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Abstract We consider cosmology with an inflaton scalar

field with an additional quartic kinetic term. Such a

theory can be motivated by Palatini R + R2 modified

gravity. Assuming a runaway inflaton potential, we take

the Universe to become dominated by the kinetic en-

ergy density of the scalar field after inflation. Initially,

the leading kinetic term is quartic and we call the corre-

sponding period hyperkination. Subsequently, the usual

quadratic kinetic term takes over and we have regular

kination, until reheating. We study, both analytically

and numerically, the spectrum of primordial gravita-

tional waves generated during inflation and re-entering

the horizon during the subsequent eras. We demon-

strate that the spectrum is flat for modes re-entering

during radiation domination and hyperkination and lin-

ear in frequency for modes re-entering during kination:

kinetic domination boosts the spectrum, but hyperki-

nation truncates its peak. As a result, the effects of the

kinetic period can be extended to observable frequen-

cies without generating excessive gravitational waves,

which could otherwise destabilise the process of Big

Bang Nucleosynthesis. We show that there is ample pa-

rameter space for the primordial gravitational waves to

be observable in the near future. If observed, the ampli-

tude and ‘knee’ of the spectrum will provide valuable

insights into the background theory.
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1 Introduction

The most compelling solution to the fine-tuning of the

initial conditions of the Big Bang model is the theory

of Cosmic Inflation [1,2,3,4,5,6,7]. Inflation manages

in a single shot to explain away the horizon and flat-

ness problems and also to provide the primordial den-

sity perturbations necessary for the formation of the

large-scale structure we observe in the Universe [8,9,

10,11,12,13], that is the distribution of galaxy clus-

ters and superclusters. The primordial density pertur-

bations reflect themselves onto the Cosmic Microwave

Background (CMB) radiation, through the Sachs–Wolfe

effect [14]. Precision observations [15,16] of the acoustic

peaks in the CMB primordial temperature anisotropy

have verified in spectacular detail the predictions of

Cosmic Inflation, such that the rival paradigm for struc-

ture formation (that of cosmic strings) has collapsed

[17]. Consequently, Cosmic Inflation is considered a nec-

essary addition to the concordance model, ΛCDM, to-

wards a standard model of cosmology.

Another generic prediction of Cosmic Inflation is

coming within reach of observability in the near fu-

ture. Indeed, soon after its proposal, it was realised

that Cosmic Inflation gives rise to a stochastic back-

ground of primordial gravitational waves [1,18,19,20,

21,22]. These gravitational waves (GWs) are tensor per-

turbations of the spacetime metric, generated in much

the same way as the scalar curvature perturbations be-

hind the primordial density perturbations, for which

there is overwhelming evidence in the CMB, as men-

tioned above. Because of this, great interest has been

developed in recent years for the observability of the

inflation-produced GWs either indirectly, through the

B-mode polarization of the CMB [18], or directly from

interferometers [19].
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Gravitational waves were predicted by Einstein’s

general relativity at the beginning of the twentieth cen-

tury. Almost exactly a hundred years afterwards, GWs

were directly observed by LIGO (Laser Interferometer

Gravitational-Wave Observatory) and Virgo in 2015 [23,

24]. This seminal observation heralded the birth of grav-

itational wave astronomy, which enables the study of

compact objects, such as astrophysical black holes, which

are typically shrouded by opaque accretion disks. It

also allows, in principle, a glimpse of the very early

Universe, well beyond the last-scattering surface, where

the CMB was emitted. As such, there is hope to detect

the stochastic primordial GW background from Cos-

mic Inflation. Such observations will allow the study of

inflation at scales much different than the ones which

correspond to the CMB primordial anisotropy, opening

up a new window in the understanding of fundamental

physics at extremely high energies (comparable to the

energy of grand unification), which is behind the pro-

cess of Cosmic Inflation and remains a mystery to this

day.

This has, in part, motivated a number of future GW

detection missions. In the near future, Advanced LIGO

(plus Virgo and KAGRA) [25,26,27,28,29] (LVK) and

the space interferometer LISA (Laser Interferometer

Space Antenna) [30,31,32] are coming online; the launch

date of LISA is in 2037. Another space interferome-

ter DECIGO (DECi-hertz Interferometer Gravitational

wave Observatory) [33,34,35] is also planned to be launched

in the 2030s. More are to follow, such as BBO (Big Bang

Observer) [36], a proposed successor to LISA. It seems

an ideal time to investigate GW production by inflation

and its potential observational signatures.

However, there is a challenge in the study of the

inflation-produced primordial GW background. The back-

ground signal is too weak for any currently operational

GW detector to observe, and it may be decades before

an observation can be made. Indeed, were the early Uni-

verse dominated by radiation, as assumed by the con-

cordance model, the primordial GW spectrum would

be flat, i.e. like white noise, where the GW density pa-

rameter per logarithmic frequency interval ΩGW(f) is

constant over the range of frequencies f corresponding

to the GW modes that re-enter the horizon during the

radiation dominated period (they have been pushed out

of the horizon during inflation). The constant value of

the flat spectrum is very low, and the hope of detecting

in the near future such inflation-generated primordial

GWs is little [20].

Fortunately, this is not the end of our hopes for de-

tecting primordial GWs. While there is observational

evidence of the early Universe being radiation domi-

nated, provided by the delicate process of Big Bang

Nucleosynthesis (BBN) taking place a mere few seconds

after the Big Bang itself, what the state of affairs was

before BBN is still unknown. If the Universe’s history

before BBN was not dominated by radiation, then the

primordial GW spectrum does not need to be flat. This

opens up the possibility of a boosted GW spectrum,

possible to detect even in the near future.

An early realisation of this possibility was provided

by modelling quintessential inflation [37] (see Refs. [38,

39] for recent reviews). Quintessential inflation aims

to explain in a unified way both Cosmic Inflation in

the early Universe and Dark Energy at present. Most

quintessential inflation models consider non-oscillatory

inflation [40,41] driven by a scalar field (the inflaton)

with a runaway potential, which can play the role of

quintessence at late times and explain the accelerated

expansion of the Universe at present [42,43,44,45,46,

47,48,49,50,51,52,53]. In such models, there is a pe-

riod after the end of inflation but before reheating (i.e.

the onset of the radiation era) when the kinetic en-

ergy density of the inflaton field dominates the Uni-

verse. This period is called kination [54] (see also [55,

56,57]), characterised by a stiff equation of state with

a barotropic parameter w = p/ρ = 1. For GW modes

that re-enter the horizon during kination, the spectrum

is peaked with ΩGW(f) ∝ f [58,59,60,61,62,63,64,65,

66]. Unfortunately, this peak corresponds to very high

frequencies, which will be unobservable in the near fu-

ture. Extending the period of kination does extend the

peak to lower, possibly observable frequencies, but then

the peak becomes too large and the resulting primor-

dial GWs cannot but affect and destabilise the BBN

process [58,59,67,42].

After the direct detection of GWs, there has been

much interest in considering modifications of the his-

tory of the Universe, safely before BBN, to boost the

primordial GW signal at observable frequencies. In Ref.

[68], it was shown that ΩGW(f) ∝ f−2( 1−3w
1+3w ), where w

is the barotropic parameter of the Universe (w = 1/3

for radiation domination). In Refs. [69] and [70] mod-

els were considered where there is a period of matter

domination followed by kination, which would create a

mountain-like peak in ΩGW (see also Ref. [68]). An-

other possibility is to consider a stiff period after infla-

tion that is not kination with w = 1, but has a milder

value of w ≈ 1/2 and can be extended down to observ-

able frequencies without destabilising the BBN because

the peak is not so steep as in usual kination [71]. A re-

alisation of this in hybrid inflation with a non-canonical

waterfall field was investigated in Refs. [72,73].

In this paper, we consider a different possibility, mo-

tivated by Palatini modified gravity [74,75]. The cosmo-

logical consequences of Palatini modified gravity with
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L ∝ R+R2 and a non-minimally coupled scalar field

were first considered in [76,77] in the context of infla-

tion and subsequently in [78,79,80,81,82] in the context

of quintessential inflation (see also [83,84] for reviews).

When switching to the Einstein frame, the scalar field

obtains an additional quartic kinetic term1. In most

cases considered, this term plays a negligible role in the

dynamics of the scalar field. However, there are models

for which this is not the case. We investigate in de-

tail what happens when the scalar field dominating the

Universe is governed by the quartic kinetic term in a pe-

riod we call hyperkination. We show that the barotropic

parameter of the Universe during hyperkination is the

same as that of radiation domination, w = 1/3. As

a result, in a realistic model of non-oscillatory infla-

tion with a runaway inflaton potential, we consider a

post-inflationary period of hyperkination, followed by

a period of regular kination, when the kinetic energy

of the inflaton is quadratic as usual. Kination is fol-

lowed by radiation domination after reheating. This

evolution results in a truncated peak in the GW spec-

trum, which can be safely extended down to observ-

able frequencies without destabilising BBN. We calcu-

late analytically the GW spectrum during all phases

of hyperkination, kination and radiation and we ver-

ify our findings numerically. We explore the parameter

space and show that we can obtain a boosted primor-

dial GW signal with unique characteristics, which will

be well-detectable by forthcoming observations. If such

a signal is indeed detected, it will be a strong hint of

non-canonical kinetic terms for the inflaton field from

Palatini modified gravity or some other appropriate k-

inflation or k-essence model.

The paper is organized as follows. In section 2, we

discuss the Palatini R2 models, introduce hyperkina-

tion, and embed it into the full expansion history of

the Universe. In section 3, we consider the primordial

GWs, including their initial conditions as fluctuations

of the quantum vacuum. Section 4 details our analyti-

cal computation of the GW evolution. We compare our

GW spectra to observational bounds in Section 5 and

conclude in Section 6. Throughout the paper, we use

natural units with c = ℏ = 1 and 8πG = m−2
P , where

mP = 2.43× 1018 GeV is the reduced Planck mass. The

signature of our metric is (−1,+1,+1,+1).

1In Ref. [85] it was shown that the addition of the Holst
and Holst2 terms in the usual Palatini quadratic action can
generate a modification of the higher-order kinetic term.

2 Hyperkination

2.1 Quartic kinetic terms from Palatini R2 inflation

We begin by considering a Jordan frame action in the

Palatini formulation of the form

S =

∫
d4x

√
−g
[1
2
h(φ)R+

α

2
R2 − 1

2
gµν∂µφ∂νφ

−V (φ)
]
+ Sm[gµν , ψ] , (1)

where φ is the inflation field and h(φ) is its non-minimal

coupling function, which usually assumes the form2 h(φ) =

m2
P + ξφ2. The parameter α is assumed to be positive

definite and we leave the potential V (φ) unspecified.

The symbol ψ describes other matter components. This

action was first considered in [76,77] in the context of

inflation and then in [78,79,80,81] in the context of

quintessential inflation (see also [83,84] for reviews).

In the Palatini formulation of gravity, the connec-

tion Γ and the metric gµν are independent variables.

The Ricci tensor Rµν(Γ ) only depends on the connec-

tion and the Ricci scalar is defined as R ≡ gµνRµν(Γ ).

