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Abstract

Early dark energy (EDE) is one of the most promising possibilities in order
to resolve the Hubble tension: the discrepancy between the locally measured
and cosmologically inferred values of the Hubble constant. In this paper we
propose a toy model of unified EDE and late dark energy (DE), driven by a
scalar field in the context of α-attractors. The field provides an injection of
a subdominant dark energy component near matter-radiation equality, and
redshifts away shortly after via free-fall, later refreezing to become late-time
DE at the present day. Using reasonable estimates of the current constraints
on EDE from the literature, we find that the parameter space is narrow
but viable, making our model readily falsifiable. Since our model is non-
oscillatory, the density of the field decays faster than the usual oscillatory
EDE, thereby possibly achieving better agreement with observations.

Keywords: Early dark energy, Hubble tension, Dark energy

1. Introduction

In the last few decades cosmological observations of the early and late
Universe have converged into a broad understanding of the history of our
Universe from the very first seconds of its existence until today. Thus, cos-
mology has developed a standard model called the concordance model, or in
short ΛCDM.

However, the latest data might imply that the celebrated ΛCDM model
is not that robust after all. In particular, there is a 5σ discrepancy between
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the estimated values of the current expansion rate, the Hubble constant H0,
as inferred by early Universe observations compared with late Universe mea-
surements. This Hubble tension has undermined our confidence in ΛCDM
and as such it is investigated intensely at present.

In this work we study a toy model of unified early dark energy (EDE) and
late dark energy (DE), which can simultaneously raise the inferred value of
the Hubble constant H0 coming from early-time data and explain the current
accelerated expansion with no more tuning that in ΛCDM. We introduce a
scalar field φ in the context of α-attractors, which is frozen at early times
and unfreezes around matter-radiation equality, briefly behaving as a sub-
dominant dark energy component to then undergo free-fall, redshifting away
faster than radiation. At late times φ behaves as quintessence. In contrast
to most other works in the literature, ours is not an oscillating scalar field
(see however Refs. [1, 2, 3, 4] for earlier attempts, the first two also in the
context of α-attractors).

We use natural units with c = ℏ = 1, the reduced Planck mass mP =
1/
√
8πG = 2.43× 1018GeV and the (−1,+1,+1,+1) sign convention for the

metric throughout the present work.

1.1. The Hubble tension

Measurements in observational cosmology can broadly be classified into
two groups. These are measurements of quantities which depend only on the
early-time history of our Universe, such as the cosmic microwave background
(CMB) radiation, emitted at redshift z ≃ 1100, or the baryon acoustic oscil-
lations (BAO), and measurements of quantities which depend on present-day
observations. A relevant example of the latter is the measurement of the dis-
tance to high-redshift type-Ia supernovae (SN Ia) by constructing a cosmic
distance ladder [5]. This is achieved by starting with distances that can be
directly resolved by using parallax and then moving to larger distances by
using Cepheid variables and SN Ia.

The value of the Hubble constant H0 can in principle be inferred from
early-time observations and directly obtained from late-time measurements.
However, it has been found that while early-time results are in good agree-
ment with each other, they disagree with current late-time data. Latest
analysis of the CMB data gives the value inferred from the CMB tempera-
ture anisotropies power spectrum [6] as

H0 = 67.44± 0.58 km s−1Mpc−1, (1)
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and a distance ladder measurement using Cepheid-SN Ia data from the
SH0ES collaboration [5] as

H0 = 73.04± 1.04 km s−1Mpc−1. (2)

This is an 8% difference between both values at a confidence level of 5σ. It
includes estimates of all systematic errors [7] and the SH0ES team concludes
that it has “no indication of arising from measurement uncertainties or anal-
ysis variations considered to date”1. It is becoming increasingly apparent
with successive measurements that this tension is likely to have a theoretical
resolution [8, 9, 10, 11, 12], which can have many possible sources [13, 14]
but increasingly favours early-time modifications [15, 16].

1.2. Early Dark Energy

One proposed class of solutions to the Hubble tension is models of EDE
(the name was coined in Ref. [17] and early works include Refs. [18, 19, 20,
21], followed by many others, e.g. see Refs. [22, 23, 24, 25, 26, 27, 28, 29, 30,
3, 31, 32, 33, 34, 35, 36, 37, 38, 13, 39, 2, 40, 41, 42, 43, 44, 45, 46]). These
involve an injection of energy in the dark energy sector at around the time
of matter-radiation equality, which then is diluted or otherwise decays away
faster than the background energy density, such that it becomes negligible
before it can be detected in current CMB observations. As briefly reviewed
below, such models result in a slight change in the expansion history of the
Universe, bumping up the value of the Hubble constant.

It has previously been concluded [11, 13, 14] that EDE models are most
likely to source a theoretical resolution to the Hubble tension. One reason for
this is that EDE can effect substantial modifications toH0 without significant
effect on other cosmological parameters, which are tightly constrained by
observations2. In particular, EDE models can be incorporated into existing
scalar-field models of inflation and late-time dark energy; one example of the
latter is the model detailed in this work.

1Additionally, a closer study of SN-Ia results indicates the presence of a decreasing trend
in H0 with increasing redshift within datasets as well as between them [8, 9], suggesting
that the cause, whether systematic measurement error or theoretical, affects both datasets.
Since there are likely to be fewer systematic errors that would affect both Planck and the
cosmic distance ladder, this slightly increases the likelihood that theory holds the answer.

2Models which modify other cosmological parameters are often unable to reconcile their
changes with current observational constraints on said parameters (see Refs. [13], [47] for
a comprehensive review).
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However, precisely because EDE models exist so close in time to exist-
ing observational data, they are subject to significant constraints; the pri-
mary consideration being that EDE must be subdominant at all times and
must decay away fast enough to be essentially negligible at the time of last
scattering, translating to a redshift rate that is faster than radiation [19].
So far, in previous works in EDE, this has been achieved via a variety of
mechanisms, such as first or second-order phase transitions (e.g. [33], [39]).
These abrupt events might have undesirable side-effects such as inhomo-
geneities from bubble collisions or topological defects. Other popular models
[2, 13, 18, 19, 33, 34, 35, 36, 37, 38, 39] typically feature oscillatory behaviour
to achieve the rapid decay rate necessary for successful EDE. In this case,
as with the original proposal in Ref. [18], the EDE field is taken to oscillate
around its vacuum expectation value (VEV) in a potential minimum which
is tuned to be of order higher than quartic. As a result, its energy density
decays on average as ∝ a−n, with 4 < n < 6. In contrast, in our model, the
EDE scalar field experiences a period of kinetic domination, where the field
is in non-oscillatory free-fall and its density decreases as ρ ∝ a−6, exactly
rather than approximately.

