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Abstract

Ice sheets, large masses of glacial ice covering polar regions, influence global sea

level and ocean currents. The study of surface water on these ice sheets,

supraglacial hydrology, is essential to understand the effects of climate change on

ice sheet stability, sea-level rise, and climate systems. This thesis examines

supraglacial hydrological systems in Antarctica and Greenland by developing

novel methods to classify them using optical satellite imagery (Sentinel-2 and

Landsat-8).

Chapter 2 reveals the presence of supraglacial hydrology features, such as lakes

and channels, on the West Antarctic Ice Sheet through a novel dual-NDWI and

k-means clustering approach. A total of 10,478 features covering 119.4 km² were

identified, broadening our knowledge of Antarctica’s supraglacial hydrology.

Chapter 3 uses random forest and radiative transfer models to analyse the

extent and volume of surface meltwater on the Greenland Ice Sheet from 2014 to

2022. This study assesses supraglacial hydrological features Greenland wide, on a

decadal scale, for the first time. The results imply that reductions in firn air content

and increases in ice slab content are drivers of increasing meltwater in various

drainage basins, particularly in the north, east, and south.

Chapter 4 presents an innovative algorithm that quantifies uncertainty in the

prediction of supraglacial hydrology using Bayesian inference with spatial

statistics. This probabilistic approach provides predictions for the presence of water
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at the pixel level with associated standard deviations, which signify uncertainty. By

quantifying uncertainty, this approach is important for understanding the quantity

and trends of meltwater flowing into the ocean.

This research advances our understanding of the distribution and dynamics of

supraglacial hydrology on ice sheets, providing data and tools for the wider

scientific community. These findings contribute to our understanding of the

impacts of climate change on polar regions and support machine learning models

to map surface water.
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Chapter 1

Introduction

In this chapter, I provide an overview of Earth’s two major ice sheets, Antarctica

and Greenland, and the hydrological system that links their supra-, en- and

subglacial environments. I examine the significance and known networks of

supraglacial hydrology and its impact on ice sheets. Additionally, I explain the

techniques used to map supraglacial features and outline the available remote

sensing options. I identify knowledge gaps in the literature and discuss the

difficulties we face as a community. Lastly, I outline the thesis aims and objectives,

before introducing the structure of the rest of the thesis.

1.1 Ice sheets

Ice sheets are a significant part of the Earth system, influencing global sea level,

ocean currents, and biogeochemical processes. An ice sheet is a large mass of glacial

ice that covers an area of more than 50,000 km2. Currently, there are only two ice

sheets on Earth, the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GrIS).

The melting of these two ice sheets is expected to be the main contributor to the

rise in sea levels in the near future (Fox-Kemper et al., 2021). I begin by providing an
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1.1. Ice sheets

overview of the geography and climate of each ice shelf. Following this, I discuss the

processes by which the ice sheet interacts with its environment and the observations

of mass balance change and sea level rise. Finally, I examine the factors that are

causing the current imbalance of the ice sheet.

1.1.1 Physical geography and climate

The AIS covers an area of approximately 14 million km2, which is almost the whole

continent. The average thickness of the ice is more than 2 km, and it holds 61% of

the world’s fresh water, or the equivalent of 58 m of potential sea level rise (Bamber

et al., 2018; Fretwell et al., 2013; D. Vaughan et al., 2013). The AIS is usually divided

into three geographic regions: the East Antarctic Ice Sheet (EAIS), the West Antarctic

Ice Sheet (WAIS), and the Antarctic Peninsula (AP) (Figure 1.1). Ice that is on top

of bedrock and therefore has land at its base is known as grounded ice. Around

the grounding line, where the grounded ice meets the ocean, there is floating ice.

Floating ice around the coast of Antarctica forms features known as ice shelves. The

largest of these, Ross and Filchner-Ronne, are more than 400,000 km2. Ice streams,

which are corridors of fast-flowing ice, transport ice from the interior to the coastline,

flowing through glaciers to the ice shelves or directly into the sea.

The GrIS covers an area of approximately 1.7 million km2, which is equivalent to

around 80% of the surface of Greenland. The average thickness of the ice is 1.5 km,

and it holds 7% of the world’s fresh water, which is the equivalent of 7 m of potential

sea level rise (Bamber et al., 2018; D. Vaughan et al., 2013). In the interior, the ice can

be up to 3.2 km thick (Figure 1.2), while coastal mountains encircle most of the ice

sheet’s edge (Morlighem et al., 2017). There are no ice shelves, as the ice sheet reaches

the sea and drains the interior through outlet glaciers and ice streams. These two

types of glaciers are determined by the settings in which they end, either marine or
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1.1. Ice sheets

Figure 1.1: Labelled map of Antarctica. Image credit: Landsat Image Mosaic of the

Antarctica team https://lima.usgs.gov/documents/LIMA_overview_map.pdf

land-terminating. Large marine-terminating glaciers, such as the Petermann glacier

in northwest Greenland, form floating ice tongues before calving into the sea. Ice

streams, such as the 600 km long North East Greenland Ice Stream (NEGIS), also

drain a considerable amount of the ice sheet.

The atmospheric conditions of Antarctica and Greenland are shaped by their

polar locations and expansive ice sheets, yet they have distinct characteristics due

to their different geographies and surrounding oceans. Antarctica, the

3
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1.1. Ice sheets

Figure 1.2: Map of Greenland with ice sheet thicknesses. Image credit: Eric Gaba

– Wikimedia Commons user: Sting

southernmost continent, has an extreme polar climate with prolonged periods of

polar day and night, and temperatures that can drop to -80°C during winter

(Antarctic weather 2019). Coastal areas tend to be warmer and receive more
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1.1. Ice sheets

precipitation than in the interior (Lenaerts et al., 2019), with an average annual

temperature ranging from around -10 °C near the coast to -60 °C on the highest

peaks (Antarctic weather 2019). The Southern Ocean is known for its extreme

conditions and is encircled by the Antarctic Circumpolar Current, which plays a

major role in redistributing heat and nutrients throughout the world’s oceans and

regulating global climate (Marshall and Speer, 2012; Rintoul, 2018). Its frigid waters

are kept close to freezing point due to the influence of the Antarctic ice sheet, which

facilitates the formation of sea ice during winter (Comiso and Nishio, 2008;

Gloersen, 1992; Massom and Stammerjohn, 2010). Katabatic winds, which originate

in the interior of the ice sheet, can reach high speeds and affect local weather

conditions (Barral et al., 2014; Grazioli et al., 2017; M. R. van den Broeke, 1997).

Although coastal areas receive some precipitation, the interior is exceptionally dry,

making Antarctica the coldest and driest continent on Earth (How cold is the

Antarctic? 2017). Greenland, on the other hand, is classified as tundra, which means

it has at least one month with average temperatures high enough to melt snow, but

no months when the average temperature exceeds 10°C, around the ice-free coast

(Kottek et al., 2006). It has an Arctic climate with milder temperatures than

Antarctica and also experiences polar day and night, with winter temperatures

dropping to -50 ° C or below (Hanna et al., 2021), while the average summer

temperature ranges from +8 °C near the coast to -16 °C at the highest interior peaks

(Hanna et al., 2021). The region is influenced by the Arctic Ocean, which moderates

coastal temperatures (Buch, 2002). It is bordered by the Atlantic Ocean to the south

and the Arctic Ocean to the north. The boundary currents of the Arctic Ocean, the

East Greenland Current and the West Greenland Current, transport cold, nutrient

rich waters from the Arctic Ocean southward until they mix with warmer Atlantic

waters, creating a dynamic transition zone with varying temperatures and salinities

(Buch, 2002; Gou, Pennelly, and Myers, 2022; Håvik et al., 2017; Münchow, Falkner,
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and H. Melling, 2015). Sea ice also forms seasonally during Arctic winter (Comiso

and Nishio, 2008; Gloersen, 1992).

A study of 17 Antarctic weather stations showed that 13 of them had a positive

(warming) trend in their annual mean temperature from 1979 to 2018, with the

Vernadsky station on the western Antarctic Peninsula warming at a rate of 0.46 ±

0.15 °C per decade (Turner et al., 2020). Warming was most noticeable in spring

(Turner et al., 2020). In Greenland, overall temperature trends for 2001-2019 are

generally insignificant due to a cooling period for 2013-2019; however, significant

coastal warming ∼+1.7 °C in summer and ∼+4.4 °C in winter has been observed

for the period 1991-2019 (Hanna et al., 2021).

1.1.2 Interactions between ice sheets and the Earth system

The relationship between the ice sheets and their surrounding climate is important.

Ice sheets interact directly with four main components: atmosphere, lithosphere,

ocean, and sea ice (Table 1.1, Fyke et al., 2018). The interactions that are not relevant

to this thesis are not discussed here, and only those that are essential for

understanding supraglacial hydrology processes are examined. This interaction is a

two-way system; i.e. each component exerts its effect on the ice sheet, while,

properties of the ice sheet also exert an effect on the components. These interactions

determine how external forces (such as human-induced climate change) affect

changes in the ice sheet (Fyke et al., 2018). The complex relationship between ice

sheets and climate can be explained by the concept of mass balance. The mass

balance is the net difference between the mass gained through accumulation

processes (e.g. precipitation) and the mass lost through ablation processes (e.g.

melting at the surface and bed, sublimation). The contribution of Earth’s ice sheets

to the global rise of sea level depends on the ice sheets’ mass balances.
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1.1. Ice sheets

Table 1.1: Interaction between ice sheets and surrounding Earth system

components. Source: adapted from Fyke et al., 2018.

Interface Direction Interaction

Surface Energy Fluxes

To Ice Sheet

Ice Sheet - Atmosphere Surface Mass Fluxes

Surface Topography

From Ice Sheet Ice Sheet Extent

Surface Type

Geothermal Heat Flux

To Ice Sheet Subglacial Water Pressure

Ice Sheet - Lithosphere/Mantle Bed Elevation and Type

Ice Base Normal Stress-

From Ice Sheet -and Mass Loading

Ice Basal Velocity

Sub-Ice Shelf Energy Fluxes

To Ice Sheet

Sub-Ice Shelf Mass fluxes

Ice Sheet - Ocean Ice Melt Runoff

From Ice Sheet Ice Shelf Geometry

Iceberg Calving

Gravitational Sea Level Effects

Ice Sheet - Sea Ice To Ice Sheet Sea Ice Back Stress

From Ice Sheet Ice Shelf Displacement

The thickness and size of the GrIS is determined by current climate conditions,

which are responsible for the accumulation of mass from precipitation, the loss of

mass from melting and sublimation, and the loss of ice to the oceans by the calving
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or melting of the icebergs. The Antarctic Ice Sheet (AIS) is also affected by climate,

but there are some important differences due to the higher elevation of the ice sheet,

the more uniform atmospheric circulation, and the cold temperatures of the

Southern Ocean (Fyke et al., 2018). In recent times, almost all (90%) of the

precipitation over the Greenland Ice Sheet (GrIS) has been in the form of snow,

corresponding to the accumulation of mass (Ettema et al., 2009). The remaining 10%

of precipitation has been in liquid form (rainfall) at lower altitudes of the ice sheet

during summer. However, these proportions can vary significantly from year to

year due to internal climate variability (B. Noël et al., 2015). At present, the mass

gain of the AIS is almost entirely due to snowfall, as the atmosphere is not warm

enough for rainfall even in the summer months (van Wessem et al., 2014).

Surface melting is caused by a net positive surface energy balance over

snow/ice at 0°C. In their respective summers, the incoming solar energy is at its

peak, and the amount of solar energy absorbed by the ice or snow is largely

determined by the surface albedo, which is higher in winter due to the presence of

highly reflective snow. Once liquid water is produced at the surface, the porosity of

the surface and subsurface, its temperature, and its density determine its fate. Ice is

virtually impermeable, leading to the formation of supraglacial meltwater lakes

(e.g., M. Moussavi et al., 2020; Stokes et al., 2019; Sundal et al., 2009; K. Yang et al.,

2021) or englacial firn aquifers (Montgomery et al., 2020) that store water locally

and supraglacial channels (or moulins) that transport water across (or through) the

ice surface (Hoffman et al., 2018; Leidman et al., 2023; Spergel et al., 2021).

Compared to GrIS, Antarctic surface melt extent, and its contribution to the mass

balance, is much smaller (Fyke et al., 2018; Picard and Fily, 2006).

Surface Mass Balance (SMB) is a component of the overall mass balance. SMB is

the net difference between accumulation and ablation on the surface of the ice sheet

(Kittel et al., 2021). The mass loss from basal melting and iceberg calving is known
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as ice discharge. The contribution to the rise of global sea level for the respective

ice sheets is the net difference between ice discharge and SMB. Systems that have a

negative mass balance lose mass; for grounded ice, this mass loss directly contributes

to sea-level rise. Mass loss from floating ice shelves and tongues does not directly

contribute to sea level rise, as ice has a lower density than water and therefore floats,

displacing the water below.

Similarly, sea ice does not directly contribute to sea level rise; however, it has a

major effect on the dynamics of Arctic and Antarctic ice sheets. During winter, it

serves as a protective cover over the ocean, acting as an insulator to limit the

exchange of heat between the warmer ocean and the ice sheets (Cornish et al., 2022;

Fuerst et al., 2016; Jenkins et al., 2010; Notz, 2009). This helps to maintain lower

temperatures at the base of the ice sheet, reducing the extent of basal melt (Bintanja

et al., 2013; Hellmer, 2004; Pritchard et al., 2012) and the thinning of Antarctic ice

shelves (Jenkins et al., 2010; Massom et al., 2018; T. A. Scambos et al., 2004;

D. J. Wingham, Wallis, and Shepherd, 2009). Sea ice also acts as a physical barrier to

restrain the flow of ice from the interior of the ice sheet into the ocean and provides

structural support to icebergs and floating ice tongues (Fuerst et al., 2016;

Gudmundsson, 2013; Sun, Riel, and Minchew, 2023). Furthermore, sea ice has a

high albedo, meaning that it reflects a significant portion of incoming solar

radiation away from the ice sheet, cooling it and reducing surface melting (Curry,

Schramm, and Ebert, 1995; Kashiwase et al., 2017).

The balance of interactions between ice sheets and climate is significantly

different for the two ice sheets: the atmosphere has a greater influence on the GrIS,

while the ocean plays a more critical role in the alteration of the AIS (Fyke et al.,

2018; Picard and Fily, 2006). Understanding climatic variability is crucial to

understanding how ice sheets respond to changing climate conditions.
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1.1.3 Observations of mass balance change & sea level rise

Figure 1.3: Cumulative ice sheet mass changes. The estimated uncertainty 1σ of

the cumulative change is shaded. The dashed lines show the results of previous

assessments (IMBIE-2) (Otosaka et al., 2022; Shepherd et al., 2018, 2020).

The total mass of ice on AIS and GrIS has decreased considerably in the last few

decades (Madsen et al., 2022; Moon et al., 2020; Otosaka et al., 2022; Rignot et al.,

2019; Shepherd et al., 2018, 2020; Slater et al., 2021). The Input-Outflow method

is used to calculate the difference in mass between SMB and ice discharge (Rignot

et al., 2008a; Rignot et al., 2008b). Satellite altimetry and gravimetry measurements

are used to estimate the mass balance of the ice sheet. From 1992 to 2020, AIS has lost

2671± 530 Gt of ice (−92± 18 Gt yr-1), and GrIS has lost 4892± 699Gt (−169± 16 Gt

yr-1), resulting in a global sea level rise of 7.4 ± 1.5 mm and 21 ± 2 mm, respectively

(Figure 1.4). The greatest mass loss in Antarctica is due to ice discharge from WAIS

(Figure 1.4), which peaked at −131± 21 Gt yr-1 between 2012 and 2016 and slowed to

−94 ± 25 Gt yr-1 from 2017 to 2020 (Otosaka et al., 2022). The collapse of the Larsen

B ice shelf in the 2000s was a major factor in the mass changes on the AP, reaching
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its peak at −21 ± 12 Gt yr-1 between 2007 and 2011 (Cook and D. G. Vaughan, 2010;

Otosaka et al., 2022; Rignot et al., 2004). The mass change for EAIS has remained

relatively stable at +3± 15 Gt yr-1 over the 30-year period from 1992 to 2021 (Otosaka

et al., 2022). In comparison, the rate of mass loss in Greenland is much greater and

more variable, ranging from −35 ± 29 Gt yr-1 in the period from 1992 through 1996

to −280 ± 38 Gt yr-1 between 2007 and 2011, while 2019 is the year with the highest

mass losses due to increased surface melting (−444± 93 Gt yr-1, Otosaka et al., 2022;

Tedesco and Fettweis, 2020).

Figure 1.4: Mass loss from Greenland and Antarctic Ice Sheets in metres of ice

equivalent per year from 2003 to 2019. Adapted from B. Smith et al., 2020.

1.1.4 Drivers of ice sheet imbalance

Ice sheets are sensitive to temperature changes, and the annual cycle of warmer

summers has an effect on the amount and intensity of surface melting (Clarkson,
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Eastoe, and A. Leeson, 2021; D. Liang et al., 2021; Vermeer and Rahmstorf, 2009). As

temperatures rise, the level of surface meltwater runoff, surface melting, basal

melting, and precipitation also increases (Lenaerts et al., 2019; Rignot et al., 2019;

B. Smith et al., 2020). Research has shown that for every 1 °C of summer warming,

the Greenland Ice Sheet (GrIS) loses 91 Gt yr -1 of surface mass and experiences a 26

Gt yr -1 increase in solid ice discharge (Hanna et al., 2021). Surface melting is much

more widespread in Greenland than on the Antarctic Ice Sheet (AIS), where it

occurs only around the margins and on ice shelves. Similarly, runoff is only present

around the coast of GrIS, while on AIS, most meltwater is thought to refreeze in the

firn (Lenaerts et al., 2012, 2017, Figure 1.5). Precipitation is a major factor in the

growth or loss of ice sheets. More snowfall can lead to an increase in ice thickness,

while less snowfall or more rainfall can cause a decrease (Boening et al., 2012;

McIlhattan et al., 2020; Medley and E. R. Thomas, 2019; B. Noël et al., 2015).

Generally, precipitation, which is mostly snow in areas higher than 500 metres

above sea level, increases from the centre of the ice sheet to the edges (Figure 1.5).

Values of less than 20 mm of water per year are seen in the interior of the East

Antarctic Ice Sheet, while areas such as the Antarctic Peninsula and southeast

Greenland have more than 2000 mm of water per year (Koenig et al., 2016; Miège

et al., 2013).

Wind patterns can influence snow redistribution and snowdrift formation,

which affects the surface characteristics of ice sheets. Strong winds can lead to

increased sublimation, where the ice is transformed directly from the solid state to

water vapour (Bintanja et al., 2013; Box and Steffen, 2001; Cullen et al., 2014).

Sublimation occurs in coastal regions and is negligible or negative in areas of the

interior (Figure 1.5). In addition, the North Atlantic Oscillation and the Southern

Annular Mode are two atmospheric circulation patterns that can have a major

impact on the ice sheet mass balance (Chylek, Box, and Lesins, 2004; Johannessen
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Figure 1.5: Annual mean (mm w.e./year, 1980–2015) SMB Regional Atmospheric

Climate Model (RACMO2) modelled components in GrIS (left) and AIS (right).

(a) Precipitation; (b) Sublimation (surface + drifting snow); (c) Surface melt rate;

(d) Meltwater runoff. (Lenaerts et al., 2019).

et al., 2005; Verfaillie et al., 2022; Walker and Gardner, 2017). Due to warming

temperatures in the Arctic and Antarctic, the extent of sea ice cover in the waters

around both ice sheets has decreased (Bi, Y. Liang, and X. Chen, 2023; Comiso et al.,

13



1.2. Hydrology

2008; Hao et al., 2021; Purich and Doddridge, 2023; Stroeve et al., 2007). This

exposes more of the ocean’s surface to direct sunlight and warmer air temperatures,

which accelerates the melting of the ice sheet’s marine-terminating glaciers and

contributes to sea level rise (Holland et al., 2008; Shepherd, D. Wingham, and

Rignot, 2004; L. Zhang et al., 2022). Both regions are vulnerable to climate change,

Greenland’s sensitivity to warming temperatures has significant implications for

sea level rise and Arctic ecosystems, and although Antarctica has not yet

demonstrated that level of mass balance change, its unique characteristics

contribute to understanding global climate systems and sea level rise (Fyke et al.,

2018; Hanna et al., 2013).

1.2 Hydrology

Positive degree (°C) temperatures cause the melting of snow, ice, and firn (partially

compacted snow from previous years, but not yet formed ice) on the AIS and GrIS.

These melting conditions lead to the formation of liquid water, hydrology, on the

surface of the ice (supraglacial), within the ice (englacial), and under the ice along

the bed (subglacial). The composition of this meltwater is decided by the

characteristics of the ice sheet. These characteristics decide if the melted water will

refreeze within the snowpack or become runoff, if it will accumulate in supraglacial

lakes or move across or through the ice sheet in channels, crevasses, or moulins,

thus playing an important role in determining the highly dynamic transient

hydrological system (Figure 1.6). Here, I detail how liquid water influences the ice

sheets of Antarctica and Greenland and why it is critical to know more about the

behaviour of this phenomenon in a warming world. I will begin by introducing the

components of supraglacial, englacial, and subglacial hydrology. Section 1.3 will

focus on the importance of supraglacial hydrology and its effects on ice sheet
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systems. Section 1.4 will examine the known networks and extent of hydrology.

Section 1.5 will analyse the available remote sensing data. Finally, Section 1.6 will

investigate the techniques used to map supraglacial hydrology.

Figure 1.6: Visualisation of the interconnected hydrological system.

1.2.1 Supraglacial hydrology

When spring arrives, the sun’s radiation and warmer air cause the surface of the ice

and snow to heat up, leading to melting when there is enough energy available

(Langley et al., 2016). The start and end of the melt seasons differ geographically on

each ice sheet and can be affected by factors such as latitude, altitude, and local

weather patterns (Johansson, Jansson, and Brown, 2013; Langley et al., 2016;
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L. Liang et al., 2023; McMillan et al., 2007; Sundal et al., 2009; Trusel, Frey, and Das,

2012). Initially, the melt is absorbed into the snowpack, experiencing daily refreeze

cycles on the surface and persistent melt deeper within the firn (Colliander et al.,

2023). As the summer months bring higher temperatures, a higher melt intensity

leads to a higher surface meltwater production (Trusel, Frey, and Das, 2012).

Furthermore, when the air temperature is above 0 °C, there is a strong correlation

between the surface air temperature and the melting rate on the surface of the ice

(Braithwaite, 1995). When the meltwater gathers in undulations on the surface of

the ice sheet, supraglacial lakes form (Bell et al., 2018; Box and Ski, 2007;

Echelmeyer, Clarke, and Harrison, 1991; Langley et al., 2016; Selmes, Murray, and

James, 2011). The production of meltwater is ultimately dependent on a complex

combination of factors and conditions. During summer, increasing air temperatures

cause surface melting (Langley et al., 2016). Solar radiation is an important factor,

with sunlight being absorbed by the surface of the ice sheet, particularly when the

albedo decreases due to melting (Leidman et al., 2021). Atmospheric circulation

patterns can bring warm or cold air masses, which can influence temperature and

precipitation on ice sheets (Liu, Wang, and Jezek, 2006). Furthermore, the wind

redistributes heat and moisture and can increase sublimation and heat exchange

(Laffin et al., 2022; Laffin, 2022).

As temperatures start to cool in autumn, the intensity of surface melting

decreases and eventually stops. Supraglacial lakes begin to freeze over, and the

surface of the ice sheet largely returns to a frozen state. However, the presence of

wintertime buried lakes has recently been discovered (Dunmire et al., 2020;

Dunmire et al., 2021; Koenig et al., 2015; K. E. Miles et al., 2017). During the winter

months, the temperatures in the polar regions are usually very cold, often below

freezing. As a result, the surface of ice sheets and glaciers remains frozen, with little

or no melting (Langley et al., 2016; L. Liang et al., 2023).
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Figure 1.7: Ice sheet accumulation (made up of wet-snow, percolation, and dry-

snow zones) and ablation zones (M. Payne and A. Nolin, 2008).

The surface of the ice sheets is divided into two distinct areas: the accumulation

and ablation zones. The boundary between them is known as the Equilibrium-Line

Altitude (ELA), which is a critical concept in glaciology. It is the elevation on a

glacier or ice sheet where the mass balance is zero over a long period, usually a

year. In other words, it is the line on a glacier where the amount of ice accumulated

is equal to the amount of ice lost (Box et al., 2022; Braithwaite and Raper, 2009). The

accumulation zone, located above the ELA, is composed of three distinct regions

(Figure 1.7): the interior or dry-snow zone, where little melting occurs and

hydrological activity is minimal; the percolation zone, where a limited amount of

meltwater is produced during the melt season and infiltrates the snow and firn

layers; and the wet snow zone, where the snow from the previous winter is

completely saturated with meltwater (A. W. Nolin and M. C. Payne, 2007). The

ablation zone, where more ice is lost than gained, is where the snow from the

previous winter melts completely during the summer and exposes bare ice (Figure

1.7, A. W. Nolin and M. C. Payne, 2007).
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In order for meltwater to accumulate on the surface of an ice sheet, it must be

impeded by saturated firn or impermeable ice formed from refrozen water in the

englacial environment (K. E. Alley et al., 2018; J. Harper et al., 2012; B. Hubbard et al.,

2016; Lenaerts et al., 2017). The water then percolates downward through the porous

snow and firn, following the preferred flow paths (Humphrey, J. T. Harper, and

Pfeffer, 2012; Pfeffer and Humphrey, 1998). Once within the firn layer, the meltwater

can be retained as liquid water (Humphrey, J. T. Harper, and Pfeffer, 2012), stored

in perennial firn aquifers (Forster et al., 2014; Machguth et al., 2018), or refrozen

(J. Harper et al., 2012; Machguth et al., 2018; Pfeffer, Meier, and Illangasekare, 1991).

In Greenland, water refreezing can create three different types of features: thin ice

lenses (< 0.1 m thick), ice layers (0.1-1.0 m thick), or ice slabs (over 1 m to several m

thick) (Culberg, Schroeder, and Chu, 2021; de la Peña et al., 2015; MacFerrin et al.,

2019; Machguth et al., 2016). In Antarctica, repeated freezing and thawing cycles

can lead to an increase in grain size and the potential formation of ice layers (Picard

and Fily, 2006). Ice is impermeable to water flow, thus slowing or even stopping

drainage and causing surface runoff, which can form supraglacial lakes, channels,

or slush flows (Onesti and Hestnes, 1989). Supraglacial hydrology is the study of the

intricate network of lakes and channels on the surface of the ice sheet (Figures 1.6,

1.9, 1.8). In the following sections, I will give an extensive overview of the elements

and formation of the supraglacial hydrological network. I will then discuss how

surface meltwater can move over the ice surface and directly enter the ocean (Bell

et al., 2018), or be directed into sub- and englacial environments through fractures,

crevices, and moulins (Hoffman et al., 2018; McGrath et al., 2012; van der Veen, 2007).

In these areas, the meltwater can refreeze or eventually be routed into the ocean.
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Figure 1.8: A temporal composite of seven dates revealing seasonal evolution of

supraglacial lakes and rivers on the southwest Greenland Ice Sheet as mapped

from seven Landsat 8 OLI satellite images acquired throughout the 2015 melt

season. Isortoq and Water river basins are overlaid (K. Yang et al., 2021).

1.2.1.1 Supraglacial lakes

Supraglacial lakes, or SGLs, form when meltwater accumulates in depressions on

the surface of an ice sheet (Echelmeyer, Clarke, and Harrison, 1991). The position of

Surpraglacial Lakes (SGL)s on grounded ice is determined by the underlying

topography of the bedrock, and they tend to form in the same or similar places in

successive years (Bell et al., 2018; Box and Ski, 2007; Echelmeyer, Clarke, and

Harrison, 1991; Langley et al., 2016; Selmes, Murray, and James, 2011). The depth

and size of the lakes are affected by the amount of water in the system, the lake

catchments, and the speed of ice flow (J. F. Arthur et al., 2020a; Turton et al., 2021).

Slower and thicker ice is more resistant to crevassing and produces smoother and

wider undulations than fast-moving ice (Gudmundsson, 2003). As a result, larger

and deeper lakes form on slow-moving grounded ice, since they remain in the same
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Figure 1.9: Larsen B Ice Shelf surface structures in February 2002 including an

extensive network of SGLs and streams that extend to the ice shelf calving front,

alongside ice dolines indicating possible drained lakes (J. F. Arthur et al., 2020a).

surface depressions longer, collecting more water from SGLs and expanding

through lake bottom ablation (Banwell et al., 2014; Das et al., 2008; A. A. Leeson
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et al., 2012; Macdonald, Banwell, and MacAyeal, 2018; Sergienko, 2013; Tedesco

et al., 2012). On floating ice, lakes form in surface depressions that depend on and

move with ice flow (Macdonald, Banwell, and MacAyeal, 2018). Depressions in the

ice are caused by spatial and temporal changes in its flexure, flow, and thickness

(Banwell et al., 2019). These are regulated by a combination of the position of the

basal channels and crevasses (McGrath et al., 2012), the flow stripes, the suture

zones, and the shear margins (Banwell et al., 2014; Bell et al., 2017; Ely et al., 2017;

Glasser and Gudmundsson, 2012).

Figure 1.10: Photos of the interconnected hydrological system. a) Person

observing surface runoff in a supraglacial stream on GrIS (image credit: Sara

Penrhyn-Jones), b) meandering supraglacial channels at Vibeke Gletscher in east

Greenland (image credit: M. Hambrey), c) Supraglacial lake as seen from the

onboard airborne Polar 5 survey (image credit: Angelika Humbert).

Katabatic and föhn winds are associated with SGL activity on both ice sheets.

Katabatic winds form in the cold and dry conditions of the interior of the ice sheet

(Laffin, 2022), while föhn winds are created when cool, moist air is forced over a
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mountain and releases latent heat and precipitates during ascent (Laffin, 2022).

These winds reduce moisture and prevent cloud formation, leading to increased

surface insolation and heating (Mioduszewski et al., 2016; Vihma, Tuovinen, and

Savijärvi, 2011). The intensity and frequency of the föhn winds determine the extent

and distribution of SGL and ponding in Antarctica (Datta et al., 2019; Laffin et al.,

2021; Laffin et al., 2022; Laffin, 2022; Turton et al., 2020; Vihma, Tuovinen, and

Savijärvi, 2011) and Greenland (Mattingly et al., 2021; Mioduszewski et al., 2016;

M. R. van den Broeke, Duynkerke, and Oerlemans, 1994; Wheel, Christoffersen, and

Mernild, 2020). Furthermore, winds drive snow erosion, which exposes blue ice

areas and intensifies surface melting (Kingslake et al., 2017; Lenaerts et al., 2017).

However, the regions with the highest surface melt do not always correspond to the

areas with the highest extent and distribution of SGL activity (J. F. Arthur et al.,

2020a).

On grounded ice, SGLs are more likely to occur in areas with lower elevations

and shallower slopes on both ice sheets (Stokes et al., 2019; Turton et al., 2021). At

higher elevations in Antarctica, proximity to blue ice and nunataks is a significant

factor in the occurrence of SGLs (Stokes et al., 2019). In Greenland, SGL coverage

starts near the margin and extends further inland during the melt season (Y.-L. Liang

et al., 2012; McMillan et al., 2007; Sneed and Hamilton, 2007; Sundal et al., 2009; K.

Yang et al., 2021). In Antarctica, meltwater features are often seen near the grounding

line (Kingslake et al., 2017; Lenaerts et al., 2017; Stokes et al., 2019), while most SGLs

are located on ice shelves downstream of the grounding line (Stokes et al., 2019).

When the infiltration of water is hindered by saturated firn or refrozen water in

the englacial environment, meltwater begins to form ponds (K. E. Alley et al., 2018;

J. Harper et al., 2012; B. Hubbard et al., 2016; Lenaerts et al., 2017). These lakes can

vary in size, with extents ranging from tens of metres to 17 km2 (Selmes, Murray,

and James, 2011) and depths of 12 m (Box et al., 2012) in Greenland and up to 80 km
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long (Kingslake et al., 2017), with an area of 71.5 km2 (Stokes et al., 2019) and depths

of up to 6.8 m in Antarctica (J. F. Arthur et al., 2020a). As more ice melts, these

SGLs continue to expand until no more meltwater is generated, at which point they

either freeze over or drain. This draining can occur over a period of days to weeks or

months, as they slowly overflow their banks or channel away (Hoffman et al., 2011;

Tedesco et al., 2013). Alternatively, they can be emptied in a matter of hours to days

through hydrofracture, a process in which meltwater flows into fractures on the ice

surface, enlarging them and creating a connection between the ice surface and the

bed (Banwell, MacAyeal, and Sergienko, 2013; Das et al., 2008; Doyle et al., 2013; Lai

et al., 2020; T. Scambos et al., 2009; Stevens et al., 2015; Tedesco et al., 2013). This

connection can remain open for the duration of the melting season. In Greenland, it

is estimated that between 28% and 45% of all SGLs drain rapidly (Fitzpatrick et al.,

2014), and one lake drainage event can cause others to follow suit (Christoffersen

et al., 2018). In Antarctica, lake drainage events are rare, but rapid lake drainage has

been linked to the disintegration of the Larsen B ice shelf (A. A. Leeson et al., 2020;

T. A. Scambos et al., 2004; T. Scambos et al., 2009). Lakes that do not drain can freeze

(Dunmire et al., 2020; Langley et al., 2016; A. A. Leeson et al., 2020; Tuckett et al.,

2019), or remain liquid in buried or subsurface lakes during winter (Koenig et al.,

2015). It has been observed that subsurface lakes can last for multiple melt seasons

(Lampkin et al., 2020), and can warm the englacial environment through the transfer

of latent heat during winter (T. Phillips, Rajaram, and Steffen, 2010; T. Phillips et al.,

2013).

1.2.1.2 Supraglacial channels

Supraglacial channels (Surpraglacial Channels (SGC)) are a system of rivers and

streams that transport meltwater across the surface of the ice sheet (Figure 1.10).

Rivers are generally larger than streams, as streams are usually tributaries of larger
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rivers (Pitcher and L. C. Smith, 2019; L. C. Smith et al., 2015). The formation of

SGCs is not fully understood (Irvine-Fynn et al., 2011; Mantelli, Camporeale, and

Ridolfi, 2015), but is thought to be related to the rate of incision of the channel

compared to the amount of surface melt, the production of meltwater, and the

surface topography (Irvine-Fynn et al., 2011; Marston, 1983; A. W. Nolin and

M. C. Payne, 2007). It is believed that the evolution of these channels follows three

steps: incision, ablation, and meandering (Kostrzewski and Zwolinski, 1995). SGCs

usually form in the direction of the ice flow (David Knighton, 1972; Hambrey, 1977),

and along the steepest flow direction (Mantelli, Camporeale, and Ridolfi, 2015).

Surface topography affects the flow of water, and many channels form in similar

positions between the melt seasons (Hagen, Korsen, and Vatne, 1991). SGCs can

extend for many kilometres before reaching the ocean, entering the englacial

environment, or draining into supraglacial lakes (K. Yang and L. C. Smith, 2016). A

recent study has suggested that in Greenland, and probably Antarctica under future

warming, a slower type of hydrofracture could be caused by SGC (Chandler and

A. Hubbard, 2023). This process involves supraglacial streams that intersect thin

surface fractures and drain surface meltwater into the englacial environment. In

Greenland, channels can be up to 55 km long (K. Yang et al., 2019a) and vary in

width from 0.20 m (Gleason et al., 2020) to tens of metres (Lampkin and

VanderBerg, 2014; K. Yang and L. C. Smith, 2016; K. Yang et al., 2019a). They carry

meltwater to supraglacial lakes, moulins, or directly off the ice sheet. In Antarctica,

supraglacial channels are less common but have been observed to flow up to 5 km

in length (Kingslake et al., 2017), with a hydrological network spanning 120 km

(Kingslake et al., 2017) and ending in waterfalls 130 m wide (Bell et al., 2017).
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1.2.1.3 Supraglacial slush

In addition to meltwater stored as open water, meltwater can be stored in firn pore

spaces (Dunmire et al., 2020; Montgomery et al., 2020). Slush is formed when firn

pore spaces become saturated, especially in areas where the firn covers former blue

ice areas, refrozen lakes, or where refrozen water has formed ice layers at depth

within the firn (Dell et al., 2022). Melting and refreezing of the slush reduces the air

content in the firn, increasing the density of the firn and increasing the vulnerability

of the ice surface to ponding (K. E. Alley et al., 2018; B. Hubbard et al., 2016;

Kuipers Munneke et al., 2014). Slush has been found to account for almost two

thirds of the total meltwater area on an Antarctic ice shelf (Roi Baudouin Ice Shelf,

64%) in the period between 2013 and 2020 (Dell et al., 2022). In Greenland, slush is

found to agree well with runoff limits mapped from higher resolution satellite data

(Machguth, Tedstone, and Mattea, 2023; Tedstone and Machguth, 2022). In

particular, slush fields have been reported to be a potential source of supraglacial

channels (Pitcher and L. C. Smith, 2019).

1.2.2 Englacial hyrdology

Englacial describes the features of the ice sheet system that are located, occur, or

form beneath the surface, inside the glacier. Englacial hydrology is concerned with

meltwater that is present in the englacial environment through local thawing or

draining of supraglacial meltwater. Meltwater that enters the englacial

environment through permeable crevasses or moulins (Figure 1.11) helps to drain

the meltwater to the bed (Das et al., 2008). Liquid water in the englacial system

releases heat as it flows through porous ice, causing localised melting (Seguinot

et al., 2020).
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Figure 1.11: Photos of features that facilitate the penetration of surface water

into the englacial hydrological system. a) Curved crevasses on the Jakobshavn

Glacier (image credit: University of Washington), b) supraglacial lake and water-

filled crevasses near Illulissat, Greenland (image credit: James Balog/Extreme Ice

Survey), c) A person descends into a moulin on the Greenland Ice Sheet (image

credit: Christian Pondella/Red Bull Content Pool).

1.2.2.1 Crevasses

Cracks or fractures in the ice sheet, known as crevasses, can range in size from

millimetres to tens of metres (Holdsworth, 1969). The shape of the crevasse is

determined by the stresses within and on the ice, which are affected by

temperature, density, structure, and water content (van der Veen, 1998, 1999). At

the glacier termini, crevasses can curve or rotate due to varying ice velocities

(Figure 1.11b). Compressive forces cause crevasses to form near the surface of the

ice sheet. However, during the melt season, meltwater entering crevasses can cause
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the fracture to widen and deepen, a process known as hydrofracture. When water

fills a crevasse to the point where the water pressure exceeds the fracture strength

of the ice, vertical lake drainage occurs (K. E. Alley et al., 2018). The crevasse can

spread through the entire thickness of the ice to the bed, forming a moulin through

which the lake drains (Das et al., 2008; Hoffman et al., 2018; McGrath et al., 2012).

1.2.2.2 Moulins

Conduits known as moulins form when water drains vertically and are initiated by

the ice hydrofracture process. These moulins can range in size from centimetres to

tens of metres. Unlike crevasses, moulins can facilitate rapid drainage of

supraglacial meltwater (Colgan et al., 2011; McGrath et al., 2011). Studies have

found that crevasses and moulins can drain up to 86% of surface meltwater in West

Greenland (Koziol et al., 2017). Furthermore, crevasse areas have been increasing in

size (10% between 1985 and 2009 in West Greenland (Colgan et al., 2011), while

crevassing on the Thwaites and Pine Island ice shelves has also increased in the

past decade (Surawy-Stepney et al., 2023)) due to ice sheet thinning, which could

lead to an increase in meltwater drainage. Meltwater that enters cracks, crevasses,

and moulins on grounded ice drains into subglacial environments (McGrath et al.,

2012; van der Veen, 2007).

