consider the low level behaviour of the network. A comparison between
the adaptive filter models and spiking cerebellar models with their advantages and disadvantages is
provided in the discussion.

3 Methodology

The methodology is split into two main sections. The first of these describe the background and existing
work that the methodology is based upon and the second extensions and the algorithm developed and
implemented in this contribution as well as the parameters and settings used.

3.1 Existing Techniques

This section describes the existing methods that are utilised to develop an adaptive cerebellar algorithm
that can be used to control systems driven by spiking inputs. It is split up into several parts. Section
3.1.1 describes the muscle model, 3.1.2 the adaptive filter model of the cerebellum, 3.1.4 the method
for generating spikes and 3.1.4 the method for evaluating the accuracy of timing of spike inputs.

3.1.1 Muscle Model

In order to simulate the muscle force response, Wilson et als. (E. Wilson, Rustighi, Newland, & Mace,
2012) simplified adapted model was used. This model takes a spike train u(t) as an input and produces
the isometric force response F (t) as an output. The model was chosen as it has some physiological
basis and explanation, but is simple to implement and has been fully parameterised. It also performed
well in a comparison of existing models that convert an input spike train into an isometric force output.
Using the model, the muscle force is described as
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v(t) =

np∑
j=1

δ(t− tj) (1)

ĊN (t) +
CN (t)

τc
= v(t) (2)

x(t) =
CN (t)m

CN (t)m + κm
(3)

Ḟ (t) +
F (t)

τ1
= Ax(t) (4)

Here v(t) is an input with np input pulses located at times tj , and F (t) the muscle force output.
The model has 5 parameters and parameter values were set according to the fit to experimental data
from the locust hind leg extensor muscle from (E. Wilson et al., 2012) (τc = 0.071, τ1 = 0.13, m = 2.5,
κ = 0.75, A = 7.4).

3.1.2 Adaptive Filter Model of Cerebellum

This section describes the adaptive filter algorithm that is thought to be implemented by each instance
of the repeated cerebellar microcircuit. This algorithm remains unchanged from prior versions of
the cerebellar adaptive filter model of cerebellar function. Figure 1a), b) gives a highly simplified
representation of the cerebellar microcircuit and its interpretation as an adaptive filter.

This model has one output, the Purkinje cell output z(t). This is modelled as a weighted combi-
nation of parallel fibre signals

z(t) =

nw∑
i=1

wi(t)pi(t) = w(t)Tp(t) (5)

here, nw gives the number of weighted parallel fibre connections, wi(t) the ith weight at time t, pi(t)

the ith parallel fibre signal at time t, w(t) =
[
w1(t) w2(t) · · · wnw(t)

]T
a nw ×1 vector of parallel

fibre weights and p(t) =
[
p1(t) p2(t) · · · pnw(t)

]T
a nw × 1 vector of parallel fibre signals.

The parallel fibre signals are obtained from filtering the mossy fibre inputs (u(t)) to the cerebellum
at time t. The filtering represents processing by the granule cell layer, in which the adaptive filter
model is represented by a bank of time-invariant basis filters. We model these basis filters as a bank
of nw alpha filters with log spaced time constants between Tmin and Tmax. The Alpha basis filters
are given in the Laplace domain as

Gi(s) =
1

(Tis+ 1)2
i = 1, 2, 3, · · ·nw (6)

where Gi denotes the ith Alpha basis filter, nw the total number of basis filters, and Ti the time
constant of the ith filter. Details of how the filter parameters values were set are provided in 3.2.3 and
Figure 1c) shows the impulse response of the alpha basis filters.

Adaptive filter weights are learnt (from initial values of zero) using the decorrelation learning rule
(Sejnowski, 1977) (identical to the LMS rule from adaptive control theory (Widrow & Stearns, 1985)).

