1	Promotional effect of H ₂ O introduction on the NH ₃ -SCR
2	activity of the gas-phase sulfated CeO ₂ catalyst by
3	organic CS ₂ +COS: Influence of H ₂ O concentration
4	Jiaxing Liu ¹ , Yafei Zhu ¹ , Zhenchang Sun ¹ , Yanping Du ² , Zhibo Xiong ^{1*} , Fei Zhou ³ , Jing
5	Jin ¹ , Qiguo Yang ¹ , Wei Lu ¹
6	1. School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
7	2. School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
8	3. Jiangsu Guoxin Jingjiang Power Co. Ltd., Jingjiang 214500, Jiangsu, China
9	Abstract: Herein, as an indispensable key reactant for the hydrolysis of organic sulfur, H ₂ O was
10	firstly introduced to optimize the NH3-SCR activity of CeO2 by providing the adsorption and
11	reaction spots of catalysis for organic $\mathrm{CS}_2+\mathrm{COS}$ during the low-temperature gas-phase sulfation.
12	The results demonstrate that the introduction of 0.33 vol.% H_2O is beneficial to enhance the
13	interaction between organic CS2+COS and cube fluorite CeO2, which not only increases the
14	concentrations of Ce^{3+} ions, chemisorbed oxygen (O_{β}) and oxygen vacancies on CeO_2 -CS ₂ +COS
15	surface, but also effectively enhances the redox cycle of Ce^{4+}/Ce^{3+} ion pairs and the
16	medium-strong acid sites of catalyst. These all help enhance the promotional effect of organic
17	sulfur low-temperature gas-phase sulfation on the NH3-SCR activity of CeO2 and further
18	improve NO _x reduction over the CeO ₂ -CS ₂ +COS catalyst. However, the introduction of 5.0 vol.%
19	H ₂ O shows a certain inhibitory effect due to the competitive adsorption of excess water and
20	$COS+CS_2$ on the cube fluorite CeO_2 surface, which weakens their interaction during the
21	low-temperature gas-phase sulfation, thereby decreases the promotional effect of low
22	concentration water introduction on the NH3-SCR activity of the CeO2-CS2+COS catalyst.
23	Therefore, the results of this research provide a scientific reference for developing the NH ₃ -SCR
24	CeO ₂ -based catalyst in practical applications.
25	

Keywords: NH₃-SCR, CeO₂, Organic sulfur, Low-temperature gas-phase sulfation, H₂O
concentration

28

29 * Corresponding author: Zhibo Xiong, Tel.: +86 21 55272320, Email addresses: xzb412@usst.edu.cn (Z.Xiong)

30 **1. Introduction**

31 The rapid development of global economy inevitably leads to an intense demand of energy 32 or/and fuel, thus the traditional fossil fuels (coal, oil, and natural gas, etc.) have been extensively 33 utilized in power generation, transportation and industry [1-3]. However, large fine particulate 34 matter (PM 2.5) and greenhouse gases (CO₂, CH₄, etc.) are discharged during the utilization of 35 fossil fuels and 3 million tons of CO₂ can be emitted for a 500MW coal-fired power plants per 36 year, and the concentration of CO_2 in the atmosphere is expected to exceed 500 ppm by 2050 37 [4,5]. In addition, the toxic and harmful gases such as nitrogen oxides (NO_x , mainly NO and NO_2) 38 and sulfur-containing compounds (SO2, COS, CS2, etc.) are also produced during the combustion 39 of fossil fuels, which brings many environmental problems [6,7]. For example, the emission of 40 nitrogen oxides and sulfur compounds are prone to oxidation reactions, causing acid rain, 41 photochemical smog, ozone holes and other environmental disasters [8-10]. Therefore, it is 42 necessary to develop an effective method to reduce nitrogen oxide and sulfur compounds.

43 Compared to inorganic SO₂, organic carbonyl sulfide (COS) and carbon disulfide (CS₂) are 44 linear triatomic molecules similar to carbon dioxide (CO₂), which are less reactive and difficult 45 to be removed [11,12]. At present, catalytic hydrolysis [13,14], hydrogenation [15,16], 46 adsorption and absorption [17-19] have been developed to reduce the emission of organic sulfur. 47 Among them, catalytic hydrolysis has the advantages of low energy consumption, less side 48 reactions and high efficiency, especially when dealing with high levels of organic sulfur. Wang et 49 al. found that the synthesized (Co+Ni)/Al catalyst derived from various hydrotalcite-like 50 compounds presented a good catalytic hydrolysis activity of COS, and the introduction of Ce 51 additive effectively improved its catalytic performance due to the alterations of the structural 52 properties, oxidation properties and surface defect sites [20,21]. At present, the development of 53 the low temperature hydrolysis catalyst to reduce organic sulfur has attracted widespread 54 attention, especially the metal oxide catalysts with a rich pore structure, a good thermal stability, 55 abundant basic sites and a strong anti-poisoning ability. For instance, the introduction of 3DOM 56 structure via the colloidal crystal template method is beneficial to the extraction of the hydrolysis 57 product H₂S from the aluminum-based and titanium-based hydrolysis catalysts, inhibiting the

58 deposition of sulfate species on catalysts surface [22].

59 Generally, the hydrolysis of organic sulfur is an alkali-catalyzed reaction process: H₂O 60 firstly adsorbs and dissociates on metal oxides surface to form -OH groups, and then CS2 61 preferentially adsorbs on the surface basic sites of catalyst and generates thiocarbonate (HSCO₂⁻) 62 or COS intermediates via the interaction of -OH group and M-O pair (M: Ti, Al, Fe, Ce, etc.). 63 Subsequently, the formed COS can further be converted into HSCO2⁻ through the above hydrolysis reaction pathway, and the intermediate of HSCO2⁻ finally decomposes into CO2 and 64 65 H₂S under the action of -OH group and M-O pair to complete the catalytic hydrolysis of organic 66 sulfur [23-27]. Therefore, the surface basic sites of catalyst play a dominant role on the 67 hydrolysis activity of organic sulfur. It should be noted that the active -OH groups on the catalyst 68 surface can serve as an alkaline site for the adsorption and activation of organic sulfur, thus 69 promotes the hydrolysis reaction. A large number of literatures had also investigated the effect of 70 H₂O on the hydrolysis efficiency of organic sulfur. Gao et al. [28] pointed out that the absorbed 71 H₂O could dissociate into generate active -OH groups for the hydrolysis reaction of COS on 72 catalyst surfaces, thus ensured the stable and efficient hydrolysis of organic sulfur. Wang et al. 73 [29] found that the presence of H_2O on the alumina catalyst surface slowed down the 74 deactivation process of organic sulfur hydrolysis by promoting the deposition and adsorption of 75 sulfur and sulfate species at different sites. It is worth noting that the presence of H_2O also has a 76 negative effect on the hydrolysis removal of COS/CS₂. Gu et al. [25] reported that the excessive 77 H₂O on catalyst surface led to a competitive adsorption with COS, which inhibited the hydrolysis 78 reaction and reduced the COS removal efficiency. This phenomenon had also been found in the 79 hydrolysis process of CS_2 [30]. Furthermore, the presence of H_2O could promote the formation 80 of sulfur-containing species (sulfates), which had been considered to be the main reason for the 81 deactivation of organic sulfur hydrolysis for catalysis [26]. Because the accumulation of 82 sulfur-containing species on the catalyst surface led to the blockage of pore structure, and also 83 reduced the basic sites of catalyst due to the formation of surface sulfates, resulting in the 84 deactivation of organic sulfur hydrolysis [23,31]. Therefore, H_2O plays an essential role in the 85 formation of sulfur-containing species during the hydrolysis process of organic sulfur.

86 Owing to the unique 4f electronic structure, CeO₂ presents an excellent oxygen storage 87 capacity (OSC) and redox ability [32], which has been used as the main active components or

88 doping additives in the selective catalytic reduction of NO_x with NH₃ (NH₃-SCR). However, pure 89 CeO₂ exhibits bad NH₃-SCR performance due to the poor surface acidity and NH₃ peroxidation 90 at high temperatures, which limits its application in engineering. Interestingly, the formed 91 surface sulfates during the hydrolysis of organic sulfur might retain Lewis acid sites and enhance 92 Brønsted acid sites of CeO₂, thus contributes to the adsorption and activation of NH₃ on it 93 surface [33,34]. Actually, the formed sulfate species can serve as the reducible species to 94 promote redox reactions and improve the NH₃-SCR activity of cerium-based catalysts [35,36]. 95 Therefore, the sulfation treatment, including the gas-phase sulfation of the traditional SO_2 and 96 the liquid-phase sulfation of $H_2SO_4/(NH_4)_2SO_4/CS(NH_2)_2$, have been regarded as the effective 97 strategy to improve the de-nitrification activity of cerium-based catalysts mainly via optimizing 98 the surface acidity [37-42]. Our previous study [33] showed that the gas-phased sulfation of 99 organic sulfur (CS₂ or COS) at 300 °C presented a better improvement on the NH₃-SCR activity 100 of CeO_2 than the traditional SO₂. Recently, we have found that the gas-phased sulfation of CS_2 101 or/and COS under the low-temperature hydrolysis conditions can further improve the catalytic 102 performance of NO_x reduction over the CeO₂ catalyst. The above references indicated that the 103 presence of H₂O contributed to regulating the formation of sulfur-containing species on the 104 catalyst surface during the low-temperature hydrolysis process, thus might affect the surface 105 acidity of the used cerium-based catalyst, which had been widely proven to improve the 106 NH₃-SCR activity of CeO₂. However, the promotional effect of low-temperature hydrolysis of 107 organic CS₂ or/and COS on the NH₃-SCR activity of CeO₂ catalyst has rarely been studied, 108 especially under the presence of H₂O.

109 Furthermore, H₂O widely co-present with organic sulfur in blast furnace gas, which can 110 affect the hydrolysis of CS2 or/and COS over catalysts. Meanwhile, cerium oxide had been 111 verified to improve the anti-oxygen poisoning of catalyst for the hydrolysis of organic sulfur by 112 avoiding the sulfation of active species due to its better adsorption of sulfates [21,24]. Therefore, 113 as an indispensable key reactant for the hydrolysis of organic sulfur, H₂O is proposed for the first 114 time to improve the NH₃-SCR catalytic activity of CeO₂ during the low-temperature gas-phase 115 sulfation of organic CS_2 and COS, which is more conducive to the synthesis of catalysts with 116 excellent performance in practical engineering. The results demonstrate that the introduction of 117 H₂O further enhances the promotional effect of CS₂+COS gas-phase sulfation on the NH₃-SCR

activity of CeO₂ catalyst at the simulated low-temperature for the hydrolysis of organic sulfur.

- 119 Furthermore, a series of characterization techniques were employed to investigate the sulfuric
- 120 acid optimized strategy of the "CS₂+COS+H₂O" gas-phase sulfation on the physicochemical
- 121 properties, reduction properties, sulfate species, and NH₃-SCR performance of CeO₂.

122 **2. Experimental**

123 **2.1. Catalyst preparation**

124 Pure CeO_2 was synthesized via a one-pot hydrothermal method [33,43], and the used 125 cerium nitrate (Ce(NO₃)₃·6H₂O, AR), ammonium bicarbonate (NH₄HCO₃, AR) and hydrogen 126 peroxide (H2O2, AR) were purchased from China Pharmaceutical Group Chemical Reagents Co., 127 Ltd. According to the preparation of CeO_2 in Scheme 1, 0.005 mol $Ce(NO_3)_3 \cdot 6H_2O$ was firstly 128 dissolved in deionized water and stirred violently for 2 hours until a clear and transparent 129 solution was obtained. Next, a certain amount of ammonium bicarbonate was added into the 130 mixed solution with a milky white suspension formed. After being stirred for 30 minutes, 9 mL 131 of H_2O_2 (10 mol/L) was dropped and the milky white solution quickly turned into orange. Finally, 132 the mixed solution was poured into a 100 mL of polytetrafluoroethylene and transferred to 133 stainless steel autoclave. After being hydrothermally heated at 200 °C for 24 hours, the resulting 134 precipitate was washed with deionized water and anhydrous ethanol until the pH reached 7. The 135 obtained precipitate was dried at 80 °C for 12 hours and calcined at 400 °C for 5 hours in a 136 temperature-programmed muffle furnace to obtain pure CeO₂ catalyst.

