
Codo: Confidential Data Storage for
Wireless Sensor Networks

Ibrahim Ethem Bagci1, Mohammad Reza Pourmirza1, Shahid Raza2, Utz Roedig1, Thiemo Voigt2,3
1School of Computing and Communications, Lancaster University, Lancaster, UK

{i.bagci, m.pourmirza, u.roedig}@lancaster.ac.uk
2Swedish Institute of Computer Science, Kista, Sweden

{shahid, thiemo}@sics.se
3Uppsala University, Sweden

Abstract—Many Wireless Sensor Networks (WSNs) are used to
collect and process confidential information. Confidentiality must
be ensured at all times and, for example, solutions for confidential
communication, processing or storage are required. To date, the
research community has addressed mainly the issue of confi-
dential communication. Efficient solutions for cryptographically
secured communication and associated key exchange in WSNs
exist. Many WSN applications, however, rely heavily on available
on-node storage space and therefore it is essential to ensure
the confidentiality of stored data as well. In this paper we
present Codo, a confidential data storage solution which balances
platform, performance and security requirements. We implement
Codo for the Contiki WSN operating system and evaluate its
performance.

I. INTRODUCTION

In many Wireless Sensor Networks (WSNs) sensor data is
transferred immediately to a sink for further processing. In
such applications no data is stored on nodes and confidentiality
of stored information is not an issue. A number of (recent)
applications use, however, available on-node storage space to
add new features or to improve network performance. For
example, on-node storage may be used when the network
capacity is insufficient to transport all gathered data from all
nodes to the sink. Instead, stored data is pre-processed by
nodes and only processing results are transmitted. Moreover,
the sink may as well request processing or transmission of
stored data.
An example of such an application is industrial process
monitoring and control [1] where sensors used to collect
and store vast amounts of data on production processes.
Nodes process sensor data and transmit results to a sink
node. At times, the sink may request to process sensor data
over specific time periods (e.g. to calculate the average of a
sensor reading over a recent set time period) or request all
sampling points in a specific time period. Such specific data
requests may be necessary for error diagnosis or to calibrate
the overall production processes. As sensors store information
about production processes it is of vital interest to a company
to keep such information hidden from competitors. If a node is
removed from the facility it should not be possible to retrieve
the stored data.

To secure data stored on nodes it has been proposed to
simply encrypt the data before storage using key chains (see,
for example, [2], [3]). Such a naive approach ensures confi-
dentiality but at the same time restricts a node’s processing
capability and does not consider system performance issues.
Such existing solutions do not enable nodes to access already
stored data for in-network data processing on nodes and do
not allow us to balance performance and security concerns.
Furthermore, existing solutions are not tailored to hardware
specifics such as flash memory layout or available hardware
support for cryptographic algorithms.
In this paper we present Codo, a framework for efficient
confidential data storage on sensor nodes. Codo addresses
the aforementioned shortcomings present in existing solutions
by enabling confidential data storage and in-network data
processing on nodes. Security concerns and performance can
be balanced by deciding how much unencrypted data can
be present on a node at any given point in time. To im-
prove performance, encrypted data storage is aligned with
flash memory layout and cryptographic hardware support. The
specific contributions of the paper are:

• Codo: We give a design specification of the efficient
confidential data storage framework.

• Codo Implementation: We detail the implementation of
Codo for the Contiki OS [4] running on a Tmote Sky.
In particular, we show the integration of Codo with the
Contiki flash file system Coffee [5].

• Codo Evaluation: We evaluate the different aspects of
Codo and quantify performance implications. Where
possible we compare results with existing traditional
approaches.

The next section discusses related work. Section III describes
the proposed confidential storage framework Codo. We de-
scribe our Codo implementation for the Contiki operating
system in Section IV. Section V presents the evaluation of
Codo and Section VI concludes the paper.

II. RELATED WORK

Bhatnagar and Miller [2], Pietro et al. [6] and Girao et al. [7]
present a secure and reliable file systems. All of these solutions
use irreversible key generation methods which prevent nodes



to access data locally. Ren et al. propose a secure, dependable
and distributed storage scheme using public key encryption to
ensure data confidentiality [3]. Their scheme does not allow
nodes to access stored data either. In contrast, Codo allows
nodes to access stored data for processing. In addition, public
key cryptography requires more processing than symmetric
cryptography as used in Codo.
Due to higher speed and better security (e.g. resistant to
cold boot attacks) hardware based storage encryption became
available lately by many vendors. For example, the company
Ironkey [8] manufactures secure USB flash drives in which
AES 256-bit encryption in CBC mode is implemented in
hardware. Codo is different to these solutions as it does not
rely on special storage hardware.

