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Abstract—The low earth orbit (LEO) satellite-borne edge cloud
(SEC) and machine learning (ML) based semantic communi-
cation (SemCom) are both enabling technologies for 6G sys-
tems facilitating computation offloading. Nevertheless, integrating
SemCom into the SEC networks for user computation offloading
introduces semantic coder updating requirements as well as
additional semantic extraction costs. Offloading user computation
in SEC networks via SemCom also results in new functional
challenges considering, e.g., latency, energy, and privacy. In this
paper, we present a novel SemCom-assisted SEC (SemCom-SEC)
framework for computation offloading of resource-limited users.
We then propose an adaptive pruning-split federated learning
(PSFed) method for updating the semantic coder in SemCom-
SEC. We further show that the proposed method guarantees
training convergence speed and accuracy. This method also
improves the privacy of the semantic coder while reducing
training delay and energy consumption. In the case of trained
semantic coders in service, for the users processing computational
tasks, the main objective is to minimise the users’ delay and
energy consumption, subject to sustaining users’ privacy and
fairness amongst them. This problem is then formulated as an
incomplete information mixed integer nonlinear programming
(MINLP) problem. A new computational task processing schedul-
ing (CTPS) mechanism is also proposed based on the Rubinstein
bargaining game. Simulation results demonstrate the proposed
PSFed and game theoretical CTPS mechanism outperforms the
baseline solutions reducing delay and energy consumption while
enhancing users’ privacy.

Index Terms—Satellite-borne edge cloud, SemCom, computation
offloading, delay, energy consumption, privacy.

I. INTRODUCTION

A. Background

MULTI-ACCESS edge computing (MEC) is emerging as
one of the key techniques for next-generation wireless

communication systems [2]. MEC enables the development of
Internet of Things (IoT) applications and improves network
performance and quality of service (QoS) [3]. MEC brings
cloud services closer to the users at the network edge, e.g.,
base stations (BSs), and roadside units (RSUs) providing them
with abundant computational resources. Therefore, users can
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offload their computationally intensive tasks to the MEC for
faster processing.

Nevertheless, users located in remote areas or disaster zones
might not be able to connect to terrestrial edge cloud network
infrastructures. Alternatively, such under-served users may
offload their computationally intensive tasks to remote core
cloud servers via Geosynchronous Equatorial Orbit (GEO)
or Medium Earth Orbit (MEO) satellites. In addition to the
costs, the corresponding propagation latency to and from the
satellite platforms however impedes the delay requirements of
these users. Using Low Earth Orbit (LEO) satellites can partly
address this issue by providing lower propagation latency
as their orbits are much closer to the ground compared to
GEO and MEO satellites. Comparing to GEO and MEO,
constellations of LEO satellites also provide low-cost, high-
throughput services and extensive radio coverage. To further
reduce the propagation delay, the satellite-borne edge cloud
(SEC) setting was proposed, where the offloaded processing
is conducted on board the LEO satellite, hence reducing the
propagation delay by a factor of 2 [4], [5].

Adopting SEC for users in remote areas or disaster zones has
been recently investigated in [6] and [7]. The authors in [6],
and [7] mainly focused on developing offloading decisions that
minimise offloading delay or energy consumption for cases
where users have direct radio links to the satellites. (e.g., in C-
Band). An alternative access scenario is proposed in [8], where
the user transmits to the SEC indirectly through an intermedi-
ary terrestrial-station-terminal (TST). In this approach, the user
transmission to the TST is on a C-band radio link and TST
communicates to the SEC through a K-band radio link. Wang
et al. [9] also proposed a dual-edge cloud network, where the
edge servers are placed on both BSs and LEO satellites. In this
approach, a BS acts as a TST to assist users with computation
offloading to the SEC. Similarly, [10] proposed an energy-
efficient strategy for terrestrial users to offload computing tasks
to the SEC via TSTs. Tang et al. [11] further investigated
the impact of the core cloud on users’ offloading decisions.
They then proposed a minimal energy consumption computing
offloading decision method, where users access SEC directly.

B. Challenges: SEC for user offloading

The approaches mentioned above frequently confine their
investigations to a singular connectivity scenario between users
and the SEC. In essence, by concentrating solely on specific
performance aspects, such as energy consumption or latency,



potential privacy concerns and associated risks to users are
disregarded. This poses inherent risks to users. For example,
prioritizing latency without considering energy consumption
and privacy may lead to a user in the desert swiftly losing
the ability to communicate, with this information potentially
accessible by a third party. To address this issue, in this paper,
we investigate SEC incorporating various access modalities,
task processing entities, latency, energy consumption, and
privacy of users.

Moreover, in the majority of instances, offloading substantial
computing tasks to the SEC demands an exceptionally high
transmission rate and substantial throughput. Consequently,
alongside considerations of latency, energy efficiency, and
data privacy, the computation offloading to SEC encounters a
fundamental constraint—the inherent limitation of accessible
radio spectrum. Hence, it is imperative to devise techniques
that markedly enhance the spectrum efficiency of these sys-
tems, all the while upholding the quality of service (QoS) in
the offloading process. A promising approach to address this
issue is semantic communication (SemCom) based on machine
learning (ML) [12].

SemCom leverages ML techniques for information transmis-
sion. A goal-oriented semantic encoder, powered by ML, se-
lectively extracts semantic information from the transmitted or
offloaded content. Rather than transmitting raw data, only the
essential semantic information is conveyed, later decoded by
the ML-based semantic decoder. This approach significantly
enhances spectrum efficiency by balancing the communication
load against the computational load through machine learning.
Moreover, it mitigates the impact of unstable radio links, such
as variable path loss due to weather conditions commonly ob-
served in high-frequency satellite links. SemCom thus plays a
pivotal role in the significant enhancement of the performance
and speed of offloading. The integration of SemCom and SEC
for computation offloading presents a promising solution to
address the challenges of task offloading in the next generation
of wireless communications.

C. Challenges: SemCom for SEC

Integrating SemCom and SEC for computation offloading
requires a carefully designed architecture. Such an architecture
needs to consider various possible task-processing entities
(satellites and terrestrial cloud) and various user access meth-
ods (direct and indirect) to the SEC network. Furthermore,
goal-oriented ML-based SemCom coders need to be updated
in real-time according to new transmission content [13].

In the SEC network, updating the semantic coder presents
several emerging challenges, e.g., mobility of SEC, low tol-
erance of service interruption and energy consumption, and
privacy. However, the existing distributed learning frameworks
designed for SemComs in generic networks (e.g., [14]–[16])
do not seamlessly translate to the SEC network. For instance,
Xie and Qin [14] introduced a pruned lite ML model tailored
for distributed semantic coders. Their approach focuses on
refining models over edges rather than updating goal-oriented
coders in a federated training approach. Qin et al. [16]

proposed a general SemCom framework involving users and
terrestrial base station edge clouds. In [15], the SemCom
framework also includes users and terrestrial base station edge
clouds, with the distinction that users in [15] must provide
information to base stations for semantic extraction. However,
these frameworks suffer from prolonged service interruptions,
increased energy consumption, and heightened privacy risks
within SEC networks. Furthermore, these methods only en-
gage users and the edge cloud. In SEC offloading scenarios,
the SemCom for offloading framework necessitates the active
participation of all parties including users, terrestrial-station-
terminal, satellites, and terrestrial clouds. The aforementioned
research underscores the critical need to develop efficient
distributed learning methods for updating semantic coders in
SemCom SEC networks.