1.2.3 Subglacial hydrology

The study of water beneath the ice sheet is known as subglacial hydrology. Due to

the difficulty of accessing the bed for fieldwork and exploration, our knowledge of

subglacial conditions is largely based on indirect observations and modelling.

Subglacial meltwater is believed to be stored in lakes, refrozen, or transported

along the bed.
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Figure 1.12: Inventory of known subglacial lakes in a) Northern Hemisphere and

Greenland and b) Antarctica (Livingstone et al., 2022).

1.2.3.1 Basal conditions and water routing

Basal melting generates meltwater in addition to water that enters the subglacial

environment through the drainage of Surpraglacial Hydrology Features (SGHF).

This process is caused by frictional heat produced when ice slides over the bed,

heat generated by supraglacial melt flowing into the subglacial environment, and

geothermal heat flux from the Earth’s core (Karlsson et al., 2021). These phenomena

vary in different areas. In the interior of the ice sheet, the basal ice temperatures are

predicted to be below the pressure melting point. In addition, there is little surface

meltwater input to the bed due to lack of meltwater at the surface and ice thickness

inhibits vertical lake drainage to the bed (MacGregor et al., 2016), while frozen bed

conditions inhibit basal sliding (Eisen et al., 2020; Pattyn, 2010). However, around

the edge of the ice sheet, where the ice is not as thick, the basal temperatures reach

or are close to the pressure melting point, allowing basal melting (Dawson et al.,

2022; Engelhardt, 2004; Fahnestock et al., 2001; Joughin et al., 2009; Karlsson et al.,

2021).
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At the surface, the flow of water is determined by the surface’s slope and

gravity. Under the immense pressure created by the mass of ice above it, the flow of

subglacial water is regulated by gradients in water pressure and the topography of

the bed (Fowler, 1987; Iken and Bindschadler, 1986; Schoof, 2010). If the thickness of

the ice, and therefore the pressure, is high enough, subglacial water can go against

gravity and flow uphill or parallel to the slope of the bed (Lliboutry, 1968).

Subglacial meltwater can be drained through efficient channels or inefficient

distributed systems, with meltwater spread over a large area of the bed (Davison

et al., 2019).

The bed beneath both ice sheets is composed of bedrock and porous sediment

regions (Booth et al., 2012; Davison et al., 2019; J. T. Harper et al., 2017; Kulessa

et al., 2017; A. M. Smith et al., 2018). Inefficient drainage occurs through porous

(Darcian) flow through sediment (Boulton and Jones, 1979), films (sheets of water)

(Weertman, 1962), or linked-cavity systems (Kamb, 1987). Channelised drainage

systems are more effective than distributed systems. It is suggested that channels

can form along the main flow paths in the ablation zone; however, their formation

and endurance may be impeded with increasing ice thickness and distance from the

margin (Davison et al., 2019).

The summer melting of ice leads to an increase in subglacial water pressure,

which alters the dynamics of ice flow. This can cause the formation of temporary

channels and conduits that allow water to travel beneath the ice. On the contrary,

during the winter months, temperatures drop significantly, resulting in less surface

melting, drainage pathways close and the system is poorly connected

(Bartholomew et al., 2012). This causes the subglacial water systems to become less

active. Despite this, widespread wintertime subglacial water storage has been

identified beneath Greenland (Chu et al., 2016).
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1.2.3.2 Subglacial lakes

Figure 1.13: Geophysical methods and satellites used to identify subglacial lakes,

sample their environment, and monitor their dynamics (Livingstone et al., 2022).

Subglacial lakes form when meltwater collects in depressions in the topography

of the bed, gets trapped between the ice and the bed (Gilbert et al., 2012), or ice

flows over regions of higher basal friction (known as sticky spots) (Sergienko and

C. L. Hulbe, 2011). Subglacial lakes exhibit two distinct types of behaviour: active

and stable. Active lakes drain along flow paths, forming connected networks,

where drainage events in one lake can cause filling and subsequent drainage in

adjacent lakes (Flament, Berthier, and Rémy, 2014; Fricker and T. Scambos, 2009). It

has been observed that 80% of known lakes are stable, indicating that subglacial
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systems, including these lakes, are closed or have balanced inflow and outflow

(Livingstone et al., 2022). However, it is possible that we do not have enough data

over time to confirm that they are active.

As accessing and exploring the subglacial environment directly is challenging,

identifying and characterising lakes directly is infeasible. Techniques such as

Radio-Echo Sounding (RES), swath radar technology, repeat altimetry, digital

surface models, and direct access via drilling are used to sample lakes (Livingstone

et al., 2022). Despite the fact that Greenland has a more extensive area of surface

melting, Antarctica has ten times the amount of subglacial lakes (Livingstone et al.,

2022). There are 773 known subglacial lakes below ice in the world (Figure 1.12),

675 of these lakes have been identified in Antarctica, 64 in Greenland, and an

additional 34 under ice in other places (Livingstone et al., 2022).

1.3 Importance of supraglacial hydrology

Surpraglacial Hydrology (SGH) is thought to play a significant role in ice sheet

mass balance through processes that affect supra, en, and subglacial environments

(Figure 1.14). In the following sections, I provide a summary of the principal

processes: increased runoff and surface thinning, decreased albedo and feedback

loops, ice shelf collapse, the impact on basal conditions, and finally, cryohydrologic

warming.

1.3.1 Increased runoff and surface thinning

In Antarctica, runoff and thinning are mainly observed on ice shelves, while surface

melting is a common occurrence in most of the Greenlandic ice sheet (Bell et al.,

2018). Meltwater stored in lakes, which does not drain to the sub- or englacial
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Figure 1.14: Three modes of surface melt impact on ice-sheet mass balance: a,

b) surface melt leading to direct surface runoff and thinning, c, d) injection of

surface meltwater into the subglacial environment, e, f) meltwater-induced ice-

shelf collapse (Bell et al., 2018).

environments or refreeze, may be discharged directly from the ice through supra-

and pro-glacial channels, thus contributing to global sea level rise. Prior to 2006, the
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amount of mass lost from Greenland due to surface melting and runoff was

equivalent to the mass lost from dynamical imbalance processes

(M. van den Broeke et al., 2009). However, since then, the mass lost from surface

melting and runoff has exceeded the mass lost from ice dynamics, with up to 84%

of the total annual mass loss from the GrIS being attributed to these processes

(Enderlin et al., 2014; M. van den Broeke et al., 2009). During the period 2003-2013,

the southeast and northwest regions of Greenland accounted for 70% of the total

mass loss (280±58 Gt/yr), while the 54% of the losses suffered in the southwest

were due to a decrease in SMB (Velicogna, Sutterley, and M. R. van den Broeke,

2014). In Antarctica, most of the mass loss is caused by changes in ice dynamics

(Rignot et al., 2008b, 2019; van de Berg et al., 2006; Velicogna, Sutterley, and

M. R. van den Broeke, 2014). The Amundsen Sea sector and the Antarctic Peninsula

are responsible for 64% and 17%, respectively, of the total loss (180±10 Gt/yr,

Velicogna, Sutterley, and M. R. van den Broeke, 2014). Queen Maud Land, East

Antarctica, is the only sector that has experienced a significant mass gain due to a

local increase in SMB (63±5 Gt/yr, Velicogna, Sutterley, and M. R. van den Broeke,

2014). As temperatures and melting rates in Antarctica continue to rise, it is

predicted that mass loss due to surface runoff and thinning will also increase (Bell

et al., 2018).

1.3.2 Albedo & feedback loops

The albedo of a surface is the ratio of the amount of solar radiation that is reflected

from it compared to the amount that is received. It is usually expressed as a value

between 0 and 1 or as a percentage. The higher the albedo, the more solar radiation

is reflected. White surfaces, such as snow and ice, reflect more radiation than

darker surfaces, such as supraglacial meltwater, cryoconite, or blue ice (see Figure
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1.15 in Bell et al. (2018), Leidman et al. (2021), Lenaerts et al. (2017), and

Rennermalm et al. (2013)). Supraglacial hydrology decreases the higher albedo of

the ice surface, increasing the absorption of the incoming solar radiation, and

establishing a positive feedback loop that can enhance further melting

(A. A. Leeson et al., 2015; Lüthje et al., 2006; Tedesco et al., 2012). Although the

albedo decreases with increasing depth of the meltwater, the rate of decrease

decreases rapidly with increasing depth (Lüthje et al., 2006). The fraction of

radiation that is reflected or absorbed by supraglacial meltwater is bound by Beer’s

law (Equation 1.3, Philpot, 1989) which can be used to estimate the depth of

supraglacial water from reflectance values (Banwell et al., 2014; Pope et al., 2016;

Sneed and Hamilton, 2007; Tedesco and Steiner, 2011; Williamson et al., 2018).

Figure 1.15: a) Spectral albedo for supraglacial surfaces dependent on wavelength

(Tedesco, 2015), b) Summer albedo derived from MODIS imagery (Lenaerts et al.,

2017) (J. F. Arthur et al., 2020a).

Snow-free (or blue) ice, exposed bedrock, and cryoconite (sediment found on ice

sheet surfaces composed of mineral and biological material) can reduce the albedo
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of the surface compared to surrounding snow and ice (A. A. Leeson et al., 2015;

Leidman et al., 2021; Lüthje et al., 2006; Orheim and B. Lucchitta, 1990; Rennermalm

et al., 2013; Tedesco et al., 2012). This can lead to local melting in areas where

katabatic winds cause snow erosion, such as around the grounding line (Lenaerts

et al., 2017), making Antarctic ice shelves vulnerable to increased melting (Winther

et al., 1996).

1.3.3 Effect on ice shelves

The Antarctic ice sheet has been losing mass at an accelerated rate in recent years,

mainly due to increased melting of ice shelves caused by the ocean and the dynamic

response of the outlet glaciers (B. Smith et al., 2020). However, atmospheric

warming has also had an effect on ice shelves, such as the disintegration of the

Larsen B ice shelf in 2002, which has been associated with an increased presence of

supraglacial lakes in the years before its collapse (Bell et al., 2018; A. A. Leeson

et al., 2020). The refreezing of meltwater in the firn pores has been proposed to

cause the collapse of ice shelves due to its effect on surface permeability and the

ability of the water to form supraglacial lakes (Kuipers Munneke et al., 2014). In the

months and years before their collapse, the Prince Gustav and Larsen A ice shelves

were host to widespread SGL coverage (Cooper, 1997; A. A. Leeson et al., 2020).

Meltwater flows laterally, forming channels and filling surface indentations and in

some cases draining through the ice shelf. Alteration in local load due to movement

and accumulation of water on the shelf can cause flexural stresses that are strong

enough to create fractures. Meltwater can flow into and expand these fractures

through hydrofracturing, allowing rapid drainage of SGLs (T. A. Scambos et al.,

2000). Rapid drainage of supraglacial lakes has been suggested as a mechanism to

weaken floating ice shelves to the point of collapse (K. E. Alley et al., 2018; Banwell,
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MacAyeal, and Sergienko, 2013; Banwell et al., 2019; Glasser and T. A. Scambos,

2008; A. A. Leeson et al., 2020; T. Scambos, C. Hulbe, and Fahnestock, 2003; Trusel,

Pan, and M. Moussavi, 2022).

Figure 1.16: SGLs mapped over East Antarctica during 2017 overlaid on a

vulnerability map of Antarctica’s ice shelves (Lai et al., 2020).

Laterally confined ice shelves generate a resistive force that slows the flow of ice

into the ocean, a process known as buttressing (Gudmundsson, 2013; van der Veen,

1998). When an ice shelf breaks up, the buttressing effect is reduced, leading to an

increase in the discharge of ice from the upstream glaciers and a corresponding rise

in sea level (De Angelis and Skvarca, 2003). For example, following the collapse of

the Larsen B ice shelf in 2002, the Hektoria, Green, and Evans glaciers accelerated

by up to 8 times their original velocity (Rignot et al., 2004). The stability of ice

shelves across Antarctica varies due to different stress regimes, supraglacial lake

coverage, and local climatological conditions (Figure 1.16, Lai et al., 2020). Many of
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the ice shelves that usually experience widespread coverage of the surface glacial

lake (SGL) are resistant to hydrofracture due to low pressures. However, 60 ± 10

percent of the ice shelves (in terms of area) buttress upstream ice and are

susceptible to hydrofracture if they are flooded with water (Lai et al., 2020). Surface

meltwater is present on many of Antarctica’s ice shelves (J. F. Arthur et al., 2020b;

Dell et al., 2022; M. Dirscherl et al., 2020; Stokes et al., 2019), and although SGH has

been systematically mapped on the EAIS, no dedicated lake inventory for the entire

WAIS and AP exists.

1.3.4 Effect on basal conditions

The drainage of SGL features through hydrofracture is not only limited to floating

ice shelves. Although it is uncertain if this process occurs on grounded ice in

Antarctica, it has been extensively documented in Greenland (K. E. Alley et al.,

2018; R. B. Alley et al., 2005; van der Veen, 2007). This drainage has a noticeable

effect on the basal conditions of glaciers, with rapid delivery of surface water to the

bed reducing basal friction and temporarily increasing ice flow velocities by up to

an order of magnitude (Tedesco et al., 2013). The correlation between surface

melting and ice velocity is largely determined by the structure and efficiency of the

subglacial drainage system, which changes over time and space (Bartholomew

et al., 2010). Therefore, the presence of surface meltwater can cause seasonal

variations in the motion of the ice due to positive feedback between surface melting

and ice velocities (Parizek and R. B. Alley, 2004; Shepherd et al., 2009). A more

efficient drainage system can reduce the basal lubrication effect of external

meltwater inputs by allowing larger discharges in discrete channels (Sundal et al.,

2011). Ice acceleration depends on the amount of water that enters the system, as a

large flow can exceed the hydrological capacity, resulting in an increase in velocity
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as surface melting begins to increase at the beginning of the season (Bartholomew

et al., 2011). As the rate of surface melting stabilises, the acceleration stabilises as

well. The drainage system, which transports water from the ice surface to the edge

of the ice sheet via the bed, develops and expands during the melting season

(Bartholomew et al., 2011), allowing ice sheet accelerations of 35% per positive

degree day of melting during late summer (Shepherd et al., 2009).

Supraglacial lakes have been observed to drain through 1000 m thick ice,

causing seismicity, transient acceleration, ice sheet uplift, and horizontal

displacement, while subsidence and deceleration occurred during the subsequent

24 hours (Das et al., 2008). It has been suggested that lake drainage events in

Greenland are preceded by hourly periods of ice sheet uplift and increased basal

slip (Stevens et al., 2015). This is believed to be due to the injection of meltwater

into the bed through neighbouring moulin systems (Stevens et al., 2015). Similar

mechanisms have been hypothesised to occur in East Antarctica (Langley et al.,

2016). A 2019 study has provided evidence that five glaciers on the Antarctic

Peninsula (Drygalski, Hektoria, Jorum, Crane and Cayley) experienced

near-simultaneous speed-up events in March 2017, November 2017 and March 2018

(Tuckett et al., 2019), suggesting that surface meltwater may have entered the

subglacial hydrological system. Injection of water into the subglacial environment

may lead to increased ocean melting at the calving fronts of both ice sheets (Bell

et al., 2018; Choi et al., 2021) and in ice shelf cavities in Antarctica (Jenkins, Nicholls,

and H. F. J. Corr, 2010; Stewart et al., 2019). In addition to the impact of subglacial

water on modulating ice flow, water discharged into marine settings has the

potential to influence ocean circulation, biogeochemical cycles, ice-ocean

interactions, and advection of geothermal heat flux (Gooch, Young, and

Blankenship, 2016; Liljedahl et al., 2021).
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1.3.5 Cryohydrologic warming

Cryohydrologic warming is a process in which latent heat from meltwater is

transferred to the environment when it refreezes during winter (T. Phillips,

Rajaram, and Steffen, 2010; T. Phillips et al., 2013). This phenomenon can alter the

rheology of ice in crevasses and firn aquifers (B. Hubbard et al., 2016). A study of

the Larsen C Ice Shelf found that the englacial layer (firn) was ∼ 10 °C warmer and

∼170 kg m-3 denser than expected, due to intense melting and intermittent ponding

(B. Hubbard et al., 2016). This suggests that cryohydrologic warming not only

releases latent heat, but also changes the density of ice columns (B. Hubbard et al.,

2016). Therefore, it is important to understand the distribution of supraglacial

hydrology to assess its effect on the mass balance of the ice sheets.

1.4 Known distribution & extent of supraglacial

hydrology

Existing inventories, systematic surveys, and datasets of Antarctic and Greenlandic

supraglacial hydrology are rare. Extensive studies which do exist examine SGHF

either on a small spatial but long temporal scale or a snapshot covering a large area.

Here, I provide an overview of the data sets and research papers that have been

published about SGH in both AIS and GrIS.

1.4.1 Antarctica

There is no complete survey of supraglacial hydrology extent for the AIS. However,

a comprehensive mapping of the East Antarctic Ice Sheet revealed more than 65000

supraglacial lakes in east Antarctica (Stokes et al., 2019) in January 2017 (Figure

1.17). These lakes covered a total area greater than 1300 km2 and were found
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mainly in coastal regions, at elevations less than 100 m above sea level, and on

surface slopes less than 1°. Although this study provided a comprehensive

snapshot of east Antarctic lake distribution, it does not reveal how these lakes have

evolved over time; both in terms of their long-term (decadal scale) evolution and

their short-term (seasonal) variability. Evidence of the long-term endurance of SGLs

and surface streams has been documented on the Shackleton Ice Shelf since 1947

(Kingslake et al., 2017). Additionally, SGH activity has been observed sporadically

over a decade-long period across the EAIS (Figure 1.17, Bell et al., 2017; Kingslake

et al., 2017). Unfortunately, there are no data to indicate whether the occurrence,

area, or volume of these features is increasing or decreasing.

Lakes have commonly been identified on the ice shelves of the Antarctic

Peninsula, including George VI, Larsen B, Larsen C, and Wilkins (J. F. Arthur et al.,

2020a; Glasser and T. A. Scambos, 2008; Kingslake et al., 2017; LaBarbera and

MacAyeal, 2011; A. A. Leeson et al., 2020; T. Scambos, C. Hulbe, and Fahnestock,

2003; D. G. Vaughan et al., 1993). However, to date, no systematic study of

supraglacial lake evolution over time has been performed on either the EAIS or AP.

Furthermore, even less is known about the widespread distribution, density, and

seasonal evolution of supraglacial lakes and channels on the WAIS. Studies have

demonstrated that SGLs form on the Ford Ranges and Pine Island Glacier (Figure

1.17, J. F. Arthur et al., 2020a; Kingslake et al., 2017) and are involved in the collapse

of Larsen-B (A. A. Leeson et al., 2020). A recent study revealed that the duration

and extent of surface melt on the northern George VI Ice Shelf during the austral

summer of 2019 / 2020 were extraordinary compared to the 31 preceding summers

of significantly lower melt. Interestingly, SGH activity is visible from satellite

imagery on Sulzberger, Nickerson, and Dotson ice shelves (J. F. Arthur et al., 2020a),

yet no comprehensive survey has been conducted to date. Supraglacial channels

have been observed crossing the grounding line from Shackleton Glacier onto the
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Figure 1.17: Locations around Antarctica where supraglacial lakes have been

observed, together with examples: (a) Larsen C Ice Shelf, (b) George VI Ice

Shelf, (c) Riiser-Larsen Ice Shelf, (d) Langhovde Glacier, (e) Ross Archipelago,

(f) McMurdo Ice Shelf, (g) Sørsdal Glacier, (h) Mawson Glacier. The locations of

more than 65000 lakes identified on the EAIS are pink (J. F. Arthur et al., 2020a;

Stokes et al., 2019). Image credits: Martin Truffer (a), Frithjof C. Küpper (b), Matti

Leppäranta (c), Takehiro Fukuda (d), NASA Operation IceBridge (e), Chris Larsen,

NASA Operation IceBridge (f), Sarah Thompson (g), and Richard Stanaway (h)).

Ross Ice Shelf, the Amery Ice Shelf, Shackleton Ice Shelf and various other locations

on the EAIS (Bell et al., 2018; Kingslake et al., 2017).
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1.4.2 Greenland

In Greenland, most of the studies of SGH to date have generally aimed to develop

our process-level understanding of the seasonal evolution of supraglacial lakes and

have focused on one or more study sites associated with specific glaciological

basins (Y.-L. Liang et al., 2012; McMillan et al., 2007; Sundal et al., 2009; Williamson

et al., 2018). Small-scale studies detail the existence of lakes on a wide spatial scale,

for example, on the Ryder Glacier (Otto, Holmes, and Kirchner, 2022) and in the

northwest (Gledhill and Williamson, 2018), northeast (Hochreuther et al., 2021;

Schröder et al., 2020; Turton et al., 2020), southeast (Jiang et al., 2022; Stevens et al.,

2022), southwest (K. Yang et al., 2021), and west (Chudley et al., 2019; Yuan et al.,

2020) of the ice sheet. Research carried out on a larger scale showed that lakes were

draining rapidly, with considerable variations in the presence of fast-draining lakes

in the region. Furthermore, a correlation was observed between sudden lake

drainage and dynamic mass loss (Selmes, Murray, and James, 2011) and is the most

recent study that provides seasonal analysis (2009 melt season). However, the

sensor used had a low resolution, which could have caused it to overlook parts of

the SGH system, and the ice sheet has experienced a series of high melting years

since then, such as 2011, 2012 and 2019 (Otosaka et al., 2022). An examination of the

2017 melt season revealed 4530 ice marginal lakes that form at the fringes of glaciers

and ice sheets where flow is impeded or limited (How et al., 2021). Further research

has investigated the yearly and long-term changes of SGH on the GrIS, discovering

SGLs in new parts of the northeast sector of the ice sheet and an expansion further

inland to higher altitudes (Howat et al., 2013; Igneczi et al., 2016), but did not

conduct a comprehensive study across the entire ice sheet. A systematic study of

supraglacial lakes has been carried out on an interannual timescale covering the

entire Greenland ice sheet during the period 2016-2018 (Figure 1.18, Hu et al., 2022).
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This research revealed that SGH activity occurs around most of the edge of the ice

sheet, and the majority of SGLs located in the southwest, northeast, and west of the

ice sheet (Hu et al., 2022).

Figure 1.18: Temporal and spatial distribution of SGLs in Greenland during the

melt seasons from 2016 to 2018. The features are separated by area. Adapted from

(Hu et al., 2022). Examples of supraglacial lakes and channels on GrIS, Image

credits: a), b), f) Laura Stevens, c) Niklas Neckel, d) Marco Tedesco, and e) James

Balog, National Geographic.

Detailed studies reveal supraglacial channels on the GrIS, for example, in the

Isortoq and Watson River basins (K. Yang et al., 2021), northwest Greenland (K. Yang

et al., 2019a), and southwest Greenland (Gleason et al., 2016; Gleason et al., 2020;
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Leidman et al., 2021, 2023; L. C. Smith et al., 2015). However, these studies are based

on very high resolution commercial data, which can resolve to sub-metre resolution

but are limited by data coverage and availability at the ice sheet scale, or concern

only small study sites.

1.5 Remote sensing data

The practise of detecting and monitoring physical characteristics by collecting

reflected and/or emitted radiation from satellites or aircraft is known as remote

sensing. This field is usually divided into active (a signal sent out from the

monitoring device which is reflected by the target object and detected by the sensor,

e.g. radar) and passive (the reflection of sunlight detected by the sensor, e.g. optical

imagery) remote sensing. To begin with, I explain the various data sources that

have been used in the literature to map supraglacial hydrology. In Section 1.6, I

examine the different techniques that have been used to identify supraglacial

hydrology. In this review, I will be concentrating solely on satellite data, as other

data sources, such as field studies, are not pertinent to the techniques I am using in

my thesis.

1.5.1 Optical & multispectral imagery

Multispectral satellite imagery is advantageous for mapping ice sheet surface

hydrology because open water features, such as lakes and channels, have a distinct

spectral signature in the available wavelengths. This makes it possible to identify

supraglacial lakes on the Greenland and Antarctic Ice Sheets (Figure 1.19). Studies

of supraglacial channels are less common and are usually limited to regional-scale

studies due to the need for very high-resolution data (e.g., L. C. Smith et al., 2015).
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Additionally, multispectral imagery can be used to estimate lake depth (Section

1.6.4) by applying a radiative transfer model (Philpot, 1989). However, the main

limitation of multispectral imagery is its sensitivity to clouds, which can obscure

the surface when present. This is especially problematic around ice sheet margins,

which are often cloudy due to orographic effects, and can significantly reduce the

temporal sampling of optically derived feature datasets, such as supraglacial lake

inventories (A. A. Leeson et al., 2013).

Figure 1.19: Examples of the evolution of satellite image sensor resolution and

detection of supraglacial lakes on Beaver Lake, adjacent to Amery Ice Shelf, East

Antarctica (J. F. Arthur et al., 2020a).
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1.5.1.1 Coarse resolution sensors

Coarse resolution sensors are those with a spatial resolution of less than 250 metres.

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board

the Aqua and Terra satellites have a spatial resolution ranging from 250 to 1000

metres and a temporal resolution of 1 to 2 days (Table 1.2). This imagery has been

used to map supraglacial lakes on the GrIS and AIS in many studies (Box and Ski,

2007; Fitzpatrick et al., 2014; B. Hubbard et al., 2016; Johansson and Brown, 2012;

A. A. Leeson et al., 2012; A. A. Leeson et al., 2013; Lenaerts et al., 2017; Y.-L. Liang

et al., 2012; Macdonald et al., 2019; Selmes, Murray, and James, 2011; Spergel et al.,

2021; Sundal et al., 2009; Williamson et al., 2017). Additionally, Advanced Very

High Resolution Radiometer (AVHRR) (Table 1.2), a multispectral scanner with a

spatial resolution of 1 km and sub-daily repeat coverage at nadir, has been used to

identify supraglacial lakes (Greuell, Reijmer, and Oerlemans, 2002; T. A. Scambos

et al., 2000; Steffen, Abdalati, and Stroeve, 1993). These sensors are beneficial for

studies requiring high temporal frequency, but their relatively poor spatial

resolution makes it difficult to resolve features smaller than <0.062 km2 for MODIS

and <1.18 km2 for AVHRR (Figure 1.19, J. F. Arthur et al., 2020a). To gain a more

comprehensive understanding of SGH on Earth’s ice sheets, higher spatial

resolution is needed.

1.5.1.2 Medium resolution sensors

Numerous studies have evaluated the activity of SGHF using sensors of medium

resolution. I consider medium resolution sensors to have a spatial resolution of

between 10 and 250 meters. In early studies, SGLs were identified from Landsat-1,

2, 3, 4, and 5 (60-100 meters); however, their area could not always be precisely

determined (Table 1.2, Orheim and B. K. Lucchitta, 1987; Winther et al., 1996). The
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Table 1.2: Optical satellite sensors and their respective launch dates, end of

mission dates, revisit time, and spatial resolution.

Sensor Launch Date End Date Revisit Time [days] Spatial Resolution [m]

MODIS Aqua 05/2002 Ongoing 1-2 250-1000

MODIS Terra 12/1999 Ongoing 1-2 250-1000

AVHRR 01/1970 Ongoing 0.5 1100

Landsat 1 07/1972 01/1983 18 60

Landsat 2 01/1975 02/1982 18 60

Landsat 3 03/1978 03/1983 18 60

Landsat 4 07/1982 06/2013 16 30

Landsat 5 03/1984 06/2013 16 30

Landsat 6 10/1993 Launch Failure - -

Landsat 7 04/1999 09/2021 16 30

Landsat 8 02/2013 Ongoing 16 30

Landsat 9 09/2021 Ongoing 16 30

Sentinel-2A 06/2015 Ongoing 5 10-60

Sentinel-2B 03/2017 Ongoing 5 10-60

ASTER 12/1999 Ongoing 4-16 15-90

WorldView-2 10/2009 Ongoing 1.1 0.46-1.8

IKONOS 09/1999 Ongoing 1-3 0.82-3.2

PlanetScope 01/2013 Ongoing 1-3 3

launches of Landsat-7, 8, and 9 (with resolutions of 15 to 30 metres) have enabled

the repeat monitoring of supraglacial lakes for small-scale studies (e.g. Bell et al.,

2017; Dell et al., 2022; Gledhill and Williamson, 2018; Halberstadt et al., 2020;

Kingslake et al., 2017; Langley et al., 2016; K. E. Miles et al., 2017; M. Moussavi

et al., 2020; Pope et al., 2016; Stokes et al., 2019; Williamson et al., 2018 and many

others). The two Landsat missions that are still in operation (Landsat-8 and

Landsat-9) are designed to provide 8-day repeat coverage of any part of the world

(Table 1.2). They are equipped with 8 multispectral bands (with a resolution of 30
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metres), a panchromatic band (15 metres) and 2 Thermal Infra-Red Sensor (TIRS)

bands (100 metres).

The Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) sensor, which is on board the Terra satellite, has 14

multispectral bands with a resolution of 15-90 m and covers the visible to thermal

infrared range (Table 1.2). It has a revisit time of 1 to 2 days and has been used to

observe the seasonal changes and drainage events of lakes in East Antarctica

(Langley et al., 2016), Jakobshavn Isbrae, Greenland (Georgiou et al., 2009), and

Larsen-B, Antarctic Peninsula (Glasser and T. A. Scambos, 2008). National

Aeronautics and Space Administration (NASA) made ASTER data publicly

available in 2016, however, all Short-Wave Infra-Red (SWIR) data collected by the

sensor since 2008 have been deemed unusable.

The European Space Agency (ESA) has launched two twin sensors, Sentinel-2A

and 2B, which offer a higher spatial resolution of 10 metres for red, green, blue,

and near-infrared (NIR) bands, with a 5-day revisit period (Table 1.2). Additionally,

they contain nine bands spanning the visible to short-wave infrared (SWIR) ranges,

with a resolution of 20 to 60 metres. Similar to the Landsat missions, Sentinel-2 has

been used to effectively estimate SGH activity on both ice sheets (M. Dirscherl et al.,

2020; M. C. Dirscherl, Dietz, and Kuenzer, 2021; Hu et al., 2022; Stokes et al., 2019;

Williamson et al., 2018). The higher spatial resolution of Sentinel-2 allows for the

delineation of supraglacial channels (SGCs) (Y. Li et al., 2022; L. C. Smith et al., 2015,

2021; K. Yang et al., 2014; K. Yang et al., 2019a, 2021).

In the past eight years, Landsat-8 and Sentinel-2 have been combined to increase

the number of cloud-free scenes that can be used to map SGH activity (Kingslake

et al., 2017; A. A. Leeson et al., 2015; K. E. Miles et al., 2017; M. Moussavi et al., 2020;

Stokes et al., 2019). The combination of sensors with different spatial and

radiometric resolutions can be difficult, as it can lead to geometric misalignments
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and scaling issues. Furthermore, Sentinel-2 captures images in 12-bit radiometric

resolution, while Landsat-8 uses 16-bit, so merging these datasets requires

radiometric consistency to prevent information loss and maintain data quality.

Additionally, it can be difficult to reconcile the temporal differences in data

acquisition between the two sensors, so caution should be taken when directly

comparing the results obtained from each sensor. These sensors, which are free and

easy to access, are a great asset for polar science; however, there are also

higher-resolution commercial sensors available.

1.5.1.3 Fine resolution sensors

Commercial satellite imagery provides much finer spatial and temporal resolution

data products than ever before (Table 1.2). SGHF have been identified in

Worldview-2 (1.84 m resolution, 1.1 day revisit period), IKONOS (3.28 m, 3 day

revisit period) and PlanetScope satellite constellation imagery (0.8-5 m resolution,

daily revisit period), as reported in (Bolch et al., 2008; Datta and Wouters, 2021;

Jawak and Luis, 2014; Juen et al., 2014; M. S. Moussavi et al., 2016; Pope et al., 2016;

K. Yang and L. C. Smith, 2013; K. Yang et al., 2017). Despite the improved spatial

and temporal resolution, the cost and data availability of these sensors are

restrictive, limiting their use in large-scale studies, and thus they have only been

used in small-scale studies.

1.5.2 Radar

Radiation emitted by Radio Detection and Ranging (RADAR) devices is less

affected by clouds than optical images, thus providing a way to map surface

hydrology even in cloudy weather, winter, and when the solar zenith angle reduces

the spectral distinctions between SGLs and their environment.

49



1.5. Remote sensing data

1.5.2.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a type of radar device used to detect lakes in

imagery. Unlike optical approaches, SAR relies on the backscatter signature of the

lake being different from the surrounding ice. The signal is more complex in SAR,

since the backscattered signal of the ice is more variable (M. Dirscherl et al., 2021;

Jiang et al., 2022), while lakes always appear darker than the surrounding ice in

optical imagery. In Antarctica, studies have found that lakes appear dark against

bright in winter and bright against dark in summer, with a period in autumn and

spring where the signal is indistinct (A. A. Leeson et al., 2020). In Greenland, the

signature of lakes is more uncertain; studies suggest that in the percolation zone in

southwest Greenland, liquid water appears dark against bright, and fully refrozen

lakes appear bright against dark (K. E. Miles et al., 2017).

In the past, ERS-1/2, Radarsat, and Envisat SAR have been employed to detect

supraglacial lakes on both ice sheets (Fricker et al., 2002; Johansson and Brown, 2012;

B. K. Lucchitta and Rosanova, 1998; Luckman et al., 2014; H. A. Phillips, 1998; Rott,

Skvarca, and Nagler, 1996). More recently, Sentinel-1 has been used for this purpose

(M. Dirscherl et al., 2021; Jiang et al., 2022; K. E. Miles et al., 2017; Schröder et al.,

2020). However, SAR imagery is only useful for mapping areas and not depth due

to the strong attenuation of microwave signals in water, which prevents the radar

from penetrating the water surface and measuring the depth. Additionally, due to

the penetration of the microwave signal into the snow, SAR imagery can be used to

map subsurface and refrozen supraglacial lakes (Benedek and Willis, 2021; Koenig

et al., 2015; K. E. Miles et al., 2017; Schröder et al., 2020), allowing for the examination

of their wintertime development (Figure 1.20).
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Figure 1.20: Supraglacial lake examples in Landsat-8 RGB imagery (a, c) and

Sentinel-1 HH polarisation (b, d). a) and b) show examples of partially refrozen

lakes on days 235 and 232 of the 2015 melt season, while c) and d) reveal subsurface

lakes on day 212 and, much later, day 239 of the 2015 melt season (K. E. Miles et al.,

2017).

1.5.2.2 Lidar and radar altimetry

Laser Imaging, Detection, and Ranging (LIDAR) is a technique for measuring the

distance between a sensor and an object by timing the reflection of laser pulses from

the object’s surface to the receiver. Water surfaces reflect light horizontally and in a

highly concentrated manner, which can be used to accurately determine the area of
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supraglacial lakes. Additionally, some photons can penetrate shallow lakes (or ice

and snow) to estimate the depth of the lake (Figure 1.21) and bathymetry (Fair et al.,

2020; Studinger et al., 2022) after accounting for refraction in the water column (to

detect buried lakes Koenig et al., 2015). SGHF have been identified using multiple

lidar sources, such as NASA’s Airborne Topographic Mapper from Operation

IceBridge, ICESat-2, and other lidar missions (Datta and Wouters, 2021; Fair et al.,

2020; Georgiou et al., 2009; Koenig et al., 2015; McMillan et al., 2007; Shean et al.,

2019; Studinger et al., 2022). Radar altimeters work similarly to laser altimeters, but

emit radio waves instead of laser pulses. For example, CryoSat-2 has been used to

measure the height of supraglacial lakes in western Greenland (Gray et al., 2016).

1.6 Methods for mapping supraglacial hydrology

The most reliable way to map the lake region using satellite or airborne imagery is

through manual digitisation (A. A. Leeson et al., 2013). However, this is a laborious

process and is not suitable for large-scale monitoring. Automated approaches are

much more efficient but tend to produce errors in the delineation of lakes. To

ensure accuracy while mapping on a large scale, automated techniques are often

combined with manual post-processing. Recent advances in applying machine

learning algorithms to satellite imagery have enabled automated approaches to

classify supraglacial hydrology without the need for laborious post-processing.

Mapping supraglacial channels has been done using processes similar to those used

for lake detection. However, accurately delineating these features is difficult due to

narrow channels, varying contrast between meltwater and surrounding ice or snow,

and complex drainage patterns (McGrath et al., 2011; L. C. Smith et al., 2017;

K. Yang and L. C. Smith, 2013; K. Yang et al., 2017). Various techniques have been

developed for mapping supraglacial hydrology with non-optical remote sensors.
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Figure 1.21: a) A mosaic of five natural colour images of a supraglacial lake

from the Airborne Topographic Mapper (ATM) on 15 May 2019, (b) Return

signal strength of the ATM laser footprints, (c) NDWIice plotted on the image

mosaic, (d) Surface classification of ATM laser footprints, (e) Surface elevation

of laser footprints over snow and ice, (f) Water depth of the hydrological feature

(Studinger et al., 2022).

For example, drone imagery has been used to generate high-resolution (0.01 m)

Digital Elevation Model (DEM) to detect channels using flow routing techniques on

ice surfaces (Karlstrom and K. Yang, 2016; Rippin, Pomfret, and King, 2015).

However, these methods are beyond the scope of the thesis and are not discussed.

Here, I evaluate manual, thresholding, and machine learning techniques to classify

supraglacial hydrology in optical satellite imagery. In addition, I evaluate the
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techniques used to quantify the depth of lakes using remote sensing techniques.

1.6.1 Manual approaches

Manual digitisation of lakes (Figure 1.22) and channels from a combination of true

colour composites, band combinations or ratios (e.g., Normalised Difference Water

Index (NDWI)), and standard image enhancement procedures (e.g. histogram

equalisation and contrast stretching) has been implemented for small-scale studies

(Fitzpatrick et al., 2014; Lampkin and VanderBerg, 2014; Langley et al., 2016;

K. Yang and L. C. Smith, 2016). However, due to the time-consuming nature of this

method, only 150 satellite images were assessed in a previous study (Langley et al.,

2016), and it is not an appropriate method for large-scale studies.

1.6.2 Thresholding

Classifying an image as lake or non-lake can be done by using static thresholding,

which applies an optimised threshold to a single image. The NDWI technique is

used to differentiate open water features and make them more visible in remote

sensing images. The original NDWI, NDWIGNIR, uses near-infrared radiation and

visible green light to emphasise open water and reduce the presence of soil and

vegetation (Equation 1.1, McFeeters, 1996), due to the higher reflectance of Near

Infra-Red (NIR) of surrounding terrestrial features compared to water. The

NDWIGNIR has been used to detect supraglacial hydrology on both ice sheets (Datta

and Wouters, 2021; Stokes et al., 2019), and its accuracy has been confirmed by

comparing it to manually delineated features (Figure 1.22). The total lake area for

each sample in the study had an areal difference of less than 0.5% (Stokes et al.,

2019).
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NDWIGNIR =
GreenBand − NIRBand
GreenBand + NIRBand

(1.1)

Figure 1.22: NDWI classification (white outlines) versus manual digitisation

(black outlines) from Sentinel-2 imagery for two SGLs on the Amery Ice Shelf

(Stokes et al., 2019, Supplementary information).

However, this approach has been described as unsuitable for glacial

environments, as melting ice, snow, and firn also have low reflectivity in the NIR

wavelengths (K. Yang and L. C. Smith, 2013). Consequently, NDWIBR (Equation 1.2,

also known as NDWIice) was developed to differentiate supraglacial water features

on the Greenland ice sheet from WorldView-2 images (K. Yang and L. C. Smith,

2013). A method to delineate actively flowing streams in high-resolution satellite

imagery, which uses spectral and pattern information, was based on the initial

NDWIBR approach and has a reported overall accuracy of 85.2%. Relying solely on

the overall accuracy for the classification of SGLs may not provide a full

understanding of the model performance as a result of the class imbalance in

satellite imagery. In the context of SGLs, these water bodies are often a minority

compared to non-water features such as ice and terrain. As a result, a model that

predicts ”no lake” for every pixel can achieve a high overall accuracy by correctly
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classifying the majority class, but fails to detect the important minority class, SGLs.

