
Submitted to Transportation Science

manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A New Simheuristic Approach for Stochastic Runway
Scheduling

Rob Shone
Lancaster University, r.shone@lancaster.ac.uk,

Kevin Glazebrook
Lancaster University, k.glazebrook@lancaster.ac.uk,

Konstantinos G. Zografos
Lancaster University, k.zografos@lancaster.ac.uk,

We consider a stochastic, dynamic runway scheduling problem involving aircraft landings on a single runway.

Sequencing decisions are made with knowledge of the estimated arrival times (ETAs) of all aircraft due

to arrive at the airport, and these ETAs vary according to continuous-time stochastic processes. Time

separations between consecutive runway landings are modeled via sequence-dependent Erlang distributions

and are affected by weather conditions, which also evolve continuously over time. The resulting multi-stage

optimization problem is intractable using exact methods and we propose a novel simheuristic approach,

based on the application of methods analogous to variable neighborhood search (VNS) in a high-dimensional

stochastic environment. Our model is calibrated using flight tracking data for over 98,000 arrivals at Heathrow

Airport. Results from numerical experiments indicate that our proposed simheuristic algorithm outperforms

an alternative based on deterministic forecasts under a wide range of parameter values, with the largest

benefits being seen when the underlying stochastic processes become more volatile and also when the on-time

requirements of individual flights are given greater weight in the objective function.

Key words : Simulation optimization, stochastic processes, runway scheduling, aviation

History :

1. Introduction

Imbalances between demand and capacity at the world’s busiest airports continue to pose prob-

lems for schedule coordinators, air traffic controllers, airspace users and other stakeholders. By the

end of June 2023, daily flight numbers in Europe had recovered to 93% of their pre-pandemic levels

and major hubs such as London Heathrow, Paris Charles de Gaulle and Amsterdam Schiphol were

again processing more than 1000 runway movements (i.e. take-offs or landings) per day on average

1

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

2 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

(Eurocontrol (2023)). Flight delays, however, are also increasing in frequency following the record

lows seen during 2020 (Eurocontrol (2022)). The question of how to mitigate air traffic congestion

while satisfying the ever-increasing demand for air transport services has been examined exten-

sively at the strategic, tactical and operational levels (Zografos et al. (2017), Jacquillat and Odoni

(2018), Cavusoglu and Macario (2021)).

Air traffic delays can be mitigated by improving the efficiency of airport operations, including

the sequencing of aircraft using the runways. Optimizing runway sequences is a critical step in

making efficient use of scarce airport capacity and minimizing delays in the airport network as a

whole. Following the developments of research programmes such as SESAR and NextGen in recent

years, decision support tools such as the Arrival Manager (AMAN) are now being extended in

order to allow the management of incoming flights at much earlier points in their journeys, in order

to absorb delays in the ‘enroute’ stage and reduce the need for holding patterns close to the airport

(SESAR (2023a,b)). Thus, there is a growing need to consider sequencing decisions over longer

time horizons in order to make the best use of available technology. However, this task is made

more challenging by the fact that an aircraft’s estimated arrival time (ETA) is subject to greater

uncertainty when the prediction is made at an earlier stage of its journey (Khassiba et al. (2020)).

In this paper we consider a stochastic, dynamic runway scheduling problem. The focus is

on tactical decision-making1, in the sense that we aim to optimize the real-time decisions made

by air traffic controllers in response to the latest available information on a particular day of

operations, with the schedule of aircraft take-offs and landings having been determined in advance.

Our problem formulation draws upon different areas of the literature that have evolved along quite

separate lines in the last few decades. On one hand, we model the stochastic nature of airport

runway operations using a queueing theory approach, whereby the times that aircraft arrive at

the runway threshold and complete ‘service’ (i.e. usage of the runway) are subject to uncertainty.

Several previous studies have used stochastic queueing formulations to model operational delays

at airports (Koopman (1972), Stamatopoulos et al. (2004), Hansen et al. (2009), Pyrgiotis and

Odoni (2016), Jacquillat et al. (2017)). The decision-making aspect of our problem relates to the

sequencing of aircraft landing at a single runway during a congested period. In this respect, we

build upon the literature on aircraft sequencing problems, which began with the formulation of

static, deterministic optimization problems (Psaraftis (1978)) but has more recently expanded into

the area of stochastic optimization (Solveling et al. (2011), Heidt et al. (2016), Liu et al. (2018),

Solak et al. (2018), Khassiba et al. (2020)).

In queueing models of airport runway operations, a common approach is to use an estimate

for the airport’s capacity in order to derive ‘service rates’ for the queues. The capacity of an airport

1 The term ‘operational decision-making’ may be preferred by some authors.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 3

or single runway may be defined as the expected number of runway movements per unit time that

can be operated under conditions of continuous demand (de Neufville and Odoni (2013)). This

definition implies that an airport’s capacity actually varies with time, as it depends on various

controllable and non-controllable factors, including runway configurations and weather conditions.

Gilbo (1993) introduced the concept of a ‘capacity envelope’ to represent the set of feasible pairs

of service rates for arrivals and departures at a single airport, and subsequently this approach has

been used to formulate stochastic, dynamic optimization problems based on the control of service

rates at discrete time epochs (Jacquillat and Odoni (2015), Jacquillat et al. (2017), Shone et al.

(2019)). The use of a capacity envelope to select service rates for aircraft queues may be seen as

somewhat macroscopic in nature, as it does not explicitly allow for fine-grain aircraft sequencing

and the time savings that air traffic controllers can achieve by taking into account separation

requirements between different types of aircraft; instead, it assumes that different possible traffic

mixes and other considerations can be implicitly accounted for by configuring service time variances

(Shone et al. (2021)). The model proposed in this paper assumes that an aircraft’s service time

follows a random distribution which depends on its own weight class and also that of its immediate

predecessor in the runway queue. Thus, we allow for the effects of weight classes on separation

times, while preserving the stochastic modeling of runway service times.

Two-stage stochastic optimization has become popular in recent years as a means of incorpo-

rating uncertainty into runway scheduling problems. Solveling et al. (2011) introduced a two-stage

model in which a sequence of aircraft weight classes is determined in the first stage, and specific

flights are assigned to positions in the sequence (subject to weight class compatibility) in the sec-

ond stage. Solak et al. (2018) subsequently enhanced this model by introducing costs based on

exact timings of runway operations. Liu et al. (2020) used a similar formulation, but allowed for

limited or ambiguous information about the model parameters. Khassiba et al. (2020) considered

the optimization of a sequence of aircraft arriving at an initial approach fix (IAF) and used chance

constraints to mitigate the risk of separation time violations.

While two-stage optimization methods clearly have useful applications in runway scheduling

problems, in this paper we take a different approach in order to model the problem faced by

air traffic controllers who need to make decisions in information-rich and fast-changing dynamic

environments. We consider multi-stage problems involving hundreds of aircraft and use continuous-

time stochastic processes to model the evolution of uncertainty over time, with each decision being

made under the latest set of information available. The high-dimensional nature of our problem

precludes the use of exact solution methods, and instead we opt for a simulation-based approach in

which many possible runway sequences are compared using randomly-sampled system trajectories.

Our approach enables the continuous availability of a recommended runway sequence that air

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

4 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

traffic controllers can use to direct the movements of aircraft near the terminal airspace; please see

Section 3.4 for further explanation of how our methods can be implemented in practice.

The main contributions of our paper are as follows:

� We provide a new formulation for the multi-objective stochastic runway scheduling problem

which includes three different types of dynamic uncertainty: (i) estimated times of arrival (ETAs)

for aircraft evolve according to continuous-time stochastic processes; (ii) sequence-dependent air-

craft separation times follow Erlang distributions; (iii) expected changepoints in weather conditions

also vary according to continuous-time stochastic processes.

� We propose a novel solution methodology for this problem, based on the application of

simheuristic search techniques in a stochastic and rapidly-changing environment.

� We configure our model using data from over 98,000 flights landing at Heathrow Airport in

2018 and 2019 and show, using numerical experiments, that the solutions given by our simheuristic

approach consistently outperform those given by alternative heuristics with respect to a weighted

objective function based on schedule punctuality and air-holding times.

Our model formulation is provided in Section 2. Details of our heuristic approaches are pre-

sented in Section 3. The use of flight tracking data to configure our model parameters is described

in Section 4, and we provide details of results from our computational experiments in Section 5.

Our concluding remarks are given in Section 6.

2. Model formulation

In this paper we restrict attention to arriving flights (landings) on a single runway at an airport,

and assume that this runway is not used or affected by the stream of outbound traffic (departures).

It is common for large airports to use one or more runways for arrivals only; for example, Heathrow

Airport operates two runways in ‘segregated mode’ during typical hours of operation. Let F be the

set of arriving flights scheduled to use the runway during a particular time interval, denoted by T :=

[0, T]. For each flight i∈F we associate a scheduled arrival time ai ∈ T at the destination airport

and a scheduled departure time di ∈ (−∞, ai) from its origin airport. For clarity, we emphasize

that the destination airport is the same for all flights in F , but the origin airport is flight-specific.

We also use wi to denote the weight class of aircraft i∈F , belonging to a set of weight classes W,

and define gi ∈ [0,1] as a relative cost parameter associated with delays to flight i, which might

depend on the number of passengers carried and other factors.

The actual times that flights land on the runway are affected not only by sequencing and

scheduling decisions, but also by the uncertainty affecting (i) their departure and flight times, (ii)

landing time separations with preceding aircraft and (iii) weather conditions at the destination

airport. In Sections 2.1-2.3 we explain how these different sources of uncertainty are modeled, and

in Section 2.4 we present our decision-making framework and objective function.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 5

2.1. Unconstrained landing times

The first source of uncertainty in our model is related to the earliest time that a flight would be

able to land in the absence of congestion effects or adverse weather conditions at the destination

airport. Following previous studies (Bennell et al. (2017), Khassiba et al. (2020)), we refer to this

as the unconstrained landing time and denote it by Ai for flight i∈F . Noting that Ai may depend

on many unpredictable factors and control interventions at various different stages of flight i’s

progress (including the pre-departure stage), we propose to make a distinction between pre-tactical

uncertainty and tactical uncertainty and write

Ai = ai +∆pre
i +∆tac

i , (1)

where ∆pre
i and ∆tac

i are pre-tactical and tactical delays (possibly negative-valued), respectively.

Here, ‘pre-tactical’ delays are those which can already be foreseen well in advance of a flight’s

departure, but would not have been known when the airport arrival schedule was originally pro-

duced (typically several months in advance of operations). Examples of delays which may fall into

the ‘pre-tactical’ category are those caused by airline crew unavailability, local airspace restrictions

or global upper wind conditions. On the other hand, ‘tactical’ delays are those which evolve dynam-

ically during actual operations. These might include take-off delays caused by taxiway congestion

or enroute delays caused by the need to avoid potential air traffic conflicts.

The pre-tactical delay ∆pre
i is a semi-bounded continuous random variable in our model,

while ∆tac
i is also stochastic but additionally depends on sequencing decisions. In our numerical

experiments later, we rely on gamma distributions for modeling the pre-tactical delays, with flight-

specific parameters estimated from historical data; further details are given in Section 4. For each

i ∈ F , we assume that ∆pre
i is already ‘realized’ in advance of flight i’s scheduled departure time

and remains constant throughout the remainder of T . On the other hand, ∆tac
i is not known until

flight i actually lands, and until then we are only able to predict its value.

To model tactical uncertainty we use Xi(t) to denote the estimated time of arrival (ETA)

for flight i at time t ∈ T , which depends on the latest information available at t. The ETA Xi(t)

may vary considerably in short intervals of time and is generally not a monotonic function of t. We

assume Xi(t) remains equal to ai+∆pre
i (an adjusted ETA after realization of the pre-tactical delay

∆pre
i) until t is within a certain proximity qi of the scheduled departure time di, at which point

tactical uncertainty (which may include some pre-departure uncertainty associated with taxi-out

times, for example) begins to take effect and Xi(t) varies according to a Brownian motion (BM)

process. For convenience, let hi = di − qi. Then we define

Xi(t) =

{
ai +∆pre

i , if t≤ hi,

ai +∆pre
i +Bi(t)+ ρi(t), if t > hi,

(2)

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

6 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

where Bi(t)∼N(0, σ2
i (t−hi)) and ρi(t)≥ 0 denotes any additional ‘airborne holding time’ incurred

by flight i as part of the tactical decision-making process, i.e. the aircraft sequencing. We elaborate

further on this holding time in Section 2.4, but in the remainder of this subsection we assume (for

ease of exposition) that ρi(t)≡ 0. The unconstrained landing time Ai is given by

Ai =min
{
t > hi : Xi(t)≤ t

}
. (3)

That is, Ai is the earliest point at which Xi(t) is exceeded by the current time. Figure 1

shows how Ai and ∆tac
i are determined by the BM trajectory for a particular flight i, given some

parameters ai, di, qi and a fixed realization of ∆pre
i . Note that we have the logical property that as t

increases, Xi(t) becomes an increasingly accurate forecast of Ai; in other words, the unconstrained

landing time becomes more predictable with time.

ai + Δi
pre + Δi

tac

ai + Δi
pre

ai

y

hi di Ai t = Time

qi

y = t

y = Xi(t)

Δi
pre

Δi
tac

Gi

Figure 1 The unconstrained landing time Ai is obtained as the earliest point at which the trajectory y =Xi(t),

which behaves randomly for t > hi, intersects the straight line y= t. The pre-tactical and tactical delays,

∆pre
i and ∆tac

i , are shown as distances on the vertical scale.

From (3), it follows that

Ai
dist
= min

{
t > hi : Bi(t)+ t≥ ai +∆pre

i

}
(4)

= hi +min
{
u> 0 : Bi(u+hi)+u≥ ai +∆pre

i −hi

}
(5)

def
= hi +Gi, (6)

where we have used the fact that −Bi(t) has the same distribution as Bi(t) in (4), and the change

of variables u = t− hi is used in (5). Noting that Bi(u+ hi) ∼ N(0, σ2
i u), we see that Ai can be

interpreted as the ‘first hitting time’ for a BM process with a positive linear drift (represented by

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 7

the additive term u in (5)). Using known theoretical results for BM processes with drift (Folks

and Chhikara (1978)), it follows that the conditional density function of the random variable Gi

defined in (6), given some realization of ∆pre
i , is the inverse Gaussian function

fGi
(u |∆pre

i = δ) =
ai + δ−hi

σi

√
2πu3

exp

(
−(ai + δ−hi −u)2

2σ2
i u

)
(u> 0), (7)

which has mean ai + δ− hi and variance σ2
i (ai + δ− hi). The tactical delay ∆tac

i can be expressed

as

∆tac
i =Gi − (ai +∆pre

i −hi),

which can be recognized from Figure 1 as the difference between the duration of the Brownian

motion, Ai − hi, and the duration that would occur if Xi(t) remained at its initial level ai +∆pre
i

throughout T . Naturally, this has a mean of zero. We also note, using (1), that

E[Ai] = ai +E[∆pre
i] (8)

and, using the law of total variance,

Var(Ai) =Var(Gi)

=Var(E[Gi |∆pre
i])+E[Var(Gi |∆pre

i)]

=Var(∆pre
i)+σ2

i (ai +E[∆pre
i]−hi) . (9)

While it is possible to obtain data on the timeliness of aircraft arrivals and departures at

airports around the world, it is not easy to find reliable information about how an aircraft’s ETA

varies dynamically during (and prior to) its flight. Hence, parameters such as σi in our model are

difficult to estimate accurately. In our numerical experiments in Section 5, we consider a range of

possible values of σi, but for each value of σi we adjust the parameters of the pre-tactical delay

distribution in such a way that the value of Var(Ai) given by (9) corresponds as closely as possible

to an estimate of Var(Ai) obtained from historical data. In other words, we keep Var(Ai) close to

a fixed, data-calibrated value, but experiment with different ‘weightings’ for the pre-tactical and

tactical components of the variance in (9).