In addition to the above, SemCom alters the transmission
paradigm of SEC networks by increasing the computational
load while reducing the communication load. Users are there-
fore required to develop optimal computational task strategies
in case trained semantic coders are utilised for computation
offloading. Such strategies need to be developed taking into
account not only scenarios specific to SemCom in the SEC, but
also operational factors that have not been considered in the
existing SEC offloading research. Such factors include using
both access modalities, the task processing entities, latency,
energy consumption and privacy.

D. Contributions

To tackle the above-mentioned challenges, in this paper,
we propose a novel SemCom-assisted SEC (SemCom-SEC)
framework for terrestrial users’ computation offloading. In
our proposed method, we split the SemCom service into in-
maintenance (i.e., semantic coders need updating) and in-
service (i.e., trained semantic coders are utilised for computa-
tion offloading) scenarios. For the in-maintenance scenario, we
investigate real-time updating of deployed semantic coders in
SemCom-SEC. A pruning-split federated learning (PSFed) ap-
proach is then proposed to update semantic coders considering
offloading QoS while privacy-preserving. For the in-service
scenario, we study the computational task processing chal-
lenge of terrestrial users in the new SemCom paradigm. We
then propose a new computational task processing scheduling
(CTPS) mechanism based on the Rubinstein bargaining game
to minimise the users’ processing delay and energy consump-
tion while preserving users’ privacy. The main contributions
of this paper are summarised as follows:

• We integrate the SemCom and SEC networks and pro-
pose a novel SemCom-SEC framework enabling task
offloading for under-served users. Diverging from current
SemCom frameworks, which exclusively factor in users
and terrestrial edge clouds, the envisioned framework
extends its reach by deploying semantic coders on both
the TSTs and satellites. Furthermore, SemCom-SEC ac-
commodates a variety of user task-processing approaches
and access modalities. Computational tasks for users
can occur locally, at SEC, or in the core cloud server.



Additionally, users possess the flexibility to access LEO
satellites either directly or through the semantic encoder-
equipped TST.

• We then propose a PSFed approach for semantic coder
updating for the SemCom-SEC framework enabling
computation offloading. PSFed adaptively “splits” and
“prunes” the semantic coders for federated aggregation
subject to various users’ personalised conditions. In con-
trast to the conventional “split” and “prunes” models,
the semantic coder model components remain intact after
updating. PSFed reduces the consumption of training
communication resources and improves the privacy of the
trained encoder while enhancing the training convergence
speed and model accuracy.

• We introduce an innovative CTPS mechanism, distinct
from previous studies that only address partial perfor-
mance considerations. Our approach takes a comprehen-
sive stance, jointly addressing user privacy, delay, energy
consumption, and fairness to tackle the novel challenge
of incomplete information task processing scheduling in
SemCom-SEC. The CTPS operates in two steps: firstly, a
game-theoretic model is crafted to transform this mixed-
integer nonlinear programming (MINLP) problem from
incomplete information, stemming from privacy con-
cerns, into a complete information problem. In the second
step, the converted complete information MINLP problem
is decomposed and solved through the application of the
Lagrangian dual decomposition method.

The rest of the paper is organised as the following. Section
II presents the system model of the proposed SemCom-SEC
framework. In Section III and Section IV, we then investigate
the unique challenges and corresponding solutions for Sem-
Com in-maintenance and in-service scenarios, respectively.
The performance of the proposed PSFed and CTPS are then
evaluated and analysed by simulations in Section V. Finally,
conclusions are drawn in Section VI.

II. SYSTEM MODEL

In this section, the system model of the proposed SemCom-
SEC is introduced. We then provide the computing, commu-
nication, path loss and semantic coder training model.

A. System description

Consider the SemCom-SEC (Fig.1), where terrestrial users
are located in areas without having access to terrestrial edge
service. Users can offload computation-intensive tasks to LEO
SEC. In practice, an LEO satellite constellation is similar to
a cellular network operating above the ground [17]. Whereas
the space cellular network is on the move, while ground users
are relatively stationary.

We consider both types of approaches for users to access the
SEC for computation offloading [8]. Users can communicate
with LEO satellites directly through a C-band user-satellite
radio link. Furthermore, they are also allowed to indirectly
access the SEC through a TST via a C-band link to TST, and
a Ka-band link between TST and SEC. The terrestrial C-band

user-TST link spectrum resources are utilised in an orthog-
onal frequency division multiple access (OFDMA) setting to
optimise the utilisation of terrestrial radio resources [10].

To improve the spectrum efficiency and QoS of SEC networks,
semantic coders are deployed on the TSTs and LEO satellites
for transmitting offloaded tasks over Ka-band. This is due to
TSTs being primarily responsible for transmitting significant
amounts of tasks to satellites and requiring extremely high
spectral efficiency. Furthermore, their service area is fixed and
the content to assist in task offloading (e.g., scene perception
task, augmented reality task) only minimally varies. The
mobility of the users causes the fact that the offloading content
is often variable. For instance, the content of the transmission
when offloading a scene perception task varies depending on
the scene. The content-oriented semantic coders need to be
constantly updated as the user moves. We thus consider factors
such as utilisation, and reliability, for which goal-oriented
SemCom is most appropriate for the TST-satellite link in SEC
networks. Moreover, due to the dynamic nature of the system
and the limited storage resources of LEO satellites, it is not
viable to store semantic decoders for all TSTs on the route.
The semantic coders are therefore stored on the TST. Similarly,
for economic and satellite storage resources considerations,
at least the trained decoder of TSTs should be the same for
the same transmission task [18]. The TST delivers the related
semantic decoders to the corresponding satellite when it needs
to perform SemCom.

Fig. 1: The proposed SemCom-SEC framework.

Furthermore, LEO satellites can alternatively connect to the
cloud servers on the terrestrial network via Ka-band backhaul
links to provide cloud service for users.

In this model, a user may process indivisible computational
tasks in either of the following five scenarios: 1) computing
locally; 2) offloading the tasks to SEC over the user-satellite
link; 3) offloading the tasks to the SEC via TST; 4) offloading
the tasks to terrestrial cloud over the user-satellite link; 5)



offloading the tasks to the terrestrial cloud via TST-satellite
link.