The connection Γ can be determined by varying the ac-

tion (1) but, due to the non-minimal coupling function

h(φ) and the αR2 term, it will differ from the standard

Levi-Civita form.

Following [76,77], we can eliminate the αR2 term

by introducing an auxiliary scalar field χ ≡ 2αR. Then,

by performing a Weyl transformation of the form ḡµν =

Ω2gµν = [χ+h(φ)]gµν we bring the action to the canon-

ical form with a minimally coupled scalar field. The re-

sulting action will depend on two scalar fields: φ and χ.

However, in contrast to the usual metric formalism, the

auxiliary field χ is non-dynamical in the Palatini for-

malism. This means that one can vary the action with

respect to χ, solve the resulting constraint equation,

and then eliminate χ altogether from the action.

After this procedure, the resulting action in the Ein-

stein frame reads [76,77]

S =

∫
d4x

√
−ḡ
[m2

P

2
R̄− 1

2
(∂̄ϕ)2 +

α

4

h2 + 4αV

h2m4
P

(∂̄ϕ)4

−U
]
+ Sm[Ω

−2ḡµν , ψ] , (2)

where

U ≡ V m4
P

h2 + 4αV
, (3)

and we employed a field redefinition of the form

dϕ

dφ
=

√
h(φ)m2

P

h(φ)2 + 4αV (φ)
(4)

2Note that the non-minimal coupling ξ does not affect our
considerations in the following sections.
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in order to render the quadratic kinetic term canonical,

where the bars indicate quantities in the Einstein frame.

Note that the process of transforming from the Jordan

to the Einstein frame has generated a quartic kinetic

term3 and a modified potential U which will in gen-

eral display a plateau for growing V , approaching the

asymptotic value m4
P/(4α) [76]. Also, importantly, in

the present work, we concentrate on the early era when

the other matter components ψ are a perfect fluid of

radiation. In this limit, the coupling between the infla-

ton and the matter action in the last term of Eq. (2)

disappears [80].

Neglecting the last term for the moment, we can

rewrite the action as

S =

∫
d4x

√
−ḡ
[
m2

P

2
R̄+ P (ϕ,X)

]
, (5)

with

P (ϕ,X) = X + L(ϕ)X2 − U , (6)

where

X ≡ − (∂̄ϕ)2

2
and L(ϕ) ≡ α

4

h2 + 4αV

h2m4
P

. (7)

The action in Eq. (5) belongs to the general class of

k-inflation [89] (where inflation is kinetically driven) or

k-essence [90,91,92] (where the non-canonical kinetic

terms can behave as quintessence).4

Varying the action in Eq. (2) we can obtain the

equation of motion for ϕ, which reads [76]

[
1 + 3α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
ϕ̈+ 3

[
1 + α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
H̄ϕ̇+ 3α2 ϕ̇

4

m4
P

d

dϕ

( V
h2

)
+

d

dϕ
U = 0 . (8)

Then, from the non-zero components of the energy-

momentum tensor we can obtain the energy density and

pressure of the field, which read [94]

ρ̄ϕ =
1

2

[
1 +

3

2
α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
ϕ̇2 + U ,

p̄ϕ =
1

2

[
1 +

1

2
α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
ϕ̇2 − U .

(9)

To complete the equations of motion, the Hubble pa-

rameter can be written as

3m2
PH̄

2 = ρ̄ϕ . (10)

Again, the above equations differ from those of a stan-

dard canonical scalar field due to the higher-order ki-

netic terms. In the limit α → 0 they reduce to the

minimal case. The bars are dropped in what follows to

avoid clutter. Unless otherwise stated we always work

in the Einstein frame.

3Note that, in the context of Palatini gravity, mod-
els that contain a non-minimal derivative coupling term
Gµν∂µφ∂νφ [86] or R(µν)R

(µν) terms [87,88] in the Jordan
frame, can lead to actions similar to (2) in the Einstein frame
after applying a disformal transformation of the metric.
4In Ref. [93] it was shown that the Palatini R2 models share
common features with k-inflation models.

The plateau in U mentioned above is ideal for slow-

roll inflation, and can easily produce CMB observables

compatible with observations for simple forms of the po-

tential V [76,77]. However, it restricts the inflationary—

and thus post-inflationary—energy density to values

lower than m4
P/(4α). Unfortunately, this severely re-

stricts the parameter space considered in the follow-

ing sections. One way to overcome this problem is to

consider an α that experiences a drastic change at the

end of inflation but remains constant afterwards. This

is possible if α depends on a degree of freedom that

changes its value when inflation ends. A toy model dis-

cussing this possibility is presented in Appendix A. An-

other example of a model describing the full inflationary

history may be the one studied in Ref. [79], as long as

it is enhanded with the hybrid mechanism discused in

Appendix A. Moreover, we point out that the Palatini

R2 models considered here act as an inspiration for the

extra quartic kinetic terms in the action, but our anal-

ysis is more general, and we do not specify the details

of the inflationary part of the model.

2.2 Kinetic domination

While the quartic kinetic terms in Eq. (2) are negligible

during slow-roll inflation [76], they may play an impor-
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tant role in the post-inflationary Universe. We consider

next such a scenario; a period of kinetic domination,

where the potential V is negligible and the field rolls

forward freely. In this limit, Eqs. (8) and (10) become(
1 + 3α

ϕ̇2

m4
P

)
ϕ̈ + 3

(
1 + α

ϕ̇2

m4
P

)
Hϕ̇ = 0 ,

3H2m2
P = ρϕ , (11)

and

ρϕ =
1

2

(
1 +

3

2
α
ϕ̇2

m4
P

)
ϕ̇2 ,

pϕ =
1

2

(
1 +

1

2
α
ϕ̇2

m4
P

)
ϕ̇2 . (12)

It is instructive to change the time variable to the num-

ber of elapsing e-folds N = ln a, with dN = Hdt, and

eliminate H. We can assume ϕ̇ > 0 without loss of gen-

erality. The field time derivatives are related as5

ϕ̇ = m2
P

√
2(6m2

P − ϕ′2)

3αϕ′2
. (13)

Note that, due to the scaling with the heavily ϕ̇-dependent

H, the limit ϕ̇ → 0 corresponds to ϕ′ →
√
6mP, and

ϕ̇ → ∞ corresponds to ϕ′ → 0. Eqs. (11) and (12) be-

come

ϕ′′ =
ϕ′(6m2

P − ϕ′2)(12m2
P + ϕ′2)

6m2
P(12m

2
P − ϕ′2)

,

ρϕ =
2m6

P

αϕ′2

(
6m2

P

ϕ′2
− 1

)
,

pϕ =
2m6

P

3αϕ′2

(
6m2

P

ϕ′2
+ 1

)
− 2m4

P

9α
,

wϕ =
1

9

(
3 +

ϕ′2

m2
P

)
, (14)

where wϕ ≡ pϕ/ρϕ is the barotropic parameter of the

field. Note that α dropped out of the equation of mo-

tion: changing α rescales the time and energy density

but leaves quantities like ϕ, N , and wϕ untouched.

If ϕ̇ is small—that is, 3
2αϕ̇

2 ≪ m4
P and ϕ′ ≈

√
6mP—

the quartic extra kinetic terms are small, and Eq. (14)

give

ϕ′′ ≈ 6(
√
6mP − ϕ′) ⇒ ϕ′ ≈

√
6mP

(
1− ce−6N

)
,

ρϕ ∝ (6m2
P − ϕ′2) ∝ e−6N ∝ a−6 , wϕ ≈ 1 , (15)

where c is an integration constant and we are concerned

with the large N limit. We see that ϕ′ =
√
6mP is an

5A prime denotes a derivative with respect to N in this sec-
tion only. In the rest of the paper, it denotes a derivative with
respect to the conformal time η, dη = dt/a. As an exception,
ϕ′
0 in Eq. (17), which is used throughout the paper, is always

equal to ϕ′
0 = ϕ̇/H evaluated at the end of inflation.

attractor. It corresponds to standard kination [95,96,

54,43,97,98] with a quickly diluting energy density and

wϕ ≈ 1.

In the opposite limit of 3
2αϕ̇

2 ≫ m4
P and ϕ′ ≈ 0, the

quartic kinetic terms dominate, and Eq. (14) gives

ϕ′′ ≈ ϕ′ ⇒ ϕ′ ≈ ceN ∝ a ,

ρϕ ∝ (ϕ′)−4 ∝ a−4 , wϕ ≈ 1

3
. (16)

We name this phase hyperkination. The extra kinetic

terms modify the dynamics so that the energy density

dilutes only as fast as radiation with wϕ ≈ 1/3.

Hyperkination only lasts for a limited time. As spa-

tial expansion dilutes the field’s kinetically dominated

energy density, ϕ̇ decreases and ϕ′ grows. The quar-

tic kinetic terms are diluted faster than the quadratic

ones, and eventually the latter take over. Consequently,

the field transitions into standard kination. We can use

Eqs. (15) and (16) to approximate the time evolution

of ϕ′ as it approaches the kination attractor as

ϕ′ ≈

{
ϕ′0e

N N < ln
(√

6/ϕ′0
)
,√

6mP N > ln
(√

6/ϕ′0
)
,

(17)

where ϕ′0 is the initial value of ϕ′ at N = 0, taken below

to be the end of inflation. Tuning ϕ′0 lets us modify the

length of hyperkination, which we define as6

Nhyp ≡ ln
(√

6mP/ϕ
′
0

)
. (18)

Figure 1 compares Eq. (17) to a numerical solution of

Eq. (14) in an example case.

Due to the exponential growth of ϕ′, the transition

from hyperkination to kination is fast. Let us define

the beginning of standard kination Nkin as the moment

when both addends inside the parenthesis in the energy

density in Eq. (12) become equal. Using Eqs. (13) and

(17), this condition reads

1 =
3αϕ̇2

2m4
P

= e2(Nhyp−Nkin)− 1 ⇔ Nkin = Nhyp− ln
√
2 .

(19)

Thus, Nhyp ≃ Nkin and we conclude that it is a good

approximation to assume an instantaneous transition

between hyperkination and kination.

We end this section with a relation between α, the

energy density at the start of hyperkination (end of

6With the restriction ρϕ < m4
P/(4α) discussed at the end of

section 2.1, we would have ϕ′
0 > 2mP at N = 0, and Eq.

(17) restricts hyperkination to last less than 0.20 e-folds, a
negligible amount. As mentioned, we omit this restriction in
this paper.
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dϕ/dN

ϕ0e
N

0 5 10 15

0

2

4

6

N

Nhyp=15

Ωr
end=10-10

H=1013GeV Nkin

Fig. 1: N -derivative of the field obtained from the numerical simulation (full blue line) and its initial approximation

given in Eq. (17) (dashed orange line) as functions of N . The dashed vertical line, labelled Nkin, corresponds to

the time at which kination starts in the numerical simulation, defined here as the moment at which both addends

inside the parenthesis in the energy density in Eq. (12) become equal, while the dashed horizontal line corresponds

to ϕ′ =
√
6mP. In the legend, H denotes the Hubble parameter at the end of inflation Hend.

inflation) ρend, and Nhyp. Equation (14) together with

the definition of Nhyp gives

αρend =
m4

P(1− e−2Nhyp)

3e−4Nhyp
≃ m4

Pe
4Nhyp

3
, (20)

where we have assumed a non-negligible duration for

hyperkination O(Nhyp) ∼ 1 in the last step. Note that

Nhyp = 0 corresponds to α = 0, as it should.