138

Scheme 1. Schematic diagram for the preparation of pure CeO₂ by the one-pot hydrothermal method.

The gas phase sulfation of CeO_2 was carried out in a tube furnace according to the following sulfation conditions (Scheme 2): the total gas flow rate of the simulated COS and CS_2 (the molar ratio of 7:3) is 500 mL/min by ensuring the concentration of S element being 200 ppm [33]. A certain concentration of H₂O was introduced into the vulcanization test bench via an injection pump and N₂ was used as the equilibrium gas. The gas-phase sulfation was carried out

- 144 at 50 °C for 3 hours. For convenience, the pretreated samples were labeled as CeO_2-CS_2+COS 145 without water, $CeO_2-CS_2+COS-H_2O(x)$, where x represents the concentration of water (x = 146 0.33%, 1.5%, 5.0%).
- 147

148

149

Scheme 2. The low temperature gas-phase sulfation of CeO₂ catalyst by organic sulfur.

150 **2.2. Catalytic activity test**

151 The fixed bed reactor was used to test the NH3-SCR catalytic performance of catalysts. The 152 dosage of sample and the total gas flow rate are 0.45 g (40~60 mesh) and 1500 mL/min with the 153 gas hourly space velocity (GHSV) being 200,000 mL/(g·h). The flue gas reaction conditions are 154 as follows: 600 ppm NH₃, 600 ppm NO, 5 vol.% O₂ and 99.999 vol.% N₂ used as the equilibrium 155 gases. The concentration of inlet and outlet flue gas (O_2, NO_x) was continuously monitored by 156 T-350 flue gas analyzer (Testo, Germany). Then, the NO_x conversion rate (η) is calculated according to the following formula: $\eta = (1 - [NO_x]_{out} / [NO_x]_{in}) \times 100\%$, where $[NO_x]_{in}$ and $[NO_x]_{out}$ 157 158 represent the inlet and outlet concentrations of gaseous NO_x (NO and NO₂), respectively.

159

2.3. Catalyst characterizations

160 The surface morphology and structure of catalyst were observed through scanning electron 161 microscopy (SEM) using the ZEISS SIGMA HD instrument. The N₂ adsorption-desorption 162 curves were measured at -196 °C using a powder technology ASAP 2460 system instrument. The 163 specific surface area was calculated through the Brunauer-Emmett-Teller (BET) method, while 164 the Barrett Joyner-Halenda (BJH) method was used to determine the pore volume and pore size 165 distribution. X-ray diffraction (XRD) patterns were obtained using Cu Ka radiation on a 6100 X-ray diffractometer (Rigaku, Japan) at a scanning rate of 5 °/min from $2\theta=10^{\circ}$ to 80 ° and the 166 composition of the diffraction peaks was analyzed using MDI Jade 6.0. Raman spectra of 167 168 samples were collected on a Raman spectrometer (InVia Reflex, Renishaw), where a laser with a 169 wavelength of 532 nm was used as the excitation source. Fourier transform infrared (FTIR) 170 spectra ranging from 400 to 4000 cm⁻¹ were recorded using a Nicolet iS5 FTIR spectrometer, 171 with a resolution of approximately 4 cm^{-1} .

The X-ray photoelectron spectrometer (XPS, Thermo Fisher Scientific Escalab 250 Xi)

173 utilizes Al K α radiation with an excitation energy of 1486.7 eV. The photoelectron spectroscopy 174 was calibrated with the C1s signal with a binding energy of 284.8 eV and the spectrum was fitted 175 with the Gaussian-Lorentz function using XPSPEAK software. H2-temperature programmed 176 reduction (H₂-TPR) and NH₃-temperature programmed desorption (NH₃-TPD) analyses were 177 performed using the AutoChem II 2920 instrument from Micromeritics, along with a thermal 178 conductivity detector (TCD). In the H₂-TPR detection process, 100 mg samples were pretreated 179 in an Ar atmosphere at 300 °C for 30 minutes, and then cooled to room temperature. The TPR 180 curves were obtained using a heating rate of 10 °C/min, ranging from 50 to 900 °C in a 10% 181 H₂/Ar flow. For NH₃-TPD analysis, 100 mg samples were subjected to heating at 500°C for an 182 hour in the presence of Ar flow and then cooled to 35°C. A continuous flow of 10% NH₃/He (50 183 mL/min) was directed through the sample tube for a purge time of 2 hours and the desorption of 184 NH₃ species was carried out in a helium flow to obtained the data at temperatures ranging from

185 35 to 900 °C. Thermogravimetric analysis (TGA) was conducted using PerkinElmer STA6000 in 186 an α -Al₂O₃ crucible under a nitrogen atmosphere. Thermogravimetric curves in the temperature

- 187 range of 30-900 °C were recorded with a heating rate of 10 °C/min to investigate the thermal
- 188 properties and thermal decomposition of the sulfated samples.
- 189 **3. Results and discussion**

172

190 **3.1. Evaluation of catalytic activity**

191

197 The influence of H₂O introduction on the NH₃-SCR activity of CeO₂-CS₂+COS catalyst was investigated during the gas-phase sulfation at 50 °C, and the results are given in Fig. 1(A). It can 198 199 be found that the gas-phase sulfation of COS+CS2 at 50 °C effectively enhances the NH3-SCR 200 activity of CeO₂, and the highest NO_x conversion of catalyst is increased from 31% to higher than 90% at the GHSV of 200,000 mL/($g\cdot h$). The main reason for the poor catalytic performance 201 202 of CeO_2 might be attributed to the low concentrations of Ce^{3+} ions, active oxygen and acid sites on its surface [44,45]. And the low-temperature gas-phase sulfation of COS and CS₂ optimizes 203 204 these defects and improves the surface concentrations of Ce^{3+} ions, active oxygen and acid sites 205 of CeO₂, thereby increases its NH₃-SCR activity effectively. This promotional effect of organic 206 sulfur gas-phase sulfation had also been verified by our previous research [33], and COS or CS_2 207 presented a better enhancement on the NH₃-SCR activity of CeO₂ than the traditional inorganic 208 SO₂ when the gas-phase sulfation was carried out at 300 °C. Interestingly, as depicted in Fig. 209 1(A), the introduction of H₂O during the low-temperature gas-phase sulfation of COS and CS₂

can further increase the NH₃-SCR activity of the CeO₂+CS₂+COS catalyst, and 210 211 $CeO_2-CS_2+COS-H_2O(0.33\%)$ presents good catalytic performance with a 100% NO_x reduction 212 obtained at the temperature range of $250 \sim 400$ °C. However, the enhancement of water 213 concentrations from 0.33 vol.% to 5.0 vol.% decreases this promotional effect. In order to 214 validate the disadvantageous effect of high H₂O concentration during the low-temperature 215 gas-phase sulfation, 1.5 vol.% H₂O had also been introduced and the NH₃-SCR activity of 216 CeO₂-CS₂+COS-H₂O(1.5%) is between the values of CeO₂-CS₂+COS-H₂O(0.33%) and 217 CeO₂-CS₂+COS-H₂O(5.0%). This implies that the introduction of H₂O during the 218 low-temperature gas-phase sulfation can optimize the catalytic performance of CeO₂+CS₂+COS 219 catalyst, but large concentration of water decreases this promotional effect. The previous 220 researches about the sulfated CeO₂ and other metals catalyst for NH₃-SCR had been summarized 221 in Table S1, and it can be found that compared to other sulfated catalysts in recent years, 222 CeO₂-CS₂+COS-H₂O(0.33%) exhibits excellent low-temperature performance and a wide temperature window even at a high GHSV of 200,000 mL/(g·h). Meanwhile, the influence of 223 224 CS₂/COS molar ratio (7:3, 5:5, 3:7) on the NH₃-SCR activity of CeO₂-CS₂+COS-H₂O(0.33%) 225 catalyst was also examined, as shown in Fig. S1. Under the CS₂/COS molar ratios of 7:3 and 3:7, 226 the sulfated CeO₂-CS₂+COS-H₂O(0.33%) catalysts present similar denitrification performance, 227 which are better than that of the catalyst treated at the CS_2/COS molar ratio of 5:5. Meanwhile, it 228 is generally believed that the organic sulfur in blast furnace gas is mainly composed of COS and 229 the molar ratio of $COS/(COS+CS_2)$ is about 70% [24]. Therefore, 7:3 of COS/CS_2 molar ratios 230 was chosen for the subsequent research and characterization.

231 H₂O and SO₂ that commonly present in the denitrification process and potentially influence 232 the NH₃-SCR activity of catalyst, therefore it is necessary to study the anti-poisoning of H_2O 233 or/and SO₂ for the CeO₂-CS₂+COS-H₂O(0.33%) catalyst. As shown in Fig. 1(B), when 100 ppm 234 SO_2 is introduced into the simulated flue gas, the NO_x reduction of catalyst slowly decreases to 235 93% and then remains stable, and $CeO_2-CS_2+COS-H_2O(0.33\%)$ exhibits excellent resistance to 236 SO_2 poisoning. When further introducing 10.0 vol.% H₂O, the NO_x conversion rate of 237 CeO₂-CS₂+COS-H₂O(0.33%) rapidly decreases to 53%, which might be due to the competitive 238 adsorption of H_2O and the deposition of sulfate species [39,40]. After removing H_2O , the activity 239 is promptly recovered to 85%, which indicates that the catalyst deactivation caused by H_2O is

240 reversible. After further stopping the introduction of SO₂, the activity is not further recovered, 241 indicating an irreversible deactivation of catalyst caused by the deposition of sulfate species. In 242 the meantime, the long-term stability of the NH₃-SCR activity over the 243 CeO₂-CS₂+COS-H₂O(0.33%) catalyst was also investigated and the results are given in Fig. 244 1(C). It is found that CeO₂-CS₂+COS-H₂O(0.33%) presents a good stability of the NH₃-SCR 245 activity, and more than 90% of NO_x reduction can be maintained after a 60 h test, although its NO_x reduction decreases from 100% to about 95% at 25~27 h. 246

247 Previous studies had shown that an appropriate amount of H₂O could promote the hydrolysis and conversion of organic sulfur (CS2 or/and COS) via optimizing the formation of 248 249 active -OH groups on catalysts surface, but excessive H₂O inhibited the catalytic hydrolysis due 250 to the competitive adsorption and the introduced concentration of H₂O could regulate the 251 formation of sulfur-containing species on the catalyst surface during the low-temperature 252 hydrolysis of CS₂ or/and COS [29,46]. Meanwhile, the formed sulfur-containing species, mainly sulfate, were proven to optimize the concentrations of Ce³⁺ ions, active oxygen and acid sites on 253 254 CeO₂ catalyst surface, which are closely related to its NH₃-SCR activity. Therefore, 255 CeO₂-CS₂+COS-H₂O(0.33%) and CeO₂-CS₂+COS-H₂O(5.0%) were chosen to be characterized 256 to investigate the influence of H₂O introduction on the physical-chemical properties of 257 CeO₂-CS₂+COS catalyst in the following sections.