B. Computiong models

Denote the set of LEO satellites as A = {1, 2, ..., a, ..., A}
and set of TSTs as B = {1, 2, ..., b, ..., B}. A TST b is on the
terrestrial and provides service to C users within the coverage
as a small cell in which the set of users in TST b’s service
range is denoted by C = {1, 2, ..., c, ..., C}. We consider each
terrestrial user c to have indivisible computational sensitive
tasks with the size in bits of mc ∈ {m1,m2, ...,mc, ...,mC},
and the CPU cycles needed to execute one bit of tasks is δ.
The local computation task latency of the user c can be given
by

tLC
c =

δmc

fc
, (1)

where fc is user c’s CPU-cycle frequency with the unit
cycles/s. The energy required to calculate locally is hence
expressed as [1]:

ELC
c = pLC

c tLC
c = εf3c

δmc

fc
= εδmcf

2
c , (2)

where pLC
c = εf3c is the power needed to be computing locally

and ε is the energy factor related to the electronics [19].

Similarly, if user c chooses to offload the tasks to SEC or the
terrestrial cloud, the computational latency can be obtained by

tSEC
c =

δmc

fa
, (3)

tCloud
c =

δmc

fCloud
, (4)

where fa and fCloud are the CPU-cycle frequency of the LEO
satellite a being offloaded to and terrestrial cloud, respectively.
Similar to [11] and [20], we assume that all LEO satellites
have similar computing capabilities.

C. Communication models

There are two options for each user to access LEO satellites,
i.e., directly access the LEO satellite or via a semantic encoder
deployed on the TST. The total bandwidth of the C-band user-
TST link is divided into D0 orthogonal sub-carriers based on
OFDMA manner [10]. The transmission rate of the user c to
the TST b on a sub-carrier d0 in this link is

rcbc,d = Bcb
d0

log2(1 +
pcbc,d0

gcbc,d0

σ2
0

), (5)

where Bcb
d0

, pcbc,d0
and gcbc,d0

are bandwidth, transmission power
and the channel gain on sub-carrier d0 in the user-TST link,
separately. Further, in (5), σ2

0 is the noise power in this link.
Hence, the transmission delay from user c to TST b is

tcbc =
mc∑D0

d0=1 x
cb
d0
rcbc,d0

, (6)

where xcbd0
∈ 0, 1 is the allocation indicator of user-TST over

the C-band. In the case of a sub-carrier d0 in C-band is

allocated to user c to offload the tasks, xcbd0
= 1; otherwise,

xcbd0
= 0. Therefore, the transmission energy is

Ecb
c = tcbc

D0∑
d0=1

xcbd0
pcbc,d0

. (7)

If user c chooses to access satellite a directly, due to the
ultra-long propagation distance, the propagation delay is not
negligible and the round-trip propagation delay is

tproac =
2h

cl
, (8)

where h is the distance between user c and satellite a, cl is the
speed of light. We assume the users in the same TST, this TST
and terrestrial cloud have the same distance to the satellite a.
Moreover, path loss should be considered when transmitting
over long distances. We are not concentrating on the path loss
in the user-TST link because they communicate in a small cell
range and haven’t got a significant impact on the transmission
delay. The transmission rate from the user c to satellite a thus
can be denoted by

Rca
c = Bca

c log2(1 +
pcac g

ca
c

σ2
0PL

ca
c

), (9)

where Bca
c , pcac and gcac are bandwidth, transmission power,

and channel gain from the user c to satellite a, respectively.
Furthermore, PLca

c is the path loss. Note that the path loss
affects the channel hence the channel gain. Nevertheless, to
better demonstrate the advantages of SemCom, similar to
[21], we present the path loss separately in the formula to
facilitate subsequent analysis. Normally, the path loss PL for
the satellite channels mainly consists of free-space path loss
PLf and atmospheric (rainfall) loss PLr [21]. Hence, we
assume the total path loss PL = PLf +PLr. We will specify
these losses later. We then have the transmission delay and
energy consumption when user c accesses the SEC a directly,
which are given by

tcac =
mc

Rca
c

, (10)

Eca
c = tcac p

ca
c . (11)

In contrast to users, the transmission process from TST b to
satellite a integrates SemCom. It thus increases the computing
delay while significantly decreasing the data required to be
transmitted. The transmission rate of TST can be expressed
as:

Rba
b = Bba

b log2(1 +
pbab g

ba
b

σ2
0PL

ba
b

), (12)

where Bba
b , PLba

b , P ba
b and gbab are bandwidth, path loss,

transmission power and the channel gain in TST b-satellite
a link, respectively. In addition, since antennas of TSTs have
good directivity, they can communicate with multiple LEO
satellites via Ka-band and the corresponding interference can
be ignored [10], [22], [23]. Therefore, the transmission delay
of all users’ tasks are transmitted from TST b to satellite a is

tbac =

∑F
j=1 ψmj

Rba
b

+

∑F
j=1mj

Rba
SemCom

, (13)



where F is the number of users allocated to offloading
the task to satellite a and F ∈ C. Furthermore, ψ is the
compression ratio and the Rba

SemCom is the rate of semantic
extraction and semantic parsing, i.e., computing delay during
data transmission.

Since the computation task calculation result is often much
smaller than the offloaded data, it is reasonable to ignore the
backhaul transmission delay (see also [24] and [25]. Moreover,
estimating the number of subcarriers provided by satellite a to
user c is difficult due to the large number of satellite service
users. We assume that the satellite transmits user data to the
ground cloud with a constant transmission rate Ra

c similar
to [11]. The transmission delay between satellite and cloud
tCloud
a thus equals mc/R

a
c . Due to the mobility of satellites,

the distance from the satellite to the terrestrial cloud is difficult
to precisely inform users, we thus use h to estimate the
distance between the satellite and the terrestrial cloud. The
propagation delay where user c chooses to offload to the
terrestrial cloud is

tproCc = 2tproac =
4h

cl
. (14)

D. Path loss model

As mentioned in Section II-C, the path loss for the terrestrial-
satellite channel is mainly free-space path loss PLf and
atmospheric (rainfall) loss PLr. Free-space path loss is a basic
power loss that increases depending on the communication
distance. In dB, PLf is [26]

PLf (dB) = 92.44 + 20 log(h) + 20 log(f), (15)

where h is the communication distance unit in km, and f is
the operating frequency with the unit of GHz.

Atmospheric loss is a type of signal absorption and scattering
due to meteorological causes, i.e., mainly related to rainfall.
The rain attenuation is described by [27]

PLr(dB) = ξLE , (16)

where ξ is the frequency-dependent parameter unit in dB/km
and LE is the effective path length unit in km. We first
introduce the calculation method of ξ as:

ξ = k(R0.001)
v, (17)

where R0.001 is the rainfall rate, unit in mm/h. Further, k and
v are coefficients given as:

k = [kH + kV + (kH − kV )cos2(ω)cos(2τ)]/2, (18)

v = [kHvH + kV vV + (kHvH − kV vV )cos2(ω)cos(2τ)]/2,
(19)

where τ = π/4 for circular polarization and ω is the elevation
angle between terrestrial transmitter and satellite. Moreover,
kH , kV , vH , and vV are coefficients related to operating
frequency f and can be found out the specific value from
[28].