ẇi(t) = −βe(t)p̄i(t) (7)

where β is the learning rate and is a constant. The error signal carried by the climbing fibre inputs
to the cerebellum at time t is denoted e(t), and p̄i(t) is the parallel fibre signal pi(t) filtered through
reference model M (see (E. D. Wilson et al., 2015) and Section 3.2.1 for more detail on using a reference
model). The error signal for our control problem is described in the section 3.2.1. A learning rule,
which penalised inputs, was also considered. The modified learning rule is,
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Figure 1: Cerebellar control, adapted from (E. D. Wilson et al., 2015). (a) Highly simplified diagram
of the cerebellar microcircuit. (b) The cerebellar microcircuit as an adaptive filter. Mossy fibre inputs
are passed through a bank of fixed filters (basis functions) and weighted and recombined to give the
Purkinje cell output. Weights are learned using the error signal, (c) Basis function impulse responses
(d) Example input (top plot) and output (bottom plot) of the integrate-and-fire neuron model (e)
Control architecture with the control provided by both a fixed brainstem element B and an adaptive
cerebellar element C. A reference model M is used to specify the desired response of the system, P
represents the muscle model and I the integrate and fire model
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ẇi(t) = −βe(t)p̄i(t)− λu(t)p̄i(t) (8)

where λ is another learning rate and is a constant. When λ = 0, the rule is equivalent to Equation (7).

3.1.3 Spike Generation

Spikes are generated according to a simple leaky integrate and fire neuron model. Although more
detailed neuronal models exist, the exact nature of the spike generation is not the focus of this paper.
The leaky integrate and fire model was used as it is a widely used, simple, effective method for
generating spiking inputs.

In the leaky integrate and fire model, when the membrane potential exceeds a threshold, a spike is
fired and the membrane potential is set back to grest. Here, we use a resting potential of zero (grest = 0),
with the leak conductance set to 1. The leaky integrate and fire model used here is governed by the
following differential equation

TLI ġ(t) + g(t) = u(t) (9)

v(t) =

{
0 if g(t) < th

1/dt if g(t)>th and reset g(t) to zero. .
(10)

Where TLI defines the leaky integrator time constant, u(t) defines the input to the leaky integrate
and fire filter and g(t) the membrane potential. Once the membrane potential exceeds a threshold,
a spike is fired and the membrane potential is set back to zero. We use v(t) to represent the spiking
input and a spike with magnitude 1/dt and time dt. The transformation from continuous input u(t)
to spiking input v(t) for an example signal is shown in Figure 1d).

3.1.4 Spike Timing Evaluation

The Spike Time Tiling Coefficient (STTC) was used to evaluate how similar the actual spiking input
(obtained during control) was to the desired spiking input. This metric effectively quantifies the
degree of correlation between the two spike trains (desired and actual spike input trains). Quantifying
correlations between spike trains is challenging both due to the fact that spiking is sparse in comparison
to the sampling frequency and because correlated neurons may not fire precisely together, but still fire
at very similar times, meaning correlations need to be defined with reference to a timescale within which
spikes can said to be correlated (Cutts & Eglen, 2014). This makes traditional correlations metrics
such as Pearson’s correlation coefficient unsuitable. Instead, a number of options exist for detecting
correlations between spike trains, these are detailed and compared by (Cutts & Eglen, 2014), who find
that the STTC has several advantages. It was therefore chosen to use the STTC to compare spike
trains in this work. The STTC is calculated as,

STTC =
1

2

(
PA− TB

1− PA ∗ TB
+

PB − TA

1− PB ∗ TA

)
(11)

where PA is the proportion of spikes from train 1 that are within ±sdt of any spike from train 2,
divided by the total number of spikes in train 1. PB is the equivalent metric, but for the spikes in
train 2. TA is the proportion of total recording time that lies within ±sdt of any spike in train 1.
Again, TB is the equivalent metric for train 2. Where TA=PB=1, or TB=PA=1, this would result
in 0/0. These instances are replaced with 1, because in this case, every spike from the train is within
±sdt of a spike of the other train. The STTC metric is always a value between -1 to 1, with positive
values indicating correlations between the two spike trains and negative values indicating there is less
correlation than expected by chance. A STTC of 1 indicates that the locations of spikes in the two
trains are equivalent (within ±sdt). In this evaluation sdt = 0.02s.
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3.2 Developed Algorithm

Section 3.2.1 describes the overall cerebellar adaptive filter control algorithm that utilises the parts
described in Sections 3.1.1 to 3.1.3 and works to control a muscle model driven by a spiking input. A
PID control scheme is described in 3.2.2 which is used as a comparison to the cerebellar adaptive filter
controller. The settings used for simulations are provided in section 3.2.3, this includes, the data used
both to train the adaptive filter weights and to evaluate the control performance, the parameters used
in simulations and a summary of evaluation metrics.