Before continuing, we briefly explain how EDE manages to increase the
value of H0 as from CMB observations.

Measurements of the CMB temperature anisotropies provide very tight
constraints on a number of cosmological parameters. One would therefore
think that this severely limits models which alter the Universe content and
dynamics at this time. However, this is not the case for models that af-
fect both the Hubble parameter and the comoving sound horizon rs (in this
case during the drag epoch, shortly after recombination) while keeping the
precisely-determined [6] angle subtended by the sound horizon at last scat-
tering θs unchanged. We remind the reader that the comoving sound horizon
is given by

rs =

∫ ∞

zd

cs(z)

H(z)
dz, (3)

where cs(z) is the sound speed of the baryon-photon fluid and H(z) is the
Hubble parameter, both as a function of redshift. An additional amount of
dark energy in the Universe increases the total density, which in turn in-
creases the Hubble parameter because of the Friedmann equation ρ ∝ H2.
EDE briefly causes such an increase at or before matter-radiation equality,
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which lowers the value of the sound horizon because it increases H(z) in
Eq. (3), leading to a larger value of H0. This logic takes advantage of the
fact that BAO measurements do not constrain the value of the sound horizon
directly, but the combination H(z)rs [48]. The same stands for CMB data,

since the observations of the Planck satellite measure the quantity θ∗ ≡ rs(z∗)
D∗

[49], the angular scale of the sound horizon; given by ratio of the comoving
sound horizon to the angular diameter distance at which we observe fluctua-
tions. Both of these measurements entail an assumption of ΛCDM cosmology
and can be shown to be equally constrained by other models, provided that
they make only small modifications which simultaneously lower the value of
rs and increase H0.

EDE may have a significant drawback in that it does not address the σ8

tension (associated with matter clustering) and might in fact exacerbate it
[11, 50, 51, 52]. However, recently several classes of models have emerged
that alleviate both of these tensions simultaneously. These are axion models
of coupled EDE and dark matter [53, 54, 55, 56, 57]. It is conceivable that
an α-attractor model such as ours could feature a similar interaction term. 3

1.3. α-attractors

Our model unifies EDE with late DE in the context of α-attractors4. α-
attractors [58, 59, 60, 61, 62, 63, 64, 65, 66] appear naturally in conformal field
theory or supergravity theories. They are a class of models whose inflation-
ary predictions continuously interpolate between those of chaotic inflation
[67] and those of Starobinsky [68] and Higgs inflation [69]. In supergravity,
introducing curvature to the internal field-space manifold can give rise to a
non-trivial Kähler metric, which results in kinetic poles for some of the scalar
fields of the theory. The free parameter α is inversely proportional to said
curvature. It is also worth clarifying what is meant by the word “attractor”.
It is used to refer to the fact that the inflationary predictions are largely in-
sensitive of the specific characteristics of the potential under consideration.
Such an attractor behaviour is seen for sufficiently large curvature (small α)
in the internal field-space manifold.

3Moreover, tentative results indicate that previously neglected effects in galactic mod-
elling may actually be responsible for the σ8 tension.

4Earlier attempts for such unification in the same theoretical context can be found in
Refs. [1, 4].
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In practical terms, the scalar field has a non-canonical kinetic term, fea-
turing two poles, which the field cannot transverse. To aid our intuition, the
field can be canonically normalised via a field redefinition, such that the finite
poles for the non-canonical field are transposed to infinity for the canonical
one. As a result, the scalar potential is “stretched” near the poles, result-
ing in two plateau regions, which are useful for modelling inflation, see e.g.
Refs. [70, 71, 72, 73, 74, 75], or quintessence [76], or both, in the context of
quintessential inflation [76, 77, 78].

Following the standard recipe, we introduce two poles at φ = ±
√
6αmP

by considering the Lagrangian

L =
−1

2
(∂φ)2

(1− φ2

6αm2
P
)2

− U(φ) , (4)

where φ is the non-canonical scalar field and we use the short-hand notation
(∂φ)2 ≡ gµν∂µφ∂νφ. We then redefine the non-canonical field in terms of
the canonical scalar field ϕ as

dϕ =
dφ

1− φ2

6αm2
P

⇒ φ = mP

√
6α tanh

(
ϕ√

6αmP

)
. (5)

It is obvious that the poles φ = ±
√
6αmP are transposed to infinity.

In terms of the canonical field, the Lagrangian now reads

L = −1

2
(∂ϕ)2 − V (ϕ), (6)

where V (ϕ) = U
(
mP

√
6α tanh

(
ϕ√

6αmP

))
.

1.4. Quintessence

“Early” dark energy is so named in order to make it distinct from “late”
dark energy, which is the original source of the name (and often just called
dark energy). In cosmological terms the latter is just beginning to dominate
the Universe at present, making up approximately 70% of the Universe’s
energy density [79]. This is the mysterious unknown substance that is re-
sponsible for the current accelerating expansion of the Universe and has an
equation-of-state (barotropic) parameter of w = −1.03± 0.03 [6].
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Late DE that is due to an (as-yet-undiscovered) scalar field is called
quintessence [80], so-named because it is the fifth element making up the
content of the Universe 5. In this case, the Planck-satellite bound on the
barotropic parameter of DE is −1 ≤ w < −0.95 [6]. Quintessence can
be distinguished from a cosmological constant because a scalar field has a
variable barotropic parameter and can therefore exhibit completely different
behaviour in different periods of the Universe’s history. In order to get it to
look like late-time DE, a scalar field should be dominated by its potential
density, making its barotropic parameter sufficiently close to −1. It is useful
to consider the CPL parametrization, which is obtained by Taylor expanding
w(z) near the present as [81, 82]

w(z) = w0 + wa
z

z + 1
, (7)

where wa ≡ −(dw/da)0. The Planck satellite observations impose the bounds
[6]

−1 ≤ w0 < −0.95 and wa = −0.29+0.32
−0.26. (8)