2.3 Full cosmic evolution

Let us now embed a period of kination into a full history

of the Universe. Initially, during cosmic inflation, the

field energy density is dominated by potential energy.

Once inflation ends, the potential drops to zero and the

field’s velocity increases as the potential energy is trans-

formed into kinetic energy. In typical models, the field

is trapped into a potential minimum, oscillating there

and decaying into a thermal bath of particles, reheat-

ing the Universe. In our models of interest, the post-

inflationary potential is of the runaway type—that is,

flat and low—and the field keeps rolling onward under

kinetic domination. If the quartic kinetic terms domi-

nate, this phase starts with hyperkination, transitioning

into standard kination later, as described above.

To reheat the Universe, we assume a small amount

of radiation is produced at the end of inflation e.g.

through Ricci reheating [99,100,101]. During hyperk-

ination, the radiation energy density is diluted as fast

as that of the field, ρr,ϕ ∝ a−4, so radiation stays sub-

dominant. However, when standard kination starts, the

field energy density dilutes faster, ρϕ ∝ a−6, and the ra-

diation fraction grows until it overtakes the field. The

Universe is reheated and radiation domination starts.

We assume this to take place at high energies, above

the BBN temperature TBBN ≈ 1 MeV; afterwards, the

Universe follows the standard ΛCDM expansion his-

tory.

The behaviour of the system can be solved from the

Friedmann equations

3H2m2
P = ρr+ρϕ , ρr = 3(Hend)

2m2
P×Ωend

r

(
a

aend

)−4

,

(21)

combined with the first equations from Eqs. (11) and

(12). Here Ωend
r is the radiation energy density fraction

(parameter) at the end of inflation and aend and Hend

are the scale factor and Hubble parameter at the end

of inflation. Figure 2 shows the behaviour of the en-

ergy densities solved numerically; for details on the nu-

merical implementation, see Appendix B. It also shows

the corresponding evolution of the barotropic parame-

ter w, defined as the ratio between the total pressure

and energy density of the Universe, taking values from

w = 1/3 (hyperkination) to w = 1 (standard kination)

back to w = 1/3 (radiation domination).

In summary, we assume a cosmological evolution

where inflation is followed by two phases: hyperkina-

tion and kination, in this order. Reheating, which takes

places at temperatures larger than TBBN, signals the

end of these phases. After reheating, the conventional
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Fig. 2: Left: Logarithm of the energy density of the Universe (full black), the field (dashed orange) and the back-

ground radiation fluid (dashed blue) as a function of the number of e-folds calculated from the end of inflation,

obtained by numerically solving the system. Right: Barotropic parameter of the Universe from the same compu-

tation. The vertical dashed lines correspond to the start of kination, reheating, and the BBN. The parameters for

both panels are Nhyp = 15, Ωend
r = 10−10 and H = 1013 GeV.

cosmic evolution with radiation and matter dominated

eras follows7.

The non-standard expansion history opens the door

for new phenomenology. For one, it changes the match-

ing between scales in the early and late Universe. In-

deed, when inflation is followed by a stiff cosmological

era with barotropic parameter w, the number of infla-

tionary e-folds is increased by [48,57,78,103]

∆N =
3w − 1

3(1 + w)
ln

(
V

1/4
end

Treh

)
. (22)

It follows that hyperkination, for which w = 1/3, has a

vanishing contribution. This is not the case for kination,

with w = 1. Thus, in our scenario we have

∆N =
1

3
ln

(
ρ
1/4
kin

Treh

)
, (23)

where ρkin ≪ Vend is the energy density at the end of

hyperkination and the onset of kination proper. Typi-

cally, this increases the remaining number of inflation-

ary efolds after the cosmological scales exit the horizon

to at most N∗ ≃ 65, which implies ∆N ≲ 5, something

that must be taken into account when calculating the

inflationary observables.8

7Some authors (see Ref. [69] and the discussion on page 6 in
Ref. [102]) have considered that the stiff era takes place after
BBN, but before recombination. This would relax the lower
bound for the temperature of the stiff phase to T < 6 keV.
However, this possibility is not considered in the present work.
8Such an increase has some effect on the inflationary observ-
ables, but this effect is minimal. For example, in Starobinsky

All in all, the CMB scales exit the Hubble radius

approximately 60–65 e-folds before the end of inflation

instead of the standard 50–60, see e.g. [78,107]. This

affects inflationary model building, although the effects

are mitigated with respect to the standard kination sce-

nario. In addition, the spectrum of primordial GWs is

altered in ways that are sensitive to the duration of

hyperkination.

3 Gravitational waves

3.1 Tensor perturbations

To study the behaviour of GWs, we write the met-

ric tensor as gµν = a2 (ηµν + hµν), where ηµν is the

Minkowski metric so that a2ηµν ≡ ḡµν is the unper-

turbed FLRW metric, and hµν is a small perturbation.

We expand the action in Eq. (2) to second order in

hµν , keeping only the tensor modes9, which evolve inde-

pendently of other perturbations in linear perturbation

inflation [1] or Higgs inflation [104] (or α-attractors [105]),
the scalar spectral index is ns ≃ 1− 2

N∗
. With N∗ = 60

this results in ns = 0.966. If we have N∗ = 65 instead, then
ns = 0.969, which is still within the 1-σ contour of the Planck
satellite observations [106].
9The tensor perturbations obey ∂µhµν = 0 and hµ

µ = 0.
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theory. The result is (compare to, e.g., [108])

δ(2)S = −m
2
P

8

∫
d4x

√
−ḡḡαβ∂αhµν∂βhµν (24)

= −
∑

s=⊕,⊗

m2
P

4

∫
d4x

√
−ḡḡαβ∂αhs∂βhs (25)

=
∑

s=⊕,⊗

m2
P

4

∫
dη a2

∫
d3k

(
|hs

k⃗
′|2 − k2|hs

k⃗
|2
)
, (26)

where η is the conformal time related to the cosmic

time t by dt = a dη, and a prime denotes a derivative

with respect to η. Here s indexes the two gravitational

wave polarisations, and the polarization amplitudes hs

are defined through the Fourier decompositions

hs(x⃗) =

∫
d3k

(2π)3/2
hs
k⃗
eik⃗·x⃗ , (27)

so that hs
k⃗
describes oscillations of a given polarization

in directions perpendicular to the wave vector k⃗.

The amplitudes hs behave as massless scalar fields,

up to normalization, following the Klein–Gordon equa-

tion

hs′′ + 2Hhs′ +∇2hs = 0 (28)

with wave solutions. Here H ≡ a′/a and ∇2 ≡ ∂i∂i
where i is summed over the spatial indices. The corre-

sponding energy-momentum tensor is

TGW
µν = − 2√

−ḡ
δ(δ(2)S)

δḡµν

=
∑

s=⊕,⊗

m2
P

2

(
∂µh

s∂νh
s − 1

2
ḡµν ḡ

αβ∂αh
s∂βh

s

)
, (29)

so that the GW energy density reads

ρGW = a−2TGW
00 =

∑
s=⊕,⊗

m2
P

4a2
[
(hs′)2 + (∇hs)2

]
. (30)

3.2 Quantization

The primordial GWs originate as quantum vacuum fluc-

tuations during inflation. To quantize them, we first go

to the canonically normalized variables vs = mPah
s/
√
2,

so that (after integration by parts) the action in Eq. (25)

becomes

δ(2)S =

=
∑

s=⊕,⊗

1

2

∫
d3xdη

[
−ηαβ∂αvs∂βvs +

a′′

a
(vs)2

]
(31)

=
∑

s=⊕,⊗

1

2

∫
dη d3k

[
|vs

k⃗
′|2 −

(
k2 − a′′

a

)
|vs

k⃗
|2
]
. (32)

This is the Minkowski space action for a free field with

mass a′′/a, quantized the standard way by writing

v̂s(η, x⃗) =

∫
d3k

(2π)3/2

[
vsk(η)â

s
k⃗
eik⃗·x⃗ + vs∗k (η)âs

†

k⃗
e−ik⃗·x⃗

]
,

(33)

where âs
k⃗
, âs

†

k⃗
are the ladder operators following the

canonical commutation relations

[âs
′

k⃗′ , â
s†

k⃗
] = δs

′sδ(3)(k⃗′ − k⃗) . (34)

Time evolution is delegated to the mode functions vsk,

which follow the Mukhanov–Sasaki equations derived

from Eq. (32),

vsk
′′ +

(
k2 − a′′

a

)
vsk = 0 . (35)

Note that, due to the ladder operators, the mode func-

tions vsk differ in normalization from the classical Fourier

modes vs
k⃗
. Abusing the notation slightly, we differenti-

ate these by writing k instead of k⃗ as the mode function

index—in an FLRW background, the quantum mode

functions only depend on the magnitude of the wave

vector and not its direction. Analogously, we define

ĥs =
√
2v̂s/(amP), h

s
k =

√
2vsk/(amP).

Deep inside the Hubble radius, k ≫ H, the GWs

do not feel the expansion of space, the mass term a′′/a

is negligible, and Eq. (35) has the standard vacuum

solution

vsk =
1√
2k
e−ikη , vsk

′ = −ikvsk . (36)

When the mode functions follow Eq. (36), the state

annihilated by âsk is the Bunch–Davies vacuum [109];

we take the perturbations to start in this vacuum state

during inflation. Over their cosmic evolution, the modes

stretch and exit the Hubble radius, evolving beyond

Eq. (36). After inflation, they re-enter the Hubble ra-

dius, this time following the general sub-Hubble form

vsk =
1√
2k

[
λ+(k)e

−ikη + λ−(k)e
ikη
]
. (37)

We will solve the coefficients λ±(k) for a given cosmic

history in section 4.2; since the Mukhanov–Sasaki equa-

tion conserves the Wronskian of its solutions, we have

|λ+|2−|λ−|2 = 1, set by the initial vacuum in Eq. (36).

The coefficient λ− contains the GW excitations, the

part beyond the vacuum solution in Eq. (36).

Let us next consider the energy density of the GWs

induced by the above process. The late-time GW energy

density is dominated by high-k, sub-Hubble modes, for

which Eq. (37) applies. Using this result, we replace hs
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by ĥs in the energy-momentum tensor in Eq. (29) and

compute its expectation value. The result is

⟨ρ̂GW⟩ =
∑

s=⊕,⊗

m2
P

2

∫
(d ln k) k3

4π2a2
(
|h′sk |2 + k2|hsk|2

)
≈
∫

k=H

(d ln k)

2π2

k4

a4

(
|λ+|2 + |λ−|2

)
=

∫
k=H

(d ln k)

π2

k4

a4

(
|λ−|2 +

1

2

)
, (38)

where we used the Wrosnkian condition, and the fact

that the integration limit k > H restricts us to sub-

Hubble modes. In the last line, we have taken the polar-

ization sum (starting from the Bunch–Davies vacuum,

λ± are identical for both polarizations).