Therefore, a high overall accuracy metric can be deceptive, masking the model’s

inability to accurately identify the target lakes. When working with unbalanced

data sets, a metric that penalises inadequate performance of the minority class can

be a better indicator of model performance, such as the F1 score. The F1 score is a

metric used in classification tasks that combines precision (the ability of a model to

avoid false positives) and recall (the ability to identify relevant classes) into one

value, offering a balanced assessment of a classifier’s overall performance. NDWIBR

has been used on GrIS to distinguish between lakes, channels, and slush in data

from various sensors (Fitzpatrick et al., 2014; K. E. Miles et al., 2017; Williamson

et al., 2018; K. Yang et al., 2021), with Root Mean Square Error (RMSE) values

ranging from 0.007 km2 to 0.32 km2 compared to the results of other models.

Generally, the thresholds on NDWIBR are in the range of 0.2 to 0.5 (J. F. Arthur et al.,

2020a). SGHF have been studied on the EAIS using NDWIBR with thresholds from

0.12 to 0.25. This has been used to distinguish between shallow water/slush and

medium deep water, with misclassifications ranging from 11 to 23% for lakes and

partially snow or ice-covered lakes (Bell et al., 2017; Jawak and Luis, 2014).

NDWIBR =
BlueBand − RedBand
BlueBand + RedBand

(1.2)

The NDWI index has been employed to map supraglacial lakes using Sentinel-2,

Landsat-8, MODIS, ASTER, and other auxiliary data (Stokes et al., 2019; Williamson

et al., 2018; K. Yang and L. C. Smith, 2013). The use of extra filters based on

individual image bands has been demonstrated to enhance the effectiveness of

NDWI thresholding techniques, reducing misidentification of lakes (Fitzpatrick

et al., 2014; M. Moussavi et al., 2020), with accuracies of more than 94% reported

(M. Moussavi et al., 2020). These filters include additional thresholding to eliminate

misclassified rock and cloud pixels. Red/blue band thresholding, which uses a
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ratio of blue to red surface reflectance values, is an additional static thresholding

approach used to define water pixels in a scene (Banwell et al., 2014; Box and Ski,

2007). This method exploits the stronger attenuation through water of red light, as

compared to blue light, within the optical part of the spectrum. A threshold placed

on the ratio of blue to red reflectance is then used to identify water pixels (Banwell

et al., 2014; Pope et al., 2016).

Static thresholding techniques are generally reliable in distinguishing SGLs, yet

they can cause the exclusion and misidentification of small streams and channels

(L. C. Smith et al., 2015). Manual adjustments and tuning of methods are often

necessary to meet certain scientific objectives, and the effectiveness of these

techniques can vary significantly in different parts of the same ice sheet and even

within the same image tile (Hochreuther et al., 2021; Watson et al., 2018). Dynamic

thresholding, which applies a different threshold to each region or data tile based

on its optical, glaciological, or climatological properties, provides a way to reduce

noisy misclassified areas (K. E. Miles et al., 2017; Williamson et al., 2017). This

approach involves dividing the image into smaller windows around each lake,

making it simpler to distinguish between lake and non-lake. Possible problems that

may arise include determining the most suitable window size and the danger of

misidentifying in intricate parts of the image, such as when a lake is close to

bedrock, blue ice, highly crevassed areas, or cloud shadow. Adaptive classification

has been employed to recognise and map SGL features using MODIS imagery. This

object-orientated method takes into account information from groups of pixels,

rather than individual pixels, allowing the inclusion of size, shape, and contextual

information from lakes (Johansson and Brown, 2013). The surface reflectance values

of the red and blue bands were used to extract lake information, such as their

morphology and environment. This multiclass approach enables SGLs to be

identified by their length, shape, and reflectance. While, an approach has been
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developed to improve the delineation of SGCs from multispectral imagery in

Greenland (K. Yang et al., 2017). Automated approaches to lake digitisation have

been shown to generate significant errors (omitting, for example, 29% - 48% of lakes

compared to manual approaches, A. A. Leeson et al., 2013). Therefore, more

recently, machine learning algorithms have been developed to combat this.

1.6.3 Machine learning

Figure 1.23: Machine learning techniques encompass supervised learning, such

as classification (e.g. random forest) and regression (e.g. linear regression),

unsupervised learning, such as clustering, and reinforcement learning, which

improves model performance by interacting with the environment. The coloured

dots and triangles in the figure represent the training data, while the yellow stars

represent the new data that can be predicted by the trained model (Peng et al.,

2021).

Machine Learning (ML) is a branch of artificial intelligence that focusses on the

use of data and algorithms to emulate how humans learn, improving performance
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through experience. Deep learning is a subset of ML based on artificial neural

networks (simply, neural networks). Neural networks are interconnected groups of

nodes modelled after the human brain. They are composed of many layers of

artificial neurons that work together to build relationships and process information

to make a prediction (Figure 1.25).

There are three different types of learning used in machine learning and deep

learning: supervised, unsupervised, and reinforcement learning (Figure 1.23).

Supervised algorithms require labelled data to be inputted. The model is trained on

the desired output and the prediction is compared with the label, with adjustments

made depending on the results. This process is repeated until the desired accuracy

is achieved or the learning plateaus. Unsupervised learning does not require the

input of labels. The model is able to compute an answer without the help of labels

and can uncover unknown patterns in the data. Reinforcement learning uses

trial-and-error approaches to reward the algorithm when it produces a desired

outcome and penalise it when undesired outcomes are reached. Machine learning

has been employed for the analysis of satellite imagery since the 1990s (e.g.,

Charlebois, Goodenough, and Matwin, 1993; Huang, Jensen, and Mackey, 1995).

However, it has only been applied more recently to supraglacial hydrology (e.g.,

M. Dirscherl et al., 2020; Halberstadt et al., 2020; Yuan et al., 2020). Within the

context of ML for mapping SGHF, 5 techniques have been used, k-means

clustering, Random Forest (RF), Convolutional Neural Network (CNN), Support

Vector Machine, and U-NET.

1.6.3.1 Classical machine learning

In Antarctica, k-means clustering techniques, a type of unsupervised algorithm,

have been used to train supervised classifiers to map SGLs (Dell et al., 2022;

Halberstadt et al., 2020; C. S. R. Smith, 2022). The k-means clustering algorithm,
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which is the only supervised classification algorithm available in Google Earth

Engine, is a popular choice among the research community due to its robustness;

therefore, it is a suitable tool for generating training data (Dell et al., 2022). It is

essential to validate the results when using a k-means clustering algorithm to label

SGLs. This method does not have any prior knowledge of the characteristics of

SGLs, which could lead to incorrect cluster assignments or splitting a single SGL

into multiple clusters. K-means assumes that clusters are spherical and of the same

size, and requires the number of clusters to be specified in advance, which can be

difficult. Furthermore, its sensitivity to initial conditions can cause inconsistent

results. To enhance accuracy, it is suggested to combine unsupervised clustering

with manual validation and post-processing for reliable SGL identification.

However, these studies (Dell et al., 2022; Halberstadt et al., 2020; C. S. R. Smith,

2022), classify SGLs with overall accuracies of more than 90% reported.

Figure 1.24: Visualisation of random forest algorithm (Kibria and Matin, 2022).

Random Forest (RF) is a supervised learning algorithm that requires labelled

training data to make predictions (Breiman, 2001). On the other hand, k-means
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clustering is an unsupervised learning technique used for data grouping and

segmentation. RF combines the predictions of multiple decision tree classifiers,

referred to as a forest, to enhance the overall classification precision (Figure 1.24).

Each decision tree is constructed using a random subset of training data and a

random subset of features for each node split. This variability reduces the risk of

overfitting, which is especially beneficial when dealing with complex and noisy

data, such as optical satellite imagery. During the classification process, each tree in

the forest independently assigns a class label (SGL or non-SGL) to a pixel in the

satellite image based on the selected features. The final classification is determined

by a majority vote among all decision trees. This ensemble approach provides

several advantages for SGL classification. Increases the algorithm’s capacity to

handle high-dimensional data and capture complex relationships between spectral

bands, indices, and other relevant features. Compared to other ML classifiers,

random forest methods offer comparatively low computation time, parallel

processing capabilities, simple parameter tuning, and low risk of overfitting (Belgiu

and Drăguţ, 2016; Breiman, 2001; Pal, 2005; Sazonau, 2012). It is made up of a group

of unrelated decision trees whose results are combined for a single result (Figure

1.24). The implementation of a RF classifier has allowed the development of a first

automated mapping technique of SGHF on Sentinel-2 optical data throughout

Antarctica (M. Dirscherl et al., 2020). The RF was trained in 14 training regions and

applied in eight spatially independent test regions distributed throughout the

Antarctic continent. RF has been exploited to classify ponded SGL and slush in AIS

using Landsat-8 (Dell et al., 2022), and SGLs in Greenland from 2016 to 2018 (Hu

et al., 2022), however, neither study considered long-term extents of surface water

on an ice sheet scale. The performance of the model was evaluated using a variety

of metrics, such as the overall accuracy (ranging from 84-98%), the kappa coefficient

(0.94), and the F1 score (0.86). The kappa coefficient and the F1 score are not
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suitable for comparing the performance of different models, but they are reliable

indicators of how a classifier performs on unbalanced datasets.

1.6.3.2 Deep learning

Deep learning algorithms have been applied to the detection and extraction of SGLs

in southwest Greenland using CNNs (Yuan et al., 2020). CNNs, one of the various

types of artificial neural networks (Figure 1.25), mimic the hierarchical processing

of human vision by using convolutional layers to recognise patterns and details in

the input image, followed by pooling layers to maintain important information

while decreasing computational load. Fully connected layers then make

classification decisions based on these features, with activation functions adding

non-linearity for pattern recognition. Convolutional, pooling, and fully connected

layers are all considered-hidden layers (Figure 1.25). Training CNNs involves

supervised learning, adjusting internal parameters to minimise prediction errors.

Techniques such as dropout and weight regularisation help avoid overfitting.

Convolutional Neural Networks have several advantages over traditional Machine

Learning techniques. They can learn relevant features from data without manual

feature extraction, making them well-suited for recognising shapes and sizes in

SGL. Additionally, they are scale-invariant and can be trained end-to-end.

However, they require a large amount of labelled data, complex architectures, and

significant computing power. Additionally, they can be difficult to interpret and

may overfit with limited data. The authors (Yuan et al., 2020) used CNNs to detect

water in Landsat-8 imagery, and then employed morphological and geometrical

algorithms to extract the SGLs. This approach has been demonstrated to be more

accurate than an adaptive thresholding method, as well as two machine learning

methods: Random Forests and Support Vector Machine. The study reported an

overall accuracy of 97-99%, recall of 0.95-1.00, and a precision of 0.99-1.00 for CNN,
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however, no metric was provided for unbalanced data sets. U-NET is a type of

CNN where the image is converted to a vector and, using the same mapping, the

vector is reconverted to an image. The distortion of the image is reduced by

preserving the original structure. U-NET has been implemented with Sentinel-2

and Sentinel-1 SAR imagery to extract SGL features on GrIS (Di et al., 2021; Lutz,

Bahrami, and Braun, 2023). The F1 scores (or Dice coefficients) in both studies were

reported to be higher than 0.95.

Figure 1.25: Visualisation of artificial neural network for a) multiple classes, b)

binary classes (Kibria and Matin, 2022).

1.6.4 Methods for estimating supraglacial lake depth & volume

The depth of the SGHF can be measured or estimated using four main methods: in

situ sampling, DEM differencing, laser altimetry, and Radiative Transfer

Model (RTM). In situ sampling has been used in the literature to validate and/or

calibrate other techniques, such as when combined with remote sensing reflectance

data (Box and Ski, 2007; Fitzpatrick et al., 2014). However, due to time and financial

constraints, in situ measurements are not a practical approach for retrieving depth
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on a continental scale. DEM differencing has been used to generate SGL (Das et al.,

2008; Lampkin and VanderBerg, 2011) and SGC (Karlstrom and K. Yang, 2016)

depth estimates. Additionally, DEMs have been used to calibrate SGL depth

estimates (M. S. Moussavi et al., 2016; Pope, 2016). However, DEMs have a

relatively low temporal resolution. For example, the most recent version of

ArcticDEM’s model of the GrIS was created using data collected in 2017 (Porter

et al., 2018). Laser altimetry has been shown to be a reliable technique for

determining lake depths, as evidenced by its use to validate depths (McMillan

et al., 2007), calculate uncertainty (Shean et al., 2019), and estimate depths without

the need for additional data (Fair et al., 2020). However, since the laser beam only

collects data along the flight path of an aircraft or satellite, depth estimates are only

available as transects for a limited number of features (Fair et al., 2020). Radiative

transfer models, based on the Bouguer-Lambert-Beer law (Equation 1.3, Philpot,

1989), have been used in the literature to estimate lake depths from optical

reflectance in satellite or airborne imagery (Banwell et al., 2014; L. Melling et al.,

2023; Pope et al., 2016; Sneed and Hamilton, 2007; Tedesco and Steiner, 2011;

Williamson et al., 2018). The attenuation of optical wavelengths in the water

column creates a relationship between surface reflectance and depth. These models

calculate how light interacts with water and ice, and by monitoring changes in the

intensity and spectral properties of the reflected light, the optical depth of the

feature can be estimated, which is equivalent to the depth of water or ice in

supraglacial lakes. The reflectance values, taken from the red or green bands of

optical satellite imagery (Figure 1.26), are used to calculate depth.

Z =
ln Ad − R∞ − ln Rw − R∞

-g
(1.3)

Where:
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Z is the depth in metres.

Ad is the reflectance of the ice below the SGHF pixel (bottom albedo).

R∞ is the reflectance of optically deep water.

Rw is the reflectance of the SGHF pixel of interest.

g is the coefficient for loss of spectral radiance in the water column. g ≈ 2Kd (Kd

is the diffuse attenuation coefficient of the downward light, (Maritorena, Morel, and

Gentili, 1994)).

Radiative transfer models allow efficient continental-scale estimations of lake

depth from available satellite imagery. Using the same satellite imagery used in the

areal classification (Sentinel-2 (S2) and Landsat-8 (L8)) removes the need for

auxiliary data, resulting in a streamlined workflow for multiyear continental

volume retrieval on GrIS. As the bottom albedo, Ad, value cannot be directly

obtained from satellite imagery, it is commonly estimated by taking the mean

reflectance value around from a boundary of pixels that form the lake boundary

(M. Moussavi et al., 2020; Williamson et al., 2017).

1.7 Identified knowledge gaps, challenges, & solutions

for SGH remote sensing

This review has revealed a number of knowledge gaps in our understanding of

supraglacial hydrology on the Greenland and Antarctic ice sheets. Here, I detail the

knowledge gaps, postulate the challenges that I, and the remote sensing community

as a whole, face in improving our understanding of this topic, and suggest potential

solutions to these challenges.

Knowledge gaps hinder a thorough understanding of the distribution and
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Figure 1.26: Visualisation of the values which are used in the Radiative Transfer

Model to retrieve lake depths.

temporal evolution of supraglacial hydrology on both ice sheets. For the AIS, there

are no large-scale inventories for West Antarctica or the Antarctic Peninsula. In

Greenland, inventories are conducted on the ice sheet scale, yet they only take into

account a few melt seasons and do not consider interannual seasonal changes in

SGH over a longer period of time. The absence of adequate training and validation

data sets for machine learning algorithms to measure supraglacial hydrology on an

ice sheet scale is clear. Furthermore, while there are approaches used to quantify the
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uncertainty in pixel-based classification algorithms (Kwon et al., 2020; Villejo, Illian,

and Swallow, 2023; C. Yang et al., 2023), no methods have been applied to the

classification of supraglacial hydrology. Therefore, it is difficult to determine

whether human-induced climate change has caused an increase in the amount or

extent of supraglacial hydrology; if lake and channel features vary seasonally; if

hydrological features have an effect on ice dynamics; or if previous estimates for the

area and volume of SGHF are reliable.

Major challenges to improving our understanding of the distribution and

temporal evolution of SGHF are the lack of usable data, the complexity of

combining sensors with different spatial and radiometric resolutions, computer

memory and storage limits, correcting for atmospheric effects, the lack of quality

training and validation data, the automation of quality assurance procedures, and

the quantification of uncertainties.

A lack of data is caused by a variety of elements, such as cloud cover (Figure

1.27), the revisit period, darkness, and the solar elevation angle. However, the use

of multispectral satellite imagery is beneficial for mapping meltwater, as it has a

unique spectral signature compared to the ice that surrounds it. To address data

availability issues, it is common to join optical sensors (Kingslake et al., 2017;

A. A. Leeson et al., 2015; B. W. J. Miles, Stokes, and Jamieson, 2017; M. Moussavi

et al., 2020; Stokes et al., 2019). Combining products with different spatial

resolutions can be a difficult task. To address this, data products can be resampled

or pan-sharpened. Landsat-8, for example, has a panchromatic band that can be

used for this purpose. The 30 m bands in Landsat-8 can be pan-sharpened to a

resolution of 15 m (similar to the 10 m resolution of Sentinel-2) using an Intensity

Hue Saturation method (Rahmani et al., 2010). However, pan-sharpening can affect

the spectral accuracy of the data, so it should be used with caution. Working with

multiple sensors presents an additional challenge: managing large datasets, often
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spanning terabytes, requires a reliable computational infrastructure, leading to high

costs and logistical complexities. The processing of such data demands substantial

memory capacity and computational resources, although the advent of cloud

computing, high performance computing clusters, and Google Earth Engine has

helped (e.g. Zhu et al., 2022).

Figure 1.27: Working principles of optical, active (AM), and passive (PM)

microwave sensors under different atmospheric and melting conditions: (a) No

melt and sunlight, (b) Surface melt and sunlight, (c) Surface melt and no sunlight

due to cloudy and/or nighttime conditions, (d) Near-surface melt and sunlight

(Husman et al., 2023).

Optical satellite imagery captures radiation that is reflected from clouds and the

atmosphere, and thus atmospheric correction is often applied. This processing step

attempts to remove light reflected from the atmosphere to provide an estimate of

surface reflectance. Sentinel-2 Level-1C imagery is provided as a top of atmosphere

(TOA) product, while Landsat data are not. There are methods to transform

Landsat data into TOA and brightness temperature values (which give insight into
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the thermal characteristics of the surface, Band 10 and Band 11 in Landsat-8

imagery), as described by Chander, Markham, and Helder (2009). However,

research has suggested that atmospheric corrections can add uncertainty to final

products and lead to loss of spectral information, and thus should not be used in

machine learning algorithms (Medina-Lopez, 2020).

The lack of in situ data to train, test, and validate any approach is a major

challenge in the classification of remote sensing images. Manual and thresholding

techniques do not require training data, but for the outputs to be scientifically valid,

empirical validation data are necessary. However, machine learning algorithms do

require comprehensive and accurate training, testing, and validation data sets. As

the available in situ data are insufficient, other means of generating the data must

be explored. These include creating synthetic data sets (e.g. Reyes, D’Angelo, and

Fraundorfer, 2022), using climate and weather reanalysis datasets (e.g. Zilong,

Yubing, and Xiaowei, 2022), and obtaining data sets from satellite imagery using

manual or semi-automated approaches. The unsupervised algorithm, k-means

clustering, has been used to generate training data for supervised classifiers (Dell

et al., 2022; Halberstadt et al., 2020; C. S. R. Smith, 2022). Time-consuming manual

intervention is necessary to confirm the labels generated by unsupervised

clustering. This can be done by comparing the labels with data from different

spectral bands, true colour imagery, or specific spectral indices. Automation of

Quality Assurance (QA) processes in remote sensing could be a solution to

time-consuming manual post-processing. However, cloud cover, seasonal changes,

and sensor limitations can lead to errors or anomalies in the data. The design of

algorithms that can detect and mark potential problems while distinguishing

between real features and artefacts is difficult, so in studies authors still prefer to do

manual QA (e.g., (Lutz, Bahrami, and Braun, 2023; Stokes et al., 2019)).

It is important to assess the uncertainty of remote sensing applications,
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especially when assessing the extent and activity of supraglacial hydrology. Sources

of uncertainty can include sensor calibration, atmospheric conditions, and data

processing. Estimating and propagating these uncertainties accurately is a complex

task that requires not only advanced statistical methods but also a comprehensive

understanding of the entire remote sensing process. Developing reliable

uncertainty models that can generate reliable confidence intervals for supraglacial

hydrology estimates is an ongoing challenge in the field. Some studies have

attempted to quantify the degree of uncertainty by assigning a percentage to the

total area of supraglacial hydrology throughout the ice sheet (e.g. Stokes et al.,

2019). This is based on the assumption that the total area of lakes identified from

the NDWI model is likely to be comparable to manual digitisation on the ice sheet

scale. Other studies have applied uncertainty values on a lake by lake basis, e.g., an

uncertainty of a half-pixel width (125 m) to the circumference of each lake

(Y.-L. Liang et al., 2012). The supraglacial hydrology on the ice sheets in Antarctica

and Greenland changes significantly throughout the year and in different areas. It is

essential to have pixel-level uncertainty estimates in order to accurately identify

and monitor surface water features. Unfortunately, these estimates are not currently

being used.

1.8 Thesis aims, objectives, & structure

In this introduction, I have discussed the main components of the Earth’s ice sheets,

the interconnected hydrological system, the importance of supraglacial hydrology,

the methods and data used to monitor this network, and the challenges remote

sensing scientists face in doing so. The melting of the Greenland and Antarctic ice

sheets contributes a significant amount to global sea level rise. Although surface

melting of the ice sheets has been studied in localised areas, there has been a lack of
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long-term or widespread studies that combine these for long-term studies over the

entire ice sheets. To address this, this thesis aims to develop a better understanding

of the spatial and temporal evolution of the Antarctic and Greenlandic surface

hydrological network. This will be attempted by applying conventional methods to

previously unsurveyed regions (Chapter 2), using machine learning techniques to

generate large data sets to study supraglacial hydrology dynamics at scale (Chapter

3), and developing a novel statistical approach to improve the classification and

estimation of uncertainty of supraglacial water bodies (Chapter 4).

My thesis has four primary objectives. (1) To quantify the presence and extent of

SGH water bodies across the entire West Antarctic Ice Sheet and Antarctic Peninsula.

(2) To evaluate the effectiveness of machine learning to create large SGHF datasets.

(3) To identify the distribution and changes of SGH across the entire Greenland Ice

Sheet in the last decade. (4) To provide a more accurate estimate of the uncertainty

in the classification of supraglacial lakes at the pixel level.

The following three chapters present the results of my thesis, which are

dedicated to developing an improved understanding of the continental-scale

surface hydrology of the GIS and AIS. In Chapter 2, I describe the work carried out

to assess supraglacial hydrology on the West Antarctic Ice Sheet during the 2017

melt season. I developed a dual NDWI approach to quantify the total areal extent of

supraglacial hydrology on WAIS and AP for the first time. Additionally, I

developed a method to separate different classes of water features (lakes or

channels) based on their morphological characteristics. In Chapter 3, I applied ML

for the first time, generated the first decadal continental scale dataset of SGH on the

Greenland Ice Sheet, and used this to investigate decadal scale trends in the SGHF

distribution. In Chapter 4, I develop a Bayesian inference model to analyse the

spatial relationship between water pixels for supraglacial lakes with three distinct

boundary conditions in west Greenland. This allows me to generate a probabilistic
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prediction of the likelihood that pixels are water, thus addressing a limitation in

classical machine learning approaches. For the first time, pixel level uncertainty is

quantified. Then a binary output is computed by setting a threshold at the point

where the probabilistic prediction is more likely to be water than not (0.50). The

results demonstrate that this classification approach outperforms static

thresholding and performs similarly to the RF and CNN models. In the final

chapter of this thesis (Chapter 5), I synthesise the main results, consider the

implications of this work in a broader context, and propose potential directions for

future research.
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The following work was published in Earth Systems Science Data on 24th January

2022 (citation: D. Corr et al., 2022). This paper has been edited for self-consistency

within the thesis, but otherwise appears here as it was published.

This chapter outlines work carried out as part of the European Space Agency (ESA)

funded project 4DAntarctica, in which we assessed supraglacial hydrology on the

West Antarctic Ice Sheet. In combination with (Stokes et al., 2019), this forms the

first continent-wide assessment helping to quantify the mass balance of Antarctica

and its contribution to global sea level rise. I apply thresholds for meltwater

classification to satellite images, mapping the extent and manually post-processing

to remove false positives. This study provides a high-fidelity dataset to train and

validate ML methods.

This paper was edited by Martin Schultz and reviewed by three anonymous

referees. DC developed the code, carried out the main body of work and drafted

this paper. AL, MM, and CZ provided supervision and contributed extensively to

the science, technical details and structure of this paper. TB conducted data

processing and manual post-processing and contributed to methodological

development. All authors contributed to the manuscript text.

Abstract

Quantifying the extent and distribution of supraglacial hydrology, i.e. lakes and

streams, is important for understanding the mass balance of the Antarctic ice sheet,

and its consequent contribution to global sea-level rise. The existence of meltwater

on the ice surface has the potential to affect Ice Shelf (IS) stability and grounded ice

flow through hydrofracturing and the associated delivery of meltwater to the bed.

In this study, we systematically map all observable supraglacial lakes and streams
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in West Antarctica, by applying a semi-automated Dual-NDWI approach to >2000

images acquired by the Sentinel-2 and Landsat-8 satellites during January 2017. We

use a K-Means clustering method to partition water into lakes and streams, which

is important for understanding the dynamics and interconnectivity of the

hydrological system. When compared to a manually delineated reference dataset

on three Antarctic test sites, our approach achieves average values for sensitivity

(85.3% and 77.6%), specificity (99.1% and 99.7%) and accuracy (98.7% and 98.3%)

for Sentinel-2 and Landsat-8 acquisitions, respectively. We identified 10,478

supraglacial features (10,223 lakes and 255 channels) on the WAIS and Antarctic

Peninsula (AP), with a combined area of 119.4 km2 (114.7 km2 lakes, 4.7 km2

channels). We found 27.3% of feature area on grounded ice and 54.9% on floating

ice shelves. In total, 17.8% of feature area crossed the grounding line. A recent

expansion in satellite data provision made new continental-scale inventories such

as these, the first produced for WAIS and AP, possible. The inventories provide a

baseline for future studies and a benchmark to monitor the development of

Antarctica’s surface hydrology in a warming world, and thus enhance our

capability to predict the collapse of ice shelves in the future. The dataset is available

at https://doi.org/10.5281/zenodo.5642755 (D. Corr et al., 2021).
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2.1. Introduction

2.1 Introduction

The supraglacial hydrological network describes the complex, interconnected

system of water movement over the surface of glaciers and ice sheets. Lakes,

channels, moulins and crevasses make the network, which forms during the

summer months when meltwater is generated at the ice surface. The configuration

of the supraglacial hydrological network is transient. It is determined both by the

surface topography and the amount of water in the system; greater melt, for

example, is likely to lead to deeper and more extensive lakes and channels (Bell

et al., 2018; Lüthje et al., 2006; Tedesco et al., 2012).

SGL form when meltwater accumulates in topographic depressions (Bell et al.,

2018; Langley et al., 2016). SGL can drain laterally by overflowing their banks or

vertically by hydrofracture, when meltwater flows into fractures on the ice surface,

increasing the fracture growth (Lai et al., 2020; T. Scambos et al., 2009). Lateral

drainage of meltwater can create new channels in the ice surface connecting lakes to

other lakes, moulins and crevasses or the ice sheet edge (Bell et al., 2017). Through

this interconnected hydrological network, meltwater has been observed to travel

over 120 km, and to be redistributed to regions where no melt has occurred locally

(Kingslake et al., 2017).

Several recent studies have shown that, contrary to previous understanding, SGL

are widespread on Antarctica (Kingslake et al., 2017; Langley et al., 2016; Stokes

et al., 2019). A continental-scale inventory has been conducted for EAIS (Stokes et al.,

2019), but so far not for WAIS. Lake coverage in West Antarctica has been assessed

through small scale ad hoc studies (Banwell et al., 2014; A. A. Leeson et al., 2020;

M. Moussavi et al., 2020).

Here, we present a systematic survey of the maximum extent of lakes and large

channels on the WAIS and AP during January 2017. Our inventory provides a
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2.1. Introduction

Figure 2.1: Map of the key locations on the Antarctic Ice Sheet. Antarctic

boundaries are according to Bedmap2 (Fretwell et al., 2013). Source: (D. Corr et al.,

2022).

baseline for monitoring future changes. It serves as a training/forcing dataset for

other studies, such as those focused upon methodological development or climate

and glaciological modelling. High-quality training data are a vital component of

ML methodologies. Accurate observations of melt features can act as both

boundary conditions and validation for physical models. Knowing the location and

characteristics of supraglacial hydrological networks are important on ice sheets

because they can alter the location, volume, timing and rate of meltwater drainage

(Bell et al., 2018). These provide a mechanism through which climate warming and
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2.1. Introduction

associated increases in surface melt might affect the dynamic stability of Earth’s

polar ice sheets (Bell et al., 2018; Lenaerts et al., 2016; Trusel et al., 2015).

Vertical lake drainage caused by hydrofracturing occurs when water fills a

crevasse in the ice sheet to where the water pressure exceeds the fracture strength of

the ice (K. E. Alley et al., 2018). The crevasse may propagate through the full ice

thickness to the bed, forming a moulin through which the lake drains (Das et al.,

2008; McGrath et al., 2012). Rapid lake drainage has been suggested as a

mechanism for the breakup of floating ice shelves (Banwell et al., 2019;

T. A. Scambos et al., 2000), including the disintegration of the Larsen B IS (Figure

2.1) in 2002 (Banwell, MacAyeal, and Sergienko, 2013; Glasser and T. A. Scambos,

2008; T. Scambos, C. Hulbe, and Fahnestock, 2003). The breakup of an IS may lead

to an increase in ice discharge from upstream glaciers (De Angelis and Skvarca,

2003), and an associated increase in their contribution to sea-level rise. Following

the collapse of the Larsen B IS in 2002, the Hektoria, Green and Evans glaciers

accelerated by up to 8 times their original speed (Rignot et al., 2004).

Meltwater, which enters cracks, crevasses and moulins on grounded ice, drains

into the sub- or en-glacial environments (McGrath et al., 2012; van der Veen, 2007).

In Greenland, rapid delivery of surface water to the bed has been found to reduce

basal friction and temporarily increase ice flow velocities by up to an order of

magnitude (Tedesco et al., 2013). It has been hypothesized that mechanisms similar

to those observed in Greenland may also occur in East Antarctica (Langley et al.,

2016). Indeed, a recent study has shown evidence of five glaciers on the Antarctic

Peninsula (Drygalski, Hektoria, Jorum, Crane and Cayley) undergoing

near-synchronous speed-up events in March 2017, November 2017 and March 2018

(Tuckett et al., 2019). This suggests the surface meltwater may have entered the

subglacial hydrological system.

The conditions under which drainage occurs and indeed whether lakes can
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2.2. Data & methods

cause hydrofracture, drain rapidly and affect IS stability on Antarctica remain

unclear. Supraglacial hydrology may exert a larger effect on Antarctica’s future

evolution. For example, the UN Paris Agreement’s limit on the rise in global

temperatures of 1.5°C

(https://unfccc.int/sites/default/files/english_paris_agreement.pdf) will

likely cause the Antarctic Peninsula to experience irreversible, dramatic change to

glacial, terrestrial and ocean systems (Siegert et al., 2019). Under this warming

(1.5°C), ice shelves will experience a continued increase in meltwater production

and meltwater will therefore become more extensive (Siegert et al., 2019). The

impact of increased meltwater upon IS stability and ice dynamics lacks

understanding. Therefore, mapping the distribution and evolution of the

hydrological system from Earth observation has become a key priority of research.

2.2 Data & methods

Here, we describe the selection and pre-processing of S2 and L8 satellite imagery,

the identification of candidate water pixels (using NDWI) and the approach used

to mask cloud, rock, slush, blue-ice and shaded pixels. The steps involved in post-

processing the data and separating SGL and SGC are outlined. The methods differ

between sensors as L8 provides thermal information (band 10), whereas S2 does not.

Thresholds on individual bands (or indices) are specific to the spectral properties of

each sensor, and therefore require adjustment for each sensor (M. Moussavi et al.,

2020).
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2.2. Data & methods

Figure 2.2: S2 processing chain (a): The input files are the S2 Multi-

Spectral Instrument (MSI) products (Red, Blue, Green (RGB) composite of tile

T13CET 20170106 from 06 January 2017 on Pine Island Glacier (b)) and the

output is the supraglacial lake and channel binary (surface water - not water)

classification (c). Imagery was accessed from ESA’s Copernicus Scihub, scihub.

copernicus.eu.
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2.2. Data & methods

2.2.1 Satellite imagery

In this paper, we use 1682 S2 satellite images to map supraglacial hydrology in West

Antarctica. For locations where no S2 data are available, we include 604 L8 images

to supplement our dataset. We assess all available scenes with cloud cover below

10%, from 1st to 31st January 2017 on the WAIS. To maximise coverage on the

Antarctic Peninsula, which typically experiences more cloudy conditions, we

extend the period to 10th February 2017 and use scenes with cloud cover up to 40%.

S2 data are freely available as Top-of-Atmosphere (TOA) reflectance data from

the Copernicus Open Access Hub: https://scihub.copernicus.eu/. S2 bands 2

(blue), 3 (green), 4 (red), and 8 (NIR) exist at a resolution of 10 m, the highest spatial

resolution acquired by the sensor. In contrast, bands 1 (SWIR Cirrus) and 11 (SWIR)

are acquired at a coarse resolution of 60 m and 20 m, respectively, and are therefore

re-sampled to 10 m using nearest neighbour interpolation for consistency with red,

green and blue (RGB) and NIR bands (Williamson et al., 2018). The S2 pixel values

represent TOA reflectance units ×10,000 and are known as TOA reflectance integers

(reflectance×104).

L8 data are freely available from the United States Geological Survey (USGS)

Earth Resources Observation Science (EROS) Centre (https://eros.usgs.gov) and

are provided as a Level-1 data product comprising quantized and calibrated scaled

Digital Numbers (DN). Before use, we convert L8 images to TOA reflectance or

brightness temperature values following the method of (Chander, Markham, and

Helder, 2009). Besides conversion to TOA reflectance, the blue, green, red and NIR

bands of L8 data are pan-sharpened using an Intensity Hue Saturation method

(Rahmani et al., 2010). This increases the resolution from the native 30 m to 15 m,

for comparability with S2, which has a native resolution of 10 m. The remaining L8

bands used, 6 (SWIR, 30 m) and 10 (thermal infra-red sensor, 100 m) are also
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re-sampled, using nearest neighbour interpolation as with the S2 data.

2.2.1.1 Normalised Difference Water Index (NDWI) thresholding

Multi-spectral satellite imagery is commonly used to detect open water on ice sheet

surfaces (Langley et al., 2016; A. A. Leeson et al., 2020; K. E. Miles et al., 2017;

M. Moussavi et al., 2020; Stokes et al., 2019; Williamson et al., 2018). These methods

exploit differences in the spectral signatures of open water and snow/ice/firn at

optical frequencies. The NDWI performs well in identifying SGL in Antarctica,

using either NIR and green bands (Equation 1.1), or blue and red bands (Equation

1.2 Morriss et al., 2013; M. S. Moussavi et al., 2016; Stokes et al., 2019; Williamson

et al., 2017; Xu, 2006).

Supervised classification algorithms are in their infancy in the supraglacial

hydrology field (M. Dirscherl et al., 2020; Halberstadt et al., 2020) and large-scale,

continental studies require validation and testing for generalisation and

transferability of the methods. The aim of this study was to produce a dataset to

assist such studies and, consequently, NDWI thresholding was selected as our

approach. Currently, NDWI thresholding methods are the standard approach to

mapping supraglacial hydrology in Greenland and Antarctica (Morriss et al., 2013;

M. Moussavi et al., 2020; M. S. Moussavi et al., 2016; Stokes et al., 2019; Williamson

et al., 2017; Xu, 2006).

Open water features appear as a dark blue colour in optical satellite images

because of the rapid attenuation of red light in water relative to blue light. NDWI

ratios are, therefore, well suited to map lakes, as they exploit the properties of lakes

which make them more easily distinguished from ice at short optical wavelengths

(blue wavelengths), and from the snow at long optical wavelengths (red

wavelengths) (Box and Ski, 2007; Y.-L. Liang et al., 2012; Morriss et al., 2013;

M. Moussavi et al., 2020; Pope et al., 2016; Sneed and Hamilton, 2007; K. Yang and
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L. C. Smith, 2013). However, identifying supraglacial lake and channel pixels using

NDWI alone is insufficient, because slush, rocks, clouds and shadows can be

spectrally similar to water (M. Moussavi et al., 2020). For this reason, they require

additional processing steps to identify and mask these features in each image.

Additional, manual post-processing steps described in Section 2.1.3

Post-processing, carried out by human experts, provide data which is of much

higher quality than spectral thresholding alone. The processing chain used to map

SGL and SGC in S2 and L8 imagery is shown in Figures 2.2 and 2.3.

2.2.1.2 Cloud, rock masking and elimination of slush, blue-ice and shaded pixels

Thresholds are applied to individual bands, spectral indices, and band

combinations, such that we isolated water pixels based on multiple spectral

properties. The first step in this process is to remove areas of exposed rock, which

are often misclassified as water by the NDWI algorithm (Figures 2.2 and 2.3). We

generate rock masks for S2 images by defining a threshold (<0.9) on a Normalised

Difference Snow Index (NDSI) (Equation 2.1). The NDSI divides the difference in

the green and SWIR bands by the sum of the bands. To remove snow and cloud

from the rock mask, thresholds are applied to blue (<4000 reflectance × 104) and

green (<4000 reflectance × 104) bands (M. Moussavi et al., 2020). Alongside rock,

this mask is also used to remove areas of open ocean, which are found next to ice

shelves.

NDSI =
GreenBand − SWIRBand
GreenBand + SWIRBand

(2.1)

We performed rock and seawater masking for L8 images by applying a threshold

(>650) to the ratio of the blue band and TIRS band (Equation 2.2). To remove snow

from the rock mask, a threshold is applied to the blue band (<0.35 reflectance) (M.

Moussavi et al., 2020).
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Figure 2.3: L8 processing chain (a). The input files are the L8

Operational Land Imager (OLI) and TIRS products (RGB composite of tile

LC08 L1GT 192129 20170118 from 18 January 2017 on Pine Island Glacier (b))

and the output is the final supraglacial lake and channel dataset (c), in raster and

vector format. Imagery accessed from USGS, earthexplorer.usgs.gov.
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TIRS1 BrightnessTemperature
BlueBand

(2.2)

We generated cloud masks for S2 imagery by applying thresholds on the blue

band of >6000 reflectance × 104 and < 9700 reflectance × 104 and thresholds of

>1100 reflectance × 104 and >30 reflectance × 104 to SWIR and SWIR Cirrus,

respectively (M. Moussavi et al., 2020) (Figure 2.2). We employ the cloud mask for

L8 imagery using thresholds on the blue (>0.60 reflectance and <0.95 reflectance)

and SWIR bands (>0.10 reflectance) and a threshold of <0.80 on the NDSI equation

(M. Moussavi et al., 2020). For bands that have been resampled to increase spatial

resolution (SWIR and SWIR Cirrus for S2, SWIR and Long-Wave Infra-Red (LWIR)

for L8), unwanted edge effects are introduced around the edge of the tiles during

the up-sampling process. Thresholds on the red band (>0 reflectance for L8) and

blue band (>0 reflectance × 104 for S2) are therefore used to remove those edge

effects.