258 **3.2. Morphological analysis**

259 Scanning electron microscopy (SEM) was applied to investigate the influence of H₂O 260 introduction on the morphology of CeO₂ catalyst during the low-temperature gas-phase sulfation 261 of organic CS₂ and COS, and the particle size distributions were also calculated. According to the 262 results in Fig. 2 and 3. CeO₂ presents an irregular morphology composed of dispersed 263 nanoparticles and exhibits a maximum particle size of 2.33 µm. Meanwhile, the low-temperature 264 gas-phase sulfation of CS_2 and COS decreases the crystallinity of nanoparticles on CeO_2 surface 265 and inhibits the occurrence of agglomeration, although CeO2-CS2+COS also exhibits a 266 disordered granular morphology. Furthermore, the introduction of H₂O seems to further reduce 267 the agglomeration of surface nanoparticles and causes the particle size to shift towards smaller 268 direction. In particular, the introduction of 5.0 vol.% H₂O significantly enhances the dispersion 269 of CeO₂ nanoparticles and reduces the average particle size to 0.281 µm. Therefore, the 270 gas-phase sulfation of organic sulfur at 50 °C decreases the crystallinity of nanoparticles on CeO₂ 271 surface due to the formation of surface sulfur-containing species, and the introduction of H₂O 272 further improves the dispersion of nanoparticles on catalysts surface. Furthermore, the 273 nanoparticles on CeO₂-CS₂+COS-H₂O(5.0%) surface are more evenly dispersed (Fig. 2(D), Fig. 274 3(D), Fig. S2(D)), which might be due to the inhibition of excess H₂O on the aggregation of 275 sulfate species during the low-temperature gas-phase sulfation of CS₂ and COS.

276 277

Fig. 2. SEM images of (A) CeO₂, (B) CeO₂-CS₂+COS, (C) CeO₂-CS₂+COS-H₂O(0.33%) and (D)

278

Fig. 3. Particle size distributions of (A) CeO₂, (B) CeO₂-CS₂+COS, (C) CeO₂-CS₂+COS-H₂O(0.33%) and (D)

281

279

CeO₂-CS₂+COS-H₂O(5.0%) catalysts.

282 **3.3. Texture and structure characterization**

Fig. 4. The N₂ adsorption-desorption isotherms (A) and the pore size distributions (B) of the as-prepared

catalysts.

285

286 Herein, N₂ adsorption-desorption, XRD and Raman were carried out to reveal the influence 287 of H₂O introduction on the texture and structural properties of the sulfated CeO₂ catalysts by CS₂ and COS at 50 °C. As shown in Fig. 4(A), the adsorption-desorption isotherms of CeO₂ and 288 289 CeO₂-CS₂+COS catalysts belong to type IV with the hysteresis loop of H3 type in the relative 290 pressure range of $p/p^{\circ} = 0.05 \sim 1.0$ according to the IUPAC classification, indicating the presence 291 of mesoporous structures composed of non-rigid aggregates of nanoparticles [47,48]. In addition, 292 the rapid increase in nitrogen adsorption capacity at the p/p° of 0.8 demonstrates the presence of 293 a macroporous structure [22,49]. Thus, both CeO₂ and CeO₂-CS₂+COS catalysts have 294 mesoporous and macroporous hierarchical porous structures, which is confirmed by the BJH 295 desorption pore size distribution calculated from the desorption isotherm of N_2 . From Fig. 4(B), 296 it can be observed that CeO₂ has a narrow and sharp single peak in the range of 2-10 nm 297 belonging to the typical mesoporous structure, and the gas-phase sulfation of CS_2 and COS at 50 298 °C widens the pore size distribution of CeO₂. However, the introduction of H₂O during the 299 gas-phase sulfation makes the low-pressure closure point of nitrogen adsorption and desorption for CeO₂-CS₂+COS shift to the right, and both CeO₂-CS₂+COS-H₂O(0.33%) and 300 301 CeO₂-CS₂+COS-H₂O(5.0%) present more concentrated pore size distribution than CeO₂ and 302 CeO₂-CS₂+COS although they also exhibit the mesoporous and macroporous hierarchical porous 303 structures. This indicates that the presence of water might affect the sulfation degree of 304 nanoparticles and the formation of sulfur-containing species on CeO2-CS2+COS surface during 305 the gas-phase sulfation of CS_2 and COS at 50 °C, which are in accordance with the results of the

306 morphology. Previous studies had pointed out that an abundance of mesopores could provide 307 more active sites and internal surface area for the NH₃-SCR reaction over P-W/CeO₂, and the 308 hierarchical porous structure helped to reduce the mass transfer resistance and facilitated the 309 contact between the reactant gas molecules and the active sites on the inner surface of catalyst 310 [50,51]. Therefore, CeO₂-CS₂+COS-H₂O(0.33%) and CeO₂-CS₂+COS-H₂O(5.0%) exhibit 311 slightly worse mesoporous and macroporous hierarchical porous structures than CeO₂ and 312 CeO₂-CS₂+COS. In addition, they have smaller specific surface areas (Table 1). These all 313 demonstrate that the introduction of H₂O affect the sulfation degree of nanoparticles and the 314 accumulation of the formed sulfur-containing species during the gas-phase sulfation of CS2 and COS at 50 °C, but the pore structure and specific surface area might not be the determining factor 315 316 for the NH₃-SCR activity of the sulfated CeO₂ catalysts by organic sulfur at low-temperatures.

317

Table 1 The physical structural parameters of the as-prepared catalysts

	Courter	BET surface area ^a	Pore volume ^b	Pore diameter ^c	
	Samples	(m^{2}/g)	(cm^{3}/g)	(nm)	
	CeO ₂	119.62	0.199	6.44	
	CeO ₂ -CS ₂ +COS	127.86	0.280	8.34	
	CeO ₂ -CS ₂ +COS-H ₂ O(0.33%)	113.31	0.155	6.43	
_	CeO ₂ -CS ₂ +COS-H ₂ O(5.0%)	107.25	0.156	6.71	

318 ^a BET surface area

319 ^b BJH desorption pore volume

320 ° BJH desorption pore diameter

321 According to the X-ray diffraction (XRD) patterns in Fig. 5 and Fig. S3, pure CeO₂ presents the typical lattice diffraction peaks attributed to cubic fluorite CeO₂ (PDF#34-0394) [40,52], and 322 323 the low-temperature gas-phase sulfation of CS₂ and COS effectively reduces the intensity of the 324 diffraction peaks ascribed to cubic fluorite CeO₂. Furthermore, a broad peak at the low scanning angle range of 15 \sim 26 ° appears over the CeO₂-CS₂+COS catalyst, which is attributed to the 325 sulfur elements or/and the sulfur compounds dominated by hydrated metal sulfates 326 (PDF#37-0762; PDF#24-1250; PDF#24-1216). Interestingly, the introduction of 0.33 vol.% H₂O 327 might slightly suppress the sulfation of cubic fluorite CeO2 by CS2 and COS at 50 °C, but 328

329 CeO₂-CS₂+COS-H₂O(0.33%) still presents a similar broad peak of sulfur elements or/and 330 compounds to CeO₂-CS₂+COS. However, the enhancement of H₂O concentration from 0.33 vol.% 331 to 5.0 vol.% increases the intensity of this peak, indicating that higher crystallinity sulfur 332 elements or/and compounds are formed in CeO₂-CS₂+COS-H₂O(5.0%). Mu et al. [53] pointed out that the hydrolysis of COS led to a new XRD pattern peak emerging at $2\theta = 24.2$ ° in 333 334 10Cu-Co₃O₄ catalyst, which was attributed to elemental sulfur. This phenomenon was also found 335 in the CeO₂-R catalyst after the catalytic selective oxidation of H₂S [54]. In addition, the 336 hydrated metal sulfates could gradually become amorphous during the slow heating process, 337 which further thermally decomposed into the anhydrous sulfate species such as Ce₂(SO₄)₃ and Ce(SO₄)₂ [55]. Therefore, the low-temperature gas-phase sulfation of organic CS₂+COS 338 339 contributes to the formation of sulfur element or/and compounds in the CeO₂ catalyst under the 340 condition of low concentration water, but the enhancement of H₂O concentration from 0.33 vol.% 341 to 5.0 vol.% further improves the crystallinity of the formed sulfur-containing species.

342

catalysts.

344

Fig. 6 gives the Raman spectra of CeO₂, CeO₂-CS₂+COS, CeO₂-CS₂+COS-H₂O(0.33%) and CeO₂-CS₂+COS-H₂O(5.0%) catalysts, and it can be found that three peaks are detected at 464 cm⁻¹, 600 cm⁻¹ and 1180 cm⁻¹ for pure CeO₂ catalyst, respectively. The first prominent peak is related to the symmetric stretching vibration of Ce-O-Ce, which is assigned to the F_{2g} characteristic vibration of cubic fluorite CeO₂, while the last two vibration peaks are attributed to 350 the surface oxygen defects [56,57]. It is evident that the low-temperature gas-phase sulfation of 351 CS2+COS makes the F2g characteristic peak of CeO2 shift to a lower wave number via altering its 352 Ce-O-Ce structure [58-60], and the introduction of H₂O further improves the FWHM (full width 353 at half-maximum) and peak intensity of F2g vibration peak significantly. This indicates that the 354 introduction of H₂O strengthens the influence of CS₂+COS low-temperature gas-phase sulfation 355 on refining the grain size of nanoparticles on CeO₂ surface, which is in accordance with the 356 results of SEM and XRD. Jang et al. [61] found that the introduction of SiO₂ refined the particle size of CeO₂ with a wider FWHM of the F_{2g} vibration peak detected for the core/shell CeO₂-SiO₂. 357 358 Furthermore, the relative concentration of oxygen vacancies on the catalyst surfaces could be 359 obtained by calculating the integral area ratio of the peaks at 600 cm⁻¹+1180 cm⁻¹ and the peak of F2g characteristic vibration [62]. As shown in Fig. S4, the introduction of H2O improves the 360 361 promotional effect of organic CS₂+COS low-temperature gas-phase sulfation on the relative 362 concentration of oxygen vacancies on CeO₂ surface, but high concentration H₂O decreases this 363 promotional effect. And the calculated relative concentrations of oxygen vacancies are as follow: 364 $CeO_2-CS_2+COS-H_2O(0.33\%) > CeO_2-CS_2+COS-H_2O(5.0\%) > CeO_2-CS_2+COS > CeO_2$, which 365 is consistent with the NH₃-SCR activity of catalysts. Therefore, the introduction of H₂O further helps to the generation of oxygen vacancies during the gas-phase sulfation process of organic 366 367 CS₂+COS at 50 °C, thus accelerating the conversion frequency between the chemisorbed oxygen and lattice oxygen via the Ce^{3+}/Ce^{4+} ion pair, which might be beneficial to promote the oxidation 368 of NO to NO₂ and improves the NO_x conversion through the 'fast SCR' reaction [63-65]. 369

370371

Fig. 6. Raman spectra of the as-prepared CeO₂ catalysts.

372 The FTIR spectra of CeO₂-CS₂+COS, CeO₂-CS₂+COS-H₂O(0.33%), and 373 CeO₂-CS₂+COS-H₂O(5.0%) catalysts are given in Fig. 7. The vibration peaks located at 1627 cm⁻¹ and 3417 cm⁻¹ are attributed to the bending vibration and stretching vibration of -OH group, 374 375 respectively [66]. When the content H_2O increases to 5.0% during the low-temperature gas-phase 376 sulfation process, a new weak vibration peak attributed to H₂O appears at 847 cm⁻¹ in CeO₂-CS₂+COS-H₂O(5.0%) [67]. Meanwhile, the formation of sulfate species during the 377 378 low-temperature gas-phase sulfation results in the detection of multiple vibrational bands at 900~1300 cm⁻¹. Among them, the vibration peaks at 979 cm⁻¹ and 1043 cm⁻¹ are attributed to the 379 380 characteristics of inorganic chelated bidentate sulfates, caused by the S-O and S=O bond vibrations of surface sulfate species, while the bands at 1116 and 1190 cm⁻¹ are caused by the 381 382 formed bulk sulfates on catalysts surface [65,68]. However, the enhancement of H₂O content 383 from 0.33 vol.% to 5.0 vol.% weakens the intensity of the vibrational band caused by sulfate 384 species, which is reasonable due to the enhanced interaction between the groups of -OH and 385 SO₄²⁻ [69].

