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Abstract—Mobile Crowdsensing (MCS) utilizes sensing
data collected from users’ mobile devices (MDs) to provide
high-quality and personalized services, such as traffic mon-
itoring, weather prediction, and service recommendation.
In return, users who participate in crowdsensing (i.e., MCS
participants) get payment from cloud service providers
(CSPs) according to the quality of their shared data.
Therefore, it is vital to guarantee the security of payment
transactions between MCS participants and CSPs. As a
distributed ledger, the blockchain technology is effective
in providing secure transactions among users without a
trusted third party, which has found many promising ap-
plications such as virtual currency and smart contract. In
a blockchain, the proof-of-work (PoW) executed by users
plays an essential role in solving consensus issues. However,
the complexity of PoW severely obstructs the application
of blockchain in MCS due to the limited computational
capacity of MDs. To solve this issue, we propose a new
framework based on Deep Reinforcement Learning (DRL)
for offloading computation-intensive tasks of PoW to edge
servers in a blockchain-based MCS system. The proposed
framework can be used to obtain the optimal offloading
policy for PoW tasks under the complex and dynamic
MCS environment. Simulation results demonstrate that
our method can achieve a lower weighted cost of latency
and power consumption compared to benchmark methods.

I. INTRODUCTION

The vigorous development of mobile devices
(MDs) with built-in sensors enables Mobile Crowd-
sensing (MCS) to be a flexible and low-cost pat-
tern for collecting sensing data, which promises
an efficient service provisioning for the Internet-
of-Things (IoT) applications [1]. Fig. 1 shows a
typical architecture of an MCS system. First, IoT
applications publish sensing tasks to cloud ser-
vice providers (CSPs), which design and release
the payment strategy accordingly. Next, users who
participate in crowdsensing (i.e., MCS participants)
execute the sensing tasks by using their MDs and
upload the sensing data to CSPs. After CSPs eval-
uate the quality of received data, MCS participants
can receive their deserved payment. Finally, the
sensing data is uploaded and utilized by different

IoT applications, such as traffic monitoring, weather
prediction, and service recommendation.
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Fig. 1. The architecture of a Mobile Crowdsensing (MCS) system.

In an MCS system, a reliable trading mechanism
needs to be established as the security guarantee for
payment transactions between MCS participants and
CSPs. However, most of the traditional transaction-
management systems validate and store payment
transactions in a centralized manner, which may
pose severe security risks and performance bottle-
neck at a central agency. Such a centralized manner
is fragile to the single-point failure and thus cannot
offer reliable services, which is unacceptable in
modern MCS systems. By contrast, as a distributed
and append-only ledger, blockchain provides a trust-
worthy solution for transactions on the Bitcoin net-
work [2]. Each transaction must be verified (e.g.,
using the digital signature) by all users, who run
the proof-of-work (PoW) [3] for reaching the global
consensus before a transaction is appended to the
blockchain on the Bitcoin network. As a result, the
conflicting transactions from malicious users would
be automatically denied and dropped. Therefore, the
blockchain technology can be used to secure trans-
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actions in the MCS system. Moreover, when a user
successfully adds a new block to the blockchain,
it will receive a certain reward in return. However,
due to the limited computational capacity of MDs,
the application of blockchain in MCS is severely
hindered by the computation-intensive tasks of PoW
during the mining process of blockchain.

To address the above challenge, one promising
approach is to offload the computation-intensive
tasks of PoW from MDs to the nearby edge servers,
which are more powerful and capable of reduc-
ing the cost of latency and power consumption
[4]. However, most of classic offloading strategies
are based on heuristics [5] and game theory [6],
which cannot fully adapt to changeable MCS en-
vironments. To tackle this problem, Reinforcement
Learning (RL) has emerged as an effective strategy
[7], learning the optimal offloading policy through
interacting with the environment.