2.2. Landing separation times

In our model, the actual time that flight i ∈ F lands on the runway depends not only on the

unconstrained landing time Ai but also on the traffic congestion and weather conditions at the des-

tination airport. In reality, pairs of aircraft landing consecutively on the same runway are required

to maintain certain time separations, and these separations depend on the weight classes of the air-

craft involved. Many previous studies have incorporated class-dependent separation requirements

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

8 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

in mathematical formulations of aircraft sequencing problems, although these problems are often

of a deterministic nature (Psaraftis (1978), Beasley et al. (2000, 2004), Bennell et al. (2017)).

Congestion in airport terminal areas naturally causes ‘queues’ to form as aircraft await their

turn to use the runway. There is a long-established tradition of using time-dependent queueing

models such as M(t)/Ek(t)/1 to model on-time performance at airports (Koopman (1972), Stam-

atopoulos et al. (2004), Hansen et al. (2009), Pyrgiotis and Odoni (2016), Jacquillat et al. (2017)).

Here, Ek denotes an Erlang-k distribution, which is a form of gamma distribution. This type of

distribution is often favored in queueing models of air traffic due to its convenience and config-

urability; indeed, the parameters of such distributions can be adjusted in order to ensure close

resemblance to empirical distributions that might be observed in practice.

To the best of our knowledge, there is no precedent in the literature for the incorporation of

class-dependent, Erlang-distributed separation times in an aircraft sequencing or runway schedul-

ing problem. We propose that such an approach makes sense, given that both class-dependent

separation times and Erlang queue service times have (separately) been common features in pre-

vious air traffic models. Let us define Li as the actual time that flight i ∈F touches down on the

runway (it is implied that Li ≥Ai). Suppose that flight j ∈F immediately follows i in the landing

sequence, and let eij denote the recommended time separation between a leading aircraft of class

wi ∈W and a following aircraft of type wj ∈W. Then the random variable Mij, interpreted as the

time between the landings of i and j if these landings occur during a ‘congested period’, is assumed

to be Erlang-distributed with the probability density function

fMij
(t) =

kµij(kµijt)
k−1exp(−kµijt)

(k− 1)!
(t > 0),

where µij = e−1
ij and k is an integer-valued shape parameter. The mean of this distribution is eij

and the variance is e2ij/k; hence, large values of k result in time separations that conform closely to

the recommended values. For clarity, we emphasize that our model allows the possibility of actual

time separations being smaller than their recommended values (due to random variation), although

large k values would result in only small deviations. In our numerical experiments in Section 5, we

experiment with different values of k but choose eij according to actual air traffic regulations.

The actual landing time of flight j is then given by

Lj =

{
Aj, if j is the first plane to land during T ,
max{Aj, Li +Mij}, if j is preceded by i in the landing sequence.

That is, flight j cannot land before its unconstrained landing time Aj, but also must be appro-

priately separated from the preceding aircraft i. If flight j happens to arrive in the terminal area

much later than flight i’s landing time then the random separation Mij becomes irrelevant. This

is why we refer to Mij as the time between landings during a ‘congested period’.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 9

In fact, the required separation eij between two consecutively-arriving flights i and j may also

have a time dependence in our model due to the effects of weather conditions in the terminal area at

the time of flight j’s final approach. We have thus far written eij (without any time dependence) in

order to simplify the notation, but this should be modified if weather variations are to be included.

Further details are given in Sections 2.3 and 2.4.

2.3. Weather conditions in the terminal area

Poor weather conditions at an airport can reduce its operational capacity by enforcing longer

time separations between consecutive take-offs and landings (Odoni et al. (2011)). In our model,

it makes sense to consider a time horizon T that does not span more than one day, and we may

therefore assume that any periods of bad weather (and their timings) can be predicted with a

high level of precision at the beginning of T . However, there may still be some uncertainty in the

forecasts. We consider two possible cases: (i) conditions are certain to remain ‘fine’ throughout T ;

(ii) conditions will be fine except for a single period of bad weather, denoted U ⊂ T , during which

longer time separations are required. (To use the correct terminology, we note that ‘fine weather’

implies visual meteorological conditions (VMC), whereas bad weather implies instrumental mete-

orological conditions (IMC); see Jacquillat and Odoni (2015) for further details.) In the first case,

the time separations eij referred to in Section 2.2 do not require any time dependence. In the

second case, however, we use Rj to denote the time that flight j ∈ F begins the final stage of its

journey to the runway and define the required separation between i, j ∈F by

Eij(Rj) =

{
eij, if Rj ∈ T \U ,
ϕeij, if Rj ∈ U ,

(10)

where ϕ > 1 and eij is interpreted as the ‘fine weather’ value. Then, similarly to before, Mij is

Erlang-distributed with parameters µij(Rj) = 1/Eij(Rj) and k ∈N.

The beginning and ending times of U are subject to dynamic uncertainty. Suppose that, at

the beginning of T , we expect that U will begin at time t0 and end at some later time t1 (t0, t1 ∈ T).

However, during T we continuously revise these estimates according to the latest forecast. Let

T0(t) and T1(t) be defined by Brownian motion trajectories as follows:

T0(t)∼N(t0, ν
2t), T1(t)∼N(t1, ν

2t),

where ν > 0 is a variance parameter. We will assume independence between T0(t) and T1(t) for

simplicity, although a dependence structure could be incorporated if needed. Next, we define

U0 =min{t > 0 | T0(t)≤ t}, U1 =min{t > 0 | T1(t)≤ t},

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

10 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

and the interval U is then given by

U =

{
[U0, U1], if U0 <U1,

∅, otherwise.

At any time t satisfying t <min{U0, U1}, our prediction is that U will begin at T0(t) and end

at T1(t), assuming that T0(t)<T1(t). If T0(t)≥ T1(t), then the prediction is that no period of bad

weather will occur. Our approach can also be generalized to incorporate multiple periods of bad

weather; see Appendix G for further explanation and experimental results.

2.4. Decision-making framework and objective function

In this subsection we describe how our stochastic runway scheduling problem can be formulated

as a stochastic, dynamic optimization problem by providing details of the state space, action space,

cost mechanism and objective function. First, however, we must provide some extra information

about the statuses of flights in F and how these change during T .

As explained in Section 2.1, we assume that the pre-tactical delays ∆pre
i are known for all

i∈F at the beginning of T = [0, T]. We scale the units of time in such a way that 0<ai+∆pre
i <T

for all i ∈ F ; that is, all flights are expected to land during T following the realization of pre-

tactical uncertainty. It is possible that hi < 0 for some i ∈ F , indicating that Xi(t) is already

varying according to Brownian motion and flight i may (or may not) be airborne at t= 0. For any

such flights, we generate an initial ETA Xi(0) by sampling from a Normal distribution with mean

ai +∆pre
i and variance σ2

i |hi| in order to be consistent with (2).

For flight i∈F , let Qi be defined by

Qi =min
{
t > 0 |Xi(t)− τ ≤ t

}
,

where τ > 0 is a fixed parameter that defines the stage of an aircraft’s journey at which it becomes

eligible for tactical sequencing; in other words, sequencing decisions are made for aircraft that

are within τ time units of their expected unconstrained landing time. In practice, τ = 30 minutes

might be an appropriate value (Bennell et al. (2017), Khassiba et al. (2020)). At time Qi, flight

i is said to enter a ‘pool’ of aircraft waiting to be sequenced, i.e. given a position in the runway

landing order. The ‘pool’ does not represent any particular physical location or region; instead, it

merely represents a collection of aircraft that are expected to be able to land within τ time units.

In particular, it should not be confused with a holding stack, as planes in a holding stack must

generally exit from the stack in a fixed order, whereas the ‘pool’ in our model represents the last

stage of an aircraft’s journey at which its sequence position remains undetermined.

The sequencing decision for flight i does not necessarily need to be made at time Qi. Instead,

flight i can be retained in the pool until some later time Ri >Qi, at which point it is ‘released’

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 11

and proceeds with the final stage of its journey. During the time spent in the pool, the flight’s

progress is effectively ‘paused’ and its ETA increases linearly, i.e. Xi(t) =Xi(Qi)+ t−Qi = t+τ for

t∈ [Qi,Ri], indicating that it is not making further progress towards the runway during this time.

It may be performing path-stretching maneuvers, for example, in order to elongate its journey

(Newell (1979), Montlaur and Delgado (2017)). We define ρi(t) =min{t,Ri}−Qi for t >Qi as the

‘holding time’ incurred up to time t, satisfying equation (2). It will also be convenient to define

ρi := limt→∞ ρi(t) =Ri −Qi as the total amount of time spent in the pool.

At time Ri, flight i enters a ‘queue’ of aircraft waiting to use the runway. The queue is strictly

first-come-first-served, so that aircraft are required to land in the same order that they are released

from the pool. During periods of heavy congestion, the queue is likely to include planes circling in

a holding stack, but planes on their final descent towards the runway are also notionally part of

the ‘queue’ in our model. We note that

Ai =min
{
t >Ri | t≥Ri + τ + B̃i(t)

}
, (11)

where B̃i(t)∼N(0, σ2
i (t−Ri)). This ensures consistency with the details in Section 2.1. The actual

landing time Li also depends on the required time separation between flight i and its predecessor

in the queue, as explained in Section 2.2, and this separation depends on the weather conditions at

time Ri as described in Section 2.3. Figure 2 illustrates our model by showing aircraft at different

stages of their journeys at some arbitrary point in time t∈ T .

Pool

Queue

First stage: aircraft either not yet

departed or still far from destination;

ETAs satisfy Xi(t) > t + τ

Second stage: aircraft waiting for

sequence position to be determined;

ETAs satisfy Xi(t) = t + τ

Third stage: aircraft proceed in

pre-determined order to runway;

ETAs likely to satisfy Xi(t) < t + τ

Pool entry time [RANDOM]

Release from pool [DECISION]

Figure 2 Aircraft at different stages of their journeys at an arbitrary point in time t∈ T .

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

12 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

We note that, due to the variable nature of the BM trajectories, it is possible for a flight’s

expected remaining flight time to exceed τ even if it has already entered the pool at an earlier time

and has also been released from the pool; that is, we may have Xi(t)> t+ τ for some i∈F even if

t >Ri. In this situation, we assume that flight i’s position in the queue (and, therefore, its position

in the landing sequence) remains unaffected. It is not required to enter the pool again. Furthermore,

any flights behind it in the queue must wait until it has landed before landing themselves, even if

they have earlier unconstrained landing times.

The essence of our decision-making problem is to decide the release times Ri for flights i∈F .

At any time t∈ T , we are aware of the following dynamic information:

� The latest ETAs Xi(t) of all flights i ∈ F that have not yet landed, including those that are

in the queue, those that are in the pool and those that are yet to arrive in the pool;

� The ordering of any planes that are in the queue;

� Any weather forecast information that remains relevant at time t, which may be summarized

by {T0(t), T1(t)} if t < U0 and by T1(t) if U0 < t<U1;

� If a flight j is currently ‘in service’, meaning that t ≥ Aj but t < Li +Mij (where i is the

predecessor of j in the queue), then we are aware of how much time j has spent in service so far.

The above information comprises the system state in our problem. We are also aware of the

weight classes wi and cost parameters gi for all i ∈F . Actions can be taken at any time t ∈ T for

which the pool is non-empty, implying that the set of decision epochs is uncountable; in other words,

the decision-maker is able to continuously update their policy according to the latest available

information, which also evolves continuously. The ‘action’ chosen at decision epoch t is an ordered

list (i.e. a tuple) of aircraft to release from the pool. Passive actions (empty tuples) are likely to be

chosen in cases where it may be advantageous to wait before deciding which aircraft to release next.

As an example, suppose the set of flights in the pool at time t is {2,5,6,7,9}, where these flights

have been indexed according to their positions in the original landing schedule. Then possible

actions at time t include (6,9,2,7,5), (6,7), (2) and ∅.

It remains for us to specify our cost mechanism and objective function. We suppose that,

in making decisions about when to release aircraft from the pool (and thereby determining the

runway landing sequence), we have two broad objectives in mind: (i) flights should be able to

land as near as possible to their scheduled landing times; (ii) flights should have their total flight

times minimized. These two objectives are not entirely unrelated, but they are quite different in

nature. The first objective is related to punctuality of air transport operations and the need to

avoid disruption to airline schedules (taking into account the transfer times needed between aircraft

flight legs, etc.). The second objective is based on the need to avoid overly long flight times, which

would compromise safety and increase fuel costs. For convenience, we tend to refer to the first and

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 13

second objectives as (minimization of) schedule delays and operational delays respectively in later

sections.

Specifically, for flight i∈F , we define

C
[S]
i =

([
Li − ai − γ[S]

]+)2

, C
[W]
i =

([
Li − (Ai − ρi)− γ[W]

]+)2

, (12)

where γ[S] ≥ 0 and γ[W] ≥ 0 are parameters given as model inputs. The interpretation is that, in the

first objective, a delay of up to γ[S] time units between the actual landing time and the scheduled

landing time is ‘acceptable’, but beyond this we incur a penalty which increases quadratically

with the amount of delay. To interpret the second objective, note that Ai − ρi is the time that

flight i would land on the runway if it were released from the pool immediately and did not incur

any queueing delays. We calculate the amount of ‘extra airborne time’ incurred as the difference

between the actual landing time, Li, and Ai − ρi. This ‘extra airborne time’ can be incurred as a

result of being held in the pool or being delayed in the queue, so it is not necessarily the case that

keeping flight i waiting in the pool leads to an increase in C
[W]
i .

An advantage of our simulation-based solution approach is that the cost functions C
[S]
i and

C
[W]
i can be made almost arbitrarily complicated without affecting tractability; they do not nec-

essarily need to take quadratic or even polynomial forms, for example. By considering only the

positive part of Li − ai − γ[S] we avoid penalizing early landing times, but penalties for earliness

could easily be incorporated into our model if needed. We also note that there is an obvious choice

available for γ[S], as 15 minutes is often regarded as a threshold for the purpose of classifying delays

in the aviation industry (Ball et al. (2010)).