LE , is therefore
LE = LRv0.001, (20)

where LR is the distance parameter related to rainfall height
and v0.001 is the adjustment factor. We have

v0.001 =
1

1 +
√
sin(ω)( 31(1−e

−( ω
1+χ

)
)
√
LRξ

f2 − 0.45)
, (21)

where χ equals 36-—latitude— in the case of latitude less
than 36o, or equals 0. In most scenarios

LR =
hR − hs
sin(ω)

(22)

where hR is the rain height relative to the mean sea level and
hs is the altitude of the terrestrial transmitter, all units in km.

Fig. 2: The schematic of the proposed PSFed in one com-
munication round. The workflow contains the following 6
steps: ➀ TSTs choose optimal SEC for federated aggregation
jointly; ➁ local training on private data; ➂ the TST’s coder
model is split into the encoder and decoder part; ➃ the TSTs
prune the encoder model according to parameter importance;
➄ each TST uploads the model for federated aggregation; ➅
the TSTs download the personalised models and replace the
corresponding parameters.

E. Semantic coder training model

In general distributed learning frameworks based on FedAvg
[29], the training process requires multiple distributed par-
ticipants and a federated aggregation node. Participants train
their ML models locally and upload them to the federated ag-
gregation node at fixed communication rounds. The federated
aggregation node aggregates all the models and then returns
the aggregated model to the participants for further training.
This enables participants to update the model without sharing
private training data. The goal of FL is to collaboratively train
a global coder model among multiple TSTs while keeping
TSTs’ local data private. We set the Xb = {xbin}

sb
b=1 as the



data set of the TST b, where xbin is the in-th input sample and
sb is the size of the data set. The objective of FedAvg can be
denoted by

min
Θ

1

B

B∑
b=1

Lb(θb), (23)

where θb is the coder model parameter of the TST b and Θ =
θ1, θ2, ..., θb. Further, Lb(θb) is the loss function of the TST b
trained by Xb. We utilise the mean squared error (MSE) loss
as the loss function in this paper. We have

Lb(θb) =
1

sb

sb∑
in=1

LMSE(θb;x
b
in, x̂

b
in), (24)

where x̂bin is the fitting output and LMSE is the MSE loss.

III. UPDATING THE SEMANTIC CODERS

Employing general FL frameworks for SemComs, TSTs need
to upload encoder and decoder models to the SEC to imple-
ment federated aggregation after one communication round
of training. Therefore, the federated model must be sent
back to TSTs for the next communication round of training.
However, uploading and downloading all coder models by
TSTs would cause long-term interruptions of the offloading-
assisted service, significant energy consumption, and lead to
privacy leakage of entire coder models. Previous studies, e.g.
[30] show that when reconstructing an ML model, increasing
the number of parameters increases the accuracy of the model
following a logarithmic function. In SemCom, the accuracy
of the SemCom coder represents the accuracy of the received
data. Therefore, the privacy of the coder model/parameter is
closely tied to the accuracy. We can adopt a general parameter
privacy leakage metric as in [31] and assess model parameter
leakage by

Θb(θb) = χ log2(1 + e
1−Nb+1

nb ), (25)

where χ is the weight parameter, Nb is the total number of
parameters at the encoder model and nb is the number of
parameters transmitted. In practice, Θb adopts a value in [0,1],
where Θb = 0 indicates that there is no privacy leakage, while
a Θb = 1 indicates fully compromised privacy where the same
information can be decoded from the leaked model as the
original model.

By increasing the number of training epochs the parameters of
the training model become closer to the final trained model.
Therefore, the model obtained from more training epochs is
more important relative to the model obtained from previous
training epochs before training is finished. In other words, the
private information contained in the parameters is increased
over time. More important parameters bear higher sensitivity
in terms of privacy. Therefore, we rewrite the privacy leakage
for TST b’s encoder training as:

Θb(θb) =

R∑
r=1

Wrχ log2(1 + e
1−

∑Nb
i

Iinb,i+1∑Nb
i

Iinb,i ), (26)

where r is the communication rounds and R is the total rounds.
Also, Wr is the model importance weight of training round

r. Similarly, Ii is a weight parameter denoting the importance
transmitted parameter i.

In the proposed PSFed (Fig. 2), the goal is to collaboratively
train semantic coder models among multiple TSTs while
reducing network service interruptions, and energy consump-
tion, and decreasing the degree of privacy leakage. Due to
the high mobility of satellites, we note that all TSTs are
not always within the same satellite service area. TSTs are
therefore required to select the most appropriate satellite for
each model aggregation round from the multiple satellites
based on real-time circumstances. Taking into account TSTs’
training delay and energy consumption jointly, the satellite
selection algorithm is denoted by

min
xa

A∑
a=1

xa(αmax {Mb,r

Rba
b

+
2hba

cl
|b ∈ B}+

B∑
b=1

βpbab
Mb,r

Rba
b

),

(27a)

s.t.

A∑
a=1

xa = 1,∀b (27b)

xa = {0, 1}, (27c)
R∑

r=1

Mb,r

Rba
b

≤ t
′

b,∀b (27d)

max {Mb,r

Rba
b

+
2hba

cl
|b ∈ B} < t

′

a,∀a (27e)

where max {Mb,r

Rba
b

+ 2hba

cl
|b ∈ B} is the training transmission

and propagation delay, identified by the TST with the longest
transmission and propagation time. Here, A is the number
of accessible satellites of all TSTs, and hba is the distance
between TST b and satellite a. Further,

∑B
b=1 βp

ba
b

Mb,r

Rba
b

is
the total energy consumption of transmission from TSTs to a
satellite. In (27a), α and β are weight parameters to balance
the importance and unit of latency and energy consumption.
Furthermore, pbab is the transmission power of TST b to satel-
lite a, and xa is the federated decision for all TSTs. Constraint
(27d) ensures that the transmission time of the TST for training
the semantic model remains less than the maximum tolerable
service interruption time. Also, Mb,r is the coder model size in
communication round r, t

′

b is the maximum tolerable service
interruption time and t

′

a is the maximum service time of the
satellite a in this region. The optimization problem in (27)
is a simple 0,1 linear programming and hence can be easily
solved.