3.2.1 Adaptive Filter Controller for Muscle

In this section, the overall control architecture and algorithm is described. This uses the muscle
model, the cerebellar adaptive filter algorithm and leaky integrate and fire model described in the
prior sections. The external connections to the adaptive filter model which enable the desired control
functionality are described in this section. Figure 1e) describes the overall control architecture and
shows how the different elements link together.

A reference model, M is used to generate the desired force profile from reference input. This is
necessary to ensure stable control and that the plant inverse (that our controller learns to approximate)
is proper (See (E. D. Wilson et al., 2015) for further details). The reference model used here is defined
as,

M(s) =
1

(τs+ 1)2
(12)

with time constant τ = 0.1.
The fixed brainstem controller, B and adaptive cerebellar filter, C provide inverse control of the

muscle plant, P. The fixed brainstem filter, B, was set to be an approximate compensator for the
muscle plant, with the cerebellar adaptive filter fine-tuning the control, as in the biological system.
The brainstem filter was designed to provide perfect compensation for an approximate plant model P̂ ,
such that

B(s) = P̂ (s)−1M(s) (13)

where P̂ (s)−1 is the inverse of the approximate plant model. For the approximate plant model, the
linear part of the muscle model was used, such that

P̂ (s) =
Â

(s+ 1/τ̂c)(s+ 1/τ̂1)
(14)

where the estimated plant model parameters (Â, τ̂c, τ̂1) are based on the muscle model parameters,
with a random noise added, such that p̂ = p + pN . Here N is a psudorandom value drawn from the
standard uniform distribution on the interval (0,0.5) and p̂ and p used to represent estimated and
actual plant model parameters respectively. The resultant fixed brainstem controller is,

B̂(s) =
(s+ 1/τ̂c)(s+ 1/τ̂1)

Â(τs+ 1)2
(15)

The error signal, e(t) is given as the difference between the desired force y(t) (reference signal r(t)
filtered through reference model M) and actual force F (t). This error signal is used to adjust the
adaptive filter weights, as described in Equation (8).

The overall algorithm is described in pseudocode in Table 3.2.1. All codes and data used to produce
the results in this paper can be found here: https://osf.io/3s5rn/ .
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—p10cm p5cm— Cerebellar Algorithm Description. Here, the notation xk is used to denote signal x
at time step k. Discrete time filters are used in the implementation, where for example, M(q) is the

discrete version of the continuous filter M(s) calculated using zero-order hold and q is the shift
operator (quk = uk+1)
Initialise Inputs:

Set initial motor command, and sum signals to zero u0 = 0, us0 = 0
Set vector of first weights to zero w1 = 0
Set spiking input vector v to zero v = 0

Define reference signal r at each time step r = user defined
for each time step k: for k=1 to length(r)

Filter reference signal rk through reference model filter M yk = M(q)rk
Filter motor command through bank of i basis filters Gi pi,k = Gi(q)uk−1

Calculate cerebellar output - sum weighted filter outputs zk = wT
k pk

Sum reference signal and cerebellar output (rk + zk)
Filter sum through brainstem B uk = B(q)(rk + zk)

Keep leaky running sum usk of motor command uk usk = uk + (1− dt/TLI)usk−1

if running sum usk exceeds threshold if usk > 1/dt:
Spike input on vk vk = 1/dt

Reset input sum if threshold exceeded usk = 0
end if end

Get muscle force response Fk to spike train input, vk Implement Eqs (2)-(4).
Calculate error signal ek ek = Fk − yk

Filter parallel fibre signals through ref model p̄k = M(q)pk

Update cerebellar adaptive filter weights wk+1 = wk − βekp̄k − λukp̄k

l l

Cerebellar Algorithm Description. Here, the notation xk is used to denote signal x at time step k.
Discrete time filters are used in the implementation, where for example, M(q) is the discrete version
of the continuous filter M(s) calculated using zero-order hold and q is the shift operator (quk = uk+1)

3.2.2 PID Controller

PID controller

+
+

+
+

-

u(t) F(t)v(t) y(t) error
 e(t) PI

Figure 2: Control architecture for the PID controller, P represents the muscle model and I the integrate
and fire model

The PID controller has been widely used in FES control studies as a benchmark comparison to
other control algorithms (Boudville et al., 2018; Qiu et al., 2014; Wannawas et al., 2022). Here, we
use heuristics to hand tune the PID parameters one at a time, particularly focusing on the response
to a single pulse. If the PID parameters are too large, the amplitude of response to a single pulse is
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amplified. We increased PID parameters, starting with kp, then ki, then kd in increments of 10 until
just before the amplitude of the response to any of the single pulses was over 50% larger than the
desired amplitude to determine PID parameters. The PID parameters used were kp = 360, ki = 60,
kd = 10, with a first order filter (time constant Tf = 10) applied to the derivative of the error. The
control architecture for the PID controller is given in Figure 2.