The objective of the problem is to minimize the weighted objective function∑
i∈F

gi ×
[
θ[S]C

[S]
i + θ[W]C

[W]
i

]
, (13)

where θ[S] and θ[W] are positive-valued weights, normalized so that θ[S]+θ[W] = 1. Traditionally one

would approach a stochastic, dynamic optimization problem by aiming to find an optimal ‘policy’,

mapping states to actions. In this case we have a problem with a high-dimensional, continuous

state space which is obviously beyond the scope of exact solution by approaches such as dynamic

programming. We propose to take a simheuristic approach and use simulation methods to update

our ‘belief’ of the optimal landing sequence as time and uncertainty evolve.

3. Solution methodology

The main solution approach of interest in our study is a simheuristic approach2, implemented in

real time, in which we continuously update performance estimates for a small number of ‘candidate’

2 See Juan et al. (2015) for a useful review of simheuristic methods for stochastic optimization problems.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

14 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

solutions (sequences), aiming to discover new strongly-performing solutions and discard weaker

ones as time progresses. Within the taxonomy of metaheuristic algorithms, our approach may be

compared to a Variable Neighborhood Search (VNS), as we occasionally force the algorithm to

migrate to a different region of the solution space if it seems to be making no further progress in

finding improved solutions in its current neighborhood.

We summarize our simheuristic algorithm in Section 3.1. In Section 3.2 we describe an alter-

native, simpler approach, based on considering expected values of random variables rather than

using simulation. In Section 3.3 we suggest some additional policies, including the simple ‘first-

come-first-served’ rule, that can be used as benchmarks for our other heuristics. In Section 3.4 we

provide further explanations as to how our methods can be implemented in practice.

3.1. The simheuristic approach

Figure 3 shows an outline of the main steps in our simheuristic algorithm, which we refer to as

‘SimHeur’ for convenience. In the remainder of this subsection we provide an overview of these key

steps. Full details of the implementation can be found in Appendix A.

In step 1 we set t= 0 and create an initial population S0 of S sequences, with each sequence

consisting of up to l flights (S, l ∈N) that have yet to be released from the pool (that is, they are

either in the pool or yet to arrive in the pool). Each sequence represents a possible selection and

ordering of the next l flights to land on the runway. The parameter l is generally much smaller than

|F| (we might consider l = 15, for example), so we initially consider sequencing decisions over a

limited time horizon. The sequences in the population are frequently changed while the algorithm

is in progress (see steps 2B, 4A-4C).

In step 2A we update performance estimates of all sequences in the current population by

generating random sample trajectories, with each trajectory consisting of realizations of future

random events (e.g. pool arrival times, service times, weather changes) obtained by sampling from

the relevant probability distributions described in Section 2. We revisit this step many times during

the algorithm and generate many random trajectories, with the nth trajectory (for n = 1,2, ...)

being associated with a set of cost estimates {J (n)
s }s∈S for sequences s∈ S (where S is the current

population). These estimates J (n)
s are used to update the performance measures

V (n)
s := (1−ψn)V

(n−1)
s +ψnJ

(n)
s , (14)

W (n)
s := (1−ψn)W

(n−1)
s +ψn

(
J (n)
s

)2
, (15)

where the step size ψn may be chosen based on a simple averaging rule (i.e. ψn = 1/n) or by

employing a reinforcement learning-style rule in which the more recently-acquired cost estimates

are given greater weight than the older ones, to reflect the fact that they are obtained using

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 15

1.	Initialization

- Generate initial population of S sequences
- Each sequence consists of l �lights

2A.	Simulation	&	Evaluation

- Generate a random sample path

- Update sample means & variances for all
sequences in the population

2B.	Ranking	&	Selection	

- Remove any sequences from population
that don't meet the selection criteria

if n mod r = 0

2C.	Release	of	Flights	from	Pool

- Identify best" sequence (s*) in

- If Υs*			> λ then mark as many �lights for
release as possible from the front of s*

if n ≥ nrel
current population

3.	System	State	Update

- Move the simulation clock forward according
to time elapsed since previous system update

- Update �light ETAs, check for service
completions and update weather information

- Adjust S,	Smin, l based on number of �lights remaining

- Release any �lights that are marked for release

Have all �lights completed service?

Is population size smaller than Smin	?

No

Have any �lights just been released?

4A.	Repopulation	(Type	1)

- Obtain new sequence b by appending
new �lights to s*; add b to population

- Create new sequences by heuristically
modifying b until population size is S

- Eject all sequences from population

4C.	Repopulation	(Type	2)	

- Identify best sequence (s*) in

- Create new sequences by heuristically
modifying s*	until population size is	S

- If m	≥	mmut apply a mutation to s*

current population

Yes

- Discard the worst-performing
sequences in current population

4B.	Filter	Population	

until there are Smin remaining

Is n ≥ nrepop?
Yes

No

Yes

Terminate	SimHeur

Yes

No

No

(n)

Figure 3 The SimHeur algorithm.

more recently-updated system information. Subsequently, in step 2B, we use an online ranking and

selection method and discard any sequences s which fail to satisfy the criterion

V (n)
s ≤ V

(n)

s′ +Zs,s′ ∀s′ ∈ S \ {s}, (16)

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

16 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

where the threshold Zs,s′ is given by

Zs,s′ =

(
z21−η/2

n− 1

(
W (n)

s +W
(n)

s′ − [V (n)
s]

2 − [V
(n)

s′]
2
))1/2

(17)

and z1−η/2 is a quantile of the standard normal distribution. This criterion is based on standard

methods for ranking and selection in simulation optimization (Nelson (2013)).

In step 2C we identify the sequence s with the smallest V (n)
s value in the current population

and, provided that the number of cost estimates generated meets a certain threshold (denoted nrel),

mark certain flights from the front of this sequence to be released from the pool (although their

actual release occurs in step 3). This step also includes a mechanism for deciding whether it would

be advantageous to delay the release of flights in order to gather more information (through system

state updates) before committing flights to the queue. The mechanism is based on evaluating

the likelihood of a flight j landing immediately upon realizing its unconstrained arrival time (i.e.

Lj =Aj), as opposed to having to wait in the queue for other flights to land before landing itself

(i.e. Lj = Li +Mij for some i). If the latter scenario is much more likely than the former, then

there may be no advantage in releasing j immediately, as an immediate release would only cause

it to spend longer waiting in the queue and would not enable an earlier landing time; thus, in this

case it may be better to postpone the decision of which flight(s) to release next.

In step 3 we move the simulation ‘clock’ forward by an increment that depends on the actual

amount of CPU time spent since the previous visit to this step and update the system state

accordingly. This means we update the latest ETAsXi(t) for flights i that have not yet realized their

unconstrained arrival times Ai and also check for service completions since the previous update.

We also update the weather forecast information (if applicable). Any flights marked for release in

step 2C are also released from the pool in this step.

If any flights are released in step 3, then in step 4A we generate a completely new population

with a new set of sequences to be evaluated. The method for generating these sequences is based

on making random changes to the ‘old’ best-performing sequence. Step 4B is encountered if the

total number of cost estimates generated for the sequences in the current population has reached

a certain threshold (denoted nrepop). At this point, we remove the worst-performing sequences

from the current population and move to step 4C, in which these are replaced by new randomly-

generated sequences in order to continue exploration of the solution space. As shown in Figure 3,

step 4C can also be encountered if the population size S has dropped below a certain minimum

level (denoted Smin) due to removal of sequences in the ranking and selection step (2B).

Notably, step 4C also includes a ‘mutation’ step, which is implemented if and only if a certain

number (denoted mmut) of ‘repopulations’ have already been carried out without discovery of any

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 17

new sequences that perform better than the best sequence in the current population. The purpose

of this mutation step is to force the algorithm to explore a different region of the solution space if

it seems to be making no further progress in the current area of exploration, and this is consistent

with the general VNS methodology (Mladenovic and Hansen (1997)).

This completes our high-level overview of the steps in the SimHeur algorithm. Please find

more complete details of these steps in Appendix A.

3.2. An alternative approach based on expected values

In order to evaluate the performance of the SimHeur algorithm described in Section 3.1 we

will compare it to some alternative approaches. One such alternative is to estimate the costs

associated with different sequences by assuming that random variables such as Qi, Mij, U0, U1

etc. conform to their expected values, conditioned on the latest system state information available.

Computationally, this is much less demanding than generating random sample trajectories and

updating performance measures of candidate runway sequences as described in step 2A of SimHeur,

but it is also less accurate. We refer to this simpler algorithm as ‘DetHeur’ and the steps involved

are similar to those described in Section 3.1 for SimHeur, but with some simplifications due to

the fact that the sample trajectories in step 2A are generated using expected values rather than

random sampling. In DetHeur, the ranking and selection step (2B) is no longer required, as we use

only a single trajectory to evaluate performances of different sequences and then allow the removal

of poor-performing sequences to be handled entirely within steps 4A-4C. Please find further details

of how the DetHeur algorithm works in Appendix B.

Like SimHeur, the DetHeur algorithm always uses the latest available system state infor-

mation (obtained in step 3) in order to make decisions, but it differs from SimHeur by making

decisions based on deterministic forecasts. An important advantage of DetHeur is that it enters

the repopulation step 4C much more frequently than SimHeur (due to the removal of the condition

n≥ nrepop) and this implies that it is able to spend more time searching the solution space than

SimHeur, with more random mutations. However, we conjecture that this advantage diminishes as

the amount of computational power increases, because the SimHeur algorithm only needs to be

able to explore ‘enough’ of the solution space to be able to find the best solution. If the amount

of computational effort spent on exploration of the solution space is already sufficient to find the

best solution, then there is no advantage to be gained by exploring further.

We also note that DetHeur lacks the mechanism described in Step 2C of SimHeur for delaying

release of flights from the pool in order to acquire more information from system state updates.

The mechanism used by SimHeur is based on probabilistic assessments of whether or not flights

will be delayed in the queue after being released, and DetHeur cannot emulate such a mechanism

in any effective way. We elaborate further on this in Appendix B.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

18 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

We note that in the stochastic programming literature, the idea of comparing the optimal

solution to a stochastic program with the optimal solution to a corresponding ‘expected value’

problem is widely used (see Birge and Louveaux (2011)). One can compare the performances of the

two solutions under stochastic conditions in order to evaluate the ‘value of the stochastic solution’

(VSS). A similar approach can be used in our problem, by comparing the performances of SimHeur

and DetHeur in order to investigate the benefits of being able to simulate random events based on

knowledge of the underlying probability distributions.

3.3. Other sequencing strategies and benchmarks

In our numerical experiments in Section 5 we make use of some additional benchmarks for

evaluating the performances of SimHeur and DetHeur. The first of these is the cost associated

with a simple ‘first-come-first-served’ (FCFS) rule, in which flights are released immediately when

they arrive at the pool (Ri = Qi for i ∈ F). The FCFS rule is simple to implement, but it pays

no attention to scheduled landing times or the time separations required between different weight

class combinations, so the resulting landing sequence may be far from optimal.

We also consider another policy obtained from a static, deterministic optimization procedure,

referred to as ‘DStat’ for short. The DStat policy can be expressed in the form of a single sequence,

i.e. an ordering of the flights i ∈ F , which is computed once at the beginning of the interval T

(assuming knowledge of the pre-tactical delays ∆pre
i) and not updated at any future time points.

More specifically, at the beginning of T , we assume that all random variables, including uncon-

strained arrival times, service times and weather transitions conform to their expected values and

then aim to find the runway sequence that optimizes the objective function (13) under such con-

ditions. Although the resulting optimization problem is static and deterministic, it still has very

high combinatorial complexity, and we therefore aim to solve the problem heuristically by making

successive improvements to a first-come-first-served sequence until no further improvements can

be found; further details are given in Appendix C. After the DStat sequence has been obtained,

its performance under the stochastic conditions of our model can be evaluated.

Although the DStat policy is similar to DetHeur in that both algorithms treat the problem

as deterministic and rely upon expected values, the DStat policy is much more simplistic than

DetHeur as it is not a dynamic policy; that is, it lacks the ability to update sequencing decisions

during T in response to the latest observed information.

3.4. Implementation in practice

Here we address the question of how the sequencing methods proposed in Sections 3.1-3.3 could

be implemented by air traffic controllers (ATCOs) in practice. Typically, when aircraft are within

about 200 nautical miles (roughly 40 minutes) of their destination airport, they enter a region of

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 19

controlled airspace known as the Extended Terminal Maneuvering Area (E-TMA). At this point,

their movements are directed by ATCOs using decision support tools such as the Arrival Manager

(AMAN) in Europe, or the Traffic Management Advisor in the US (Khassiba et al. (2020)). ATCOs

are able to coordinate aircraft movements in order to achieve an intended sequence of landings,

using maneuvers such as vectoring, holding and path stretching (Bennell et al. (2011), Errico and

Di Vito (2019)). The time window available for sequencing is limited, however, as aircraft that are

already within a certain time threshold of expected landing (often referred to as a freeze horizon;

see Moser and Hendtlass (2007), Murca and Muller (2015), Bennell et al. (2017)) may no longer

have their positions in the landing sequence adjusted.

In recent years, ATM research programmes such as SESAR and NextGen have enabled greater

information sharing between airspace users, implying that tools such as AMAN could be extended

in order to provide decision support over much longer operational horizons. For example, aircraft

up to 500 nautical miles (roughly 2 hours) away from landing could be advised to make speed

or trajectory changes in order to achieve a desirable incoming traffic flow (Tielrooij et al. (2015),

Khassiba et al. (2020)). This represents a form of pre-sequencing that reduces the need for holding

patterns and enables savings in fuel consumption (SESAR (2023a,b)).

From an ATCO’s perspective, the critical task is to ensure that the movements of aircraft

within the E-TMA (or in sufficient proximity to it) are consistent with the need to achieve a certain

desired sequence of landings. In line with other studies in this area, we do not aim to specify the

detailed movements of aircraft (in terms of heading or altitude changes, etc.) that are required,

but instead assume that the specification of an intended landing sequence at any given time is

sufficient for ATCOs to arrange aircraft movements accordingly. In our particular model, the ‘pool’

(see Section 2.4) includes aircraft that have entered the E-TMA but have not yet passed beyond

the freeze point, and therefore our decisions are focused on these.

As in previous studies on dynamic runway scheduling, our optimization approach must be

implementable in real time, without any delays in prescribing actions. Previous studies have

addressed this need by employing a ‘rolling horizon’ approach, in which an optimization problem

is solved at regular time intervals (e.g. every 5 minutes) in order to find the optimal ordering of

planes that are currently ‘schedulable’ (see Sama et al. (2013), Murca and Muller (2015), Solak

et al. (2018)). The optimization problem may be solved via two-stage stochastic programming or

via a metaheuristic algorithm, for example. Although the rolling horizon approach entails some

time delay in between successive optimization runs, it nevertheless fulfils the need of the dynamic

problem by ensuring that a perceived ‘optimal’ sequence (specifically, the sequence given by the

most recent optimization run) is always available for air traffic controllers to act upon. In our

model, the nature of uncertainty is quite different as it is based on continuous-time stochastic

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

20 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

processes. However, our SimHeur and DetHeur algorithms work effectively as alternatives to the

rolling horizon approach because they rely on a VNS-based method to continually search the solu-

tion space based on the latest available state information. Importantly, the ‘anytime’ nature of

the VNS method ensures that a strong-performing solution is always available. As with the rolling

horizon approach, ATCOs can act based on the latest-generated optimal sequence, without needing

to wait for the results of any further computational procedures.