We extracted water pixels using thresholds on two NDWI calculations,

Equations 1 and 2. The first step to calculate NDWIGNIR (Equation 1.1) sets a

threshold of 0.16 (for both sensors), above which pixels are considered to have the

potential to be water. As stated above, with this threshold alone, the output

typically contains slush, blue-ice, shaded rock and cloud shadow pixels. Rock and

cloud pixels are removed in their masking processes, respectively. To reduce

misclassification of slush and blue-ice pixels, a threshold of 0.18 is further applied

to NDWIBR (M. Moussavi et al., 2020). To highlight the difference between light

attenuation properties in water and shaded snow surfaces, thresholds are applied

to a combination of blue, green and red bands (M. Moussavi et al., 2020). We

filtered shaded snow and cloud shadows using 800 (0.08) < green - red < 4000

(0.40) and blue - green > 400 (0.04) for S2 reflectance × 104 (and L8 reflectance).

Previous analysis on the distribution of pixel values from L8 and S2 tiles (Figures 2
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and 4 in M. Moussavi et al., 2020) represent the different spectral properties of

lakes, slush, snow, shaded snow, clouds, cloud shadows, sunlit rocks, and shaded

rocks. This analysis was used to determine the thresholds in their approach. The

thresholds we select for rock and cloud masking were adapted from their approach

(M. Moussavi et al., 2020) and the source code from GitHub (Moussavi, Mahsa,

2019). Thresholds were selected to produce maximum lake delineation, with any

additional false positives created removed in the manual post-processing stage. The

analysis conducted to select the thresholds, the NDWI thresholding approach and

the additional band filters is described in Appendix A

2.2.1.3 Post-processing

The processing chain outlined generates a binary raster of ‘water’ and ‘not water’

pixels. We subsequently converted groups of water pixels in the raster into polygons

representing discrete lakes or channels. Features smaller than two pixels (200 m2 in

S2 and 450 m2 in pan-sharpened L8 imagery) are removed from the datasets, as such

features are considered to be below the detection limit of the sensors, and more likely

to be areas of slush rather than open water (Pope et al., 2016). In addition, all features

that are beyond the boundary of Antarctica (i.e., not on grounded ice or floating ice

shelves) based on the MEaSUREs coastline of Antarctica (Mouginot and Irvine, 2017)

are removed accordingly.

Despite the rock/cloud/shadow masking steps that are applied during image

processing, areas of shadow, cloud, rock, crevassing and blue ice can still be

misclassified as water, and thus erroneously converted into lake/channel polygons.

We manually removed these ‘false positives’, regarding their appearance in true

colour (RGB) composite images during post-processing. ∼50% of images required

such post-processing step, mainly because of the presence of misclassified rock

and/or shadow. Up to ∼39% (6708) of all 17186 polygons (∼42% of area) delineated
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automatically are false positives upon manual inspection and subsequently deleted.

We identify 10,478 supraglacial features in this study. Most of all, false positives are

linked to shaded rock, with either rock in shadow or snow cast into shadow by

rock. A few densely populated crevassed regions contribute to ∼20% of

misclassified features, but because of their small size (<10 pixels), this represents a

much smaller percentage of the total misclassified area.

Although no dedicated checks are carried out to assess the number of false

negatives, during the visual inspection for false positives, no large features (>50

pixels) were found to be excluded. Minor features (<5 pixels) may remain

uncharted. However, their influence on the overall area mapped, and therefore the

volume of surface water, is likely to be minimal. Finally, overlapping polygons

from each sensor, location and time instance throughout January 2017, are

dissolved and polygons within a distance of 20 m are aggregated - to provide a

more continuous delineation of hydrological connectivity.

2.2.2 Accuracy assessment

We tested the fidelity of our method by comparing our results with 97, 184 and 105

(119, 135 and 46) manually delineated lakes and SGC from S2 (and L8) imagery on

test sites crossing the grounding line on Amery, George VI (GVI) and Bach ice

shelves respectively (Figure 2.1). These ice shelves vary in their glaciological and

climatological characteristics, which result in a range of feature geometries and

settings that are considered to represent the whole of Antarctica. In each of the

three regions, we selected test regions that encompass extensive surface

hydrological meltwater and host close to 100 individual supraglacial features of

varying sizes. This resulted in test regions measuring 210 km2 (for Amery IS) and

100 km2 (for GVI IS and Bach IS).
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Table 2.1: Sensitivity (sen.), specificity (spec.) and accuracy (acc.) of the S2 and L8

methods for each of the test sites: Amery, George VI and Bach ice shelves and the

mean values across sensors and sites for each.

Test site S2 sen. L8 sen. S2 spec. L8 spec. S2 acc. L8 acc. Mean sen. Mean spec. Mean acc.

Amery 0.93 0.964 0.979 0.992 0.971 0.987 0.947 0.986 0.979

George VI 0.833 0.614 0.995 0.999 0.985 0.982 0.724 0.997 0.984

Bach 0.797 0.75 0.998 0.999 0.992 0.993 0.774 0.999 0.993

Mean 0.853 0.776 0.991 0.997 0.983 0.987 0.815 0.994 0.985

Amery IS, the third-largest IS in Antarctica, is in East Antarctica. The chosen test

site on Amery IS is well suited for automated processing due to clear spectral

differences between surface water and ice pixels in the region. However, a small

area of blue ice, which has a similar spectral signature to that of open water, is

challenging to differentiate automatically. GVI, one of the largest ice shelves on AP,

constrained between the western side of the AP and Alexander Island, loses most of

its mass to melt rather than calving (Roberts et al., 2008). GVI IS has two ice fronts,

one situated around 500 km further north and so experiences different climatic

conditions (Cook and D. G. Vaughan, 2010). The test site, situated around the

middle of the IS, crosses the grounding line of Alexander Island and contains rock

and shaded pixels, presenting a more difficult task for the method. Bach IS is on the

coast of Alexander Island, to the east of the AP. Although to date, it has shown

relative stability in an area where other ice shelves (particularly Wilkins IS) have

undergone major collapse (Humbert and Braun, 2008; T. Scambos et al., 2009), Bach

IS could be the next IS under threat of break-up (Cook and D. G. Vaughan, 2010).

The test region on the Bach IS offers a contrasting stress regime (unconfined vs

confined flow) to that of the GVI IS, which has the potential to create different lake

geometry (Cook and D. G. Vaughan, 2010; T. A. Scambos et al., 2000).

We manually delineated lakes and channels in each test area using true colour
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(RGB) composites of S2 and L8 data. Three separate ‘expert’ users delineated each

area (with expertise in remote sensing of supraglacial hydrology). We combined the

three manual inventories to form a high fidelity reference dataset of the lake and

channel features, where only pixels that are unanimously assigned as ‘water’ (i.e.,

identified as water by all three users) are included. To assess the performance of

our method, we calculated confusion matrices that compared Manual (Man) and the

final Automated (Auto) datasets (following post-processing) on a per-pixel basis.

From the confusion matrices, sensitivity, specificity and accuracy have been derived

(Equations 2.3, 2.4 and 2.5).

The sensitivity, or true positive rate, is the number of True Positive (or Man Water:

Auto Water in a confusion matrix) predictions divided by the number of manually

identified water pixels in the test data. It is a measure of how well we correctly

identified surface water pixels.

Sensitivity =
Man. Water : Auto. Water

Total Man. Water
(2.3)

The specificity, or true negative rate, is the number of True Negative predictions

(or Man Not Water: Auto Not Water) divided by the number of manually identified

not-water pixels in the test data. It is a measure of how well all other non-water

pixels are identified.

Speci f icity =
Man. Not Water : Auto. Not Water

Total Man. Not Water
(2.4)

We calculated the accuracy (ACC) by dividing the sum of True Positive and True

Negative predictions by the total number of pixels. It gives a quantitative assessment

for the accuracy of all pixels, both water and not water.

ACC =
(Man. Water : Auto. Water) + (Man. Not Water : Auto. Not Water)

All Pixels
(2.5)
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We computed sensitivity, specificity and accuracy values for each test site and

sensor, Table 2.1. Across both sensors, sensitivity ranges between 61.4% and 96.4%,

specificity between 97.9% and 99.9% and accuracy between 97.1% and 99.3%. On

average, S2 yields a higher sensitivity (85.3% versus 77.6%) than L8, while values for

specificity and accuracy have higher averaged values for L8 than S2.

The large range in sensitivity is likely because of shallow lakes (deemed so by

manual users) being classified as ice by the NDWI threshold, especially on GVI and

Bach ice shelves, where there are many shallow lakes. In contrast, the range in

specificity (i.e., how well non-water pixels are identified) is smaller, because the

analysis was carried out after manual post-processing, and misclassified pixels

were already removed. This suggests that, for applications where identifying

shallow lakes is important, we may further improve the sensitivity by incorporating

additional manual checks for false negatives into the NDWI thresholding approach.

2.3 Results & discussion

2.3.1 Distribution of supraglacial lakes and streams in WAIS

We used 1682 S2 and 604 L8 scenes to map 10,478 individual supraglacial features

in West Antarctica, including the Antarctic Peninsula (Figure 2.4). The dataset

comprises 10,223 SGL and 255 channels.

We found SGL in expected regions, on and around the grounding zone of the

Antarctic Peninsula ice shelves including Larsen C (∼130 lakes), Larsen D (∼250),

GVI (∼5,550), Wilkins (∼1450) and Bach (∼950). We also discovered lakes on

grounded ice close to where the remnants of Larsen A (∼10) and B (∼150) ice

shelves are located. Sulzberger IS (∼290), Pine Island Glacier (∼360), Riiser-Larsen

(∼240) and around the Trans-Antarctic Mountains/Ross IS on Darwin (∼270) and
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Figure 2.4: Location of the 10,478 SGL and SGC on the WAIS and AP represented

by the red crosses as mapped in S2 and L8 imagery from January and February

2017. Antarctic boundaries are according to Bedmap2 (Fretwell et al., 2013).

Nimrod (∼90) glaciers, are identified to host SGL activity in this study and others

(Kingslake et al., 2017). Studies identifying lakes in the Ford Ranges region (on Hull

Glacier (∼45) and Nickerson IS (∼80)) and in Amundsen Sea region (on Dotson

(∼35), Abbot (∼125) and Cosgrove (∼45) ice shelves) were published for the first

time recently, (J. F. Arthur et al., 2020a; M. Dirscherl et al., 2020), and we confirm the
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occurrence of lakes here during January 2017. We identified 255 supraglacial

channels on or around the margin of Larsen C, Larsen D, remnants of Larsen B,

GVI, Bach, Wilkins, Riiser-Larsen, Dotson and Sulzberger ice shelves and near to

the Hull and Pine Island Glaciers. We identified supraglacial meltwater for the first

time on the Getz IS, with one lake crossing the grounding line, while a further four

border the IS (Figure 2.5). It has been suggested that increased surface melt on the

Getz IS will lead to collapse unless active surface drainage can mitigate the effect of

surface loading by exporting water to the ocean (Bell et al., 2018).

The proportion of area covered by meltwater in a localised region (Figure 2.6)

was calculated using the cumulative lake and channel area in a hexagonal bin. Each

bin measured 100 m between parallel sides of the hexagon, while any feature

within a search radius of 5 km (longest feature: ∼4.7 km) contributed to the

proportion of the bin in question. The proportions range from 0 (where no lakes are

within 5 km of a bin) to 0.089 km2 of meltwater area per 1 km2, with the highest

density regions on the Peninsula (GVI, Wilkins and Bach ice shelves), Ford Ranges,

Trans-Antarctic mountains and Pine Island Glacier. GVI, which measures ∼24,000

km2 (Cook and D. G. Vaughan, 2010), has a total meltwater area of 29.4 km2, and a

percentage cover of supraglacial meltwater across the IS of 0.12%. Wilkins

(meltwater area: 14.0 km2, total area: ∼11,000 km2 Cook and D. G. Vaughan, 2010)

and Bach (meltwater area: 13.0 km2, total area: 4,500 km2 Cook and D. G. Vaughan,

2010) ice shelves have maximum percentage cover of 0.13% and 0.29% respectively.

Areas with a low proportion of area covered, hosting just a few lakes include Getz

IS, the western margin of the Filchner-Ronne IS, Hull Glacier and on James Ross

Island off the coast of the Northern AP.

We have assessed area distribution for SGL and SGC (Figure 2.7). The total area

covered by lakes (114.7 km2) and channels (4.7 km2) was found to be 119.4 km2. The

proportion of features on grounded ice (GI), floating IS and crossing the grounding
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Figure 2.5: Lakes identified for the first time in the Western Amundsen Sea Sector

of West Antarctica, with the largest, southernmost lake of the four crossing the

grounding line of the Getz IS. The image is a true colour composite of L8

satellite imagery, Tile LC08 L1GT 166131 20170112 from 12 January 2017. The

red outlines are the lake polygons resulting from our NDWI threshold approach.

Inset: Getz IS and lake locations in Antarctica. Imagery was accessed from USGS,

earthexplorer.usgs.gov.

line (GL) are computed (Figure 2.8). Distribution of glaciologically important

parameters (Figure 2.9b-f,h) for the 10,478 supraglacial features including, distance
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2.3. Results & discussion

Figure 2.6: The proportion of lake and channel area covered by meltwater per

km2 in each region on WAIS and AP, where surface water is identified. Inset:

high cover regions on a) AP (GVI, Wilkins and Bach ice shelves), b) Amundsen

Sea region (Pine Island Glacier) and c) Ford Ranges (Sulzberger IS) and Trans-

Antarctic mountains (Ross IS, Darwin and Nimrod glaciers). Antarctic boundaries

according to Bedmap2 (Fretwell et al., 2013).

to the grounding line, exposed bedrock and coastline were calculated. Ice surface

elevation, slope and velocity were observed for each feature and their distribution

plotted. Finally, the distribution of meltwater volume was calculated (Figure 2.9a).

The largest lake identified (∼2.9 km2) intersects the grounding line of the

Sulzberger IS, although most lakes and channels are an order of magnitude smaller.

For example, we found 8700 (83%) of the features to have an area of less than 0.1
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Figure 2.7: Distribution of SGL and channel area (km2) on WAIS and AP. Note: bin

sizes double from left to right. Values for mean, median and standard deviation

for the distribution are included in the figure.

km2 (Figure 2.7). Lakes make up 96.1% of total feature area and 97.6% of all features

(Figure 2.9g). More than half (54.9%) of the total open water area was entirely on

floating ice, with 27.3% on grounded ice entirely (Figure 2.8). Among the features

on grounded ice, the lake found the farthest inland of the grounding line is on the

Antarctic Peninsula, 47.2 km from the GVI IS. In terms of floating ice, the lake

found farthest from the grounding line is also on GVI at a distance of 12.6 km. Over

half of the open water area (56.4%) is within 1 km of the grounding line according

to Bedmap2 (Fretwell et al., 2013), with 17.8% of total open water area intersecting
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Figure 2.8: Area split between channels and lakes completely on Grounded Ice

(GI), crossing the Grounding Line (GL) and completely on floating ice shelves IS,

across the WAIS and AP.

the grounding line (Figure 2.9b).

Exposed bedrock has a lower albedo than snow or ice, which can increase the

absorption of incoming solar energy, leading to higher rates of melting within the

local area. We find that 78.1% of the total feature area (and 80.1% of all features)

exists within 10 km of exposed bedrock (Figure 2.9c). Lakes are also found at

substantial distances inland (Figure 2.9d), including over 504 km away from the

closest coastline. Most of the open water, however, (64.9% of features and 63.1% of

area) was found within 100 km of the coast, according to MEaSUREs data for the

coastline of Antarctica (Mouginot and Irvine, 2017; Rignot et al., 2013).

We found most features (80.8%, representing 77.5% of the total feature area) at
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Figure 2.9: Area distributions of supraglacial lakes and channels on the WAIS and

AP according to various glaciological variables. (a) individual feature volumes

from the area-volume scaling relationship (Equation 2.6); (b) distance of each

feature to the grounding line (negative values indicate lake/channel positions

further inland from the grounding line); (c) distance of each feature to nearest

exposed bedrock; (d) distance of each feature to the ice margin/coastline; (e)

elevation at the centroid of each feature; (f) the surface slope at the centroid of

each feature; (g) area and frequency split between channels and lakes on the WAIS

and AP; (h) ice-flow speed for each feature. Imagery was accessed from ESA’s

Copernicus Scihub, scihub.copernicus.eu and USGS, earthexplorer.usgs.gov.

low elevations (Figure 2.9e), i.e. between 0 and 100 m a.s.l, while 87 lakes/channels

(or 0.4% of area) were at elevations greater than 1000 m a.s.l., with two (in the
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mountain region around 40 km East of GVI IS) as high as 1306 m a.s.l. Most

lakes/channels (57.9%) occur on surface slopes <1◦ (Figure 2.9f). This accounts for

55.7% of the total area.

To estimate the ice flow velocity at the geometric centroid of each feature, we

extracted the ice surface velocity from the MEaSUREs InSAR-Based Antarctica Ice

Velocity Map (Mouginot, Scheuchl, and Rignot, 2012; Rignot, Mouginot, and

Scheuchl, 2011; Rignot and Irvine, 2017). Ice flow velocities in lake-covered regions

ranged from ∼0 to >1357 m/year, however 57.8% of the total feature area (and

around 47% of the total features) was on ice flowing slower than 50 m/year (Figure

2.9h).

To estimate the volume of water contained within each feature, we use an area-

volume (A-V, Equation 2.6) scaling relationship from literature (Stokes et al., 2019).

Based on this relationship, the total volume of meltwater stored in SGL and streams

is estimated to be 0.085 km3 across the entire WAIS and AP.

V = 7.16 × 10−4A (2.6)

Due to proportionality between area and volume, the feature containing the

maximum volume of water (∼0.002 km3) is the lake on the Sulzberger IS, identified

as the largest by surface area. 86.9% (>9000 features) of all lakes/channels have

volume between 0 km3 and 0.0001 km3, while this range accounts for only 17.2% of

total area. Conversely, 41.4% of the total lake/channel area is represented by just

144 features that have a volume greater than 0.0001 km3.

2.3.2 Lake vs channel features

The increased spatial resolution offered by the current generation of optical satellite

sensors, such as S2, makes mapping supraglacial rivers and channels possible.
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Here, in contrast to previous studies in Antarctica, we distinguish between lakes

and channels using a K-Means clustering approach (D. Arthur and Vassilvitskii,

2007), combining six shape index metrics. The first, a standard Area-Perimeter

Ratio (A:P), (Equation 2.7) divides the total area of a feature (A) by the length of its

perimeter (P).

A : P =
A
P

(2.7)

Second, we use the Iso-Primetric Quotient (IPQ), (W. Li, Goodchild, and Church,

2013), i.e., the ratio of the area of the feature to the area of a circle whose

circumference, C, is equal to the perimeter. It is also known as the Polsby-Popper

score when it is used to quantify the degree of gerrymandering of political districts

(Polsby and Popper, 1991).

IPQ =
A

π(
CP
2π )

2
=

4πA
P2 (2.8)

Providing spatial analysis of complex geographical features can be characterized

by the fractal dimension. The Fractal dimension index (Fractal) (Y. Chen, 2020)

reflects shape complexity across a range of spatial scales. Therefore, it overcomes

one of the major limitations of the straight perimeter-area ratio as a measure of

shape complexity. Depending on the number of vertices in a polygon, the Fractal

dimension index can be a variety of logarithmic ratios (Y. Chen, 2020) (Equation

2.9).

Fractal =
2log(P

4 )

log(A)
(2.9)

Another metric is the ratio of the feature area to the area of a Minimum Bounding

Circle (MBC) (AMBC), which is needed to enclose the feature (Equation 2.10). This

ratio is known as the Reock score (Reock, 1961).
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Reock =
A

AMBC
(2.10)

To measure compactness of the feature (i.e. how neatly the area fits within the

perimeter, the most compact shape is a circle) the Schwartzberg score (Inc, 2010) can

be calculated (Equation 2.11). It is the ratio of the perimeter of the feature to the

circumference of a circle, CA, whose area is equal to the area of the feature.

Schwartzberg =
1
P

CA

=
CA

P
=

2π
√

A
π

P
(2.11)

The final metric, a Width-Length ratio (W:L) (Equation 2.12) is calculated as the

ratio of the width (WMBR) to the length (LMBR) of the Minimum Bounding Rectangle

(MBR), which surrounds the feature. The MBR is the smallest (by width) required to

enclose the full area of the feature.

W : L =
WMBR

LMBR
(2.12)

The shape indices (Equations 2.7-2.12) were computed for every polygon in the

final dataset (Table 2.2). Unsupervised K-Means Clustering (D. Arthur and

Vassilvitskii, 2007) was carried out in 6-dimensional space, using each of the six

shape indices through the Multivariate Clustering tool on ArcGIS Pro Version 2.5.2.

K-Means algorithms identify a starting point (seed) from among the supraglacial

features, to grow each cluster. We randomly selected the first seed, while we chose

subsequent seeds by directing the selection to seeds farthest in data space from the

existing seeds. Small lakes, below 500 m2 in area, introduced noise to the

classification and were labelled as lakes before clustering.

This resulted in 20 distinct clusters which were manually determined to be

feature types, of varying shapes and size, lakes or channels (Figure 2.10). Samples

from 6 of the 20 clusters are shown in Figure 2.10, with the corresponding value for
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each shape index in Table 2.2. As expected, ribbon lakes are similar to channels in

most metrics, as both take long, narrow forms. However, the A:P (Equation 2.7)

value differs vastly between channels and ribbon SGL. The values displayed for

A:P, Fractal, Reock and W:L (Equations 2.7, 2.9, 2.10 and 2.12) demonstrate clear

differences between channels and all other lake classes. While IPQ and

Schwartzberg (Equations 2.8 and 2.11) are useful in delineating standard, smaller

lakes from channels. Through this method, we identify 10,223 lakes and 255

channels to be present during January 2017 on the WAIS and AP (Figure 2.10).

Table 2.2: Value of each individual shape index (Equations 2.7-2.12) for the feature

type defined in Figure 2.10.

Shape index Large SGL Complex SGL Ringed SGL Standard SGL (mean) Ribbon SGL Channel

A:P 41.18 28.02 22.03 15.2 42.15 11.9

IPQ 0.11 0.02 0.09 0.4 0.08 0.12

Fractal 1.44 1.35 1.39 1.42 1.42 1.34

Reock 0.31 0.11 0.25 0.38 0.05 0.08

Schwartzberg 0.33 0.16 0.3 0.62 0.28 0.33

W:L 0.54 0.34 0.4 0.5 0.08 0.15

The values reported for accuracy, sensitivity and specificity (Table 2.1, Section

2.2) are for the thresholding approach, which consists of all water pixels, including

channels and lakes. Although it would be valuable to provide validation metrics for

the classification of water into channels and lakes, due to the lack of an objective

definition as to what lakes and channels are it is not possible to compute accuracy,

sensitivity, or specificity metrics at present. Channels and lakes are defined from

within the classification of surface water, based solely upon their shape. To

concretely define channels, would require auxiliary data, such as water flow and

topography at instances in close temporal proximity to the satellite imagery. The

aim of our channel and lake discrimination is therefore not to provide a measure or
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Figure 2.10: Outlines of supraglacial features over RGB composites from S2 and

L8 imagery. These outlines demonstrate 6 of the distinct clusters from the K-

Means approach. a) A large SGL covering 0.20 km2 on Hull Glacier (Figure

2.1); b) complex SGL with area 0.35 km2 on Bach IS (Figure 2.1); c) ring lake

with area 0.05 km2 on Bach IS; d) 11 ’standard’ SGL on Bach IS with areas

ranging from 300 m2 to 0.02 km2; e) ribbon lake on GVI IS (Figure 2.1) which

spans 2.6 km and covers 0.19 km2; and f) discontinuous supraglacial channel

spanning 1.3 km and covering 0.04 km2 near Hull Glacier. RGB composites formed

from L8 tile LC08 L1GT 022114 20170111 (a,f) from 11 January 2017 and S2 tiles

T18DXF 20170129 (b,c,d) from 29 January 2017 and T19DEB 20170103 (e) from 3

January 2017.

definition of each, but rather it is an indicator that should be viewed more as a

guide to the relative split between them.
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2.3.3 Comparison to supraglacial features in East Antarctica

In combination with a previous study (Stokes et al., 2019), our study provides the

first continent-wide assessment of Antarctic SGL. We find that, in the austral

summer of 2017, the Antarctic ice sheet hosted approximately 76,000 supraglacial

features comprising ∼10,500 (119.4 km2) identified in this study together with

∼65,500 (1383.5 km2) previously identified in East Antarctica (Figure 2.11). We

estimate 1502.9 km2 meltwater area and volume totalling 1.08 km3 (Equation 2.6)

across the entire Antarctic Ice Sheet during the month of January 2017. To ensure

complete coverage, we define our WAIS longitudinal boundaries such that they

cover all areas not mapped by (Stokes et al., 2019). This results in the Antarctic

coastline (measuring ∼35,500 km Fretwell et al., 2013) being split approximately

equally between WAIS (plus AP) and EAIS. The largest lake recorded within the

EAIS dataset (on Amery IS) measures 71.5 km2, 25 times larger than the largest

WAIS lake, which is on Sulzberger IS (∼2.9 km2). Amery IS has the highest density

of supraglacial lake activity on EAIS with ∼893.3 km2 total meltwater coverage.

Amery IS measures 62,620 km2 (Foley et al., 2013), meaning the maximum

percentage coverage of supraglacial meltwater on the IS is 1.43%, while most

densely populated regions in WAIS and AP, GVI, Wilkins and Bach ice shelves are

between a factor of five and ten times less (with maximum percentage coverage of

0.12%, 0.13% and 0.29% respectively).

Finally, it is important to note that there are two differences between our

approach and that of Stokes et al. (2019), which may cause contrasting

classifications. The first is a difference in the method used to classify water pixels.

Our study attempted to classify both lakes and channels using a dual NDWI

approach, while Stokes et al. (2019) focused on SGL alone. The second source of

difference is because of the selection of data used. Where several images are
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available for specific regions, Stokes et al. (2019) sampled the image closest to the

peak melt-season, i.e., mid-January, to provide a snapshot of SGL activity. Stokes et

al. (2019) report around 6% of the total coastline was not mapped in their study,

due largely to the cloud in the scenes. Conversely, our method quantified the

maximum extent of SGL and SGC throughout the entire month to combat the

effects of cloud cover and therefore was based upon a compilation of all available

imagery from 1st to 31st January 2017 (and up to 10th February 2017 over the AP).

Figure 2.11: The location of the 10,478 SGL and channels on the WAIS and AP (red

crosses) and 65,459 SGL (blue crosses; mapped by Stokes et al., 2019) in January

and February 2017. Antarctic boundaries are according to Bedmap2 (Fretwell et al.,

2013).
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2.4 Conclusion

We have mapped, for the first time, the full extent of supraglacial hydrology on the

Antarctic Peninsula and West Antarctic Ice Sheet during the 2017 melt-season using

a Dual-NDWI thresholding approach. We identify 10,223 SGL and 255 supraglacial

channels (10,478 features in total), which occupy a total area of 119 km2 (114.7 km2

lakes, 4.7 km2 channels). For the first time, SGL have been identified on and around

the margin of the Getz IS, while a significant number of hydrological features are

identified on GVI, Wilkins and Bach ice shelves on the Antarctic Peninsula,

Sulzberger IS in the Ford Ranges, and Pine Island Glacier in the Amundsen Sea

region.

This new inventory provides a baseline Earth System dataset which, in

combination with the work of (Stokes et al., 2019), represents the first

continent-wide assessment of the supraglacial hydrology of Antarctica. With the

operating schedules of the S2 and L8 satellites, optical data are now routinely

available at weekly sampling, meaning that it is now possible to expand this study

to monitor lake dynamics in near to real-time. This will allow for a better

understanding of the evolution and dynamics of SGL and SGC, and how they

might change in response to a warming climate. Such approaches would require

advanced levels of automation, because of the scale of data required. Importantly,

our study provides a high fidelity dataset that can train, calibrate, and validate such

approaches.

2.5 Data & code availability

The dataset described within this study has many potential applications. As NDWI

thresholds are the traditional approach to mapping SGL activity on ice sheets, the
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results of this large-scale study provide a clear picture of the maximum melt extent in

January of the 2017 melt season. Because of the scale of the dataset (across the WAIS),

the results provide a baseline for future monitoring of supraglacial hydrology and

could be used to assess regional climate model simulations of surface melting and

run-off. Supervised ML algorithms require labelled data to train the algorithms. The

lake and channel dataset described here will be valuable as training data for pixel-

based or object-based approaches in ML, such as RF classification (M. Dirscherl et al.,

2020). Others can use the dataset produced in this study to assist approaches that

utilise other types of satellite data, for example, those that exploit SAR imagery but

that require a priori lake distribution (A. A. Leeson et al., 2020; K. E. Miles et al.,

2017).

Alongside the final map of meltwater extent, the dataset contains meltwater

polygons for each sensor (S2 and L8, alongside the respective source sensor data),

which form the final map and are useful for ML processes. The data’s usage for

training, validation or independent testing is flexible to the user’s choice, providing

the data are used alongside imagery from each sensor independently. It can be used

entirely for training/testing or, if a user prefers, subsetted to provide independent

train and test data. The final map of meltwater extent is not to be used for ML and

as such does not contain the predictor data.

The code used to produce the supraglacial hydrology features is written in

Python and can be accessed on Zenodo and GitHub (D. Corr, 2021).

The mapped supraglacial lake and channel polygons are available on Zenodo

(https://doi.org/10.5281/zenodo.5642755, D. Corr et al., 2021) as digital

Geographic Information Systems (GIS), shapefiles (.shp), Keyhole Markup

language Zipped (.kmz) and GIS GeoJSON files. The datasets consist of the final

lake and channel polygon maps for both sensors combined (i.e. our final maximum

extent map of supraglacial hydrology), plus polygons for each sensor, L8 (17,571
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individual polygons) and S2 (23,389 individual polygons). In addition, predictor

data for each sensor (i.e., the data tiles containing all bands for S2 and L8) are

provided for each of the polygons.

Additional L8 and S2 imagery are freely available at earthexplorer.usgs.gov

and scihub.copernicus.eu respectively. Scripts for downloading the data were

extracted from GitHub (Hagolle, Olivier, 2014) and (Hagolle, Olivier, 2015),

however, with changes to data structure on both repositories, these scripts may no

longer be effective. Alternatively, imagery is available to download from Google

Cloud Storage using Python scripting (Nunes, Vasco, 2016).
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The following work is prepared as a manuscript to be submitted for publication as:

”Supraglacial hydrology coverage has increased on the Greenland ice sheet over

the last decade”.

This chapter outlines the work carried out as part of the ESA funded project

4DGreenland, in which we evaluated supraglacial hydrology on the Greenland Ice

Sheet on a decadal scale. This forms the first Greenland-wide assessment to help

quantify the mass balance of the Greenland Ice Sheet and its contribution to global

sea level rise. I apply a RF classification and radiative transfer model to satellite

images, mapping the extent and depth of hydrology on the ice sheet.

DC developed the code, carried out the main body of work, and drafted this

paper. AL, MM, JM, and CZ provided supervision and contributed extensively to

the science, technical details, and structure of this paper. EG and LM conducted

data processing, contributed to the creation of training data, and contributed to

methodological development. All authors contributed to the manuscript text.

Abstract

Supraglacial hydrology (SGH) describes the study of the complex system of

interconnected slush, lakes, and channels on the surface of a glacier or ice sheet.

These features dictate the storage and transport of meltwater atop the ice sheet

system; meltwater which has a significant impact on global sea levels. In this novel

study, we quantify the extent and volume of supraglacial meltwater throughout the

entire Greenland Ice Sheet, exploring meltwater evolution over the past decade, at

both high spatial (10-30 m) and temporal (monthly) resolution. We adapt and

validate a random forest (RF) algorithm to delineate supraglacial meltwater using

144000 Sentinel-2 and Landsat-8 images, acquired between May 1st and September
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30th for each year between 2014 and 2022. A radiative transfer model is used to

estimate the volume of surface water present on the Ice Sheet in monthly snapshots.

We find a persistent strong seasonal cycle in SGH behaviour, with meltwater

generally present in May, (extent and volume) peaking in July/August, and surface

water beginning to refreeze mostly in September. Throughout the melt season,

meltwater drains atop the ice sheet through channels and by moulins or cracks to

the sub- and englacial environments. Using this dataset, we determine that there

has been a positive trend in the extent and volume of SGH features over the past

decade, and although interannual variability is high, this suggests that temperature

increases linked to climate change are leading to greater supraglacial hydrology on

the Greenland Ice Sheet. Our analysis reveals a significant increase in total

meltwater over drainage basins in the north, east, and south of the ice sheet; while

basins across the entire ice sheet contain meltwater in more regions than at the

beginning of the decade. We observe significant seasonal trends in the mean firn air

content and mean ice slab content in many of the Zwally drainage basins that

experience a significant increase in supraglacial hydrology, implying that a

reduction in firn air content and an increase in ice slab content could be a potential

source of increase in SGH activity.

3.1 Introduction

Mass loss from the Greenland (GrIS) and Antarctic (AIS) ice sheets is predicted to

be the dominant contribution to global sea level rise in coming decades

(Fox-Kemper et al., 2021). According to models and observations, the ice sheets are

undergoing rapid changes in response to increases in temperatures linked to

climate change, which are projected to continue for at least several decades, even if

global temperatures stabilise (Bamber et al., 2018; Lenaerts et al., 2015, 2019;
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Otosaka et al., 2022; Shepherd et al., 2012, 2018, 2020; B. Smith et al., 2020; Trusel

et al., 2018). Land ice locked in the ice sheets of Greenland (7.4 m equivalent sea

level rise) and Antarctica (58.3 m equivalent sea level rise) has the potential to

increase global sea level by 65.7 m and is the largest potential source of future sea

level rise (Fox-Kemper et al., 2021; Morlighem et al., 2017; D. Vaughan et al., 2013).

The total mass of ice on the GrIS, in particular, has decreased considerably in the

last few decades (Madsen et al., 2022; Moon et al., 2020; Otosaka et al., 2022;

Shepherd et al., 2020; Slater et al., 2021). Almost 60% of the GrIS mass loss is

attributed to the difference between snow accumulation and surface melt, and the

rest is associated with dynamic mass loss, as a result of accelerated ice flow towards

the ocean (M. R. van den Broeke et al., 2016).

The supraglacial hydrological network of Greenland is a complex system of

interconnected slush, lakes, and rivers/streams on the surface of the ice sheet. The

network fluctuates, forming throughout the summer melt period and typically

reaching maximum capacity in July/August (Otto, Holmes, and Kirchner, 2022;

K. Yang et al., 2021). Meltwater is stored in supraglacial lakes (SGLs) in topographic

depressions on the surface of the ice sheet. Some lakes form early in the melt season

and persist for months or over winter (Koenig et al., 2015; Lampkin et al., 2020;

Wendleder et al., 2021; K. Yang et al., 2021), the presence of which decreases the

albedo of the ice sheet and increases the absorption of solar radiation (Leidman

et al., 2021). Many lakes drain laterally into supraglacial rivers that transport

meltwater across the surface over timescales of weeks to months (L. C. Smith et al.,

2015; Tedesco et al., 2013). Other meltwater enters cracks and crevasses and drains

into sub- or englacial environments through hydrofracturing (McGrath et al., 2012;

van der Veen, 2007) or vertical drainage (K. E. Alley et al., 2018) over timescales

from hours to days (Das et al., 2008). The injection of liquid water into the englacial

ice sheet system leads to the warming of the ice through cryohydrologic warming
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(T. Phillips, Rajaram, and Steffen, 2010). Cryohydrologic warming is theorised to

reduce ice viscosity and thus contribute to faster ice flow (T. Phillips, Rajaram, and

Steffen, 2010; T. Phillips et al., 2013). Vertical SGL drainage occurs when the water

pressure exceeds the fracture strength of the ice (K. E. Alley et al., 2018), creating

moulins when crevasses propagate completely through the ice sheet (Das et al.,

2008; McGrath et al., 2012) that have sufficient capacity to drain lakes over hours or

days (Das et al., 2008). Rapid injection of water to the bed acts to modulate the flow

of grounded ice by overloading the capacity of the subglacial system, increasing the

subglacial water pressure, and decreasing friction, resulting in increased basal

sliding (Tedesco et al., 2013). Meltwater that is not stored in lakes on, in, or under

the GrIS (Lampkin et al., 2020; K. Yang et al., 2021), refreezes at the end of the melt

season (Koenig et al., 2015; Lampkin et al., 2020) or is transported to the ocean as

runoff, through rivers and waterfalls (L. C. Smith et al., 2015, 2021) directly

contributing to sea level rise and a loss of the mass balance of the GrIS.

Supraglacial hydrology features (SGHF) can be distinguished by the eye in

optical satellite imagery, due to their distinctive blue colour against the

surrounding white, or grey, ice. However, given that there are many tens of

thousands of these features (D. Corr et al., 2022; Stokes et al., 2019; K. Yang et al.,

2021), and they appear in many thousands of satellite images, automated

approaches to mapping these features are commonly used. The standard approach

to mapping SGHF combines spectral thresholding (typically the Normalised

Difference Water Index, NDWI) with extensive manual post-processing (D. Corr

et al., 2022; Fitzpatrick et al., 2014; M. Moussavi et al., 2020; Stokes et al., 2019;

Williamson et al., 2018; K. Yang and L. C. Smith, 2013). Manual post-processing is

required to remove areas of shadow, cloud, rock, crevassing, and blue ice that are

spectrally similar to meltwater and sometimes misclassified as water (D. Corr et al.,

2022). However, given the volume of satellite data now available, methods that
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require manual intervention are not feasible for repeat monitoring of surface

hydrology at a continental scale. Instead, machine learning (ML) algorithms such as

random forests (RF), Convolutional Neural Networks (M. Dirscherl et al., 2021) and

k-means clustering (Halberstadt et al., 2020) offer alternative methods to tackle this

problem, but have been underutilised until now. In particular, the implementation

of ML algorithms has shown promise in limited area studies on the GrIS, AIS, and

alpine glaciers (Dell et al., 2022; M. Dirscherl et al., 2020; Hu et al., 2022; Wangchuk

and Bolch, 2020). Here, we use 138963 Sentinel-2 (S2) and 5708 Landsat-8 (L8)

satellite images to map SGHF on the surface of the Greenland Ice Sheet, employing

a random forest algorithm, trained and validated on representative samples that

account for the spatial and temporal variation of the state of the GrIS. Using a

radiative transfer approach (Banwell et al., 2014; Pope et al., 2016; Sneed and

Hamilton, 2007; Tedesco and Steiner, 2011; Williamson et al., 2018), we calculate the

decadal evolution in the volume of surface meltwater of Greenland.

Most studies dedicated to mapping SGHF on the GrIS have aimed to develop

our process-level understanding of the seasonal evolution of supraglacial lakes and

have focused on one or more study sites associated with specific glaciological

basins (Y.-L. Liang et al., 2012; McMillan et al., 2007; Sundal et al., 2009; Williamson

et al., 2018). More widespread studies that consider a larger area have also

produced interesting findings in terms of both seasonal evolution and the drainage

behaviour of lakes (Selmes, Murray, and James, 2011) and in terms of interannual

and long-term evolution in their spatial coverage (Howat et al., 2013; Igneczi et al.,

2016). The only known systematic map of supraglacial lakes on an interannual

timescale, covering the entire ice sheet, is available as yearly snapshots for the

period 2016-2018 Hu et al., 2022. Our study explores the evolution of meltwater at

high spatial (10-30 m) and temporal (monthly) resolution for an entire decade,

quantifying the extent and volume of supraglacial meltwater across the entire
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Greenland Ice Sheet. This analysis is important to understand how the GrIS

responds to climate change and what the implications are for future mass

imbalance on the ice sheet scale.

3.2 Data & methods

Here, we describe the data and workflow (Figure 4.3) to map the SGHF and

estimate volume, on a continental scale. We detail the input data, the RF algorithm,

the generation of training data, the validation, and the depth calculations for

volume estimates.