2. The Model

2.1. Lagrangian and Field Equations

We consider a potential of the form

U(φ) = VX exp
(
−λeκφ/mP

)
, (9)

where
VΛ ≡ exp

(
−λeκ

√
6α
)
VX , (10)

and α, κ, λ are dimensionless model parameters, VX is a constant energy
density scale and φ is the non-canonical scalar field with kinetic poles given
by the typical alpha attractors form (see Ref. [62]) with a Lagrangian density
given by Eq. (4). In the above, VΛ is the vacuum density at present6. To assist
our intuition, we switch to the canonically normalised (canonical) scalar field
ϕ, using the transformation in Eq. (5). In terms of the canonical scalar field,

5After baryonic matter, dark matter, photons and neutrinos.
6The model parameter is VX and not VΛ, the latter being related to VX and the

remaining model parameters via Eq. (10).
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the Lagrangian density is then given by Eq. (6), where the scalar potential
is

V (ϕ) = exp
(
λeκ

√
6α
)
VΛ exp

[
−λeκ

√
6α tanh(ϕ/

√
6αmP)

]
. (11)

As usual, the Klein-Gordon equation of motion for the homogeneous
canonical field is

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (12)

where the dot and prime denote derivatives with respect to the cosmic time
and the scalar field respectively, and we assumed that the field was ho-
mogenised by inflation, when the latter overcame the horizon problem.

2.2. Shape of Potential and Expected Behaviour

Henceforth we will discuss the behaviour of the EDE scalar field in terms
of the variation, i.e. movement in field space, of the canonical field.

2.3. Asymptotic forms of the scalar potential

We are interested in two limits for the potential in Eq. (11): ϕ → 0 (φ →
0) and ϕ → +∞ (φ → +

√
6αmP ). The first limit corresponds to matter-

radiation equality. In this limit, the potential is

Veq ≃ exp
[
λ(eκ

√
6α − 1)

]
VΛ exp(−κλϕeq/mP) , (13)

where the subscript ‘eq’ denotes the time of matter-radiation equality when
the field unfreezes. It is assumed that the field was originally frozen there.
We discuss and justify this assumption in Sec. 5.

After unfreezing, it is considered that the field has not varied much, for
the above approximation to hold, i.e.,

0 ≲ ϕeq ≪
√
6αmP . (14)

This is a reasonable assumption given that the field begins shortly before
matter-radiation equality frozen at the origin, unfreezing at some point dur-
ing this time 7.

7There is no suggestion in the EDE literature [2, 13, 18, 19, 33, 34, 35, 36, 37, 38, 39]
that the field has to unfreeze at any particular time, as long as it does not grow to larger
than the allowed fraction and its energy density is essentially negligible by the time of
decoupling.
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At large ϕ (i.e. ϕ → ∞), the non-canonical field is near the kinetic pole
(φ → +

√
6αmP). Then the potential in this limit is

V0 ≃ VΛ

[
1 + 2κλeκ

√
6α
√
6α exp

(
− 2ϕ0√

6αmP

)]
, (15)

which, even for sub-Planckian total field excursion in ϕ, should be a good
approximation for sufficiently small α. The subscript ‘0’ denotes the present
time8.

Canonical Potential

Approximation at Low Field Values

Approximation at High Field Values

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-120

-119

-118

-117

-116

-115

ϕ

mP
√
(6 α)

lo
g
V
(ϕ
)

m
P4

VΛ
mP
4
= 10-120.068

α =0.0002

κ=200

λ=0.01

Figure 1: Graph of the canonical potential and its two approximations for small and large
field values, given in Eqs. (13), (15) respectively. These approximations are useful because
they are simple exponential potentials with well-known attractors. It can be readily seen
that, after leaving the origin, the field jumps off a potential plateau and is free-falling as
a result.

The above approximations describe well the scalar potential near equality
and the present time, as shown in Fig. 1. As we explain below, in between
these regions, the scalar field free-falls and becomes oblivious of the scalar

8Note that, as the field becomes sufficiently large, the potential approaches the positive
constant VΛ, which corresponds to non-zero vacuum density with w = −1, as in ΛCDM.
Thus, our model outperforms pure quintessence (with −1 < w < −0.95 [6]), which can
push H0 to lower instead of higher values [83, 84].
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potential as the term V ′(ϕ) in its equation of motion (12) becomes negligible.

2.3.1. Expected Field Behaviour

Here we explain the rationale behind the mechanism envisaged. We make
a number of crude approximations, which enable us to follow the evolution
of the scalar field, but which need to be carefully examined numerically. We
do so in the next section.

First, we consider that originally the field is frozen at zero (for reasons
explained in Section 5). Its energy density is such that it remains frozen there
until equality, when it thaws following the appropriate exponential attractor,
since Veq in Eq. (13) is approximately exponential [85]. Assuming that this
is the subdominant attractor requires that the strength of the exponential is
[86, 87]

Z ≡ κλ >
√
3 . (16)

The subdominant exponential attractor dictates that the energy density of
the rolling scalar field mimics the dominant background energy density.
Thus, the density parameter of the field is constant, given by the value
[85, 86, 87]

Ω eq
ϕ ≃ 3

Z2
=

3

(κλ)2
< 1 (17)

This provides an estimate of the moment when the originally frozen scalar
field, unfreezes and begins rolling down its potential. Unfreezing happens
when Ωϕ (which is growing while the field is frozen, because the background
density decreases with the expansion of the Universe) obtains the above value.

However, after unfreezing, the field soon experiences the full exp(exp)
steeper than exponential potential so, it does not follow the subdominant
attractor any more but it free-falls, i.e., its energy density is dominated by
its kinetic component, such that its density scales as ρϕ ≃ 1

2
ϕ̇2 ∝ a−6, until

it refreezes at a larger value ϕF . This value is estimated as follows.
In free-fall, the slope term in the equation of motion (12) of the field is

negligible, so that the equation is reduced to ϕ̈+ 3Hϕ̇ ≃ 0, where H = 2/3t
after equality. The solution is

ϕ(t) = ϕeq +
C

teq

(
1− teq

t

)
, (18)

where C is an integration constant. From the above, it is straightforward to
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find that ϕ̇ = Ct−2. Thus, the density parameter at equality is

Ω eq
ϕ =

ρϕ
ρ

∣∣∣∣
eq

=
1
2
C2t−4

eq

4
3
(mP

teq
)2

=
3

8

C2

(mP teq)2

⇒ C =
√

8
3
Ω eq

ϕ mP teq =

√
8

κλ
mP teq , (19)

where we used Eq. (17), ρϕ ≃ 1
2
ϕ̇2 and that ρ = 1/6πGt2 = 4

3
(mP/t)

2. Thus,
the field freezes at the value

ϕ0 = ϕeq + C/teq = ϕeq +

√
8

κλ
mP , (20)

where we considered that teq ≪ tfreeze < t0 .
Using that teq ∼ 104 y and t0 ∼ 1010 y, we can estimate

Veq

V0

≃
Ωeq

ϕ ρeq

0.7 ρ0
≃ 30

7(κλ)2

(
t0
teq

)2

≃ 3

7(κλ)2
× 1013 .