The current RL-based approaches may handle the
offloading problem to some extent [8], [9], [10], but
the majority of them discretize continuous values
(e.g., latency or power consumption) via utilizing
the value-based RL (e.g., Q-learning and Deep Q-
Networks (DQN)). Thus, the integrity of continuous
space is lost and meanwhile the noise is also created,
making it hard to obtain the optimal offloading
policy. In contrast, the policy-based RL (e.g., pol-
icy gradient) is better at handling the offloading
problem in a large space. However, the policy-
based RL may cause high variance when calculating
the gradient, resulting in low training efficiency.
In order to address these important challenges,
we design a new Deep Reinforcement Learning
(DRL) based framework for effectively offloading
the computation-intensive tasks of PoW to edge
servers in a blockchain-based MCS system. With
the help of DRL, the proposed framework can be
used to obtain the optimal offloading policy for
PoW tasks under the complex and dynamic MCS
environment. The main contributions of this article
are summarized as follows.

• A blockchain-based framework is developed
to effectively secure the transactions between
MDs and CSPs in an MCS system, where PoW
is used to guarantee the global consensus and
thus transactions are consistent, unique and
unfalsified. The difficulty of PoW increases
with the growing number of MDs, in order to
avoid conflicts among MDs when they try to

add blocks into the blockchain simultaneously.
• A new DRL-based framework is proposed to

offload the computation-intensive tasks of PoW
to edge servers, where a Markov Decision
Process (MDP) is used to build the system
model. Notably, by integrating Proximal Policy
Optimization (PPO) and Differentiable Neural
Computer (DNC), which is able to access and
perform differentiable read-write operations on
structured external memories in an objective-
oriented manner, and thus the decision-making
efficiency is significantly improved.

• Simulation results verify the effectiveness of
the proposed intelligent offloading framework,
which achieves a lower weighted cost of la-
tency and power consumption compared to
benchmark methods.

The rest of this article is organized as follows.
The next section introduces the blockchain-based
MCS for secure transactions. The proposed offload-
ing framework for a blockchain-based MCS system
is then described. Next, an intelligent offloading
method is presented. Finally, we conduct the per-
formance evaluation and conclude the article.

II. BLOCKCHAIN FOR SECURE TRANSACTIONS
IN MCS

Bitcoin’s basic concept was suggested in 2008
[3], which has subsequently grown in popularity
as decentralized digital currency. A peer-to-peer
(P2P) network underpins Bitcoin, where exists the
consensus issues of synchronization, falsification,
and reuse. On the Bitcoin network, blockchain [3]
was designed to tackle the above consensus issues,
which is used as a distributed ledger maintained
by all Bitcoin users. Specifically, a blockchain is
made up of numerous blocks stored in a single
chain that has been verified by the majority of
users. A transaction is placed into a new block and
this block will be added to the blockchain after
the PoW task is completed with verification from
the majority of users. Therefore, the blockchain
offers a reliable mechanism for ensuring secure
transactions and preventing transactions from the
attacks of malicious users.

In order to ensure the security of payment trans-
actions in MCS, a blockchain-based framework is
designed for the MCS system. As illustrated in Fig.
2, an MD first adds a transaction with CSPs to a new
block being made. After completing the new block,
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Fig. 2. The blockchain-based architecture for secure transactions in an MCS system.

the MD broadcasts this new block to other MDs
on the blockchain network. Next, each of the other
MDs receives the new block and verifies it (e.g.,
using the digital signature) for security and data
integrity. If the new block passes the verification,
the MDs will add it to the blockchain they maintain.
Otherwise, this new block will be dropped.

Different new blocks may be generated by differ-
ent MDs at the same time, but only one blockchain
is recognized and maintained by the MDs. There-
fore, the MDs must select the same new block and
add it to the existing blockchain. However, it is
difficult to develop a uniform selection criterion
due to the equality and non-priority among different
blocks. Inspired by the blockchain technology, we
restrict the number of new blocks generated by MDs
in unit time. More specifically, after an MD fills a
transaction into a new block, some extra work needs
to be completed before broadcasting the new block
on the blockchain network. The process of this extra
work can be divided into two steps as follows.