3.2.1 Data

We map SGHF on the GrIS in 138963 scenes acquired by Sentinel-2 between 2017

and 2022, and in 5708 scenes acquired by Landsat-8 between 2014 and 2016. We

omit 350777 S2 (72% of all scenes) and 6418 L8 (53% of all scenes) scenes with cloud

cover greater than 30% and solar elevation angles lower than 20°. A subset of the

Sentinel-2 (91) and Landsat-8 (71) scenes is used in the development and training of

the final algorithm (Table B.1).

3.2.1.1 Sentinel-2

S2 data are freely available as Top-of-Atmosphere (TOA) reflectance data from the

Copernicus Open Access Hub: https://scihub.copernicus.eu/ and from Google

Cloud Storage. S2 bands 2 (blue), 3 (green), 4 (red), and 8 (near infrared - NIR) exist

at a resolution of 10 m, the highest spatial resolution acquired by the sensor. Bands

5, 6, 7, 8A (vegetation red edge 1-4), 11 (short-wave infrared, (SWIR1)) and 12

(SWIR2) are acquired at a coarser resolution of 20 m. Bands 1 (coastal aerosol), 9
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Sentinel-2 - Top of Atmosphere Reflectance (TOA   
10 m: B2, B3, B4 & B8; 20 m: B5, B6, B7, B8A, B11 

& B12; 60 m: B1, B9 & B10) 

Calculate band indices: NDWIBR, NDWIGNIR, NWI, 
NDSI, SWI, NDGI, SAVIMOD, SIMOD, NDI, TCWET, 

AWEISH & AWEINSH

Random selection of pixels over SGH polygons and 
remaining non-SGH polygon representing Rock, Shaded 

Rock, Snow, Shaded Snow, Blue Ice, Slush, Cloud, 
Ocean, Sediment, Cryoconite, etc.

Training Data for each sensor

Manually enhance SGH polygons

Random Forest algorithm training for each sensor

Parameter optimization & model diagnosticsSatellite imagery prediction from Random Forest

BedMachine ice sheet maskPrediction map masks

Binary map masks        
(SGH & Non-SGH)

Some Data

A Process

Resampling 20 m & 60 m Bands to 10 m

Prediction map masks 
(SGH) for each sensor

A Product

Key

Estimate Ad (bottom albedo): mean reflectance of a 
3-pixel buffer around SGH features for each sensor

R?  (reflectance of optically deep water) 
approximated as 0

Calculate SGH depth as a function of B4 pixel TOA reflectance 
using Radiative Transfer Model

Volume map prediction     
for each sensor

Landsat-8 - Operational Land Imagery (OLI             
30 m: B1, B2, B3, B4, B5, B6, B7 & B9; 15 m: B8)                

Thermal Infrared Imagery (TIR 100 m: B10 & B11) 

Calculate band indices: NDWIBR, NDWIGNIR, NWI, 
NDSI, SWI, NDGI, SAVIMOD, SIMOD, NDI, TCWET, 

AWEISH, AWEINSH & TIRS/Blue

Resampling 15 m & 100 m Bands to 10 m & Convert 
OLI to TOA and TIR to TOA Brightness Temperature

Figure 3.1: S2 and L8 processing chains which result in SGHF extent and volume

maps.

(water vapour), and 10 (SWIRcirrus) exist at 60 m. Bands with coarser resolution

than 10 m are resampled to 10 m using nearest-neighbour interpolation for
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consistency with the red, green, and blue (RGB) and NIR bands (D. Corr et al., 2022;

Williamson et al., 2018). S2 pixel values represent TOA reflectance units ×10,000

and are known as TOA reflectance integers (reflectance×104). The Sentinel-2

mission currently comprises two satellites, Sentinel-2A and Sentinel-2B. Each

satellite has a revisit period of 10 days; however, since they are phased 180°from

each other, an on-the-ground repeat cycle of 5 days is possible depending on the

cloudiness and solar elevation angle of a scene.

3.2.1.2 Landsat-8

L8 data are freely available from the United States Geological Survey (USGS) Earth

Resources Observation Science (EROS) Centre (https://eros.usgs.gov) and

Google Cloud Storage. Level-1 L8 data, comprising quantised and calibrated scaled

digital numbers (DN), are converted to TOA reflectance or brightness temperature

values (Chander, Markham, and Helder, 2009). L8 bands 1 (coastal aerosol), 2

(blue), 3 (green), 4 (red), 5 (NIR), 6 (SWIR1)), 7 (SWIR2), and 9 (SWIRcirrus) are used

in their native resolution of 30 m. The bands 8 (panchromatic, 30 m), 10 (thermal

infrared (TIRS1), 100 m resolution) and 11 (TIRS2, 100 m resolution) are resampled

to 30 m using nearest-neighbour interpolation as with the S2 data. Landsat-8 has a

revisit time of 16 days, more than three times that of the Sentinel-2 constellation.

This results in a lower temporal sampling of the GrIS using L8 imagery.

3.2.1.3 Band indices

Band indices are assembled from the S2 and L8 TOA bands (Table 3.1) and combined

with the individual spectral bands to form a composite tiff (25 bands). Indices used

here include NDWIBlueRed (a), NDWIGreenNIR (b), New Water Index (NWI, (c) Feng,

2009), Normalized Difference Snow Index (NDSI, (d) named in places as Modified

NDWI, Hall, Riggs, and Salomonson, 1995; Xu, 2006), Soil/Water Index (SWI, (e)
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M. Dirscherl et al., 2020), Normalized Difference Glacier Index (NDGI, (f) Keshri,

Shukla, and Gupta, 2009), modified Soil-Adjusted Vegetation Index (SAVImod, (g)

Huete, 1988), modified Shadow Index (SImod, (h) H. Li et al., 2016), Tasselled Cap for

wetness (TCwet, (i) Kauth and G. Thomas, 1976; Schwatke, Scherer, and Dettmering,

2019), Automated Water Extraction Index including shadow (AWEIsh, (j)) or with

shaded area removal (AWEInsh, (k) Feyisa et al., 2014), Normalized Difference Index

(NDI, (l) M. Dirscherl et al., 2020), and a combination of the thermal infrared sensor

(TIRS) and blue band (m) in L8 (M. Moussavi et al., 2020).

Table 3.1: Indices calculated from the S2 and L8 sensors, used in the random forest

algorithm.

Index Name Equation Terrestrial Feature(s) Sensor(s) Reference

NDWIBlueRed (a) =
Blue - Red
Blue + Red

Surface Water S2 & L8 M. Moussavi et al., 2020

NDWIGreenNIR (b) =
Green - NIR
Green + NIR

Surface Water S2 & L8 D. Corr et al., 2022

NWI (c) =
Blue - (NIR+SWIR1+SWIR2)
Blue + (NIR+SWIR1+SWIR2)

Surface Water, Shadow S2 & L8 Feng, 2009

NDSI (d) =
Green - SWIR1

Green + SWIR1
Rock, Sediment, Ice S2 & L8 Hall, Riggs, and Salomonson, 1995; Xu, 2006

SWI (e) =
Blue - SWIR1

Blue + SWIR1
Rock, Sediment, Ice S2 & L8 M. Dirscherl et al., 2020

NDGI (f) =
Green - Red
Green + Red

Rock, Sediment, Ice S2 & L8 Keshri, Shukla, and Gupta, 2009

SAVImod (g) = 2 × Green - NIR
1 + Green + NIR

Rock, Sediment, Ice, Shadow S2 & L8 Huete, 1988

SImod (h) =
Blue - NIR
Blue + NIR

Shaded Ice/Snow, Shadow S2 & L8 H. Li et al., 2016

(0.1509 × Blue) + (0.1973 × Green)

TCwet (i) = + (0.3279 × Red) + (0.3406 × NIR) Surface Water S2 & L8 Kauth and G. Thomas, 1976

-(0.7112 × SWIR1) - (0.4572 × SWIR2) Schwatke, Scherer, and Dettmering, 2019

AWEIsh (j) = Blue + (2.5 × Green) Surface Water, Shadow S2 & L8 Feyisa et al., 2014

-(1.5 × (NIR + SWIR1)) - (2.5 × SWIR2)

AWEInsh (k) = 4 × (Green - SWIR1) Surface Water S2 & L8 Feyisa et al., 2014

- (0.25 × NIR) - (2.75 × SWIR2)

NDI (l) =
Green - Blue
Green + Blue

All Features S2 & L8 M. Dirscherl et al., 2020

TIRS Blue (m) =
TIRS1

Blue
Cloud L8 M. Moussavi et al., 2020
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3.2.1.4 Training data

Machine Learning algorithms require comprehensive, accurate training and

validation data sets. Due to the lack of in situ data, we generated our training and

validation data from satellite imagery. Specifically, we use images that 1) cover a

range of glaciological and climatological environments (i.e., acquired in the Watson

River catchment, west Greenland, northwest Greenland, east Greenland, and the

North East Greenland Ice Stream (NEGIS) basin) and stretch from around the ice

sheet margin to regions more than 200 km inland (Figure 3.2), 2) cover a broad

temporal range, that is, are sampled at peak meltwater (July-August) and for

periods with less meltwater (May and September) across multiple melt seasons,

and 3) within which a range of surface types are visible. Training data are extracted

at points that are labelled as surface water or non-surface water. The labels of the

surface water training data are determined by manually enhancing the maps

generated using NDWI algorithms (D. Corr et al., 2022) and an approach used to

enhance the delineation of supraglacial channels (K. Yang et al., 2019a) from

true-colour images, resulting in polygons of areas of surface water. Non-surface

water training data is created by identifying pixel types that are spectrally similar to

surface water, including slush, blue ice, rock, snow/ice, cloud, cloud shadows,

sediment, and cryoconite, and manually creating polygons of each type. We then

randomly subsample pixels within surface water and non-surface water polygons

to reduce user bias in pixel identification. Around 5000 (2500 water if available,

2500 non-water) pixels are randomly selected within each of the 91 S2 and 71 L8

scenes that comprised the training dataset.
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Figure 3.2: Drainage basins on the GrIS (Zwally et al., 2012). Locations marked

with a star are used in the selection and creation of training data for Landsat-

8 and Sentinel-2 algorithms. The ice sheet and island boundaries are according

to BedMachine v4 (Morlighem et al., 2017). The GrIS is divided into nineteen

drainage basins (Zwally et al., 2012), (Figure 3.2). The 19 basins are divided into 8

separate regions (1 = North, 2 = Northeast, 3 = East, 4 = Southeast, 5 = South, 6 =

Southwest, 7 = West, 8 = Northwest).

3.2.2 Classification of supraglacial hydrology using a random

forest algorithm

Random forest (RF) is a supervised learning algorithm that requires labelled

training data (Breiman, 2001). It is made up of a group (forest) of unrelated decision

trees. After a given number of trees are generated, the most popular classification is
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Figure 3.3: Examples of our random forest classification of supraglacial hydrology

on the Watson River Region of the Greenland Ice Sheet from Sentinel-2 satellite

imagery (tiles: T22WEA 20180710 and T22WEV 20180710). True colour images of

the supraglacial system are shown in figures a (regions of each of the coloured

outlines), c (supraglacial lakes interlinked by supraglacial channels, pink), e

(supraglacial lakes near the ice sheet margin, orange), and g (a large supraglacial

lake, blue), while b, d, f, and h are the same images with the regions classified as

surface water overlaid in red.

determined. RF resists overfitting, which can be a major source of error in ML

processes, is efficient, overcomes missing data, and is flexible depending on the

application (Breiman, 2001). For large data sets, such as the S2 and L8 archives used

in this study, the main memory requirement is the storage of the data itself. More

details on RF algorithms are presented in the Appendix.

Due to differences in the resolution and reflectance values of each sensor, the

random forest algorithms are trained independently (for S2 and L8), using the

Scikit-learn RandomForestClassifier module (Pedregosa et al., 2018), with
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hyperparameter optimisation conducted for each case. Hyperparameter

optimisation is designed to determine optimum values for the number of trees in

the forest (40-S2 and 250-L8), the maximum depth of a tree (10 and 10), the

minimum number of samples required to split an internal node (53 and 45), the

minimum number of samples required at a leaf node (23 and 15), the maximum

number of features to consider when applying the splits (no maximum in either

case), and whether bootstrap methods are used when building trees (yes for both S2

and L8). For each hyperparameter, we optimise the parameters using an AUC-ROC

(Area Under Curve-Receiver Operating Characteristics) curve approach (Song,

2015), cross-validating with 3 folds to ensure rigour.

Once trained, the RF algorithm is applied to unseen data, to produce a binary

pixel-by-pixel classification (water, non-water) of supraglacial hydrology (Figure

3.3), for each scene in the dataset. Features smaller than two pixels (200 m2 in S2

and 1800 m2 in L8 images) are removed from the datasets, as such features are

considered below the detection limit of the sensors and are more likely to be areas

of slush or noise than open water (Pope et al., 2016). The classified images are then

mosaicked to form monthly snapshots (May through September) of the SGH

coverage (Section 2.5). Manual post-processing is carried out over each mosaic to

remove obvious misclassifications, including some remaining areas of cloud cover

and shaded regions around crevasses and fjords. 6-8% of the final mosaics were

deemed misclassifications and removed from the data set by manual

post-processing.

3.2.3 Depth retrieval using radiative transfer model

SGHF depths are calculated pixel by pixel using a radiative transfer model (RTM,

Equation 1.3) (Banwell et al., 2014; Pope et al., 2016; Sneed and Hamilton, 2007;
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Tedesco and Steiner, 2011; Williamson et al., 2018). Specifically, depths are estimated

from the red and green band reflectance values, using the same S2 and L8 images

that were used to map the extent of the lake.

3.2.4 Validation of the algorithms

As overall accuracy is not an ideal metric to measure the performance of an

algorithm containing imbalanced data, we calculate the precision, recall, and F1

score of the confusion matrices to determine the accuracy and reliability of the

algorithms. The F1 score (F score or F measure) is the harmonic mean of precision

and recall; that is, it conveys the balance between the error caused by false positives

(precision) and the error caused by false negatives (recall), taking into account a

poor performance of the minority class. Overall accuracy is reported for

completeness.

Table 3.2: Validation metrics for the cross-validation of RF algorithm applied

to Landsat-8 and Sentinel-2 training data sets. Tests are repeated three times

for each sensor, with different randomly selected data from the Watson River

catchment, west Greenland, northwest Greenland, east Greenland, and NEGIS

on each occasion, to reduce bias in the results.

Sensor Test No. Precision Recall F1-Score Overall Accuracy [%]

Landsat-8 Test 1 0.90 0.99 0.94 99.0

Landsat-8 Test 2 0.91 0.98 0.94 99.0

Landsat-8 Test 3 0.88 0.97 0.92 98.6

Sentinel-2 Test 1 0.87 0.99 0.93 97.0

Sentinel-2 Test 2 0.87 0.98 0.92 96.9

Sentinel-2 Test 3 0.87 0.98 0.92 96.9
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An 80:20 train-test split is applied to the training/testing data set, and since they

are imbalanced (more non-SGHF pixels than SGHF pixels), we perform stratified

random sampling to reduce bias. Stratified random sampling selects approximately

the same percentage of samples of each target class, ensuring that the minority class

is represented in the training process. The tests, carried out on data from the

Watson River catchment, west Greenland, northwest Greenland, east Greenland,

and NEGIS (Table B.1), are repeated three times with different randomly selected

data on each occasion (Table 3.2). The metrics (precision, recall, F1 score, and

overall accuracy) are similar in all tests. Although the precision, and therefore F1

score, suggest better performance for L8 over S2, the S2 sensor is attempting to

resolve features at a much higher resolution and therefore smaller water bodies

with more subjective boundaries and a more challenging classification. However,

the precision is consistent with 0.87 for S2 and varies between 0.88 and 0.91 for the

L8 tests. The recall varies from 0.97 to 0.99 across the six tests, which we note

outperforms the recall reported for the standard spectral thresholding approach,

which reported mean recall values of 0.82 (D. Corr et al., 2022) on the Antarctic Ice

Sheet. The F1 score, which is marginally higher on average for L8, ranges from 0.92

to 0.94. The general accuracies of 99% (L8) and 97% (S2) demonstrates the

discrepancy between the general accuracy and a metric that punishes poor

performance of the minority class. The individual confusion matrices for each test

are presented in the Appendix (Tables B.3 and B.4).

The performance of the RTM with each band was evaluated against lake depth

measured by ICESat-2 transects over four lakes in the Watson region (L. Melling

et al., 2023). The transects covered 400 data points, and the sum of the depths was

calculated by integrating the depth values over the transect length. Depths were

calculated for the three methods: ICESat-2, RTM green band and RTM red band

(Table 3.3). For the red band, lake depths were found to be underestimated by 33.1%,
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while the green band was overestimated by 69. 7%. As such, we use the red band in

our study to calculate lake volume, but note that our estimates probably constitute a

lower bound.

Table 3.3: Comparison of summed depths calculated by the green and red band

RTM with depth derived from ICESat-2.

ICESat-2 Depth [m2] Green RTM Depth [m2] Red RTM Depth [m2] % Diff. Green % Diff. Red

1224.74 2078.15 819.88 +69.7 -33.1

3.2.4.1 Comparison of results between Landsat-8 & Sentinel-2

Since S2 data is only available from 2017, it is useful to be able to use L8 to extend the

record back in time (to 2014). However, with a resolution of 30 m, the L8 sensor is

unable to resolve streams and lakes smaller than 1800 m2, while S2 can resolve those

as small as 200 m2 (Figure 3.4). To estimate the effect this has on the final mosaicked

data sets, we have conducted a comparison of the estimated extents and volumes

from each sensor for the 2017 melt season and compare the results. In each melt

season, S2 identifies a much higher lake coverage than L8 (Table 3.4). The greatest

percentage differences occur as the melt season progresses, suggesting that the lower

spatial resolution of the L8 sensor may affect the classification of drained or refrozen

lakes. As greater temporal sampling results in an increased probability that peak

meltwater extent (and/or volume) is captured, we assume that L8’s lower temporal

sampling has a negative impact on the reliability of our assessment. We calculate the

mean percentage differences for the area and volume estimates.

% Difference = 100 × |S2 Value - L8 Value|(
S2 Value + L8 Value

2

) (3.1)
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Figure 3.4: Depth estimates from S2 (T22WEV 20200712T202317 - reds) and

L8 (LC08 L1TP 008013 20200712 20200722 01 T1 - blues) sensors on an RGB

composite of the same L8 tile in the Watson region on 12 July 2020.

Assuming that the S2 data are more reliable, we calculate the area and volume

for each sensor and use the difference to ’correct’ the L8 estimates between 2014 and

2016. Therefore, we find that L8 underestimates area by 78.5% and volume by 50.2%

when compared to S2, and therefore we scale the L8 estimates to area and volume

by these values, respectively.

Table 3.4: Area and volume comparisons results obtained by Sentinel-2 and

Landsat-8 sensors for each month of the 2017 melt season.

Date S2 Area [km2] S2 Volume [km3] L8 Area [km2] L8 Volume [km3] % Difference Area % Difference Volume

May 2017 3983.4 1.62 3188.0 1.17 22.2 32.4

June 2017 7127.2 3.68 3655.0 2.32 64.4 45.5

July 2017 29320.1 13.09 10092.0 7.03 97.6 60.2

August 2017 17932.9 9.31 5981.9 4.77 99.9 64.6

September 2017 2398.6 1.26 732.5 0.77 106.4 48.4

Mean - - - - 78.5 50.2
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3.2.4.2 Transferability of the RF algorithm

To assess the spatial and temporal transferability of the algorithm, 40 scenes in total

are assessed (Table B.1). This included data from 2018 (May 26, July 10, August 19,

September 13) and 2019 (May 29, July 8, August 4, September 1) in the Watson study

area (Figure 3.2) and data from 2019 (1 June, July 13, August 13, and September 3) in

the NEGIS study area (Figure 3.2). In each case, the tests were conducted by training

the RF algorithm on a subset of the data; for example, trained on all 2018 data and

tested on the unseen 2019 data or trained on all data from May, July, and August and

trained on the unseen September data.

The spatial transferability assessment evaluated the performance of the RF

algorithm when trained on data from the Watson River and tested on unseen data

from the NEGIS. NEGIS is a prominent ice flow feature, draining 12% of the ice

sheet interior through three large outlet glaciers in northeast Greenland (Larsen

et al., 2018). Although believed to be historically stable, since 2006 it has undergone

marked thinning and retreat (Khan et al., 2014, 2022), with evidence of an inland

expansion and increases in the total area of SGLs during this period (Turton et al.,

2021). Compared to other basins, the Watson River basin in southwest Greenland

drains a much smaller area of the ice sheet (0.7%, Lindbäck et al., 2015; van As et al.,

2018) and hosts a vast interconnected system of supraglacial lakes and channels

(A. A. Leeson et al., 2015; K. Yang et al., 2021). The southwest region typically hosts

the highest number of SGLs (Hu et al., 2022).

Our validation exercise shows that the methods are transferable in space and in

time (Table 3.5) and that this transferability extends similarly to the high (2019) and

low (2018) melt seasons. The algorithm performs best when trained on data from

May, August, and September and tested on unseen data from July. The algorithm’s

performance drops in May and September. In these months, the boundary between
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open water and slush is less well defined, leading to difficulty in defining what is

open water and what is slush. These results with consistent and high-performing F1

scores demonstrate that the method is a valid approach. For the individual confusion

matrices for each test, see the Appendix (Tables B.5:B.7). The method can classify

supraglacial hydrology effectively when tested on unseen data in both space and

time. This is reassuring for an operational setup and indicates that the method is

reliable for roll-out on the ice sheet scale for future melt seasons.

Table 3.5: Yearly, seasonal and spatial transferability metrics (precision, recall, F1

score and accuracy) for the algorithm tested on Sentinel-2 data from 2018 and 2019

in the Watson River and NEGIS regions of Greenland.

Transferability Test Precision Recall F1-Score Overall Accuracy [%]

Yearly-2018 0.90 0.99 0.94 95.9

Yearly-2019 0.97 0.93 0.95 96.1

Seasonal-May 0.84 0.95 0.89 95.2

Seasonal-Jul 0.96 0.99 0.98 97.6

Seasonal-Aug 0.98 0.91 0.95 94.9

Seasonal-Sep 0.88 0.87 0.87 96.0

Seasonal-Sep 2018 & May 2019 Omitted 0.97 0.93 0.95 97.6

Spatial-NEGIS 0.97 0.94 0.96 96.6

3.2.5 Mosaicking & analysing the data sets

Next, we organise our 144,671 classified scenes into monthly (May-September)

snapshots and 120 km by 120 km tiles covering the entire ice sheet (1495 for each

melt season, Figure 3.5). For S2, each tile contains 144 million (12, 000 × 12, 000)

cells at 10 m resolution, whereas for L8, each tile contains 16 million (4, 000 × 4, 000)

cells at 30 m resolution.
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For each tile and month on the grid, each classified image that overlaps a cell on

that tile is stacked. If any cell is considered to contain surface water in any classified

image, it is assigned a value of 1. Cells that are not considered to contain surface

water in any classified image are assigned a value of 0. Therefore, we consider our

resulting estimate to represent a maximum extent in each month, although we note

that few (¡5) observations of each cell of the grid in each month. Due to temporal

sampling and the impact of clouds, the true maximum extent may be higher in

some cases; however, our results are a best-case approximation. We repeat the same

procedure to generate annual maximum extent estimates. The same procedure is

adopted to organise our SGL volume data.

Figure 3.5: The numbered grid which is used to divide the GrIS dataset into

consistent areas measuring 120 km by 120 km and containing 144 million (12, 000×

12, 000) cells at 10 m resolution for S2 data, and 16 million (4, 000 × 4, 000) cells at

30 m resolution for L8 data.
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To quantify changes in hydrological activity on the ice sheet throughout our time

series, we use Pearson’s r to signify the sign and significance of the decadal trend

for the extent and volume of SGHF for each month (May through September), while

the magnitude of the trend is obtained from a least-squares fit. The r values (and

related P-values) are calculated for the monthly extents and volumes of each basin

over the years (Tables B.9-B.11). The sign of r determines the direction of the trend;

for example, positive numbers suggest that SGH is increasing over time. The trend

is determined to be statistically significant if the corresponding P-value is less than

0.05.

3.3 Results & discussion

By applying an RF algorithm to Landsat-8 and Sentinel-2 sensor images, we map

the extent and evolution of SGHF throughout the GrIS at monthly resolution from

2014 to 2022. This study evaluates supraglacial hydrological features throughout

Greenland, on a decadal scale, for the first time.

3.3.1 Evolution of SGH over the Greenland Ice Sheet

To examine the evolution of SGH over the GrIS we analyse the spatial and temporal

elements on the ice sheet scale. First, we examine the distribution of SGHF in space

(Figure 3.6). Next, we examine changes in the monthly extent and volume of SGHF

in the Zwally drainage basins over time (Figures 3.8b, B.1, B.2). We then explore the

drivers of increased supraglacial hydrology (Figures 3.9a, 3.9b), before investigating

the elevation at which SGH occurs (Figure 3.10).

We explore the spatial changes in the hydrological extent for each month over

the years 2014 to 2022. We calculate the cumulative area of supraglacial hydrology
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3.3. Results & discussion

Figure 3.6: The supraglacial hydrology extent anomaly for July compared to the

mean extent in 1200 m grid cells on the Greenland Ice Sheet. The anomaly was

calculated, taking the difference of the mean cell value of the 9 years in each

cell from the extent value for each year. Figures for the other months, May, June,

August, and September, are included in the Appendix (Figures B.3a-d).
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within 1200 m resolution cells on a monthly basis and compute the monthly means

for each cell over the period 2014-2022. The anomaly for each cell is determined

by subtracting the mean area of that cell in the given month from the cumulative

area in that month (Figures 3.6, B.3). The extent of supraglacial hydrology varies

spatially. Positive anomalies, where the extent is greater than the mean, indicate

increased surface meltwater occurrence. Negative anomalies, where the extent is

lower than the mean, indicate a decrease in supraglacial meltwater. This analysis

reveals the complexities in evaluating trends on the ice sheet (or storage basin) scale

and suggests that variations in the extent of meltwater from the high and low melt

seasons may reduce the statistical significance of trends; for example, although we

observe positive anomalies in the extent of the SGHF in July from 2019-2022 over

much of the northern region, positive anomalies in 2015 and negative anomalies in

2018 may reduce the significance of the trend (Figure 3.6). We present the July data

here because it is typically the maximum lake extent.

Almost all SGHF occurs around the margin of the ice sheet - we see very few

(<0.1%) SGHF more than 150 km from the margin in all nine years studied here.

The north, northeast, northwest, and southwest regions consistently contain the

largest volume and extent of surface water. The east and southeast coasts have the

least amount of meltwater in almost all months and years. This is likely because

these areas are characterised by mountainous regions of higher altitude and slope,

as well as small ablation zones due to accumulation and firn depths (B. P. Y. Noël,

2019; Turton et al., 2021). These conditions are not favourable for lake formation.

We find that the extent of supraglacial water peaked in July 2019 with

approximately 3.5% of the ice sheet area, while the volume peaked in 2021 with

approximately 20 km3 (Figure 3.7). This suggests that 2019 contained more shallow

features, while 2021 contained deeper lakes and channels. For their respective

peaks, we observed approximately 42% of lakes by area and 40% by volume in the
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north, 15% and 10% in the northeast, 7% and 8% in the east, 1% and 2% in the

southeast, 1% and 2% in the south, 13% and 20% in the southwest, 6% and 5% in the

west, and 15% and 11% in the northwest. It is typically observed that surface

meltwater on the Greenland Ice Sheet is present in May, reaches its peak in July, and

starts to refreeze in September. This is in agreement with previous research

(K. E. Alley et al., 2018; Das et al., 2008; McGrath et al., 2012; Otto, Holmes, and

Kirchner, 2022; L. C. Smith et al., 2015; Tedesco et al., 2013; van der Veen, 2007;

K. Yang et al., 2021), which has also found that lakes drain laterally across the

surface and vertically to sub- or englacial environments throughout the melt

season.

To examine trends in supraglacial extent and volume at different points in the

melt season, we divided our analysis into 19 drainage basins (Zwally et al., 2012).

At the ice sheet level, we observe statistically significant increases in the meltwater

area in four of the nineteen basins and statistically significant increases in the

volume of meltwater in seven of the nineteen. Geographically, these basins are

located in the north, northeast, east, southwest, and south (Figures B.1a, B.1b). The

signals from area and volume exhibit distinct patterns, which is intriguing given

their direct correlation; for example, our research indicates that the total monthly

SGHF area (km2) is directly proportional to the total monthly SGHF volume (km3)

on the Greenland Ice Sheet (SGHF Area = 2530.7 × SGHF Volume, Figure B.5).

Although storage basin 6.2 in southwest Greenland dominates the maximum

meltwater extent and almost every monthly extent, interestingly, we do not see a

significant trend in the extent of SGHF or volume estimates in the time series

(Figures B.1a, B.1b). Many studies have been conducted in west Greenland due to

the high levels of supraglacial meltwater, however, our results emphasize the

importance of continental studies as this region does not show any statistically

significant trends. A similar phenomenon is observed throughout the west and
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Figure 3.7: Supraglacial meltwater volumes on the Greenland Ice Sheet during

July 2021, and detailed views across the ice sheet in the northwest (a), northeast

(b), east (c), southeast (d), south (e), west (f).

northwest basins. However, we identify statistically significant trends in SGH

activity over basins in the north (May: Basin 1.3-increasing area; Basin

1.4-increasing volume), northeast (September 2.2-volume), east (September:

3.2-area; 3.2, 3.4-volume), southeast (July, September: 4.3-area; June, July,

September: 4.3-volume), south (July, September: 5.0-area; June, July: 5.0-volume),

and southwest (July, September: 6.1-volume) throughout the decade (Figures B.1a,

B.1b).

In regions where supraglacial water accumulates in lakes, there exists the
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potential for this water to reach the glacier bed. Spatially, these areas delineate

regions of the ice sheet that exhibit susceptibility to dynamic perturbations.

Consequently, our interest extends beyond mere trends in meltwater extent and

volume; we are equally concerned with variations in areas susceptible to such

environmental forces. To assess this, we initially categorise ice sheet areas proximal

to a lake within a given month. Subsequently, we analyse trends in this particular

metric. To facilitate this process, we resample our SGHF extent dataset into a

coarser scale product (1200 m x 1200 m). In this resampled dataset, cells receive a

value of 1 if they encompass any portion of an SGHF and 0 if they do not. This

better represents the area of the ice sheet that might be affected by SGHF features

than a simple sum of their area. Examining these data, we find that many regions of

the ice sheet experience statistically significant positive trends in SGHF affected

area, especially the south and southeast, which have seen a significant increase in

SGHF affected area in all months of the year. Additionally, we observe an increase

in the area affected by SGHF in the north of the ice sheet in May, the west of the ice

sheet in August, and the east of the ice sheet in September (Figure 3.8a). The

southwest and northeast of the ice sheet both host abundant populations of SGHF;

however, we find no statistically significant increase in SGHF affected area here. We

explore this further by calculating the ratio of standard deviation of the residuals on

the SGFH affected area time series with its trend, i.e. to provide a measure of how

variability in the time series affects the statistical significance of its trend (Figure

3.8b, B.2a, B.2b). We observe that for basins with no statistically significant trend in

the area covered by the SGFH, the ratio is very high, suggesting that seasonal and

interannual variability is large enough to conceal long-term trends. For these basins

with high temporal variability, a longer observational record is needed to confirm

the significance of the trends.
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(a) Trend in the SGHF occurrence. (b) Ratio for SGHF occurrence.

Figure 3.8: Trends for: (a) SGHF occurrence in the Zwally storage basins over the

decade from 2014-2022, calculated for the products available at resampled 1200

m resolution and with the sensor correction applied to Landsat-8 era data (2014-

2016) and (b) the ratio of the standard deviation of the residuals of the trend to the

magnitude of the trend for the SGHF occurrence in the Zwally storage basins. In

most cases, where the basins (in a) show no significant trend, this ratio is many

times that of the basins with a significant trend. Labelled basins are those where

we find statistically significant trends for the SGHF occurrence. In September,

very little to no meltwater is present in the northern regions, resulting in a zero

value for the standard deviation and a white colour in the plot.

3.3.1.1 Drivers of increased supraglacial hydrology

To investigate the drivers of the increase in SGHF we observe on the GrIS, we

examined climate and ice surface property data from the IMAU-FDM v1.2G

(Institute for Marine and Atmospheric Research Utrecht-firn densification model,
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Brils et al., 2022) and RACMO2.3p2 (regional climate model, B. Noël et al., 2018).

We calculate the average firn air content, average ice slab content, average firn

temperature at 10 m depth, and average irreducible water content for the years

2014-2020 for each basin (e.g. Figure 3.2) from IMAU-FDM v1.2G. We also calculate

the average runoff, average precipitation, average snowmelt, average snowfall, and

average air temperature 2 m above the ice surface for the years 2014-2022 for each

Zwally basin from RACMO2.3p2.

Firn air content, the vertically integrated volume of air contained within the firn,

in the upper layers of snow on the ice sheet, is essential to control the storage and

release of meltwater. Compaction of the firn reduces the permeability of the

snowpack, making it more difficult for the meltwater to percolate through the firn

(Pfeffer, Meier, and Illangasekare, 1991; Vandecrux et al., 2019). This leads to more

water remaining on the surface, resulting in an increase in the formation of

supraglacial lakes and channels (Pfeffer, Meier, and Illangasekare, 1991; Vandecrux

et al., 2019). Changes in the ice slab content can affect the drainage of stored

meltwater within the ice sheet. Ice slabs are dense layers or regions of ice that are

distinct from the surrounding ice. These slabs are typically characterised by their

relatively low permeability, high density, and reduced air content compared to the

firn that forms the upper layer of the ice sheet. If the ice slab becomes more

impermeable due to changes in its physical properties, it can act as a barrier,

preventing downward percolation of the meltwater (Culberg, Schroeder, and Chu,

2021; MacFerrin et al., 2019). The irreducible water content is the fraction of the

pore space within the firn that remains filled with water even under high pressure,

and changes in this parameter can influence the way water is stored and released,

influencing supraglacial hydrology (Brils et al., 2022; Covi, Hock, and Reijmer,

2023). Runoff, which is the volume of water that flows across the ice surface, is

closely related to changes in meltwater production, snowmelt, and rainfall. An
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increase in runoff can be caused by higher temperatures and increased melt,

resulting in more extensive supraglacial water networks (Gantayat et al., 2023; Y. Li

et al., 2022; K. Yang et al., 2019b). Precipitation, snowmelt, and snowfall are all

directly related to the input of water into the ice sheet, and variations in these

factors can increase or decrease the accumulation and ablation of the surface of the

ice sheet (McIlhattan et al., 2020; B. Noël et al., 2015). For example, a decrease in

snowfall can lead to reduced albedo and increased surface melt, resulting in a more

extensive supraglacial hydrology (McIlhattan et al., 2020). Lastly, changes in

temperature can affect the overall energy balance of the ice sheet. Higher air

temperatures lead to increased surface melting, which contributes to the formation

of supraglacial water bodies (Hanna et al., 2021). Subsurface firn temperature

variations can also affect the rate of refreezing, which in turn affects the availability

of liquid water on the surface (Brils et al., 2022; Culberg, Schroeder, and Chu, 2021).

We observe significant seasonal trends in the mean firn air content and mean ice

slab content in the Zwally drainage basins in the north, south, and east, which

experience a significant increase in supraglacial hydrology (Figures 3.9a, 3.9b). This

suggests that these ice slabs render the near-surface of the ice sheet impermeable,

inhibiting the downward percolation of the meltwater, and thus increasing the

ponding at the surface (Culberg, Schroeder, and Chu, 2021; MacFerrin et al., 2019;

Pfeffer, Meier, and Illangasekare, 1991; Vandecrux et al., 2019). Although the

IMAU-FDM v1.2G model and our estimates of the occurrence of SGHF do not

cover the same time period, this analysis implies that a decrease in the firn air

content and an increase in the ice slab content could be a potential cause of the

increase in the occurrence of SGH (Figures B.1a, B.1b, 3.8a). We examine trends for

other variables, such as firn temperature at 10 m depth, irreducible water content,

runoff, precipitation, snowmelt, snowfall, and air temperature 2 m above the ice

surface, but no significant consistent trends were observed in the basins with
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(a) Significant trends in the mean ice slab

content.

(b) Significant trends in the mean firn air

content.

Figure 3.9: Trends for the mean ice slab content and mean firn air content for

the years 2014-2020 calculated from IMAU-FDM (Firn Densification Model) v1.2G

(Brils et al., 2022), where we find a significant trend for the occurrence of SGHF

(Figure 3.8a) across the years 2014-2022 for each Zwally basin. Labelled basins are

those where we find statistically significant trends in the IMAU-FDM data.

increasing SGH (Figures B.3a-B.3b, B.4a-B.4e). However, similar to the SGHF

occurrence trends, variations from the low and high melt seasons may reduce the

significance of the trends analysed. Longer-term studies are needed to assess in

detail the drivers of increasing SGH.
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3.3.1.2 Meltwater trends according to elevation

To gain a better understanding of the areas that contribute to an increase in

supraglacial hydrology, we investigated the elevation at which SGH occurs. We

identified a considerable increase in SGH occurrence, typically at elevations below

1500 m, for example, in the south and southeast in June, south and east in July,

northwest in August, and south, west, and southwest in September. The decreasing

SGHF trends for the elevation bands in the east and south regions during July and

August explain some of the mismatching trends in the ice slab content analysis.

However, supraglacial hydrology has been significantly increasing in some regions

with elevations above 2000 m, such as the northeast in May and the south and west

in September. This analysis implies that supraglacial hydrology is moving further

inland, to higher elevations in some parts of the ice sheet (Figure 3.10).

3.4 Conclusion

In this study, we present a novel analysis of supraglacial water extent and volume

that spans a decade throughout the Greenland Ice Sheet. We developed and

rigorously validated a random forest algorithm designed to classify SGHF using the

optical sensors Sentinel-2 and Landsat-8. This RF-based approach allowed us to

delineate hydrological features at an unprecedented resolution and scale compared

to conventional methods. Our findings reveal robust seasonal patterns in SGHF

behaviour, characterised by the presence of meltwater in May, peaking during

July/August, and subsequent refreezing or drainage in September each year.

In addition, we observed variability in both the extent and volume of SGHF on

the Greenland Ice Sheet year by year. In particular, between 2014 and 2022, there

was a statistically significant increase in the extent, volume, and occurrence of

SGHF in numerous basins, particularly those located in the northern, eastern, and
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Figure 3.10: Significantly changing trends for the occurrence of SGHF at

the elevation bands (0-500m, 500-1000m, 1000-1500m, 1500-2000m, 2000-2500m,

>2500m) according to ArcticDEM (Porter et al., 2023), where a significant trend

was found for the occurrence of SGHF (Figure 3.8a) over the years 2014-2022 for

each Zwally basin.

southern regions of the ice sheet. This notable increase is predominantly attributed

to increased SGHF activity at elevations below 1500 metres, although some

higher-altitude regions also exhibited a marked increase.

The study also revealed a significant decrease in mean firn air content and a

noteworthy increase in mean ice slab content in the basins that experienced a

substantial increase in the SGHF. These findings suggest that alterations in these

specific variables may drive the observed increase in SGHF. Although the duration

of our current time series has been sufficient to detect significant trends across
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multiple basins, the complexity of areas characterised by pronounced seasonal and

interannual variability underscores the necessity for sustained observations to

establish an extended time series effectively.

3.5 Data & code availability

The mapped supraglacial hydrology polygons and rasters are available on Zenodo

(https://doi.org/10.5281/zenodo.7573885, D. Corr, 2023c) as digital GIS

shapefiles (.shp) and GeoTIFF (.tif). Data consist of monthly and yearly extents and

depths of supraglacial hydrology in Greenland for 2014 through 2022. L8 and S2

imagery are freely available at earthexplorer.usgs.gov and

scihub.copernicus.eu respectively. Scripts to download data were extracted from

GitHub (Hagolle, Olivier, 2014) and (Hagolle, Olivier, 2015), however, with changes

to the data structure on both repositories, these scripts may no longer be effective.