During training in each communication round, we split the
coder model into an encoder and a decoder. Only the decoder
model needs entire federated aggregation. This is due to LEO
satellites having limited storage capacity, it is not practical
to use individual decoder models for each task of each TST.
The semantic coders are therefore stored on the TST. For
economic considerations, we argue that TSTs require a shared
decoder model to be used. We then encourage TSTs to assess
the importance of the encoder parameters during the local
training phase. Inspired by continual learning [32], changes in
parameters with different importance have a different impact



Algorithm 1 PSFed

Input: dataset {X1, X2, ..., Xb}, model size {M1,M2,...,Mb}
and total communication rounds R
Output: trained coder models {θ1, θ2, ..., θb}
Initialize: the TSTs’ model parameters and the importance
weight of parameters SECs:

1: for each communication round r ∈ R :
2: Y r+1

b , θr+1
b ←− TST update(θrb )

3: Update {θb,1, θb,2, ..., θb,Nb
} according to Y r+1

b and θr+1
b

4: end for
TSTs:

1: TST b receives θb from the SEC
2: TSTs choose the optimal SEC for federated aggregation
3: for each TST in parallel:
4: for each local training epoch:
5: Loss ←− 1

sb

∑sb
in=1 LMSE(θb;x

b
in, x̂

b
in)

6: end for
7: foreach encoder parameter i:
8: Ii = − ∂Lb

∂θb,i
δb,i

9: end for
10: Splitting coder model and pruning encoder model based

on Ii in the case of satisfying:{∑R
r=1

Mb,r

Rba
b

≤ t′b
Θb(θ

r
b ) ≤ Θ

′

b
11: Obtain θrb to be shared
12: return: θrb
13: end for

on the output results. We thus evaluate parameter importance
according to the implications of parameter changes on the loss
function. We express the change in the loss by

Lb(θb + δ)− Lb(θb) ≈
sb∑
i=1

gb,iδb,i, (28)

where gi is the gradient and δi is the update of parameter i
during this parameter assessment period of the TST b. Setting
gi = ∂Lb

∂θb,i
during online training, the parameter importance

weight is

Ii = −
∂Lb

∂θb,i
δb,i. (29)

Subsequently, to reduce the training communication cost,
we prune the encoder models uploaded by TSTs according
to parameter importance. Parameters with high importance
contain most of the valid information [33] and therefore can
provide further valid information to the aggregated model than
lower-important parameters. The lower-importance parameters
are thus encouraged to be pruned. The pruning here differs
from the conventional ML studies. It is not the deletion of
the training model parameters, but the non-transmission of
the pruned parameters for federated aggregation. The corre-
sponding SEC generates a global encoder model and a global
decoder model based on the federated aggregation of the
number of the received parameters. Once TST receives the

global decoder model and personalised pruned global encoder
model, it merely substitutes the local decoder and substitutes
important parameters of the local encoder. It trains the individ-
ual local coder again based on the personal encoder model and
the global decoder model in the next communication round of
training.

Furthermore, the closer to the completion of the training, the
higher the importance of the parameters. To further reduce
the privacy leakage degree, our proposed PSFed progressively
increases the pruning ratio according to the number of com-
munication rounds. This is until the coder model is split and
only the decoder model is federated aggregated. The more
important privacy training models are thus kept local.

The objective of PSFed during training is to minimise the
training loss, therefore,

min
Θ,Y

B∑
b=1

Lb(y
1
bθb,1, y

2
bθb,2, ..., y

n
b θb,Nb

), (30a)

s.t.

R∑
r=1

Mb,r

Rba
b

≤ t
′

b,∀b (30b)

max {Mb,r

Rba
b

+
2hba

cl
|b ∈ B} < t

′

a,∀a (30c)

R∑
r=1

Wrχ log2(1 + e
1−

∑Nb
i

Iinb,i+1∑Nb
i

Iinb,i ) ≤ Θ
′

b,∀b (30d)

where ynb ∈ [0, 1] is the aggregation weight vector of pa-
rameter i in TST b. It acts similar to the weighted average
in FedAvg. Since each TST uploads a different number and
location of parameters in the same model, the proportion of
each parameter that is weighted is different. The ynb for various
parameters also different and Y = y1, y2, ..., yb. Further, Θ

′

b

is privacy leakage consideration and Θ
′

b is the maximum
tolerable leakage The procedure of the PSFed is demonstrated
in Algorithm 1.

IV. THE SEMANTIC CODERS IN SERVICE

In this section, the problem of users’ computational task
processing schedule for SemCom-SEC is presented first. We
then detail the proposed CTPS.

A. Computational task processing

In service offloading decision-making, we consider the
SemCom-SEC with C users severed by one TST b in A
satellite coverage. Each user has five task processing choices,
1) local computing; 2) offloading the tasks to SEC directly; 3)
offloading the tasks to SEC via the TST; 4) offloading the tasks
to the terrestrial cloud only via the satellite; 5) offloading the
tasks to the terrestrial cloud via the TST and the satellite. We
firstly list the user c’s cost functions in terms of processing
delay and energy consumption for each option in order as
follows based on Section II:

Φc1 = αtLC
c + βELC

c , (31)

Φc2 = α(tproac + tcac + tSEC
c ) + βEca

c , (32)



Φc3 = α(tproac + tcbc + tbac + tSEC
c ) + βEcb

c , (33)

Φc4 = α(tproac + tcac + tCloud
c + tCloud

a ) + βEca
c , (34)

Φc5 = α(tproCc + tcbc + tbac + tCloud
c + tCloud

a ) + βEcb
c , (35)

where Φc is the actual processing cost when the user c sizing
a task. It is related to user task processing decisions, the
transmission power, and the number of subcarriers allocated.
In the above, tCloud

a is the transmission delay between satellite
and cloud as mentioned in Section II-C. We also utilise
γic = {0, 1} to represent the offloading decision of user c and
γic ∈ {γ1c, γ2c, γ3c, γ4c}. If user c chooses one processing
strategy, the indicator for the corresponding strategy equals 1,
otherwise equals 0. We argue that the optimal decision for
a user is to minimise the latency and energy consumption
of the processing tasks. Mathematically, the optimisation task
processing strategy problem of user c thus can be formulated
as a MINLP problem:

min
γc,fc,pcb

c,d0
,mc,d0

,pca
c

A∑
a=1

Φc = (1− γ1c − γ2c − γ3c − γ4c)Φc1

+ γ1cΦc2 + γ2cΦc3 + γ3cΦc4 + γ4cΦc5, (36a)
s.t. fcloud ≥ fa ≥ fc,max ≥ 0, (36b)

γ1c, γ2c, γ3c, γ4c ∈ {0, 1}, (36c)
γ1c + γ2c + γ3c + γ4c ≤ 1, (36d)
D0∑

d0=1

xcbd0
pcbc,d0

≤ Pc,max, (36e)

P ca
c ≤ Pc,max, (36f)

xcbd0
∈ {0, 1}, (36g)

D0∑
d0=1

xcbd0
≤ D0, (36h)

t∗ < t
′

a. (36i)

The constraint (36b) guarantees that edge and cloud have
strong computing capability that is not less than users’ max-
imum computing capability fc,max. Constraints (36c) and
(36d) show the relationship between γ1c, γ2c, γ3c and γ4c. In
constraints (36e) and (36f), Pc,max is the maximum available
transmission power of user c to TSTs or satellites. The
constraint (36g) denotes the subcarrier allocation indicator.
The constraint (36h) means that the number of allocated sub-
carriers should not exceed the total number of sub-carriers. The
constraint (36i) is to ensure the optimal decision’s transmission
time t∗ is less than the time t

′

a available to access satellite a.