(21)

Now, from Eqs. (13), (15) we find

Veq

V0

≃ eλ(e
κ
√
6α−1) exp(−κλϕeq/mP )

1 + 2κλ eκ
√
6α
√
6α exp

(
−2ϕ0/

√
6αmP

) . (22)

In view of Eqs. (14), (20), the above can be written as

Veq

V0

≃ eλ(e
κ
√
6α−1)

1 + 2κλ eκ
√
6α
√
6α e−2

√
8/κλ

√
6α

. (23)

Taking Ω eq
ϕ ≃ 0.1 as required by EDE, Eq. (17) suggests

κλ ≃
√
30 . (24)

Combining this with Eq. (21) we obtain

e
√
30
κ

(eκ
√
6α−1) ∼ 1012/7 , (25)

where we have ignored the second term in the denominator of the right-hand-
side of Eq. (23).
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From the above we see that, κ is large when α is small. Taking, as an
example, α = 0.01 we obtain κ ≃ 18 and λ ≃ 0.30 (from Eq. (24)). With
these values, the second term in the denominator of the right-hand-side of
Eq. (23), which was ignored above, amounts to the value 3.2. This forces a
correction to the ratio Veq/V0 of order unity, which means that the order-of-
magnitude estimate in Eq. (25) is not affected.

Using the selected values, Eq. (20) suggests that the total excursion of
the field is

∆ϕ = ϕ0 − ϕeq =

√
8

κλ
mP ≃ 0.5mP , (26)

i.e. it is sub-Planckian. In the approximation of Eq. (13), we see that the
argument of the exponential becomes κλ∆ϕ/mP ≃ 2.7 > 1, where we used
Eq. (24). This means that the exponential approximation breaks down and
the exp(exp) potential is felt as considered, as depicted also in Fig. 1.

For small α, the eventual exponential potential in Eq. (15) is steep, which
suggests that field rushes towards the minimum at infinity. However, the
barotropic parameter is w ≈ −1 because the potential is dominated by the
constant VΛ.

2.4. Tuning requirements

Our model addresses in a single shot two cosmological problems: firstly,
the Hubble tension between inferences of H0 using early and late-time data;
and secondly, the reason for the late-time accelerated expansion of the Uni-
verse; late DE. However, it is subject to some tuning. Namely, the two free
parameters κ and λ, the intrinsic field-space curvature dictated by α, and
the scale of the potential introduced by VΛ.

As we have seen κ and λ seem to take natural values, not too far from
order unity. Regarding α we only need that it is small enough to lead to rapid
decrease of the exponential contribution in the scalar potential in Eq. (15),
leaving the constant VΛ to dominate at present. We show in the next section
that α ∼ 10−4 is sufficient for this task. This leaves VΛ itself.

The required tuning of this parameter is given by VΛ =
(

HPlanck
0

HSH0ES
0

)2

V Planck
Λ ,

where V Planck
Λ = ΩΛρ0. Since

(
HPlanck

0

HSH0ES
0

)2

≃ (67.44
73.04

)2 = 0.8525 we see that the

required fine-tuning of our VΛ is not different from the fine-tuning introduced
in ΛCDM. However, in contrast to ΛCDM, our proposal addresses two cos-
mological problems; not only late DE but also the Hubble tension.
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3. Numerical Simulation

In order to numerically solve the background dynamics of the system, it
is enough to solve for the scale factor a(t), the field ϕ(t) and the background
perfect fluid densities ρm(t) and ρr(t) (of matter and radiation respectively),
as every other quantity depends on these. They are governed by the Fried-
mann equation, the Klein-Gordon equation and the continuity equations re-
spectively. Of course, the Klein-Gordon equation is a second order ordinary
differential equation, while the continuity equations are first order so that we
need the initial value and velocity of ϕ and just the initial value of ρm and ρr
as initial conditions. As described above, the field starts frozen and unfreezes
around matter-radiation equality. Effectively, this means using ϕini = 0 and
ϕ̇ini = 0 as initial conditions, while the initial radiation and matter energy
densities are chosen to satisfy the bounds obtained by Planck [6] at matter-
radiation equality, i.e., scaled back from ρm(teq) = ρr(teq) = 1.27×10−110m4

P,
at some arbitrary redshift zini = 104.

For convenience, we rewrite the equations in terms of the logarithmic
energy densities ρ̃m(t) = ln (ρm(t)/m

4
P) and ρ̃r(t) = ln (ρr(t)/m

4
P). Plugging

the first Friedmann equation in the Klein-Gordon equation, gives

ϕ̈(t) +

√
3ρ(t)

mP

ϕ̇(t) +
dV

dϕ
= 0, (27)

˙̃ρm(t) +

√
3ρ(t)

mP

= 0, (28)

˙̃ρr(t) +
4

3

√
3ρ(t)

mP

= 0, (29)

where 3m2
PH

2(t) = ρ(t) = ρϕ(t) + [ exp(ρ̃m(t)) + exp(ρ̃r(t))]m
4
P and ρϕ(t) =

K(ϕ(t)) + V (ϕ(t)) where K(ϕ(t)) = 1
2
ϕ̇2(t) and V (ϕ(t)) is given by Eq. (11).

As mentioned in Section 5, we assume the field to be initially frozen at an
ESP, such that it could have been the inflaton or a spectator field at earlier
times. The time of unfreezing is then controlled only by the parameters of
the potential.