In order to implement SimHeur, one must evaluate the performances of candidate sequences

by continuously running background simulations; thus, it is essential for these simulations to be

based on a mathematical model that accurately represents the real-world dynamics. The DetHeur

algorithm, on the other hand, is slightly less demanding in this respect, since it relies only upon

expected values rather than full probability distributions. In the case of SimHeur, the need for a

simulation model that accurately represents the ‘ground truth’ could potentially be a barrier to

implementation. However, it is worth noting that simulation is already recognized as a powerful

technique for optimizing air traffic control outcomes in a real-time context, and heuristic methods

based on simulated trajectories of future events have been deployed in practice. For example, NATS

Ltd (https://www.nats.aero/), which offers air traffic control services to some of the busiest

airports worldwide, has developed a heuristic event-based model that makes use of stochastic input

data to evaluate a range of operational metrics including on-time performance, demand on airport

infrastructure and environmental impacts (NATS Ltd (2023a,b)). Thus, there is already a precedent

for simulation to be used as a decision support tool for air traffic controllers.

To summarize, our paper follows previous studies by recommending that the movements of

aircraft within or near the E-TMA are managed by ATCOs with reference to a target landing

sequence that is always available and frequently updated. Unlike previous studies, however, we

model uncertainty using continuous-time stochastic processes and (in the case of the SimHeur

algorithm) recommend simheuristics as a means of optimization. Model calibration is clearly an

important issue, and the next section describes how the parameters of our model may be calibrated

according to actual data from Heathrow Airport.

4. Data acquisition and model calibration

In this section we describe our use of on-time performance data for arrivals at London Heathrow

Airport to estimate parameter values for the model described in Section 2 and design an appropriate

flight schedule for model testing purposes.

As mentioned in Section 2.1, Heathrow Airport usually operates with one of its two runways

used exclusively for arrivals. We decided to select a particular day of operations and look up his-

torical on-time performance data for the arriving flights scheduled during a particular part of that

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 21

day. Our chosen day was August 1st, 2019 and we considered the eight-hour period from 6:00AM

(inclusive) to 2:00PM (non-inclusive), during which there were 323 arriving flights scheduled. We

take these 323 flights as our set of flights F . We note that our chosen date ensures that the flight

schedule and historical dataset are not affected by the disruption caused by the Covid-19 pandemic.

Figure 4 shows the numbers of arrivals scheduled within each half-hour interval during the

period 6:00AM-2:00PM, with a breakdown of aircraft weight classes in each interval also provided.

Aircraft can be divided into different weight classes according to their ‘maximum take-off mass’

(MTOM), measured in kilograms (UK Aeronautical Information Services (2019)). We found that

the vast majority of aircraft arriving at Heathrow on the day of interest belonged to the ‘heavy’

and ‘lower medium’ categories, with only a small minority belonging to the ‘upper medium’ and

‘small’ categories. Larger aircraft tend to be used for long-haul, intercontinental flights, whereas

smaller aircraft usually arrive at Heathrow from other European airports.

Beginning	of	time	interval

Weight	classes	(by	maximum	take-off	mass)	

Heavy (136,000 kg or more) Upper Medium (104,000 to 136,000 kg)

Lower Medium (40,000 to 104,000 kg)

5

10

15

20

25

0

N
o.
	o
f	s
ch
ed
u
le
d
	a
rr
iv
al
s

Small (17,000 to 40,000 kg)

0
6
0
0

0
6
3
0

0
7
0
0

0
7
3
0

0
8
0
0

0
8
3
0

0
9
0
0

0
9
3
0

1
0
0
0

1
0
3
0

1
1
0
0

1
1
3
0

1
2
0
0

1
2
3
0

1
3
0
0

1
3
3
0

Figure 4 Numbers of arrivals scheduled by half-hour time interval between 6:00AM and 2:00PM at Heathrow

Airport on August 1st, 2019.

In order to specify the required time separation eij between a leading aircraft of type i and a

following aircraft of type j (where i, j ∈W = {Heavy, Upper Medium, Lower Medium, Small}) we

use the matrix of separation times from Bennell et al. (2017), which has been calibrated according

to observed data from Heathrow Airport. This matrix is shown in Table 1.

For each of the 323 arrivals at Heathrow during the eight-hour period of interest, we used

historical data available at http://www.flightradar24.com to find the exact arrival times (to the

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

22 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Table 1 Required separation times in seconds for different leader-follower aircraft weight class pairs (H =

Heavy, UM = Upper Medium, LM = Lower Medium, S = Small).

Follower

H UM LM S

H 97 121 121 145

Leader UM 72 72 97 97

LM 72 72 72 72

S 72 72 72 72

nearest minute) of all flights with the same flight number (implying the same flight carrier, origin

airport and destination airport) over the 360-day period from August 8th, 2018 to August 2nd,

2019. Hence, for each flight in F , we have a set of historical landing times collected over a 360-day

period and are able to estimate means, variances etc. of the flight’s punctuality with respect to its

scheduled arrival time. The majority of flights in F (221 out of 323) operated on at least 300 days

during this 360-day period, and the total number of records we have (where the term ‘record’ here

refers to the recorded landing time of a flight in F during the 360-day historical period) is 98,814,

equating to about 306 per flight on average.

Ideally, we would like to use these historical data to estimate probability distributions for

the pre-tactical and tactical delays affecting the unconstrained landing times Ai for flights i ∈ F .

However, the records in our data are actual landing times (denoted Li in our model), which may

be affected by queueing delays and other congestion effects, as well as poor weather. The records

in our dataset do not provide us with a means of calculating the extent to which landing times

are influenced by airport congestion and other similar effects, so we must rely on an approximate

method to fit distributions for the unconstrained landing times in our model. Our method involves

filtering out some of the historical data by identifying days on which queueing delays appeared to

be particularly significant; please see Appendix D for further details.

After filtering out some data as described above, we are left with a reduced dataset consisting

of 248 days’ worth of data, with 199.5 records per flight on average. For each flight i ∈ F , we

use these data to calculate the sample mean and sample variance of the actual landing time. We

then consider how much of this variance should be explained by pre-tactical uncertainty in our

model. Recall that the mean and variance of Ai are given by equations (8) and (9) respectively.

Our approach is to equate the expressions for E[Ai] and Var(Ai) to the sample mean and sample

variance for flight i in our dataset, denoted x̄i and s2i respectively, in order to derive suitable

values for our model parameters. As mentioned in Section 2, we rely upon gamma distributions

for modeling the pre-tactical delays. Specifically, we assume that

∆pre
i = Yi − (ai −hi), (18)

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 23

where Yi is gamma-distributed with the density function

fYi
(t) =

βαi
i

Γ(αi)
tαi−1 exp(−βit) (t > 0),

which has mean αiβ
−1
i and variance αiβ

−2
i (αi, βi > 0). Then, by setting x̄i and s2i equal to the

expressions in (8) and (9) respectively, we obtain the following expressions for αi and βi:

αi =
(x̄i −hi)

2

s2i −σ2
i (x̄i −hi)

, βi =
x̄i −hi

s2i −σ2
i (x̄i −hi)

. (19)

Our dataset provides values of x̄i and s
2
i for each i ∈ F . In calculating these sample statistics,

we have found that it is necessary to exclude ‘outliers’, as these tend to dominate the calculation

of the sample variances s2i and cause the distributions of ∆pre
i in our model to be too platykurtic in

shape. We define an outlier as an arrival that does not occur within 120 minutes of its scheduled

arrival time. Using this definition, about 1.06% of records in our dataset are outliers.

We set the parameter hi to be 15 minutes earlier than the scheduled departure time di in

our numerical experiments, on the basis that this is a reasonable estimate for the average taxi-out

time before departure (Badrinath et al. (2020)). We consider different possible cases for σi in our

experiments, with larger values implying a greater proportion of tactical uncertainty (as opposed

to pre-tactical). We note that the expressions in (19) are valid only if σ2
i < s

2
i (x̄i−hi)

−1. If we wish

to consider a larger σ2
i value, we can simply set ∆pre

i equal to its data-calibrated expected value

x̄i−ai rather than sampling it using (18). This represents the case where all of the variation in Ai

is accounted for at the tactical level.

Figure 5 shows the results of fitting distributions for ∆pre
i and (∆pre

i +∆tac
i) to the empirical

data by calculating values for αi and βi using the method described above. We have illustrated

the method using a particular flight in F , referred to as ‘Flight X’ to preserve anonymity. The

grey histogram shows the distribution (over all 248 days in our reduced dataset) of the delay (or

‘lateness’) in minutes. The red, green and blue solid curves show the fitted distributions of the

pre-tactical delay given σi values of 1, 0.75 and 0.5 respectively. Similarly, the red, green and blue

dashed curves show the fitted distributions of the overall delay (including pre-tactical and tactical)

for the same σi values. Recall that if σi is reduced, then a larger proportion of the empirical variance

is accounted for at the pre-tactical level in our model. This explains why the solid curves become

‘flatter’ (indicating more variance in the pre-tactical delay) as σi becomes smaller.

It can be seen that the 3 dashed curves in Figure 5 are almost indistinguishable from each

other. This shows that the value of σi has almost no effect on the unconditional distribution of

Ai. Indeed, the role of σi in our model is to determine the relative proportions of pre-tactical

and tactical uncertainty affecting flight i’s arrival time; it does not affect the total amount of

uncertainty. However, the value of σi does have a very significant effect on the nature of the decision

problem formulated in Section 2, as larger values imply that decisions must be made under higher

levels of uncertainty. This is demonstrated by our numerical results in Section 5.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

24 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

0.01

0.02

D
en

si
ty

0-30-60-90 30 60 90

Delay (minutes)

Flight	X,	sched.	duration	425	mins,	sched.	arrival	time	09:05

σi = 1, pre-tac. delay

σi = 1, pre-tac. delay + tac. delay

σi = 0.75, pre-tac. delay

σi = 0.75, pre-tac. delay + tac. delay

σi = 0.5, pre-tac. delay

σi = 0.5, pre-tac. delay + tac. delay

Figure 5 The results of fitting distributions for ∆pre
i and (∆pre

i +∆tac
i) using the empirical data for a particular

flight in i∈F , with the results shown for three different values of σi.

5. Numerical experiments

Our computational study is based on the schedule of operations at Heathrow Airport during the

eight-hour period from 6:00AM to 2:00PM on August 1st, 2019. Our set of flights F consists of all

323 flights scheduled during this eight-hour period. We compare the performances of the various

solution algorithms described in Section 3 by randomly generating a series of 5000 test scenarios.

To ensure fairness, all of our experiments are performed on a single desktop computer with an

Intel(R) Core(TM) i7-9700 CPU and 16GB of RAM. Programs are implemented using Python,

with the PyPy Just-in-Time compiler (https://pypy.org) used to enhance computation speed.

Each of the 5000 test scenarios consists of pre-tactical delays ∆pre
i for all i ∈ F , complete

random trajectories {Xi(t)}t∈T for all i ∈ F , weather forecast trajectories {T0(t), T1(t)}t∈T and a

set of possible separation times {Mij} for each j ∈ F (taking into account all possibilities for the

weight class of the predecessor flight i). In each scenario, the pre-tactical delays ∆pre
i are generated

immediately by sampling from gamma distributions with parameter values configured according

to the historical data as described in Section 4. The flight trajectories, weather forecasts and

separation times are also generated immediately, but this information (unlike the set of pre-tactical

delays) is initially ‘hidden’ from the decision-maker and revealed gradually as time progresses.

This hidden information comprises the ‘true’ sample path, which we refer to as Ωtrue. Please see

Appendix E for details of how Ωtrue is generated.

5.1. How time is handled in our experiments

In each test scenario we wish to evaluate the performances of the SimHeur, DetHeur, FCFS and

DStat algorithms, as described in Section 3. Recall that the SimHeur and DetHeur algorithms both

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 25

operate by continuously updating their beliefs of the optimal landing sequence, with the simulation

‘clock’ being moved forward in increments that depend on the actual amounts of time spent by

these algorithms on their various computational steps. Thus, in order to allow these algorithms

to perform the same number of computations that they would perform in a ‘real time’ setting,

we would need to run both of them for (at least) 8 hours. However, in this computational study

we wish to test a large number of different random scenarios, and it is not practical to spend 16

hours on each individual scenario. We therefore compress the time scale in our experiments so

that when the simulation clock is moved forward in step 3, the time increment added is 60 times

the actual amount of CPU time elapsed since the previous increment was made. This effectively

means that one second of computation time is equated to one minute of operational time, and the

SimHeur and DetHeur are only allowed to perform 1/60 of the number of steps that they would be

able to perform in reality. We conjecture that SimHeur is likely to be affected more by this time

compression than DetHeur due to its higher computational demands, and hence the improvements

in performance of SimHeur relative to DetHeur that we find in our experiments are likely to be

‘lower bounds’ of the improvements that would be achievable in reality.

Note: For clarity, when time units (e.g. minutes, hours) are referred to in the remainder of

this section, these should be understood as units of ‘operational time’ rather than ‘CPU time’; for

example, we still refer to the time interval 6:00AM-2:00PM as being 8 hours long, although our

time compression implies that it is simulated in only 8 minutes of CPU time.

We also note that this time compression does not have any effect on the performance of the

FCFS policy, as the landing times Li for each i∈F under FCFS can be calculated in a deterministic

way as soon as the sample path Ωtrue has been generated. In practice, this means that there

is no need to use a simulation clock at all when calculating the FCFS performance; instead, it

can be determined immediately and costs a negligible amount of CPU time. Similarly, the DStat

algorithm does not require a simulation clock and is not affected by the time compression, since

its recommended sequence is obtained using only the information available at the beginning of T

and its actual performance can then be calculated deterministically using Ωtrue.

We count time in minutes and start counting at 5:00AM, so that t = 60 indicates 6:00AM

and t = 540 indicates 2:00PM. One reason for starting at 5:00AM is so that the SimHeur and

DetHeur algorithms can have some initial time to evaluate possible sequences and decide on their

estimated ‘optimal’ sequences before the time window of interest (6:00AM-2:00PM) actually begins.

In addition, some early-arriving flights might arrive in the pool between 5:00AM and 6:00AM, in

which case we would like to have the option of releasing them earlier than 6:00AM. As discussed in

Section 2, the departure time di for a particular flight i ∈F is allowed to occur before time t= 0.