III. CONFIDENTIAL DATA STORAGE

A. Limitations of Existing Solutions

Existing security solutions focus on optimizing encryption per-
formance (for example, by optimizing encryption algorithms
[9] or by employing specialised cryptographic hardware [10]).
However, performance gains that result from looking at secure
storage from a systems perspective are largely ignored. In
existing solutions data is generally encrypted as soon as it
produced (for example, in [2], [3], [6], [7]). However, for
many applications it is from a security perspective possible
to cache data unencrypted before performing bulk encryption
and storage. Obviously, the amount of data that can be cached
unencrypted will depend on the specific application.
Current solutions are hardware agnostic which leads to ineffi-
ciencies. Flash memories used on sensor nodes are restricted
in terms of read and write capabilities. It is often only
possible to access data in chunks rather than in individual
bytes and it is always more efficient to process data in
chunks. Thus, crypto mechanisms should operate on chunk
sizes that reflect hardware capabilities. Existing solutions also
ignore that hardware support for cryptographic operations
exists on WSN nodes. Hardware support is generally available
for secure communication but it is possible to re-use these
features for secure storage. Again, this cryptographic hardware
is optimised for specific data chunk sizes and if used in the
context of storage these hardware restrictions must be taken
into account.

B. Codo: Confidential Data Storage Framework

Codo tackles the aforementioned limitations and shortcomings
of existing confidential data storage solutions. The framework
aims to realize confidential data storage with minimal impact
on node operation and performance.
In our storage framework data is organised in DataChunks.
Some unencrypted data is cached to improve performance;
depending on application security and performance needs it
can be decided how much unencrypted cached data can be
present. To improve performance only complete DataChunks
are cryptographically processed. The size of DataChunks is
matched to the capabilities of storage hardware (e.g. page

sizes) and to the capabilities of the encryption hardware (e.g.
buffer size of cryptographic processor).
DataChunk Size: The DataChunk size SD is determined by a
number of factors. These are:

• Cryptographic Algorithm: The cryptographic algorithm
usually operates on fixed block sizes SB . The DataChunk
size should therefore be aligned with this block size.
Thus, the DataChunk size SD must be a multiple of SB .

• Cryptographic Hardware Support: If cryptographic hard-
ware support is available it is normally operating most
efficiently on a block size of SC . The transfer of data to
and from the crypto processor has a fixed cost element
(addressing, loading operations, etc.) and a variable cost
element that depends on the data size to be processed.
SC is a multiple of SB and in many practical setting
SC = SB . Again, SD must be a multiple of SC .

• Flash Memory: Flash memory is organized in pages of
size SP . Depending on the flash memory hardware the
page size implies different constraints. For example, with
some hardware it is only possible to read or write a whole
page. Other hardware allows to read or write parts of a
page but writing or reading of complete pages is most
efficient (as the fixed cost of addressing has to be paid
only once for all data associated with the page). It is
therefore reasonable to align the DataChunk size with
the page size. SP should be therefore a multiple of SD.

SP = aSD = bSB = bSC

b ≡ 0 (moda)

∀ a, b ε 1N+

Data Caching: To increase the performance of the system,
unencrypted DataChunks are cached. Write operations are
cached and encryption is carried out after a certain amount
of DataChunks are accumulated. Likewise, if previously
stored data must be read/modified the complete corresponding
DataChunk is decrypted and cached. Increasing the size of the
cache leads to better performance, however with this approach
the amount of unencrypted data present in the system would
be bigger. Decreasing the size of the cache leads to better
security, but at this time the system performance decreases.
The number of unencrypted DataChunks ND allowed in the
system at any given time is a configuration parameter.
Key Management: In the current implementation of our frame-
work, encryption keys are pre-shared. Future implementations
might be enhanced with dynamic key management protocols
such as IKE [11].

IV. CODO IMPLEMENTATION

Codo is implemented as an extension of Contiki’s [4] Coffee
Filesystem (CFS) [5]. CFS organizes files as a collection of
similar sized pages (see Figure 1) that have generally the
same size as the underlying flash memory pages1. For each

1It is possible to map several Contiki file system pages into one flash
memory page. However, this only makes sense if the flash memory hardware
is able to support operations on parts of a page.