The problem in (36) is an MINLP problem with incomplete
information due to privacy concerns. This is because users
need the allocation of subcarriers to make decisions. Never-
theless, such information is relevant to decisions and privacy
information (e.g., local computing capability and transmission
power) from other users. This MINLP problem thus is com-
putationally complex and hard to solve.

B. CTPS

In this paper, we propose a CTPS mechanism (see, Fig.
3) to minimise the delay and energy consumption of users
to process computational tasks, while privacy-preserving and
equitable. We assume all the participants are trustworthy It
is divided into two steps. Firstly, it converts the optimisation
task processing strategy problem with privacy considerations
into a complete information problem based on the Rubinstein
bargaining model [34] equitably. Subsequently, users develop
the optimisation task processing strategies by solving the
complete information MINLP problem of Eq. (36). We detail
our CTPS mechanism as follows.

Fig. 3: Proposed CTPS mechanism.

C. First step of the CTPS mechanism

We enable users to communicate/bargain with TST several
times so that subcarriers are allocated fairly without privacy
leakage based on the Rubinstein bargaining game. TST acts as
the bidder and the user has the option to continue the game or
leave the game. The gaming process is limited to two periods.
In the first period, the users send the offloading request to
the TST. Upon receiving users’ offloading requests, without
loss of generality and fairness, TST allocates the number of
C-band sub-carriers based on the size of the tasks offloaded
by users. Further, the transmission delay of the TST to the
satellite and semantic extraction delay are also notified via
this communication.

To achieve the game-perfect equilibrium, the cost function for
user c to assess to continue participating in the game can be
denoted by

µ
′

c = ϵιΦ
′

c, Φ
′

c = {Φc3,Φc5}, (37)

where ι ∈ (0, 1) is the bargaining discount factor that rep-
resents the revenue loss value for the second-period com-
munication due to the bargaining process being time and
energy-consuming. Further, ϵ ≥ 1 is the weight parameter
to evaluate the further possible benefit by applying offloading
again via the TST b, i.e., remaining engaged in the game. This
is attributable to some users abandoning their requests for TST
offloading due to not being allocated a satisfactory number
of C-band subcarriers. The actual number of subscribers
should eventually be greater than or equal to this allocation.
Simultaneously, the strategies of various users also affect the



user-satellite link interference for different users. In order to
estimate the influence of interference, pricing is a frequently
utilised method in the game theory employed studies [35].
We hence rewrite the part of the cost function for user c
considering interference pricing as:

µ
′′

c = Φ
′′

c + αϱmcϖ, Φ
′′

c = {Φc2,Φc4}, (38)

where ϱ is the factor for the interference related to the number
of users, transmission power, and channel gain. Further, ϖ ∈
[0, 1] is the proportion to denote the anticipation rate of not
performing local computing users, thus predicting the fraction
of time in which interference is received.

Finally, the incomplete information MINLP problem is con-
verted to a complete information MINLP problem. Users thus
could develop the optimal processing decision based on allo-
cated subcarriers and the calculation frequency or transmitting
power in the second step.

D. Second step of the CTPS mechanism

In the second step, users make the decision based on the
complete information MINLP problem of Eq. (36) to minimise
the latency and energy consumption of the processing tasks.
The maximum number of satellites expected to be accessible at
the same time is extremely limited [23]. The decision problem
Eq. (36) can be considered as 5 ·A independent subproblems,
where 5 is five offloading decision subproblems and A is A
satellite selection subproblems. In case of the local computing,
the best user c’s CPU-cycle frequency fc is only related to
local computing costs. We thus can express the fc optimisation
subproblem as:

min
fc

Φc1 = α
δmc

fc
+ βεδmcf

2
c , (39a)

s.t. (36b). (39b)

We can express the first-order derivative of (39a) as: −α δmc

f2
c
+

2βεδmcfc. Eq. (39a) monotonically increases in the constraint
(39b), hence fc = fc,max.

In addition, in case the user needs to employ TSTs, the user
needs to derive the optimal subcarrier task allocation strategy
mc,d0

and subcarrier transmission power pcbc,d0
. To model and

optimise the transmission power, in CTPS, we assume each
subcarrier in the same link accomplishes the transmission
tasks at the same time for fully using spectrum resources in
a synchronous manner based on previous studies [24], [36].
As the allocated subcarrier for user c is known, we set η to
denote the number of allocated subcarriers. We can simplify
the optimisation problem associated with TST as:

min
mc,d0

,pcb
c,d0

D0∑
d0=1

(
αxcbd0

mc,d0

ηrcbc,d0

+
βpcbc,d0

xcbd0
mc,d0

rcbc,d0

), (40a)

s.t. (36e), (36g), (36h), (40b)
D0∑

d0=1

xcbd0
mc,d0 = mc. (40c)

We only need to consider the situation that xcbd0
= 1. By

relaxing constraints, we have the Lagrangian function for Eq.
(40a) as:

L =

D0∑
d0=1

xcbd0
(
αmc,d0

ηrcbc,d0

+
βpcbc,d0

mc,d0

rcbc,d0

)

+ φ(

D0∑
d0=1

xcbd0
pcbc,d0

− Pc,max) + λ(mc −
D0∑

d0=1

xcbd0
mc,d0

),

(41)

where φ and λ are the Lagrangian multipliers. The dual
problem thus is minmc,d0

,pcb
c,d0

L. Then, we can observe that
Eq. (41) can be further decomposed into D0 independent
subproblems, and the actual objective function in each d0
subproblem can be denoted by

min
mc,d0

,pcb
c,d0

Ld0 =
αmc,d0

ηrcbc,d0

+
βpcbc,d0

mc,d0

rcbc,d0

+ φpcbc,d0
+ λmc,d0 .

(42)
For simplicity, we define

Hd0
=

α

ηrcbc,d0

+
βpcbc,d0

rcbc,d0

. (43)

According to Karush-Kuhn-Tucker conditions, taking the par-
tial derivatives of Ld0 with respect to pcbc,d0

and mc,d0 , respec-
tively. We have



∂Ld0

∂pcbc,d0

= mc,d0

∂Hd0

∂pcbc,d0

+ φ = 0 (44a)

∂Ld0

∂mc,d0

= Hd0 − λ = 0 (44b)

φ(

D0∑
d0=1

xcbd0
pcbc,d0

− Pc,max) = 0. (44c)

Thus, we have
φ = 0,

D0∑
d0=1

xcbd0
pcbc,d0

≤ Pc,max, (45a)

φ > 0,

D0∑
d0=1

xcbd0
pcbc,d0

= Pc,max, (45b)

where (45) is complementary slackness. For (45a), pcbc,d0
can

be directly solved by (44) causing mc,d0
̸= 0. After deriving

the optimal pcbc,d0
, mc,d0 can be easily solved as all subcarriers

have the same subcarrier completion time. Only if the solution∑D0

d0=1 p
cb
c,d0

= Pc,max, we need to consider Eq. (45b). In that
case, the Lagrangian multipliers can be obtained by the sub-
gradient method and further achieve the optimal pcbc,d0

, mc,d0
.