In the context of our model, this implies that the time hi at which flight i’s trajectory Xi(t) begins

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

26 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

varying according to Brownian motion may precede t = 0. If this is the case, then (as discussed

in Section 2.4) we must generate an initial ETA Xi(t) by sampling from a Normal distribution

with mean ai +∆pre
i and variance σ2

i |hi|. Although all flights in F are scheduled to land before

2:00PM, we need to allow some extra time beyond this in order to simulate late arrivals, so we

define T = [0, T] where T = 780. This allows for the possibility of flights landing up to 4 hours

late. (In practice, we do not need to continue simulating until time T if all flights have already

landed.) Ideally, each trajectory Xi(t) should vary continuously throughout t∈ T , but our method

of pre-generating the random information (as discussed in Section 3) implies that we can only store

a finite number of Xi(t) values for each i∈F . Therefore, for the purposes of these experiments, we

generate and store values of each Xi(t) (and also T0(t), T1(t)) only for t= 0, 0.01, 0.02, ..., T , so

that the aircraft ETAs and weather forecasts change every 0.01 minutes.

5.2. Adjusting the values of physical parameters

In the implementation of this study, we can distinguish between ‘physical’ parameters that

affect the dynamics and costs of the problem itself and ‘algorithmic’ parameters that are only

relevant to the workings of the SimHeur and DetHeur algorithms. The former class includes the

tactical-stage variance parameters σi, the Erlang parameter k (affecting separation time variances),

the initial weather forecast parameters t0 and t1, the weather variance parameter ν, the times hi

at which flights enter the ‘tactical uncertainty’ stage, the scaling factor ϕ affecting required time

separations under bad weather, the threshold τ that determines when sequencing decisions are

made, the relative cost parameters gi for i ∈ F , the ‘tolerance’ parameters γ[S] and γ[W] included

in the objective function (13) and the objective function weights θ[S] and θ[W]. The latter class

includes parameters such as Smin, l, nrel, nrepop, mmut that should be chosen carefully in order for

the SimHeur and DetHeur algorithms to perform well, but do not change the nature of the physical

problem. In order to avoid having too many variable factors, we have chosen to vary only the

physical parameters in this computational study, and keep the values of the algorithmic parameters

fixed throughout all of our experiments. The values of the algorithmic parameters have been chosen

according to a preliminary study in which the SimHeur and DetHeur algorithms were applied to

some small ‘test’ problems; see Appendix F for further details.

For the purposes of this study, we assume that the variance parameter σi affecting the tactical

uncertainty is the same for all flights and set σi = σ for all i∈F , but we consider different possible

cases for σ. Specifically, we conduct 1000 experiments for each of the 5 cases σ = 0.1, σ = 0.3,

σ = 0.5, σ = 0.7 and σ = 0.9. For each value of σ, we then set the values of αi and βi as specified

in (19) in order to ensure that the values of (∆pre
i +∆tac

i) are consistent with the historical data.

Thus, each flight has its own unique distribution for its unconstrained landing time Ai, and we

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 27

consider different possible cases for the proportion of Var(Ai) accounted for at the tactical stage

as opposed to the pre-tactical stage. For further details of how we generate the physical and

algorithmic parameters in our experiments, please refer to Appendix F.

5.3. Performance comparisons with respect to weighted objective function

In this subsection we present overall summative findings, obtained by collating the results

from all 5000 scenarios in our study. Please see https://doi.org/10.5281/zenodo.7339074 for

a detailed summary of results from all 5000 experiments, including the values of the physical

parameters and the performances achieved by the various algorithms in each individual scenario.

Table 2 shows a summary of the improvements achieved by the SimHeur algorithm against

the other algorithms with respect to our weighted objective function (13). Columns 3, 4 and 5 show

95% confidence intervals for the mean percentage improvement (with respect to the value of (13))

achieved by SimHeur against DetHeur, FCFS and DStat respectively. For clarity, the percentage

improvement in a particular scenario is calculated as 100 × (ΦH − ΦSH)/ΦH, where ΦSH is the

objective function value under SimHeur and ΦH is the corresponding value under another policy

H ∈ {DetHeur, FCFS, DStat}. Column 6 (resp. 7, 8, 9) shows the percentage of all experiments

in which SimHeur (resp. DetHeur, FCFS, DStat) achieved the smallest objective function value.

The first row shows the results from all 5000 experiments, and the next 5 rows show the results

for each of the different cases we considered for the value of σ.

Table 2 Performance comparisons between SimHeur (SH), DetHeur (DH), First-come-first-served (FC) and

DStat (DS) with respect to the value of the weighted objective function (13).

Pct. Improvement Pct. of Experiments

σ value Count SH vs. DH SH vs. FC SH vs. DS SH best DH best FC best DS best

Any value 5000 10.83 ± 0.41 43.17 ± 0.35 64.99 ± 0.73 74.52 24.52 0.20 0.76

0.1 1000 2.14± 0.56 51.20± 0.62 19.70± 0.78 56.30 39.90 0.00 3.80

0.3 1000 7.56± 0.72 48.33± 0.63 59.54± 0.76 75.30 24.70 0.00 0.00

0.5 1000 12.43± 0.88 44.49± 0.64 76.22± 0.53 79.50 20.50 0.00 0.00

0.7 1000 15.22± 0.96 38.95± 0.70 83.19± 0.41 80.10 19.80 0.10 0.00

0.9 1000 16.82± 1.01 32.85± 0.75 86.27± 0.33 81.40 17.70 0.90 0.00

One would expect the relative improvement of SimHeur versus DetHeur to increase as the

amount of stochasticity in our model increases. Indeed, Table 2 shows a clear trend for SimHeur

to improve its advantage over DetHeur as σ is increased. On the other hand, SimHeur’s advantage

over FCFS diminishes when σ is increased. This seems to indicate that the FCFS policy becomes

stronger when there is more tactical uncertainty, which can be explained by the fact that flights are

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

28 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

more likely to arrive in the pool significantly later than expected in such circumstances, and must

then be released as soon as possible in order to avoid large penalties. The DStat algorithm performs

relatively well in the σ= 0.1 case and it can even outperform the other policies in some scenarios,

which is a sign that the heuristic procedure described in Appendix C works well for solving the

relevant static, deterministic optimization problem. However, its performance deteriorates sharply

as σ increases and it becomes worse than FCFS in such cases. Indeed, larger σ values can cause

DStat to incur very large holding costs due to the increased likelihood of flights arriving in the

pool either very late (and thus causing other flights to wait before being released) or very early

(and thus having to wait themselves).

5.4. Performance comparisons with respect to delays and other measures

Here we investigate how SimHeur compares to DetHeur, FCFS and DStat with respect to a

range of other performance measures in order to obtain further insights into their different modes of

decision-making and the effects in terms of schedule delays and operational delays. Table 3 shows a

list of performance measures that can be calculated from the set of results for an individual scenario

(by taking an average over flights i∈F , or calculating a relevant percentile, for example). Each of

these performance measures has been calculated for each of the four policies in each scenario, and

the averages are then taken over all scenarios and shown in columns 2-5.

The first 7 rows of Table 3 are related to schedule delays, defined as the differences between

actual landing times Li and pre-scheduled times ai. In terms of average schedule delays, SimHeur

achieves improvements of about 19%, 39% and 76% versus DetHeur, FCFS and DStat respectively.

Significant improvements can also be seen in the percentiles of the schedule delay. The next 7 rows

are related to operational delays, defined as Li − (Ai − ρi) for i ∈ F . As explained in Section 2.4,

this can be interpreted for i ∈ F as the sum of the holding time in the pool (ρi) and the waiting

time in the queue (Li −Ai), i.e. the total amount of airborne delay. The savings in average opera-

tional delays achieved by SimHeur versus DetHeur, FCFS and DStat are about 9%, 20% and 56%

respectively. It is important to note that these results are averaged over all 5000 scenarios. Further

inspection shows that the savings achieved by SimHeur are strongly influenced by parameters such

as σ, with larger values of σ tending to yield greater savings.

The last 3 rows of Table 3 show some miscellaneous additional statistics of interest. The 15th

row shows that the SimHeur, DetHeur and DStat policies tend to ‘group’ flights of the same weight

class together to a greater extent than FCFS. It is well-known in aircraft sequencing problems that

arranging the landing sequence into ‘strings’, with each string consisting of consecutive flights of the

same weight class, is the most efficient way to minimize average separation times (or, equivalently,

maximize average throughput rates). Obviously, the FCFS policy will ignore this principle, but it

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 29

Table 3 Performance comparisons between SimHeur, DetHeur, First-come-first-served and DStat with respect

to various scenario-based performance measures (results are averaged over all 5000 scenarios)

Performance measure SimHeur DetHeur FCFS DStat

Avg. schedule delay Li − ai (for all i∈F) 6.19 min 7.64 min 10.10 min 25.81 min

75th percentile of schedule delay 17.85 min 19.29 min 24.90 min 37.36 min

90th percentile of schedule delay 29.67 min 30.68 min 40.15 min 47.29 min

95th percentile of schedule delay 39.26 min 40.14 min 50.98 min 55.49 min

Pct. of flights i∈F with Li >ai + γ 51.88% 55.21% 53.70% 75.41%

Avg. of Li − (ai + γ) for flights i with Li >ai + γ 14.67 min 15.06 min 20.51 min 26.93 min

Avg. schedule delay cost C
[S]
i (for all i∈F) 179.61 200.10 328.39 775.90

Avg. operational delay Li − (Ai − ρi) (for all i∈F) 15.28 min 16.73 min 19.19 min 34.90 min

75th percentile of operational delay 21.10 min 23.11 min 25.76 min 44.26 min

90th percentile of operational delay 27.39 min 28.92 min 30.26 min 52.46 min

95th percentile of operational delay 31.34 min 32.58 min 32.66 min 57.71 min

Avg. holding time in pool ρi (for all i∈F) 5.54 min 4.55 min 0 min 13.41 min

Avg. waiting time in queue Li −Ai (for all i∈F) 9.73 min 12.18 min 19.19 min 21.49 min

Avg. operational delay cost C
[W]
i (for all i∈F) 270.49 317.66 370.92 1389.14

Pct. of flights landing after a flight of the same type 75.43% 77.06% 56.44% 79.87%

Pct. of flights released from pool during bad weather 10.16% 10.20% 11.32% 10.83%

Avg. deviation from FCFS position (per flight in F) 2.84 3.00 0 6.04

is unsurprising that the other policies appear to follow it. The DetHeur and DStat policies tend

to arrange flights based on weight classes slightly more than SimHeur, which may be explained

by their tendency to underestimate the costs of potential runway sequences (due to ignoring the

effects of uncertainty) and hence overestimate the amount of available time to arrange flights into

suitable ‘strings’ before they need to be released from the pool.

The 16th row shows that the FCFS policy is slightly more likely than the other policies to

release flights from the pool during bad weather, which may be explained by the fact that the other

policies might sometimes attempt to delay a flight’s release until weather conditions have improved.

The 17th row shows the average deviation per flight from the FCFS sequence, which is calculated

for a particular flight as the difference between its position in the actual landing sequence and the

position that would occur under a FCFS policy (for example, if a particular flight is the 10th to

arrive in the pool but the 13th to land, then it has a deviation of 3). The results show that DetHeur

deviates slightly more from the FCFS sequence than SimHeur on average, which follows from the

fact that it has a slightly greater tendency to attempt to group flights into strings of the same

weight class (as discussed above). Meanwhile, the DStat policy’s average deviation is much higher,

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

30 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

which may be explained by the fact that its sequencing decisions are made without knowledge of

the actual times that planes arrive in the pool.

5.5. Is SimHeur always better than DetHeur?

Our summative results in Table 2 have shown that although SimHeur performs better than the

other policies over the full set of 5000 scenarios, its relative advantage over the other policies varies

considerably according to the value of σ. We have also found that other physical parameters, such as

k and γ, can affect the relative strength of SimHeur, although they are not as influential as σ. More

interestingly, we have found that changing the weights θ[S] and θ[W] used in the objective function

(13) can influence the results greatly, and if θ[S] is much smaller than θ[W] (implying that operational

delays are given more weight than schedule delays in the objective), then SimHeur may perform

worse than DetHeur. To illustrate this, Table 4 shows a comparison between the performances of

SimHeur and DetHeur in each of the 5 different cases we considered for θ[S] and θ[W]. In each of

the 5 cases, we have reported 95% confidence intervals for the percentage improvement given by

SimHeur vs. DetHeur with respect to the objective function value (in column 3), and also for the

two separate components of our objective function (in columns 4 and 5).

Table 4 Percentage improvements given by SimHeur vs. DetHeur with respect to the objective function value

and its separate components, for various combinations of the objective function weights θ[S] and θ[W]

Pct. Improvement given by SimHeur vs. DetHeur

Weighted objective function Schedule delay component Operational delay component

Obj. function weights Count
∑

i gi
[
θ[S]C

[S]
i + θ[W]C

[W]
i

] ∑
i giC

[S]
i

∑
i giC

[W]
i

θ[S] = 0.1, θ[W] = 0.9 1015 −2.59± 0.62 −3.52± 0.39 −2.48± 0.66

θ[S] = 0.3, θ[W] = 0.7 995 7.96± 0.80 −1.54± 0.61 11.22± 0.94

θ[S] = 0.5, θ[W] = 0.5 995 15.71± 0.85 5.70± 0.72 21.53± 1.06

θ[S] = 0.7, θ[W] = 0.3 983 17.63± 0.84 14.19± 0.79 21.38± 1.10

θ[S] = 0.9, θ[W] = 0.1 1012 15.73± 0.77 19.59± 0.76 3.16± 1.12

The results in Table 4 show that SimHeur tends to perform worse than DetHeur with respect

to both components of the objective function in the case {θ[S] = 0.1, θ[W] = 0.9}, although it is

generally stronger than DetHeur in the other cases. To make sense of this, it is useful to understand

how the nature of the problem changes when operational delays are given a much higher weight than

schedule delays. In these cases, it becomes less important for flights to land near their scheduled

times and the problem instead becomes focused on the need to arrange the sequence of weight

classes in order to minimize the average time separation between consecutive landings. In these

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 31

circumstances, it is rarely optimal to keep planes waiting in the pool in order to allow an earlier-

scheduled plane to take the next position in the landing sequence (which might happen when

schedule delays are given a higher weight) and instead the optimal decisions tend to involve releasing

planes from the pool quickly, with the decision of which plane to release mainly based on weight

classes rather than individual on-time requirements. To confirm this, we have found that when

θ[S] = 0.1 and θ[W] = 0.9, the average holding time in the pool is 3.73 minutes under SimHeur and

1.11 minutes under DetHeur. Also, the average deviation from the FCFS sequence (per flight) is 1.09

under SimHeur and 1.21 under DetHeur. All of these statistics are smaller than the corresponding

values shown in Table 3 (which are averaged over all combinations for the objective function

weights), so this confirms the notion that smaller weights for the schedule delays imply shorter

pool-holding times under both SimHeur and DetHeur.

Usually, an important driver for SimHeur’s advantage over DetHeur is the fact that it can

delay a plane’s release from the pool if the probability of that plane going straight into service

without having to wait in the queue is negligibly small (see Section 3.1). This mechanism allows it

to gain more information before deciding which plane to release next. In the case {θ[S] = 0.1, θ[W] =

0.9}, planes must be released with greater urgency, so SimHeur’s advantage in this respect is

diminished. Furthermore, DetHeur has an advantage over SimHeur in that it evaluates the cost of a

particular sequence much more rapidly (albeit less accurately) by using expected value trajectories

rather than sampling trajectories randomly. Thus, when planes must be released from the pool

quickly, DetHeur’s greater evaluation speed enables it to explore the solution space faster than

SimHeur and arrive at a suitable decision within a shorter timeframe.