Flash 
Memory
N Erase 
Sectors

Storage
Hardware

File System
Abstraction

Sector 1 Sector 2 Sector N

M Pages 
per
Sector

File

File 
Header

Log File
(for File1)

Reserverd Space

Pointer to P3
Pointer to P5

File1

Pointer to Microlog

Microlog 
Header

Used Space

Figure 1. The Contiki Coffee File System (CFS)

new file a header is created and a number of consecutive
free pages are allocated. New data is directly written to the
empty pages in the file. If pages with existing content are
modified a so called micro log file (also simply referred to
as log file) is used. For modifications a micro log file is
created and linked with the original file which contains a
sequence of log records that have the same size as a page
in the original file. Each log record points to the original page
in the file and contains the updated information. If data is
accessed, the CFS checks first if newer data is available in
the log file before accessing the original file. After a certain
amount of changes the log file is filled and merged with the
original file to form a new consolidated file. The old file and
micro log file are marked for garbage collection. The micro
log structure is used because the flash memory hardware does
not allow us to overwrite pages directly. Before overwriting
a hardware page it is necessary to format and clear an entire
erase sector containing many pages. This would be inefficient
when used frequently and the use of a log file reduces erase
sector formats to a minimum performed at convenient times by
the CFS garbage collection. The CFS exposes standard func-
tions such as cfs_open(), cfs_write(), cfs_read(),
cfs_seek() and cfs_close() to the application for
interaction with the filesystem.

A. Codo Extensions for CFS

To implement Codo with Contiki’s CFS it is necessary to (i)
modify and extend function calls provided by the existing CFS
library and to (ii) modify and extend the behavior of internal
CFS components. We detail these necessary modifications in
the next paragraphs.
1) CFS Function Calls : Algorithm 1 shows a simple Contiki
program that uses the CFS library. The definition in line 7, 13
and 15 is used to switch the API semantic between CFS with
Codo (CFS_CRYPT) and standard CFS.
Without CFS_CRYPT a file is opened in line 6 using
cfs_open() for reading which is indicated via the flag
CFS_READ. In line 14 cfs_read() is used to read data

from the file. cfs_close() (line 16) is used to close the
open file.
With CFS_CRYPT, if data to be read using cfs_read()
(line 9) is not yet available from the micro log file, the security
manager component (see next section for details) is queried to
provide the key required to decrypt the next DataChunk. The
program leaves cfs_read() before completion of the read
process and blocks on ev == KEY_READY. When the key is
provided by the security manager a signal is sent to the waiting
application process. When cfs_read() is now called again
it will be able to decrypt the next data for which the key is now
present. Multiple executions of cfs_read() with following
PROCESS_WAIT_UNTIL may be necessary to complete one
read as a sequence of different keys may be used. The call
to cfs_read() with following PROCESS_WAIT_UNTIL
(line 8 to line 12) can be combined within one C macro
to hide the complexity of multiple function entries from the
programmer.
cfs_write() is used in a similar way to cfs_read().
cfs_open() supports the additional flag CFS_NO_CRYPT
to indicate that a specific newly opened file should not
be encrypted. Thus, the filesystem can hold encrypted and
unencrypted files at the same time.
We also add two additional functions to the CFS API:
cfs_read_crypt() and cfs_write_crypt(). These
two functions can be used to read and write the encrypted
data directly. If data is still in unencrypted form in the cache
cfs_read_crypt() will perform encryption of the data.
The security manager may have to be informed to provide
necessary keys and multiple calls to cfs_read_crypt()
followed by PROCESS_WAIT_UNTIL might be necessary.
These two functions are particularly useful for situations in
which encrypted data must be handled by the node. For
example, with these functions it is possible to avoid re-
encryption of data for data transport and the already securely
stored data can be directly placed in network packets.
We provide a cfs_merge() which can be used to execute
the processing costly merge of file and log file at a convenient
time (for example, at times the system is idle).
cfs_close() is modified to ensure that a merge is exe-
cuted which makes certain that all unencrypted cached data
is encrypted and stored in the file. cfs_close() may
require multiple function calls with PROCESS_WAIT_UNTIL
as keys may have to be organized by the security manager for
encryption.
2) CFS Components:
Micro Log: As described, the CFS uses the micro log files
to handle flash memory read/write specifics. For the Codo
implementation we modify the log file such that it becomes
in addition a cache holding unencrypted DataChunks. In
the standard CFS the log file is used for modifying write
operations. In our CFS extension also read and initial write
operations are operating on the log file.
Whenever data is read from the file it is first checked if the
data is present in unencrypted form in the log file. If not,
the key associated with the data is requested via the security