The performance of the PID controller described here is compared to the cerebellar adaptive con-
troller using the evaluation metrics detailed in the following section. The same training and test data
sets were used as for the cerebellar controller, with the training set used to tune the PID parameters.

3.2.3 Simulation settings

The data, settings, parameter values and evaluation metrics used in simulations are described here.

Data

The muscle model is non-linear, with the force response saturating as the neural input increases. The
response to a single, well separated input spike differs to the response of a spike with other closely
spaced input spikes, with saturation occurring when many input pulses are close together. Therefore,
any controller developed to control the muscle force must be able to operate over the full range of
possible inputs, ranging from closely spaced to well separated spikes over a full spectrum of possible
spike frequencies. Therefore, it is essential that the training data, used to train the model and learn
adaptive filter weights contains such a range of input pulses, ensuring the learnt controller works well
under all possible input conditions.

It was decided to use the same training and test data sets as were used to estimate the muscle
model in E. Wilson et al., 2012. The reason for this is this data set has already been shown to be
representative of a range of inputs, enabling good fits over a full range of test data, whilst keeping the
overall size of the data set as small as possible. Furthermore, the test data includes physiologically
relevant signals. An additional test signal, with input spikes occurring at pseudorandom times, was also
used. This random input was generated as 384 spikes, with interpulse intervals randomly assigned to
values between 2dt and 0.5s. Input spikes, used to generate the desired muscle force, and corresponding
modelled force outputs, are shown in Figure 3

The desired muscle force was obtained by passing spike inputs to the muscle model described in
Equations (2) to (4). For the cerebellar adaptive filter control (see Figure 1e) the desired muscle force
is the reference input r(t) filtered through the reference model M (Equation (12)). The reference input
r(t) was obtained from the desired muscle force by first using a second order low pass Butterworth
filter with cut-off frequency 12.5Hz to smooth the signal, then passing the signal back through M

The training data set contains 156 input spikes and 42.2s or 91766 samples of data, during training
this data set is repeated 4 times. The test1 data set contains 127 input spikes and 55.6s or 120868
samples of data. The test2 data set contains 202 input spikes and 74.4s or 161843 samples of data.
The test3 data set contains 384 spikes and 100s or 217392 samples of data.

Parameters

Hyperparameters were estimated using the test data set and a heuristic approach where different values
were tested in simulation. The aim was not finding optimal parameter values, but instead parameter
values that work well enough. In particular, the aim was to find parameters that gave stable learning
and small errors (final RMS errors < 0.2 without input penalisation and < 0.4 with input penalisation)
within a reasonable time scale (learned within four repeats of the training data). Parameters for the
cerebellar adaptive filter algorithm that were used in the simulations presented here are defined in
Table 1.
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Figure 3: Data used to learn controller parameters and to test the performance of the learned controller.
Note that all test data also contained the train of single pulses between each pulse train (a) Training
data, (b) Test1 data: physiological, kick type test data, (c) Test2 data: constant pulse train and
increasing/ decreasing frequency pulse train test data, (d) Test3 data: random pulse train test data
set

Table 1: Summary of parameters used in control algorithms

Paremeter Value(s) Brief Description
dt 4.6e− 04 Sampling time
τ 0.1 Reference Model Time Constant
nw 5 Number of basis filters
Tmin 9.2e− 4 Min basis time constant
Tmax 0.2 Max basis time cosntant
β 5e− 7 Error learning rate
γ 0 and 4e− 9 Input peanalisation learning rate
Muscle model parameters τc = 0.071, τ1 =

0.13, m = 2.5, κ =
0.75, A = 7.4

Parameters for simulating muscle model

th Threshold for determining whether to spike
TLI 1 Leaky integrator time constant
sdt 0.02 For STTC calculation to give proportion of spikes

that are within ±sdt of the desired spikes
kp 360 Proportional gain in PID controller
ki 60 Integral gain in PID controller
kd 10 Derivative gain in PID controller
Tf 10 Time constant used in derivative of error filter in PID

controller
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Evaluation Metrics

The difference between both the desired and actual output and input was evaluated. In addition, due
to the importance of fatigue and minimising inputs during FES, the total number of spikes was also
calculated. The accuracy of the estimated output force was assessed using the RMS error given as

FRMSE =

√√√√ 1

N

N∑
i=0

(F (i)− y(i))2 (16)

The STTC (as described in section 3.1.4) was used to determine how similar the actual spiking
input (obtained during control) was to the desired spiking input.