Fig. 7. FTIR spectra of the sulfated CeO₂ catalysts by COS+CS₂ at 50 °C.

388 3.4. Surface active components analysis

389 In this section, XPS (X-ray Photoelectron Spectroscopy) technique was employed to 390 investigate the influence of H₂O introduction on the dispersion of elements on catalysts surface. 391 As shown in Fig. 8(A), the Ce 3d XPS spectra could be deconvoluted into eight peaks via the Lorentz/Gaussian method. Among them, u' and v' are attributed to Ce^{3+} species ($3d^{10} 4f^{1}$), and the 392 393 other peaks are ascribed to the Ce^{4+} electronic state $(3d^{10} 4f^0)$ [49]. In addition, the 394 low-temperature gas-phase sulfation of organic CS₂+COS increases the molar ratio of Ce³⁺/(Ce³⁺+Ce⁴⁺) on CeO₂ surface and makes the Ce 3d spectra of catalyst shift to a higher 395 396 binding energy direction by approximately 0.6 eV, indicating the electron-induced effect between 397 Ce, O and S species, which alters the electron cloud density around Ce [70,71]. Interestingly, the introduction of H₂O improves this electron-induced effect and further increases the molar ratio of 398 399 $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ on CeO_2-CS_2+COS surface. However, as shown in Table 2, the enhancement 400 of H₂O concentration from 0.33 vol.% to 5.0 vol.% reduces this promotional effect and makes 401 the surface $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ molar ratio of $CeO_2-CS_2+COS-H_2O(0.33\%)$ decrease from 36.42 % 402 to 33.15%. Generally, the generation of oxygen vacancies is associated with the electron transfer of Ce⁴⁺/Ce³⁺ ion pair, and the presence of Ce³⁺ can aggravate the charge imbalance and promote 403 the redox cycle of Ce^{4+}/Ce^{3+} , thus heightens the activation of oxygen on the catalysts surfaces 404 405 and results in the generation of more oxygen vacancies [72,73]. Therefore, the further enhancement of H₂O introduction on the surface Ce³⁺/(Ce³⁺+Ce⁴⁺) molar ratio of 406

407 CeO₂-CS₂+COS might be an important reason for increasing the NH₃-SCR activity of catalyst. 408 However, the introduction of higher concentration H₂O (5.0 vol.%) results in a stronger 409 competitive adsorption between H₂O and organic CS₂+COS, which might affect the conversion 410 of the adsorbed CS₂+COS on cubic fluorite CeO₂ surface, thus decreases the Ce³⁺/(Ce³⁺+Ce⁴⁺) 411 molar ratio of CeO₂-CS₂+COS-H₂O(0.33%).

412 As shown in Fig. 8(B), the O 1s spectrum of pure CeO_2 can be fitted into three peaks, which 413 belongs to the lattice oxygen existing in cubic fluorite CeO_2 (O_{α} , 529.1 eV), the chemisorbed 414 oxygen (O_{β} , 530.0 eV) and the lattice oxygen bonded with Ce₂O₃ (O_y, 531.8 eV), respectively 415 [74]. Meanwhile, the low-temperature gas-phase sulfation of CS2+COS leads the O 1s XPS 416 binding energy of CeO₂ shifting to a higher value, while only O_{α} and O_{β} are detected for the 417 sulfated CeO₂ catalysts due to the formation of Ce-O-S bonds [75]. Interestingly, the introduction 418 of H₂O further increases the binding energy of O 1s of CeO₂-CS₂+COS catalyst. Furthermore, as 419 shown in Table 2, the presence of H₂O during the low-temperature gas-phase sulfation of 420 CS_2+COS improves the concentration of chemical adsorption oxygen (O_β) on catalyst surface, 421 but excessive water leads to a decrease of this value. The regular pattern of H₂O introduction on the surface O_{β} concentration is in accordance with that of $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ molar ratio. A large 422 423 number of studies had demonstrated that the surface chemisorbed oxygen had a higher mobility 424 than the lattice oxygen, which was easy to be activated and played an important role in the 425 oxidation reaction. Consequently, higher surface molar ratio of $O_{\beta}/(O_{\alpha}+O_{\beta}+O_{\gamma})$ are generally 426 regarded to be beneficial to improve the oxidization of NO to NO2 and the 'fast SCR' process 427 $(NO + NO_2 + 2NH_3 = 2N_2 + 3H_2O)$ [76,77].

428 From Fig. 8(C), it can be found that the S 2p spectra of the sulfated CeO_2 catalysts can be 429 fitted into three peaks located at 163.8 eV, 168.3 eV and 169.3 eV (± 0.3 eV), and the last two 430 peaks belong to S^{6+} species. Meanwhile, the peak located about 163.8 eV is attributed to sulfur, 431 which is different from the formation of sulfate species (SO_4^{2-} , etc.) in CeO₂ catalyst during the 432 gas-phase sulfation of inorganic SO₂ [54,78]. However, the introduction of H₂O decreases the 433 intensity of S 2p spectra of CeO₂-CS₂+COS, thereby reduces the concentrations of the formed S⁶⁺ and S species on catalyst surface. As shown in Table 2, the introduction of H₂O during the 434 435 low-temperature gas-phase sulfation of CS2+COS helps to increase the surface molar ratio $S^{6+}/(S^{6+}+S)$, and the enhancement of H_2O concentration from 0.33 vol.% to 5.0 vol.% not only 436

437 increases the formed surface total concentration of S⁶⁺ and S, but also further improves the molar ratio S⁶⁺/(S⁶⁺+S) on CeO₂-CS₂+COS-H₂O(0.33%) surface. Therefore, it can be included that 438 439 lower concentration of sulfur-containing species might be helpful to the NH3-SCR activity of the

440 sulfated CeO₂ catalyst.

Fig. 8. (A) Ce 3d, (B) O 1s, and (C) S 2p XPS spectra of the as-prepared catalyst.

	Atomic			Atomic ratios (%)			
Catalysts	concentrations (%)						
	Ce	0	S^*	Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)	$O_{\beta}/(O_{\alpha}+O_{\beta}+O_{\gamma})$	S ⁶⁺ /(S ⁶⁺ +S)	
CeO ₂	36.16	63.84	-	31.34	44.16	-	
CeO ₂ -CS ₂ +COS	32.15	63.24	4.61	31.75	44.69	80.60	
CeO ₂ -CS ₂ +COS-H ₂ O(0.33%)	32.73	63.94	3.33	36.42	46.79	82.20	
CeO ₂ -CS ₂ +COS-H ₂ O(5.0%)	33.25	62.73	4.02	33.15	45.19	85.98	

* The sum of S and S⁶⁺.

444

445 **3.5. Thermogravimetric analysis**

446 Thermogravimetric analysis was done to further investigate the influence of H₂O 447 introduction on the formed sulfur-containing species over CeO₂-CS₂+COS-H₂O catalyst. The 448 results are shown in Fig. 9. It can be clearly seen that there exists an apparent weight-loss for the 449 TG-DTG curves as the temperature increases, which can be divided into three parts. The weight 450 loss peak observed in the range of 30-200 °C is attributed to the desorption of physically 451 absorbed water and dehydroxylation [52,72], and the desorbed values in this stage are 2.14%, 2.44% 452 and 2.37% for CeO_2 - CS_2 +COS, $CeO_2-CS_2+COS-H_2O(0.33\%)$ and 453 CeO₂-CS₂+COS-H₂O(5.0%), respectively. Consequently, the introduction of H₂O slightly 454 increases the content of physically adsorbed water and hydroxyl groups in the sulfated CeO₂ 455 catalysts by organic CS₂+COS at 50 °C, which might be beneficial to the NH₃-SCR activity of catalyst. Guo et al. [79] claimed that SO42-, O22- and hydroxyl-like (-OH) species could function 456 457 as Brønsted acid sites to enhance the adsorption of NH_3 and consequently improved the NO_x 458 removal efficiency of catalyst. Peng et al. [80] also mentioned that sulfate species promoted the 459 ionization of water adsorbed on the catalyst surfaces, resulting in the formation of more hydroxyl 460 group and more Brønsted acid sites. In addition, the XRD and XPS analyses validate the 461 formation of sulfur element in the sulfated CeO₂-CS₂+COS, CeO₂-CS₂+COS-H₂O(0.33%) and 462 CeO₂-CS₂+COS-H₂O(5.0%) catalysts. Thus, the slight weight losses observed between 200-600 °C might be ascribed to the emission of SO₂ due to the oxidation reaction of sulfur and 463 464 oxygen-containing functional groups in this temperature range. Finally, the third stage of weight 465 losses began at 650 °C is attributed to the thermal decomposition of sulfate species [37,38], and approximately 5.44 %, 4.07 % and 3.07 % were calculated for CeO₂-CS₂+COS, 466 467 CeO₂-CS₂+COS-H₂O(0.33%) and CeO₂-CS₂+COS-H₂O(5.0%) catalysts, respectively. Therefore, 468 the introduction of H_2O decreases the formed amount of sulfate species in the sulfated CeO_2 469 catalysts, although they had been reported to adsorb NH₃ as a stable acidic site and presented a 470 strong thermal stability. And it can be inferred that there exists a competitive adsorption of H₂O 471 and CS_2+COS on cubic fluorite CeO_2 surface, which reduces the formation of sulfate species, but 472 the hydroxyl groups dissociated by H_2O enhances the interaction between organic CS_2+COS and 473 cubic fluorite CeO₂, which affects the physical and chemical properties of catalyst. Furthermore, 474 the appropriate amount of -OH group as the additives for Brønsted acid sites enhances the 475 adsorption capacity of NH₃ [46]. However, excess water significantly inhibits the chemical 476 adsorption of CS₂ and COS on catalyst surfaces due to a stronger competitive adsorption among 477 them and depresses the hydrolysis of organic sulfur, thus further reduces the production of 478 sulfate species in CeO₂ catalyst. This demonstrates that the positive impact of hydroxyl groups 479 might be outweighed by the negative effect of the competitive adsorption of H₂O and COS/CS₂ 480 under the condition of excess water [26,81], although the enhancement of H₂O concentration from 0.33 vol.% to 5.0 vol.% further improves the molar ratio of $S^{6+}/(S^{6+}+S)$ on CeO₂ surface 481 482 calculated from the results of XPS spectra.

484 Fig. 9. The TG-DTG curves of CeO₂-CS₂+COS, CeO₂-CS₂+COS-H₂O(0.33%) and CeO₂-CS₂+COS-H₂O(5.0%).

485

483

catalysts.

486 **3.6. The properties of redox ability**

Fig. 10. The H₂-TPR patterns of CeO₂, CeO₂-CS₂+COS, CeO₂-CS₂+COS-H₂O(0.33%) and

489 $CeO_2-CS_2+COS-H_2O(5.0\%)$ catalysts.