The simulation is terminated when the density parameter of the field
becomes equal to the density parameter of dark energy today ΩΛ = 0.6889
[6].
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Parameter to
be constrained

Source Description Constraint

Density parameter

of the field at equal-

ity

EDE liter-

ature [35]
Upper limit such

that structure

formation is not

impeded and lower

limit such that

EDE actually has

an effect

0.015 ≤ Ω eq
ϕ < 0.107

Density parameter

of the field at last

scattering

EDE liter-

ature [19]
Upper bound such

that EDE cannot

currently be de-

tected in the CMB

Ω ls
ϕ < 0.015

Density parameters

of the field at last

scattering and

equality

Theoretical Consistency check Ω eq
ϕ > Ω ls

ϕ

Density parameter

of the field today

Planck

2018 [6]

Observational 0.6833 ≤ Ω0
ϕ ≤ 0.6945

Barotropic parame-

ter of the field to-

day

Planck

2018 [6]

Observational −1 ≤ w0
ϕ ≤ −0.95

Running of the

barotropic parame-

ter today

Planck

2018 [6]

Observational −0.55 ≤ wa
ϕ ≤ 0.03

Hubble constant in

units of km/s/Mpc

SH0ES

2021 [5]

Observational 72.00≤H0≤74.08

Total Field Excur-

sion

Theoretical Sub-Planckian

field excursion to

minimise fifth-force

problems and avoid

excessive radiative

corrections to the

potential

ϕ0 − ϕeq < mP

Table 1: Table describing and justifying constraints used to identify the viable parameter

space. In the above, wa
ϕ = − dwϕ

da

∣∣∣
0
, cf. Eq. (8).
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4. Results and analysis

4.1. Parameter Space

We perform a scan of the parameter space of the theory, at the back-
ground level, imposing the conditions in Table 1. We report our findings
in Fig. 2, Fig. 3. We find that our model is succesful for κ ∼ 102 and
λ ∼ 10−3− 10−2, which are rather reasonable values. In particular, the value
of κ suggests that the mass-scale which suppresses the non-canonical field
φ in the original potential in Eq. (9) is near the scale of grand unification
∼ 10−2mP. Regarding the curvature of field space we find α ∼ 10−4, which
again is not unreasonable.
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VΛ

mP
4

= 10-120.068,

0 < λ < 0.027

Figure 2: Parameter space slice in the κ − α plane with 0 < λ < 0.027 and VΛ =
10−120.068m4

P. The blue dotted line is the boundary of the region that produces non-
inflationary results (see below), while the orange region is constituted by the successful
points, i.e., those for which the constraints detailed in Table 1 are satisfied. Note that the
region bounded in blue is not equal to the range of the scan, which is 0 ≤ κ ≤ 700 and
0 ≤ α ≤ 0.00071. This is because points with potential larger than a certain starting value
result in the field beginning the simulation dominant, which means that the Universe goes
into inflation which cannot terminate and will never lead to successful EDE. These points
are very close to the viable parameter space for these two parameters and therefore must
be thrown away.

The viable parameter space suggests that κλ >
√
3, which contradicts our

assumption in Eq. (16). This implies that, unlike the analytics in Sec. 2.3.1,
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Figure 3: Parameter space slice in the λ−α plane with 0 < κ < 700 (left) and in the λ−κ
plane with 0 < α < 0.00071 (right), both with VΛ = 10−120.068m4

P. The orange region is
constituted by the successful points, i.e., those for which the constraints detailed in Table
1 are satisfied.

the field does not adopt the subdominant exponential scaling attractor but
the slow-roll exponential attractor, which leads to domination [85, 87]. As the
field thaws and starts following this attractor, the approximation in Eq. (13)
breaks down as the field experiences the full exp(exp) potential, which is
steeper than the exponential (see Fig. 1). Consequently, instead of becom-
ing dominant the field free-falls. This contradiction with our discussion in
Sec. 2.3.1 is not very important. The existence of the scaling attractor pro-
vided an easy analytic estimate for the moment when the field unfreezes.
It turns out that, because the scaling attractor has been substituted by the
slow-roll attractor, the field unfreezes because its potential energy density
becomes comparable to the total energy density, going straight into free-fall.
It is much harder to analytically estimate when exactly this takes place, but
the eventual result (free-fall) is the same.

We obtain that the matter-radiation equality redshift is zeq ≃ 4000, larger
than the Planck value zeq = 3387±21 [6]. It should be however noted that, in
our simplified background analysis, we use the Planck matter density param-
eter Ωm.0 = 0.3111 ± 0.0056 with the SH0ES value for the Hubble constant
H0 = 73.04±1.04 km/s/Mpc, which is bound to give a value for ωm = Ωm,0h

2

incompatible with Planck. A simple back-of-the-envelope calculation shows

that there is a factor of
(

hSH0ES

hPlanck

)2

=
(
0.73
0.67

)2
= 1.187 difference, which leads

to a new zupdatedeq + 1 = (1.18)1/3(zeq + 1), i.e., resulting in zupdatedeq ≃ 3500.
This pushes zeq to higher values, closer to our findings. We emphasize, how-
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ever, that a full fit to the CMB data is required in order to obtain the actual
value for zeq derived from our model. In contrast, the redshift of last scat-
tering is where we would expect it at zls ≃ 1087. Theoretical constraints
suggest zls ≃ 1090 [88], and the observations of the Planck satellite suggest
zls = 1089.80± 0.21 [6]. We note here that the best-fit values for the cos-
mological parameters from ΛCDM are expected to somewhat change when
incorporating EDE. In this way, the constraints in Table 1 should be consid-
ered as approximate only.

4.2. Field Behaviour

The field behaves as expected, with the mild modification of the attractor
solution at unfreezing (slow-roll instead of scaling), which leads to free-fall.
The evolution is depicted in Fig. 4, Fig. 5 for the example point at α =
0.0005, κ = 145, λ = 0.008125, and VΛ tuned to the SH0ES cosmological
constant [5]. The observables obtained in this case (i.e. the values of H0, w0

and wa) are shown in Table 2. The behaviour of the Hubble parameter is a
function of redshift as can be seen in the left panel of Fig. 4.
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Figure 4: Left: The Hubble parameter (in units of km s−1Mpc−1) of a universe with
an EDE/quintessence field (green), a ΛCDM universe (black), and one with only matter
and radiation (blue), as a function of redshift (top) and e-folds (bottom) elapsed since
the beginning of the simulation. The presence of the field leads to a higher value of H0

than in the ΛCDM scenario. Right: The logarithmic densities of matter (dot-dashed
red), radiation (dotted orange), the sum of both (solid blue) and the scalar field (dashed
green), as a function of redshift (top) and e-folds (bottom) elapsed since the beginning
of the simulation, for α = 0.0005, κ = 145, λ = 0.008125, and VΛ = 10−120.068m4