Step 1: The contents of a block are integrated
into a string, which consists of the SHA256() value
of the preceding block, the basic information of
the current block, and the transaction in the cur-
rent block. Each block has a one-to-one correspon-
dence with its own SHA256() value, which is a
cryptographic hash function, to represent the block
[11]. As shown in Fig. 2, every block contains the
SHA256() value of the preceding block. Thus, the
blockchain relies on the SHA256() value of each
block to connect all blocks orderly.

Step 2: A random number is added to the content
string of a block generated in Step 1 to form a new
string. Next, this new string is input into SHA256()
to calculate a binary number of 256 bits. When
the generated binary number is smaller than the
set target (representing the mining difficulty), this
extra work is regarded to be completed. Especially,
we propose that the value of target inclines with
the growing number of MDs in order to avoid the
conflicts among MDs when they try to add their

blocks into the blockchain simultaneously. In this
way, the blockchain-based framework can achieve
high reliability under complex network scenarios
with many MDs.

This extra work is known as PoW in the mining
process of blockchain, which has been established
as a mathematical conundrum that is exceedingly
hard to resolve yet simple to verify. Therefore, it
requires massive computational resources to com-
plete the computation-intensive tasks of PoW. Fur-
thermore, to verify the effectiveness of the proposed
framework, a classic threat model (i.e., collusion
attack) in MCS is considered. In the phase of the
transaction, some MCS participants collude with
CSPs. Through offering the communication infor-
mation of other participants, CSPs reveal the back-
ground knowledge and privacy information of other
participants, which forms a malicious interaction
between MCS participants and CSPs.

However, due to the limited computational capac-
ity of MDs, it is challenging to apply the blockchain
technology into wireless mobile networks for se-
cure transactions in an MCS system. To address
this problem, we first design a new credit-based
incentive mechanism, where the user credit is used
to measure the contributions of each participant to a
sensing task published in MCS systems. In general,
the user credit has a positive correlation with the
volume of valid data uploaded by each participant.
If an MCS participant makes more contributions
to a sensing task in MCS systems (i.e., uploads
more valid sensing data), it will receive higher credit
and thus its mining difficulty can be reduced to
some extent. On the contrary, it can only obtain
fewer advantages when dealing with PoW tasks. By
using the proposed credit-based incentive mecha-
nism, MCS participants with higher credit can save
more computational resources for processing PoW
tasks. Conversely, participants with lower credit
may spend more computational resources to work
out PoW. Moreover, participants with a higher credit
can enjoy the priority of broadcasting and verifying
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new blocks when multiple participants try to add
blocks simultaneously since their PoW tasks are eas-
ier to solve. The above factors motivate participants
to contribute to the sensing tasks published in MCS
systems and the global consensus on the blockchain
network. Next, to further relieve the limitation of
computational capacity on MDs, the computation-
intensive tasks of PoW is proposed to be offloaded
to edge servers in a blockchain-based MCS system.

III. EFFICIENT COMPUTATION OFFLOADING IN
THE BLOCKCHAIN-BASED MCS SYSTEM

As shown in Fig. 3, a computation offloading
framework is designed to reduce the cost (latency
and power consumption) of PoW tasks processing
in a blockchain-based MCS system. The proposed
framework consists of multiple mobile edge clouds
and MDs, where MDs offload tasks to the edge
servers in the nearest mobile edge clouds through
access points (APs). For the clarity of presentation,
the scenario of a single mobile edge cloud is con-
sidered and the bandwidth of the wireless network
is assumed to be evenly shared among MDs.

…
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Edge Server
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MD1 MD2 MDn…

Computation Offloading

…

Mobile Edge Cloud

Computation Offloading

Fig. 3. Computation offloading in the blockchain-based MCS system.