Alternatively, imagery is available to download from Google Cloud Storage using

Python scripting (Nunes, Vasco, 2016).

The code used to produce the supraglacial hydrology features is written in

Python and can be accessed on Zenodo and GitHub (D. Corr, 2023a). The authors

express their gratitude for the use of the High End Computing (HEC) Cluster at

Lancaster University in conducting this study.
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The following work is prepared as a manuscript to be submitted as: ”A new

method for probabilistic prediction of supraglacial lakes on the southwest

Greenland Ice Sheet”.

This chapter presents the research conducted to use optical satellite imagery to

predict the probability of supraglacial meltwater in a given lake image and the

uncertainty associated with them at the pixel level.

DC developed the code, carried out the main body of work, and drafted this

paper. AL, MM, and IMH provided supervision and contributed extensively to the

science, technical details, and structure of this paper. All authors contributed to the

manuscript text.

Abstract

Greenland’s supraglacial lakes are pools of liquid meltwater that form in

depressions on the ice sheet during the summer months. These lakes are a sign of

increased melting, which affects the storage and movement of meltwater on the ice

sheet and can have an impact on the dynamics of the ice sheet, leading to an

increase in sea levels when they drain. In this study, we employ a Bayesian

statistical framework known as Integrated Nested Laplace Approximation with

Stochastic Partial Differential Equation (INLA-SPDE) to predict the probability of

supraglacial water presence at the pixel level within satellite imagery. Our

approach uses multinomial logistic regression to discern one of three lake border

conditions (well defined, blurred, and without a clear border) within these images.

By leveraging a Matérn covariance function constructed on an SPDE mesh, we

capture the spatial relationship between pixels depending on the border condition.

The model is able to recognise the connections between random spatial effects
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related to the border conditions, the predictor variables (Sentinel-2-based indices

and individual reflectance bands), and the manually generated water/non-water

labels. This enables us to compute probabilistic estimates for each pixel in a lake

image and to measure the uncertainty associated with it pixel-by-pixel.

We explore the effect of thresholds on our probabilistic estimates to create a

binary classification of surface water and compare the effectiveness of this

classification to that of traditional static thresholding, convolutional neural network

(CNN), and random forest (RF) algorithms. Our INLA-SPDE approach 1)

significantly exceeds the performance of the static thresholding approaches, 2)

produces results comparable to those of the CNN and RF algorithms, which were

trained and tested on the same input data and unseen test data, and 3) provides the

added value of a probabilistic estimate of the presence of water with an associated

uncertainty. Our discoveries demonstrate the effectiveness of this Bayesian

framework, offering a promising path for reliable prediction and classification of

SGLs from optical satellite imagery. This approach is especially beneficial in cases

where it is hard to distinguish the borders of a lake. It provides a more precise and

adjustable prediction than a strict binary classification. This makes it a useful tool

for analysing supraglacial lakes on a large scale and over a period of time, as these

lakes can vary significantly in both space and time.
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4.1. Introduction

4.1 Introduction

In the last decade, observations have revealed rapid and significant changes in the

Greenland Ice Sheet (GrIS) in response to increases in temperatures linked to global

warming (Otosaka et al., 2022; Shepherd et al., 2018, 2020; B. Smith et al., 2020; Trusel

et al., 2018). Models have predicted that these effects will continue to be prominent

for several decades, even if global temperatures stabilise (Box et al., 2022; Goelzer

et al., 2020; Lenaerts et al., 2019). The GrIS has suffered substantial ice mass loss in

previous decades (Madsen et al., 2022; Moon et al., 2020; Slater et al., 2021), 60% of

which is credited to the difference between snow accumulation and surface melt, the

rest to dynamic mass loss (M. R. van den Broeke et al., 2016).

When surface meltwater accumulates in depressions on the surface of the ice

sheet, supraglacial lakes (SGL), which vary in size from tens of metres to tens of

kilometres (Kingslake et al., 2017; Selmes, Murray, and James, 2011; Stokes et al.,

2019) and depths of centimetres to 12 m (J. F. Arthur et al., 2020a; Box et al., 2012),

are formed (Echelmeyer, Clarke, and Harrison, 1991). SGLs play a significant role in

ice sheet dynamics and mass balance. They increase surface albedo, which can lead

to increased melting because white surfaces (such as snow and ice) reflect higher

fractions of incoming radiation than darker surfaces (Bell et al., 2018; Leidman

et al., 2021; Lenaerts et al., 2017). Meltwater that enters the englacial system,

through cracks or crevasses on the surface, can transfer latent heat to the

surrounding environment when it freezes during winter in a process called

cryohydrologic warming (T. Phillips, Rajaram, and Steffen, 2010; T. Phillips et al.,

2013). If enough meltwater enters cracks or crevasses, fracture growth can increase

(Lai et al., 2020; T. Scambos et al., 2009) and open a connection between the ice

surface and the bed, in a process known as hydrofracture. SGLs have been

observed to drain rapidly through 1000 m thick ice through hydrofracture (Banwell,
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MacAyeal, and Sergienko, 2013; Das et al., 2008; Doyle et al., 2013; Stevens et al.,

2015; Tedesco et al., 2013); or slowly through channels and overtopping their banks

(Hoffman et al., 2011; Tedesco et al., 2013). Rapid delivery of meltwater to the basal

environment has been found to reduce basal friction and temporarily increase ice

flow velocities by up to an order of magnitude (Tedesco et al., 2013) and impacts

frontal melting of marine terminating glaciers (Tuckett et al., 2019). Monitoring the

behaviour and volume of SGLs helps quantify their impact on total ice sheet mass

loss and, consequently, on their contribution to global rise in sea level (Enderlin

et al., 2014; M. van den Broeke et al., 2009).

SGLs around the GrIS margin have been extensively studied. Maps of SGLs are

available interannually, covering the entire ice sheet, for the periods 2014-2022

(D. e. a. Corr, n.d., In Prep) and 2016-2018 (Hu et al., 2022). Additionally,

smaller-scale studies have been conducted to investigate lakes in different

glaciological conditions (A. A. Leeson et al., 2012, 2015; A. A. Leeson et al., 2013;

Y.-L. Liang et al., 2012; McMillan et al., 2007; Sundal et al., 2009; Williamson et al.,

2018). These studies have focused mainly on understanding the seasonal evolution

of SGLs and applying algorithms to study sites associated with specific

glaciological basins. Other research has revealed trends in the seasonal evolution

and drainage behaviour of lakes (Selmes, Murray, and James, 2011) and in terms of

the interannual and long-term evolution of their spatial coverage (Howat et al.,

2013; Igneczi et al., 2016). The traditional approach to mapping SGL features

combines spectral thresholding (usually the Normalised Difference Water Index,

NDWI) with extensive manual post-processing (D. Corr et al., 2022; Fitzpatrick

et al., 2014; M. Moussavi et al., 2020; Stokes et al., 2019; Williamson et al., 2018;

K. Yang and L. C. Smith, 2013). Manual intervention is necessary to remove

shadows, clouds, rocks, crevasses, and blue ice that are spectrally similar to

meltwater and are sometimes misclassified as water (D. Corr et al., 2022). However,
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with the large amount of satellite data now available, methods that require manual

input are not suitable for repeated monitoring of surface hydrology on a continental

scale. Given that there are tens of thousands of these features (D. Corr et al., 2022;

Stokes et al., 2019; K. Yang et al., 2021) and appear in many thousands of satellite

images, automated mapping techniques are often used. Machine learning (ML)

algorithms such as random forests (RF, D. e. a. Corr, n.d.; M. Dirscherl et al., 2020;

Hu et al., 2022, In Prep), convolutional neural networks (CNN, M. Dirscherl et al.,

2021; Yuan et al., 2020), and k-means clustering (Halberstadt et al., 2020) offer

potential solutions to this problem and are now widely used.

These techniques offer a way of classifying surface features; however, they

provide only a binary classification with a limited estimate of uncertainty. A few

studies have attempted to measure the level of uncertainty by assigning a

percentage to the total area of supraglacial hydrology throughout the ice sheet (e.g.,

Stokes et al., 2019). This is based on the assumption that the total area of lakes

identified from the models is likely to be similar to manual digitisation on the ice

sheet scale. Other research has applied uncertainty values on a lake-by-lake basis,

for example, an uncertainty of half-pixel width (125 m) to the circumference of each

lake (Y.-L. Liang et al., 2012). No research has yet evaluated uncertainty at the pixel

level. This is especially relevant for lakes with indistinct borders, where the most

uncertainty is found in the prediction. As a result of their distinct blue hue

compared to the white or grey ice surrounding them, many supraglacial lakes are

easily identifiable in optical satellite images. Their distinct borders make them

suitable for tracking changes in size, depth, and distribution over time using

conventional methods, which can provide information on glacier melting patterns

and hydrological processes, for example, hydrofracture-driven drainage (D. Corr

et al., 2022; Fitzpatrick et al., 2014; M. Moussavi et al., 2020; Stokes et al., 2019;

Williamson et al., 2018; K. Yang and L. C. Smith, 2013). However, others with

147



4.1. Introduction

poorly defined or unclear borders are more difficult to identify. Supraglacial lakes

with blurred borders have less defined edges compared to easily discernible lakes.

The borders of these lakes may be partially obscured by the surrounding ice, snow,

or slush (Dell et al., 2022; Machguth, Tedstone, and Mattea, 2023; Sneed and

Hamilton, 2007). This can make it difficult to accurately delineate the extent of the

lake from static thresholding and traditional methods (D. Corr et al., 2022;

Fitzpatrick et al., 2014; M. Moussavi et al., 2020; Stokes et al., 2019; Williamson et al.,

2018; K. Yang and L. C. Smith, 2013). How well defined the edges or borders of

SGLs are depends on temperature, precipitation, elevation, undulations in the

surface of the ice sheet. SGLs without a clear border are characterised by a lack of

discernible edges that separate lake water from the glacier’s surface. These lakes

may appear as areas of standing water or slush that blend into ice or snow.

To address this issue, we use a Bayesian statistical approach (Integrated Nested

Laplace Approximation with Stochastic Partial Differential Equation, INLA-SPDE)

to predict the probability that each pixel in a given image is supraglacial water

(Lindgren, Rue, and Lindström, 2011; Martins et al., 2013; Rue, Martino, and

Chopin, 2009; Simpson, Lindgren, and Rue, 2012a). We combine the benefits of

INLA’s efficient Bayesian inference with SPDE’s capacity to model spatial

dependencies. We can use spatial random effects to acknowledge spatial

relationships, such as lake pixels are more likely to be near other lake pixels, and

lakes with clear borders will have more distinction at their edges. This will help us

identify water features in satellite imagery, while taking into account the spatial

correlations present in SGL features (C. Yang et al., 2023). Our study provides

probabilistic predictions of surface water at the pixel level and the associated

standard deviations, which represent the uncertainty in the prediction. A threshold

is then used to classify the pixels into two categories according to the prediction.

The threshold for this method is set to a probability of 0.50, which is the point at

148



4.2. Data & methods

which it is more likely that a pixel is water than not. This threshold can be adjusted

within the model to ensure a certain level of certainty.

4.2 Data & methods

Here, we describe the data and workflow (Figure 4.3) to predict SGLs from

Sentinel-2 images. In Section 2.1 we provide an overview of the glaciological and

climatological context of the study area. Next, in Section 2.2 we outline the

definition of three SGL border conditions (well defined, blurred, and without a

clear border). In Section 2.3 the source bands and calculated band indices from

Sentinel-2 data are outlined. Finally, in Section 2.4 we describe the model

framework, including the logistic regression algorithm to determine the border

conditions, the INLA-SPDE approach to predict the probability of SGL, with the

associated mesh selection and mixed-effects model.

4.2.1 Study area & lake border conditions

The western part of Greenland is an important region for studying the interactions

between glacial systems, hydrological networks, and changing climatic conditions,

for example, the committed SLR from 2000 to 2019 was four times greater in here

than in the east (Box et al., 2022). As the global climate continues to warm, the

region has experienced increased supraglacial meltwater (Hu et al., 2022), altering

the hydrological regime and posing challenges to local ecosystems and communities

(Fitzpatrick et al., 2014; Pitcher and L. C. Smith, 2019; L. C. Smith et al., 2015; L. C.

Smith et al., 2017; K. Yang and L. C. Smith, 2016; K. Yang et al., 2021). We categorise

SGLs, by eye, into three types based on the clarity of their edge pixels: well defined,

blurred, and without a clear border (Figure 4.2).
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Figure 4.1: Locations of the seven study sites on the southwest Greenland Ice

Sheet. Basemap source: Esri, Maxar, Earthstar Geographics, and the GIS User

Community.

4.2.2 Training & testing data

We compile our data set using Sentinel-2 satellite imagery acquired during multiple

melt seasons (2017-2022), throughout the melt season (June, July, and August), at

seven sites that host supraglacial lakes in southwest Greenland

(66°46’13.3917”-67°32’41.8113” N, 48°32’9.0654”-48°40’43.4618” W; Figure 4.1), and

divide into training and testing sets. The training set consists of SGL images that

vary in terms of melt season, month, research site, and lake border conditions

(Figure 4.2, Table C.1). The test set is not seen by the algorithm, and the lake border

conditions and binary water/non-water pixels are not specified. Our methodology

uses INLA-SPDE on Sentinel-2 optical satellite imagery, allowing the incorporation

of spatial random effects to capture spatial dependencies and identify features with

differing borders within the imagery.
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Figure 4.2: Training data acquired during multiple melt seasons (2017-2022),

throughout the melt season (June, July, and August), at seven sites that host

supraglacial lakes in southwest Greenland for the three types of border conditions

(well defined (1a-i), blurred (2a-i), and without a clear border (3a-i)). The

geographic locations and date of acquisition are provided in Table C.1. The true-

colour Sentinel-2 composites depict the lakes that vary in terms of melt season,

month, research site, and lake border condition.

The labels for the training data are determined by manually digitising the SGLs

in true-colour composites of Sentinel-2 imagery. These labels, which are represented

as a binary raster of 1s (water) and 0s (non-water), are combined with a combination

of individual spectral bands and indices from Sentinel-2 imagery. Although manual

digitisation is a reliable way to map lake areas, there is still uncertainty associated

with the approach (A. A. Leeson et al., 2013).
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4.2.2.1 Sentinel-2 bands & indices

The Sentinel-2 bands and the indices derived from them constitute the input data

used to train and validate the algorithm. Sentinel-2 bands are freely available as top

of atmosphere (TOA) reflectance data. These data can be accessed from the

Copernicus Open Access Hub (https://scihub.copernicus.eu/) and Google

Cloud Storage (Google Cloud Storage). The images have a resolution of 10 m, the

highest spatial resolution acquired by the sensor, and contain bands 2 (blue), 3

(green), 4 (red), and 8 (near infrared - NIR). Bands 5, 6, 7, 8A (vegetation red edge

1-4), 11 (short-wave infrared, (SWIR1)) and 12 (SWIR2) are acquired at a coarser

resolution of 20 m, while bands 1 (coastal aerosol), 9 (water vapour) and 10

(SWIRcirrus) exist at 60 m. All bands with coarser resolution than 10 m are

resampled to 10 m using nearest-neighbour interpolation for consistency with the

red, green, and blue (RGB) and NIR bands (D. Corr et al., 2022; Williamson et al.,

2018). The pixel values of the S2 images represent TOA reflectance units ×10000

and are known as TOA reflectance integers (reflectance×104).

Band indices derived from optical satellite imagery are numerical values or

combinations of pixel values in various spectral bands that are used to obtain

particular information (terrestrial features) regarding the surface of the ice sheet.

Band indices are combined with individual spectral bands to create composite

multiband tiffs (25 bands). The indices are NDWIBlueRed (a), NDWIGreenNIR (b), New

Water Index (NWI, c), Normalised Difference Snow Index (NDSI, d - also known as

Modified NDWI), Soil/Water Index (SWI, e), Normalised Difference Glacier Index

(NDGI, f), modified Soil Adjusted Vegetation Index (SAVImod, g), modified Shadow

Index (SImod, h), Tasselled Cap for wetness (TCwet, i), Automated Water Extraction

Index with shadow (AWEIsh, j) or without shaded area removal (AWEInsh, k), and

Normalised Difference Index (NDI, l). These indices are derived from the S2 TOA
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bands (Table 4.1).

Table 4.1: Indices calculated from the Sentinel-2 sensor, used in the random forest

algorithm.

Index Name Equation Terrestrial Feature(s) Sensor(s) Reference

NDWIBlueRed (a) =
Blue - Red
Blue + Red

Surface Water S2 & L8 M. Moussavi et al., 2020

NDWIGreenNIR (b) =
Green - NIR
Green + NIR

Surface Water S2 & L8 D. Corr et al., 2022

NWI (c) =
Blue - (NIR+SWIR1+SWIR2)
Blue + (NIR+SWIR1+SWIR2)

Surface Water, Shadow S2 & L8 Feng, 2009

NDSI (d) =
Green - SWIR1

Green + SWIR1
Rock, Sediment, Ice S2 & L8 Hall, Riggs, and Salomonson, 1995; Xu, 2006

SWI (e) =
Blue - SWIR1

Blue + SWIR1
Rock, Sediment, Ice S2 & L8 M. Dirscherl et al., 2020

NDGI (f) =
Green - Red
Green + Red

Rock, Sediment, Ice S2 & L8 Keshri, Shukla, and Gupta, 2009

SAVImod (g) = 2 × Green - NIR
1 + Green + NIR

Rock, Sediment, Ice, Shadow S2 & L8 Huete, 1988

SImod (h) =
Blue - NIR
Blue + NIR

Shaded Ice/Snow, Shadow S2 & L8 H. Li et al., 2016

(0.1509 × Blue) + (0.1973 × Green)

TCwet (i) = + (0.3279 × Red) + (0.3406 × NIR) Surface Water S2 & L8 Kauth and G. Thomas, 1976

-(0.7112 × SWIR1) - (0.4572 × SWIR2) Schwatke, Scherer, and Dettmering, 2019

AWEIsh (j) = Blue + (2.5 × Green) Surface Water, Shadow S2 & L8 Feyisa et al., 2014

-(1.5 × (NIR + SWIR1)) - (2.5 × SWIR2)

AWEInsh (k) = 4 × (Green - SWIR1) Surface Water S2 & L8 Feyisa et al., 2014

- (0.25 × NIR) - (2.75 × SWIR2)

NDI (l) =
Green - Blue
Green + Blue

All Features S2 & L8 M. Dirscherl et al., 2020

We use a standard scaler to modify our training data so that each band/index has

a mean of 0 and a standard deviation of 1. Standard scaling can improve the model’s

convergence and overall performance, and is therefore a crucial step in building data

pipelines and recommended in the application of Machine Learning.

4.2.3 Model framework

Application of the INLA-SPDE model comprises three key stages: (1) data

preparation, (2) training and validation, and (3) prediction and classification (Figure
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10 m: B2, B3, B4 & B8; 20 m: B5, B6, B7, B8A, B11 

& B12; 60 m: B1, B9 & B10) 

Calculate band indices: NDWIBR, NDWIGNIR, NWI, 
NDSI, SWI, NDGI, SAVIMOD, SIMOD, NDI, TCWET, 
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Training + Validation Data for each sensor

Delineated binary supraglacial hydrology (SGH) and 
non surface water labels from Sentinel-2 imagery

Training machine learning models 
(Random Forest, CNN)

Model comparison
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Some Data

A Process

A Product

Key

Refinement of static thresholding 
models (NDWIBR, Red/Blue index)

Train INLA-SPDE model

Uncertainty quantification 

Model validation and evaluation

Multinomial logistic regression 
to determine boundary conditions 

Probabilistic supraglacial lake prediction

Binary supraglacial lake classification

Figure 4.3: Data pipeline for the preparation, training, evaluation, validation,

comparison, and prediction of SGLs in the workflow.

4.3). In this section, we describe our method for (2) training and evaluation. First, a

multinomial logistic regression algorithm is used to determine border conditions.

The INLA-SPDE model is trained for each border condition, using the same mesh

for all three. This means that any image can be evaluated without needing to know

the lake border condition. By including the mesh in the analysis, the model can take

into account the intricate spatial characteristics between pixels. The mesh allows for

modelling of spatial dependencies and interactions, which can describe the

proximity, patterns, and presence of meltwater between pixels. A Matérn

covariance model is constructed on the SPDE mesh to capture spatial dependencies

by capturing the influence of nearby pixels on each other. Our training data consist

of the Sentinel-2 bands and indices described in Section 2.3. Each multi-band input

image is 192×192 pixels and depicts an SGL with one of the three border
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conditions.

4.2.3.1 Determination of border conditions

To discern the appropriate border condition in the training of the INLA-SPDE

model, a multinomial logistic regression (Böhning, 1992; Ramadhan,

Astri Novianty, and Casi Setianingsih, 2017) model is trained on the extracted

features from each band in the GeoTIFF composite (Equation 4.1). The extracted

features include calculated Shannon entropy, mean reflectance value, standard

deviation of reflectance values (SD), fractal dimensionality, skewness, kurtosis,

smoothness, and contrast values (Ahmadzadeh et al., 2017; Banda and Angryk,

2010) on each index (Table 4.1) and Sentinel-2 reflectance band. The model takes the

values for the features extracted from the satellite imagery as input (and learns the

relationships between the extracted features and the border condition) and predicts

the probability of each border condition for each image. The border condition with

the highest probability is assigned to each image. The predicted border condition

determines the selection of the INLA-SPDE model. Each category in the response

variable (Border Condition) represents a possible condition (defined, blurred, or

without a clear border). The linear predictor ( f (k, i), Equation 4.1) is used to predict

the probability that an observation i (that is, a given image) has the result k (that is,

is a given border condition). In multinomial logistic regression, a softmax function

(so f tmax(x)) is used to convert the linear combination into probabilities.

f (k, i) = β0k +
8

∑
i=1

βikxi (4.1)

so f tmax( f (k)) =
e f (k)

∑3
i=1 e f (k)

i

(4.2)

Where: f (k, i) represents the linear predictor for each border condition, k = 1, 2, 3
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and the predictor variable i = 1...8. β0k represents the intercept for each border

condition. βik represents the estimated coefficients for each border condition and

predictor variable. xi represent the eight predictor variables, Shannon entropy, mean

reflectance value, standard deviation of reflectance values, fractal dimensionality,

skewness, kurtosis, smoothness, and contrast. so f tmax( f (k)) represents the softmax

function for the linear predictor f (k).

4.2.3.2 INLA-SPDE model

Bayesian inference is a technique for making informed predictions in the face of

uncertainty. It uses prior knowledge of a problem to create a prior probability

distribution, which is then combined with the observed data associated with the

parameters to form a likelihood. This likelihood is a measure of how well the model

explains the data. The posterior probability distribution, P(θ|y), is then calculated

using Bayes’ theorem, which combines the prior probability distribution, P(y|θ),

with the likelihood, P(θ), and divides by a normalisation constant, P(y), for the

data y given parameters θ. This posterior distribution reflects the updated

understanding of the parameters after considering the data and provides the basis

for informed predictions.

P(θ|y) = P(y|θ)P(θ)
P(y)

(4.3)

INLA is a useful tool for performing Bayesian inference focused on estimating

the posterior marginals of the model parameters (Rue, Martino, and Chopin, 2009).

Posterior marginals capture the uncertainty, measure the accuracy of the prediction,

and allow the formation of credible intervals to quantify the likelihood of meltwater

being present. We outline the steps necessary to reproduce our results here, but for

full details of the methods, we refer the reader to (Gómez-Rubio, 2020; Krainski

et al., 2019). Instead of estimating a difficult to acquire highly multivariate joint
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posterior distribution, P(θ|y) the model focuses on obtaining approximations for

univariate posterior distributions, P(θi|y). Although, multivariate posteriors have

the advantage of being able to model complex relationships and correlations

between multiple variables. Univariate posteriors have the benefit of being simpler

to analyse and interpret, more computationally efficient, and less likely to overfit

than multivariate posteriors. Therefore, INLA-SPDE provides a good balance

between computational feasibility and informative inference, making it a useful

tool for Bayesian analysis. The initial step is to create a spatial mesh that

encompasses the lake region to capture spatial influences. Subsequently, a

mixed-effects model is fitted, with parameters that vary for each lake border

condition. This mixed-effects model combines spatial effects and fixed effects.

Fixed effects capture the correlation between the data obtained from satellite

imagery bands (predictor variables) and the likelihood of a lake’s existence

(response variable). Meanwhile, spatial effects take into account local discrepancies

and spatial autocorrelation in the data, for instance, water pixels are more likely to

be situated near other water pixels. All effects are determined by the input satellite

data and are used to generate a linear predictor for each pixel that can be used to

calculate a probabilistic prediction.

4.2.3.2.1 Mesh selection using stochastic partial differential equations

A spatial mesh is a grid of nodes that covers the area where observations are made.

In this study, we use a consistent mesh on an image of consistent dimensions (192 ×

192 pixels), which reduces much of the complexity of selecting a non-regular grid;

therefore, the only variable in our mesh generation is the number of vertices in the

grid (Figure 4.4).

INLA uses Delaunay triangulation, a geometric process which divides a set of
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Figure 4.4: The constructed mesh network for INLA-SPDE model overlaid on an

example 192×192 pixel image depicting an SGL with a well defined border. The

mesh is consistent for all models.

points into non-overlapping triangles, to construct an SPDE model that explains

how the values of a spatial field vary across space. This projection of the continuous

space onto a discrete space (the mesh) is composed of small triangles that

approximate the Matérn Gaussian field (Lindgren, Rue, and Lindström, 2011). The

mesh is a necessary component for spatial modelling with INLA, as it is combined

with spatial data to construct statistical models that capture spatial dependencies

and make predictions or estimates within the given spatial domain. The mesh is

designed to create the most regular small triangles possible while balancing

computational cost and modelling accuracy. After creating the mesh, the spatial

correlation structure of the SPDE is determined using the Matérn covariance

function (Simpson, Lindgren, and Rue, 2012a,b). The spatial correlation structure

can be used to determine how the presence or absence of lakes in one pixel is
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associated with the presence or absence of lakes in adjacent pixels. The Matérn

covariance function determines the correlation between the presence (or absence) of

a lake in different pixels. The variance, smoothness, and range parameters of the

Matérn covariance function are estimated from the observed data and can be used

for spatial prediction. The SPDE model describes spatial random effects in a

generalised linear mixed-effects binomial model (Lindgren, Rue, and Lindström,

2011; Martins et al., 2013; Rue, Martino, and Chopin, 2009; Simpson, Lindgren, and

Rue, 2012a). Spatial random effects account for localised deviations from the fixed

effects, which helps to discern pixels at the lake edge depending on the border

condition.

4.2.3.2.2 Mixed-effects model

In hierarchical Bayesian models, such as INLA-SPDE, a combination of fixed,

random, and spatial effects is used to account for various sources of variability in

the data. In our model, random and spatial effects are incorporated into the SPDE

model. Fixed effects represent the systematic part of the model and capture the

overall trend or relationship between the response variable and the predictor

variables. Here, the fixed effects are coefficients associated with the covariates, that

is, the reflectance values of the 13 Sentinel-2 bands and the 12 band indices (Table

4.1).

The response variable (Equation 4.4), which takes a different form depending on

the lake border condition defined by multinomial logistic regression (Equation 4.1),

is modelled using a binomial family and the logit link function.

Labels ∼ −1 + intercept +
25

∑
j=1

Xj + f (SpatialE f f ects, model = spde) (4.4)
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Where: Labels represents the binary output corresponding to water/non-water.

−1 means that no additional intercept is included in the model, as we have

explicitly defined the intercept. intercept represents the explicitly defined intercept

and is assigned a different value depending on the lake border condition. Xj

represents the 25 predictor variables defined by the Sentinel-2 band indices and the

source reflectance bands (NDWIBlueRed, NDWIGreenNIR, NWI, NDSI, SWI, NDGI,

SAVImod, SImod, TCwet, AWEIsh, AWEInsh, NDI, Aerosol, Blue, Green, Red, VNIR1,

VNIR2, VNIR3, NIR, VNIR4, Water Vapour, SWIRCirrus, SWIR1, SWIR2).

f (SpatialE f f ects, model = spde) represents the spatial random effects modelled

using the SPDE approach and takes a different form depending on the lake border

condition identified as defined in Section 2.4.1.

The linear predictor (ηi) is used to calculate the log-odds of the response variable

for each model (Equation 4.5).

ηi = β0 +
25

∑
j=1

β jXij + f (SpatialE f f ectsi, model = spde) (4.5)

ρi =
1

1 + e−ηi
(4.6)

Where: ηi represents the linear predictor for each pixel, i = 1...n and

n = 192 × 192 = 36864. β0 is the estimated coefficient of intercept. β j represents the

estimated coefficients for the predictor variables, j = 1...25. Xij represents the

predictor variable for each Sentinel-2 band (j = 1...25) and pixel within the image

(i = 1...36864). f (SpatialE f f ectsi, model = spde) represents the spatial random

effects for each pixel modelled using the SPDE approach, and is assigned different

values depending on the lake border condition. ρi represents the probability that a

given pixel (i) contains water.

The logarithmic odds are then transformed into probabilities using the logit link

function (Equation 4.6) to model the probability (ρ) that a given pixel is water.
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Therefore, the output of the model is a probabilistic prediction that each pixel in the

(192×192) image contains supraglacial meltwater. A binary map of

water/non-water pixels can be obtained by selecting an appropriate threshold.

4.2.4 Other classification approaches

We evaluate the precision of our algorithm by computing the binary cross-entropy

(Good, 1952), which quantifies the dissimilarity between predicted probabilities

and actual binary labels. However, comparing the performance with other models

is difficult, as all models in the literature provide a binary classification of SGLs

only, reporting F1 scores or overall accuracy. In order to perform this comparison,

we apply a threshold to our probabilistic prediction to generate a binary

lake/not-lake classification. F1 scores are calculated against the true labels for all

images and compared for each approach: our INLA-SPDE approach, two static

thresholds, CNN, and RF.

The static thresholding approaches, NDWIGNIR and NDWIBR, which are the

accepted method in the literature (D. Corr et al., 2022; Fitzpatrick et al., 2014;

M. Moussavi et al., 2020; Stokes et al., 2019; Williamson et al., 2018; K. Yang and

L. C. Smith, 2013), are optimised using the same training data as the INLA-SPDE

model (Figure 4.2, Table 4.1) and an AUC-ROC curve approach (area under

curve-receiver operating characteristics, Song, 2015) to determine the optimal

threshold (NDWIGNIR: 0.51; NDWIBR: 0.04 for normalised data).

CNN and RF algorithms were trained on the same training data used in training

the INLA-SPDE model and tested on the same unseen test data. Hyperparameter

optimisation with cross-validation was carried out on the RF algorithm to ensure

that the model achieved a good fit, with hyperparameters for the number of

estimators/trees (200), maximum number of levels in each decision tree (10),
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maximum number of features considered for splitting a node (square root of total

features), minimum number of data points placed in a node before the node is split

(5), and the minimum number of data points allowed in a leaf node (1) considered.

The CNN architecture, based on an approach in the literature (Yuan et al., 2020), is

made up of three convolutional layers, followed by a dense layer and an output

layer for prediction. Max-pooling layers are used to reduce the feature maps after

each convolutional layer. A rectified linear unit (ReLU) activation function is

applied within the convolutional layers, with padding, to keep the image size

constant. We have chosen a pool size of 3 and stride length of 1, and the He Normal

kernel initializer, with the Adam optimiser, binary cross-entropy loss, and accuracy

metric used in the model compilation. The final output layer produces binary

classification predictions using a sigmoid activation function. We assess the

performance and optimisation of our CNN by assessing loss and accuracy training

curves. Our CNN is performing well as the loss is decreasing and the accuracy is

increasing over the epochs, and the validation loss and accuracy are tracking the

training curves, which shows that the learning is successful.

4.3 Results & discussion

To begin, we analyse the performance of probabilistic predictions using binary

cross-entropy and providing uncertainty quantification. We then apply a threshold

to the prediction to get a binary classification and compare the results with other

classification techniques. Finally, we evaluate the impact of the chosen threshold on

binary classification.
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Figure 4.5: Training and validation learning curves showing optimisation (loss, a)

and performance (accuracy, b) of the CNN algorithm trained on our input data and

validated using unseen test data.

4.3.1 Validation & uncertainty quantification

Binary cross-entropy is a model metric that measures how well the predicted

probabilities of a model align with the true binary labels, 0 or 1, and assigns a score

that penalises the probabilities based on how close or far they are from the expected

value (Table 4.2). We evaluate the precision of our algorithm without separating the

border conditions by computing the binary cross-entropy, so that the model can be

executed without the need to assign labels to the lake border conditions. A sample

weight is used to adjust the binary cross-entropy calculation for each image to

reduce the bias that can be caused by an unequal proportion of water/non-water

pixels.

A binary cross-entropy value of 0 indicates perfect probabilities, and our

calculated value is 0.06 for all values and the mean. This suggests that the model’s

predicted probabilities are quite close to the true binary labels, making relatively

accurate predictions. The binary cross-entropy score used to evaluate the success of

a classification problem varies, but it is generally agreed that scores below 0.20 are
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Figure 4.6: I) Plots of the INLA-SPDE model outputs for first 6 unseen test

images that contain SGLs in southwest Greenland, representing the three types

of lake border condition. 1: RGB images; 2: True labels of binary water (dark

blue) / non-water (pale blue); 3: Probabilistic predictions of our INLA-SPDE

model between 0 (pale blue, non-water) and 1 (dark blue, water); 4: standard

deviation (note different scale to predictions), σ of the probabilistic prediction

(pale blue represent lower values, dark blue higher); 5: plotted distributions of

the probabilistic prediction revealing the bimodal peaks associated with water

and not-water; 6: binary outputs obtained from applying a threshold of ρi ≥0.5 on

the probabilistic predictions.
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Figure 4.6: II) Plots of the INLA-SPDE model outputs for the remaining 6 unseen

test images that contain SGLs in southwest Greenland, representing the three

types of lake border condition. 1: RGB images; 2: True labels of binary water

(dark blue) / non-water (pale blue); 3: Probabilistic predictions of our INLA-SPDE

model between 0 (pale blue, non-water) and 1 (dark blue, water); 4: standard

deviation (note different scale to predictions), σ of the probabilistic prediction

(pale blue represents lower values, dark blue higher); 5: plotted distributions of

the probabilistic prediction revealing bimodal peaks; 6: binary outputs obtained

from applying a threshold of ρi ≥0.5 on the probabilistic predictions.
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acceptable, scores below 0.05 are good, and scores below 0.02 are great (Brownlee,

2019). The performances for all images are deemed acceptable, while 7 of 12

perform well.

Although we evaluate the effectiveness of the multinomial logistic regression

model through the binary cross-entropy metric for the final algorithm, we also

provide a comprehensive assessment by computing this metric individually for

each image with different border conditions applied. Our findings reveal that the

predicted border conditions, i.e., the conditions predicted by multinomial

regression, outperform other condition models in 7 of 12 images (Table 4.2),

demonstrating their superior predictive capacity. The optimal border conditions

agree with the border conditions we label in 8 of 12. Furthermore, even in cases

where the model performance is not optimal, the binary cross-entropy values

remain consistently close to the optimal score, differing by no more than 0.02 (Table

4.2). The results of this analysis indicate that our approach is the most accurate and

consistent, although a single model could be used with only a slight decrease in

performance. This highlights the strength and reliability of our approach when

tested on different images.

This novel Bayesian model offers insight into the uncertainty of the predictions

of supraglacial lakes at the pixel level, something that has not been done before.

This is quantified by the standard deviation per pixel (σ, Figures 4.6 (4a-l)), which is

narrower for more certain predictions and wider for more uncertain ones. In the

majority of cases, the prediction is uncertain near the lake borders, although the

uncertainty areas are smaller for those with a more distinct border (Figures 4.6 (4b,

f, g, i, j, k, l)). For example, the average standard deviation across the images was

0.001 for those with a well-defined border, 0.005 for those with a blurred border,

and 0.007 for lakes without a clear border, as indicated by multinomial regression.

In other images, the borders are less well defined and the prediction is more
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Table 4.2: Validation of the INLA-SPDE approach with border conditions

predicted by the multinomial regression (Predicted), border conditions we label

(Labelled), binary cross-entropy (BCE) for well defined, blurred, and without clear

borders, and the optimal border conditions calculated from BCE values (Optimal).

The mean and standard deviation of each column are calculated for the heading

in each column according to the border condition in each row.

Value Predicted Labelled Well Defined BCE Blurred BCE Without Clear BCE Optimal

Image a Without Clear Without Clear 0.07 0.14 0.08 Well Defined

Image b Blurred Blurred 0.02 0.02 0.06 Blurred

Image c Blurred Blurred 0.16 0.13 0.12 Without Clear

Image d Blurred Without Clear 0.21 0.17 0.15 Without Clear

Image e Without Clear Without Clear 0.09 0.10 0.11 Well Defined

Image f Well Defined Well Defined 0.03 0.03 0.03 Well Defined

Image g Well Defined Well Defined 0.03 0.03 0.03 Well Defined

Image h Blurred Blurred 0.01 0.01 0.10 Blurred

Image i Well Defined Well Defined 0.01 0.02 0.04 Well Defined

Image j Without Clear Without Clear 0.03 0.03 0.03 Without Clear

Image k Blurred Blurred 0.02 0.01 0.90 Blurred

Image l Without Clear Without Clear 0.09 0.11 0.11 Well Defined

Mean BCE 0.06 0.06 0.06 0.07 0.15 0.06

BCE σ 0.05 0.05 0.06 0.07 0.23 0.05

uncertain (Figure 4.6 (4a, c, d)). In some images, the prediction is uncertain in

regions where the RGB images appear to show no surface water, which could be

caused by cryoconite or other land features with similar spectral characteristics

(Figures 4.6 (4e, h)), emphasising the complexity of predicting SGL and underlining

the need for uncertainty estimates. Combining the uncertainty with the

probabilities gives a complete picture of the likelihood that any given image

contains supraglacial water.
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4.3.2 Comparison with other methods

In the literature, all models offer a binary classification of SGLs, making it difficult

to compare their performance to our approach. Therefore, we use a threshold to

create a binary classification of lake/non-lake from our probabilistic prediction

(Figures 4.6 (6a-l). We then calculate F1 scores for all images and compare the

results of our INLA-SPDE approach with those of four others. Probabilistic

predictions reveal bimodal peaks around 0 and 1 4.6 (5a-l)), and so we set a

threshold of ρi ≥0.5, i.e., the value at which it is more likely that a pixel is water

than non-water (Figures 4.6 (6a-l)).

We compare five algorithms: INLA-SPDE, NDWIGNIR, NDWIBR, CNN, and RF,

to classify supraglacial lakes from Sentinel-2 images. We evaluate the accuracy,

robustness, and suitability of each of the algorithms. In certain cases, static

thresholding approaches can lead to a decrease in accuracy, such as Image a for

NDWIGNIR and Images b and h for NDWIBR (Figure 4.7 (4a, 5b, 5h)). The standard

deviation in F1 scores for all images is 6.5 and 11.5 times higher for the static

thresholding approaches than for the INLA-SPDE approach (Table 4.3). In the

literature, the CNN (M. Dirscherl et al., 2021; Yuan et al., 2020) and RF (D. e. a. Corr,

n.d.; M. Dirscherl et al., 2020; Hu et al., 2022, In Prep.) approaches have been more

effective and reliable than static thresholding. In this study, we report F1 scores of

0.97 and 0.98 for CNN and RF, respectively (Table 4.3). The INLA-SPDE model,

with an F1 score of 0.97 for all images, performs similarly to the RF and CNN

models (Figure 4.7); however, it is the only model that provides a probabilistic

prediction (Table 4.3). By selecting the threshold in our approach, the user can

decide between a more cautious estimation of the lake area (that is, a high

threshold) and a more generous estimation (that is, a lower threshold), based on

probabilistic predictions. Although other approaches have the option of selecting
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thresholds, the thresholds are not based on probabilistic predictions. Therefore, if a

threshold is chosen that is not ideal, it requires more manual processing. Compared

to other methods, our technique relies on probability to determine thresholds,

meaning that we can decide when a pixel is more likely to be water than not.