In general, the question of whether SimHeur should be preferred to DetHeur may depend on

several different performance criteria as well as practical considerations. Although our experiments

have shown that SimHeur consistently outperforms DetHeur with respect to various performance

measures over a range of different parameter values, we have also identified cases (as above) where

DetHeur obtains an advantage due to its ability to evaluate solution costs and explore the solution

space more rapidly than SimHeur. Furthermore, in all of our experiments, we have assumed that

SimHeur is able to simulate the costs of different sequences using a fully correct model of the

continuous-time stochastic processes underpinning the probabilistic behavior of the system. In

reality, it may be difficult to model the probabilistic behavior accurately, and this could present

a practical challenge. Nevertheless, the potential to achieve significant reductions in delays (and

the prospect of being able to achieve even greater improvements with investment of greater CPU

effort) provides strong motivation for pursuing a simheuristic approach.

We have also carried out some additional experiments to investigate what happens when there

are multiple periods of bad weather during T , instead of only a single period, and have found that

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

32 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

SimHeur’s advantage over DetHeur tends to diminish in these situations, although it still performs

well in general. The results of these experiments (with accompanying discussion) can be found in

Appendix G.

6. Conclusions

This paper has introduced an original mathematical model for stochastic runway scheduling,

in which aircraft ETAs and weather conditions evolve dynamically according to continuous-time

stochastic processes, while runway ‘service times’ depend on sequence-dependent Erlang distri-

butions. The aim is to consider a high-dimensional and information-rich environment in which

air traffic controllers are able to update their plans frequently in response to the latest unfolding

events. It is natural to consider a simheuristic approach to such a problem, since other conventional

optimization approaches (e.g. two-stage stochastic programming) are less well-equipped to deal

with the continuous nature of the information updates and decision epochs in our model.

Our numerical experiments, based on a schedule of more than 300 arrivals at Heathrow Airport

and configured using a large set of historical on-time performance data, have shown that the pro-

posed simheuristic algorithm (SimHeur) is capable of outperforming an alternative method based

on deterministic forecasts (DetHeur) under a wide range of parameter values, and also improves

substantially upon other more naive heuristic rules such as ‘first-come-first-served’. Notably, even

when the amount of stochasticity in our model is relatively low (e.g. with the choices σ= ν = 0.1),

we have found that the improvements given by SimHeur versus DetHeur are significant, and these

improvements would likely be greater without the severe time compression used in our experiments

(i.e. one minute of CPU time to represent one hour of real time). It should also be noted that the

advantage of SimHeur over DetHeur tends to become greater when the on-time requirements of

individual flights are given more weight in the objective function.

Certainly, our computational study could be expanded in order to consider other schedules,

alternative heuristic search methods and changes to the objectives and model parameters, and this

should be a direction of further research. We also plan to consider models with both arrivals and

departures in future work, and to consider decision-making problems featuring further complexities

such as assignments of flights to different runways.

Acknowledgments

This work has been supported by the Engineering and Physical Sciences Research Council (EPSRC)

through Programme Grant EP/M020258/1 “Mathematical models and algorithms for allocating scarce air-

port resources (OR-MASTER)”. We would like to thank Flightradar24 (https://www.flightradar24.com/)

for granting permission for their on-time performance data to be used in our study. We are also grateful to

the editors and reviewers for their comments and suggestions, which have helped to improve this paper.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 33

References

Badrinath, S., Balakrishnan, H., Joback, E., and Reynolds, T. (2020). Impact of Off-Block Time Uncertainty

on the Control of Airport Surface Operations. Transportation Science, 54(4):920–943.

Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odoni, A., Peterson, E., Sherry, L., Trani, A.,

and Zou, B. (2010). Total delay impact study: A comprehensive assessment of the costs and impacts of

flight delay in the United States. Technical report, Federal Aviation Administration, Washington, DC.

Beasley, J., Krishnamoorthy, M., Sharaiha, Y., and Abramson, D. (2000). Scheduling Aircraft Landings -

The Static Case. Transportation Science, 34(2):180–197.

Beasley, J., Krishnamoorthy, M., Sharaiha, Y., and Abramson, D. (2004). Displacement Problem and Dynam-

ically Scheduling Aircraft Landings. Journal of the Operational Research Society, 55(1):54–64.

Bennell, J., Mesgarpour, M., and Potts, C. (2011). Airport runway scheduling. Quarterly Journal of Oper-

ations Research, 9:115–138.

Bennell, J., Mesgarpour, M., and Potts, C. (2017). Dynamic scheduling of aircraft landings. European

Journal of Operational Research, 258:315–327.

Birge, J. and Louveaux, F. (2011). Introduction to Stochastic Programming, 2nd edition. Springer.

Cavusoglu, S. and Macario, R. (2021). Minimum delay or maximum efficiency? Rising productivity of

available capacity at airports: Review of current practice and future needs. Journal of Air Transport

Management, 90:101947.

de Neufville, R. and Odoni, A. (2013). Airport Systems: Planning, Design and Management, 2nd edition.

McGraw-Hill.

Errico, A. and Di Vito, V. (2019). Aircraft operating technique for efficient sequencing arrival enabling

environmental benefits through CDO in TMA. Proc. AIAA Scitech 2019 Forum, San Diego, CA.

Eurocontrol (2022). All-causes delays to air transport in europe annual 2021. https://www.eurocontrol.

int/publication/all-causes-delay-and-cancellations-air-transport-europe-2021.

Accessed on May 1, 2022.

Eurocontrol (2023). European Aviation Overview: July 4 2023. https://www.eurocontrol.int/sites/

default/files/2023-07/eurocontrol-european-aviation-overview-20230704.pdf. Accessed on

July 24, 2023.

Folks, J. and Chhikara, R. (1978). The Inverse Gaussian Distribution and its Statistical Application - A

Review. Journal of the Royal Statistical Society: Series B (Methodological), 40(3):263–275.

Gilbo, E. (1993). Airport capacity: Representation, estimation, optimization. IEEE Transactions on Control

Systems Technology, 1(3):144–154.

Hansen, M., Nikoleris, T., Lovell, D., Vlachou, K., and Odoni, A. (2009). Use of Queueing Models to Estimate

Delay Savings from 4D Trajectory Precision. Proc. 8th USA/Europe Air Traffic Management R&D

Seminar, Napa, CA.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

34 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Heidt, A., Helmke, H., Kapolke, M., Liers, F., and Martin, A. (2016). Robust runway scheduling under

uncertain conditions. Journal of Air Transport Management, 56:28–37.

Jacquillat, A. and Odoni, A. (2015). An Integrated Scheduling and Operations Approach to Airport Con-

gestion Mitigation. Operations Research, 63(6):1390–1410.

Jacquillat, A. and Odoni, A. (2018). A roadmap toward airport demand and capacity management. Trans-

portation Research Part A, 114:168–185.

Jacquillat, A., Odoni, A., and Webster, M. (2017). Dynamic Control of Runway Configurations and of Arrival

and Service Departure Rates at JFK Airport Under Stochastic Queue Conditions. Transportation

Science, 51(1):155–176.

Juan, A., Faulin, J., Grasman, S., Rabe, M., and Figueira, G. (2015). A review of simheuristics: Extend-

ing metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research

Perspectives, 2:62–72.

Khassiba, A., Bastin, F., Cafieri, S., Gendron, B., and Mongeau, M. (2020). Two-Stage Stochastic Mixed-

Integer Programming with Chance Constraints for Extended Aircraft Arrival Management. Trans-

portation Science, 54(4):897–919.

Koopman, B. (1972). Air-Terminal Queues under Time-Dependent Conditions. Operations Research,

20(6):1089–1114.

Liu, M., Liang, B., Zheng, F., Chu, C., and Chu, F. (2018). A Two-stage Stochastic Programming Approach

for Aircraft Landing Problem. Proc. 2018 International Conference on Service Systems and Service

Management (ICSSSM), Hangzhou, China.

Liu, M., Liang, B., Zhu, M., and Chu, C. (2020). Stochastic Runway Scheduling Problem With Partial

Distribution Information of Random Parameters. IEEE Access, 8:68460–68473.

Mladenovic, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research,

24(11):1097–1100.

Montlaur, A. and Delgado, L. (2017). Flight and passenger delay assignment optimization strategies. Trans-

portation Research Part C, 81:99–117.

Moser, I. and Hendtlass, T. (2007). Solving dynamic single-runway aircraft landing problems with extremal

optimization. Proc. IEEE symposium on computational intelligence in scheduling, Honolulu, HI.

Murca, M. and Muller, C. (2015). Control-based optimization approach for aircraft scheduling in a terminal

area with alternative arrival routes. Transportation Research Part E, 73:96–113.

NATS Ltd (2023a). Demand Capacity Balancer. https://www.nats.aero/services-products/products/

n/demand-capacity-balancer-dcb/. Accessed on July 24, 2023.

NATS Ltd (2023b). Strategic ACM. https://www.nats.aero/services-products/products/n/

strategic-acm/. Accessed on July 24, 2023.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 35

Nelson, B. (2013). Foundations and methods of stochastic simulation: a first course. Springer Science &

Business Media.

Newell, G. (1979). Airport Capacity and Delays. Transportation Science, 13(3):201–241.

Odoni, A., Morisset, T., Drotleff, W., and Zock, A. (2011). Benchmarking Airport Airside Performance:

FRA vs. EWR. Proc. 9th USA/Europe Air Traffic Management R&D Seminar, Berlin, Germany.

Psaraftis, H. (1978). A Dynamic Programming Approach to the Aircraft Sequencing Problem. Technical

report R78-4, MIT Flight Transportation Laboratory.

Pyrgiotis, N. and Odoni, A. (2016). On the Impact of Scheduling Limits: A Case Study at Newark Liberty

International Airport. Transportation Science, 50(1):150–165.

Sama, M., D’Ariano, A., and Pacciarelli, D. (2013). Rolling Horizon Approach for Aircraft Scheduling in the

Terminal Control Area of Busy Airports. Procedia - Social and Behavioral Sciences, 80:531–552.

SESAR (2023a). Arrival Sequencing Benefits from a Common Service Approach. URL:

https://www.sesarju.eu/sesar-solutions/e-aman-common-service. Accessed August 08 2023.

SESAR (2023b). Extended Arrival Management (AMAN) horizon. URL: https://www.sesarju.eu/sesar-

solutions/extended-arrival-management-aman-horizon. Accessed August 08 2023.

Shone, R., Glazebrook, K., and Zografos, K. (2019). Resource allocation in congested queueing systems with

time-varying demand: An application to airport operations. European Journal of Operational Research,

276(2):566–581.

Shone, R., Glazebrook, K., and Zografos, K. (2021). Applications of stochastic modeling in air traffic

management: Methods, challenges and opportunities for solving air traffic problems under uncertainty.

European Journal of Operational Research, 292(1):1–26.

Solak, S., Solveling, G., Clarke, J.-P., and Johnson, E. (2018). Stochastic Runway Scheduling. Transportation

Science, 52(4):917–940.

Solveling, G., Solak, S., Clarke, J.-P., and Johnson, E. (2011). Runway operations optimization in the

presence of uncertainties. Journal of Guidance, Control and Dynamics, 34(5):1373–1382.

Stamatopoulos, M., Zografos, K., and Odoni, A. (2004). A decision support system for airport strategic

planning. Transportation Research Part C, 12:91–117.

Tielrooij, M., Borst, C., van Paassen, M., and Mulder, M. (2015). Predicting Arrival Time Uncertainty from

Actual Flight Information. Proc. 11th USA/Europe Air Traffic Management R&D Seminar, Lisbon,

Portugal.

UK Aeronautical Information Services (2019). Aeronautical Information Circular P 092/2017. https:

//www.skybrary.aero/bookshelf/books/1166.pdf. Accessed on July 31, 2019.

Zografos, K., Madas, M., and Androutsopoulos, K. (2017). Increasing airport capacity utilisation through

optimum slot scheduling: review of current developments and identification of future needs. Journal of

Scheduling, 20(1):3–24.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

36 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Appendix A: Details of the SimHeur algorithm

In this appendix we provide detailed descriptions of the steps of the SimHeur algorithm. Firstly,

let the flights in F be indexed in ascending order by their ai +∆pre
i values, which are assumed

known at the beginning of T . Hence, our initial belief is that flight 1 will be the first to arrive in

the terminal area and flight F := |F| will be the last.

Step 1: Initialization

We initialize a set (or ‘population’) S0 of solutions (sequences), where each sequence s ∈ S0

is a tuple of length l ∈N and specifies the next l flights that will land on the runway, in order, if

this sequence is followed. It will be convenient to let St denote the population at time t ∈ T . The

number of sequences in S0 is denoted by S ∈N and it will also be the case that |St| ≤ S for all t∈ T .

Let Smin ≤ S be an integer that represents the minimum allowable population size. This means that

if |St|<Smin at some time point t then we must ‘repopulate’ St by generating new sequences until

its size is restored to S. We also initialize an iteration counter, n= 0, and an additional counter

m= 0. The parameters S, Smin and l remain constant until the final stages of SimHeur’s running

time, at which point it becomes necessary to reduce their values in order to ensure that it is still

feasible to find S distinct l-tuples consisting of only the flights in F that haven’t already been

released. Indeed, after all flights in F have been released it is necessary to set S = Smin = l= 0, at

which point steps 2A-2C and 4A-4C in Figure 3 become redundant, but the algorithm continues

to run until all flights in the queue have completed service.

In our numerical experiments in Section 5, we generate the initial sequences s∈ S0 by making

random changes to a ‘first-come-first-served’ sequence, as follows:

(a) Let S0 consist of only one sequence, (1,2, ..., l).

(b) Make a change to the sequence (1,2, ..., l) by applying a heuristic move operator, denoted H.

The steps of this heuristic move operator are as follows:

(i) Let L := l(l+1)/2. We randomly select an integer j ∈ {1,2, ..., l} in the following way: the

probability of selecting 1 is l/L, the probability of selecting 2 is (l−1)/L, and in general,

the probability of selecting p is (l+1− p)/L for 1≤ p≤ l.

(ii) The flight in position j of s is to be shifted by a certain number of positions either

forwards or backwards. First, decide on the direction of movement using a simple ‘coin

flip’, so that the ‘forwards’ and ‘backwards’ directions are selected with probability 0.5

each.

(iii) Let P be sampled uniformly at random from the set {1,2,3}. The flight in position j of s is

removed from s and then re-inserted at position max{j−P, 1} (if the ‘forwards’ direction

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 37

was selected in substep (ii)) or position min{j + P, l} (if the ‘backwards’ direction was

selected).

If the new sequence is not already in S0, then add it. Otherwise, repeat this substep.

(c) If |S0|= S, terminate. Otherwise, return to substep (b).