P. The
horizontal solid line represents the SH0ES energy density of the Universe at present. The
EDE scalar field becomes momentarily subdominant near equality, then redshifting away
faster than radiation to become negligible at decoupling.
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Figure 5: Left: The density parameter of the scalar field, for α = 0.0005, κ = 145, λ =
0.008125, and VΛ = 10−120.068m4

P, as a function of redshift (top) and e-folds (bottom)
elapsed since the beginning of the simulation. The density parameter experiences a bump
with fEDE = Ωϕ(zeq) ≲ 0.1, before the EDE redshifting away and refreezing to become
dark energy today. Right: Barotropic parameter of the scalar field (dotted green), of the
background perfect fluid (solid blue) and of the sum of both components (solid black),
for α = 0.0005, κ = 145, λ = 0.008125, and VΛ = 10−120.068m4

P. It is apparent that the
scalar field becomes immediately kinetically dominated (wϕ = 1) after thawing, remaining
in freefall until it refreezes again.

As shown in Table 1, the maximum allowed value of the EDE density
parameter at equality is just over 0.1. However, it is possible that this is too
lenient a constraint because unlike the models for which this constraint was
developed, our model has a true free-fall period, which means it redshifts
away exactly as a−6 rather than below this rate as in oscillatory behaviour
(see the right panels of Fig. 4, Fig. 5)9. Note that for oscillating EDE in a
potential V ∝ ϕ2n, as the original EDE [37], there is a limit n < 3 (n < 5) for
matter (radiation) domination. This is because for n > 3 (n > 5) there exists
an scaling attractor ϕ ∝ t1/(1−n), which means that oscillations are impeded
[90, 91]. Recently, a similar result was found in Ref. [23], where it is shown
that the data favours 2 ≲ n ≲ 3.4 at the 68% C.L. Since EDE typically
unfreezes around matter-radiation equality, this implies that the density of
oscillating EDE cannot decrease faster than ρϕ ∝ a−9/2, i.e., not as fast as
true free-fall, where ρϕ ∝ a−6 as we obtain.

At present, the exponential contribution to the potential density in Eq. (15)
is largely subdominant to VΛ, so the contribution of the scalar field to the

9A more accurate constraint of ∼ 0.086 for non-oscillatory models is provided in
Ref. [89], which does not significantly narrow our allowed parameter space.
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Constraint Example Value
0.015 ≤ Ω eq

ϕ < 0.107 0.05178

Ω ls
ϕ < 0.015 0.001722

Ω eq
ϕ > Ω ls

ϕ YES

0.6833 ≤ Ω0
ϕ ≤ 0.6945 0.6889

−1 ≤ w0
ϕ ≤ −0.95 -1.000

−0.55 ≤ wa
ϕ ≡ − dwϕ

da

∣∣∣
0
≤ 0.03 −4.850× 10−11

72.00 ≤ H0

km s−1Mpc−1 ≤ 74.08 73.27

κλ 1.178

(ϕ0 − ϕeq)/mP < 1 0.4274

Table 2: Table giving the constraints and their corresponding values for an example point,
α = 0.0005, κ = 145, λ = 0.008125, and VΛ tuned to the SH0ES cosmological con-
stant, in the viable parameter space. The Hubble constant obtained in this example is
H0 = 73.27 km/s Mpc.

total density budget is almost constant, as in ΛCDM. Its barotropic param-
eter is, therefore, wϕ ≈ −1 (see the right panel of Fig. 5). Technically, it is
not exactly -1 but its running is negligible, with the viable parameter space
for wa fitting easily within the constraint in Eq. (8) by some ten orders of
magnitude (see Table 2).

5. Initial Conditions

Our model accounts for both EDE and late-time dark energy in a non-
oscillatory manner (in contrast to Ref. [2]). The field is frozen at early
times, thawing just before matter-radiation equality when its density grows
to nearly 0.1 of the total value (see left panel of Fig. 5), as set by constraints
in Ref. [35]. A steep exp(exp) potential then forces the field into free-fall,
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causing its energy density to dilute away as ρϕ ∝ a−6. After this, the field hits
the asymptote of the exponential decay and refreezes, becoming dominant at
present (see the right panel of Fig. 4).

Thus, we achieve DE-like behaviour at the present day by ensuring that
the field refreezes after its period of free-fall, therefore remaining at a constant
energy density equal to the value of the potential density at that point.
Although this constant potential density is initially negligible, the expansion
of the Universe causes the density of matter to decrease. Because the field
refreezes at a potential density that is comparable to the density of matter
at present, the field starts to become dominant at the present day. Once it
begins to dominate the Universe, the field thaws again, but the density of
the Universe is dominated by a constant contribution VΛ, as with ΛCDM.

The obvious question is why our scalar field finds itself frozen at the origin
in the first place. One compelling explanation is the following.

We assume that the origin is an enhanced symmetry point (ESP) such
that, at very early times, an interaction of φ with some other scalar field
χ traps the rolling of φ at zero. The idea follows the scenario explored in
Ref. [92]. In this scenario, the scalar potential includes the interaction

∆V =
1

2
g2φ2χ2 , (30)

where the coupling g < 1 parametrises the strength of the interaction. Note
that here φ is the non-canonical scalar field, appearing in the Lagrangian in
Eq. (4), related to its canonical version ϕ via Eq. (5). It is also featured in
our potential, when it is first introduced in Eq. (9).

We assume that initially φ is rolling down its steep potential10. Then, the
interaction in Eq. (30) provides a modulated effective mass-squaredm2

eff = g2φ2

to the scalar field χ. When φ crosses the origin, this effective mass be-
comes momentarily zero. If the variation of the φ field (i.e. the speed |φ̇| in
field space) is large enough, then there is a window around the origin when
|ṁeff | ≫ m2

eff (because, |φ̇| ≫ φ2 ≃ 0). This violates adiabaticity and leads
to copious production of χ-particles [92]11.

10Far away from the origin, the scalar potential V (φ) does not have to be of the form in
Eq. (9). In fact, it is conceivable that φ might play the role of the inflaton field too (see
Appendix A).

