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Abstract—Network virtualization allows the service providers
(SPs) to divide the substrate resources into isolated entities called
virtual data centers (VDCs). Typically, a VDC comprises multiple
cooperative virtual machines (VMs) and virtual links (VLs)
capturing their communication relationships. The SPs often re-
embed VDCs entirely or partially to meet dynamic resource
demands, balance the load, and perform routine maintenance
activities. This paper proposes a genetic algorithm (GA)-based
effective VDC re-embedding (GAMap) framework that focuses
on a use case where the SPs relocate the VDCs to meet their
excess resource demands, introducing the following challenges.
Firstly, it encompasses the re-embedding of VMs. Secondly,
VL re-embedding follows the re-embedding of the VMs, which
adds to the complexity. Thirdly, VM and VL re-embedding are
computationally intractable problems and are proven to be NP-
Hard. Given these challenges, we adopt the GA-based solution
that generates an efficient re-embedding plan with minimum
costs. Experimental evaluations confirm that the proposed scheme
shows promising performance by achieving an 11.94% reduction
in the re-embedding cost compared to the baselines.

Index Terms—Virtual Data Centers, Resource Management,
Data Centers, Genetic Algorithm, Re-embedding.

I. INTRODUCTION

Network virtualization has enabled the service providers
(SPs) to divide the substrate resources into independent ex-
ecutable entities called virtual data centers (VDCs) [1]. Such
a partitioning scheme assists the SPs in achieving service
isolation and effectively utilizing the substrate network re-
sources [2], [3]. Typically, a VDC consists of multiple coop-
erative virtual machines (VMs) [4]. These VMs are depen-
dent, and their dependencies are captured via virtual links
(VLs). The VMs and VLs have different requirements for
various kinds of resources pictorially depicted in Figure 1.
For instance, the demand 4/4 of a VM v1,2 states that its
requirement comprises 4 core CPU and 4 GB of RAM. On
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the other hand, the numeral 0.6 on the VL interconnecting
v1,1 and v1,2 denotes its bandwidth demand (in Gbps). From
a SPs perspective, assigning resources to VDCs is particularly
challenging owing to the inherent dependencies among the
VMs. The process of allocating substrate resources to VDCs,
referred to as virtual data center embedding (VDCE), is a
computationally intractable problem [5].
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Fig. 1: A VDC with corresponding resource demands [5].

After the initial embedding, a VDC may require relocations
to balance the load, perform maintenance activities, meet
demand spikes, etc. [2]. In this work, we restrict our atten-
tion to handling the complete relocation of dynamic VDCs
experiencing fluctuating resource demands. A dynamic VDC
encompasses various stages in its life span, as reflected in
Figure 2. In this regard, re-embedding the VDCs is quite
challenging for the SPs for the following reasons. Firstly,
re-embedding both VMs and VLs is a complicated opera-
tion. Secondly, the remapping should ensure that requested
resources with minimum remapping costs are allocated. The
requirements mentioned above render the relocation of VDCs
a non-trivial operation. Literature on VDCE [2], [3] is focused
on generating immutable assignments for static VDCs. Con-
sidering dynamic VDCs, Guo et al. [6] proposed a heuristic
to perform temperature-aware dynamic embedding of VDCs
to reduce the hot spots. On the other hand, Nam et al.
[7], [8] discussed dynamic server consolidation strategies to
reduce energy consumption in hosting multiple VDCs. To
simultaneously minimize the scheduling delay and energy
expended, Zhani et al. [9] presented a dynamic embedding
scheme based on VM migration. Some other works focused
on reducing the migration overheads for dynamic VDCs are
discussed in [10], [11]. However, little impetus is given to
lowering the remapping costs for embedding dynamic VDCs.
In this context, a naive relocation strategy can deleteriously
impact the SPs’ acceptance ratio and revenue in the long run.
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Fig. 2: A VDC Life-Cycle State Diagram.

Hence, this work proposes a model called genetic algorithm-
based effective VDC re-embedding (GAMap), which aims to
reduce the remapping costs in the complete relocation of
dynamic VDCs. We propose a framework GAMap that adopts
a genetic algorithm (GA) based solution strategy to generate
an efficient relocation plan for remapping multiple VDCs with
minimum remapping costs. The motivation for adopting GA
as a solution strategy are: (i.) ease of implementation, (ii) is
population-based, (iii.) uses probabilistic transition rules, (iv.)
is robust, and (v.) works on different population representations
[12]. Specifically, robustness is imparted to the solution owing
to its ability to handle noisy and imperfect data and is often
unfazed by perturbations in the search space. Moreover, to
improve the solution quality, we have adopted an improved
crossover [10] followed by mutations. The key contributions
of this work are summarized below.

• We discuss a framework GAMap focusing on generating
re-embeddings for VDCs experiencing resource expan-
sion at minimum embedding cost (Section III).

• As already discussed in Section I, VDC re-embedding is
NP-Hard [13] implying an obvious trade-off between so-
lution quality and computational time for increasing prob-
lem size. Exact approaches focus on the former, whereas
heuristic approaches focus on the latter. Meta-heuristics
strike a trade-off between these metrics. Therefore, we
adopt GA to solve the above-discussed problem. The re-
embedding is generated using an improved crossover with
a unique encoding wherein a chromosome depicts the re-
embedding of a VDC, subsequently followed by bit-flop
mutations (Sections IV and V).

• To validate the performance of GAMap, its performance
is compared with two baselines: Virtual Network Embed-
ding based on Genetic Algorithm (VNE-GA) [14] and a
Greedy-Heuristic. Further analysis ascertains that GAMap
achieves an 11.94% reduction in the re-embedding cost
compared to the baselines (Section VI).