Algorithm 1 A simple Contiki application program using CFS
with and without Codo extension.
[01] PROCESS_THREAD(cfs_test_process, ev, data) {
[02] PROCESS_BEGIN();
[03] char buf[100];
[04] char *filename = "msg_file";
[05] int fd; int n=0;
[06] fd = cfs_open(filename, CFS_READ);
[07] #ifdef CFS_CRYPT
[08] while(n<sizeof(buf)) {
[09] n+=cfs_read(fd,buf+n, sizeof(buf));
[10] if(n<sizeof(buf))
[11] PROCESS_WAIT_UNTIL(ev == KEY_READY);
[12] }
[13] #else
[14] cfs_read(fd,buf, sizeof(buf));
[15] #endif
[16] cfs_close(fd);
[17] PROCESS_END();
[18] }

manager component and upon obtaining the key the data is
decrypted and transferred to the log file. New data is always
written to the log file. When the maximum size of the log file
is reached the log file must be cleared and merged with the
original file.
Security Manager: The security manager is implemented as
a Contiki thread that is responsible to (i) generate new keys
if needed (ii) communicate with the sink to store and retrieve
keys.
The CFS can ask the security manager via a function call for
a key to a specific DataChunk of a file. This request contains
three parameters: file_id, DataChunk_id and flags. file_id is
the filename which is a unique identifier, DataChunk_id is the
number of the DataChunk for which a key is required. flags
indicates if the requested key is for a portion of the file that has
never been used before. If this is the case the security manager
has two options. First, it can create the requested key, inform
the filesystem and then transmit the key to the sink for storage.
Second, it can send a request to the sink for a new key and
when a response arrives inform the filesystem. If flags indicate
that a key for a previously used DataChunk is needed and the
key is not locally present, the security manager must send a
request for the key to the sink.
Cryptographic Functions: For encryption/decryption we use
AES in counter mode (CTR) with 128bit key length provided
either by hardware (e.g. via the CC2420 radio chip present on
many sensor node platforms) or by the open source MIRACL
[12] library if hardware support is not available.

V. CODO EVALUATION

We evaluate the Codo implementation based on Contiki’s
CFS using a Tmote Sky sensor node. To evaluate system
performance we analyse the execution times of the CFS
function calls. Execution times are important indicators as
they are a measure for system responsiveness and are directly
proportional to a node’s energy consumption. Furthermore, we
investigate the performance of data caching when the cache is
located in flash memory or in RAM.

 0
 50

 100
 150
 200
 250
 300

CFS_APP

CFS_MOD

CFS_CRYPT_SW

CFS_CRYPT_SW_M

CFS_CRYPT_HW

CFS_CRYPT_HW_M

Ex
ec

ut
io

n 
Ti

m
e 

T 
[m

s]

Sequential write of 2048byte

256byte write
64byte write

32byte write
16byte write

Figure 2. Writing of 2048byte in blocks of 256byte, 64byte, 32byte and
16byte using cfs_write().

The cryptographic hardware support of the Tmote’s CC2420
radio chip requires a minimum block size of SC = 16byte.
The Tmote provides an ST M25P80 flash memory with a
page size of SP = 256byte. We therefore select a DataChunk
size of SD = 256byte to obtain a well matched system (see
Section III). We use software (CFS_CRYPT_SW) or hard-
ware (CFS_CRYPT_HW) supported encryption. The filesys-
tem uses a log record size of SL = 256byte to match flash
memory page size. Furthermore, the system is configured to
use NL = 4 log records which means that SL ·NL = 1024byte
of unencrypted data can be present on the system at any given
point in time.