Note that, regardless of λ±, the final term of 1/2

makes Eq. (38) diverge for large k—this is the usual

energy density vacuum divergence of quantum field the-

ory. One can regularize the result by normal ordering

the ladder operators in ρ̂GW. However, this has to be

done with the late-time ladder operators which anni-

hilate the late-time Bunch–Davies vacuum. These are

related to the original ladder operators âsk by a Bogoli-

ubov transformation; for a detailed discussion, see e.g.

Ref. [109]. The regularized energy density becomes

⟨ρ̂GW⟩ ≈
∫

k=H

(d ln k)

π2

k4

a4
|λ−|2 . (39)

In practice, all of our modes of interest are highly ex-

cited with |λ−| ≫ 1, so that Eqs. (38) and (39) are

approximately equal. In this limit, the vacuum contri-

bution is negligible and the GWs are essentially classi-
cal.

3.3 Energy density scaling and the problem with

kination

From Eq. (39), we see that the sub-Hubble GWs scale

as radiation, with ρGW ∝ a−4, as expected for mass-

less degrees of freedom. In cosmology with a standard

expansion history, only a small amount of GWs are

generated during inflation, and they always stay sub-

dominant compared to the background radiation energy

density. However, during kination, the background di-

lutes faster than radiation, and the gravitational wave

fraction grows. The resulting gravitational wave spec-

trum is peaked and tends to either clash with bounds

on the number of relativistic degrees of freedom during

BBN or be hard to observe in gravitational wave experi-

ments [58,59,60,61,62,63]. In the following sections, we

will demonstrate that adding a period of hyperkination

helps with this issue, opening a wider parameter space

for allowed GW spectra.

4 Analytical solution

4.1 Solving the background

Let us move on to solve the GW spectrum analyt-

ically. The first step is to solve the background dy-

namics, in particular the scale factor a, in the pres-

ence of radiation, as a function of the conformal time

η. This provides us with a′′/a, allowing us to later solve

the Mukhanov–Sasaki equation for the GW mode func-

tions.

The scale factor evolves through different epochs

during the cosmic history: inflation, hyperkination, ki-

nation, and radiation domination. The transitions be-

tween the epochs, assumed to be instantaneous, happen

at conformal times ηend (end of inflation and start of

hyperkination), ηkin (end of hyperkination and start of

kination), and ηreh (end of kination and start of radi-

ation domination, i.e., reheating), which we will also

solve in terms of the model parameters below. We use

the same indices to refer to various variables evaluated

at these times. We require the continuity of a(η) and

its derivative at the transition times; between them, we

solve a(η) from

dη =
dt

a
=

da

a2H
=

da

a2

√
3m2

P

ρ
. (40)

If we know how the Universe’s energy density ρ scales

in a, we can integrate and invert Eq. (40) to obtain a(η)
epoch by epoch. We will normalize the scale factor so

that

a(ηend) = 1 , (41)

and write a = eN , so that N counts the e-folds since

the end of inflation.

For inflation, we assume a generic slow-roll inflation-

ary phase, with the end of inflation ηend < 0 determined

by the usual condition

ϵ ≡ − Ḣ

H2
= 1 , (42)

where ϵ is the first Hubble slow-roll parameter. For the

reader’s benefit, we will express our GWmode functions

as a function of ϵ, approximated to be constant. In the

example spectra we consider in section 5, we work in

the pure de Sitter limit ϵ = 0. To avoid clutter (and

slightly abusing the notation), we will use H, as for

pure de Sitter, to refer to the Hubble parameter at the

end of inflation Hend.
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For hyperkination, we get ρ(N) from Eq. (14), where

ϕ′ follows the first branch of Eq. (17) and we write the

initial field velocity ϕ′0 in terms of Nhyp as explained

below the equation. For kination and radiation domina-

tion, we use the standard results ρ ∝ a−6 and ρ ∝ a−4.

With these, the full behaviour of the scale factor be-

comes

a =



[
− 1

(1−ϵ)Hη

]1/(1−ϵ)

, η ≤ ηend ,

eNhyp sin
[
e−Nhyp(Hη + 1) + sin−1 e−Nhyp

]
, ηend ≤ η ≤ ηkin ,

akin
√
2Hkin(η − ηkin) + 1 , ηkin ≤ η ≤ ηreh ,

areh[Hreh(η − ηreh) + 1] , ηreh ≤ η .

(43)

For the hyperkination expression, we used

ηend = − 1

(1− ϵ)H
≃ − 1

H
, (44)

which follows from Eq. (41) and the first line in Eq. (43).

We also used Eq. (20) with 3H2m2
P = ρend to eliminate

α. For a long hyperkination period with Nhyp ≳ 1, we

can approximate the expression as

a(η) ≃ eNhyp sin
[
e−Nhyp(Hη + 2)

]
≃ Hη + 2 , (45)

where the right-hand-side is exactly the scale factor for

a radiation-dominated universe, compare to the last line

in Eq. (43). Note that the last approximation stops be-

ing valid at large times η ∼ eNhyp/H and one needs

to use the middle expression instead. This is the case

below, when we obtain an analytical estimate for ηkin.

For kination and radiation domination, the constants

in Eq. (43) are to be read off from the end values during
the previous phase. Using Eq. (45), we have

akin = eNhyp sin
[
e−Nhyp(Hηkin + 2)

]
,

areh = akin
√
2Hkin(ηreh − ηkin) + 1 , (46)

and

Hkin =
He−Nhyp

tan [e−Nhyp(Hηkin + 2)]
,

Hreh =
Hkin

2Hkin(ηreh − ηkin) + 1
. (47)

In practice, it is a good approximation to use

akin = Hηkin + 2 , Hkin =
H

Hηkin + 2
. (48)

Let us next estimate the conformal times for the

rest of the transition points. We do this by solving an

equation where a is expressed in two different ways,

through Eq. (43) and through a condition related to

our model parameters.

As a reminder, we define the beginning of kination

as the time at which both addends inside the parenthe-

sis in the energy density in Eq. (12) become equal. Since

this happens at large times η ∼ eNhyp/H, we use the

middle expression in Eq. (45) together with Eq. (19) to

obtain

akin = eNhyp sin
[
e−Nhyp(Hηkin + 2)

]
= eNkin =

eNhyp

√
2
,

(49)

so that

ηkin =
π
4 e

Nhyp − 2

H
≃ πeNhyp

4H
. (50)

The time of reheating ηreh can be estimated by not-

ing that the total energy density during kination scales

as ρ ∝ a−6, while that of the radiation scales as ρr ∝
a−4. Thus, the density parameter of radiation during

kination scales as Ωr ∝ a2. By reheating, radiation is

the dominant component, that is,

1 ≈ Ωreh
r ≈ Ωkin

r

(
areh
akin

)2

= Ωend
r

2H2ηkinηreh
e2Nhyp/2

, (51)

so that

ηreh =
eNhyp

πΩend
r H

, (52)

where we used Ωkin
r ≈ Ωend

r , since the field and radi-

ation redshift similarly during hyperkination, together

with the approximation |ηend| ≪ ηkin ≪ ηreh yielding

areh ≈ H
√
2ηkinηreh from Eqs. (46) and (47). We also

used Eq. (49) for akin and Eq. (50) for ηkin.
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4.2 The gravitational wave mode functions

The next step is to obtain expressions for the GW mode

functions. We proceed by matching the solutions and

their derivatives at the transitions between epochs. To

simplify the expressions, we do the matching in the

super-Hubble limit, which gives an excellent approxi-

mation except for modes entering the horizon around

the transitions. Our goal is to obtain the coefficients

λ−(k) from Eq. (37) for each mode so that we can read

off their asymptotic, sub-Hubble behaviour. We report

the details of the somewhat technical calculations in

Appendix C, while in the present section we simply give

the main results, as well as a comparison between the

analytical and numerical solutions in Fig. 3 (for details

on the numerics see Appendix B).

We can summarize the scale factor time dependence

from the last section as

a =

(
η

ηc

)1/2−ν

, ν ≡ 3(w − 1)

2(1 + 3w)
, (53)

where w is the corresponding barotropic parameter of

the Universe, so that ν = 3/2 (w = −1) for de Sitter,

ν = 3/2 + ϵ ≡ νI for a more realistic quasi-de Sitter

inflation [22], ν = 0 (w = 1) for kination and ν = −1/2

(w = 1/3) for hyperkination and radiation domination.

We then get

a′′

a
= −

(
1

4
− ν2

)
1

η2
. (54)

The constants ηc can be read from the previous section,

giving

a′′

a
=


2+3ϵ
η2 , η ≤ ηend,

0 , ηend ≤ η ≤ ηkin,

− 1
4z2 , ηkin ≤ η ≤ ηreh,

0 , ηreh ≤ η,

(55)

where we defined for kination

z ≡ η − ηkin
2

+
1

H
. (56)

Note that a′′ = 0 during hyperkination. This feature

is shared with the period of radiation domination, dur-

ing which the spectrum is flat, a result that was origi-

nally derived in Ref. [110]. Therefore we expect the peak

from kination to be truncated by a secondary plateau.

With this, we can proceed to solve the Mukhanov–

Sasaki equation (35). Making the change of variables

x = kη (x = −kη during inflation when η < 0) and

redefining the mode functions as v =
√
xg, it can be

recast as a Bessel equation

x2
d2g

dx2
+ x

dg

dx
+ (x2 − ν2)g = 0 , (57)

the most general solution of which is given by

g(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x) , (58)

where H
(1)
ν and H

(2)
ν are Hankel functions of the first

and second kind respectively. Using the values of ν

from above, the solutions during inflation, hyperkina-
tion, kination, and radiation domination become

vsk(η) =



√
π
4k

√
−kηeiπ

4 (1+2νI)H
(1)
νI (−kη) , η ≤ ηend ,

1√
2k

[
α+(k)e

−ikη + α−(k)e
ikη
]
, ηend ≤ η ≤ ηkin ,√

πz
4

[
β+(k)e

−iπ/4H
(2)
0 (kz) + β−(k)e

iπ/4H
(1)
0 (kz)

]
, ηkin ≤ η ≤ ηreh ,

1√
2k

[
γ+(k)e

−ikη + γ−(k)e
ikη
]
, ηreh ≤ η ,

(59)

where we fixed the coefficients c1,2 during inflation

so that in the initial sub-Hubble regime, −kη ≫ 1, the

mode functions obey the Bunch–Davies vacuum condi-

tions in Eq. (36). The constants and phases in the other

branches have been chosen so that the coefficients α±,

β±, and γ± correspond to the λ± of Eq. (37) in the

late sub-Hubble limit kη ≫ 1. Their values are fixed

by requiring the continuity of vsk and its derivative at
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the transition times ηend, ηkin, and ηreh. Matching the

branches in the super-Hubble limit yields

α±(k) = ∓f(ϵ)
2

(
H

k

)2+ϵ

, (60)

β±(k) = 2ie±iπ/4α−(k)

√
kηkin
π

, (61)

γ±(k) = ∓α−(k)

√
ηkin
2zreh

, (62)

where

f(ϵ) ≡ eiπϵ/2
Γ (3/2 + ϵ)

Γ (3/2)
2ϵ , (63)

and zreh ≃ ηreh is z from (56) evaluated at ηreh. For the

scale-invariant case with ϵ → 0, f(ϵ) → 1, the moduli

squared of the coefficients take the simplified forms

|α−(k)|2 =
H4

4k4
,

|β−(k)|2 =
H4

πk4
kηkin ,

|γ−(k)|2 =
H4

4k4
ηkin
2ηreh

. (64)

Note that since we did the matchings at the super-

Hubble limit, the expressions in Eqs. (60)–(62) and (64)

only apply for modes that are super-Hubble during the

corresponding transition. To find the final behaviour of

a mode, we take the last transition where this applies,

track the following mode function from Eq. (59) to the

sub-Hubble limit, where it takes the form in Eq. (37),

and equate the α−, β−, or γ− with the coefficient λ−.