The remaining paper is organized as follows. Section II
presents an in-depth literature discussion. An insight into
the components of GAMap is provided in Section III. The
modeling of the VDC re-embedding is shown in Section
IV. The GA-based solution is explained in Section V. The

simulation setup and the analysis of the results are elaborated
in Section VI. In Section VII, we conclude the work and
highlight the scope for future research.

II. LITERATURE SURVEY

This literature review on VDCE from the perspective of
dynamic deployment scenarios where the assignment and/or
demands of the VDCs are changeable over time is presented
in this section. The literature primarily focuses on handling
static VDC deployment, whereas some attempts to address
dynamic VDCs can be found in [6]–[8], [10]. In this regard, the
works in [6] presented a temperature-aware VDC embedding
strategy that minimizes the number of hot spots by reducing
the maximum hot air drawn to each server rack. Alternatively,
Nam et al. [7], [8] discussed two different strategies to reduce
energy consumption in hosting multiple VDCs. The former
focused on improving the resource efficiency and energy
efficiency, whereas the latter presented server consolidation
strategies to embed/re-embed dynamic VDCs.

Some resource relocation policies based on VM migration
have been explored in [9], [11], [15]–[17]. In this regard, the
works in [15]–[17] have concentrated on developing schedul-
ing policies for migrating correlated VMs. In [17], authors
presented serial and parallel migration policies to relocate
VMs across servers. To further improve the performance, the
authors in [16] proposed an improved serial migration strategy
for migrating correlated VMs. As service downtime is an
essential performance indicator of any migration strategy, a
modified serial migration strategy that outperforms the above-
discussed policies is discussed in [15]. On the other hand,
relocation strategies specific to VDCs are considered in [9],
[11]. A dynamic embedding strategy based on VM migration
to simultaneously reduce the scheduling delay and the energy
consumption of VDCs is considered in [9]. Alternatively, Bari
et al. [11] discussed an interleaved scheduling algorithm for
migrating VMs of VDCs across a substrate network. The
authors targeted maximizing the number of parallel migrations
by grouping VMs into resource-independent groups, minimiz-
ing migration and service downtime.

From the above discussions, it can be safely interpreted that
researchers have extensively investigated VDCE. However,
dynamic deployment techniques primarily focus on reducing
energy consumption and migration overheads and often ignore
the re-embedding cost, which is of utmost importance for
a SP [2]. In this regard, the closest work is presented in
[10] and presents a re-embedding policy using GA; however,
GAMap differs in the following aspects. Firstly, the work
in [10] focuses on a limited use case, wherein selective
re-embedding of solution components (SCs) is performed.
Alternatively, GAMap focuses on a broader use case of re-
embedding an entire VDC, which is more complex. Secondly,
the overall objective of [10] was to balance the migration and
re-embedding cost of migrating SCs. However, some recent
research in this area [5] has emphasized that the reduction of
the embedding/re-embedding costs is more critical compared
to migration overheads, for which sophisticated solutions, as
discussed in [11], are already in place. Therefore, consid-
ering migration and re-embedding costs in [10] dilates its
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performance, specifically from the perspective of reduced re-
embedding cost. Thirdly, encoding and initial population gen-
eration (Section V-B1), fitness computation (Section IV-B3),
and mutation (Section V-B2) operators are vividly different
in the following ways. Concerning the encoding, the work in
GAMap models a gene entry as a SC, whereas in GAMap,
we consider it a server index hosting a VM. On the other
hand, as opposed to random solutions in the initial popu-
lation, we adopt a more pragmatic way of constructing the
initial population comprising a mix of greedy and random
solutions to balance exploration and exploitation. The fitness
computation of GAMap and [10] are different as the former
focuses solely on reducing the re-embedding cost, whereas the
latter derives it considering migration and re-embedding cost
of SCs. Finally, we adopt a bit-flop mutation as exchanging
sever indices, whereas in [10] redundant links are replaced
with 0. Therefore, this work proposes a SP-centric framework
GAMap for complete VDC re-embedding with minimum cost.
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Fig. 3: Architecture of GAMap.

III. ARCHITECTURE OF GAMAP

The overall architecture of GAMap is illustrated in Figure 3.
It takes as input the re-embedding VDCs and the substrate net-
work. This section discusses different associated components
of GAMap and highlights their functionalities.

A. GAMap Components

The components of GAMap are discussed subsequently.
1) VDC Requests: As multiple VDCs can be re-embedded

concurrently, we use G = {G1,G2, · · · } to capture the set
of all VDCs requiring re-embedding. Each VDC Gi ∈ G is
formally represented as an undirected weighted graph Gi =
(N i, Li). The group of VMs is denoted by the set N i =
{vi,1, vi,2, · · · } and |N i| is the aggregate VMs corresponding
to VDC Gi. A VL between VM vi,j and and a adjacent VM
vi,j′ is represented as eij,j′ and |Li| captures all such VLs
for VDC Gi. As shown in Figure 1, a VDC comprises VMs
and VLs, each requiring different types and resources. For
instance, a VM’s resource needs CPU and memory resources,

often represented as a unidimensional demand expressed as
computational resource blocks (CRBs) [5]. In the context
of GAMap, the commencing CRB demand of vi,j ∈ N i

is represented as di,j . On the other hand, the commencing
demand of a VL eij,j′ is denoted as b(eij,j′). As GAMap
encompasses dynamic re-embedding of VDCs, the updated
resource demands of vi,j are denoted by di,j . In contrast, the
upgraded demand of eij,j′ are reflected as b(eij,j′).