490 H₂-TPR was carried out to investigate the influence of H₂O introduction on the reducibility 491 of CeO₂-CS₂+COS catalyst and the results are shown in Fig. 10. It is reported that two reduction 492 peaks of pure CeO₂ at about 495 °C and 830 °C belongs to the reduction of surface Ce⁴⁺ to Ce³⁺ 493 and bulk Ce^{4+} to Ce^{3+} [61], respectively. Meanwhile, the low-temperature gas-phase sulfation of 494 CS2+COS makes the reduction peak of CeO2 at 495 °C shifting to left and disappearing due to 495 the formation of surface sulfate and the interaction of Ce and S species in the catalyst [70,82]. 496 Furthermore, this treatment also leads the reduction peak of bulk CeO₂ at 830 °C shifting to a 497 lower temperature owing to the enhanced mobility of the lattice oxygen for cubic fluorite CeO₂ 498 by the gas-phase sulfation of reductive organic CS₂+COS [83], thus improves the reducibility of 499 bulk CeO₂. It should be mentioned that a new high peak attributed to the reduction of surface 500 sulfate species appears at 605 °C, 585 °C and 571 °C for the sulfated CeO₂-CS₂+COS, 501 CeO₂-CS₂+COS-H₂O(0.33%) and CeO₂-CS₂+COS-H₂O(5.0%) catalysts, respectively [34]. 502 According to previous studies, the formation of sulfate species increased the surface active 503 oxygen concentration, thus enhanced the adsorption of NH₃ and promoted the low-temperature 504 oxidation of NO [40,65]. This indicates that the gas-phase sulfation of organic CS₂+COS 505 increases the reducibility of CeO₂ catalyst effectively. Furthermore, the introduction of H₂O

makes the reduction peak ascribed to sulfate species of CeO_2-CS_2+COS moving to the low temperature direction, which implies that the gas-phase sulfation of organic CS_2+COS at the presence of water helps to further improve the reducibility of sulfate species although their formed amounts also decrease. Therefore, the introduction of H₂O further contributes to improve the reducibility of CeO₂-CS₂+COS, which is beneficial to the NH₃-SCR activity of the catalyst.

511

3.7. The properties of surface acidity

512 Similar to the redox ability, the surface acidity is regarded as another critical factor of 513 influencing the NH₃-SCR activity of catalyst. Therefore, the NH₃-TPD test was carried out to 514 investigate the effect of H₂O introduction on the surface acidity of CeO₂-CS₂+COS during the 515 low-temperature gas-phase of organic CS₂+COS. According to the NH₃-TPD spectrum in Fig. 11, 516 a wide desorption peak of NH₃ species was observed at 50-450 °C, which was attributed to weak 517 acid sites and medium-strong acid sites via fitting it into five desorption peaks (labeled as I, II, 518 III, IV and V) [84]. Previous studies indicate that there exists a positive correlation between the 519 surface acid sites and the desorption temperature of NH3 species for the NH3-SCR catalysts 520 [85,86]. Therefore, the relative ratio of the integrated area for these five NH₃ desorption peaks 521 were calculated, as summarized in Table 3. Pure CeO₂ has a considerable proportion of weak 522 acid sites (74.83 %), but the low-temperature gas-phase sulfation of CS_2+COS significantly 523 increases the proportion of medium-strong acid sites, which is further enhanced by introducing 524 H₂O during the sulfation process, although the introduction of H₂O decreases the formed amount 525 of surface or/and bulk sulfation species according to the results of XPS spectra and TG-DTG 526 curves. Jin et al. [87] pointed out that the inclusion of HSiW resulted in an increase of the surface 527 acid sites of CeO₂, especially the number of medium-strong acid sites, thus improved the 528 NH₃-SCR activity of catalyst. This phenomenon was also reported in the Cu-SSZ-13 catalyst 529 [88]. Therefore, the intensity of medium-strong acid sites plays a significant impact on the 530 NH₃-SCR activity, and the formation of sulfate species helps to enhance the intensity of 531 medium-strong acid sites for CeO₂ catalyst, which has also been proven by the gas-phase 532 sulfation of CS₂+COS at 50 °C. Furthermore, the introduction of 0.33 vol.% H₂O makes the 533 CeO₂-CS₂+COS-H₂O(0.33%) catalyst presenting the best medium-strong acid intensity, although 534 it decreases the formed amount of surface or/and bulk sulfation species. The increase of H₂O 535 content from 0.33 vol.% to 5.0 vol.% increases the amount of sulfate species detected on

536 $CeO_2-CS_2+COS-H_2O(0.33\%)$ surface according to XPS results, but slightly reduces its 537 medium-strong acid sites. This may be one of the reasons for the decrease of the catalytic 538 performance of CeO₂-CS₂+COS-H₂O(0.33\%), and thus both the surface sulfate species and the 539 bulk sulfate species can affect the NH₃-SCR acidity of CeO₂ catalyst.

CeO₂-CS₂+COS-H₂O(5.0%) catalysts.

540

541

542

543

Table 3 The surface acidities of	f the as-prepared	catalysts
----------------------------------	-------------------	-----------

		Rel desorpti	ative ratio on sub-pe	tio of peaks (%)		Relative ratio of different acids (%)	
Samples	Peak I	Peak II	Peak III	Peak IV	Peak V	Weak acid	Medium-strong acid
CeO ₂	44.49	30.34	9.67	6.89	8.61	74.83	25.17
CeO ₂ -CS ₂ +COS	31.18	32.65	18.18	10.22	7.77	63.83	36.17
CeO ₂ -CS ₂ +COS-H ₂ O(0.33%)	29.25	33.32	20.27	9.48	7.68	62.57	37.43
CeO ₂ -CS ₂ +COS-H ₂ O(5.0%)	30.90	31.76	21.43	11.56	4.35	62.66	37.34

544	As an essential reactant for the hydrolysis of organic CS2 or/and COS, the introduction of
545	appropriate H ₂ O could enhance the adsorption and conversion performance of organic sulfur on
546	the surface of metal oxide catalysts [89,90]. Therefore, water was introduced into the
547	low-temperature gas-phase sulfation of CS2+COS over CeO2 catalyst in order to further improve
548	its NH ₃ -SCR activity for the first time, and the introduction of 0.33 vol.% H ₂ O promotes the
549	adsorption of CS ₂ +COS on cubic fluorite CeO ₂ surface and the interaction among them, thus

550 further enhances the optimization effect of reducing organic CS₂+COS on the electronic state of 551 CeO₂. This increases the content of Ce³⁺ ions, chemisorbed oxygen (O₆) and oxygen vacancies on CeO2-CS2+COS surface. Furthermore, the introduction of appropriate amount of H2O 552 effectively enhances the redox cycle of Ce4+/Ce3+ ion pairs, and further increases the 553 554 medium-strong acid although it decreases the formed amount of surface or/and bulk sulfation species for the sulfated CeO₂ catalyst by organic CS₂+COS at 50 °C. These all help to improve 555 556 the NH₃-SCR performance of CeO₂ catalyst. However, excess water (5.0 vol.%) enhances the 557 competitive adsorption of H₂O and COS/CS₂, which is slightly unbeneficial to the promotional 558 effect of water introduction on the NH₃-SCR activity of CeO₂ catalyst during the gas-phase 559 sulfation of CS₂+COS at 50 °C.

560 **4. Conclusions**

561 In summary, as an indispensable key reactant for the hydrolysis reaction of organic sulfur, H₂O was introduced during the low-temperature gas-phase sulfation of CS₂+COS, which has 562 563 been verified to be a simple and effective method to improve the NH₃-SCR performance of CeO₂ 564 catalyst. The formation of hydroxyl groups dissociated from H₂O are beneficial to the adsorption 565 of CS₂ and COS on CeO₂ surface, and enhances the interaction among them, although the introduction of H₂O decreases the formed amount of surface or/and bulk sulfation species. 566 Furthermore, the introduction of H₂O increases the concentrations of Ce³⁺ ions, chemisorbed 567 568 oxygen (O_{β}) and oxygen vacancies on CeO₂-CS₂+COS surface, which also effectively enhances 569 the redox cycle of Ce^{4+}/Ce^{3+} ion pairs and increases the medium-strong acid sites. These all 570 contributes to further improving the promotional effect of CS2+COS low-temperature gas-phase 571 sulfation on the NH₃-SCR activity of CeO₂. However, it is imperative to be noted that the 572 introduction of excessive H₂O might result in a reduced diffusion of COS and CS₂ on the 573 hydrolysis center of CeO₂ and weakens their interaction during the low-temperature gas-phase 574 sulfation, negating the promotional effect of H_2O introduction on the NH₃-SCR activity of the 575 CeO₂-CS₂+COS catalyst. The study can provide a scientific reference for the development of the 576 CeO₂-based catalysts in the practical application of NH₃-SCR technology.

577 CRediT authorship contribution statement

578 Jiaxing Liu: Writing - original draft, Methodology, Validation. Zhenchang Sun and Yafei Zhu: Software

- 579 and Methodology. Yanping Du: Writing review & editing. Zhibo Xiong: Conceptualization, Funding
- 580 acquisition, Writing review & editing. Fei Zhou: Investigation, Supervision. Jing Jin: Investigation,
- 581 Supervision, Funding acquisition. Qiguo Yang: Investigation, Supervision, Writing review & editing. Wei Lu:
- 582 Investigation, Supervision, Funding acquisition.

583 **Declaration of Competing Interest**

584 The authors declare that they have no known competing financial interests or personal relationships that 585 could have appeared to influence the work reported in this paper.

586 Acknowledgements

- 587 This work was supported by the National Science Foundation of China (No. 51406118), the Bureau of
- 588 Shanghai Municipal Science and Technology (No. 23010503500), Program of Special Appointment (Eastern
- 589 Scholar) at Shanghai Institutions of Higher Learning (No. QD2015017).

590 **References**

- 591 [1] A.T. Anastasopolos, U.M. Sofowote, P.K. Hopke, M. Rouleau, T. Shin, A. Dheri, H. Peng, R. Kulka, M. D
- 592 Gibson, P. Farah, N. Sundar. Air quality in Canadian port cities after regulation of low-sulphur marine fuel
- in the North American Emissions Control Area. Sci. Total. Environ. 791 (2021) 147949,

594 <u>https://doi.org/10.1016/j.scitotenv.2021.147949</u>.

- 595 [2] Q. Lyu, Y. Guan, Y.H. Liu. Research progress on Hg removal performance of Ce-containing materials.
- 596 Clean. Coal. Technol. 28 (2022) 69-83, <u>https://doi.org/10.13226/j.issn.1006-6772.LH22062501</u>.
- 597 [3] H. Caglayan, H. Caliskan. Thermo-ecological analysis of industrial kilns. J. Environ. Manage. 241 (2019)
- 598 149-155, <u>https://doi.org/10.1016/j.jenvman.2019.04.032</u>.
- 599 [4] M. Heidari, M. Tahmasebpoor, S.B. Mousavi, C. Pevida. CO₂ capture activity of a novel CaO adsorbent
- 600 stabilized with (ZrO₂+Al₂O₃+CeO₂)-based additive under mild and realistic calcium looping conditions. J.
- 601 CO₂. Util. 53 (2021) 101747, <u>https://doi.org/10.1016/j.jcou.2021.101747</u>.
- 602 [5] S.B. Mousavi, M. Heidari, F. Rahmani, R.A. Sene, P.T. Clough, S. Ozmen. Highly robust ZrO₂-stabilized

- 603 CaO nanoadsorbent prepared via a facile one-pot MWCNT-template method for CO₂ capture under
- 604 realistic calcium looping conditions. J. Clean. Prod. 384 (2023) 135579,

605 https://doi.org/10.1016/j.jclepro.2022.135579.