4 Results

4.1 Cerebellar Learning

The training data set (see Fig 3a) was not sufficiently long to ensure that learned weights converged
to reasonably consistent values. Therefore, this training data was repeated four times to allow enough
time for learning. Examples of signals obtained during cerebellar learning (with β = 5e−7 and λ = 0)
are given in Figure 4. The initial errors are large, indicating the approximate brainstem controller is
not a very good controller. However, as cerebellar adaptive filter weights are learned over time, weights
increase to an approximate steady value and errors reduce, giving good agreement between the desired
and actual muscle force.
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Figure 4: Results during cerebellar controller learning over time, with C 1 representing cerebellar
learning with rates β = 5e− 7 and λ = 0.

The force responses and input spikes from the training data at the start and end of learning are
shown at a larger time resolution in Figure 5. Here, results from cerebellar learning are shown with
(C 2) and without (C 1) input penalisation. It is evident that for each controller when the force is
larger the force response is slightly reduced from desired, with, as expected, this worse for the controller
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Figure 5: Cerebellar control algorithm response at the start (top) and end (bottom) of learning. Plots
(a), (c) and (e) show the input pulses and normalised force response towards the start of learning;
(b), (d) and (f) give the same desired input pulses and normalised force responses, but after cerebellar
learning

with input penalisation (C 2). Some differences between actual and desired input spikes can also be
seen, particularly at higher frequencies, with the controlled inputs generally more spaced out than the
desired inputs.

4.2 Controller Evaluation

Control results for the cerebellar algorithm, both with λ = 0 (standard learning rule) and with λ =
4e − 9 (learning rule penalises large inputs) for the learned cerebellar controllers (e.g. weights fixed
at those learned using the training data) are given here alongside PID control results. Overall metrics
for each controller are summarised in Table 2. The cerebellar algorithm with λ = 0 gives the smallest
errors and the best match between the desired and actual spike inputs. The input penalisation factor
(λ = 4e− 9) was set as this gives similar performance to the PID controller in terms of overall errors.
However, the penalised cerebellar controller uses fewer spikes (reduction of ∼ 20%) in more similar
locations to the desired inputs in comparison to the PID controller. In comparison, the algorithm with
λ = 0 uses a similar number of spikes to the PID controller, but these are more accurately located.

Control results are shown in Figures 6 to 8. In the response to single pulses (Fig. 6), both the
PID controller and C 1 (cerebellar controller without input penalisation) after learning approximate
the spike locations reasonably well. It is not evident from the resolution of the figure, but in general
PID spikes are slightly delayed in comparison to the desired response. Results for the controller C 2
(cerebellar controller with input penalisation) show that occasionally a spike is not fired.

The controller inputs and force response to Test1 (physiological, kick type inputs), for each con-
troller is shown in figure 7, with the inputs and force response for Test2 data shown in figure 8.
In general, the cerebellar algorithm C 1 slightly over-estimates the force for lower forces, but under-
estimates the higher forces. This is likely due to the fact that the muscle response is non-linear, but the
controller used here is linear. The cerebellar algorithm C 2 and PID controller slightly underestimate
all forces.
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Figure 6: From fitting to well separated single twitch pulses. The top plots show the locations of input
spikes (desired and actual for each different controller) and the bottom the force response. Results
from three controllers are plotted, with C 1 representing cerebellar learning with rates β = 5e− 7 and
λ = 0; C 2 representing cerebellar learning with rates β = 5e−7 and λ = 4e−9; and PID representing
a PID controller with kp = 360, ki = 60, kd = 10.(a) Cerebellar controllers at the start of learning, (b)
Cerebellar controllers at the end of learning, (c) Example response of all controllers with cerebellar
learned weights fixed
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Figure 7: Example controller response to desired force generated from kick type inputs (Test1). The
top plots show the locations of input spikes (desired and actual for each different controller) and the
bottom the force response. Results from three controllers are plotted, with C 1 representing cerebellar
learning with rates β = 5e − 7 and λ = 0; C 2 representing cerebellar learning with rates β = 5e − 7
and λ = 4e− 9; and PID representing a PID controller with kp = 360, ki = 60, kd = 10.
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Figure 8: Example controller response to desired force generated from other test data (Test2). The
top plots show the locations of input spikes (desired and actual for each different controller) and the
bottom the force response. Results from three controllers are plotted, with C 1 representing cerebellar
learning with rates β = 5e − 7 and λ = 0; C 2 representing cerebellar learning with rates β = 5e − 7
and λ = 4e− 9; and PID representing a PID controller with kp = 360, ki = 60, kd = 10.
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Controller Settings Data set FRMSE STTC Total spikes