2) Substrate Network: An interconnected substrate net-
work is represented as an undirected weighted graph GS =
(NS , LS). The node set NS comprises the set of servers NH

and the set of routers NR. We assume that only the servers
have computational resources, also expressed in CRBs. The
capacity of a server hk ∈ NH is reflected as tk, and ck
is the current available capacity. Further it is assumed that
tk = ck, ∀hk ∈ NH initially. The cost of using resources
at hk is pk. Any two servers hk, hk′ have unique server
capacities, i.e., tk ̸= tk′ , thereby enforcing a heterogeneous
setup. The substrate network also consists of multiple physical
links captured as LS . Let c(el) and b(el) be the total and
available capacities of a physical link el ∈ LS having a
unit bandwidth cost of pl. Provisioning resources for eij,j′ en-
compasses reserving b(eij,j′) bandwidth resource on a simple
substrate path δhk,hk′ ∈ Phk,hk′ . Note that Phk,hk′ represents
the set of simple paths between hk and hk′ . Moreover, the
bandwidth of δhk,hk′ is denoted as b(δhk,hk′ ).

B. Working of GAMap

The working of GAMap can be captured using the following
modules: (i.) initial population generator, (ii.) GA-Engine,
and (iii.) best individual selector. Once the VDCs to be
re-embedded are identified, the initial population generator
module is invoked. It generates a population of individuals,
each representing a feasible re-embedding of the VDCs. The
details of the initial population generation are provided in
Section V-B1. The initial population then acts as an input to
the GA-Engine that is responsible for generating high-quality
re-embedding solutions using iterative selection, crossover,
and mutation operators and is discussed elaborately in Section
V-B2. Finally, the best individual selector outputs the least cost
re-embedding plan catering to the design objective of GAMap.

IV. PROBLEM FORMULATION

A SP can re-embed the VDCs after its initial deployment to
manage resource demand spikes, balance the load, effectively
utilize substrate resources, and oversee hardware failures [2].
This paper focuses on developing an efficient strategy to relo-
cate the VDCs completely. Owing to the inherent correlation
among the VMs, a complete relocation implies relocating all
the VMs and the VLs corresponding to the relocating VDC.
The relocation of VDCs encompasses two stages. In the initial
stage, the VMs corresponding to VDCs is relocated. The final
stage involves finding feasible paths satisfying the bandwidth
demands of VLs between the already relocated VMs in the
first stage. The overall objective of this work is to minimize
the re-embedding cost. The relocation policy must adhere to
some constraints that are discussed subsequently.
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A. Relocation Constraints

The re-embedding must abide by the following constraints,
(i.) VM relocation, (ii.) VL Relocation, (iii.) Completeness of
re-embedding, and (iv.) Assignment.

1) VM Relocation Constraint: The VM relocation con-
straint states that any VM vi,j ∈ N i can be successfully
re-embedded to hk if Equation (1) is fulfilled.

di,j ≤ ck (1)

2) VL Relocation Constraint: Considering vi,j and vi,j′

embedded on servers hk and hk′ , respectively connected via
eij,j′ can be re-embedded to substrate path δhk,hk′ ∈ Phk,hk′

if Equation (2) is satisfied.

b(eij,j′) ≤ b(δhk,hk′ ) (2)

Binary Indicators: An indicator variable X (vi,j , hk) corre-
sponding to vi,j is defined as per Equation (3).

X (vi,j , hk) =

{
1 If vi,j is successfully re-embedded to hk
0 Otherwise

(3)

On similar grounds, let X (eij,j′ , δhk,hk′ ) be a path indicator
variable for eij,j′ and captured as Equation (4).

X (eij,j′ , δhk,hk′ ) =


1 Path δhk,hk′ is assigned

for eij,j′and X (vi,j′ , hk) = 1

and X (vi,j , hk′) = 1

0 Otherwise
(4)

3) Assignment Constraint: Considering vi,j and vi,j′ for
re-embedding, they should abide by the assignment constraint
as per Equation (5). The re-embedding should ensure that no
two VMs of a VDC are re-embedded onto the same server.
This constraint follows the models discussed in [2], [10]. The
overall agenda of introducing this constraint is to assist in
providing distributed services and avoid single-point failures.

X (vi,j′ , hk) ∧ X (vi,j , hk) = 0 (5)

4) Completeness of Re-embedding: A VDC is considered
to be completely embedded if every constituent VM and VL
is allocated resource and is reflected in Equations (6) and (7).

|N i| =
∑

∀vi,j∈N i

∑
∀hk∈NH

X (vi,j , hk) (6)

|Li| =
∑

∀ei
j,j′∈Li

∑
∀δhk,h

k′∈ Phk,h
k′

X (eij,j′ , δhk,hk′ ) (7)

B. Re-embedding Cost Computation

GAMap aims to reduce the total re-embedding cost for
relocating VDCs. For a VDC Gi, the remapping cost comprises
VM relocation cost and VL relocation cost. We subsequently
present a formal representation of its computation.

1) VM Re-embedding Cost: Re-embedding cost ψk
i,j of vi,j

on hk is captured as Equation (8).

ψk
i,j = di,j ∗ pk (8)

2) VL Re-embedding Cost: Re-embedding cost of eij,j′ onto
path δhk,hk′ is derived as Equation (9).