Moreover, as we utilise the Lagrangian dual decomposition
method, the solution may have a duality gap. However, this gap
should approach zero and can be ignored in practical systems
as the number of subcarriers D0 is large enough [10].



Algorithm 2 CTPS

Input: Tasks mc generation
Output: The computation offloading and resource allocation
result γc, fC , pcbc,d0

,mc,d0 , x
cb
d0

1: Initialize the optimal TST transmission power pbab
2: Obtain necessary information xcbd0

after first period game
3: Obtain the necessary information xcbd0

after first period
game

4: Calculate optimally fc
5: Relax Eq. (40)
6: if φ = 0:
7: pcbc,d0

←− ∂Hd0

∂pcb
c,d0

8: mc,d0 ←−
mcp

cb
c,d0∑D0

d0=1 xcb
d0

pcb
c,d0

9: else:
10: pcbc,d0

←− Eq. (44)

11: mc,d0
←− mcp

cb
c,d0

Pc,max

12: end if
13: Find the maximum Φc and derive γc
14: if γc3 + γc5 = 1:
15: Obtain the necessary information xcbd0

after the second
period game

16: Obtain updated pcbc,d0
and mcb

c,d0

17: end if
18: Find the maximum Φc and derive γc

TABLE I: The setting of the CAE

Encoder Neuron num Decoder Neuron num
Conv+ReLU 512 transConv+ReLU 10
Conv+ReLU 256 transConv+ReLU 32
Conv+ReLU 128 transConv+ReLU 64
Conv+ReLU 64 transConv+ReLU 128
Conv+ReLU 32 transConv+ReLU 256

Conv+Sigmod 10 transConv+Sigmod 512

TABLE II: Rainfall coefficients

C-band Value Ka-band Value
kH 0.0001340 kH 0.2403
kV 0.0002347 kV 0.2291
vH 1.6948 vH 0.9485
vV 1.3987 vV 0.9129

Therefore, users can make the decision based on the com-
putation cost of various alternatives, without compromising
privacy. Throughout the CTPS, the user is only communicated
externally about the size of the tasks being processed. It also
needs to be known by TST during the offloading process.
Hence the CTPS protect the privacy of computing power,
transmit power, etc. Further, the computational complexity is
linearly related to D0 and A, whereas both D0 and A are
finite. CTPS thus can be used in large-scale satellite networks.
The CTPS and offloading decision process is summarised as
Algorithm 2.

TABLE III: Simulation parameters

Parameters Default values
The coverage radius of LEO satellites 280 km

Ka-band carrier frequency 30 GHZ
C-band carrier frequency 4.5GHZ

Number of C-band subcarriers 128
The maximum transmit power of each user 23dBm

Transmit power of TST 30 dBm
h 780km
δ 120
ε 10−26

fc 0.5× 109 cycles/s
fa 3× 109 cycles/s

fCloud 10× 109 cycles/s
α, β 0.5
ι, ϵ 1

V. SIMULATION RESULTS

A. Simulation setting

In this section, we evaluate the performance of the present
PSFed and CTPS. In the simulations, if not specifically men-
tioned, we set the parameters as follows. The LEO satellites’
coverage radius is 280 km and the vertical altitude is 780km
based on the Iridium satellite system [37]. The frequencies
of the C-band and the Ka-band are 4.5 GHz and 30 GHz
separately based on 3GPP specifications [38]. We assume
the number of C-band subcarriers is 128, the maximum
transmission power of users is 23 dBm and the transmit power
of each TST is 30 dBm [10]. The offloading task is assumed
an image recognition task and the semantic coder is considered
an autoencoder based on the convolutional autoencoder (CAE)
similar to [39].

Communication rounds for the proposed PSFed to aggregate
the semantic encoder are 20 rounds. The coder settings are
listed in Table I. Furthermore, we set the number of CPU
cycles for computing one bit δ as 120 cycles/bit, which is
from the real applications [19]. We assume all users have the
same CPU frequency fc, and set it as 0.5× 109 cycles/s. The
computation capabilities of SEC on satellite a and the cloud
server are 3× 109 cycles/s and 10× 109 cycles/s, respectively
[11]. The energy factor ε is set as 10−26 [10].

Moreover, we assume weight parameters of latency and energy
consumption are set as α = 0.5 and β = 0.5, and weight
parameters in bargain process ι and ϵ are all considered
as 1. In addition, the atmospheric loss is adopted, and the
related coefficients are shown in Table II [28]. The simulation
parameters are also listed in Table III.

B. Performance evaluation of PSFed

Fig. 4 illustrates the convergence speed of the different frame-
works under different transmission tasks. The TSTs’ images
are from CIFAR 10 [40], CIFAR 100 [41] and MNIST [42]
image datasets and TSTs perform federated aggregation after
every five local epochs. Based on the feasibility in SEC net-
works, we compare the proposed PSFed with the generalised
learning approach for SemCom [15], [16], i.e., FL frameworks
based on the FedAvg [29].



(a) CIFAR 10 dataset (b) CIFAR 100 dataset (c) MNIST dataset

Fig. 4: Convergence speed of various learning algorithms with different datasets.

Based on the existing FL methods that are potentially for
SEC SemCom, FedRep [43] is also compared to demonstrate
the effectiveness of our PSFed. The FedRep is based on
the Fedavg but only aggregates part of the training model
during each communication round. We set it to only aggregate
SemCom decoder to adapt the SemCom-SEC. Moreover, we
set the training sample to 5000 images per TST to reflect the
differences between the frameworks more effectively. It can be
observed that our PSFed achieves similar convergence rates to
the FedAvg and is much better than the FedRep, regardless of
the dataset. This is because our method aggregates important
weights in the early stages of training and therefore accelerates
convergence similarly to the FedAvg with all parameters
aggregated.

Fig. 5: Communication cost of various learning approaches.

In Fig. 5, we compare the total communication cost of PSFed,
FedRep and FedAvg during training. We assume that each
neuron transmitted consumes the same amount of communi-
cation resources. The communication cost is therefore defined
as the number of neurons transmitted during communication.
It is seen that the PSFed expenses are approximately the same
communication cost as the FedAvg in the early stages of
training. The growth then gradually slows down and increases
at the same magnitude as the FedAvg after round 20. This is
because the PSFed gradually decreases the number of weights
aggregated by the encoder model.

It is also seen that in round 20, the number of aggregated
weights for the encoder model is 0, the same as the FedRep,

only the decoder model is aggregated. Therefore, the PSFed
only consumes additional communication resources for the
importance weight aggregation than the FedRep. Considering
that the FedRep converges much more slowly than the pro-
posed PSFed, the total communication resource consumption
can be considered to be similar. However, in comparison to
the FedAvg, the communication consumption of our PSFed
decreases by 40.50% in round 50.