Table 4.3: The F1 scores for each of the test images for the INLA-SPDE, NDWIGNIR,

NDWIBR, CNN, and RF models were calculated. F1 score combines precision

and recall representing the balance between a model’s ability to correctly identify

positive instances and its tendency to avoid false positives.

Value INLA-SPDE > 0.5 NDWIGNIR NDWIBR CNN RF Predicted Border Condition

Image a 0.95 0.50 0.96 0.94 0.97 Without Clear Border

Image b 0.99 0.98 0.63 0.99 0.99 Blurred

Image c 0.94 0.95 0.85 0.95 0.97 Blurred

Image d 0.92 0.92 0.95 0.95 0.96 Blurred

Image e 0.93 0.95 0.96 0.95 0.97 Without Clear Border

Image f 0.99 0.98 0.99 0.99 0.99 Well Defined

Image g 0.99 0.91 0.99 0.99 0.99 Well Defined

Image h 0.96 0.92 0.19 0.99 0.99 Blurred

Image i 0.99 0.99 0.98 0.99 0.99 Well Defined

Image j 0.98 0.94 0.83 0.97 0.99 Without Clear Border

Image k 0.99 0.99 0.97 0.99 0.99 Blurred

Image l 0.96 0.95 0.96 0.96 0.97 Without Clear Border

All Images 0.97 0.95 0.74 0.97 0.98 -

Mean 0.97 0.92 0.85 0.97 0.98 -

σ 0.02 0.13 0.23 0.02 0.01 -

4.3.3 Binary classification of lake features

In order to produce a binary classification of lake/not-lake pixels, we apply a

threshold to our probabilistic prediction. A threshold of ρi ≥0.99 will classify all
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Figure 4.7: I) Comparison between outputs of each classification algorithm and

the ’true’ binary labels in the first 6 test images. (1) RGB images, (2) True

labels of binary water (dark blue) / non-water (pale blue), (3) Truth minus INLA-

SPDE model with threshold ρi ≥0.5, (4) Truth minus NDWIGNIR index, (5) Truth

minus NDWIBR index, (6) Truth minus CNN model, (7) Truth minus RF model.

Red indicates misclassified surface water (false positives), while blue indicates

misclassified non-water (false negatives), compared to the true labels.

pixels in the image that the algorithm is 99% sure are surface water, while ρi ≥0.01

will classify all pixels with a non-zero probability of being surface water. Here, we

apply a threshold of ρi ≥0.50 (50% probability); however, we also explore whether

it is possible to further optimise the threshold (Figure 4.8). The optimal threshold in

terms of the F1 score is found to be ρi ≥0.48; however, we note that the F1 score
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Figure 4.7: II) Plots of the differences between outputs of each of the comparison

models and the true binary labels in the remaining 6 test images. 1: RGB images;

2: True labels of binary water (dark blue) / non-water (pale blue); 3: Our INLA-

SPDE model with threshold ρi ≥0.5; 4: NDWIGNIR index; 5 NDWIBR index; 6 CNN

model; 7 RF model. Red indicates misclassified surface water (false positives),

while blue indicates misclassified non-water (false negatives), compared to the

true labels.

associated with this threshold (0.970) is only marginally better than that associated

with our threshold of 0.5 (0.969).

The optimal area ratio, i.e., the ratio of the predicted area of all images to the

extent of SGL from the ground truth labels, was found to be 0.999 when the threshold

was set at ρi ≥0.34. This threshold provides the best approximation for the area of
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Figure 4.8: F1 scores and ratios of the predicted area of all images to the area of SGL

from the ground truth labels for varying thresholds on the probabilistic prediction

(ρi) of supraglacial meltwater in the test images. The optimal thresholds according

to the maximum F1 score (ρi ≥0.48) and the area ratio closest to 1 (ρi ≥0.34) are

identified on each curve.

surface meltwater, but may lead to false positives and false negatives because the

area is not classified in the right places. This is reflected in the slightly reduced

F1 score (0.966). Given the small number of samples examined in this study, it is

necessary to evaluate the suitability of the chosen threshold by testing it on new

data that accurately reflect the study area or on a larger group of lakes to determine

whether the threshold is valid.

The difference between the area ratios for the other thresholds is small (0.980 for

ρi ≥0.48 and 0.978 for ρi ≥0.50). Therefore, the choice of threshold for ρi ≥0.48 and

ρi ≥0.50 has only a small effect on the result of the final binary classification, in fact,

any threshold in the range 0.34≥ ρi ≥0.85 results in an F1 score that rounds to 0.97

at two decimal places. To demonstrate binary classification, we apply thresholds at
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Figure 4.9: Plots of the binary classification of our INLA-SPDE model with

different thresholds overlaid, where pixels are coloured turquoise for ρi ≥0.99,

the underlying pixels are coloured for all thresholds. 1: RGB images; 2: True

labels of binary water (dark blue) / non-water (pale blue); 3: INLA-SPDE with

thresholds ρi ≥0.01 (red); ρi ≥0.34 (pink); ρi ≥0.48 (yellow); ρi ≥0.50 (blue); and

ρi ≥0.99 (cyan)

ρi ≥ 0.01 (all non-zero probabilities), ρi ≥ 0.34 (optimal area ratio threshold),

ρi ≥0.48 (optimal F1 score threshold), ρi ≥ 0.5 (50% probability threshold), and ρi ≥

0.99 (the certain water threshold). Compared to true labels, the classification of

ρi ≥0.01 is much too tolerant, with obvious false positives present in (Figure 4.9 (3b,

c, e, h)). Meanwhile, the threshold for surface water classification is too strict for

ρi ≥0.99, with many more false negative classifications present in most test images

(Figure 4.9). The thresholds at ρi ≥0.48 and ρi ≥0.50 reveal little difference,
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confirming the hypothesis that the selection of threshold for ρi ≥0.50 is reliable.

4.4 Conclusion

This study used a Bayesian statistical technique, INLA-SPDE, to develop

probabilistic classifications of water features on the Greenland Ice Sheet surface in

Sentinel-2 optical satellite imagery and the associated pixel-level uncertainty, for

the first time. The model demonstrated robust performance by generating

probabilistic predictions regarding the likelihood that a given pixel represents

surface meltwater. The predictions depend on the input satellite data and one of

three predicted border conditions (well defined, blurred, and without a clear

border). The result can be utilised in a variety of ways, such as establishing a limit

to generate a map of features that are highly probable to be surface water or one

that displays all potential surface water with any non-zero likelihood. The output

characterises the uncertainty in the prediction, with the mean of the posterior

distribution representing the expected value of the response variable given the

model and the observed data, ranging from 0 (certain non-water) to 1 (certain

water). When comparing these predictions with ground truth data, a binary

cross-entropy score of 0.06 was calculated. To derive a binary classification for

comparison with established models in the field, we applied a threshold (ρi ≥0.5) at

the point where the probability that the predicted pixel is more likely to be surface

water than non-water is greater. In our analysis, we scrutinise the threshold

selection process and find that a range of thresholds, ranging from 0.34 to 0.85 for

ρi, yields a minimal change in the overall F1 score.

Our model outperforms the thresholding techniques of NDWIBlueRed and

NDWIGreenNIR, and its performance is comparable to that of the CNN and RF

algorithms. However, there are areas where further improvements could be made.

174



4.4. Conclusion

The multinomial logistic regression algorithm, which constitutes the initial phase of

the INLA-SPDE approach, demonstrates reasonable performance and plays a

pivotal role in our methodology. However, it stands out as a potential avenue for

improvement. The binary cross-entropy scores allude to room for refinement within

the multinomial logistic regression algorithm. While the INLA-SPDE approach,

employing a threshold of ρi ≥0.50, performs well, it is marginally outperformed by

the RF algorithm. Further analysis revealed that the optimal threshold is ρi ≥0.48,

and although the performance at ρi ≥0.50 is comparable, there is potential for

optimisation by fine-tuning the probabilistic prediction threshold.

Despite the absence of a native predict function, INLA is equipped with the tools

to make predictions on new data using posterior distributions of model parameters.

These posterior distributions encapsulate the estimated coefficients associated with

the predictor variables, intercepts, and random spatial effects derived from the

fitted model. Therefore, it becomes feasible to estimate the new linear predictor for

any new data points. The estimated coefficients and intercepts can be obtained

from the parameter fixed effects in the INLA model, while spatial random effects are

included in the parameter random effects. Through this process, we can estimate

predictive distributions and generate probabilistic predictions for the new data.

Although this approach involves a higher level of complexity compared to the

native predict functions available to CNN and RF algorithms, it remains a viable

strategy for the scalable deployment of these models, even on an ice sheet scale. It is

important to note that the training and testing of our model were confined to lakes

in southwest Greenland. For future research, we recommend expanding the

training data set to encompass a more representative selection of lakes on the

Greenland ice sheet. This broader data collection would enhance the model’s

applicability to larger geographical scales. Careful consideration must be given to

the computational requirements of applying the method to large amounts of
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satellite data and applying the models to images larger than 192×192 pixels. To

handle this Sentinel-2, tiles can be broken down into regions or patches of size

192×192 pixels. Batch processing, memory optimisation, and parallelisation can

facilitate concurrent processing, address memory limitations, and improve

computational efficiency. A significant advantage of the model lies in its ability to

provide probabilistic predictions alongside binary classification, a feature not

typically found in conventional CNN and RF models. Probabilistic predictions

provide a measure of the uncertainty associated with each prediction, offering a

more versatile and informative model than binary classification alone. Our

approach establishes a proof of concept for employing Bayesian statistics to

quantify supraglacial lakes on the Greenland Ice Sheet. This approach has the

potential to provide probabilistic assessments of lake areas at the ice sheet scale. In

prospective applications on the ice sheet scale, this approach can offer probabilistic

assessments of lake areas. These assessments are of paramount importance, as they

provide robust uncertainty estimates regarding the extent of meltwater present on

the ice sheet. Such insights are critical for understanding the implications of trends

in supraglacial hydrology and how they respond to the influence of a warming

climate.

4.5 Data & code availability

S2 imagery are freely available at scihub.copernicus.eu. A script to download the

data was extracted from GitHub (Hagolle, Olivier, 2015), however, with changes in

the data structure in the repository, the script may no longer be effective.

Alternatively, images can be downloaded from Google Cloud Storage using Python

scripting (Nunes, Vasco, 2016).

The code used to produce the supraglacial hydrology features is written in R and
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can be accessed on Zenodo and GitHub (D. Corr, 2023b).
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Chapter 5

Synthesis

This thesis was created to address the knowledge gaps that were preventing better

understanding of the distribution and temporal evolution of supraglacial

hydrology on both ice sheets. To do this, I achieved the four primary objectives

outlined in the thesis.(1) To quantify the presence and extent of SGH water bodies

across the entire West Antarctic Ice Sheet and Antarctic Peninsula. (2) To evaluate

the effectiveness of machine learning to create large SGHF datasets. (3) To identify

the distribution and changes of SGHF across the entire Greenland Ice Sheet in the

last decade. (4) To provide a more accurate estimate of the uncertainty in the

classification of supraglacial lakes at the pixel level.

At the beginning, I provided an overview of the two major ice sheets, Antarctica

and Greenland, and the hydrological system that connects their supra, en, and

subglacial environments. I then examined the importance and known distributions

of supraglacial hydrology and described the methods used to measure supraglacial

features from remote sensors (Chapter 1). Subsequently, I presented the approach I

took to develop a dual NDWI algorithm and use a threshold to distinguish

supraglacial hydrology in previously unstudied areas of the West Antarctic Ice

Sheet and the Antarctic Peninsula during the 2017 melting season. This produced a
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high-fidelity data set that can be used to train and validate machine learning

models, as well as to supplement a snapshot of supraglacial hydrology on the East

Antarctic Ice Sheet (Stokes et al., 2019) during the same period (Chapter 2). Next, I

explained the process in which I trained a random forest algorithm to differentiate

between surface meltwater and used a radiative transfer model to determine the

depth of the water and, as a result, the volume across the entire Greenland ice sheet

at a monthly rate, from 2014 to 2022. This revealed seasonal and interannual trends

in surface hydrology on the ice sheet scale (Chapter 3). Finally, I introduced a

Bayesian inference model to examine the spatial connection between water pixels

for supraglacial lakes with three different boundary conditions in western

Greenland. This model provides a probabilistic evaluation of supraglacial

hydrology on the Greenland Ice Sheet, quantifying the uncertainty in the prediction

of supraglacial hydrology pixel by pixel, which has never been done before

(Chapter 4). In this synthesis, I provide a summary of the main results of each

chapter and how the thesis has achieved its goals and objectives. I then synthesise

the results from all the chapters, before discussing the key limitations and

explaining the decisions made during the thesis. Finally, I suggest potential areas

for future research that have been identified from key findings and limitations.

5.1 Summary of principal findings

In this section, I provide a summary of the techniques used in this thesis and discuss

the main discoveries and conclusions of each chapter, as well as how they contribute

to our understanding of the hydrological system of the Greenland Ice Sheet.
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5.1.1 An updated inventory of supraglacial lakes and channels on

the West Antarctic Ice Sheet

The accurate measurement of supraglacial hydrology is of great scientific value in

understanding the dynamics of the Antarctic ice sheet mass balance and its effect

on global sea-level changes. The existence of meltwater on the ice surface has

implications for the stability of ice shelves and the movement of grounded ice,

particularly through processes such as hydrofracturing and the transportation of

meltwater to the bedrock.

The availability of increased satellite data enabled the development of

continent-wide inventories for the West Antarctic Ice Sheet and Antarctic Peninsula.

This chapter outlines supraglacial lakes and streams in West Antarctica using a

semi-automated Dual-NDWI approach applied to a large data set of over 2000

images obtained from the Sentinel-2 and Landsat-8 satellites during January 2017.

A novel k-means clustering technique is used to categorise water features into lakes

and channels, allowing for a more comprehensive understanding of their

hydrological connections. The accuracy of the approach is evaluated by comparing

it with a manually delineated reference dataset from three Antarctic test sites.

This study has identified 10,478 supraglacial features, including 10,223 lakes and

255 channels, covering an area of 119.4 km². Of these features, 27.3% are located

on grounded ice, 54.9% are located on floating ice shelves, and 17.8% exist on the

grounding line. This research adds to the more than 65,000 lakes (more than 1,300

km2) that were observed around the peak of the melt season in January 2017 on the

East Antarctic Ice Sheet (EAIS) (Stokes et al., 2019), forming the first continent-wide

assessment to help quantify the mass balance of Antarctica and its effect on global

sea level rise. This inventory provides a baseline for future investigations and a

reference point for monitoring Antarctica’s surface hydrology in a changing climate,
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as well as expanding our understanding of supraglacial hydrology in previously

unexplored regions, such as the Getz Ice Shelf margin. Furthermore, the data set

generated by this work is a valuable resource for Earth system research, allowing

for the calibration, validation, and development of advanced approaches for real-

time monitoring of lake dynamics in response to climate change. Due to the size

of continental data sets, sophisticated and automated techniques, such as machine

learning algorithms, are essential. This research offers a high-precision data set to

train and validate these scientific endeavours.

5.1.2 Supraglacial hydrology coverage has increased on the

Greenland ice sheet over the last decade

This chapter presents a comprehensive analysis of supraglacial meltwater on the

Greenland Ice Sheet (GrIS) over the past decade. A random forest algorithm is

adapted and validated to accurately identify meltwater from a data set of 144,000

Sentinel-2 and Landsat-8 images taken between May 1st and September 30th from

2013 to 2022. The approach used has a high spatial (10-30 m) and temporal

(monthly) resolution. A radiative transfer model is then applied to estimate the

surface water volume, providing monthly snapshots of meltwater distribution and

volume.

Analysis of the GrIS has revealed a consistent seasonal pattern in the behaviour

of supraglacial hydrology. Generally, meltwater is seen in May, reaching its peak in

July and August. After that, the surface water usually refreezes or drains, mainly in

September. Over the past decade, there has been a marked increase in both the

extent and volume of SGHF. Although there is still considerable interannual

variability, this trend implies a connection between rising temperatures, attributed

to climate change, and the increased presence of supraglacial hydrology in the GrIS.
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However, more research is needed over a longer period of time to better

understand the long-term trends of surface hydrology. Additionally, the study

found a considerable increase in total meltwater across various drainage basins on

the ice sheet, particularly in the north, east, and south regions, indicating the effect

of climate change on the increasing prevalence of supraglacial hydrology in these

regions.

5.1.3 A new method for probabilistic prediction of supraglacial

lakes on the southwest Greenland Ice Sheet

This chapter has presented a Bayesian statistical framework, the Integrated Nested

Laplace Approximation with Stochastic Partial Differential Equation (INLA-SPDE),

to predict the probability of the presence of supraglacial water at the pixel level

within satellite imagery. Bayesian inference, as a probabilistic framework,

inherently takes into account uncertainty by incorporating prior beliefs, modelling

data variability with likelihood distributions, and estimating posterior distributions

that represent updated beliefs about parameters while still preserving the inherent

uncertainty. Multinomial logistic regression was used to categorise each pixel into

one of three potential lake border conditions: well defined, blurred, or lacking a

clear border. To account for the spatial relationships between pixels, a Matérn

covariance function was implemented on an SPDE mesh. The model was trained to

identify the complex relationships between various factors, including random

spatial effects, predictor variables (Sentinel-2 indices and reflectance bands), and

the corresponding water/non-water labels. The INLA-SPDE model provides a

probability distribution over the likelihood that a pixel is water, instead of a binary

classification (water or not water). The prediction in this method is represented by

the mean (or expected value) of the probability distribution, while the uncertainty
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is represented by the standard deviation. Probabilistic predictions have several

advantages over binary classifications. For example, they can provide information

on the likelihood of rare events and allow for more nuanced approximations of the

hydrological system.

In addition, they provide the flexibility to set thresholds according to the level of

confidence we wish to have in a particular binary classification. I investigated the

effect of different thresholds on the probabilistic prediction to create a binary

water/non-water classification. In my analysis, I found that a threshold of ρi ≥0.50,

i.e. the point at which it is more likely that a pixel is water than non-water,

performs almost as well as the optimal threshold (ρi ≥0.48). Classification using a

threshold of ρi ≥0.50 was tested against a manually labelled ground truth and the

results were compared to two static thresholding approaches (NDWIGNIR,

NDWIBR) and RF and CNN algorithms. The INLA-SPDE approach was found to be

superior to static thresholding approaches and was comparable to RF and CNN.

Although the sample size was small and the approach was only validated in a small

region of southwest Greenland, it is encouraging to know that the INLA-SPDE

approach has potential. Furthermore, it is comparable to the RF algorithm which

was used in the assessment of Greenland SGHF in Chapter 3. This chapter

highlights the effectiveness of the Bayesian INLA-SPDE framework, which

provides a promising way to accurately predict and classify SGLs within optical

satellite imagery. Despite some limitations of the model architecture, such as the

lack of a native predict function, the process of estimating predictions by retrieving

estimated coefficients, intercepts, and spatial random effects is explained.
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5.2 Synthesis of principal findings

In this section, I synthesise the principal findings discussed in this thesis and

explain how this research has improved our knowledge of the distribution and

temporal evolution of supraglacial hydrology on the Greenland and Antarctic ice

sheets, developing advanced methods that others can use to improve the mapping

of supraglacial hydrology in key glaciological regions.

Through these studies, I have confirmed the widespread presence of

supraglacial hydrology on the Antarctic Ice Sheet, including identifying meltwater

on the Getz Ice Shelf for the first time, and that the extent of supraglacial hydrology

has increased on the GrIS through the last decade, particularly in the north, east,

and south. Analysis of the GrIS has improved our understanding of seasonal and

interannual trends in surface meltwater more than ever before. I have confirmed

the seasonal trends of supraglacial hydrology on the GrIS, with meltwater

becoming apparent in May, reaching a peak in July/August and beginning to

decrease throughout September in each year. I have determined that there has been

a positive trend in the extent and volume of SGHF over the past decade, suggesting

that temperature increases linked to climate change are leading to greater

supraglacial hydrology on the Greenland Ice Sheet. Quantification of uncertainty is

difficult for conventional classification algorithms. Therefore, I developed a model

to provide probabilistic predictions of surface meltwater likelihood and associated

pixel-level uncertainty, in addition to binary classifications. Probabilistic

predictions provide valuable information on prediction uncertainties that can

improve decision-making processes beyond binary classifications, which is more

informative than conventional CNN and RF models.

I have developed and validated three novel models: dual-NDWI, RF, and

Integrated Nested Laplace Approximation with Stochastic Partial Differential
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Equation (INLA-SPDE). Data sets have been provided that can be used by the

community to train, validate, and evaluate more advanced models. For the first

time, a model has been provided that quantifies uncertainty at the pixel level in the

identification of supraglacial hydrology on ice sheets. Through the development

and application of these three models, our understanding of the distribution and

temporal evolution of supraglacial hydrology on the ice sheet scale has been

improved.

5.3 Major limitations

This thesis examines a number of important knowledge gaps; however, the models

and methods used have certain restrictions. It is essential to recognise and address

these limitations in order to accurately interpret the results and implications of this

study. This will also provide justification for the decisions made during the

construction of the models and writing this thesis.

5.3.1 Data availability

The use of optical satellite imagery for the classification of supraglacial hydrology

has several inherent restrictions related to the availability of data, the common issue

of cloud cover, and the influence of the solar elevation angle on the reflection of

incoming solar radiation. The primary constraint on the availability of optical

images is due to the revisit times of each sensor. Sentinel-2, consisting of twin

satellites (Sentinel-2A and Sentinel-2B), operates on a short 5-day revisit cycle.

Landsat-8 adheres to a less frequent 16-day revisit cycle. The shorter revisit time of

Sentinel-2 results in improved temporal resolution, which affords the opportunity

to capture the dynamic processes of supraglacial hydrology in a reasonable time
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frame. However, large amounts of meltwater can be transported across or through

the ice sheet over days or even hours through channels or moulins, respectively.

Therefore, even a 5-day repeat cycle may not capture all variability in the

hydrological life cycle.

A further constraint is the dependence on clear-sky observations. Cloud cover

obstructs the line of sight between the satellite sensor and the surface of the ice

sheet, making affected regions inaccessible for analysis and further reducing data

availability. Furthermore, the unpredictability and variability of cloud cover pose

significant challenges to the analysis of supraglacial hydrology by optical satellite

images of the Greenland and Antarctic ice sheets during the summer melt seasons

(Halberstadt et al., 2020; Lutz, Bahrami, and Braun, 2023). The dynamic nature of

cloud formation and dissipation means that the extent and distribution of cloud

cover can change rapidly, even within the course of a single day. This introduces

temporal inconsistencies in optical data acquisition, making it difficult to obtain

cloud-free imagery for specific regions of interest. In addition, when clouds are

present, they scatter and absorb sunlight, altering the spectral characteristics of the

incoming radiation. This can result in variations in the recorded reflectance values,

which may not be solely indicative of the surface properties. Similarly, reflectance

values are distorted by solar elevation angles lower than 20°(Halberstadt et al.,

2020). In such images, the surface meltwater is too spectrally similar to its

surroundings, and algorithms struggle to classify supraglacial lakes (M. Moussavi

et al., 2020). The tilt of the Earth’s axis and its orbit around the sun cause the solar

elevation angles to vary significantly over Greenland and Antarctica during the

melt season. This leads to data that is not usable at the start and end of the melt

season. Data gaps resulting from deficient repeat cycles, cloud cover, and solar

elevation angles hamper the generation of continuous time-series data sets, which

are crucial for monitoring surface meltwater over extended periods. Consequently,
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the pre-processing and interpretation of the collected optical satellite data is a

challenge.

5.3.2 Misclassifications and model performance

The systematic validation conducted in this thesis confirms the robust performance

of the developed models. However, extending these models to untested contexts,

such as the East Antarctic Ice Sheet or differing years and regions, requires careful

consideration. Calibration and validation with new data remain pivotal to ensure

results’ reliability. The models rely on spectral differences between water and

terrestrial features, which pose challenges in cases of shallow or mixed water-ice

compositions, leading to false classifications. The spectral similarities between

surface meltwater and features such as rock, cloud, shadow, crevassing, slush, and

blue ice are an additional challenge. Furthermore, atmospheric conditions, the

angle of sunlight, and the surface properties of the ice sheet can all affect the

spectral signature of the ice, potentially leading to misclassifications. Machine

learning models require a substantial amount of labelled training data, which can

be complex and time-consuming to obtain for precise ground truth data on

supraglacial hydrology. Furthermore, the selection of relevant features and their

interactions can influence the model’s performance, and the optimal feature set

may vary depending on the specific ice sheet and environmental conditions. The RF

in particular assumes that the input variables are independent, which may not be

true in practise, potentially affecting the classification results. To overcome the

absence of a dedicated predict function in the INLA package, an alternative

approach must be used to generate model predictions. INLA has the tools to make

predictions on new data using posterior distributions of the model parameters.

These distributions contain the estimated coefficients, intercepts, and random
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spatial effects of the fitted model. This allows us to estimate the linear predictor for

any new data points and generate probabilistic predictions. Although this approach

is more complex than the predict functions available to CNN and RF algorithms, it is

still a viable strategy to deploy these models on an ice sheet scale. Although these

classifiers excel at identifying the presence of water, they lack the capability to

provide depth or volume information, limiting a comprehensive understanding of

ice sheet hydrology dynamics.

5.3.3 Computational requirements

The roll-out of methods on continental scales requires considerable computational

resources. Remote sensing data processing and analysis require extensive

computational operations, especially when dealing with large remote sensing and

environmental data sets or executing complex algorithms. These computations

require considerable computational resources, such as high-performance

computing clusters or cloud-based platforms, which may not be accessible to all

researchers or organisations. In Chapter 3, I analysed more than 144,000 satellite

images (250 TB equivalent), necessitating efficient data storage and retrieval

solutions, although the iterative processes I developed removed the need to

download all images before application. As higher resolution products with

improved temporal sampling become available, computational demands will

increase and the need for efficient processing, storage, and prediction of data will

become essential. In conclusion, the computational needs in remote sensing

applications are considerable and can be limiting factors for researchers and

organisations, particularly those with limited access to high-performance

computing resources and expertise. To address these limitations, more efficient

algorithms should be explored, which use distributed computing environments and

188



5.4. Suggestions for future work

explore cloud-based solutions to democratise access to computational resources.

5.4 Suggestions for future work

This section examines how the techniques presented in this thesis can be advanced

and used to generate new knowledge and insights in the future. I look at how the

methods discussed in Chapters 3 and 4 can be extended to new areas such as the

Antarctic Ice Sheet, high mountain glaciers, and sea ice, which would give us a

more comprehensive view of surface meltwater and a more precise estimate of the

uncertainty in our classification. Additionally, I consider applying models to future

data acquisitions, older satellite missions, and non-optical satellite imagery. This

would provide us with a better understanding of the temporal evolution of satellite

imagery, with repeat monitoring in the years to come, reaching back to the 1970s,

and providing estimates over winter. Furthermore, a machine learning approach to

mapping supraglacial lake depth features combining ICESat-2 data and optical

imagery is proposed. Lastly, I investigate the potential for applying the algorithms I

have developed during my Ph.D. to applications outside the supraglacial

hydrology field.

5.4.1 Expansion of methods to wider cryosphere

The use of RF and INLA-SPDE models is advantageous for determining the extent

of surface meltwater in the cryosphere. These models take advantage of the power

of machine learning and Bayesian inference to address the challenges of monitoring

surface meltwater using remote sensing in dynamic environments. RF models are

suitable for frequent and repeated monitoring of optical satellite imagery due to

their capacity to process complex, high-dimensional data and non-linear
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Figure 5.1: Expansion of RF (b, e, h) and INLA-SPDE (c, f, i) models to

encompass a broader range of cryospheric regions. The figure displays RGB

images, binary RF classifications, and probabilistic predictions using INLA-

SPDE based on Sentinel-2 imagery. The areas depicted include surface water

on Arctic sea ice (a, b, c), Tibetan high mountain glaciers (d, e, f), and the

Amery Ice Shelf on the EAIS (g, h, i). The Sentinel-2 tile IDs used for these

regions are T09XWH 20170703T215051 for sea ice, T46RET 20221023T042831 for

high mountain glaciers, and T41DPA 20220127T034619 for the Amery Ice Shelf.

associations. Training RF models on optical satellite imagery is possible to

accurately predict the extent of surface meltwater in Antarctica (M. Dirscherl et al.,
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2020), Greenland (Hu et al., 2022), high mountain glaciers (C. S. R. Smith, 2022;

Wendleder et al., 2021), and sea ice (Han et al., 2016; Miao et al., 2015). However,

these studies represent smaller-scale studies than the continental mapping of

surface meltwater I report in Chapter 3, and widespread decadal-scale monitoring

of surface water in Antarctica, valley glaciers, and sea ice has yet to be undertaken.

Bayesian frameworks, which estimate the extent of surface meltwater while

explicitly accounting for spatial dependencies and uncertainties, have not been

applied as widely. These models are particularly useful for producing probabilistic

maps of the extent of surface meltwater with quantified uncertainty; however, I was

unable to identify studies using Bayesian inference to predict surface meltwater in

optical satellite imagery. To evaluate the performance of the models developed in

Chapters 3 and 4, example images of melt ponds on Arctic sea ice, a glacial lake on

a high mountain glacier in the Boshula Mountains, Tibet, and supraglacial lakes on

the Amery Ice Shelf, EAIS (Figure 5.1) were used. Although the performance of the

models has not been quantified due to the lack of validation data, a visual and

qualitative assessment suggests that they perform satisfactorily. To ensure scientific

rigour, I suggest training and validating the models on a more up-to-date data set

that is more representative of the area of interest.

A major obstacle in attempting to use these techniques on a large scale in

Antarctica is computational requirements. To evaluate the decadal scale of SGH on

Greenland in Chapter 3, 250 TB of optical satellite data were analysed. Since the

Antarctic ice sheet covers an area more than 8 times larger than Greenland, the

computational needs for an assessment of this magnitude will be much greater.

Detecting and classifying supraglacial lakes on high mountain glaciers and sea ice

presents additional difficulties for those on ice sheets. The smaller size of lakes

compared to those on ice sheets, cloud cover, shadows cast from mountains,

varying levels of turbidity of glacial lakes, seasonal snows, and frozen glacial lake
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surfaces add to the complexity of recognising glacial lakes on high mountain

glaciers (Wangchuk and Bolch, 2020). The complexity and variability of the

formation and evolution of melt ponds and the limited availability of observational

data make the identification of melt ponds on sea ice a difficult challenge (Niehaus

et al., 2023). With additional training and a comprehensive validation of the

techniques, the approaches discussed in this thesis could be extended to other parts

of the cryosphere beyond those on which I have used them.

5.4.2 Extension of methods to new data, older missions, &

non-optical sensors

The RF algorithm developed in Chapter 3 is highly efficient, scalable, reliable, and

accurate. To generate the results in this chapter, I created efficient data processing

pipelines to download the necessary data from cloud storage repositories, apply the

algorithms, and save the output to either local or cloud storage. With minor

modifications, this pipeline could be used to generate results on a regular basis

from newly released optical satellite data. The use of operational frameworks on

optical images is widespread (e.g. Bazzi et al., 2021; Souza et al., 2022; Sudmanns

et al., 2020). However, accuracy estimates can differ according to seasonal and

interannual trends (Bazzi et al., 2021). Furthermore, the quality and availability of

the data is not consistent in space and time due to factors such as cloudiness,

location on Earth, and the acquisition plan (Sudmanns et al., 2020). The deployment

of remote sensing algorithms with continuous application to newly acquired optical

satellite imagery presents a variety of additional challenges. Adaptive models must

take into account changing environmental conditions, allowing adjustments based

on historical data for sustained accuracy. To ensure data consistency throughout

melt seasons and years, automated quality assurance protocols must be
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incorporated into the operational framework to identify and address sensor

anomalies or seasonal discrepancies. Validation against ground-truth data should

be conducted regularly to maintain the algorithm’s precision and reliability

throughout its operational lifespan. The algorithm must be able to scale, allowing it

to efficiently handle increasing data loads without significantly increasing

computational demands. Maintenance, including bug fixes, updates for new

satellite missions, and efficiency improvements, is essential for long-term

operational viability. Finally, cost management strategies must be implemented to

ensure operational sustainability, taking into account data acquisition, storage,

processing, and maintenance costs. A system to classify supraglacial hydrology on

new optical satellite data could enable researchers to quickly detect and respond to

changes in SGHF, help evaluate flood risks, and improve our knowledge of the

cryosphere and its reaction to environmental changes. However, resolving this

particular problem will not provide any insight into the long-term trends of SGHF.

Expanding our models to include older optical sensors could.

Optical satellite imagery has been around since the 1970s, beginning with the

Landsat-1 mission in 1972 and the AVHRR in 1970 (Table 1.2). This imagery has

been used to track a 47-year history of SGHF on George VI Ice Shelf, Antarctic

Peninsula (Figure 5.2, Barnes et al., 2021). However, data quality and spatial

resolution can be a challenge when dealing with older sensors, as the lower

resolution may limit the effectiveness of modern algorithms, and modern sensors

have different multispectral bands. To create a consistent and homogeneous

dataset, radiometric and geometric corrections, calibration, and cross-calibration

must be performed to ensure the compatibility of the data acquired by various

sensors (Kaita et al., 2022; Sousa and Small, 2017). Extending methods to previous

missions and providing an approach to apply the models to new data would

provide a better understanding of the SGH temporal evolution. The simplest
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Figure 5.2: Optical satellite imagery showing supraglacial lake coverage on George

VI Ice Shelf in years when there is extensive lake coverage (Barnes et al., 2021). (a)

Sentinel-2 image acquired on 19 January 2020. The inset shows the location of the

study area on the AP. Landsat-4,5 images acquired on (b) 4 February 1991, (c) 15

January 1990, (d) 28 January 1989, and (e) Landsat-1 image acquired on 9 January

1973.

approach to applying my models to these older data sets is to train once again on

data representative of the area of interest. The most significant obstacle to

advancing the use of older Landsat sensors, which offer nearly consistent spatial

and temporal resolutions (see Table 1.2), is the creation or procurement of ground

truth data for the training and validation of machine learning techniques. By

manually enhancing existing data sets (Barnes et al., 2021), it is possible to use them

for this purpose. If these methods were extended to the start of the optical remote

sensing era, they would provide a much-needed perspective on the effects of
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human-induced climate change on the SGHF of the ice sheets.

Figure 5.3: Supraglacial meltwater identified by a dual (Sentinel-1 and Sentinel-2)

sensor approach over George VI Ice Shelf, Antarctic Peninsula during January

2020. The light blue colour represents regions where only Sentinel-1 lake

classifications are present, the dark blue colour illustrates regions with only

Sentinel-2 lake classifications, and the green colour denotes overlapping lake

mappings. The SAR image (a–c) is a Sentinel-1 monthly minimum backscattering

product derived from all Sentinel-1 acquisitions of the George VI Ice Shelf in

January 2020. (d) Displays A Sentinel-2 RGB image of the same area during the

same month (d).

It is essential to understand the storage and drainage of supraglacial lakes
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during winter to understand the temporal dynamics of SGHF on the GrIS and AIS

(Dunmire et al., 2020; Kaita et al., 2022; Koenig et al., 2015; Lampkin et al., 2020;

Maier et al., 2023). Synthetic aperture radar (SAR) can be used to estimate the size

of buried lakes during winter or when optical imagery is blocked by clouds, which

would help us better observe short-term lake changes and measure the amount of

surface water held in the ice sheet system. The radiation emitted by radar devices is

not affected by clouds, darkness, or the angle of the sun. RF and INLA-SPDE

algorithms have been used to calculate the extents of surface meltwater in SAR

imagery (Herbert, Camps, and Vall-Llossera, 2021; Schröder et al., 2020; Wangchuk

and Bolch, 2020), however, SAR imagery cannot be used to determine lake depths.

Dual sensor approaches enable for a more comprehensive and detailed mapping of

supraglacial lake coverage (e.g., Figure 5.3, M. Dirscherl et al., 2021). Future

research could apply the models developed here for dual- or multi-sensor to better

understand the temporal dynamics of SGHF on both ice sheets through all seasons

and enhance our quantification of uncertainty at the pixel level. Radar devices have

their own problems when used to sense supraglacial hydrology; for example, they

do not detect melt over blue ice and confuse surface melt with near-surface melt

(Husman et al., 2023), generally offer coarser spatial resolution and cannot retrieve

depth or volume measurements.

5.4.3 Machine learning approach to estimate depth

To gain a more comprehensive understanding of the supraglacial hydrology of the

GrIS, it is necessary to improve the depth estimates of supraglacial lakes (L. Melling

et al., 2023). Surface reflectance and depth (Equation 1.3) used to calculate depth

estimates from optical images reaches a plateau at depths between 1 and 3 m

(L. Melling et al., 2023), thus necessitating a different method to quantify the depths
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Figure 5.4: Estimates for water depth retrieval from Resources Satellite Three

(a) and Worldview-2 (b) using a CNN over marine shallow water around North

Island, Xisha Islands in the South China Sea (Ai et al., 2020).

and associated uncertainties of supraglacial features. ArcticDEM,

DEM-differencing, and ICESat-2 provide more precise estimates (Das et al., 2008;

Datta et al., 2019; Fair et al., 2020; Lampkin and VanderBerg, 2011; Porter et al.,

2018), however, they are limited in terms of spatial and temporal coverage

compared to optical imagery. A machine learning approach that uses accurate

estimates (e.g., (Datta et al., 2019; Fair et al., 2020)) as a baseline dataset for training,

validation, and testing could provide improved estimates of supraglacial lake

depth, and therefore volume. This approach, for example, could use ICESat-2 tracks

as a depth label (ground truth), and reflectance values from optical images or

calculated band indices to form a relationship between the values, exploiting the

relationship between surface reflectance and depth similarly to surface reflectance

and depth. CNNs have been used to retrieve the depth of the water in shallow

marine water from optical images in a similar approach (Figure 5.4, Ai et al., 2020).
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5.4.4 Application to other fields

Figure 5.5: Landslide probability prediction map obtained using a ResU-Net (a

type of CNN) on multi-temporal Sentinel-2 images. The pixel values closer to 1

represent a higher probability of the landslide class (Ghorbanzadeh, Gholamnia,

and Ghamisi, 2022).

The use of optical satellite sensors in remote sensing has been demonstrated to

improve our understanding of supraglacial hydrology on ice sheets. However, the

methods developed and adapted can be applied to a variety of other fields, such as

urban planning, disaster management, and agricultural management. For example,

NDWI approaches can be used to detect floods and manage reservoirs
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(Al Balasmeh, Karmaker, and Babbar, 2020; Condeça, Nascimento, and Barreiras,

2022; Liuzzo et al., 2020). Random forest algorithms are also widely used for change

in land use and cover, forest tracking, crop monitoring, and mangrove analysis

(Amini et al., 2022; Orynbaikyzy, Gessner, and Conrad, 2022; Sharifi, Felegari, and

Tariq, 2022; Svoboda et al., 2022; R. Zhang et al., 2022). Bayesian inference has been

applied to the mapping of soil matter, the classification of tree species, and the

atmospheric correction (Axelsson et al., 2021; C. Yang et al., 2023; Yin, Lewis, and

Gómez-Dans, 2022). Future work could apply these models to predict the

probability of avalanches or landslides, which has been achieved using deep

learning (Figure 5.5, Ghorbanzadeh, Gholamnia, and Ghamisi, 2022).
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5.5 Concluding remarks

This thesis has significantly advanced our understanding of the distribution and

temporal evolution of supraglacial hydrology on ice sheets. For the first time, it has

revealed the presence of widespread supraglacial hydrology on the West Antarctic

Ice Sheet and Antarctic Peninsula, providing a benchmark data set for the future

development and testing of machine learning algorithms (Chapter 2). Furthermore,

it has revealed increasing trends in supraglacial hydrological activity on the

Greenland ice sheet since 2014 (Chapter 3). Finally, it has provided an uncertainty

quantification at the pixel level, something that had not been done before (Chapter

4). To achieve these feats, I have developed three methods to classify supraglacial

hydrology, dual NDWI, random forest, and Bayesian inference through

INLA-SPDE. This thesis has made a natural progression in method development,

from manually intensive NDWI to adaptive random forest to uncertainty

quantification provided by Bayesian inference, to improve our knowledge of

supraglacial meltwater systems. This knowledge is essential for understanding the

dynamics of ice sheets and glaciers and their response to a changing climate.