λij,j′(δhk,hk′ ) =
∑

∀el ∈ δhk,h
k′

b(eij,j′) ∗ pl (9)

3) Total Remapping Cost: From Equations (8) and (9) the
total remapping cost ηi for relocating a VDC Gi can be derived
as follows:

ηi =
∑

∀vi,j ∈N i

∑
∀hk∈NS

X (vi,j , hk) ∗ ψk
i,j

+
∑

∀ei
j,j′ ∈Li

∑
∀δhk,h

k′ ∈ Phk,h
k′

X (eij,j′ , δhk,hk′ ) ∗ λij,j′(δhk,hk′ )

(10)

C. Objective

The overall objective of GAMap is captured in Equation
(11a). Constraint (11b) is the VM relocation constraint, stat-
ing that there should be at least one server in hk ∈ NH

satisfying the demand of vi,j . Similarly, Constraint (11c) is
the VL relocation constraint. It expresses that there should
be at least one possible path phk,hk′ meeting the bandwidth
requirement of eij,j′ . A VM is re-embedded to no more than
one server, represented as Constraint (11d). Constraints (11e)
and (11f) dictate the completeness of re-embedding for a VDC.
The assignment constraint states that no more than one VM
corresponding to a VDC should be re-embedded to a server [2]
and this is formally defined as Constraint (11g). Constraints
(11h) and (11i) are values of variables.

minimize
∑

∀Gi ∈G

ηi (11a)

s.t. di,j ≤ ck (11b)

b(eij,j′) ≤ b(δhk,hk′ ) (11c)∑
∀hk∈NH

X (vi,j , hk) = 1 (11d)

|N i| =
∑

∀vi,j∈N i

∑
∀hk∈NS

X (vi,j , hk) (11e)

|Li| =
∑

∀ei
j,j′∈Li

∑
∀δhk,h

k′∈ Phk,h
k′

X (eij,j′ , δhk,hk′ ) (11f)

X (vi,j′ , hk) ∧ X (vi,j , hk) = 0 (11g)

∀hk ∈ NS ; ∀eij,j′ ∈ Li; ∀ vi,j , vi,j′ ∈ N i (11h)

∀δhk,hk′ ∈ Phk,hk′ ; ∀Gi ∈ G (11i)

D. NP-Hardness

The VDC re-embedding problem, as expressed in Equa-
tion (11), is NP-Hard and closely resembles the multi-way
separator problem [5]. Obtaining an optimal solution for
VNE essentially implies solving two computationally complex
problems of VM and VL re-embedding. Moreover, owing to
the intractable nature of the problems, there is an obvious
trade-off between solution quality and computational time
with increasing problem size. In this regard, the literature
on VDC management has adopted three different approaches,

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2023.3345542

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 19,2024 at 10:40:20 UTC from IEEE Xplore.  Restrictions apply. 



5

1 2 3 2 1 3 5
Server Index

8 10 12

321 4 5 6 7 8 9 10
Chromsome Index

[ ]v
1,1

[ ]v
1,3

[ ]v
1,2

[ ]v
2,1

[ ]v
2,2

[ ]v
2,3

[ ]v
2,4

[ ]v
3,2

[ ]v
3,1

[ ]v
3,3

VDC 1 VDC 2 VDC 3

Fig. 4: Chromosome Structure.

i.e., (i.) exact, (ii.) heuristics, and (iii.) meta-heuristics. The
exact approaches generate optimal solutions for small problem
instances. They are compute-intensive, time-consuming, and
non-scalable for larger test cases, thereby forbidding their
adoption. On the other hand, they often compromise the solu-
tion quality to obtain a quick solution and tend to be stuck at
the local optimum. To overcome these issues, meta-heuristic-
based solutions have been proposed that consume relatively
more time than the heuristic-based ones but provide sub-
optimal or closer to optimal solutions to the global optimum.

V. SOLUTION APPROACH

As discussed, the relocation procedure for VDCs is proven
intractable. Hence, this work adopts a genetic algorithm (GA)–
based strategy to generate a sub-optimal re-embedding plan
to reduce the remapping costs. GA is a bio-inspired tech-
nique motivated by the process of natural selection. It has
been adapted to solve multiple problems in cloud environ-
ments [18]–[21]. Before deep diving into the workings of GA,
a brief insight into some relevant operators is provided.

A. Background of GA

GA is adapted to generate high-quality solutions for op-
timization and search problems by banking on bio-inspired
operators such as mutation, crossover, and selection [12]. Each
operator plays a vital role in boosting the solution quality, and
its significance is discussed subsequently.

Definition 1: (Selection Operator): The selection operator
assists in identifying and eliminating inferior solutions and
retaining, replicating fitter or superior solutions [12].
The retained solutions can then reproduce, improving con-
vergence and solution quality. A fitness value assigned to
each distinguishes between good and bad solutions. Different
selection operators such as tournament selection, roulette-
wheel selection, proportionate selection, and rank selection,
and a detailed discussion on the same can be found in [12].

Definition 2: (Crossover Operator): Crossover is used to
generate new and diverse solutions by exchanging genetic
information, i.e., genes between two parent chromosomes [12].
Although crossover operations are optional, it helps make
the population diverse, avoid local optima, and achieve faster
convergence. Once the parent chromosomes are identified,
offspring can be generated using single or multi-point, or
uniform crossover operations.

Definition 3: (Mutation Operator): Mutation operations
are used to tweak chromosomes’ genetic information to in-
troduce greater population diversity [12].
Mutation can be done in multiple ways including bit-flip, swap,
and scramble operations.

Definition 4: (Exploration and Exploitation): Exploration
involves probing new search spaces to obtain diverse solutions
whereas exploitation refers to probing a limited region of the
solution at hand, thereby intensifying the local search [12].

An essential aspect of generating high-quality solutions
using GA is the balance between exploration and exploitation.
Interestingly, exploration in GAMap is attained in two ways,
i.e., initial population and exploration via genetic operators,
i.e., crossover and mutation. Exploration in the initial pop-
ulation focuses on diversifying at the beginning of GA, and
exploration in crossover/mutation occurs during the evolution
process and involves creating new solutions from existing
ones. Both aspects contribute to the overall exploration of the
search space in search for optimality. Note that the selection
operator helps achieve exploitation of the search space.