Indeed, after a mode has settled to its asymptotic sub-

Hubble behaviour, its evolution is trivial—redshfiting

gently like radiation—and it won’t be sensitive to fur-

ther changes in the equation of state of the Universe.

From the Mukhanov–Sasaki solutions in Eq. (59)

we can also deduce the metric perturbations hsk. Using

the scale factor expressions, a ≃ Hη, a ≃ H
√
2ηkinη,

and a ≃ H
√
ηkin/(2ηreh)η during hyperkination, kina-

tion, and radiation domination, respectively, and using

Eqs. (60)–(62), we get

hsk(η) =


iH

mPk3/2 f(ϵ)
(

k
H

)−ϵ
j0(kη) , ηend ≤ η ≤ ηkin ,

iH
mPk3/2 f(ϵ)

(
k
H

)−ϵ
J0(kz) , ηkin ≤ η ≤ ηreh ,

iH
mPk3/2 f(ϵ)

(
k
H

)−ϵ
j0(kη) , ηreh ≤ η ,

(65)

where j0(kη) =
√
π/(2kη)J1/2(kη) = sin kη/(kη) is a

spherical Bessel function of the first kind and J0 is a

Bessel function of the first kind. For a comparison with

the numerical solutions in the scale-invariant case, see

Fig. 3. We do not include the inflationary metric per-

turbations in Eq. (65) as they do not simplify as nicely

as the others.

Note that in the super-Hubble limit, all the expres-

sions in Eq. (65) freeze to

hsk(η)
k|η|→0−−−−→ iH

mPk3/2
f(ϵ)

(
k

aH

)−ϵ
ϵ→0−−−→ iH

mPk3/2
,

(66)

where the last one is the standard scale-invariant result.

Note that this result holds also for inflation. In princi-

ple, one can use this as an initial condition and solve

the Klein–Gordon equation (28) to obtain Eq. (65) sep-

arately in each phase without the matching procedure

described above10. One can then use Eq. (38) to ob-

tain the unregularized GW energy density. We use this

method in our numerical solutions. The expressions for

α±, β±, and γ± are still needed to regularize the inte-

gral in Eq. (38), and they are the conventional way to

express the GW excitations in the literature.

5 Gravitational wave observations

5.1 Gravitational wave spectrum

We are finally in a position to calculate the spectral

energy density of the primordial GW background. It is

defined as

ΩGW(k, η) ≡ 1

ρ(η)

dρGW(k, η)

d ln k
=

1

ρ(η)

k4|λ−(k)|2

π2a4(η)
,

(67)

where ρ is the total energy density of the Universe and

ρGW(k, η) is the contribution to the GW energy density

from modes around k, given by Eq. (39) for the domi-

nant, sub-Hubble modes. Here λ− is to be matched to

α−, β−, or γ− as explained above.

To evaluate Eq. (67) at a specific time, we note that

the radiation energy density can be written as (remem-

ber our normalization aend = 1)11

ρr(η) = Ωr(η)ρ(η) = Ωend
r ρenda

−4(η) , (68)

10In particular, GWs at the CMB scales stay frozen through-
out the kination and hyperkination periods and are thus not
affected by the non-standard background evolution. The same
is true for the curvature perturbation R—see [111] for a linear
treatment of R in a model with a non-standard kinetic sector,
Appendix B of [94] for an application to Palatini R2 models,
and [112] for a general proof that R freezes at super-horizon
scales.
11We neglect the change in the effective number of relativistic
species contributing to the entropy g∗S(T ) and to the energy
density g∗(T ). This introduces an additional mild scale de-
pendence into the spectrum. For further details, we refer the
reader to Ref. [113], and in particular to Fig. 4 therein.
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Fig. 3: Comparison between the analytical solution (solid blue lines) and its numerical counterpart (dashed orange)

of the imaginary part of the mode functions hsk as a function of the elapsing number of e-folds when the mode

enters the horizon during the hyperkination (top left), kination (top right) and radiation domination (bottom

left) periods. The match is excellent, except when the wavenumber of the mode is comparable to the horizon size

at a transition (bottom right). The vertical dashed lines represent the time of horizon crossing k = aH and the

times at which kination starts Nkin and reheating happens Nreh. The parameters for all panels are Nhyp = 15,

Ωend
r = 10−10 and H = 1013 GeV.

so that

ρ(η)a4(η) = ρend
Ωend

r

Ωr(η)
. (69)

In particular, using the current radiation temperature

and total energy density, T0 = 2.7 K = 0.23×10−9 MeV

and ρ0 = 1.05× 10−120m4
P [114], we obtain ρ0r = 8.79×

10−125m4
P and Ω0

r = 8.37× 10−5. We use the index ‘0’

to refer to quantities today. With this and the de Sit-

ter limit results in Eq. (64) together with Eqs. (50) and

(52), the GW spectrum today becomes

ΩGW(k, η0) =


Ω0

r

96

(
H
mP

)2
, k < kreh,

Ω0
r

12π2Ωend
r

(
H
mP

)2
k
H e

Nhyp , kreh < k < kkin,

Ω0
r

12π2Ωend
r

(
H
mP

)2
, kkin < k < kend.

(70)
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Below, we will refer to the different branches as Ωrad
GW,

Ωkin
GW, and Ωhyp

GW. The boundary values are given by k =

H at the end of inflation and at the transition times.

Using Eqs. (46) and (47), we get

kend = H ,

kkin ≃ 1

ηkin
=

4H

πeNhyp
,

kreh ≃ 1

2ηreh
=
πΩend

r H

2eNhyp
, (71)

where we approximated |ηend| ≪ ηkin ≪ ηreh.

In our figures, we show the spectrum as a func-

tion of f , the GW frequency today. To relate f to

our wavenumber12k, we use Eq. (68) and ρ = 3H2m2
P,

yielding

f =
k

2πa0
=

1

2π

(
Ω0

rH
2
0

Ωend
r H2

)1/4

k . (72)

An important frequency is the one that corresponds to

BBN. It does not depend on the early expansion history,

and we can solve it explicitly as

fBBN =
1

2π

aBBNHBBN

a0
=

1

2π

(
ρ0r

ρBBN

)1/4(
ρBBN

3m2
P

)1/2

≃ 1.36× 10−11 Hz , (73)

where we used ρBBN ≃ 3× 10−86m4
P. We present fBBN

as a vertical dotted line in our graphs.

We show a comparison between the numerical and

analytical spectra, for an example set of parameters,

in Fig. 4. We see that the analytical expressions for

the spectrum are very accurate. In Fig. 5 we present

some example analytical spectra superimposed with the

sensitivity curves for future GW experiments.

From Eqs. (70) and (71), we can straightforwardly

understand the shape of the spectrum. The height of the

first plateau, corresponding to hyperkination, is given

by the combination H2/(Ωend
r m2

P), i.e., the larger the

energy density at the end of inflation and the smaller

the reheating efficiency, the larger the energy density

spectrum amplitude will be. The third free parameter of

our theory, the number of e-folds of hyperkinationNhyp,

controls the length of the boosted spectrum; the longer

the hyperkination period lasts, the more stretched the

boosted spectrum is. In contrast, the height of the sec-

ond plateau depends on H2/m2
P, i.e., it depends on the

energy scale at the end of inflation only, the standard

result from a scenario with no period of kinetic dom-

ination, originally derived in Ref. [110]. Both plateaus

are connected via a region growing linearly with the

frequency f , corresponding to the kination period. At

large frequencies, the spectrum is cut off at the last

mode to be excited by inflation. At small frequencies,

there is no cutoff; the first line in Eq. (70) applies to all

modes that re-enter during radiation domination.

Although it is easier to understand the shape of the

spectrum in terms of Nhyp, the free parameter in the

action in Eq. (2) is α. For this reason, we present below

our results regarding the parameter space of the theory

in terms of α and not Nhyp. The two are related by

Eq. (20). For completeness, we present here the spec-

trum in terms of α, and with k replaced with f :

ΩGW(f, η0) =



Ω0
r

96

(
H
mP

)2
, f < freh ,(

Ω0
r

Ωend
r

)3/4
H3/2

6πH
1/2
0 m2

P

(
1+

√
1+36αH2/m2

P

2

) 1
2

f , freh < f < fkin ,

Ω0
r

12π2Ωend
r

(
H
mP

)2
, fkin < f < fend ,

(74)

where

fend =
1

2π

(
Ω0

rH
2
0H

2

Ωend
r

)1/4

, fkin =
2

π2

(
Ω0

rH
2
0H

2

Ωend
r

)1/4
(
1 +

√
1 + 36αH2/m2

P

2

)− 1
2

, (75)

freh =

[
Ω0

r (Ω
end
r )3H2

0H
2
]1/4

4

(
1 +

√
1 + 36αH2/m2

P

2

)− 1
2

. (76)
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Fig. 4: Analytical spectral energy density of the primordial GWs (dashed orange) and its numerical counterpart

(full green). For details on the numerical solution, we refer the reader to Appendix B. The vertical dotted lines

represent the frequencies associated with the start of kination, reheating and BBN, while the horizontal dashed

line represents the BBN bound on the spectrum. The numerical spectral energy density is not well resolved at the

largest frequencies because the modes re-entering the horizon right after inflation are never frozen as assumed in

the code. This leads to the unphysical upslope around 1011 Hz. The parameters used are Nhyp = 15, Ωend
r = 10−10

and H = 1013 GeV.

Note that the frequencies of the modes that cause the

truncated peak, corresponding to hyperkination and ki-

nation, are always between freh and fend, given by Eqs.

(76) and (75), respectively. The specific values depend

on the Hubble parameter at the end of inflation H,

the density parameter of radiation at the end of infla-

tion Ωend
r and α. In order to give some indicative val-

ues, let us assume GUT scale inflation H ≃ 1013 GeV

and electroweak-scale reheating ρ(ηreh) ≃ (200GeV)4,

corresponding to Ωend
r = 10−10. Changing α obviously

leaves fend unchanged. In Table 1, we show freh and

fend for a few different α. Note that they are larger

than fBBN, as they should be.