Fig. 6: Privacy leakage of various learning approaches.

C. Performance evaluation CTPS

We evaluate the total model privacy leakage during training
in Fig. 6 according to Eq. (26). We assume that the model in
each communication round has the same importance and that
each neuron is of equal importance. It can be observed that
PSFed is initially similar to FedAvg leakage and subsequently
follows the same growth trend as FedRep. This is equally
due to the number of PSFed decreasing importance weight
aggregations. After training, both the PSFed and the FedRep
encoder models are saved locally. It is foreseeable that if
the importance of each round of communication changes, the
PSFed would be extremely close to the FedRep in terms of
total privacy leakage. In addition, the privacy leakage of PSFed
should widen the gap with FedAvg, even though the privacy
leakage of our PSFed already decreases by 51.43% in round
50 in comparison to FedAvg in the same importance.

In Fig. 7(a), the accuracy of the different frameworks under
different transmission tasks is shown. We evaluate the accuracy



utilising Peak Signal-to-Noise Ratio (PSNR), a general metric
for evaluating image transmission in SemCom [39]. We have

PSNR = 10 log
MAX2

MSE
(dB), (46)

where MAX is the maximum value for a pixel and MSE
is the mean squared deviation. Since different datasets have
different MAX , we assume that the learning method with
the smaller MSE has a higher accuracy. It is seen that
the FedRep is significantly the least accurate with different
datasets trained. The accuracy of PSFed is similar to FedAvg
but slightly FedAvg higher. Because encoder models of both
PSFed and FedRep are kept at the TST that are not aggregated
when training is completed. Some aggregation information
thus is lacking. However, the average training accuracy of the
PSfed decreased by only 0.33% relative to the FedAvg due
to the important weight aggregation acting as pre-training.
Compared to the FedAvg, the accuracy loss of the PSfed
deems acceptable given the significant communication cost
and privacy concerns of the former.

(a) MSE (b) Recognise accuracy matches af-
ter coding

Fig. 7: Accuracy of various learning algorithms with different
datasets.

Fig 7(b) further demonstrates the effect of image transmission
accuracy on offloading via different approaches. We employed
commonly used ML models for image recognition to identify
the accuracy of images before/after transmission. The accuracy
here is the proportion of the received object/image recognition
accuracy to the pre-transmission image recognition accuracy.
It can be seen that with the same trend as Fig. 7(b) FedRep has
the significantly lowest accuracy while our method is similar
to FedAvg but slightly lower. Figs. 5, 6, and 7 collectively
suggest that PSFed achieves the fastest convergence rate, the
lowest communication cost, and a high accuracy rate.

Fig. 8 illustrates the impact of users in one TST coverage
on the total cost. As users are not always able to offload
tasks via the TST, the proposed CTPS is compared with the
local computing, offloading to the SEC directly, offloading
to the cloud directly and CTPS without the game. The task
size for each user is randomly generated over a range of
5 kb-300kb and subjected to 200 times replications of the
simulation. Fig.8 shows that the total cost grows with the
number of users. This is because raising the number of users
increases the corresponding number of computing tasks and
thus the total cost of users. The total cost of the proposed
CTPS always keeps the total cost to the minimum and the

advantage increases as the number of users increases. In
addition, in cases where the number of users is small, the
proposed CTPS thus maintains almost the same processing
cost as ”CTPS without game”. By increasing the number of
users, TST becomes unable to satisfy all the requests and
CTPS starts to show its advantage in reducing the cost. We
expect this advantage to increase by further increasing the
number of users. This is because the optimal reallocation
of resources through our design game scheme increases the
efficiency of network resource utilisation.

Fig. 8: The processing cost of the varying number of users.

Fig. 9: The processing cost of a single user.

In Fig. 9, we show the offloading and computing cost of a
single user versus the size of generating tasks. It is observed
that the cost increases with the data size for all schemes. Our
proposed mechanism always has a lower cost compared to the
other three approaches. In case the data size is small (10 kb),
our CPTS choose local computing as the optimal option. As
the data size grows, the local computing latency and energy
consumption increase, and CTPS chooses other minimum cost
strategies, i.e., offload tasks to the SEC via the TST. After
250kb, the optimal value of our mechanism fluctuates. This is
due to the data size being large enough, and the best strategy
changes to offload tasks to the cloud via a TST. Therefore, the
processing of the single-user tasks can be performed efficiently
via our proposed processing strategy.

Fig. 10 demonstrates the importance of integrating SemCom
into SEC networks in future communication environments.
We set the user and the TST to maintain the same status to



transmit to LEO satellites in different rainfall environments.
It can be observed that as the rainfall probability increases,
the task transmission cost of TST without SemCom exhibits
a significant increase. Because the Ka-band frequency is
extremely high and is strongly influenced by rainfall-induced
path loss. In contrast, the processing costs for users transmit-
ting via C-band are only slightly increasing. Since the C-band
frequency is smaller than the Ka-band frequency and thus
tolerates less path loss. Nevertheless, the TST configuration
with the semantic encoder spends the least processing cost.
Furthermore, the processing cost did not increase significantly
with the increase in rainfall rate. This is because the latency
of semantic extraction is not affected by the environment.
The improved spectrum efficiency also reduces the impact
of rainfall-induced path loss. Therefore, the integration of
SemCom in SEC networks is necessary.

Fig. 10: The usefulness of SemCom in the network.

Fig. 11: Impact of α and β on strategy developing.

In Fig. 11, the influence of α and β on user strategies is
investigated and the data size is from 5kb to 300kb simulated
50 times. The energy consumption weight β is always set
as 0.5. We list the proportion of users that do not choose
to offload via TST. It can be noticed that as the number of
users increases, the unwillingness to offload increases due to
the reduced number of subcarriers being allocated to them.
However, users are always more reluctant to offload via TST
in case the delay is more important (i.e., bigger α). These
provide a criterion for the appropriate α and β to be chosen.

VI. CONCLUSION

In this paper, we investigated the integration of SemCom and
SEC networks for terrestrial resource-limited users’ computa-
tion offloading. We further proposed a novel SemCom-SEC
framework for computation offloading. In addition, we exam-
ined the challenges that SemCom confronts in the proposed
framework. For analysis, we then considered the challenges
in two different scenarios. For the in-maintenance SemCom
service, we proposed PSFed for the semantic coder update
challenge. In the in-service SemCom service, we presented a
game theoretical CTPS mechanism for task processing deci-
sion challenges of users. Compared with the general learning
approach for semantic coder updating in SEC networks, sim-
ulation studies indicate that, on average, the proposed PSFed
saves 40.50% of communication resources and further reduces
privacy risk by 51.43%. Nevertheless, the training accuracy
and convergence speed of PSFed and the general learning
approach almost remain the same.
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