B. GA-Based Relocation Strategy

This section provides a detailed insight into the proposed
scheme. Firstly, the encoding and initial population genera-
tion strategies are presented. This is followed by a detailed
discussion on crossover and mutation operations. Finally, the
GA-based relocation procedure is discussed.

1) Encoding and Initial Population Generation: Two of the
most critical aspects of any GA-based solution strategy are the
encoding of individuals and initial population generation.
Encoding: A chromosome depicting a successful relocation
of VDCs is shown in Figure 4. The figure captures a feasible
relocation of three VDCs and their corresponding VMs. In this
context, a feasible allocation implies that the VMs and the
corresponding VLs of the VDCs are relocated successfully.
It is to be noted that a natural encoding scheme is adopted
to capture a feasible allocation [10]. Referring to Figure 4,
the value 1 at gene index 1 of the chromosome represents
the server onto which the VM v1,1 is remapped. The VMs of
the VDCs are sequentially represented in the chromosome to
reduce the implementation complexity. It can also be inferred
from Figure 4 that the genes corresponding to the VDCs follow
the indexing of the VDCs. Moreover, the chromosome size
corresponds to the VMs considering all relocating VDCs.
Initial Population Generation: The initial population com-
prises 50% randomly generated solutions, whereas the remain-
ing 50% are copies of a greedy-VM allocation policy followed
by shortest path VL embedding. The goal of dividing the initial
population is to balance the exploration and exploitation of
the solution space. All randomly generated individuals in the
population will have broader exploration but will suffer from
delayed convergence and poor-quality solutions. On the other
hand, exploitation is achieved using heuristics, but it may not
ensure a global optimum. Therefore, the partition mentioned
above is enforced to achieve a trade-off. Note that the random
chromosomes also represent a feasible assignment of VDCs.
2) Crossover and Mutation Operation: The crossover and
mutation operations are detailed next.
Crossover: The crossover operations in the literature are
limited to single or multi-point. However, these crossover op-
erators are more adapted to binary-coded populations than nat-
urally encoded populations [12]. Though the overall working
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Algorithm 1: GA Based VDC Re-embedding.
Input: G, GS .
Result: Cf , The best re-embedding solution, i.e., chromosome.

1 Initialize: P = Φ
2 P ← InitialPopulation(G, GS , Psize)
3 for i = 1 to Ngen do
4 for j = 1 to Psize do
5 Select two chromosomes C1 and C2 using tournament

selection
6 P ′ ← ImprovedCrossover(C1, C2)
7 for each Ca ∈ P ′ do
8 if !CheckFeasiblity(Ca) then
9 P ′ = P ′ \ {Ca}

10 for each Ca ∈ P ′ do
11 r′ = Rand[0, 1]
12 if r < r′ then
13 C′

a = Mutation(Ca)
14 if CheckFeasiblity(C′

a) then
15 P = P ∪ {C′

a}

16 else
17 P = P ∪ {Ca}

18 P ← ImportElites(P)

19 Cf ← SelectBest(P)

of the crossover in GAMap is motivated by the work in [10],
it has multiple points of differences, as previously mentioned
in Section II. Motivated from [10], this work adopts improved
crossover to generate distinct offspring, favoring the explo-
ration of the solution space. A tournament selection procedure
is adopted to select the parent chromosomes for crossover,
ensuring that fitter individuals participate in reproduction to
generate better-quality offspring. Two-parent chromosomes
C1 and C2 are selected via tournament selection. Next, the
similarity index SIM(C1, C2) between them is computed.
The similarity SIM(C1, C2) is also a chromosome wherein
each gene entry is set to 1 if the genetic information is the
same for both parents, 0 otherwise. For instance, in Figure 4,
an entry 3 at the chromosome index 3 for both parents implies
that the 3rd index in SIM(C1, C2) is set to 1, implying
the same genetic information. Next, the hamming distance
H(C1, C2) indicating the number of 1’s in SIM(C1, C2) is
calculated. The improved crossover operator then appropri-
ately selects the crossover point depending on H(C1, C2). In
this context, if H(C1, C2) > 2, then a single point crossover
operation is performed by selecting a point anywhere on the
scale α(C1, C2). Here, α(C1, C2) is a range starting with the
occurrence of the first 1 to the last 1, respectively. On the
other hand, if H(C1, C2) ≤ 2, the crossover operation is not
performed, and selected parents directly proceed for mutation.
The findings in [22] show that crossover operations using
hamming distances generate distinct offspring.
Mutation: The improved crossover operation is followed by
a bit-flop mutation adding diversity and favoring exploration
[12]. It proceeds by generating a random gene corresponding
to its server allocation, is selected, and is replaced by a random
server index satisfying the VM’s and adjacent VL’s demand.
Note that the crossover and mutation operations are performed
on the population across generations, which sometimes can
result in infeasible solutions, resulting in delayed convergence.

Algorithm 2: Initial Population.
Input: G, GS , and Psize

Result: Pinitial, The initial population.
1 Initialize: Pinitial = Φ, Pcount = 0
2 while Pcount < Psize do
3 if Pcount < Psize/2 then
4 if RandomSolution (G, GS ) then
5 Pinitial = Pinitial ∪ GetChromsome()
6 Pcount++

7 else
8 if Greedy (G, GS ) then
9 Pinitial = Pinitial ∪ GetChromsome()

10 Pcount++

11 return Pinitial

Algorithm 3: Random Solution
Input: G and GS
Result: Boolean

1 Initialize: free[vi,j ] = T , ∀ vi,j ∈ N i, ∀Gi ∈ G
2 for every Gi ∈ G do
3 for every vi,j ∈ N i do
4 count = 0
5 while free[vi,j ] = T and count ≤ threshold do
6 k = Rand [0, |NH|]
7 count++
8 if di,j ≤ ck and ∄ vi,j′ | X (vi,j′ , hk) = 1 then
9 ck = ck - di,j

10 free[vi,j ] = F
11 SetChromosome (vi,j , hk)

12 if free[vi,j ] == T then
13 return F

14 for every Gi ∈ G do
15 for every ei

j,j′ ∈ L
i do

16 if !FeasiblePath (µ(vi,j), µ(vi,j′ )) then
17 return F

18 return T

However, the convergence delay incurred due to genetic oper-
ators is less severe than the initial population.