11Near the origin, when φ ≃ 0, the φ-field is approximately canonically normalised, as
suggested by Eq. (5), so the considerations of Ref. [92] are readily applicable.
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As the field moves past the ESP, the produced χ particles become heavy,
which takes more energy from the φ field, producing an effective potential
incline in the direction the φ field is moving. Indeed, the particle production
generates an additional linear potential∼ g|φ|nχ [92], where nχ is the number
density of the produced χ-particles. This number density is constant because
the duration of the effect is much smaller than a Hubble time, so that we can
ignore dilution from the Universe expansion. The rolling φ field climbs up
the linear potential until its kinetic energy density is depleted. Then the field
momentarily stops and afterwards reverses its motion (variation) back to the
origin. When crossing the origin again, there is another bout of χ-particle
production, which increases nχ and makes the linear potential steeper to
climb. This time, φ variation halts at a value closer to the origin. Then,
the field reverses its motion and rushes through the origin again. Another
outburst of χ-particle production steepens the linear potential further. The
process continues until the φ-field is trapped at the origin [87, 92].

The trapping of a rolling scalar field at an ESP can take place only if the
χ-particles do not decay before trapping occurs.

If they did, the nχ would decrease and the potential g|φ|nχ would not
be able to halt the motion (variation) of the φ-field. The end result of this
process is that all the kinetic energy density of the rolling φ has been given to
the χ-particles. Now, since φ is trapped at the origin, the effective mass of the
χ-particles is zero, which means that they are relativistic matter, with density
scaling as ρχ ∝ a−4. As far as φ is concerned, it is trapped at the origin and
its density is only ρφ = V (φ = 0) = e−λVX =constant (cf. Eq. (9)).
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Figure 6: Schematic log-log plot depicting the evolution of the density of the scalar field
ρϕ (solid blue line) and the density of radiation and matter ρr + ρm (dashed red line) in
the case when the decay of the kinetic energy density of the trapped scalar field generates
the thermal bath of the hot Big Bang (as in Ref. [93]). Originally the ϕ-field is rushing
towards the minimum of the potential, dominated by its kinetic density, so that ρϕ ∝ a−6

(free-fall). When it crosses the enhanced symmetry point (ESP) its interaction to the χ-
field (cf. Eq. (30)) traps the rolling ϕ-field at the ESP while all its kinetic energy is given
to χ-particles, which soon decay into the radiation and matter of the hot Big Bang (the
decay is assumed to be quick, just after trapping). Afterwards, the ϕ-field stays frozen,
with energy density V (ϕ = 0) = e−λVX (cf. Eq. (9)) until much later, when its potential
density is comparable to the background. Then it unfreezes before dominating, acting as
early dark energy at the time near matter-radiation equality, and subsequently free-falls
to its value ϕ0, with potential density approximately VΛ =constant. The field stays there
until the present when it dominates the Universe and becomes late dark energy.

After some time, it may be assumed that the χ-particles do eventually
decay into the standard model particles, which comprise the thermal bath of
the hot Big Bang. The confining potential, which is proportional to nχ, dis-
appears but, we expect the φ-field to remain frozen at the origin because the
scalar potential V (φ) in Eq. (9) is flat enough there. As we have discussed,
the φ-field unfreezes again in matter-radiation equality. The above scenario
is depicted in Fig. 6

For simplicity, we have considered that, apart from the obvious violation
of adiabacity at the ESP, the χ direction is otherwise approximately flat and
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the χ-field has a negligible bare mass compared to the φ field. It would be
more realistic to consider a non-zero bare mass for the χ-particles, which
when they become non-relativistic (much later than the trapping of φ) can
safely decay to the thermal bath of the hot Big Bang, reheating thereby the
Universe, e.g. in a manner not dissimilar to Ref. [93].

The above scenario is one possible explanation of the initial condition
considered and not directly relevant to the scope of this work - we simply
assume that the field begins frozen at the origin. Other possibilities to explain
our initial condition exist, for example considering a thermal correction of
the form δV ∝ T 2φ2, which would make the origin an effective minimum of
the potential at high temperatures and drive the φ-field there.

6. Conclusions

In conclusion, we have proposed a toy model that unifies EDE and DE
via a scalar field in the context of α-attractors. We have studied the back-
ground dynamics in detail, finding that the value of the Hubble parameter,
coming from early-time data, can be raised while simultaneously explaining
the current accelerated expansion, with no more fine tuning than ΛCDM.

Our work differs from Ref. [2], in that the field is not oscillating; instead
after equality, it free-falls with energy density decreasing as ρ ∝ a−6, faster
than most EDE proposals and the fastest possible12. Although, from our
background analysis, we find a larger value of zeq than found by Planck, it
should be realised that Planck assumes a ΛCDM scenario to derive this quan-
tity and hence it may not be fully applicable to other models, particularly
one with a significant scalar field contribution at that time as in our case.
Of course, a full fit to the CMB data is needed in order to obtain the actual
zeq derived from our model.

In our proposed scenario, the scalar field lies originally frozen at the ori-
gin, until it thaws near the time of equal matter-radiation densities, when it

12Causality implies that the barotropic parameter w of a perfect fluid cannot be larger
than unity because the speed of sound of the fluid c2s = w cannot be superluminal. This
implies w ≤ 1 and so, the density of an independent perfect fluid ρ ∝ a−3(1+w) cannot
decrease faster than a−6. However, a homogeneous scalar field can be represented as a
perfect fluid with w = ρkin−V

ρkin+V , where ρkin is the kinetic energy density of the scalar field
and V the potential. It seems that w > 1 could indeed happen when the field transverses
an AdS minimum of V , such that V < 0. As a result, the density of such scalar field could
decrease faster than a−6. The scenario of such EDE has been considered in Refs. [1, 94].
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becomes EDE. Afterwards it free-falls until it refreezes at a lower potential en-
ergy density value, which provides the vacuum density of ΛCDM. We showed
that the total excursion of the field in configuration space is sub-Planckian,
which implies that our potential is stable under radiative corrections.

One explanation of our initial conditions is that the origin is an ESP. Our
scalar field is originally kinetically dominated until it is trapped at the ESP
when crossing it13. As we discuss in Appendix A, the scalar field could even
be the inflaton, which after inflation rolls down its runaway potential until
it becomes trapped at the ESP.