Step 2A: Simulation and Evaluation

In this step we update performance estimates of all sequences in our current population St.

For each flight i in a particular sequence s∈ St we must estimate its contribution to the objective

function (13) given that s is followed. We do this by randomly sampling a sequence of events

(referred to as a sample path or sample trajectory), denoted by Ωt. The sample path Ωt includes

realizations, denoted by Q̃i, of pool arrival times for all flights i∈F yet to arrive in the pool (i.e.

t <Qi), and also realizations of times needed for the remaining part of the journey for flights that

are either still in the pool (i.e. Qi < t < Ri) or still enroute to the runway (i.e. Ri < t < Ai). It

also includes realizations M̃ij of the separation times for all consecutive pairs (i, j) of aircraft in

the queue, and (if relevant) realizations Ũ0 and Ũ1 for the starting and ending times of any future

period of bad weather. We assume that all of these values are sampled from the correct distributions

described in Section 2. For example, following the details in Section 2, the time remaining until

flight i arrives in the pool (Qi − t) has density function

fQi−t(u |Xi(t)) =
Xi(t)− τ − t

σi

√
2πu3

exp

(
−(Xi(t)− τ − t−u)2

2σ2
i u

)
,

which can be integrated numerically in order to allow a quantile to be sampled according to a

uniform [0,1) distribution (the ‘inverse transform sampling’ method). A similar method can also

be used for sampling the remaining travel times for flights that have already arrived in the pool

or been released from the pool; for example if flight i is still in the pool, its remaining travel time

is sampled from an Inverse Gaussian distribution with mean τ , variance σ2
i τ . If a service is in

progress, then (as described in Section 2.4) the elapsed service time is known and we sample the

remaining service time from a conditional gamma distribution.

After Ωt has been generated, the future release times, landing times etc. of the flights in a

particular sequence s∈ St can be worked out in a deterministic way based on the generated timings

of events, and this yields an overall cost estimate for sequence s. For clarity, we assume here (only

for the purposes of estimating costs under different possible sequences) that if a particular sequence

s∈ St is followed starting from time t, then the following procedure is used:

(a) If the first flight in s is already in the pool, then it is released immediately. Otherwise, we

wait until it arrives in the pool, without releasing any other flights in the meantime, and then

release it immediately.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

38 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

(b) Substep (a) is repeated for the next sequential flight in s, and this process is repeated until

all flights in s have been released.

It should be noted that the cost estimate for s obtained by the above procedure is based only

on the l flights that are included in sequence s; it does not take into account the pool holding times

and landing times of any subsequent flights, even though these would be affected by the sequencing

decisions for flights in s. In this respect, our cost estimates are only based on ‘looking ahead’ by a

limited amount of time into the future, and it is important to avoid making l too small in order

to avoid being too myopic. On the other hand, larger values of l are associated with too much

computational expense and compromise the performance of SimHeur. In practice, the values of l

that we use are sufficiently small to ensure that the sequences s ∈ St consist only of flights that

are already in the ‘tactical uncertainty’ stage (i.e. t > hi for flights i ∈ s) and, hence, we do not

consider sequencing options for flights that are yet to realize their pre-tactical uncertainty. This

explains why there is no loss of generality in assuming that ∆pre
i is realized for all i ∈ F at the

beginning of T and scaling the time units accordingly.

During the running of SimHeur we revisit step 2A many times and acquire cost estimates for

each population member s ∈ St at many different time points (and using many different sample

paths). Let (t1, t2, ...) denote the sequence of time epochs at which these estimates are obtained,

with (Ωt1 ,Ωt2 , ..) being the corresponding sequence of sample paths generated. Let J (n)
s denote the

nth cost estimate for sequence s, given by sample path Ωtn . We note here that the iteration counter

n is reset to zero in some later steps of the algorithm when new sequences are added (see steps

4A-4C) and our notation assumes that any sequence included in the population at epoch tn is

also included at epochs tj for j < n, i.e. Stn ⊆ Stn−1
⊆ ...⊆ St1 . At time tn, we update two overall

performance indicators of sequence s∈ Stn , denoted V
(n)
s and W (n)

s as shown in equations (14)-(15)

(these are both initialized at zero for n= 0).

There is one further performance measure that we update in this step. Consider the flights

that are already in the queue at time tn and suppose flight i∈F is the last flight in the queue, i.e.

the most recent flight to have been released from the pool. Also, let L̃
(n)
i denote the actual landing

time for flight i under the sample path Ωtn . For each sequence s∈ St, let js be the first sequential

flight in s and define the binary variable ξ(n)s as follows:

ξ(n)s :=

{
1, if Ã

(n)
js
> L̃

(n)
i + M̃

(n)
i,js
,

0, otherwise,

where Ã
(n)
js

and M̃
(n)
i,js

are (respectively) the unconstrained landing time for flight js and the landing

time separation between i and js under sample path Ωtn . Hence, if ξ(n)s = 1, this indicates that

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 39

flight js does not arrive early enough to be able to land at the earliest possible moment after flight

i’s landing. One might say that there is some ‘idle runway time’ caused by the late arrival of flight

js. We then define Υ(n)
s as a (possibly weighted) average of ξ(n)s over all sample paths, as follows:

Υ(n)
s :=

{
0, if n= 0,

(1−ψn)Υ
(n−1)
s +ψnξ

(n)
s , otherwise.

If Υ(n)
s happens to be very small, then this suggests that there is little benefit in releasing flight

js from the pool immediately, as it is likely to be forced to wait in the queue and will have to

wait until time Li +Mi,js before it is able to land. It may be advantageous to delay its release so

that we can acquire more information (from system state updates) before making a final decision

about which flight to release next from the pool. We elaborate on this further in step 2C.

Step 2B: Ranking and Selection

After n cost evaluations have been performed we can rank the sequences in Stn according to

their V (n)
s values and remove any sequences that fail to satisfy the criterion (16). We note that

this step is not actually performed at each iteration n ∈ N in our algorithm; instead, as shown

in Figure 3, it is only performed when n is a multiple of r, for some pre-determined r ∈ N. The

reason for this is that the ranking and selection process involves pairwise comparisons between all

sequences in our current population, and this can be computationally expensive, so there is little

value in performing this step at every iteration given that the differences in V (n)
s and W (n)

s values

on consecutive iterations are likely to be small.

We also note that, since Zs,s′ (defined in (17)) is positive, the sequence with the smallest

sample mean is guaranteed to be retained in the population.

Step 2C: Release of Flights from Pool

Let s∗ denote the sequence in our current population St with the smallest value of V (n)
s after

n cost evaluations have been performed. If n≥ nrel, where nrel ∈N is a pre-determined threshold,

then we check to see whether Υ
(n)
s∗ exceeds another pre-determined value λ∈ [0,1). If the additional

condition Υ
(n)
s∗ > λ holds, then it is decided that the flights at the front of sequence s∗ should be

released as soon as possible if they are already in the pool.

Specifically, suppose the conditions n≥ nrel and Υ
(n)
s∗ >λ hold and let

u :=max{j ∈N : Qi ≤ t for all flights i in the first j positions of s∗}.

In other words, u is the number of positions in sequence s∗ that we are able to count, starting

from the beginning, without getting to an aircraft that isn’t in the pool yet. If u ≥ 1, then we

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

40 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

should release these u aircraft as soon as possible, so that they join the queue in the same order

that they appear in s∗. As shown in Figure 3, these u aircraft are only ‘marked’ for release at this

stage. They are actually released in step 3, following the next system state update, in order to

ensure that the state information (including the weather state, for example) at their time of release

is accurate. On the other hand, if u= 0, then no aircraft should be released.

We note that, as with several other parameters in our algorithm, setting the value of nrel

involves a ‘trade-off’. Larger values enable us to be more confident that the sequence s∗ is

genuinely the best sequence available due to the greater number of cost evaluations performed, but

by requiring n to be large before any flights are released, we might delay their release for too long

and incur greater costs as a result. Furthermore, as explained in step 2A, the condition Υ
(n)
s∗ >λ is

designed to ensure that we can derive some benefit from delaying the release of a flight from the

pool in situations where the flight is likely to be delayed in the queue anyway (and therefore an

early release would not imply an earlier landing time). The benefit of delaying the release is that

we are able to acquire more information (through system state updates) before deciding which

flight should be committed to the queue next. However, our numerical experiments indicate that

λ should be set to a very small value in order to give the best results, and indeed λ= 0 is often

the best choice. The reason for this is that if any unnecessary ‘idle runway time’ occurs (i.e. a

flight arrives at the runway later than its earliest feasible landing time based on time separations),

this can cause delays to many subsequent flights, implying a very significant increase in the value

of the objective function (13). Therefore, if there is even the slightest possibility of idle runway

time occurring, we may wish to release the next flight as soon as possible. Setting λ= 0 effectively

implies that we only need to find one random sample path (among possibly thousands) with

unnecessary idle runway time in order for the condition Υ
(n)
s∗ >λ to be met.

Step 3: System State Update

All of the steps in our algorithm require some computational effort. In this step we move the

simulation ‘clock’ forward according to the amount of time elapsed since the previous system state

update (or since initialization, if this step is being encountered for the first time) and update the

latest system state information. Specifically, if δt is the amount of time elapsed since the previous

update, then the current time t should be incremented by an amount proportional to δt. It is then

necessary to update the ETAs Xi(t) for all flights i ∈ F such that t < Ai. In addition, we need

to check whether any service phase completions have occurred during this time increment and (if

necessary) also update the weather forecast and the current weather state.

In our computer implementation, we have found that the most efficient approach is to pre-

generate all random events and their timings, so that we have a pre-generated ‘actual’ sample path

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 41

Ωtrue (hidden from the decision-maker). Then, in order to update the system state at a new time

point, we only need to ‘look up’ the relevant information in Ωtrue rather than sampling from any

distributions again. Further details about how this is done can be found in Appendix E.

This step also involves releasing any flights that have been marked for release (see step 2C),

so that new flights are added to the queue if necessary. Also, as noted in step 1, we may need to

reduce the values of S, Smin and l in this step if there are only a few flights remaining that haven’t

already been released from the pool.

Step 4A: Repopulation (Type 1)

As shown in Figure 3, this step follows step 3 in the case where at least one flight has just been

released from the pool. In this case, the newly-released flights are no longer eligible to be included

in the sequences in our population (as we only consider sequencing decisions for flights that haven’t

been released yet), so we perform a ‘reset’ by removing all sequences from our current population,

erasing the information {V (n)
s ,W (n)

s ,Υ(n)
s } for all removed sequences and setting n = 0. We then

create a new population St by performing the following substeps:

(a) Form a new sequence b consisting of the flights in positions u+1, u+2, ..., |s∗| of the sequence

s∗ that was chosen as the best sequence in the previous population. (Note that u represents

the number of flights that have just been released, as defined in step 2C.)

(b) Consider all flights i that have not yet been added to the queue and are not already included

in b. Among these flights, select the one with the earliest ETA Xi(t) and append it to the end

of b.

(c) Repeat substep (b) as many times as necessary until the number of flights in b is l.

(d) Generate an extra S − 1 sequences, where each new sequence is formed by applying the

heuristic move operator H described in step 1 to the sequence b formed above, in order to

obtain a new population of S sequences.

After the new population St has been created, the algorithm returns to step 2A (simulation

and evaluation).

Step 4B: Filter Population

Following the latest system state update (step 3), it may be beneficial to add new sequences

to the population St and evaluate these (in step 2A) according to the latest state information. In

order to do this, we need to ‘make room’ for the new sequences by removing some of the weaker

sequences from St. This step is only performed if n≥ nrepop, where nrepop ∈N is a pre-determined

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

42 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

threshold, because we must have performed a sufficient number of iterations to be able to reliably

judge which sequences in St are the weakest.

In this step we simply rank the sequences in St according to their sample means V (n)
s (com-

parable to the ‘fitness’ estimates used in metaheuristic algorithms) and remove the (S − Smin)

sequences with the highest values, so that the new population size is Smin. If Smin = 1 then we only

retain the ‘best’ sequence in the current population, but there are some potential advantages in

choosing a larger Smin value: (i) the sample means V (n)
s are associated with sampling error and

the ranking order of the sequences may change as we repeat step 2A more times; (ii) even if there

was no sampling error, the system state is continuously evolving and new information might imply

that the ranking order should be changed. Note that sequences can be removed in this step even

if they satisfy the ‘ranking and selection’ criterion (16) in step 2B.

After this step, we then add new sequences to the population in step 4C.

Step 4C: Repopulation (Type 2)

As shown in Figure 3, this step can be reached in two different ways. If n≥ nrepop, then we

reduce the population size to Smin as described in step 4B before arriving at this step. On the other

hand, we might also reach this step if the population size has been reduced to Smin (or smaller)

following the ‘ranking and selection’ process in step 2B. In either case, we can assume that the

current population size |St| is not greater than Smin.

The purpose of this step is to add new sequences to the population until its size is restored to

S. Recall that m is a counter, initialized with a value of zero in step 1. We assume that mmut ∈N

is a pre-determined threshold which determines the point at which we should ‘mutate’ the best

sequence in our current population. The substeps are described below.

(a) Let s∗ denote the sequence in the current population St with the smallest sample mean V (n)
s .

(b) If s∗ was already included in the population when we last entered step 4C, then increase m by

1. Otherwise, set m= 0.

(c) If m≥mmut, create a new sequence b by applying a random mutation to s∗ and then set m= 0.

Otherwise, set b= s∗.

(d) Make a change to the sequence b by applying a heuristic move operator, denoted H. If the new

sequence is not already in St, then add it. Otherwise, repeat this step.

(e) If |St|= S, terminate. Otherwise, return to step (d).

The heuristic move operator H is the same one used in steps 1 and 4A (see earlier). The

‘random mutation’ referred to in substep (c) above works as follows:

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 43

(i) LetM(t) denote the number of flights in F that have not yet been added to the landing queue

at time t; that is, M(t) consists of flights that are either still in the pool or yet to arrive in

the pool.

(ii) Let P (t) :=min{4, Q(t)}, where Q(t) :=min{l, M(t)}. Here, P (t) is interpreted as the length

of a particular subsequence within s that we want to ‘shuffle’ in order to obtain a new

sequence.

(iii) Define R(t) :=Q(t)−P (t)+ 1 as the number of possible starting positions of the string that

we are going to shuffle.

(iv) Let L :=R(t)(R(t) + 1)/2. We randomly select an integer j ∈ {1,2, ...,R(t)} in the following

way: the probability of selecting 1 is R(t)/L, the probability of selecting 2 is (R(t)− 1)/L,

and in general, the probability of selecting p is (R(t)+ 1− p)/L for 1≤ p≤R(t).

(v) Consider the subsequence formed by taking the flights in positions j, j+1, ..., j+P (t)− 1 of

s. Remove all flights in this subsequence from s, then ‘shuffle’ the subsequence, i.e. choose

a random permutation of it. Finally, re-insert the shuffled subsequence in the same position

within s that it occupied before. We thus obtain a new sequence, interpreted as a ‘mutation’

of s.