C. GA Based Remapping Procedure

The overall working of the GA-based remapping procedure
is shown in Algorithm 1. The algorithm takes as input the
relocating VDCs G and substrate network GS . The algorithm
outputs a feasible re-embedding of the VDCs as a chromosome
Cf . Algorithm 1 is initiated with the initial population gener-
ation as shown in Algorithm 2. It returns Psize feasible re-
embedding solutions comprising Psize/2 randomly generated
solutions, and the remaining Psize/2 are copies of a minimum
cost-based greedy VM allocation followed by the shortest path
re-embedding for VLs. The random allocation procedure is
captured as Algorithm 3. It proceeds as follows. Initially, all
the VMs vi,j ∈ N i corresponding to a VDC Gi ∈ G are
free, i.e., free[vi,j ] = T , indicating its availability in the
relocation process (Step 1 of Algorithm 3). The algorithm
then operates in two phases, (i.) VM allocation, followed by
(ii.) VL allocation. In the first phase, every free VM vi,j of a
VDC Gi generates a random server index k in the pre-defined
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Algorithm 4: Greedy
Input: G and GS
Result: Boolean

1 Initialize: free[vi,j ] = F , ∀ vi,j ∈ N i, ∀Gi ∈ G
2 Sort all the servers hk ∈ NH in increasing order of pk and store it

in SL
3 for every Gi ∈ G do
4 for every vi,j ∈ N i do
5 while free[vi,j ] = T | SL! = Φ do
6 Let hk be the first unprocessed server in SL
7 if di,j ≤ ck and ∄ vi,j′ | X (vi,j′ , hk) = 1 then
8 ck = ck - di,j
9 free[vi,j ] = F

10 SetChromosome (vi,j , hk)

11 if free[vi,j ] == T then
12 return F

13 for every Gi ∈ G do
14 for every ei

j,j′ ∈ L
i do

15 if !FeasiblePath (µ(vi,j), µ(vi,j′ )) then
16 return F

17 return T

range [0, |NH|]. As the randomly generated server hk may
not be feasible, a count variable is maintained to keep track
of the threshold for such attempts. Depending on the state of
hk, either of the following scenarios arises: (i.) allocation is
made or (ii.) allocation is not made. In the former case, vi,j is
assigned to hk if: (i.) hk has enough resources to host vi,j and
(ii.) ∄ vi,j′ such that X (vi,j′ , hk) = 1. Further, the mapping
is also added to the chromosome using the SetChromsome(.)
method (Steps 8-11 of Algorithm 3).
In the latter case, as vi,j is free, i.e., free[vi,j ] = T , a new
attempt to allocate vi,j following the procedure discussed-
above is repeated. Moreover, suppose vi,j remains unassigned
after a maximum number of allowed attempts. In that case,
the VM allocation procedure is abruptly terminated, and a F
value, indicating a failed attempt, is returned (Steps 12−13 of
Algorithm 3). The failure results in the initiation of a renewed
attempt at assigning substrate resources to all the VMs. On
completing the VM allocation phase, the VL allocation phase
is initiated wherein each VL eij,j′ ∈ Li is mapped onto a
feasible substrate path. The FeasiblePath (.) procedure returns
a T value in case of successful allocation, between µ(vi,j)
and µ(vi,j′), where µ(.) returns the allocated server of the
corresponding VM. The procedure is prematurely terminated
if the VL fails and VM allocation is started afresh.
Once Psize/2 random feasible solutions are generated, the
greedy resource allocation policy as shown in Algorithm 4
is triggered. The only point of difference from the random
allocation strategy is that the substrate servers are sorted in
non-decreasing order of their hosting costs pk and stored in
SL. The VM allocation policy also processes the hosts in the
order SL. The rest is executed as per random allocation policy.
The feasible solutions/chromosomes obtained via ran-
dom/greedy allocation are added to the initial population using
the GetChromsome (.) procedure. Note that the procedure
compiles the feasible solutions and converts them into a
chromosome representation, as reflected in Figure 4, reflecting

its assignment. Once converted, these solutions are added
to the initial population, which is genetically modified to
generate new assignments. Once psize solutions are generated,
Algorithm 2 is terminated, and the initial population denoted
by Pinitial is returned. With the initial population as input, the
GA-based VDC Remapping procedure commences. It iterates
over Ngen rounds and outputs a feasible re-embedding with
minimum remapping cost. Subsequently, improved crossover
and mutation operations are performed in every round to iden-
tify new individuals. The process of generating new individu-
als starts with a tournament selection, wherein two of the fittest
chromosomes, say C1 and C2, in Pinitial are identified for
the ImprovedCrossover (.) operation (Step 5 of Algorithm
1). The details of the improved crossover operation can be
found in Section V-B2. Note that the fitness of a chromosome
is computed as per Equation (11a), and a lesser aggregate
cost indicates higher fitness. The improved crossover operator
then generates new offspring that are captured as P ′ (Step
6 of Algorithm 1). Feasibility checks follow this for each
chromosome Ca ∈ P ′. The CheckFeasiblity(.) procedure
verifies if VMs and VLs are mapped onto substrate servers
and paths satisfying the constraints expressed in Equation
(11). The infeasible solutions are ignored, whereas the feasible
ones are retained in P ′ (Steps 7 − 9 of Algorithm 1). Each
chromosome Ca ∈ P ′ is mutated next depending on the
value of a random number r. This results in the following
two scenarios. The first scenario occurs when r < r′ and
the mutation operation is performed. If feasible, the mutated
solution is added to P ; otherwise, it is ignored. The mutation
is not performed in the second case, and Ca is directly added
to P (Steps 10 − 17 of Algorithm 1). This concludes one
round of the remapping procedure. This process (Steps 4-17
of Algorithm 1) is repeated Psize times, and in each iteration,
individuals are added to P . Before proceeding to the next
round, the fittest Psize individuals are identified based on
the fitness function defined in Equation (11a). These Psize