Our potential in Eq. (9) really serves to demonstrate that a model unifying
EDE with ΛCDM can be achieved with a suitably steep runaway potential.
With the parameters of our model assuming rather natural values, thereby
not introducing fine-tuning additional to that of ΛCDM, we show that this
is indeed possible with a simple design.

The challenge lies in constructing a concrete theoretical framework for
such a potential. Furthermore, although the background analysis is promis-
ing, a full fit to the CMB data is lacking. We plan on running a Markov Chain
Monte Carlo (MCMC) doing this in a future work. This is of paramount im-
portance since it would show what values (if any) from our a priori viable
parameter space lead to a best fit to the data.
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Appendix A. Quintessential Inflation

Is it possible that our scalar field can not only be early and late dark
energy, but also be the inflaton field, responsible for accelerated expansion
in the early Universe?

13A thermal correction to the scalar potential can have a similar effect.
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The α-attractors construction leads to two flat regions in the scalar po-
tential of the canonical field, as the kinetic poles of the non-canonical field
are displaced to infinity. This idea has been employed in the construction
of quintessential inflation models in Refs. [76, 77, 78], where the low-energy
plateau was the quintessential tail, responsible for quintessence and the high-
energy plateau was responsible for inflation.

However, if we inspect the potential in Eq. (9) at the poles φ = ±
√
6αmP,

we find that the potential for the positive pole is V (φ+) = VΛ as expected,
while for the negative pole we have V (φ−) = VΛ exp

[
2λ sinh

(
κ
√
6α

)]
. For

the values of the parameters obtained (κ ∼ 102, λ ∼ 10−3 and α ∼ 10−4) it
is easy to check that V (φ−) is unsuitable for the inflationary plateau. Thus,
our model needs to be modified to lead to quintessential inflation.

The first modification is a shift in field space such that our new field is

φ̃ = φ+ Φ , (A.1)

where Φ is a constant. The α-attractors construction applies now on the
new field φ̃ for which the Lagrangian density is given by the expression
in Eq. (4) with the substitution φ → φ̃. The poles of our new field lie at
φ̃± = ±

√
6α̃mP, where α̃ is the new α-attractors parameter.

We want all our results to remain unaffected, which means that, for the
positive pole, Eq. (A.1) suggests

φ+ =
√
6αmP = φ̃+ − Φ =

√
6α̃mP − Φ

⇒ α̃ =
1

6

(
Φ

mP

+
√
6α

)2

.
(A.2)

The above, however, is not enough. It turns out we need to modify the
scalar potential as well. This modification must be such that near the positive
pole the scalar potential reduces to the one in Eq. (9). A simple proposal is

V (φ̃) = VX exp{−2λ sinh[κ(φ̃− Φ)/mP]} , (A.3)

which indeed reduces to Eq. (9) when κ(φ̃− Φ) = κφ > mP. Note that
κ
√
6α > 1 is implied from the requirement that near the positive pole we

have κ
√
6αmP = κφ+ > mP.

The ESP discussed in Sec. 5 is now located at φ̃ = Φ, such that Eq. (30)
is now ∆V = 1

2
g2(φ̃− Φ)2χ2.14

14Near the ESP the potential does not approximate Eq. (9). However, we assume that,
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We are interested in investigating the inflationary plateau. This is gen-
erated for the canonical field near the negative pole φ̃− = −

√
6α̃mP, where

the scalar potential of the canonical field “flattens out” [62].
Assuming that Φ >

√
6αmP, we have that φ̃− − Φ = −2Φ−

√
6αmP ≃ −2Φ,

where we used Eq. (A.2). Hence, for the potential energy density of the in-
flationary plateau we obtain

Vinf = V (φ̃−) ≃VX exp[−2λ sinh(−2κΦ/mP)]

≃ exp
(
λ eκ

√
6α
)
VΛ exp[λ exp(2κΦ/mP)]

= exp
[
λ(eκ

√
6α + e2κΦ/mP)

]
VΛ ≃ VΛ exp

(
λ e2κΦ/mP

)
, (A.4)

where we used Eq. (9) and that in −2 sinh(−x) ≃ ex, when x ≫ 1.
With α-attractors, the inflationary predictions are ns = 1− 2/N and

r = 12α̃/N2 [62], where ns is the spectral index of the scalar curvature per-
turbation and r is the ratio of the spectrum of the tensor curvature pertur-
bation to the spectrum of the scalar curvature perturbation, with N being
the number of inflationary efolds remaining after the cosmological scales exit
the horizon. Typically, N = 60− 65 for quintessential inflation, which means
that ns = 0.967− 0.969, in excellent agreement with the observations [95]15.
For the tensor-to-scalar ratio the observations provide the bound r < 0.036
[100], which suggests α̃ < 0.003N2 = 10.8− 12.7.

The COBE constraint requires Vinf ∼ 10−10m4
P. Using that VΛ ∼ 10−120m4

P,
Eq. (A.4) suggests that κΦ/mP = 1

2
ln(110 ln 10/λ). Hence. the conditions

Φ >
√
6αmP and κ

√
6α > 1 suggest

1 < κ
√
6α < κΦ/mP =

1

2
ln(110 ln 10/λ) . (A.5)

Our findings in Section 4 are marginally in agreement with the above require-
ments. For example, taking α = 0.0006 and κ = 100 we find κ

√
6α = 6 and

after unfreezing, the field rolls away fast from the ESP, such that soon the exp(exp) form
of the potential becomes valid and the evolution is the one discussed in the main text of
our paper.

15It should be however noted that recent results [96, 97, 98, 99] suggest that, in the
presence of EDE, the data seems to favour larger values of ns, closer to unity. This would
somewhat undermine the use of α-attractors.
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then Eq. (A.5) suggests λ < 1.556× 10−3. We also find Φ/mP >
√
6α = 0.06,

which is rather reasonable. Then, Eq. (A.2) implies α̃ > 12α = 7.2× 10−3,
which comfortably satisfies the observational constraint on r. In fact, taking
N ≃ 60, we find r = 12α̃/N2 > α/25 = 2.4× 10−5.

The above should be taken with a pinch of salt because the approxima-
tions employed are rather crude. However, they seem to suggest that our
augmented model in Eq. (A.3) may lead to successful quintessential inflation
while also resolving the Hubble tension, with no more fine-tuning than that
of ΛCDM.16 A full numerical investigation is needed to confirm this.
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