Cerebellum
β = 5e− 7
λ = 0

Test1 0.017 0.91 114
Test2 0.027 0.88 199
Test3 0.018 0.96 386
All 0.021 0.93 699

Cerebellum
β = 5e− 7
λ = 4e− 9

Test1 0.034 0.57 84
Test2 0.035 0.57 152
Test3 0.053 0.72 317
All 0.043 0.68 553

PID
kp = 360
ki = 60
kd = 10

Test1 0.027 0.47 112
Test2 0.030 0.35 188
Test3 0.066 -0.07 393
All 0.048 0.16 693

Table 2: Controller performance for different test data and controllers

Figure 9 gives an example of part of the response to Test3 (random inputs). The agreement between
force output and spike input for the controller C 1 is very good. This is supported by the large STTC
and small error in fit. Fits for C 2 and the PID controller are less good, with the PID spike inputs in
particular not being well-placed and giving a poor match with the desired inputs. In fact, the STTC
indicates no correlation between the desired and actual spikes using the PID controller. From visual
inspection, there does appear to be some correlation between the spikes. However, due to the way
the STTC metric works, any pulses have to be within certain bounds (±0.02s) to be considered as
correlated.

5 Discussion

Results show that the cerebellar algorithm can be applied without change to the control of systems with
spiking inputs. They also show how well such a controller can place input spikes to match a desired
input response. The performance of the cerebellar algorithm with and without input penalisation and
a PID controller was compared. The best performance, in terms of matching the desired force response
and desired input, is achieved with the cerebellar algorithm without input penalisation. This algorithm
does result in a large number of spikes (albeit ones that match the desired spikes). The input can be
reduced by including input penalisation in the cerebellar algorithm. However, this results in slightly
higher errors, caused by a corresponding decrease in the force output. The PID controller is the worst
of the three tested, giving comparable errors to the cerebellar controller with input penalisation, but
with a larger number of spike inputs.

5.1 Adaptive Control

The cerebellar adaptive filter algorithm is an adaptive controller. Using adaptive control makes sense
for application to biological muscle control, as the muscle response can change over time, for example
due to fatigue. However, there are also risks to using adaptive control as it can be harder to guarantee
stability, convergence and robustness. Limits on the adaptation and controller design can help to
improve these guarantees for adaptive control algorithms.

It has previously been shown that errors can be at least halved by using adaptive PID parameters
in a FES situation (Qiu et al., 2014). Hence, it could be argued that a fixed PID controller is not
a good comparator. However, it was chosen as a benchmark, as has been done in a number of prior
studies. Even if PID errors were halved, they would still be comparable to the cerebellar algorithm.
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Figure 9: Example controller response to desired force generated from random pulse inputs (Test3).
The top plots show the locations of input spikes (desired and actual for each different controller)
and the bottom the force response. Results from three controllers are plotted, with C 1 representing
cerebellar learning with rates β = 5e − 7 and λ = 0; C 2 representing cerebellar learning with rates
β = 5e− 7 and λ = 4e− 9; and PID representing a PID controller with kp = 360, ki = 60, kd = 10.

Also, in this study the muscle parameters were kept fixed so the dynamic response due to fatigue is
not considered.

5.2 Cerebellar Algorithm Extensions

The cerebellar algorithm used here is relatively simple and was chosen to show that a basic cerebellar
adaptive filter could be applied to improve control of a system driven by spiking inputs. A number
of extensions have already been proposed for this algorithm for systems driven by continuous inputs.
These include, transfer of learning (E. D. Wilson et al., 2016), using non-linear basis (E. D. Wilson
et al., 2016) and orthonormalisation (E. D. Wilson et al., 2015). Investigating the use of these in
controlling systems driven by spiking inputs, and in particular muscle, is a natural next step.