After an MD completes a transaction in MCS,
it will put the transaction into a block and try to
add the block into the blockchain maintained in
MCS for secure transactions. In order to add its
block to the blockchain, the MD must first solve a
PoW task, and then broadcast the block that is to be
verified by other MDs. With our proposed offloading
framework, the computation-intensive tasks of PoW
can be offloaded to the edge servers. More specifi-
cally, we define a PoW task as a 2-tuple. The first
element represents the size of input data (i.e., the
contents of a block), which is regarded as the input
of SHA256(). The second element indicates the
required computational resources (CPU cycles) to
complete the task, which is positively related to the

number of hashes for calculating the qualified value
of SHA256() (one hash per CPU cycle). Besides, the
computational capacity (Hz or CPU cycles/second)
of edge servers and MDs are also defined in our
proposed offloading framework.

Considering the case that all edge servers and
MDs can provide computing services for processing
PoW tasks, each PoW task can be executed locally
or offloaded to the edge servers. Therefore, we
define the following two modes.

Local Mode: When a PoW task is executed
locally, we define the corresponding latency and
power consumption of task processing, which make
up the cost of local mode. This cost depends on the
required computational resources and the computa-
tional capacity of MDs.

Edge Mode: When a PoW task is offloaded to
an edge server for execution, the whole process can
be described as follows, where we can obtain the
cost of edge mode as a combination of latency and
power consumption.

Step 1: An MD uploads a task to AP via the
wireless network, which is then forwarded to an
edge server. Therefore, we define the transmission
latency, which considers the uplink rate of an MD
in the wireless channel [12]. Moreover, the power
consumption in this step is the product of transmis-
sion latency and transmission power.

Step 2: The edge server allocates computational
resources and executes the task. The processing
latency depends on the ratio of required and allo-
cated computational resources to process the task.
Moreover, the power consumption in this step is the
product of processing latency and the total power,
which is the sum of the processing power of edge
servers and idle power of MDs.

Step 3: The MD downloads the result from the
edge via AP, which is a random number that fulfills
the target of PoW. Since the data size of this
number is very small, the latency and power con-
sumption of downloading this result can be omitted.

As the latency and power consumptions have
different value ranges, they are normalized into
values of the same scale in our model. Finally,
through integrating the cost of the above two modes,
we can work out the total cost of our proposed
offloading framework in a blockchain-based MCS
system with different offloading decisions.
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IV. DRL-BASED DECISION MAKING FOR
COMPUTATION OFFLOADING

Reinforcement Learning (RL) intends to learn an
optimal policy through interacting with the environ-
ment [7]. In general, an RL agent chooses actions
based on the observation of the current state, and
the environment will feedback the corresponding
reward and steps to the next state. In order to obtain
an optimal policy that maps states to actions with
maximized long-term reward, the RL agent will ac-
cordingly change the probability of choosing actions
based on the current state and rewards received.

Normally, RL needs to record the value of each
state-action pair in a table, which is feasible when
the state space is with a low dimension. However,
complex tasks in the real world often come with
large state space. In this case, the traditional RL
approach is unfeasible. To solve this issue, Deep
Reinforcement Learning (DRL) [13] was developed
to handle the high-dimensional state space with the
help of deep neural networks (DNNs) [14], where
DNNs can automatically find the low-dimensional
representations of high-dimensional input. Through
integrating RL and DNNs, DRL can directly learn
an optimal policy from the high-dimensional input.

Therefore, we propose a DRL-based decision-
making method to find the optimal offloading policy
for a blockchain-based MCS system, in order to
minimize the weighted cost of latency and power
consumption. As shown in Fig. 4, a scenario of
offloading in the blockchain-based MCS is deemed
as the environment, and the DRL agent chooses
actions via interacting with the environment. Next,
the corresponding state space, action space and
reward function are defined as follows.

Edge Server
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DNN

TD Error
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State
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. . . . . .
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Fig. 4. The DRL-based framework for computation offloading.

State Space: It consists of three parts, which
are the total cost of computation offloading, the
available computational capacity of the edge server,
and the network status (e.g., network band- width

and uplink rate of each MD). Thus, the state is
denoted as a 3-tuple, which takes into account both
the system overhead and system resource.