- 606 [6] R.L. Shao, S.W. Han, C.B. Xuan, L.Y. Wang, X.Y. Zhang, X.X. Cheng, Z.Q. Wang. Influence mechanism
- 607 of Na-K synergism on the evolution of NO_x in wet NO reduction. Clean. Coal. Technol. 29 (2023) 166-175,
- 608 <u>https://doi.org/10.13226/j.issn.1006-6772.23051201</u>.
- 609 [7] J.N. Liu, X. Wu, B.H. Hou, Y.L. Du, L.L. Liu, B.S. Yang. NiMn₂O₄ sphere catalyst for the selective
- 610 catalytic reduction of NO by NH₃: Insight into the enhanced activity via solvothermal method, J. Environ.
- 611 Chem. Eng. 9 (2021) 105152, <u>https://doi.org/10.1016/j.jece.2021.105152</u>.
- 612 [8] Y.Y. Tan, X.R. Zheng, G.Y. Tian, Y.J. Li. Mechanism of SO₂ removal by Mn-Ce high-content iron ash.
- 613 Clean. Coal. Technol. 29 (2023) 89-97, https://doi.org/10.13226/j.issn.1006-6772.21111703.
- 614 [9] R.X. Xiao, K.F. Chao, J. Liu, M.H. Chen, X.B. Zhu, B. Fu. Screening of Absorbents for Viscose Fiber CS₂
- 615 Waste Air and Absorption-Desorption Process. Atmosphere. 14 (2023) 602,
- 616 <u>https://doi.org/10.3390/atmos14030602</u>.
- 617 [10] X.Y. Xu, Y.L. Wang, P.F. Chen, T.Y. Zhao, Z.R. Gong, B.X. Wang, S.B. Huang. Removal of NO_x from flue
- 618 gas using different agricultural wastes as carbon sources: Performance and microbial communities. J.
- 619 Environ. Chem. Eng. 11 (2023) 109804, <u>https://doi.org/10.1016/j.jece.2023.109804</u>.
- 620 [11] C.S. Yoo, S. Duwal, M. Kim, Y. Ohishi. Phase diagram of carbonyl sulfide: An analogy to carbon dioxide
- 621 and carbon disulfide. Jap. J. Appl. Phys. 56 (2017) 05FA04, <u>https://doi.org/10.7567/JJAP.56.05FA04</u>.
- 622 [12] R. Cao, X.Q. Wang, P. Ning, Y.B. Xie, L.L. Wang, Y.X. Ma, X. Li, H. Zhang, J.Y. Liu. Advantageous Role
- 623 of N-doping on K@Al in COS/CS₂ Hydrolysis: Diminished Oxygen Mobility and Rich basic sites. Fuel.
- 624 337 (2023) 126882, <u>https://doi.org/10.1016/j.fuel.2022.126882</u>.

- 625 [13] X. Kan, G.Q. Zhang, Y.Y. Luo, F.J. Liu, Y. Zheng, Y.H. Xiao, Y.N. Cao, C.T. Au, S.J. Liang, L.L. Jiang.
- 626 Efficient catalytic removal of COS and H₂S over graphitized 2D micro-meso-macroporous carbons
- 627 endowed with ample nitrogen sites synthesized via mechanochemical carbonization. Green. Energy.
- 628 Environ. 7 (2022) 983-995, <u>https://doi.org/10.1016/j.gee.2020.12.016</u>.
- 629 [14] S.J. Liang, J.X. Mi, F.J. Liu, Y. Zheng, Y.H. Xiao, Y.N. Cao, L.L. Jiang. Efficient catalytic elimination of
- 630 COS and H₂S by developing ordered mesoporous carbons with versatile base N sites via a calcination
- 631 induced self-assembly rout. Chem. Eng. Sci. 221 (2020) 115714,
- 632 <u>https://doi.org/10.1016/j.ces.2020.115714</u>.
- 633 [15] J.L. Liang, M.W. Fan, M.M. Wu, J.W. Hua, W.S. Cai, T.T. Huang, Y.Q. Liu, C.G. Liu. In situ synthesis of
- 634 MoS₂ nanoflakes within a 3D mesoporous carbon framework for hydrodesulfurization. J. Catal. 415 (2022)
- 635 153-164, <u>https://doi.org/10.1016/j.jcat.2022.10.006</u>.
- 636 [16] Y.R. Xu, P.Y. Li, S.H. Yuan, B.K. Sui, W.K. Lai, X.D. Yi, W.P. Fang. Sacrificial carbonaceous coating over
- 637 alumina supported Ni-MoS₂ catalyst for hydrodesulfurization. RSC. Adv. 9 (2019) 11951,
- 638 <u>https://doi.org/10.1039/C9RA00884E</u>.
- 639 [17] L.L. Mguni, Y.L. Yao, X.Y. Liu, Z.Y. Yuan, D. Hildebrandt. Ultra-deep desulphurization of both model and
- 640 commercial diesel fuels by adsorption method. J. Environ. Chem. Eng. 7 (2019) 102957,
- 641 <u>https://doi.org/10.1016/j.jece.2019.102957</u>.
- 642 [18] R. Saeedirad, A. Rashidi, M. Daraee, M. Bazmi, S. Askari. Synthesis of Nitrogen-Doped CNT-Based MOF
- 643 Hybrids for Adsorptive Desulfurization of the Gas Stream. ChemistrySelect. 5 (2020) 13530-13536,
- 644 https://doi.org/10.1002/slct.202002618.
- [19] P. Xu, Z.H. Jin, T.Y. Zhang, X.F. Chen, M.H. Qiu, Y.Q. Fan. Fabrication of a Ceramic Membrane with
- 646 Antifouling PTFE Coating for Gas-Absorption Desulfurization. Ind. Eng. Chem. Res. 60 (2021) 2492-2500,

647 <u>https://doi.org/10.1021/acs.iecr.1c00338</u>.

- 648 [20] H.Y. Wang, H.H. Yi, P. Ning, X.L. Tang, L.L. Yu, D. He, S.Z. Zhao. Calcined hydrotalcite-like compounds
- as catalysts for hydrolysis carbonyl sulfide at low temperature. Chem. Eng. J. 166 (2011) 99-104,
- 650 <u>https://doi.org/10.1016/j.cej.2010.10.025</u>.
- 651 [21] H.Y. Wang, H.H. Yi, X.L. Tang, P. Ning, L.L. Yu, D. He, S.Z. Zhao, K. Li. Catalytic hydrolysis of COS
- 652 over calcined CoNiAl hydrotalcite-like compounds modified by cerium. Appl. Clay. Sci. 70 (2012) 8-13,
- 653 <u>http://dx.doi.org/10.1016/j.clay.2012.09.008</u>.
- 654 [22] E.Y. He, G. Huang, H.L. Fan, C. Yang, H. Wang, Z. Tian, L.J. Wang, Y.R. Zhao. Macroporous alumina-
- and titania-based catalyst for carbonyl sulfide hydrolysis at ambient temperature. Fuel. 246 (2019) 277-284,
- 656 <u>https://doi.org/10.1016/j.fuel.2019.02.097</u>.
- 657 [23] J.X. Qu, X.Q. Wang, L.L. Wang, B.W. Xu, P. Ning, Y.X. Ma, Y.B. Xie, R. Cao, Q. Ma. The investigation of
- 658 the role of nitrogen in the improvement of catalytic activity and stability of Zr/Ti-based material for carbon
- 659 disulfide hydrolysis. Sep. Purif. Technol. 269 (2022) 121357,
- 660 <u>https://doi.org/10.1016/j.seppur.2022.121357</u>.
- 661 [24] Y.F. Wang, L. Ding, H.M. Long, J.J. Xiao, L.X. Qian, H.T. Wang, C.B. Xu. Carbonyl sulfur removal from
- blast furnace gas: Recent progress, application status and future development. Chemosphere 307 (2022)
- 663 136090, <u>https://doi.org/10.1016/j.chemosphere.2022.136090</u>.
- 664 [25] J.N. Gu, J.X. Liang, S.J. Hu, Y.X. Xue, X. Min, M.M. Guo, X.F. Hu, J.P. Jia, T.H. Sun. Enhanced removal
- of COS from blast furnace gas via catalytic hydrolysis over Al₂O₃-based catalysts: Insight into the role of
- 666 alkali metal hydroxide. Sep. Purif. Technol. 295 (2022) 121356,
- 667 <u>https://doi.org/10.1016/j.seppur.2022.121356</u>.
- 668 [26] X. Sun, H.T. Ruan, X. Song, L.N. Sun, K. Li, P. Ning, C. Wang. Research into the reaction process and the

- 669 effect of reaction conditions on the simultaneous removal of H₂S, COS and CS₂ at low temperature. RSC.
- 670 Adv. 8 (2018) 6996, <u>https://doi.org/10.1039/C7RA12086A</u>.
- 671 [27] Y.L. Liu, P. Wu, K. Shen, Y.P. Zhang, G.B. Li, B. Li. Contribution of Na/K Doping to the Activity and
- 672 Mechanism of Low-Temperature COS Hydrolysis over TiO₂- Al₂O₃ Based Catalyst in Blast Furnace Gas.
- 673 ACS. Omega. 7 (2022) 13299-13312, <u>https://doi.org/10.1021/acsomega.2c00968</u>.
- 674 [28] P.T. Gao, Y.R. Li, Y.T. Lin, L.P. Chang, T.Y. Zhu. Promoting effect of Fe/La loading on γ-Al₂O₃ catalyst for
- 675 hydrolysis of carbonyl sulfur. Environ. Sci. Pollut. R. 29 (2022) 84166-84179,
- 676 <u>https://doi.org/10.1007/s11356-022-20928-1</u>.
- [29] L. Wang, S.D. Wang, Q. Yuan, G.Z. Lu. COS hydrolysis in the presence of oxygen: Experiment and
- 678 modeling. J. Nat. Gas. Chem. 17 (2008) 93-97, https://doi.org/10.1016/S1003-9953(08)60032-8.
- [30] R.H. Sui, C.B. Lavery, C.E. Deering, R. Prinsloo, D. Li, N. Chou, K.L. Lesage, R.A. Marriott. Improved
- 680 carbon disulfide conversion: Modification of an alumina Claus catalyst by deposition of transition metal
- 681 oxides. Appl. Catal. A 604 (2020) 117773, <u>https://doi.org/10.1016/j.apcata.2020.117773</u>.
- 682 [31] S.Z. Zhao, H.H. Yi, X.L. Tang, D.J. Kang, F.Y. Gao, J.G. Wang, Y.H. Huang, Z.Y. Yang. Calcined ZnNiAl
- 683 hydrotalcite-like compounds as bifunctional catalysts for carbonyl sulfide removal. Catal. Today. 327
- 684 (2019) 161-167, <u>https://doi.org/10.1016/j.cattod.2018.05.011</u>.
- 685 [32] C. Zhang, J.C. Li, D.L. Fang, P. Tan, L. Ma, Q.Y. Fang, G. Chen. Research progress on anti-poisoning of
- 686 Mn-based low temperature SCR catalysts. Clean. Coal. Technol. 28 (2022) 110-135,
 687 <u>https://doi.org/10.13226/j.issn.1006-6772.HK22072501</u>.
- [33] W. Wang, Z.B. Xiong, J. Jin, W. Lu, H.C. Shi. Influence of CS₂ pretreatment on the NH₃-SCR activity of
- 689 CeO₂: Synergistic promotional effect of sulfation and reduction. J. Environ. Chem. Eng. 9 (2021) 106836,
- 690 <u>https://doi.org/10.1016/j.jece.2021.106836</u>.