individuals are identified using the ImportElites(.) procedure,
which sorts the chromosomes in ascending order of fitness,
i.e., the remapping costs and returns the first Psize individuals
(Step 18 of Algorithm 1). Finally, after executing Ngen

rounds, the chromosome with the best fitness is identified
using the SelectBest(.) procedure and is denoted by Cf .

D. Asymptotic Analysis of GAMap

Estimating the asymptotic complexity of GA-based solutions
is extremely challenging and is still an open problem. However,
multiple efforts have been made to approximate roughly the
running time of such an algorithm for specific cases, and
it cannot be generalized for all cases. Specific to network
virtualization, the work in [23] discussed the asymptotic
complexities of GA. However, the closest approximation was
presented in [24], and it provides the foundation for deriving
the complexity of GAMap. The crux of GAMap is Algorithm
1, and the operations that consume maximum time are (i.)
selection, (ii.) crossover, (iii.) mutation, and (iv.) feasibility
check. Specific to a generation, the selection operation in
GAMap uses tournament selection that consumes O((Psize)

2)
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Fig. 5: Remapping Cost ($) vs. Scenarios.
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Fig. 6: Average Revenue to Cost Ratio vs. Scenarios.

time, where Psize captures the population size. The crossover
and mutation operations have an asymptotic complexity of
O(Psize∗

∣∣ ⋃
∀Gi ∈G

N i
∣∣) and O(

∣∣ ⋃
∀Gi ∈G

N i
∣∣∗|NS |), where N i

and NS , respectively capture the number of VMs in the VDC
and substrate servers. Finally, the feasibility involves verifying
if the VLs are mapped onto substrate paths with requisite
resources, which consumes O((

∣∣ ⋃
∀Gi ∈G

Li
∣∣)∗|LS ||LS |), where

Li and LS respectively capture the VLs and physical links.

VI. PERFORMANCE EVALUATION

We use the CloudSim simulator toolkit [25] for experimenta-
tion, and the details are as follows.

A. Environmental Setup

For simulation, 4 interconnected DCs have been considered
that are implemented as a fat-tree created using the topology
generator BRITE [26]. The links interconnecting and top-
of-rack (ToR) switches and servers are 10 Gbps capacity.
Similarly, the physical links between the switches and DCs are
assumed to be 40 Gbps capacity. The parameters for simulation
follow the setups in [2], [10]. Additional GA-based simulation
parameters are set as follows (i.) Ngen is aggregate number of
iterations varies in the range [4, 6, 8], (ii.) Psize is the total size
of the population and is set to 8, and (iii.) µ captures the rate
of mutation. Note that the parameters such as Ngen and Psize

in GA are not pre-determined and depend on various factors,
such as the nature of the optimization, characteristics of the
search space, and convergence behavior. We want to state that
there is no universal “one-size-fits-all” choice for the number

of generations (Ngen). Instead, it should be tuned based on
the problem characteristics and results obtained (reduced re-
embedding cost in GAMap). Therefore, with careful analysis,
trial and error is employed to find an appropriate sub-optimal
solution. To assess the performance of GAMap, we compare
it with two different baseline algorithms. Scenarios S-1, S-2,
S-3, S-4 corresponding to 250, 500, 750, and 1000 VDCs
respectively are considered for evaluation. Choosing such
many VDCs aims to analyze how GAMap would potentially
execute in production data centers hosting many applications.
Additionally, works in [5], [13] have adopted such a test
strategy to validate their respective performance. 10 test runs
are conducted for each scenario, and results are compared.

B. The Baselines

The performance of GAMap is compared with two baselines.
• Virtual Network Embedding based on Genetic Algorithm

(VNE-GA) [14]: It adopts a GA-based embedding strat-
egy for the virtual network (VN) over a single domain
network. To generate a sub-optimal embedding, multi-
point crossover and bit-flop mutation have been adopted,
focused on minimal substrate resource usage.

• Greedy: In the greedy strategy, all the VMs of the
VDCs are greedily assigned to the least cost available
servers satisfying their resource demands, followed by
the shortest path embedding of the VLs.

C. Simulation Results

This subsection provides insight into the results obtained and
their comparative behavior.
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Fig. 7: Average Path Length vs. Scenarios.
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Fig. 8: Execution Time (s) vs. Scenarios.

TABLE I: Comparison with Optimal Solution.