Action Space: It is to make offloading decisions
for the PoW tasks from MDs. Therefore, the action
is defined as A = {0, 1} to represent the binary
decision for offloading. If A = 1, the PoW tasks
will be processed locally. Otherwise, they will be
offloaded and processed by the edge server.

Reward Function: It is used to guide the DRL
agent to optimize the offloading policy with higher
rewards, in order to minimize the total offloading
cost. Therefore, the reward function is defined as
the negative increment of the total cost.

State-transition model: It indicates the proba-
bilities of transiting to the next state when taking
actions at the current state. The state transition can
also be regarded as the joint probability distribution
of the next state and the corresponding rewards,
where the transition frequency is used to estimate
the transition probabilities from one state to others.

During the learning process, the DRL agent
chooses an action at the current state. Next, the
environment feedbacks a reward and steps to the
next state. The above process is described as an
MDP. However, it would be infeasible to use a
precise mathematical model to handle the dynamic
problem of computation offloading in the MCS
environment. In response to the uncertainty of state
in MCS, we use a model-free RL method that does
not have to independently learn a fixed model for a
specific MCS environment.

In our method, Proximal Policy Optimization
(PPO) [15] is adopted to train DNNs for the optimal
policy of offloading decisions.

Our proposed method is an actor-critic based
hybrid RL algorithm, which combines the advan-
tages of the classic value-based and policy-based RL
algorithms. The classic value-based RL (i.e., critic-
only) adopts the temporal-difference (TD) learn-
ing [7] to estimate the TD error and achieve low
variance, where the ε-greedy is commonly used
to make a balance between exploration and ex-
ploitation. However, the overhead of searching for
the optimal action by using the ε-greedy is huge,
especially when the space is continuous. In con-
trast, the classic policy-based RL (i.e., actor-only)
parameterizes the policy and can directly optimize
the problem with a continuous space. However, it
conducts high variance when estimating gradient,
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resulting in slow learning speed. To address these
issues, our proposed method integrates the advan-
tages of the above two RL algorithms, aiming to
efficiently achieve low-variance results for the com-
plex offloading problem. In our proposed method,
the critic evaluates the action at the current state
and decides the value function, which is used to
update the gradient in the actor. Therefore, the actor
can choose better actions referring to the critic’s
evaluation results of previous actions.

However, the PPO is commonly equipped with a
simple design of replay memory, while too much
redundant information will be introduced if all
system states are stored. To address this problem,
we combine PPO with DNC, aiming to improve
its scalability and efficiency to find the optimal
offloading policy. Specifically, the DNC utilizes a
network controller to learn the way of reading and
writing in a memory module, which enables the
DRL agent to be trained in an objective-oriented
manner. Thus, the proposed DRL-based method can
better adapt to changeable blockchain-based MCS
environments and achieve the optimal offloading
policy more efficiently.

V. PERFORMANCE EVALUATION

We consider a mobile edge cloud consisting of
one edge server and one AP [9], where the radius
of the network coverage is 250 meters and the
bandwidth is 20 Mbps. The computational capacity
of an MD and edge server are 1 GHz (CPU Gigacy-
cles/second) and 40 GHz (CPU Gigacycles/second),
respectively. Meanwhile, the size of input data is
limited to the maximum of a block (i.e., 1 MB) [3].
We simulate the proposed blockchain-based MCS
system and the basic transaction process by using
Python 3.6. The computational resources needed
(in CPU Gigacycles) for completing PoW tasks
are positively related to the number of hashes for
calculating the value of SHA256(), which grows
with the increase of the number of MDs for main-
taining high reliability of the blockchain network.
Moreover, the processing power of an edge server
is 250 W, and the transmission and idle power of an
MD are set to 1 W and 100 mW [9], respectively.
As for the network design, we use two hidden layers
that contain 200 and 100 neurons, respectively.
Meanwhile, we set the number of training epochs as
1000, the reward decay rate as 0.95, the mini-batch
size as 100, the actor’s and critic’s learning rate as

0.0001 and 0.0002, the TD error discount factor as
0.9, and the size of replay memory as 500. Also, we
compare the proposed method with the other five
schemes including the Local, Edge, Greedy, DQN,
and PPO, where the network design of the DQN and
PPO refers to the settings in the proposed method.