- 691 [34] J.J. Chen, W.T. Zhao, Q. Wu, J.X. Mi, X.Y. Wang, L. Ma, L.L. Jiang, C. Au, J.H. Li. Effects of anaerobic
- 692 SO₂ treatment on nano-CeO₂ of different morphologies for selective catalytic reduction of NO_x with NH₃.
- 693 Chem. Eng. J. 382 (2020) 122910, https://doi.org/10.1016/j.cej.2019.122910.
- 694 [35] W. Tan, J.M. Wang, S.H. Yu, A.N. Liu, L.L. Li, K. Guo, Y.D. Luo, S.H. Xie, F. Gao, F.D. Liu, L. Dong.
- Morphology-Sensitive Sulfation Effect on Ceria Catalysts for NH₃-SCR. Top. Catal. 63 (2020) 932-943,
- 696 <u>https://doi.org/10.1007/s11244-020-01342-8</u>.
- 697 [36] S.J. Yang, Y.F. Guo, H.Z. Chang, L. Ma, Y. Peng, Z. Qu, N.Q. Yan, C.Z. Wang, J.H. Li. Novel effect of SO₂
- on the SCR reaction over CeO₂: Mechanism and significance. Appl. Catal. B 136-137 (2013) 19-28,
- 699 <u>http://dx.doi.org/10.1016/j.apcatb.2013.01.028</u>.
- 700 [37] L. Zhang, W.X. Zou, K.L. Ma, Y. Cao, Y. Xiong, S.G. Wu, C.J. Tang, F. Gao, L. Dong. Sulfated
- 701 Temperature Effects on the Catalytic Activity of CeO₂ in NH₃-Selective Catalytic Reduction Conditions. J.
- 702 Phys. Chem. C 119 (2015) 1155-1163, <u>https://doi.org/10.1021/jp511282c</u>.
- 703 [38] Q. Wu, X.P. Chen, J.X. Mi, S.X. Cai, L. Ma, W.T. Zhao, J.J. Chen, J.H. Li. The Absence of Oxygen in
- 704 Sulfation Promotes the Performance of the Sulfated CeO₂ Catalyst for Low-Temperature Selective
- 705 Catalytic Reduction of NO_x by NH₃: Redox Property versus Acidity. ACS. Sustain. Chem. Eng. 9 (2021)
- 706 967-979, <u>https://doi.org/10.1021/acssuschemeng.0c08427</u>.
- 707 [39] X.Y. Liu, P.L. Wang, Y.J. Shen, S.Y. Bi, W. Ren, D.S. Zhang. Boosting SO₂-Tolerant Catalytic Reduction of
- 708 NO_x via Selective Adsorption and Activation of Reactants over Ce^{4+} -SO4²⁻ Pair Sites. ACS. Catal. 12 (2022)
- 709 11306-11317, https://doi.org/10.1021/acscatal.2c02699.
- 710 [40] X.J. Yao, Z. Wang, S.H. Yu, F.M. Yang, L. Dong. Acid pretreatment effect on the physicochemical property
- 711 and catalytic performance of CeO₂ for NH₃-SCR. Appl. Catal. A 542 (2017) 282-288,
- 712 <u>http://dx.doi.org/10.1016/j.apcata.2017.06.003</u>.

- 713 [41] L. Ma, C.Y. Seo, M. Nahata, X.Y. Chen, J.H. Li, J.W. Schwank. Shape dependence and sulfate promotion
- of CeO₂ for selective catalytic reduction of NO_x with NH₃. Appl. Catal. B 232 (2018) 246-259,

715 https://doi.org/10.1016/j.apcatb.2018.03.065.

- 716 [42] R.Y. Xie, L. Ma, K. Sun, G. Zhou, Z. Qu, N.Q. Yan. Catalytic performance and mechanistic evaluation of
- sulfated CeO₂ cubes for selective catalytic reduction of NO_x with ammonia. J. Hazard. Mater. 420 (2021)
- 718 126545, <u>https://doi.org/10.1016/j.jhazmat.2021.126545</u>.
- 719 [43] W. Wang, Z.B. Xiong, W.F. He, W. Lu, H.C. Shi. Influence of thiourea modification on the NH₃-SCR
- 720 activity of CeO₂: Simultaneous tuning morphology and surface acidity. J. Energy. Inst. 98 (2021) 322-333,
- 721 <u>https://doi.org/10.1016/j.joei.2021.07.009</u>.
- 722 [44] N.Y. Wang, X.Q. Wang, Y. Liu, Z.B. Wu. Storage-reduction strategy for NO_x reduction from gas turbine
- 723 exhaust with W-Ti-CeO_x catalyst in natural gas power plants. J. Rare. Earths. 41 (2023) 933-940,
- 724 <u>https://doi.org/10.1016/j.jre.2022.11.011</u>.
- [45] X.J. Zhang, J.K. Wang, Z.X. Song, H. Zhao, Y. Xing, M. Zhao, J.G. Zhao, Z.A. Ma, P.P. Zhang, N. Tsubaki.
- 726 Promotion of surface acidity and surface species of doped Fe and SO4²⁻ over CeO₂ catalytic for NH₃-SCR

727 reaction. Mol. Catal. 463 (2019) 1-7, <u>https://doi.org/10.1016/j.mcat.2018.11.002</u>.

- 728 [46] J.X. Mi, G.Q. Zhang, Q.Y. Zhang, W.T. Zhao, Y.N. Cao, F.J. Liu, L.L. Jiang. Defects modulating on
- 729 MgAl-hydrotalcite nanosheet with improved performance in carbonyl sulfide elimination via a hydroxyl
- 730 chemical looping route. Chem. Eng. Sci. 259 (2022) 117827, <u>https://doi.org/10.1016/j.ces.2022.117827</u>.
- 731 [47] M. Heidari, S.B. Mousavi, F. Rahmani, P.T. Clough, S. Ozmen. The novel Carbon Nanotube-assisted
- 732 development of highly porous CaZrO3-CaO xerogel with boosted sorption activity towards
- 733 high-temperature cyclic CO₂ capture. Energ. Convers. Manage. 274 (2022) 116461,
- 734 <u>https://doi.org/10.1016/j.enconman.2022.116461</u>.

- 735 [48] X.L. Tang, Y.R. Shi, F.Y. Gao, S.Z. Zhao, H.H. Yi, Z.L. Xie. Promotional role of Mo on Ce_{0.3}FeO_x catalyst
- towards enhanced NH₃-SCR catalytic performance and SO₂ resistance. Chem. Eng. J. 398 (2020) 125619,

737 https://doi.org/10.1016/j.cej.2020.125619.

- 738 [49] Z.H. Shen, X.D. Xing, S.X. Wang, M. Lv, J.K. Li, T. Li. Effect of K-Modified Blue Coke-Based Activated
- 739 Carbon on Low Temperature Catalytic Performance of Supported Mn-Ce/Activated Carbon. ACS. Omega.
- 740 7 (2022) 8798-8807, <u>https://doi.org/10.1021/acsomega.1c07076</u>.
- 741 [50] Z.X. Song, Q.L. Zhang, P. Ning, J. Fan, Y.K. Duan, X. Liu, Z.Z. Huang. Effect of CeO₂ support on the
- 742 selective catalytic reduction of NO with NH₃ over P-W/CeO₂. J. Taiwan. Inst. Chem. Eng. 65 (2016)
- 743 149-161, <u>http://dx.doi.org/10.1016/j.jtice.2016.04.034</u>.
- 744 [51] M.Y. Ma, C.M. Li, Y.J. Li, C. Wang, S.Q. Gao, H.D. Ye, J.J. Li, J. Yu. Resource Utilization of Spent
- 745 Activated Coke as an Efficient Material for Simultaneous Removal of COS and H₂S. Energy. Fuel. 36
- 746 (2022) 4837-4846, <u>https://doi.org/10.1021/acs.energyfuels.2c00325</u>.
- 747 [52] Q.L. Zhang, J.H. Zhang, Z.X. Song, P. Ning, H. Li, X. Li. A novel and environmentally friendly
- 748 SO₄²⁻/CeO₂ catalyst for the selective catalytic reduction of NO with NH₃. J. Ind. Eng. Chem. 34 (2016)
- 749 165-171, <u>http://dx.doi.org/10.1016/j.jiec.2015.11.006</u>.
- 750 [53] G.Y. Mu, Y. Zeng, Y. Zheng, Y.N. Cao, F.J. Liu, S.J. Liang, Y.Y. Zhan, L.L. Jiang. Oxygen vacancy defects
- r51 engineering on Cu-doped Co₃O₄ for promoting effective COS hydrolysis. Green. Energy. Environ. 8 (2023)
- 752 831-841, <u>https://doi.org/10.1016/j.gee.2021.11.001</u>.
- 753 [54] X.H. Zheng, Y.L. Li, L.Y. Zhang, L.J. Shen, Y.H. Xiao, Y.F. Zhang, C. Au, L.L. Jiang. Insight into the
- 754 effect of morphology on catalytic performance of porous CeO₂ nanocrystals for H₂S selective oxidation.
- 755 Appl. Catal. B 252 (2019) 98-110, <u>https://doi.org/10.1016/j.apcatb.2019.04.014</u>.
- 756 [55] B.M. Casaria, V. Langerb. New Structure Type among Octahydrated Rare-Earth Sulfates,

757 β-Ce₂(SO₄)₃·8H₂O, and a new Ce₂(SO₄)₃·4H₂O Polymorph. Z. Anorg. Allg. Chem. 633 (2007) 1074-1081,

758 <u>https://doi.org/10.1002/zaac.200700003</u>.

- 759 [56] L. Chen, Y. Shen, Q.L. Wang, X.X. Wang, Y.Q. Wang, B.L. Li, S.J. Li, S.H. Zhang, W. Li. Phosphate on
- 760 ceria with controlled active sites distribution for wide temperature NH₃-SCR. J. Hazard. Mater. 427 (2022)
- 761 128148, <u>https://doi.org/10.1016/j.jhazmat.2021.128148</u>.
- 762 [57] W.X. Zou, C.Y. Ge, M.Y. Lu, S.G. Wu, Y.Z. Wang, J.F. Sun, Y. Pu, C.J. Tang, F. Gao, L. Dong. Engineering
- the NiO/CeO₂ interface to enhance the catalytic performance for CO oxidation. RSC. Adv. 5 (2015) 98335,
- 764 <u>https://doi.org/10.1039/C5RA20466F</u>.
- 765 [58] S.J. Yi, P.C. Lai, G.L. Ma, J.J. Pan, Z. Chen, Y.H. Qin, X.M. Jiang. Green and facile synthesis of
- nanostructured Co₃O₄/CeO₂ catalysts via a glucose-urea method for NO oxidation. Appl. Surf. Sci. 626
- 767 (2023) 157180, <u>https://doi.org/10.1016/j.apsusc.2023.157180</u>.
- 768 [59] R. Verma, S.K. Samdarshi, S. Bojja, S. Paul, B. Choudhury. A novel thermophoto catalyst of mixed-phase
- 769 cerium oxide (CeO₂/Ce₂O₃) homocomposite nanostructure: Role of interface and oxygen vacancies. Sol.
- 770 Energ. Mater. Sol. C 141 (2015) 414-422, <u>http://dx.doi.org/10.1016/j.solmat.2015.06.027</u>.
- 771 [60] L. Zhang, L. Zhang, G.C. Xu, C. Zhang, X. Li, Z.P. Sun, D.Z. Jia. Low-temperature CO oxidation over
- 772 CeO₂ and CeO₂@Co₃O₄ core-shell microspheres. New. J. Chem. 41 (2017) 13418,
- 773 <u>https://doi.org/10.1039/C7NJ02542D</u>.
- [61] M. Jang, S. Choi, Y. Kim, J. Cha, A.R. Kim, H. Jeong, Y. Kim, S.H. Choi, S.W. Nam, J. Lim, C.W. Yoon, H.
- 775 Sohn. Effect of CeO₂ redox properties on the catalytic activity of Pt-CeO_x over irreducible SiO₂ support for
- 776 methylcyclohexane (MCH) dehydrogenation. Appl. Surf. Sci. 627 (2023) 157134,
- 777 <u>https://doi.org/10.1016/j.apsusc.2023.157134</u>.
- 778 [62] W. Tan, J.M. Wang, L.L. Li, A.N. Liu, G. Song, K. Guo, Y.D. Luo, F.D. Liu, F. Gao, L. Dong. Gas phase

- sulfation of ceria-zirconia solid solutions for generating highly efficient and SO₂ resistant NH₃-SCR
- 780 catalysts for NO removal. J. Hazard. Mater. 388 (2020) 121729,

781 https://doi.org/10.1016/j.jhazmat.2019.121729.