Remapping Cost ($)
# Applications 5 VDCs 10 VDCs

Optimal 4926.9 9853.8
GAMap 6197.5 12395.1
Greedy 6525.3 13050.6

VNE-GA 8627.1 17254.1

1) Remapping cost: It indicates the total cost incurred in
remapping all the relocating VMs. Figures 5(a)-5(c) capture
the comparative behavior of total remapping cost for varying
numbers of generations, i.e., Ngen. It can be observed from
the figures that for less number of generations, i.e., Ngen = 4,
the performance of GAMap and Greedy are comparable. This
is because of limited exploitation due to the restricted number
of generations. However, we can observe from Figures 5(b)
and 5(c) that for an increasing number of generations, the
performance of GAMap improves due to more exploitation,
thereby eluding the local optima. On the other hand, VNE-GA
exhibits poor performance compared to others. Individually,
the total remapping cost increases with increasing VDCs,
which is anticipated behavior for a small test case, i.e., 250
VDCs, GAMap and Greedy achieve similar remapping costs.
However, the former outperforms the latter for larger test
cases, i.e., 500 − 1000. The poor performance of Greedy
is attributed to the fact that it only considers VM hosting
costs while assigning servers to VMs. Such an allocation
strategy causes a dispersed placement of correlated VMs
as the less charging servers may not always be placed in
close vicinity, thereby elevating the VL embedding costs. This
behavior dictates the poor performance of Greedy for larger

test cases. On the other hand, the inferior performance of
VNE-GA is attributed to the following two reasons. Firstly,
the initial population is generated randomly, which does not
augur well for developing reasonable quality solutions for
reducing remapping costs. Secondly, VNE-GA aims to reduce
the amount of substrate resources consumed, which may not
necessarily result in reduced remapping costs. Although both
factors contribute to its deleterious performance, the former
is the primary contributor. The results in Table I depict the
remapping cost for 5 and 10 VDCs. It can be observed
that GAMap achieves lower remapping costs compared to
the baselines. Additionally, we also highlight the optimal
remapping cost that is computed using Google Optimization
Tools [27]. We do not consider test cases with > 10 VDCs
owing to the excess overheads in terms of computational time.
2) Average revenue to cost ratio: The revenue-to-cost ratio
highlights the correlation between the substrate resources
demanded and the number of resources provisioned for VDCs.
Figures 6(a)-6(c) capture the average revenue-to-cost ratio of
different techniques used for comparison. The revenue-to-cost
ratio decreases for an increasing number of generations for
GAMap and VNE-GA owing to increased opportunities for
exploitation, resulting in better remapping with lower costs.
However, Greedy’s behavior remains consistent irrespective of
generation. From Figures 6(a)-6(c), it can be inferred that an
increasing number of VDCs decreases the average revenue-
to-cost ratio indicating finite resources. GAMap achieves the
highest ratio, implying that the VLs are re-embedded to
relatively shorter paths. The performance of Greedy is inferior
to GAMap but is superior to VNE-GA. This is primarily
attributed to the scattered re-embedding of VMs in Greedy
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leading to longer physical paths for VLs. Although VNE-GA
targets the reduction of resources consumed in embedding, the
randomly generated initial solution space hinders achieving a
good mapping. An interesting behavior is observed in scenario
S-4, where all the schemes used for comparison have similar
revenue-to-cost ratios. This is attributed to limited substrate
resource availability in provisioning significant VDCs, thereby
compelling the VLs to be mapped to inevitably longer paths.
3) Average Path Length: It reflects the average number of
physical links used to provision a VL. Figures 7(a) and
7(c) illustrate the average path lengths of different protocols
used for comparison across test scenarios. It can be observed
from the figures that the average path lengths increase for an
increasing number of VDCs, which is expected behavior. This
can be attributed to the exhaustion of resources at the substrate
servers leading to a dispersed placement and the exhaustion of
bandwidth resources at the lower-cost shorter paths. Further,
it can be observed that GAMap can achieve the minimum
average path length compared to the baseline algorithms
across all test scenarios. Further, it can also be observed that
with an increasing number of generations, the average path
length decreases for both GAMap and VNR-GA owing to the
exploration of the search space. However, GAMap continues
to outperform VNE-GA as the former can generate better
quality solutions owing to the improved crossover operation
instead of the classical multi-point crossover operation in the
latter. Moreover, the average path length of Greedy remains
relatively consistent across generations. Additionally, one of
the key contributors to the reduction in the re-embedding cost
in GAMap as depicted in Figures 5(a)-5(c) is its ability to map
the VLs to comparatively shorter paths.
4) Execution Time: Figure 8(a)-8(c) illustrates the aggregate
time expended by different techniques in generating a re-
embedding considering different test scenarios. It is evident
from the abovementioned Figures that the execution time for
GAMap and VNE-GA continues to increase for many genera-
tions, which is anticipated behavior. Both GAMap and VNE-
GA execute multiple times on a significant-sized population
and perform time-consuming operations such as selection,
crossover, and mutation, thereby incurring more runtime. It can
also be observed that the greedy allocation policy reasonably
quick solutions concerning GAMap and VNE-GA and shows
consistent behavior irrespective of the number of generations.

VII. CONCLUSION & FUTURE DIRECTIONS

This paper proposed a model GAMap that constructs an effi-
cient re-embedding of assigned VDCs experiencing resource
expansion. GAMap develops a SP-centric solution strategy to
reduce the remapping costs. To achieve efficient remapping,
we adopt a GA-based solution that utilizes an improved
crossover and mutation operation to generate high-quality
solutions in a diverse solution space. Although GAMap is
computer-intensive, experimental results confirm that GAMap
can reduce the remapping cost compared to the baselines.
Although GAMap shows promising performance, it has scope
for further enhancements. As an immediate future direction
for this work, we would like to model the overall problem as

a multi-objective optimization and consider additional metrics
such as resource utilization and migration overheads. In ad-
dition to the re-embedding cost, incorporating topological pa-
rameters, including throughput, stress level, degrees centrality,
betweenness centrality, etc., can further assist in reducing the
remapping costs and balancing the load. The re-embedding
procedure inevitably requires sophisticated migration strate-
gies to schedule the migration of VMs. We would also like
to integrate a migration strategy that can reduce overheads
regarding migration time and downtime while generating an
efficient re-embedding plan. Note that GAMap can seamlessly
be extended for directed graphs with minor modifications.
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