α freh fend

1030 3.9× 10−5 Hz 4.4× 1010 Hz

1035 2.2× 10−6 Hz 4.4× 1010 Hz

1040 1.2× 10−7 Hz 4.4× 1010 Hz

Table 1: Values of the frequencies corresponding to re-

heating freh and the end of inflation fend for differ-

ent values of α, given that H = 1013 GeV and Ωend
r =

10−10.

12Note that, since we have set a = 1 at the end of infla-
tion instead of today as is customary, the numerical values of
our k differ from those of the usual comoving wavenumber.
Equation (72) takes this into account.

5.2 Parameter space and detectability

In the present section, we put our model to the test and

analyse the detectability of the generated spectrum of

primordial GWs in the presence of a period of hyper-

kination after inflation. Since our analytical expression

for the spectrum approximates very well its numerical

counterpart, as can be seen from Fig. 4, we use it in

order to compare with the sensitivity curves of various

detectors, namely LISA [30,31,32], ET [115,116], LVK

observing runs O3 and O5 [25,26,27,28,29], SKA [117],

DECIGO [33,34,35] and BBO [36]. For each of them,

we run a scan over the parameter space {α,Ωend
r , H}.

The successful parameter space can be found in Fig. 7.

Before we describe how the parameter space scan

is performed, we comment on some bounds that need

to be imposed. First, BBN should happen during the

period of radiation domination. In other words, at (and

below) the frequency associated with BBN, the spec-

trum needs to be in its lower plateau, i.e., freh > fBBN,

where freh is given by Eq. (76). This imposes a bound

on the maximum value α can take. Solving for α in Eq.

(76) gives

α <
m2

P

36H2

(√Ω0
r (Ω

end
r )3H2

0H
2

8f2BBN

− 1

)2

− 1


≃ m2

PΩ
0
r (Ω

end
r )3H2

0

2304f4BBN

= 6.9× 1085(Ωend
r )3. (77)
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Fig. 5: A few different spectra superimposed with the PLIC curves of the GW experiments. The parameter values

{N,H,Ωend
r } are {17.5, 4.3 × 1011 GeV, 10−12} for the blue curve, {25, 7.9 × 1011 GeV, 10−9} for the orange

curve, {20, 7.9 × 1010 GeV, 10−5} for the green curve and {29.5, 1.7 × 1013 GeV, 10−8} for the red curve. We

also show lines parallel (dashed gray) to the kination part of the spectrum. If not for the hyperkination period the

spectra would violate the BBN bound.

Importantly, we note here that the specific value we

use for fBBN in Eq. (73) comes from TBBN = 1MeV.

However, recent studies [69,102] have shown that the

stiff era is restricted to occur at temperatures T >

2.5MeV. This means that the value in Eq. (73) would

become a factor of 2.5 larger, and the bound in Eq. (77)

a factor of 0.026 smaller. However, given that the avail-

able parameter space for α spans many order of mag-

nitude (see Fig. 7), this change does not affect our re-

sults appreciably. Nevertheless, the reader should keep

in mind that our bound T > 1MeV is an approximate

one.

In addition, the GW energy density at BBN must be

low enough not to disturb the standard results. Eqs. (67)

and (68) give ΩBBN
GW = Ω0

GW/Ω
0
r , allowing us to trans-

late the bound to into the GW energy density today,

yielding [118]

h2Ω0
GW =

∫
df

f
h2ΩGW(f) < 1.12× 10−6 , (78)

where h ≈ 0.7 is the dimensionless Hubble constant.

In practice, however, for all detectors except LVK O5

and ET, this bound is irrelevant. Indeed, it is sufficient

to impose that the hyperkination plateau be below the

minimum of LVK O3, the region excluded by now by

LVK, which is below the BBN bound. Note that for

LVK O5 and ET there exists some parameter space

where the hyperkination plateau is between both lim-

its. We take this into account in the scans by showing

the excluded region from LVK O3 in Fig. 6. There, for

each value of H and Ωend
r , we show the maximum value

of α, labelled αmax, below which the signal is not ob-

servationally excluded.

We can also impose an upper bound on the energy

scale at the end of inflation. Using the slow-roll expres-

sion for the amplitude of the scalar power spectrum, we

can write the Hubble parameter at CMB scales as

HCMB =

√
ρCMB

3m2
P

= mP

√
As
π2r

2
, (79)

where As = 2.1×10−9 [114] and r is the tensor-to-scalar

ratio. The latest constraint on r is r < 0.036 [16]. The

energy scale at the end of inflation is always lower than

at CMB scales, so Eq. (79) provides an upper bound on

H at the end of inflation,

H < 4.7× 1013 GeV . (80)

Further, the plateau corresponding to radiation dom-

ination should be below the one corresponding to hy-

perkination, but this is not strictly guaranteed by our

approximative spectrum if the kination period is short.

To ensure this condition is satisfied, we impose

Ωend
r <

8

π2
≃ 0.81 , (81)

see Eq. (74).

The logic for the parameter scan is as follows. We

consider a grid in the (H,Ωend
r ) plane, with the val-

ues of H lying in the interval [106, 4.7× 1013] GeV and
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those of Ωend
r lying in the interval [10−20, 0.81], both in

steps of 0.5 in logarithmic units. Then, for each point

in the grid, we find the minimum value αmin, such that

our spectrum is detectable by the specific experiment

we are considering. Since the effect of increasing α (or,

analogously, Nhyp) is to stretch the flat region corre-

sponding to hyperkination, if a signal is detectable for

αmin, it will also be detectable for every α > αmin.

Note that for LVK O5 and ET, for a certain region in

the (H,Ωend
r ) plane, there is also a maximum value that

α can take, see Fig. 6. This limitation exists only for

values where the height of the hyperkination plateau is

above the minimum of the LVK O3 sensitivity curve.

In order to determine whether a signal can be de-

tected, we compute the power-law integrated curves

(PLIC) [119] for each experiment. Then, for each set of

parameters, we find the minimum αmin such that the

energy density spectrum is at least as large as the PLIC

under consideration. An easy way to picture this pro-

cedure is to realise that the spectra with α = αmin are

tangent to the PLICs. Increasing α increases the length

of the hyperkination plateau, so if the spectrum is tan-

gent to a PLIC, it will be above it for some frequency

range if α > αmin.

In Fig. 5, we show some example spectra with a

large enough SNR, superimposed with the sensitivity

curves for all considered experiments. In the same fig-

ure, we also show a grid of lines with the same slope

as Ωkin
GW(f, η0) to showcase how in a setup with infla-

tion being followed by usual kination most of the sig-

nals would violate the BBN bound. Hyperkination fixes

this by truncating the spectrum and introducing a new

plateau at high frequencies.

We report the results of parameter space scans as

contour plots in Fig. 7. There, for each pair (H,Ωend
r ),

we give the minimum αmin such that the signal is de-

tectable, for each experiment. We emphasize that the

totality of the successful parameter space is contained

in these figures. Besides the maximum value of H from

Eq. (80), the parameter space is bounded at small H

by the BBN timing condition freh > fBBN, at small

Ωend
r by the BBN energy density condition in Eq. (78)

and the LVK O3 exclusion bound, and at large Ωend
r by

the requirement that the higher hyperkination plateau

must reach the lower end of the sensitivity band for the

given experiment.

We conclude that there is ample parameter space to

accommodate detectability by all experiments. Indeed,

as can be seen from Fig. 7, for a Hubble parameter

H ≲ 1013 GeV, somewhat below the GUT scale, and

a reheating efficiency in the range of 10−15 ≲ Ωend
r ≲

10−2, which can be easily accommodated by a variety

of reheating mechanisms [40,120,99,100,101,121,122],
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Fig. 6: Parameter space of the theory excluded by LVK

O3. For each value of H and Ωend
r , there is a maximum

value for α, labelled αmax, above which the signal is

observationally excluded.

we can always find a detectable signal. We emphasize

that the size of the parameter space is large, and there

is no need for fine-tuning to obtain a detectable signal.

Indeed, in Fig. 7 we report the minimum value α has

to take in order for the signal to be detectable. How-

ever, any value of α larger than αmin also leads to a

detectable signal.

The value of αmin is quite large for most experi-

ments. This can be understood from Eq. (20). Indeed,

we can find a lower bound on αmin by taking the limit

Nhyp ≪ 1. It gives

αρend ≃ 2m4
P

3
Nhyp. (82)

Using a GUT energy scale ρend ∼ 10−10m4
P, consider-

ing an almost non-existent period of hyperkination with

Nhyp = 0.1, we obtain a rough lower bound αmin ≳
1010. As soon as we have a larger Nhyp, αmin grows ex-

ponentially with it. This is in line with our latest work

[80], where we study quintessential inflation with an ac-

tion of the form in Eq. (1). There, we find α ∼ 1010 for

successful quintessential inflation, without considerable

hyperkination.
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Fig. 7: Parameter space of the theory for the minimum α such that the signal is detectable by LVK O5 (top left),

ET (top middle), DECIGO (top right, BBO (bottom left), and LISA (bottom middle) and SKA (bottom right).

For each value of H and Ωend
r , there is a minimum value for α, labelled αmin, above which the signal is always

detectable (minus the excluded region in Fig. 6 for LVK O5 and ET).

6 Discussion and conclusions

We have investigated the spectrum of primordial grav-

itational waves (GWs) generated by cosmic inflation in

a model where after inflation but before reheating we

have a period when the Universe is dominated by the ki-

netic energy density of the inflaton scalar field ϕ, when

the field is characterised by both the usual quadratic

kinetic term and also by a higher-order quartic kinetic

term. This is natural in theories of quadratic R + αR2

gravity in the Palatini formalism, where in the Ein-

stein frame the quartic kinetic term is proportional to

α, the coefficient of quadratic gravity. However, we can

equally well envisage a k-inflation scenario where the

kinetic term of the scalar field includes a term ∝ αX2,

where X = 1
2 ϕ̇

2.

This kinetically dominated period is divided into

two parts. In the first part, the inflaton kinetic energy

density is dominated by the higher-order kinetic term;

a period which we call hyperkination. In the second

part, the higher-order kinetic term becomes negligible

and the inflaton kinetic energy density is dominated by

the usual quadratic term; a period called kination. We

have shown that, while kination is a stiff phase with

barotropic parameter w = p/ρ = 1, as is well known,

hyperkination is not; the barotropic parameter during

hyperkination is that of radiation w = 1/3. As a re-

sult, the modes of inflation-generated primordial GWs

which re-enter the horizon during hyperkination form a

flat spectrum, in the same way as the modes which re-

enter the horizon after reheating, in the usual radiation

era. However, during usual kination, the GW spectrum
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is not flat but the GW density parameter per frequency

logarithmic interval is ΩGW(f) ∝ f . This means that,

for modes re-entering the horizon after inflation and

before reheating, the GW signal is boosted. This boost

corresponds to a truncated peak in the GW spectrum;

truncated because the spectrum corresponding to hy-

perkination is flat but it can be of much larger ampli-

tude than that corresponding to the eventual radiation

era. Consequently, the period of kinetic domination (ki-

nation + hyperkination) can be made to last longer and

the boosted spectrum to extend to lower frequencies

without the danger of the production of excessive pri-

mordial GWs. In particular, the truncated spectrum

can avoid the upper bound imposed by the require-

ment that Big Bang Nucleosynthesis (BBN) remains

undisturbed. Thus, primordial GWs in all observable

frequencies can be enhanced without a problem.