Although fatigue was not considered here, muscles fatigue and so their response can be variable over
time. We have previously shown how transferring learning to the brainstem is necessary for stability
in systems that change significantly over time (E. D. Wilson et al., 2016). Including such an extension
is likely to be necessary in situations when fatigue significantly affects muscle outputs.

Including non-linear basis increases complexity and can quickly increase the number of filter basis.
However, for a non-linear system such as that considered here, it would likely give better fit to response.
The fact that the cerebellar controller under-estimates higher forces and overestimates lower forces
suggests that including nonlinear basis would improve the controlled force output, albeit at the expense
of increased complexity.

Although orthogonalisation has been used in the past within the cerebellar adaptive filter, it was
not included here. The approach used previously has been to base the orthnormalisation on the
brainstem output prior to learning to obtain a fixed matrix to orthonormalise signals (E. D. Wilson et
al., 2016). However, here the brainstem compensator used is poor (show by the poor match between
the estimated and actual force before learning) and so basing the fixed matrix on this output did not
help to improve the learning rate. As this limited the learning rate that could be used training data
was repeated to enable sufficient time to learn. An online solution to optimising basis outputs in the
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cerebellar adaptive filter is an ongoing area of research.

5.3 Spike Timing

There is still disagreement between spike vs rate based theories of motor control. However, there is
some recent research that does support the importance of spike timing and suggest that rate-based
theories need revision (Sober, Sponberg, Nemenman, & Ting, 2018). The cerebellar control results
show that the cerebellar controller is very good at optimizing the location of spikes and gives good
agreement with desired spikes. If spike timing is important for motor control, then it is expected that
it would also be important for FES applications. Therefore, the good performance in matching desired
spikes makes the cerebellar algorithm attractive for use in FES control.

For the cerebellar controllers (C 1 and C 2) the STTC is slightly lower for cases that contain
higher frequency inputs (in Test1 and Test2). In recordings from kick data (E. Wilson et al., 2012),
it is evident that the exact spike input differs between kicks, but the output force is relatively similar.
This suggests that in cases of closely separated pulses, the rate may be more important than precise
spike timing. In which case, the reduction in cerebellar algorithm performance is in line with this.
However, this requires further investigation.

The match between desired and actual inputs for the PID controller is poor, particularly for the
Test3 data, and slightly improved for the higher frequency inputs (in Test1 and Test2). This is the
opposite pattern as seen with the cerebellar algorithm. Aside from the adaptive nature discussed in
section 5.1, a core difference between the PID controller and the cerebellar algorithm is the control
structure used. With the PID controller being a feedback controller, but the cerebellum and brainstem
providing feedforward plant compensation. This feedforward compensation is necessary for the fast
responses that are needed for certain biological reflexes, such as the Vestibular Ocular Reflex (VOR)
(Porrill & Dean, 2007a). In contrast, the PID controller is a feedback controller, so corrections to
control actions can only be made in response to errors. Looking at the controlled response to a single
pulse, it can be seen that the PID response is delayed slightly in comparison to the cerebellar output
and desired response. This delay could be reduced by increasing the PID controller parameters kp,
but increases beyond those used here also increased the errors.

Here, we use a hybrid spiking system. Spikes are generated and used to stimulate the muscle
model. However, the timing of these is dependent on an continuous signal, which is then converted to
spikes using an integrate and fire filter (see figure 1e). In this hybrid model, muscle is only stimulated
with an input once the integral of the continuous output from the brainstem and cerebellar controller
reaches a threshold. As such, this introduces a slight delay (≈ 0.01s) in the spiking. For the purpose
of FES applications as considered here, this delay in generating the muscle force is small. However, it
has been suggested that spike timing is critical and that the cerebellar cortex does rely on millisecond
spike precision of PCs (Sedaghat-Nejad, Pi, Hage, Fakharian, & Shadmehr, 2022). Methods such as
using an eligibility trace or selecting the reference model can be investigated as a way to remove such
a delay from this hybrid model. Alternatively, a fully spiking cerebellar model would not introduce
this delay, as no conversion between continuous and spiking signals is needed.