A. cfs_write() Performance
In this first experiment a file of size 2048byte is writ-
ten using a sequence of cfs_write() calls. With each
cfs_write() call SW bytes are written to the file sys-
tem (SW ∈ {16, 32, 64, 256}). The execution time of each
cfs_write() call is measured. The experiments are re-
peated using the original CFS in append mode (CFS_APP), the
original CFS in modify mode (CFS_MOD) (data is appended,
but the file is assumed as modified and therefore also the log
file is used), Codo CFS with software (CFS_CRYPT_SW)
and hardware supported (CFS_CRYPT_HW) encryption
and Codo CFS with additional RAM supported log file
(CFS_CRYPT_SW_M and CFS_CRYPT_HW_M). In this ex-
periment the Security Manager holds the required key for the
2048byte sized file locally and there is no key exchange with
the sink required. If keys are exchanged over the network key
exchange times have to be added to the experiment results.
The experimental results are shown in Figure 2. Using
CFS_APP and SW = 256byte the time to write all 2048byte to
the file system is 18.3ms. In this mode the file system does not
make use of the log file structure and data is directly written
to the file structure in flash memory. With CFS_MOD the
time increases significantly to 54.8ms as the log file structure
is involved in the writing process. Each write is directed to
a log record in the log file in flash memory and when all
log records are filled a merge is executed to integrate log file
and original file. CFS_CRYPT_SW and CFS_CRYPT_HW are



write CFS_APP CFS_CRYPT_SW CFS_CRYPT_HW CFS_CRYPT_HW_M

1 2.29ms 4.06ms 4.12ms 1.43ms
2 2.29ms 3.14ms 3.17ms 1.40ms
3 2.29ms 2.93ms 3.02ms 1.40ms
4 2.29ms 2.93ms 2.93ms 1.37ms
5 2.29ms 168.67ms 90.39ms 63.45ms
6 2.29ms 3.14ms 3.14ms 1.40ms
7 2.29ms 2.99ms 2.96ms 1.37ms
8 2.29ms 2.93ms 2.96ms 1.37ms

Table I
WRITING OF 2048byte IN 8 BLOCKS OF 256byte.

functionally identical to CFS_MOD but when the log file is
merged with the original file, encryption has to be performed.
Thus, with CFS_CRYPT_SW and CFS_CRYPT_HW execu-
tion times are 190.8ms and 112.7ms. With RAM caching,
the execution time reduces further to 151.6ms and 73.2ms
(CFS_CRYPT_SW_M and CFS_CRYPT_HW_M).
The overall time of writing 2048byte to the file is not
distributed equally among the 8 separate executions of
cfs_write() with SW = 256byte (see Table I).
The first cfs_write() takes for CFS_CRYPT_SW and
CFS_CRYPT_HW slightly more time than the following
three as some time to create the log file structure in flash
memory is needed. The 5th write takes considerable more
time than previous writes as the log file of size NL = 4
is full and a merge must be executed before a log record
can be written. During merge encryption is performed which
requires significant processing time. The use of encryption
hardware support improves encryption performance by 47%.
With CFS_CRYPT_HW_M the first 4 write operations are
faster than CFS_APP as data is written to the cache located
in RAM.
When decreasing the write size SW to 64bytes, 32bytes and
finally 16bytes the overall time necessary to write the file of
2048bytes increases (see Figure 2). This is expected as each
cfs_write() call is associated with additional overhead.
For example, the overall time to write a file of 2048bytes
length increases from 112.7ms to 211.6ms when switching
from SW = 256byte to SW = 16byte with CFS_CRYPT_HW.
Note that CFS_CRYPT_HW_M outperforms CFS_MOD for
SW = 16byte. This means that under this condition Codo,
which performs caching and encryption, outperforms the stan-
dard CFS when operating on files that have been modified.
Summary: The Codo CFS is relatively expensive in compar-
ison to CFS. CFS does, however, not provide data confiden-
tiality and this feature cannot be implemented at zero cost. For
example, the overall execution time for writing SW = 256byte
increases with Codo CFS (CFS_CRYPT_HW_M) compared to
CFS (CFS_APP) by a factor of 4. However, individual write
operations that do not require merging and encryption are
faster with Codo (CFS_CRYPT_HW_M) (by a factor of 1.6
for the first write with SW = 256byte). Furthermore, within
an application scenario it might be possible to schedule costly
merge and encrypt operations at times the system is idle and
thus the overhead for providing confidentiality may not impact

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

CFS_APP

CFS_MOD

CFS_CRYPT_SW

CFS_CRYPT_SW_M

CFS_CRYPT_HW

CFS_CRYPT_HW_M

Ex
ec

ut
io

n 
Ti

m
e 

T 
[m

s]