We have analytically and numerically studied thor-

oughly the inflationary production and the subsequent

evolution of GW modes and obtained the resulting GW

spectrum, linking it with the model parameters. The

characteristic shape of the spectrum will be testable

in the near future by forthcoming experiments, such as

advanced LIGO-Virgo-KAGRA, LISA, DECIGO, BBO

and ET, as depicted in Fig. 5. If observed, such a spec-

trum can provide insight into the underlying theory,

such as the energy scale of inflation, the reheating ef-

ficiency and the coefficient α. The latter is directly re-

lated to the duration of the hyperkination phase. In-

deed, when hyperkination lastsNhyp, then Eq. (20) sug-

gests

α =
m4

P

3ρend
exp(4Nhyp) , (83)

where ρend = 3H2m2
P is the energy density at the end

of inflation, and H is the corresponding Hubble scale.

Typically, inflation is at the scale of grand unification,

which implies H2 ∼ 10−10m2
P. In this case, the above

suggests that eNhyp ∼ 10−3α1/4, which means that

Nhyp ≃ 10 ⇒ α ∼ 1026. (84)

Note that, in the usual Starobinsky R2 inflation we

have α = 1.1× 109. Such large values of alpha are non-

perturbative, but this is no more a problem in our setup

than it is in Starobinsky gravity.

Important information can also be deduced by the

amplitude of the truncated peak corresponding to hy-

perkination. Indeed, Eq. (70) suggests that the value

of the GW spectrum on the hyperkination plateau is

given by

Ωhyp
GW =

1

12π2

Ω0
r

Ωend
r

(
H

mP

)2

, (85)

where Ω0
r ≃ 10−4 is the density parameter of radiation

at present and Ωend
r is the density parameter of radi-

ation at the end of inflation, also called reheating ef-

ficiency, because the larger it is the sooner reheating

takes place. As discussed, in order not to destabilise

BBN, we need Ωhyp
GW < 10−6. Thus, we obtain a lower

bound on the reheating efficiency as Ωend
r > (H/mP)

2.

Typically for inflation we have H2 ∼ 10−10m2
P, which

implies Ωend
r > 10−10.

In an effort to stay generic, we have not considered

a specific mechanism for producing the radiation which

eventually reheats the Universe. We note however, that

a number of such mechanisms exist, such as instant pre-

heating [40,120], curvaton reheating [121,122] or Ricci

reheating [99,100,101] to name but some. It is even pos-

sible to avoid introducing additional degrees of freedom

and consider that reheating occurs due to the dissipat-

ing properties of the inflaton field itself, as discussed in

Ref. [103], where such processes become negligible after

inflation.

Additional important information can be obtained

by the observation of the frequency of the knee in the

GW spectrum, shown in Figs. 4 and 5, which is given

by fkin in Eq. (75). Combining this with Eq. (85), in

the large Nhyp limit, we obtain

fkin

(Ωhyp
GW)1/4

=
2

π3/2

√
2

3
ρ
1/4
0 α−1/4

√
mP

H
, (86)

Where ρ0 = 3H2
0m

2
P is the energy density of the Uni-

verse at present. Putting the numbers in the above, we

find(
fkin
Hz

)(
Ωhyp

GW

10−6

)−1/4

∼ 1012 α−1/4

√
mP

103H
. (87)

Observations might provide the values of the left-hand-

side of the above, which means that α could be esti-

mated provided H is known (e.g. H2 ∼ 10−10m2
P for

inflation at the grand unified energy scale).

In Fig. 7 we display our findings with respect to ob-

servability by different missions, such as LVK 05, ET,

BBO, LISA DECIGO and SKA. There, we show the

minimum value α has to take in order for the spectrum

to be detectable. Above this value, which we label αmin,

the spectrum is always detectable. We see that observ-

ability requires that the reheating efficiency is smaller

the lower the inflation energy scale is (the lower H is).

Also, the values of αmin are larger for large inflationary

energy scales. For LVK 05 and LISA we find that ob-

servability requires αmin ∼ 1030−60, while for ET, BBO

and DECIGO the numbers are smaller αmin ∼ 1010−50.

For the reheating efficiency, we find that observability

requires that the density parameter of radiation at the



20

end of inflation is Ωend
GW ≳ 10−16, a value which may

increase up to unity or so in the case of ET, BBO or

DECIGO. Such a high reheating efficiency implies that

the kinetic regime is very small or even non-existent

(prompt reheating). This is possible because, the ET,

BBO and DECIGO might be able to detect very faint

signals at frequencies higher than LISA, which means

that they could even marginally observe the flat GW

spectrum generated by the usual radiation era (no ki-

netic epoch). This is why there is a region (for ET,

BBO and DECIGO) when H is large (H ∼ 1013 GeV)

where suddenly α can be very small (or even zero). The

parameter space for this is very small though.

We conclude that, with our mechanism, the observ-

ability of primordial GWs is much enhanced compared

to traditional models. We obtained concrete predictions

involving H, α and the reheating efficiency in the case

the characteristic form of the GW spectrum—a trun-

cated peak—is indeed observed. Observation of the pri-

mordial GW signal would not only confirm another pre-

diction of cosmic inflation but would also be a tantalis-

ing hint towards the quantum nature of gravity, which

is behind the assumption of the Bunch-Davies vacuum

in Eq. (36). Forthcoming GW observations may reveal

new and surprising details about the physics of inflation

and fundamental physics in general. Our work serves to

explore such a possibility.
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Appendix A: A toy model for a drastic change

of α at the end of inflation

The coefficient α parametrising quadratic gravity can

experiece a drastic change at the end of inflation if it is a

function of a degree of freedom which changes rapidly

at that time. For example, if inflation takes place at

the energy of grand unification, as is typically the case,

then this degree of freedom could be the Higgs field χ

of a Grand Unified Theory (GUT). If the breaking of

grand unification takes place via spontaneous symmetry

breaking, then the expectation value of χ changes from

zero to M ∼ 1016 GeV.

A toy model example of the inflaton potential, which

leads to the GUT phase transition but still retains the

runaway nature assumed in this work is

V (φ, χ) =
1

4
λ(χ2 −M2)2

+


1
2 (m

2 + g2χ2)(φ2 + µ2) , φ < 0

1
2 (m

2 + g2χ2)
µ6

φ4+µ4 , φ ≥ 0
, (A.1)

where m and µ are mass scales with 0 < µ≪ m < M

and λ, g ≲ O(1). By taking λ = 0 = g, we recover the

(n, q) = (2, 4) case of the quintessential inflation poten-

tial in an R+R2 Palatini modified gravity theory, which

was investigated in Ref. [78]. This potential, in turn, is

a minor modification of the original quintessential in-

flation potential in Ref. [37]. Switching λ and g on, and

considering the limit |φ| ≫ µ with φ < 0, we obtain the

original hybrid inflation potential [123].

Let us first consider standard gravity without an

R2 term. In the beginning, φ≪ −µ. Then the effec-

tive mass-squared of the GUT Higgs field χ is positive,

which sends χ to zero. The scalar potential then be-

comes

V =
1

2
m2φ2 +

1

4
λM4 . (A.2)

When the constant term dominates, we have an in-

flationary plateau. The effective mass-squared of the

GUT Higgs field is m2
effχ = g2φ2 − λM2. Thus, m2

effχ is

positive as long as |φ| > |φc|, where φc ≡ −(
√
λ/g)M ,

where for simplicity we assume |φc| ≫ µ. Inflation ends

when φ = φc, which triggers a phase transition that

sends the GUT Higgs field towards its vacuum expecta-

tion value (VEV) χ =M , in which case m2
effχ = 2λM2.

At this time, the effective mass-squared of the inflaton

field becomes m2
effφ = g2M2 > 0, when the inflaton is

still negative φc < φ < 0. This propels the inflaton to

the origin.

When φ becomes positive, it free-falls in its steep

runaway potential. In the limit φ≫ µ, the potential is

V =
1
2g

2M2µ6

φ4
, (A.3)

where we assumed gM > m. The above inverse quartic

potential can indeed work not as tracker quintessece, as

in the original quintessential inflation model [37], but

as a freezing-thawing quintessence, which unfreezes at

present provided the mass-scale (12g
2M2µ6)1/8 is of the
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correct magnitude to satisfy the coincidence require-

ment. Inflation, however, as described above would not

work. Indeed, the original hybrid inflation model of

Ref. [123], which is characterised by the inflationary

potential in Eq. (A.2), produces a blue spectral index

for the scalar curvature perturbation.

As shown in Ref. [78], things change when we embed

the above model in R + R2 Palatini modified gravity.

We assume that λ is small enough, such that the po-

tential in Eq. (A.2) during inflation is V ≃ 1
2m

2φ2.

Then, the inflationary plateau is due to the quadratic

gravity term, which flattens the potential and creates

the inflationary plateau with Uinf ≃ m4
P/4α as dis-

cussed in Sec. 2.1. As mentioned, the scenario with λ =

0 = g was investigated in Ref. [78], which found that

successful quintessential inflation in achieved if m ∼
1013 GeV and ( 12g

2M2µ6)1/8 ∼ 10GeV, which means

µ ∼ g−1/310−4 GeV. The assumption g > m/M ∼ 10−3

suggests that µ ≲ O(MeV).

In Ref. [78] it was shown that for successful quintessen-

tial inflation with this model we need α ∼ 108, so that

U
1/4
inf ∼ 1016 GeV. The canonical inflaton field rolls down

the Palatini inflationary plateau Uinf until it triggers

the GUT phase transition and sends the GUT Higgs

field to its VEV. Then, the potential V is reduced dras-

tically so that the system exits the Palatini plateau and

U ≃ V .

The change of the expectation value of the GUT

Higgs field χ at the phase transition not only terminates

inflation but may also affect the value of α provided the

latter depends on χ. Indeed, suppose that

α = α(χ) = α0 e
κχ/M , (A.4)

where κ = O(10) is a coefficient and α0 ∼ 108. Before

the phase transition, χ = 0 and α = α0 ∼ 108. After the

phase transition, χ =M ∼ 1016 GeV and κχ/M ≲ 102.

As a consequence, α becomes huge. Indeed, for the

range κ = 5− 166 we find α ∼ 1010–80, which comfort-

ably includes the values considered in Fig. 7. Note that

α should not depend on the inflaton field, α ̸= α(φ), be-

cause the latter changes substantially during kination

and hyperkination, while α is taken to be constant.

Finally, it must be pointed out that the period of hy-

perkination in the post-inflationary history would mod-

ify the treatment of Ref. [78] somewhat. As a result, the

value of µ for successful coincidence might change, but

this is beyond the scope of the present work.