Supraglacial hydrology is a key indicator of the effects of climate change on glaciers

and ice sheets. The behaviour of supraglacial meltwater, such as the formation of

lakes and drainage systems on ice surfaces, is closely related to the dynamics of ice

sheets and the rise of sea level. By understanding and monitoring supraglacial

hydrology, we can gain insight into the vulnerability of ice sheets and their

potential contribution to global sea-level changes. Additionally, this research is

essential to manage and mitigate the far-reaching environmental consequences of

glacial melt, from the influence of freshwater ecosystems and sediment transport to

addressing the risks of glacial outburst floods that can affect downstream

communities and infrastructure. In conclusion, quantifying supraglacial hydrology
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is critical not only for understanding the cryosphere’s reaction to climate change,

but also for predicting and mitigating its broader environmental and societal

impacts.
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An inventory of supraglacial lakes &

channels across the West Antarctic Ice

Sheet

A.1 Summary of candidate NDWI thresholding

methods

Table A.1: Sensitivity (Sen.), Specificity (Spec.) and Accuracy (Acc.) values

averaged (Mean) across three test sites: Amery, George VI and Bach Ice Shelves

for S2 and L8 Sensors.

Method Mean S2 sen. Mean L8 sen. Mean S2 spec. Mean L8 spec. Mean S2 acc. Mean L8 acc.

1: NDWIGNIR>0.300 0.793 0.675 0.991 0.996 0.98 0.984

2: NDWIGNIR>0.175 0.869 0.752 0.987 0.998 0.981 0.985

3: Dual-NDWI 0.853 0.776 0.991 0.997 0.983 0.987

NDWI thresholding methods (Equations 1.1 and 1.2) have been implemented

using Sentinel-2 and Landsat-8 satellite imagery. Here, we summarise three
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Table A.2: Standard deviation (SD) of the values for sensitivity (sen.), specificity

(spec.) and accuracy (acc.) across three test sites: Amery, George VI and Bach ice

shelves for S2 and L8 Sensors.

Method SD S2 sen. SD L8 sen. SD S2 spec. SD L8 spec. SD S2 acc. SD L8 acc.

1: NDWIGNIR>0.300 0.142 0.257 0.013 0.006 0.012 0.005

2: NDWIGNIR>0.175 0.07 0.222 0.014 0.003 0.013 0.009

3: Dual-NDWI 0.069 0.176 0.01 0.004 0.011 0.005

candidate thresholding approaches that were assessed during methodological

assessment. To determine the thresholds, we compared the output from two

separate thresholds on the NDWIGNIR, >0.300 (Method 1) (Stokes et al., 2019) and a

lower threshold of >0.175 (Method 2) to maximise the delineated lake area, with

the Dual-NDWI thresholding approach (Method 3) presented in Chapter 2.2 Data

and methods. In addition to the threshold on NDWIGNIR, we explored the use of

band filters (M. Moussavi et al., 2020) to remove false positives from rock, cloud

and other problem pixels as discussed in Section 2.2.1.2 Cloud, rock masking and

elimination of slush, blue-ice and shaded pixels.

Method 1 comprises a simple thresholding of NDWIGNIR classification, by

excluding any pixels with an NDWIGNIR value less than or equal to 0.300. This

method was used to map lakes in January 2017 in East Antarctica 1, and is the basis

for three methods considered here. Method 2 utilised a lower threshold of 0.175 on

NDWIGNIR, for more complete delineation of supraglacial hydrology. However,

due to the lower threshold, more non-lake pixels were misclassified as lake pixels.

To reduce such misclassifications, band filters were introduced to remove some

cloud, rock, slush and shaded areas (M. Moussavi et al., 2020). Method 3 combines

the NDWIGNIR (lower threshold of 0.16) with a second, NDWIBR classification was

introduced. This NDWIBR classifier, was given a threshold of 0.18 (M. Moussavi
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A.1. Summary of candidate NDWI thresholding methods

et al., 2020). Additional band filters were applied in Method 3 as in Method 2.

As in the analysis in Section 2.2 Accuracy assessment, we compared the output

of the three methods to the manually delineated lakes and channels. We computed

the mean values for sensitivity, specificity and accuracy (Equations 2.3, 2.4 and 2.5)

for each test site (Amery, George VI and Bach) across both sensors (S2 and L8) (Table

A.1). Based upon this assessment, the two best-performing methods are Methods

2 and 3. However, we selected the Dual-NDWI method because it performs well

not only in terms of the average values, but also in terms of the standard deviation

for both sensors (Table A.2). This indicates greater stability between sites, which is

important when applying the method across other sites during the ice sheet wide

roll out.
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Appendix B

Supraglacial hydrology coverage has

increased on the Greenland ice sheet

over the last decade

B.1 Random forest

Random forest (RF) is a supervised learning algorithm that requires labelled

training data (Breiman, 2001). It is made up of a group (forest) of unrelated decision

trees. Decision trees are used to plot some statistical probability analysis made up

of three types of nodes, connected by branches. The first node (the ‘root’) is the part

from which all other nodes eventually branch, that is, it is the first question asked.

The end of the decision path, where there are no more divisions or branches, is

named the ‘leaf’ node. There exists any number of internal nodes between the root

and leaf nodes. Each node represents a decision or a test on an attribute, while the

branches, which connect them, denote the outcomes. Individual decision trees are

built on a randomly sampled subset of training data. Each tree, which is grown to
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some maximum extent, provides a classification decision or vote. RF contains many

decision trees in the form of an ensemble classifier. After a given number of trees

are generated, the most popular classification is determined. RF resists overfitting,

which can be a major sources of error in machine learning processes (Breiman,

2001). For large data sets, such as the S2 and L8 archives used in this study, the

major memory requirement is the storage of the data itself. The error rate in RF

depends on two main factors: the correlation between any two trees and the

strength of each tree in the forest. Increasing the correlation increases the forest

error rate, while increasing the strength of an individual tree decreases the forest

error rate (Belgiu and Drăguţ, 2016; Breiman, 2001; Kamiński, Jakubczyk, and

Szufel, 2018; Pal, 2005).

B.2 Training data

Here we display the Sentinel-2 and Landsat-8 tiles used in the training, validation,

and testing of the random forest algorithms.

Table B.1: All tiles used in the training of the L8 and S2 RF algorithms. S2 tiles

ending with ’*’ are also used in the transferability tests.

L8 Tile Name S2 Tile Name

LC08 L1TP 016002 20130428 20180301 01 T1 S2A MSIL1C 20170530T152911 N0205 R111 T22WEB 20170530T152909

LC08 L1TP 005015 20130501 20170504 01 T1 S2A MSIL1C 20170531T145921 N0205 R125 T22WEA 20170531T150133

LC08 L1TP 010003 20130504 20170504 01 T2 S2A MSIL1C 20170531T145921 N0205 R125 T22WEV 20170531T150133

LC08 L1TP 010010 20130504 20170504 01 T1 S2A MSIL1C 20170531T145921 N0205 R125 T22WFA 20170531T150133

LC08 L1TP 007013 20130819 20170502 01 T1 S2A MSIL1C 20170531T145921 N0205 R125 T22WFV 20170531T150133

LC08 L1GT 019004 20130823 20170502 01 T2 S2A MSIL1C 20170612T153911 N0205 R011 T26XNN 20170612T153906

LC08 L1TP 010003 20130824 20170502 01 T1 S2A MSIL1C 20170615T141011 N0205 R053 T25WDS 20170615T141200
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LC08 L1TP 007013 20140416 20170423 01 T1 S2A MSIL1C 20170619T234731 N0205 R116 T21XWB 20170619T234734

LC08 L1TP 007013 20140502 20170423 01 T1 S2A MSIL1C 20170710T145911 N0205 R125 T22WEA 20170710T150120

LC08 L1TP 016002 20140517 20170422 01 T1 S2A MSIL1C 20170710T145911 N0205 R125 T22WEV 20170710T150120

LC08 L1TP 010003 20140523 20170422 01 T1 S2A MSIL1C 20170710T145911 N0205 R125 T22WFA 20170710T150120

LC08 L1TP 010010 20140523 20170422 01 T1 S2A MSIL1C 20170710T145911 N0205 R125 T22WFV 20170710T150120

LC08 L1TP 016002 20140602 20170422 01 T1 S2A MSIL1C 20170722T171901 N0205 R012 T20XNK 20170722T171857

LC08 L1GT 019004 20140607 20170422 01 T2 S2A MSIL1C 20170723T150911 N0205 R025 T22WEB 20170723T151115

LC08 L1TP 010003 20140608 20170422 01 T1 S2A MSIL1C 20170724T143921 N0205 R039 T27XVE 20170724T143924

LC08 L1TP 005015 20140621 20170421 01 T1 S2A MSIL1C 20170724T175911 N0205 R041 T20XMN 20170724T175913

LC08 L1TP 010003 20140624 20170421 01 T1 S2A MSIL1C 20170730T145921 N0205 R125 T22WFB 20170730T150103

LC08 L1TP 016002 20140704 20170421 01 T1 S2A MSIL1C 20170730T145921 N0205 R125 T26XNN 20170730T145915

LC08 L1TP 010010 20140710 20170421 01 T1 S2A MSIL1C 20170731T160901 N0205 R140 T21XWB 20170731T160903

LC08 L1TP 016002 20140720 20170421 01 T1 S2A MSIL1C 20170809T145921 N0205 R125 T22WEV 20170809T150205

LC08 L1TP 005015 20140723 20170421 01 T1 S2A MSIL1C 20170812T150911 N0205 R025 T22WEA 20170812T150912

LC08 L1GT 019004 20140725 20170420 01 T2 S2A MSIL1C 20170812T150911 N0205 R025 T22WEV 20170812T150912

LC08 L1TP 007013 20140806 20170420 01 T1 S2A MSIL1C 20170812T150911 N0205 R025 T22WFA 20170812T150912

LC08 L1TP 005015 20140808 20180129 01 T1 S2A MSIL1C 20170812T150911 N0205 R025 T22WFV 20170812T150912

LC08 L1TP 016002 20140821 20170420 01 T1 S2A MSIL1C 20170825T165851 N0205 R069 T20XNK 20170825T170139

LC08 L1GT 019004 20140826 20170420 01 T2 S2A MSIL1C 20170830T142931 N0205 R139 T27XVE 20170830T142933

LC08 L1TP 010010 20140827 20170420 01 T1 S2A MSIL1C 20170908T145911 N0205 R125 T22WEA 20170908T150039

LC08 L1TP 005015 20150421 20170409 01 T1 S2A MSIL1C 20170908T145911 N0205 R125 T22WEV 20170908T150039

LC08 L1GT 019004 20150423 20170409 01 T2 S2A MSIL1C 20170908T145911 N0205 R125 T22WFA 20170908T150039

LC08 L1TP 016002 20150504 20170409 01 T1 S2A MSIL1C 20170908T145911 N0205 R125 T22WFV 20170908T150039

LC08 L1TP 005015 20150507 20170411 01 T1 S2A MSIL1C 20180526T145921 N0206 R125 T22WEA 20180526T201815*

LC08 L1TP 010003 20150510 20170409 01 T1 S2A MSIL1C 20180526T145921 N0206 R125 T22WEV 20180526T201815*

LC08 L1TP 010010 20150510 20170409 01 T1 S2A MSIL1C 20180526T145921 N0206 R125 T22WFA 20180526T201815*
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LC08 L1TP 007013 20150521 20170408 01 T1 S2A MSIL1C 20180526T145921 N0206 R125 T22WFV 20180526T201815*

LC08 L1TP 010003 20150611 20170408 01 T1 S2B MSIL1C 20180622T185919 N0206 R013 T20XNQ 20180706T183955

LC08 L1TP 016002 20150621 20170407 01 T1 S2B MSIL1C 20180710T150009 N0206 R125 T22WEA 20180710T202212*

LC08 L1TP 005015 20150624 20170407 01 T1 S2B MSIL1C 20180710T150009 N0206 R125 T22WEV 20180710T202212*

LC08 L1GT 019004 20150626 20170407 01 T2 S2B MSIL1C 20180710T150009 N0206 R125 T22WFA 20180710T202212*

LC08 L1TP 010010 20150627 20170407 01 T1 S2B MSIL1C 20180710T150009 N0206 R125 T22WFV 20180710T202212*

LC08 L1TP 007013 20150708 20170407 01 T1 S2B MSIL1C 20180715T140739 N0206 R053 T24WWU 20180715T175138

LC08 L1GT 019004 20150712 20170407 01 T2 S2B MSIL1C 20180819T145959 N0206 R125 T22WEA 20180819T200111*

LC08 L1TP 010003 20150713 20170407 01 T1 S2B MSIL1C 20180819T145959 N0206 R125 T22WEV 20180819T200111*

LC08 L1TP 010010 20150713 20170407 01 T1 S2B MSIL1C 20180819T145959 N0206 R125 T22WFA 20180819T200111*

LC08 L1TP 016002 20150723 20170406 01 T1 S2B MSIL1C 20180819T145959 N0206 R125 T22WFV 20180819T200111*

LC08 L1TP 010003 20150814 20170406 01 T1 S2B MSIL1C 20180822T150749 N0206 R025 T22WEB 20180822T202152

LC08 L1TP 010010 20150814 20170406 01 T1 S2A MSIL1C 20180913T145911 N0206 R125 T22WEA 20180913T171024*

LC08 L1TP 007013 20150825 20170405 01 T1 S2A MSIL1C 20180913T145911 N0206 R125 T22WEV 20180913T171024*

LC08 L1GT 019004 20150829 20170405 01 T2 S2A MSIL1C 20180913T145911 N0206 R125 T22WFA 20180913T171024*

LC08 L1TP 005015 20150912 20170404 01 T1 S2A MSIL1C 20180913T145911 N0206 R125 T22WFV 20180913T171024*

LC08 L1TP 005015 20150928 20170403 01 T1 S2B MSIL1C 20180921T151119 N0206 R025 T22WEV 20180921T201342

LC08 L1TP 016002 20160506 20170326 01 T1 S2B MSIL1C 20190529T150809 N0207 R025 T22WEA 20190529T201431*

LC08 L1TP 010003 20160512 20180130 01 T1 S2B MSIL1C 20190529T150809 N0207 R025 T22WEV 20190529T201431*

LC08 L1TP 007013 20160523 20180130 01 T1 S2B MSIL1C 20190529T150809 N0207 R025 T22WFA 20190529T201431*

LC08 L1GT 019004 20160527 20170324 01 T2 S2B MSIL1C 20190529T150809 N0207 R025 T22WFV 20190529T201431*

LC08 L1TP 010010 20160528 20170324 01 T1 S2B MSIL1C 20190601T151809 N0207 R068 T27XVJ 20190601T171240*

LC08 L1TP 007013 20160608 20170324 01 T1 S2A MSIL1C 20190601T160901 N0207 R140 T27XVH 20190601T180236*

LC08 L1TP 016002 20160623 20170323 01 T1 S2B MSIL1C 20190613T141749 N0207 R096 T24WXV 20190613T152413

LC08 L1GT 019004 20160628 20170323 01 T2 S2B MSIL1C 20190708T150809 N0208 R025 T22WEA 20190708T185223*

LC08 L1TP 010010 20160629 20170323 01 T1 S2B MSIL1C 20190708T150809 N0208 R025 T22WEV 20190708T185223*
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LC08 L1TP 007013 20160710 20170323 01 T1 S2B MSIL1C 20190708T150809 N0208 R025 T22WFA 20190708T185223*

LC08 L1TP 005015 20160712 20180129 01 T1 S2B MSIL1C 20190708T150809 N0208 R025 T22WFV 20190708T185223*

LC08 L1TP 010010 20160715 20180130 01 T1 S2A MSIL1C 20190712T153911 N0208 R011 T21XXA 20190712T185647

LC08 L1TP 016002 20160725 20170322 01 T1 S2B MSIL1C 20190713T155829 N0208 R097 T27XVH 20190713T193729*

LC08 L1TP 007013 20160726 20180130 01 T1 S2A MSIL1C 20190713T164901 N0208 R026 T27XVJ 20190713T201443*

LC08 L1TP 005015 20160728 20180129 01 T1 S2B MSIL1C 20190804T150019 N0208 R125 T22WEA 20190804T165643*

LC08 L1TP 010003 20160731 20170322 01 T1 S2B MSIL1C 20190804T150019 N0208 R125 T22WEV 20190804T165643*

LC08 L1TP 010010 20160731 20170322 01 T1 S2B MSIL1C 20190804T150019 N0208 R125 T22WFA 20190804T165643*

LC08 L1GT 019004 20160815 20170322 01 T2 S2B MSIL1C 20190804T150019 N0208 R125 T22WFV 20190804T165643*

LC08 L1TP 010003 20160816 20170322 01 T1 S2B MSIL1C 20190813T152819 N0208 R111 T27XVH 20190813T172427*

LC08 L1TP 005015 20160829 20170321 01 T1 S2B MSIL1C 20190813T152819 N0208 R111 T27XVJ 20190813T172427*

LC08 L1TP 007013 20160912 20170321 01 T1 S2A MSIL1C 20190901T150911 N0208 R025 T22WEA 20190901T170819*

S2A MSIL1C 20190901T150911 N0208 R025 T22WEV 20190901T170819*

S2A MSIL1C 20190901T150911 N0208 R025 T22WFA 20190901T170819*

S2A MSIL1C 20190901T150911 N0208 R025 T22WFV 20190901T170819*

S2B MSIL1C 20190903T150009 N0208 R125 T27XVH 20190903T183932*

S2A MSIL1C 20190903T154911 N0208 R054 T27XVJ 20190903T193001*

S2A MSIL1C 20200518T150921 N0209 R025 T22WEB 20200518T170904

S2A MSIL1C 20200528T150921 N0209 R025 T22WEV 20200528T170824

S2B MSIL1C 20200614T140739 N0209 R053 T26WME 20200614T160505

S2B MSIL1C 20200620T142749 N0209 R139 T27XVE 20200620T144408

S2A MSIL1C 20200623T170901 N0209 R112 T20XNK 20200623T204029

S2A MSIL1C 20200702T142001 N0209 R096 T27XVE 20200702T143521

S2A MSIL1C 20200717T150921 N0209 R025 T22WEB 20200717T170914

S2A MSIL1C 20200717T150921 N0209 R025 T22WEV 20200717T170914

S2A MSIL1C 20200717T150921 N0209 R025 T26XNN 20200717T170914
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S2A MSIL1C 20200718T161911 N0209 R040 T21XWB 20200718T181502

S2B MSIL1C 20200718T170849 N0209 R112 T20XNK 20200718T190620

S2A MSIL1C 20200803T145921 N0209 R125 T27XVH 20200803T170904

S2B MSIL1C 20200905T155829 N0209 R097 T21XWB 20200905T193742

S2B MSIL1C 20200909T153819 N0209 R011 T22WED 20200909T193104

S2B MSIL1C 20200909T153819 N0209 R011 T26XNN 20200909T193104
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B.3 Additional Validation

B.3.1 Validation of the algorithms and transferability testing

Here we show the confusion matrices for each of the validation tests and for each of

the transferability tests discussed in Chapter 3.

Table B.2: Example of a confusion matrix showing the labelled training data and

predicted outcomes for the SGH and non-SGH classes.

La
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D
at

a

Model Prediction

Non-SGH SGH

Non-SGH True

Negative

False

Positive

SGH False

Negative

True

Positive

Table B.3: Confusion matrix for the validation of the algorithm trained and tested

on the three distinct subsets of the data from the Landsat-8 training data set: a)

Test 1; b) Test 2; c) Test 3.
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Non-SGH
7539 78

SGH
8 717

b) Model Prediction

Non-SGH SGH

7545 72

13 712

c) Model Prediction

Non-SGH SGH

7525 92

23 702
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Table B.4: Confusion matrix for the validation of the algorithm trained and tested

on the three distinct subsets of the data from the Sentinel-2 training data set: a)

Test 1; b) Test 2; c) Test 3.
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a) Model Prediction

Non-SGH SGH

Non-SGH
67214 2370

SGH
249 16357

b) Model Prediction

Non-SGH SGH

67171 2413

269 16337

c) Model Prediction

Non-SGH SGH

67184 2400

311 16295

Table B.5: Confusion matrix for the transferability testing of the algorithm a)

trained on data from 2019 and tested on unseen data from 2018; b) trained on data

from 2018 and tested on unseen data from 2019.
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b) Model Prediction
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50774 970

2522 35771
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Table B.6: Confusion matrix for the transferability testing of the algorithm a)

trained on data from July, August, and September and tested on unseen data from

May; b) trained on data from May, August, and September and tested on unseen

data from July; c) trained on data from May, July, and September and tested on

unseen data from August; d) trained on data from May, July, and August and

tested on unseen data from September e) trained on data from May, July, and

August 2018, July, August, and September 2019 and tested on unseen data from

September 2018 and May 2019.
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Non-SGH SGH

Non-SGH
25743 1261

SGH
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b) Model Prediction

Non-SGH SGH
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c) Model Prediction
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25021 386

2215 23008
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d) Model Prediction

Non-SGH SGH

Non-SGH
25487 615

SGH
631 4335

e) Model Prediction

Non-SGH SGH

25061 256

541 7144

Table B.7: Confusion matrix for the transferability testing of the algorithm trained

on all data from the Watson River region and tested on unseen data from the

NEGIS region.
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B.3.2 Comparing the sensors
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Table B.8: Comparison of the classification and volume estimates for Landsat-8

and Sentinel-2 sensors over various regions on the Greenland Ice Sheet.

Date Region L8 Tile L8 Area [km2] L8 Volume [km3] S2 Tile S2 Area [km2] S2 Volume [km3]

20170806 EG 232011 32.94 0.0207 T25WDS 78.24 0.0363

20170831 EG 232011 9.86 0.0059 T25WDS 52.01 0.0254

20180622 EG 232011 14.59 0.0071 T25WDS 26.04 0.0140

20200706 EG 232011 14.56 0.0173 T25WDS 30.11 0.0255

20200830 EG 232011 7.50 0.0056 T25WDS 28.18 0.0166

20170531 NWG 042001 4.55 0.0020 T21XVK 16.26 0.0071

20190521 NWG 042001 7.25 0.0019 T21XVK 13.04 0.0062

20200624 NWG 042001 30.44 0.0314 T21XVK 45.61 0.0426

20170512 NWG 037002 1.25 0.0002 T21XVK 2.95 0.0021

20180616 NWG 037002 7.67 0.0028 T21XVK 19.29 0.0087

20210710 NWG 037002 31.43 0.0323 T21XVK 55.16 0.0462

20190502 NEGIS 021001 3.08 0.0005 T25XEK 1.49 0.0006

20200715 NEGIS 013248 87.31 0.0191 T25XEK 38.09 0.0153

20170805 Watson 008013 20.45 0.0249 T22WEV 8.31 0.0068

20190608 Watson 008013 81.87 0.0905 T22WEV 91.35 0.0935

20190710 Watson 008013 23.49 0.0221 T22WEV 31.25 0.0258

20190928 Watson 008013 1.56 0.0006 T22WEV 25.41 0.0145

20200712 Watson 008013 64.31 0.1144 T22WEV 78.80 0.1197

20200813 Watson 008013 3.82 0.0050 T22WEV 78.80 0.0042

20210528 Watson 008013 10.68 0.0026 T22WEV 29.94 0.0097

20210917 Watson 008013 12.83 0.0138 T22WEV 8.18 0.0048

20170814 Watson 007013 40.28 0.0558 T22WEV 67.44 0.0645

20180918 Watson 007013 2.45 0.0007 T22WEV 5.74 0.0034

20190804 Watson 007013 13.96 0.0115 T22WEV 46.98 0.0238

20200619 Watson 007013 51.98 0.0513 T22WEV 55.15 0.0459

20210505 Watson 007013 9.74 0.0022 T22WEV 52.22 0.0149

20210622 Watson 007013 44.48 0.0503 T22WEV 56.03 0.0543

20170908 Watson 006013 4.08 0.0044 T22WEV 8.85 0.0052

20190610 Watson 006013 91.65 0.1149 T22WEV 130.17 0.1307

20190829 Watson 006013 4.75 0.0039 T22WEV 11.83 0.0074

20210530 Watson 006013 15.38 0.0054 T22WEV 27.01 0.0110

Cumulative 750.20 0.7210 1219.92 0.8867
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Table B.9: The Pearson correlation coefficient (r) and corresponding P-Values for

monthly trends in SGHF extents on GrIS drainage basins (Zwally et al., 2012) from

2014 through 2022.

May June July August September All Months
Basin

Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value

1.1 0.774 0.014 0.026 0.948 -0.576 0.104 0.486 0.185 NoData NoData 0.013 0.934

1.2 0.885 0.002 0.596 0.090 -0.161 0.679 0.097 0.804 NoData NoData 0.127 0.405

1.3 0.912 0.001 0.660 0.053 -0.061 0.875 0.111 0.776 NoData NoData 0.159 0.296

1.4 0.732 0.025 0.349 0.358 -0.343 0.366 -0.150 0.699 NoData NoData -0.013 0.934

2.1 0.871 0.002 -0.174 0.654 -0.566 0.112 -0.354 0.350 0.295 0.441 -0.092 0.547

2.2 0.675 0.046 0.044 0.910 -0.596 0.090 0.468 0.204 0.600 0.087 0.135 0.376

3.1 0.724 0.028 0.296 0.439 0.185 0.633 0.391 0.298 0.782 0.013 0.383 0.009

3.2 0.634 0.066 0.653 0.056 0.750 0.020 0.499 0.172 0.875 0.002 0.601 0.000

3.3 0.618 0.076 0.691 0.039 0.766 0.016 0.604 0.085 0.903 0.001 0.549 0.000

4.1 0.763 0.017 0.635 0.066 0.761 0.017 0.587 0.097 0.827 0.006 0.642 0.000

4.2 0.839 0.005 0.699 0.036 0.622 0.074 0.431 0.246 0.886 0.001 0.494 0.001

4.3 0.708 0.033 0.689 0.040 0.933 0.000 0.631 0.068 0.912 0.001 0.649 0.000

5.0 0.783 0.013 0.750 0.020 0.884 0.002 0.631 0.068 0.813 0.008 0.629 0.000

6.1 0.226 0.559 0.193 0.618 0.679 0.044 0.149 0.702 0.772 0.015 0.285 0.058

6.2 0.316 0.408 -0.019 0.962 -0.464 0.208 0.538 0.135 0.349 0.357 0.052 0.734

7.1 0.366 0.333 0.086 0.826 -0.437 0.239 0.524 0.148 0.515 0.156 0.104 0.495

7.2 0.599 0.088 -0.102 0.794 -0.564 0.114 0.498 0.173 0.679 0.044 0.122 0.426

8.1 0.698 0.036 0.128 0.744 -0.241 0.532 0.768 0.016 0.548 0.127 0.191 0.210

8.2 0.814 0.008 0.754 0.019 0.086 0.826 0.679 0.044 0.227 0.556 0.301 0.045
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B.4. Results

Table B.10: The Pearson correlation coefficient (r) and corresponding P-Values for

seasonal and yearly trends in SGHF volume on GrIS drainage basins (Zwally

et al., 2012) from 2014 through 2022.

May June July August September All Months
Basin

Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value

1.1 0.774 0.014 0.026 0.948 -0.576 0.104 0.486 0.185 NoData NoData 0.013 0.934

1.2 0.885 0.002 0.596 0.090 -0.161 0.679 0.097 0.804 NoData NoData 0.127 0.405

1.3 0.912 0.001 0.660 0.053 -0.061 0.875 0.111 0.776 NoData NoData 0.159 0.296

1.4 0.732 0.025 0.349 0.358 -0.343 0.366 -0.150 0.699 NoData NoData -0.013 0.934

2.1 0.871 0.002 -0.174 0.654 -0.566 0.112 -0.354 0.350 0.295 0.441 -0.092 0.547

2.2 0.675 0.046 0.044 0.910 -0.596 0.090 0.468 0.204 0.600 0.087 0.135 0.376

3.1 0.724 0.028 0.296 0.439 0.185 0.633 0.391 0.298 0.782 0.013 0.383 0.009

3.2 0.634 0.066 0.653 0.056 0.750 0.020 0.499 0.172 0.875 0.002 0.601 0.000

3.3 0.618 0.076 0.691 0.039 0.766 0.016 0.604 0.085 0.903 0.001 0.549 0.000

4.1 0.763 0.017 0.635 0.066 0.761 0.017 0.587 0.097 0.827 0.006 0.642 0.000

4.2 0.839 0.005 0.699 0.036 0.622 0.074 0.431 0.246 0.886 0.001 0.494 0.001

4.3 0.708 0.033 0.689 0.040 0.933 0.000 0.631 0.068 0.912 0.001 0.649 0.000

5.0 0.783 0.013 0.750 0.020 0.884 0.002 0.631 0.068 0.813 0.008 0.629 0.000

6.1 0.226 0.559 0.193 0.618 0.679 0.044 0.149 0.702 0.772 0.015 0.285 0.058

6.2 0.316 0.408 -0.019 0.962 -0.464 0.208 0.538 0.135 0.349 0.357 0.052 0.734

7.1 0.366 0.333 0.086 0.826 -0.437 0.239 0.524 0.148 0.515 0.156 0.104 0.495

7.2 0.599 0.088 -0.102 0.794 -0.564 0.114 0.498 0.173 0.679 0.044 0.122 0.426

8.1 0.698 0.036 0.128 0.744 -0.241 0.532 0.768 0.016 0.548 0.127 0.191 0.210

8.2 0.814 0.008 0.754 0.019 0.086 0.826 0.679 0.044 0.227 0.556 0.301 0.045
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B.4. Results

Table B.11: The Pearson correlation coefficient (r) and corresponding P-Values for

seasonal and yearly trends in SGHF occurrence on GrIS drainage basins (Zwally

et al., 2012) from 2014 through 2022.

May June July August September All Months
Basin

Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value Pearson’s r P-Value

1.1 0.774 0.014 0.026 0.948 -0.576 0.104 0.486 0.185 NoData NoData 0.013 0.934

1.2 0.885 0.002 0.596 0.090 -0.161 0.679 0.097 0.804 NoData NoData 0.127 0.405

1.3 0.912 0.001 0.660 0.053 -0.061 0.875 0.111 0.776 NoData NoData 0.159 0.296

1.4 0.732 0.025 0.349 0.358 -0.343 0.366 -0.150 0.699 NoData NoData -0.013 0.934

2.1 0.871 0.002 -0.174 0.654 -0.566 0.112 -0.354 0.350 0.295 0.441 -0.092 0.547

2.2 0.675 0.046 0.044 0.910 -0.596 0.090 0.468 0.204 0.600 0.087 0.135 0.376

3.1 0.724 0.028 0.296 0.439 0.185 0.633 0.391 0.298 0.782 0.013 0.383 0.009

3.2 0.634 0.066 0.653 0.056 0.750 0.020 0.499 0.172 0.875 0.002 0.601 0.000

3.3 0.618 0.076 0.691 0.039 0.766 0.016 0.604 0.085 0.903 0.001 0.549 0.000

4.1 0.763 0.017 0.635 0.066 0.761 0.017 0.587 0.097 0.827 0.006 0.642 0.000

4.2 0.839 0.005 0.699 0.036 0.622 0.074 0.431 0.246 0.886 0.001 0.494 0.001

4.3 0.708 0.033 0.689 0.040 0.933 0.000 0.631 0.068 0.912 0.001 0.649 0.000

5.0 0.783 0.013 0.750 0.020 0.884 0.002 0.631 0.068 0.813 0.008 0.629 0.000

6.1 0.226 0.559 0.193 0.618 0.679 0.044 0.149 0.702 0.772 0.015 0.285 0.058

6.2 0.316 0.408 -0.019 0.962 -0.464 0.208 0.538 0.135 0.349 0.357 0.052 0.734

7.1 0.366 0.333 0.086 0.826 -0.437 0.239 0.524 0.148 0.515 0.156 0.104 0.495

7.2 0.599 0.088 -0.102 0.794 -0.564 0.114 0.498 0.173 0.679 0.044 0.122 0.426

8.1 0.698 0.036 0.128 0.744 -0.241 0.532 0.768 0.016 0.548 0.127 0.191 0.210

8.2 0.814 0.008 0.754 0.019 0.086 0.826 0.679 0.044 0.227 0.556 0.301 0.045
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B.4. Results

(a) Trend in the SGHF extent. (b) Trend in the SGHF volume.

Figure B.1: Trends for SGHF extent (a) and volume (b) in the Zwally storage basins

over the decade from 2014-2022, calculated for the products available at the source

resolution of each sensor and with the sensor correction applied to Landsat-8 era

data (2014-2016). Labelled basins are those where we find statistically significant

trends in the extent and volume of SGHF.
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B.4. Results

(a) Ratio for SGHF extent. (b) Ratio for SGHF volume.

Figure B.2: The ratios of the standard deviation of the residuals of the trend to the

magnitude of the trend for the SGHF extent (a) and volume (b) in the Zwally

storage basins. In most cases, where the basins (Figures B.1a, B.1b) show no

significant trend, this ratio is many times that of the basins with a significant

trend.
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B.4. Results

Figure B.3: (a) The supraglacial hydrology extent anomaly for May compared to

the mean extent in 1200 m grid cells on the Greenland Ice Sheet. The anomaly

was calculated, taking the difference of the mean cell value of the 9 years in each

cell from the extent value for each year.

221



B.4. Results

Figure B.3: (b) The supraglacial hydrology extent anomaly for June compared to

the mean extent in 1200 m grid cells on the Greenland Ice Sheet. The anomaly was

calculated, taking the difference of the mean cell value of the 9 years in each cell

from the extent value for each year.

222



B.4. Results

Figure B.3: (c) The supraglacial hydrology extent anomaly for August compared

to the mean extent in 1200 m grid cells on the Greenland Ice Sheet. The anomaly

was calculated, taking the difference of the mean cell value of the 9 years in each

cell from the extent value for each year.
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B.4. Results

Figure B.3: (d)The supraglacial hydrology extent anomaly for September

compared to the mean extent in 1200 m grid cells on the Greenland Ice Sheet.

The anomaly was calculated, taking the difference of the mean cell value of the 9

years in each cell from the extent value for each year.
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B.4. Results

(a) Trends in the mean firn temperature. (b) Trends in the irreducible water content.

Figure B.3: Trends for the mean firn temperature at 10 m depth and mean

irreducible water content for the years 2014-2020 calculated from IMAU-FDM

(Firn Densification Model) v1.2G (Brils et al., 2022), where we find a significant

trend for the occurrence of SGH (Figure 3.8a) across the years 2014-2022 for each

Zwally basin.
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B.4. Results

(a) Trends in mean runoff. (b) Trends in mean precipitation.

Figure B.4: Trends for the mean runoff and mean precipitation for the years 2014-

2022 calculated from regional climate model (RACMO2, B. Noël et al., 2018),

where we find a significant trend for the occurrence of SGHF (Figure 3.8a) across

the years 2014-2022 for each Zwally basin.
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B.4. Results

(c) Trends in the mean snowmelt. (d) Trends in the mean snowfall.

Figure B.4: Trends for the mean snowmelt and mean snowfall for the years 2014-

2022 calculated from regional climate model (RACMO2, B. Noël et al., 2018),

where we find a significant trend for the occurrence of SGHF (Figure 3.8a) across

the years 2014-2022 for each Zwally basin.
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B.4. Results

(e) Trends in the mean 2 m temperature.

Figure B.4: Trends for the mean temperature of air at 2m above the ice surface for

the years 2014-2022 calculated from regional climate model (RACMO2, B. Noël

et al., 2018), where we find a significant trend for the occurrence of SGHF (Figure

3.8a) across the years 2014-2022 for each Zwally basin.
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B.4. Results

Figure B.5: Relationship between total monthly SGHF area (in km2) and volume

(in km3) on the GrIS is found to be linear with the equation for the line of best fit:

SGHF Area (km2) = 2530.7 × SGHF Volume (km3).
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Appendix C

A new method for probabilistic

prediction of supraglacial lakes on the

southwest Greenland Ice Sheet

C.1 Training & testing data sets
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C.1. Training & testing data sets

Table C.1: The geographic coordinates, dates, data sets, and border types for the

Seninel-2 training data set.

Latitude Longitude Date Border Type Data Set

67.546 N 49.533 W 10 06 2019 Defined Border (1a) Training

66.811 N 48.539 W 03 07 2019 Defined Border (1b) Training

67.529 N 49.323 W 29 07 2021 Defined Border (1c) Training

67.546 N 49.533 W 30 06 2022 Defined Border (1d) Training

67.413 N 49.204 W 24 07 2022 Defined Border (1e) Training

66.772 N 48.683 W 28 07 2017 Defined Border (1f) Training

67.413 N 49.204 W 10 07 2018 Defined Border (1g) Training

67.546 N 49.533 W 05 06 2019 Defined Border (1h) Training

67.413 N 49.204 W 18 06 2019 Defined Border (1i) Training

67.546 N 49.533 W 13 06 2017 Blurred Border (2a) Training

66.83 N 48.776 W 29 07 2021 Blurred Border (2b) Training

66.811 N 48.539 W 24 07 2022 Blurred Border (2c) Training

66.772 N 48.683 W 01 08 2017 Blurred Border (2d) Training

67.529 N 49.323 W 11 06 2019 Blurred Border (2e) Training

67.546 N 49.533 W 12 06 2020 Blurred Border (2f) Training

67.413 N 49.204 W 10 07 2021 Blurred Border (2g) Training

67.529 N 49.323 W 10 07 2021 Blurred Border (2h) Training

66.83 N 48.776 W 19 07 2022 Blurred Border (2i) Training

67.546 N 49.533 W 26 06 2017 NoClear Border (3a) Training

66.83 N 48.776 W 12 06 2018 NoClear Border (3b) Training

66.772 N 48.683 W 20 06 2019 NoClear Border (3c) Training

67.546 N 49.533 W 20 06 2019 NoClear Border (3d) Training

66.83 N 48.776 W 12 07 2021 NoClear Border (3e) Training

66.83 N 48.776 W 01 08 2021 NoClear Border (3f) Training

66.83 N 48.776 W 24 07 2022 NoClear Border (3g) Training

67.236 N 48.737 W 14 08 2017 NoClear Border (3h) Training

67.413 N 49.204 W 30 07 2021 NoClear Border (3i) Training
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C.1. Training & testing data sets

Table C.2: The geographic coordinates, dates, and data sets for the Seninel-2

testing data set.

Latitude Longitude Date Data Set

67.546 N 49.533 W 03 06 2017 Testing (1a)

67.529 N 49.323 W 26 06 2017 Testing (1b)

67.236 N 48.737 W 12 08 2017 Testing (1c)

66.83 N 48.776 W 02 07 2021 Testing (1d)

66.811 N 48.539 W 02 07 2021 Testing (1e)

67.529 N 49.323 W 14 07 2022 Testing (1f)

67.413 N 49.204 W 17 07 2022 Testing (1g)

67.546 N 49.533 W 18 06 2019 Testing (1h)

66.772 N 48.683 W 30 07 2017 Testing (1i)

67.546 N 49.533 W 02 07 2021 Testing (1j)

67.413 N 49.204 W 02 07 2020 Testing (1k)

67.546 N 49.533 W 10 07 2021 Testing (1l)
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