Table I shows the total cost (i.e., the weighted
cost of latency and power consumption) of different
offloading schemes with various numbers of MDs.
Generally, the total cost rises with the increasing
number of MDs. When the number of MDs is
small, the Local has a poor effect. Because only
local computational resources are utilized without
the help of the edge server, which results in a high
cost. When the number of MDs is large, the Edge
performs poorly. Because only edge computational
resources are utilized and the resources required
to process PoW tasks have exceeded the compu-
tational capacity of the edge server. Although the
performance of the Greedy always seems good, it
may easily result in the local optimum because it
only considers immediate rewards rather than long-
term ones. Therefore, the Greedy cannot handle
well the complex scenario with many MDs and the
performance gap between the Greedy and the pro-
posed method becomes larger as the number of MDs
increases. By contrast, the proposed method works
better than the other schemes while approximating
the optimum with the increasing number of MDs.
The optimum is found by trying all possibilities,
which results in extremely-high complexity.

TABLE I
COMPARISON BETWEEN BASELINES AND THE PROPOSED METHOD

No. of
MDs

Total cost of different offloading schemes (10−3)

Optimum Local Edge Greedy Proposed
method

20 6.302 12.798 7.991 7.087 6.523
40 30.907 42.275 52.796 32.705 31.346
60 65.707 74.982 107.901 68.769 65.786
80 101.463 112.312 163.504 109.232 102.084
100 136.941 152.284 227.675 148.830 137.293

Next, a performance comparison is made between
the proposed method and the other two advanced
DRL-based methods including the DQN and PPO.
As shown in Table II, when the number of MDs
is small, the DQN and PPO can achieve good
performance that is slightly worse than but still
comparable to the proposed method, which approx-
imates to Optimum. However, when the number of
MDs increases, the performance gap between these
two methods and the Optimum becomes larger.
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By contrast, the proposed method can effectively
handle this problem in the scenario with many
MDs and always approximate the Optimum. Due to
the simple design of replay memory in the DQN
and PPO, too much redundant information may
be introduced and thus they cannot achieve high
decision-making efficiency for the optimal policy.
Through integrating the DNC, our proposed method
is able to use a network controller to train the DRL
agent in an objective-oriented manner and efficiently
approach the optimal offloading policy. Therefore,
the proposed method outperforms the other two
DRL-based methods.

TABLE II
COMPARISON AMONG DIFFERENT DRL-BASED METHODS

No. of
MDs

Total cost (10−3)

Optimum DQN PPO Proposed
method

20 6.302 6.709 6.642 6.523
40 30.907 31.426 31.409 31.346
60 65.707 65.987 65.916 65.786
80 101.463 104.323 104.149 102.084
100 136.941 141.758 140.753 137.293

VI. CONCLUSION

In this article, we first design a blockchain-based
framework to effectively secure the transactions
between MDs and CSPs in an MCS system. Next,
we propose a new DRL-based method to obtain the
optimal policy for offloading computation-intensive
tasks of PoW to edge in the blockchain-based MCS.
Simulation results verify the effectiveness of the
proposed method in achieving a low weighted cost
of latency and power consumption. The proposed
method outperforms benchmark methods and ap-
proximates the optimum with different numbers of
MDs. In our future work, we intend to further
improve the feasibility of the proposed blockchain-
based MCS system by introducing the Delegated
Proof-of-Stake (DPoS) consensus algorithm. More-
over, we plan to further consider the application of
the blockchain to some important tasks such as the
verification of trustworthy participants and sensory
data to reduce the costs of using the blockchain.
Besides, we will further consider the offloading
costs in the design of the incentive mechanism.
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