Sequential read of 2048byte

256byte read
64byte read

32byte read
16byte read

Figure 3. Reading of 2048byte in blocks of 256byte, 64byte, 32byte and
16byte using cfs_read().

read CFS_APP CFS_CRYPT_SW CFS_CRYPT_HW CFS_CRYPT_HW_M

1 3.14ms 232.03ms 134.31ms 100.56ms
2 3.11ms 38.24ms 18.77ms 15.66ms
3 3.17ms 38.36ms 18.80ms 15.66ms
4 3.11ms 38.30ms 18.86ms 15.69ms
5 3.17ms 231.45ms 133.88ms 100.22ms
6 3.11ms 38.24ms 18.77ms 15.63ms
7 3.11ms 38.30ms 18.83ms 15.66ms
8 3.14ms 38.33ms 18.86ms 15.78ms

Table II
READING OF 2048byte IN 8 BLOCKS OF 256byte.

the overall system performance.

B. cfs_read() Performance
In this second experiment the file created in the previous
experiment (2048byte file size) is read using a sequence of
cfs_read() calls. With each cfs_read() call, SR bytes
are read from the file system (SR ∈ {16, 32, 64, 256}). The
execution time of each cfs_read() call is measured. The
time necessary for reading the complete file is shown for all
file system modes in Figure 3.
Using CFS_APP and SR = 256byte, the time to
read all 2048byte is 25.1ms. With CFS_MOD this
time increases to 30.6ms. With CFS_CRYPT_SW and
CFS_CRYPT_HW execution times are 693.2ms and 381.1ms;
with CFS_CRYPT_SW_M and CFS_CRYPT_HW_M times
are 608.8ms and 295.1ms. Again, the overall time of reading
2048byte to the file is not distributed equally among the 8
separate executions of cfs_read() with SR = 256byte
(see Table II). The first cfs_read() of CFS_CRYPT_SW,
CFS_CRYPT_HW and CFS_CRYPT_HW_M requires a
merge as this first read is performed after the previous exper-
iment in which the file was written and the log file structure
was filled. Also the 5th read requires a merge as the log file
is filled. All 8 reads require reading from the flash memory
followed by decryption before the decrypted data is placed in
the log file structure.
When decreasing the read size SR to 64bytes, 32bytes and
finally 16bytes the overall time necessary to read the file
of 2048bytes increases as shown in Figure 3. However, the



times necessary for individual cfs_read() calls have an
uneven distribution. For example, for SR = 16byte with
CFS_CRYPT_HW_M the first read requires 99.8ms as it
includes a merge, decryption of 256byte of data and placement
of this data in the cache (the log file). The next 15 read
operations require 0.5ms each as the decrypted data is now
available in the cache. The 16th operation requires 14.8ms as
a new block of 256byte is decrypted and moved to the cache.
Summary: Reading a securely stored file requires consid-
erable more effort than reading the file form the original
CFS. For example, the overall time to read a 2048byte
file in 256byte blocks with CFS_CRYPT_HW_M increases
by a factor of 11.7. However, not every read operation is
equally expensive. For example, when using a read size of
SR = 16byte with CFS_CRYPT_HW_M, read operations
increase by a factor of 1.3; only when merge and/or decryption
operations are necessary read operations are much more costly.

C. Cache Performance
Instead of using Codo which enables caching of
unencrypted data one could use a simple solution
(CFS_SIMPLE) which encrypts/decrypts data before calling
cfs_write()/cfs_read() of the original Contiki
file system. CFS_SIMPLE would only be usable if it is
ensured that data is accessed in whole blocks that can be
encrypted/decrypted in full. Hence, CFS_SIMPLE is only
useful to provide a baseline for comparison here but it is not
a practically usable alternative.
Writing 256bytes of data using CFS_SIMPLE_HW takes
11.7ms (9.4ms for hardware supported encryption and 2.3ms
for writing to flash memory) when writing to a file that has not
been modified yet and hence the log file structure is not in use.
In comparison, CFS_CRYPT_HW_M requires only 1.4ms as
the data is written to the cache in RAM. A performance
penalty only occurs for writes when the log file structure is full
and a merge has to be performed (see previous paragraphs).
We note a similar performance difference for read
operations. CFS_SIMPLE_HW requires 12.5ms while
CFS_CRYPT_HW_M requires only 1.4ms if the data is
found in the cache structure.
The performance difference between CFS_SIMPLE_HW
and CFS_CRYPT_HW_M diminishes when handling smaller
amounts of data in each read and write operation. This is due to
the fact that then encryption/decryption times are comparable
to times necessary for flash read/write operations. For example,
when writing 16bytes CFS_SIMPLE_HW requires 1.2ms
while CFS_CRYPT_HW_M takes 0.6ms.
Summary: The caching functionality provides a performance
benefit for individual read and write operations. Sensor net-
work applications that access files sequentially (e.g. writing a
continuous log file) may benefit from the increased read/write
speed. However, applications that benefit most from the cache
functionality are applications that access the same data in
a file multiple times. For example, some applications may
record sensor data and then perform periodically complex data
processing which requires multiple reads of the previously