- 782 [63] G.D. Zhang, X.S. Huang, Z.C. Tang. New insight into the synergistic promotion effect of phosphorus and
- 783 molybdenum on the ceria-titanium catalysts for superior SCR performance. Mol. Catal. 478 (2019) 110562,
- 784 <u>https://doi.org/10.1016/j.mcat.2019.110562</u>.
- 785 [64] X. Fang, Y.G. Liu, W.L. Cen, Y. Cheng. Birnessite as a Highly Efficient Catalyst for Low-Temperature
- 786 NH₃-SCR: The Vital Role of Surface Oxygen Vacancies. Ind. Eng. Chem. Res. 59 (2020) 14606-14615,
- 787 <u>https://doi.org/10.1021/acs.iecr.0c00188</u>.
- 788 [65] H.Z. Chang, L. Ma, S.J. Yang, J.H. Li, L. Chen, W. Wang, J.M. Hao. Comparison of preparation methods
- 789 for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH₃-SCR. J. Hazard.
- 790 Mater. 262 (2013) 782-788, <u>http://dx.doi.org/10.1016/j.jhazmat.2013.09.043</u>.
- 791 [66] A.C. Zhang, W.B. Xing, Z.H. Zhang, F.M. Meng, Z.C. Liu, J. Xiang, L.S. Sun. Promotional effect of SO₂
- 792 on CeO₂-TiO₂ material for elemental mercury removal at low temperature. Atmos. Pollut. Res. 7 (2016)
- 793 895-902, <u>http://dx.doi.org/10.1016/j.apr.2016.05.003</u>.
- [67] M.D. Lane. Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. Am. Mineral. 92
- 795 (2007) 1-18, <u>https://doi.org/10.2138/am.2007.2170</u>.
- 796 [68] D.Q. An, S. Yang, W.X. Zou, J.F. Sun, W. Tan, J.W. Ji, Q. Tong, C.Z. Sun, D. Li, L. Dong. Unraveling the
- 797 SO₂ Poisoning Effect over the Lifetime of MeO_x (Me=Ce, Fe, Mn) Catalysts in Low-Temperature
- 798 NH₃-SCR: Interaction of Reaction Atmosphere with Surface Species. J. Phys. Chem. C 126 (2022)
- 799 12168-12177, https://doi.org/10.1021/acs.jpcc.2c02233.
- 800 [69] J. Li, H.S. Wu, B. Ma. Preparation of bimodal mesoporous silica containing cerious salt and its application

- 801 as catalyst for the synthesis of biodiesel by esterification. J. Porous. Mater. 24 (2017) 1279-1288,
- 802 <u>https://doi.org/10.1007/s10934-017-0368-3</u>.
- 803 [70] P. Zhang, A.L. Chen, T.W. Lan, X.Y. Liu, T.T. Yan, W. Ren, D.S. Zhang. Balancing acid and redox sites of
- 804 phosphorylated CeO₂ catalysts for NO_x reduction: The promoting and inhibiting mechanism of phosphorus.
- 805 J. Hazard. Mater. 441 (2023) 129867, <u>https://doi.org/10.1016/j.jhazmat.2022.129867</u>.
- 806 [71] S.J. Hu, J.N. Gu, K. Li, J.X. Liang, Y.X. Xue, X. Min, M.M. Guo, X.F. Hu, J.P. Jia, T.H. Sun. Boosting
- 807 COS catalytic hydrolysis performance over Zn-Al oxide derived from ZnAl hydrotalcite-like compound
- 808 modified via the dopant of rare earth metals and the replacement of precipitation base. Appl. Surf. Sci. 599
- 809 (2022) 154016, <u>https://doi.org/10.1016/j.apsusc.2022.154016</u>.
- 810 [72] S. Gao, X.B. Chen, H.Q. Wang, J.S. Mo, Z.B. Wu, Y. Liu, X.L. Weng. Ceria supported on sulfated zirconia
- 811 as a superacid catalyst for selective catalytic reduction of NO with NH₃. J. Colloid. Interf. Sci. 394 (2013)
- 812 515-521, <u>http://dx.doi.org/10.1016/j.jcis.2012.12.034</u>.
- 813 [73] H.P. Pang, Z.H. Shen, X.D. Xing. Removal of CO from sintering flue gas by CuO-CeO₂ catalyst supported
- 814 on KMnO4 modified activated carbon. Clean. Coal. Technol. 29 (2023) 63-68,
- 815 <u>http://dx.doi.org/10.13226/j.issn.1006-6772.22100601</u>.
- 816 [74] A. Younis, D.W. Chu, Y.V. Kaneti, S.A. Li. Tuning the surface oxygen concentration of {111} surrounded
 817 ceria nanocrystals for enhanced photocatalytic activities. Nanoscale. 8 (2016) 378,
- 818 <u>https://doi.org/10.1039/C5NR06588G</u>.
- [75] Y. Li, S.X. Cai, P.L. Wang, T.T. Yan, J.P. Zhang, D.S. Zhang. Improved NO_x Reduction over
 Phosphate-Modified Fe₂O₃/TiO₂ Catalysts Via Tailoring Reaction Paths by In Situ Creating
 Alkali-Poisoning Sites. Environ. Sci. Technol. 55 (2021) 9276-9284,
- 822 <u>https://doi.org/10.1021/acs.est.1c01722</u>.

- 823 [76] L. Huang, Y.W. Yue, Y.H. Zong, J.K. Li, Y.B. Gao, H. Wang, P. Han. Effect of impregnation sequence of
- 824 vanadium and molybdenum on the Na resistance of de-NO_x catalyst. Clean. Coal. Technol. 29 (2023) 74-79,
- 825 https://doi.org/10.13226/j.issn.1006-6772.22051703.
- 826 [77] L. Huang, Y.Q. Zeng, Z.F. Chang, Y.H. Zong, H. Wang, S.L. Zhang, Y. Yu. Promotional effect of
- 827 phosphorus modification on improving the Na resistance of V2O5-MoO3/TiO2 catalyst for selective
- 828 catalytic reduction of NO_x by NH_3 . Mol. Catal. 506 (2021) 111565,
- 829 <u>https://doi.org/10.1016/j.mcat.2021.111565</u>.
- 830 [78] S.H. Wang, C. Fan, Z.Q. Zhao, Q. Liu, G. Xu, M.H. Wu, J.J. Chen, J.H. Li. A facile and controllable in situ
- 831 sulfation strategy for CuCeZr catalyst for NH₃-SCR. Appl. Catal. A 597 (2020) 117554,
 832 https://doi.org/10.1016/j.apcata.2020.117554.
- 833 [79] M.Y. Guo, Q.L. Liu, P.P. Zhao, J.F. Han, X. Li, Y. Ha, Z.C. Fu, C.F. Song, N. Ji, C.X. Liu, D.G. Ma, Z.G.
- Li. Promotional effect of SO₂ on Cr₂O₃ catalysts for the marine NH₃-SCR reaction. Chem. Eng. J. 361
- 835 (2019) 830-838, <u>https://doi.org/10.1016/j.cej.2018.12.100</u>.
- 836 [80] Y.Y. Peng, L. Song, S.R. Lu, Z.Y. Su, K. Ma, S.Y. Tang, S. Zhong, H.R. Yue, B. Liang. Superior resistance
- 837 to alkali metal potassium of vanadium-based NH₃-SCR catalyst promoted by the solid superacid
- 838 SO₄²-TiO₂. Chinese. J. Chem. Eng. 55 (2023) 246-256, <u>https://doi.org/10.1016/j.cjche.2022.05.031</u>.
- 839 [81] X. Sun, P. Ning, X.L. Tang, H.H. Yi, K. Li, D. He, X.M. Xu, B. Huang, R.Y. Lai. Simultaneous catalytic
- 840 hydrolysis of carbonyl sulfide and carbon disulfide over Al₂O₃-K/CAC catalyst at low temperature. J.
- 841 Energy Chem. 23 (2014) 221-226, <u>https://doi.org/10.1016/S2095-4956(14)60139-X</u>.
- 842 [82] L. Zhang, L.L. Li, Y. Cao, X.J. Yao, C.Y. Ge, F. Gao, Y. Deng, C.J. Tang, L. Dong. Getting insight into the
- 843 influence of SO₂ on TiO₂/CeO₂ for the selective catalytic reduction of NO by NH₃. Appl. Catal. B 165
- 844 (2015) 589-598, <u>https://doi.org/10.1016/j.apcatb.2014.10.029</u>.

- 845 [83] P. Zhang, R.T. Guo, L.J. Wu, W.G. Pan. The enhancement of NH₃-SCR performance for CeO₂ catalyst by
- 846 CO pretreatment. Environ. Sci. Pollut. R. 27 (2020) 13617-13636,

847 https://doi.org/10.1007/s11356-020-07908-z.

- 848 [84] S.Y. Xu, L.T. Yin, H.M. Wang, L.Y. Gao, X.Y. Tian, J.J. Chen, Q.L. Zhang, P. Ning. Improved
- 849 alkali-tolerance of FeO_x -WO₃ catalyst for NO removal via in situ reserving FeO_x active species. Sep. Purif.
- 850 Technol. 300 (2022) 121824, <u>https://doi.org/10.1016/j.seppur.2022.121824</u>.
- 851 [85] C. Fang, L.Y. Shi, H.R. Li, L. Huang, J.P. Zhang, D.S. Zhang. Creating hierarchically macro-/mesoporous
- 852 Sn/ CeO₂ for the selective catalytic reduction of NO with NH₃. RSC. Adv. 6 (2016) 78727,
- 853 <u>https://doi.org/10.1039/C6RA18339E</u>.
- 854 [86] D.S. Zhang, L. Zhang, L.Y. Shi, C. Fang, H.R. Li, R.H. Gao, L. Huang, J.P. Zhang. In situ supported
- 855 MnO_x -CeO_x on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH₃.
- 856 Nanoscale. 5 (2013) 1127, <u>https://doi.org/10.1039/C2NR33006G</u>.
- 857 [87] J.J. Jin, Z.X. Song, X.J. Zhang, Y.L. Mao. Role of silicotungstic acid on the catalytic performance over
- 858 CeO₂-HSiW catalysts for selective catalytic reduction of NO_x with NH₃. Appl. Organomet. Chem. 35 (2021)
- e6237, <u>https://doi.org/10.1002/aoc.6237</u>.
- 860 [88] L.F. Jia, J.X. Liu, D.Q. Huang, J.C. Zhao, J.N. Zhang, K.X. Li, Z.G. Li, W.S. Zhu, Z. Zhao, J. Liu.
- 861 Interface Engineering of a Bifunctional Cu-SSZ-13@CZO Core-Shell Catalyst for Boosting Potassium Ion
- 862 and SO₂ Tolerance. ACS. Catal. 12 (2022) 11281-11293, <u>https://doi.org/10.1021/acscatal.2c03048</u>.
- 863 [89] X. Song, P. Ning, C. Wang, K. Li, L.H. Tang, X. Sun. Catalytic hydrolysis of COS over CeO₂ (110) surface:
- A density functional theory study. Appl. Surf. Sci. 414 (2017) 345-352,
- 865 <u>http://dx.doi.org/10.1016/j.apsusc.2017.04.119</u>.
- 866 [90] Z. Wei, M.F. Zhao, Z.W. Yang, X.X. Duan, G.X. Jiang, G.G. Li, F.L. Zhang, Z.P. Hao. Oxygen

- 867 vacancy-engineered titanium-based perovskite for boosting H2O activation and lower-temperature
- 868 hydrolysis of organic sulfur. P. Natl. A. Sci. 120 (2023) e2217148120,
- 869 <u>https://doi.org/10.1073/pnas.2217148120</u>.