5.4 Comparison to Spiking Cerebellar Models

Generally, the adaptive filter model is more compact and computationally efficient model. The ad-
vantage of this is it is simple to implement and make changes. However, this comes as the expense
of loosing some of the biological detail. Spiking models consider the behaviour from the bottom up
and how signals are generated. In many instances biological control appears superior to engineered
control systems. In simplifying the model, some of this superiority may be lost. In particular the role
of redundancy in the biological system. Notably as in practice, although there are a massive number
of Cerebellar granule cells and they are the most numerous neurons in the brain, granule cell re-coding
is sparse. Here a compact basis is used. The advantage of a compact basis is that it reduces the
computational complexity. However, the likely benefits of a sparse granule cell layer, such as efficient
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separation of inputs (Schweighofer, Doya, & Lay, 2001), as well as the benefits of a large-expansion
recoding, such as redundancy and adaptability to different problems, are lost.

Overall, the adaptive filter model of cerebellar function is more similar to existing engineering
control solutions, particularly adaptive controllers. This has both advantages and disadvantages.
For FES control the similarity to existing solutions may make it easier to implement and accept in
practice. However, on the flip side, as mentioned above, some of the biological superiority may be lost.
Furthermore, for FES applications, a key advantage that spiking models may present is that they are
usually power efficient (Wu, Yi, & Huang, 2022). If such advantages in power consumption can be
exploited, then for FES applications such spiking cerebellar models may provide a core advantage over
other solutions.

In this contribution we consider the adaptive filter model of cerebellar function. This is a first
step in using cerebellar models for FES control. It enables the functionality of the adaptive cerebellar
model to be explored, but does not consider in detail how such function is implemented in the biologcial
system. An interesting avenue to explore in the future would be to extend this control to consider how
well spiking cerebellar models can control muscle and so how suitable for FES control.

5.5 Muscle Control

This work is the first step in increasing the generalisability of the cerebellar algorithm to systems driven
by spiking inputs and demonstrates its potential for use in muscle control and FES applications. There
are a number of extensions that need to be considered before this algorithm can be utilised in practice.
These are discussed here.

In this work, an isometric model was used. To extend to dynamic contractions, the force-length and
force-velocity dependencies also need to be considered in generating the muscle force. One advantage
of the cerebellar algorithm is that the brainstem need only provide very approximate control of the
plant, with the cerebellar adaptive filter providing more accurate compensation, based on output errors.
This is evident from the results presented here, which show that before cerebellar learning, the control
response is poor. Therefore, in including force-length and force-velocity extensions to the muscle force
generation, the controller design does not necessarily need to change. However, the conditions over
which the controller is tested need to be extended. Furthermore, the model used here is parameterised
based on the force response of the locust hind leg muscle. For FES applications, mammalian muscle
must be considered. It is not expected that this change the control strategy used by the cerebellar
algorithm, but again just increase the conditions over which the controller is tested and evaluated.

Here, only a single muscle is considered. In operation, muscles work as agonist-antagonist pairs to
retract and extend the skeleton. In such a set up, there is redundancy in the system as muscles can
co-contract, meaning the same output force could be achieved using different inputs. The cerebellar
control algorithm could lend itself for controlling such a redundant agonist-antagonist muscle system.
The cost function that the learning rule is based upon could be adapted in order to give inputs that,
for example, minimised jerk, to optimise inputs across the two muscles.

The cerebellar algorithm is also an ideal candidate to move beyond purely the control of an agonist-
antagonist pair to multi-joint systems, perhaps using similar extensions to the cost function as for the
agonist-antagonist pair. The overall principle in this work, is that the internal algorithm remains
largely unchanged, with external connections providing the different functionalities. This means that
the core algorithm can be utilised in a number of different conditions, so long as suitable motor inputs,
reference signals, and error signals are available and suitable target outputs can be found.

The suitability of the controller for applications to human muscle control needs to be considered.
Extending this work to consider dynamic conditions with agonist-antagonist pairs and then multi-joint
systems is a natural first step. However, the ultimate aim is to test the cerebellar controller in a real
FES application. Given the adaptive nature of the algorithm this would likely require hard constraints
for safety.
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6 Conclusions

This contribution has shown that the adaptive filter model of the cerebellum can be extended to the
application of systems driven by spike train inputs. The algorithm gives a good match with both the
force response and input spikes in control simulations. It can also be easily adapted to reduce the
inputs to the muscle, which are important to limit in FES situations to avoid fatigue. More work, as
outlined section 5.5, is required before practical online implementation of this controller. However, the
modular nature of the cerebellum and this algorithm lends itself to the extensions required.
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