recorded data.

VI. CONCLUSION

Codo is a novel framework for confidential data storage on
sensor nodes. We have described and evaluated a Codo imple-
mentation for Contiki. As described, Codo addresses a number
of shortcomings in existing secure storage solutions. Codo
matches hardware capabilities with security requirements; in-
network processing capabilities are preserved while providing
confidentiality.
Security requires a processing overhead which is considerable.
This processing overhead is proportional to the increase in
energy consumption of a node as the CPU is active for
longer. However, the CPU is generally the smallest energy
consumer (radio and sensors consume far more energy) and
the overall increase in energy consumption is reasonable for
better security. The exact reduction of node lifetime depends
on the particular CPU type and sensor platform.

VII. ACKNOWLEDGEMENTS

This work is partially supported by CONET, the Cooperating
Objects Network of Excellence.

REFERENCES

[1] C. Sreenan, J. S. Silva, L. Wolf, R. Eiras, T. Voigt, U. Roedig,
V. Vassiliou, and G. Hackenbroich, “Performance control in wireless
sensor networks: the ginseng project - [Global communications news
letter],” Communications Magazine, vol. 47, no. 8, Aug. 2009.

[2] N. Bhatnagar and E. L. Miller, “Designing a secure reliable file system
for sensor networks,” in Proceedings of the 2007 ACM workshop on
Storage security and survivability, ser. StorageSS ’07. New York, NY,
USA: ACM, 2007, pp. 19–24.

[3] W. Ren, Y. Ren, and H. Zhang, “Hybrids: A scheme for secure dis-
tributed data storage in wsns,” in Embedded and Ubiquitous Computing,
2008. EUC ’08. IEEE/IFIP International Conference on, vol. 2, dec.
2008, pp. 318 –323.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on, nov.
2004, pp. 455 – 462.

[5] N. Tsiftes, A. Dunkels, H. Zhitao, and T. Voigt, “Enabling large-scale
storage in sensor networks with the coffee file system,” in Proceedings of
the 2009 International Conference on Information Processing in Sensor
Networks, ser. IPSN ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 349–360.

[6] R. Di Pietro, D. Ma, C. Soriente, and G. Tsudik, “Posh: Proactive
co-operative self-healing in unattended wireless sensor networks,” in
Reliable Distributed Systems, 2008. SRDS ’08. IEEE Symposium on,
oct. 2008, pp. 185 –194.

[7] J. Girao, D. Westhoff, E. Mykletun, and T. Araki, “Tinypeds: Tiny persis-
tent encrypted data storage in asynchronous wireless sensor networks,”
Ad Hoc Netw., vol. 5, pp. 1073–1089, September 2007.

[8] “Ironkey.” [Online]. Available: https://www.ironkey.com/
[9] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab,

“Nanoecc: testing the limits of elliptic curve cryptography in sensor
networks,” in Proceedings of the 5th European conference on Wireless
sensor networks, ser. EWSN’08, 2008, pp. 305–320.

[10] W. Hu, P. Corke, W. C. Shih, and L. Overs, “secfleck: A public key
technology platform for wireless sensor networks,” in Proceedings of
the 6th European Conference on Wireless Sensor Networks, ser. EWSN
’09, 2009, pp. 296–311.

[11] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, “Internet Key Exchange
Protocol Version 2 (IKEv2),” RFC 5996, Internet Engineering Task
Force, 2010.

[12] “Miracl - multiprecision integer and ratio-
nal arithmetic c/c++ library.” [Online]. Available:
http://certivox.jira.com/wiki/display/MIRACLPUBLIC/Home