Appendix B: Numerical solutions

To check our analytical results, we solve numerically

the time evolution of the background composed of the

field and radiation and the GW mode functions. The

full set of equations reads(
1 + 3α

ϕ̇2

m4
P

)
ϕ̈+ 3

(
1 + α

ϕ̇2

m4
P

)
Hϕ̇ = 0 ,

ρ̇f = −3Hρf (1 + wf ) , 3H2m2
P = ρϕ + ρf , (B.5)

ρϕ =
1

2

[
1 +

3

2
α
ϕ̇2

m4
P

]
ϕ̇2 , hsk

′′ + 2
a′

a
hsk

′ + k2hsk = 0.

Many of the variables vary by orders of magnitude dur-

ing cosmic evolution. To make numerics easier, we de-

fine new, rescaled variables x, y, and Z, a new time

variable s, and a constant s0 through

ϕ̇ = m2
Pα

−1/2e−s0−s+x , ρf = m4
Pα

−1e−2s0−2s+y ,

H = mPα
−1/2Ze−s0−s , s0 = − ln

(
2
√
αH0/mP

)
,

dt = m−1
P

√
αes0+sds , (B.6)

where H0 is the initial Hubble parameter. Definitions in

Eq. (B.6) are chosen to ensure the new numerical quan-

tities remain of order one throughout the computation.

The equations of motion become

◦
x = 1−

3Z
(
1 + e−2s0−2s+2x

)
1 + 3e−2s0−2s+2x

,
◦
y = 2− 3Z(1 + wf ) ,

3Z2 =
1

2

(
1 +

3

2
e−2s0−2s+2x

)
e2x + ey ,

◦◦
hk + (3Z − 1)

◦
hk +

k2

m2
Pa

2
αe2s+2s0hk = 0 , (B.7)

where a circle over a variable indicates a derivative with

respect to the new time variable s.

The initial conditions for the field velocity and fluid

energy density are set as described in the text, engi-

neered to match a desired end-of-inflation Hubble pa-

rameter Hend, duration of hyperkination Nhyp, and ini-

tial radiation energy density fraction Ωend
r . We then fol-

low their evolution from the end of inflation until the

BBN temperature is reached, see Fig. 2. The gravita-

tional wave modes are evolved from their frozen super-

Hubble state in Eq. (66) starting somewhat before they

re-enter the Hubble radius, until somewhat after the

re-entry, after which they are taken to behave as radi-

ation. To get the mode energy density, we use the first

equation in Eq. (38)—as explained in the text, the er-

ror related to regularization is negligible for all relevant

modes. Iterated over a number of modes, this produces

the spectra in Fig. 4.

Appendix C: Mode function matching

In this appendix, we report the more technical results

concerning the mode function matching at the transi-

tion between the different cosmological eras. We start
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with the transition from inflation to hyperkination, which

takes place at ηend. During the hyperkination, the Mukhanov

Sasaki equation reads (see Eqs. (35) and (55))

vsk
′′ + k2vsk = 0 . (C.8)

The solution is simply a superposition of plane waves,

vsk(η) =
1√
2k

(
α+e

−ikη + α−e
ikη
)
. (C.9)

Matching this to the standard slow-roll result (see the

first line of Eq. (59)) at ηend gives

ei
π
4 (1+2ν)

√
π

2

√
xendH

(1)
ν (xend)

= α+e
ik|ηend| + α−e

−ik|ηend| , (C.10)

where xend ≡ k|ηend| and we dropped the subindex I

from ν. Matching the derivatives gives

i

√
π

2
ei

π
4 (1+2ν)

[ 1
√
xend

(1
2
+ ν
)
H(1)

ν (xend)

−
√
xendH

(1)
ν+1(xend)

]
= −α+e

ik|ηend| + α−e
−ik|ηend| . (C.11)

Summing (subtracting) both expressions, we obtain

α∓ =
e
iπ
4

(
1+2ν

)
±ixend

2

√
π

2

[
H(1)

ν (xend)
(√

xend

± i
√
xend

(ν +
1

2
)
)
∓ i

√
xendH

(1)
ν+1(xend)

]
. (C.12)

We now take the super-Hubble (small argument)

limit xend ≪ 1. Noting that the leading contributions

come from the terms proportional to H
(1)
ν (xend)/

√
xend

and H
(1)
ν+1(xend)

√
xend, it reads

α∓ = ±2ν−1ei
π
4 (1+2ν)

√
2π

(
1

2
− ν

)
Γ (ν)

1

(k|ηend|)ν+
1
2

.

(C.13)

Using ν = 3/2 + ϵ, this expression can be further sim-

plified to

α∓ = ±2ϵ−1eiπϵ/2Γ (3/2 + ϵ)

Γ (3/2)

(
H

k

)2+ϵ

. (C.14)

For pure de Sitter, with ϵ→ 0, we obtain

α∓ = ±H2

2k2
. (C.15)

We continue with the transition from hyperkination

to kination, which takes place at ηkin. During kination,

the Mukhanov–Sasaki equation takes the form

vsk
′′ +

[
k2 − 1

4
[
η − ηkin

2 + 1
H

]2
]
vsk = 0 . (C.16)

Making the change of variables y ≡ k (η − ηkin/2 + 1/H)

(where y = kz in the notation of Eq. (56)) and redefin-

ing the mode functions as g =
√
yv, this equation can

be recast as a Bessel equation with ν = 0 (see Eq. (57)).

Thus, the solution reads

vsk(η) =

√
π

4k

√
y
[
e−iπ/4β+(k)H

(2)
0 (y)

+eiπ/4β−(k)H
(1)
0 (y)

]
, (C.17)

where the overall constant and phase has been chosen

such that the mode functions have a simple sub-Hubble

(y ≫ 1) limit, as discussed below Eq. (59). We match

this equation (and its derivative) with Eq. (C.9) (and

its derivative) at time ηkin, i.e., at

ykin ≡ y(ηkin) =
k

2

(
ηkin +

2

H

)
≃ kηkin

2
, (C.18)

where we have taken into account that ηkin ≫ ηend. To

avoid clutter we also define r ≡ eiπ/4
√
π/2. Equating

the mode functions gives

α+e
−ikηkin + α−e

ikηkin

=
√
ykin

[
r∗β+H

(2)
0 (ykin) + rβ−H

(1)
0 (ykin)

]
, (C.19)

while doing so for the derivatives gives

i
(
−α+e

−ikηkin + α−e
ikηkin

)
=

1

2
√
ykin

[
r∗β+H

(2)
0 (ykin) + rβ−H

(1)
0 (ykin)

]
+
√
ykin

[
r∗β+

dH
(2)
0

dy
(ykin) + rβ−

dH
(1)
0

dy
(ykin)

]
.(C.20)

Now, using Eq. (C.19) in Eq. (C.20) allows us to rewrite

the latter as[
α+

(
−i− 1

2ykin

)
e−ikηkin + α−

(
i− 1

2ykin

)
eikηkin

]
=

√
ykin

[
r∗β+

dH
(2)
0

dy
(ykin) + rβ−

dH
(1)
0

dy
(ykin)

]
.

(C.21)

In order to obtain β− (β+), we multiply Eq. (C.21)

by H
(2)
0 (ykin) (H

(1)
0 (ykin)) and Eq. (C.19) by dH

(2)
0 /dy

(dH
(1)
0 /dy), subtract the latter from the former and use

the Wronskian of the Hankel functions. The results read

β− = e−iπ/4

√
πykin

i2
√
2

{
H

(2)
0 (ykin)

[
α+

(
−i− 1

2ykin

)
e−ikηkin

+ α−

(
i− 1

2ykin

)
eikηkin

]
+H

(2)
1 (ykin)

(
α+e

−ikηkin + α−e
ikηkin

)}
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(C.22)

and

β+ = −eiπ/4
√
πykin

i2
√
2

{
H

(1)
0 (ykin)

[
α+

(
−i− 1

2ykin

)
e−ikηkin

+ α−

(
i− 1

2ykin

)
eikηkin

]
+H

(1)
1 (ykin)

(
α+e

−ikηkin

+ α−e
ikηkin

)}
.

(C.23)

Noting that α+ = −α−, these expressions can be rewrit-

ten as

β− = e−iπ/4

√
πykin
2

α−

{
H

(2)
0 (ykin)

[
cos (kηkin)

− 1

2ykin
sin (kηkin)

]
+H

(2)
1 (ykin) sin (kηkin)

} (C.24)

and

β+ = −eiπ/4
√
πykin
2

α−

{
H

(1)
0 (ykin)

[
cos (kηkin)

− 1

2ykin
sin (kηkin)

]
+H

(1)
1 (ykin) sin (kηkin)

}
.

(C.25)

We can now take the super-Hubble limit kηkin ≪ 1.

Using kηkin = 2ykin, the term in brackets multiplying

H
(1,2)
0 (ykin) cancels out, and we obtain the result

β± = 2ie±iπ/4α−

√
kηkin
π

, (C.26)

where α− is given by Eq. (C.14). Note that

β+ = iβ− . (C.27)

For pure de Sitter, we have the simplified expression

β± = ie±iπ/4

(
H

k

)2
√
kηkin
π

. (C.28)

Finally, we consider the transition from kination to

the radiation-dominated era at ηreh. During the latter,

the Mukhanov–Sasaki equation is identical to the one

corresponding to hyperkination,

vsk
′′ + k2vsk = 0 , (C.29)

the solution to which reads

vsk(η) =
1√
2k

(
γ+e

−ikη + γ−e
ikη
)
. (C.30)

The matching conditions at ηreh now read

√
yreh

[
r∗β+H

(2)
0 (yreh) + rβ−H

(1)
0 (yreh)

]
=
(
γ+e

−ikηreh + γ−e
ikηreh

)
(C.31)

and

1

2
√
yreh

[
r∗β+H

(2)
0 (yreh) + rβ−H

(1)
0 (yreh)

]
+

√
yreh

[
r∗β+

dH
(2)
0

dy
(yreh) + rβ−

dH
(1)
0

dy
(yreh)

]
= i
(
−γ+e−ikηreh + γ−e

ikηreh
)
,

(C.32)

where

yreh = k

(
ηreh − ηkin

2
+

1

H

)
≃ kηreh , (C.33)

where we have taken into account that ηreh ≫ ηkin ≫
ηend. Summing (subtracting) both expressions gives

γ± =
e±ikηreh

2

{
r∗β+

[
H

(2)
0 (yreh)

(
√
yreh ± i

1

2
√
yreh

)
∓ i

√
yrehH

(2)
1 (yreh)

]
+ rβ−

[
H

(1)
0 (yreh)

(
√
yreh ± i

1

2
√
yreh

)
∓ i

√
yrehH

(1)
1 (yreh)

]}
.

(C.34)

We use Eq. (C.27) and take the super-Hubble limit

kηreh ≪ 1 to obtain

γ± = ±rβ−
2

i
√
yreh

, (C.35)

where β− is given by Eq. (C.26). For pure de Sitter, we

have the simplified expression

γ± = ∓H2

2k2

√
ηkin
2ηreh

. (C.36)
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