We note that the purpose of the mutation is to force the algorithm to explore a different

part of the solution space, and this is consistent with the VNS methodology. The condition m≥

mmut indicates that the algorithm has been through the repopulation process m times without

successfully finding a new sequence that performs better than s∗. This suggests that a local optimum

has been found, and hence we should migrate to another region of the solution space.

We also reset n to zero in this step and erase the information {V (n)
s ,W (n)

s ,Υ(n)
s } for sequences

that have been retained from our previous population. Following this step, the algorithm returns

to step 2A (simulation and evaluation).

We have now described all steps in the SimHeur algorithm. As shown in Figure 3, the

algorithm terminates when all flights in F have completed service, at which point we obtain a

value for the objective function (13).

Appendix B: Details of the DetHeur algorithm

The steps of the DetHeur algorithm are similar to those described in Appendix A for SimHeur,

except for the following changes:

� In step 2A, we generate the sample path St by setting Q̃i = Xi(t)− τ for all flights i that

haven’t arrived in the pool yet (i.e. t < Qi). After i has been released (i.e. for t ≥ Ri) we use

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

44 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Ãi =Xi(t) as a deterministic prediction of its runway arrival time. We also set M̃ij = eij for all

consecutive pairs of flights (i, j) in a particular sequence and set Ũ0 = T0(t) and Ũ1 = T1(t) if there

is a future period of bad weather expected. The sample mean V (n)
s is replaced by the single cost

evaluation J (n)
s , so that any previous cost evaluations for sequence s are discarded. We do not

require W (n)
s or Υ(n)

s .

� Step 2B (ranking and selection) is omitted.

� In step 2C, the condition n≥ nrel is no longer required (equivalently, we might say that nrel =

1). The condition Υ(n)
s >λ is also no longer applicable.

� The condition n ≥ nrepop is no longer required in order to enter step 4B. Equivalently, we

might say that nrepop = 1.

We note that the removal of the condition Υ(n)
s > λ implies that DetHeur takes a somewhat

conservative approach by releasing the first flight in s∗ as soon as it arrives in the pool, rather than

delaying its release in order to acquire more information. Indeed, since DetHeur does not generate

random sample paths, it cannot estimate the probability of idle runway time in the same way as

SimHeur. One might argue, however, that it should release the first flight (say flight j) from s∗

if and only if the runway arrival time Ãj = t+ τ under the expected value trajectory at time t

satisfies Ãj ≥ L̃i + M̃ij, where i is the latest flight to be released; in other words, the flight should

not be released if we expect it to be delayed in the queue. This seems a reasonable suggestion, but

it is easy to show using experiments that DetHeur performs extremely poorly under such a rule.

As noted earlier, any unnecessary idle runway time tends to increase the objective function value

very significantly due to the ‘knock-on’ effect of one delayed landing causing another. If we release

flight j at the point where Ãj = L̃i+ M̃ij then there is roughly a 50% chance that unnecessary idle

runway time will occur, and this must be avoided.

Appendix C: Obtaining the DStat policy

The heuristic method for obtaining the DStat policy referred to in Section 3.3 is as follows:

1. We begin with a sequence s0 of length |F| in which the flights are ordered according to their

ETAs following the realization of pre-tactical uncertainty; that is, if flight i∈F appears before

flight j ∈F then this implies ai +∆pre
i ≤ aj +∆pre

j .

2. Set sbest := s0 and initialize a counter c= 0.

3. Set the pool arrival time to Qi = ai+∆pre
i −τ for all i∈F , set U0 = t0, U1 = t1 and assume that

all separation times Mij conform to their expected values Eij(Rj) (defined in (10)). For the

release times Rj, we assume that each flight i in sbest is released from the pool at the earliest

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 45

possible moment, with the restriction that flights must be released in the same order that they

appear in sbest. For example, if the 2nd flight in sbest happens to arrive in the pool earlier than

the 1st flight, then the 2nd flight should be released immediately after the 1st flight arrives in

(and is released from) the pool. We also define Aj =Rj + τ as the unconstrained arrival time

of flight j ∈F , with the actual landing time given by Lj =max{Aj,Li +Mij}, where i is the

predecessor of j in the queue. We then calculate the value of the objective function (13) if the

sequence sbest is followed and let this be denoted by Cbest.

4. Select a subsequence of 6 flights appearing consecutively in sbest by sampling uniformly at

random from the |F|−5 possible alternatives (corresponding to starting positions 1,2, ..., |F|−

5 within sbest).

5. The subsequence selected in step 4 is removed from sbest and the flights in this subsequence

are then ‘shuffled’; i.e. a random permutation of the subsequence is chosen. The shuffled

subsequence is then re-inserted into sbest in the same position that it occupied before. This

yields a new sequence that we refer to as scurr.

6. Calculate the value of the objective function (13) under the new sequence scurr by setting the

values of Qi, U0, U1, Mij to their expected values and calculating Ri, Ai as described in step

3. Let Ccurr denote the objective function value under scurr.

7. If Ccurr <Cbest, then set Cbest :=Ccurr and sbest := scurr, and set c= 0. Otherwise, increase the

counter c by 1.

8. If c= 10,000, then terminate the procedure and accept sbest as the DStat policy. Otherwise,

return to step 4.

Note that the final value of Cbest associated with the sequence sbest is not a measure of DStat’s

actual performance, as Cbest is based on the assumption of all random variables conforming to

their expected values. To evaluate DStat’s actual performance, we must use the ‘real’ information

contained in Ωtrue, as explained in Section 3.3.

Appendix D: Filtering the historical dataset

This appendix describes our method of filtering the historical dataset in order to improve approx-

imations for the distributions of unconstrained arrival times. Firstly, for each of the 360 days in our

historical period we examine the sequence of actual landings that took place during the 6AM-2PM

interval and separate the flights that landed into two sets. Set S1 (resp. S2) consists of flights that

landed immediately after a flight that landed earlier (resp. later) than its scheduled landing time.

We then compare the proportions of flights landing earlier than their scheduled times in sets S1

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

46 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

and S2. If the difference in these two proportions is statistically significant at the 5% level, then we

discard all data from the whole of that particular day when fitting the distributions for the Ai. The

rationale for this approach is as follows: if the queueing delays on a particular day are significant,

then delays are likely to propagate, in the sense that the late arrival of one flight causes the late

arrival of another. Therefore if we restrict attention to days on which the timeliness of one landing

tends to be independent of the timeliness of its immediate predecessor, we can be more confident

that the recorded landing times of flights are similar to their unconstrained landing times.

After carrying out the procedure described above, we identified 112 days (out of 360) on which

the differences between proportions of late-arriving flights in sets S1 and S2 were significant. We

removed all of these 112 days from our dataset and were left with 248 days’ worth of data, with

199.5 records per flight on average. The box plot in Figure 6 shows a comparison between the

distributions of average delay over all flights in F for the 248 retained days and the 112 removed

days. (Negative delays occur when actual landing times are earlier than scheduled times.) All of the

days with average delays greater than 10.38 minutes were among the 112 flights removed from our

dataset, suggesting that our method is somewhat effective in filtering out the days with abnormally

long delays that may be attributable to airport congestion.

–20 –15 –10 –5 0 5 10 15 20 25 30 35 40

Average delay on single day (minutes)

248 retained days

112 removed days

Figure 6 Distributions of average delay on a single day for the 248 retained days and 112 removed days.

Appendix E: The method of pre-generating random events

The pre-generated sample path Ωtrue includes complete trajectories {Xi(t)}t∈T for i∈F , weather

forecast trajectories {T0(t)}t∈T and {T1(t)}t∈T , and a set of possible separation times {Mij} for

each j ∈F (taking into account all possibilities for the weight class of the predecessor flight i). The

steps for generating the trajectories {Xi(t)}t∈T are described below.

1. For each i∈F we set the initial ETA, Xi(0), as follows:

Xi(0) =

{
ai +∆pre

i +N(0, σ2
i |hi|), if hi < 0,

ai +∆pre
i , if hi ≥ 0,

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 47

where N(a, b) denotes a Normal random variable with mean a and variance b.

2. We step forward in hundredths of a minute and, for each t = 0.01, 0.02, ..., T , generate the

value Xi(t) using a standard method for simulating Brownian motion:

Xi(t) :=Xi(t− 0.01)+N(0, 0.01×σ2
i).

We also define Xi(u) :=Xi(t− 0.01) for u∈ [t− 0.01, t).

The above method ensures that Xi(t) is defined for all t∈ T (it is a piecewise constant function

of time). Although a time discretization is used, the SimHeur and DetHeur algorithms may carry

out system state updates at any time t in the continuous interval T (with t depending on the

exact amount of CPU time spent on computations). In practice, this means that the values Xi(0),

Xi(0.01), Xi(0.02), etc. are stored inside an array and at time t, the algorithm looks up the value

Xi(t
′) where t′ := max{u ∈ {0, 0.01, 0.02, ..., T} : u≤ t}; for example, if t= 2.764 then we look up

the value Xi(2.76).

The steps for generating {T0(t)}t∈T and {T1(t)}t∈T are very similar to the above, except we

set initial values T0(0) = t0 and T1(0) = t1 and use ν as the variance parameter instead of σi.

In order to simulate separation times Mij, we pre-generate a set of values {psepj }j∈F , with

each psepj being randomly sampled from a Uniform[0,1] distribution. Then, once the weight class

of the preceding flight i becomes known during the simulation, we calculate Mij by sampling the

(psepj)th quantile of the Erlang distribution for Mij.

Appendix F: Generating values of the physical and algorithmic parameters

As explained in Section 5, we set σi = σ for all i ∈F and conducted 1000 experiments for each

value of σ in the set {0.1, 0.3, 0.5, 0.7, 0.9}. In each test scenario we sample the values of the

remaining physical parameters as detailed below. (Note: in the following list, the word ‘sampled’

implies ‘sampled uniformly at random’.)

� The value of k is sampled from the set {16, 25, 44, 100, 400}. This implies that for each pair

of consecutively-landing flights (i, j), the separation timeMij has a coefficient of variation sampled

from the set {0.05, 0.1, 0.15, 0.2, 0.25}.
� With probability 0.75, the initial forecast [t0, t1] for the period of bad weather is sampled from

the set {[285, 315], [270, 330], [240,360]}. With the remaining probability 0.25, there is no period

of bad weather.

� For simplicity, the weather variance parameter ν is set equal to σ in all experiments, so that

the uncertainty in the weather forecast is always similar to the uncertainty affecting unconstrained

aircraft arrival times.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

48 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

� The parameter ϕ affecting separation times under bad weather is set to 10/9, so that bad

weather causes a 10% reduction in achievable throughput rates.

� We set hi = di − 15 for all i ∈ F , so that each flight enters its ‘tactical uncertainty’ phase 15

minutes prior to its scheduled departure time.

� For simplicity, we set τ = 30 in all experiments.

� The relative cost parameter gi depends on flight i’s weight class in the following way: if i is in

the ‘H’ class, gi is sampled from the continuous interval [0.8, 1]. If i is in the ‘UM’ or ‘LM’ class,

gi is sampled from [0.6, 0.8], and if i is in the ‘S’ class, gi is sampled from [0.4, 0.6].

� The tolerance parameter γ[S] is sampled from the set {0, 15}, with 15 being an ‘industry

standard’ value, as mentioned in Section 2.4. On the other hand, we simply set γ[W] = 0, so that

any amount of air holding delay is penalized.

� The objective function weight for schedule delays θ[S] is sampled from {0.1, 0.3, 0.5, 0.7, 0.9}.

We then set the weight for operational delays as θ[W] = 1− θ[S].

As explained in Section 5, the algorithmic parameters used by the SimHeur and DetHeur

algorithms are kept at fixed values in our experiments. We determined these values by conducting

a preliminary computational study to investigate sensitivity of the solutions with respect to these

parameters. Tests were carried out using a small ‘test’ problem with a time interval T of length

2 hours and a set F consisting of 60 flights with randomly-generated pre-scheduled arrival times

and weight classes. Based on the results of this study, we selected the following parameter values:

� (*) Default population size: S = 20

� (*) Default sequence length: l= 15

� (*) Minimum population size: Smin = 10

� (*) Threshold for performing mutations: mmut = 25

� Threshold for performing ranking and selection: r= 50

� Significance level used in the ranking and selection criterion: η= 0.05

� Threshold for releasing aircraft from pool: nrel = 50

� Threshold for filtering population: nrepop = 500

� Maximum ‘idle runway probability’ for delaying pool release: λ= 0

� Step sizes for sequence cost estimates: ψn = 1/n

The parameters marked (*) are used by both the SimHeur and DetHeur algorithms. The

others are used only by the SimHeur algorithm.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 49

Appendix G: Increasing the number of bad weather periods

In this appendix we present the results of additional experiments in which the number of bad

weather periods during T is increased from 1 to n ∈ {2,3}. The method of modeling bad weather

periods described in Section 2.3 can be generalized in quite an intuitively simple way so that,

instead of a single bad weather period U predicted to begin at time T0(t) and end at time T1(t)

(where t is the time point at which the forecast is made), there are multiple bad weather periods

U (i) for i = 1, ..., n and each period U (i) has a predicted start time T
(i)
0 (t) and end time T

(i)
1 (t).

We initialize the intervals [T
(i)
0 (t), T

(i)
1 (t)] so that they do not overlap with each other at t = 0,

but since we allow T
(i)
0 (t) and T

(i)
1 (t) (for each i) to vary according to Brownian motion (BM) as

described in Section 2.3, they may overlap at some point t > 0. If two periods U (i) and U (j) overlap

with each other then they effectively become a single, elongated period of bad weather, but we

continue to model T
(i)
0 (t), T

(i)
1 (t), T

(j)
0 (t) and T

(j)
1 (t) as independent BM processes, so that they

might later stop overlapping and become distinct periods again. Throughout these experiments we

use the same value ν as the variance parameter for all of the BM processes.

We conducted 1000 experiments with n= 2 as the number of bad weather periods, followed by

a further 1000 experiments with n= 3. The experimental setup was exactly as described in Section

5 in all other respects, including the methods used to generate values of the physical parameters.

For the experiments with n= 2 we set the initial forecasts for the bad weather periods to be from

8AM-9AM and from 11AM-12PM, so that they are both predicted to be one hour long. For the

experiments with n = 3 we set the initial forecasts to be from 7:40AM-8:20AM, from 9:40AM-

10:20AM and from 11:40AM-12:20PM, so that they are each predicted to be 40 minutes long. Thus,

in all experiments we have a total of two hours of predicted bad weather, and the bad weather

periods are distributed evenly during the 8-hour interval from 6AM to 2PM.

Table 5 shows the results of the experiments with n = 2, and Table 6 shows the results for

n= 3. In both tables we report 95% confidence intervals for the percentage improvement (in terms

of the weighted objective function) achieved by SimHeur vs. DetHeur, FCFS and DStat, with

comparisons shown over all scenarios and also for the subsets of scenarios corresponding to different

values of σ. Thus, the results are shown in the same format as Table 2.

As with the earlier set of experiments (reported in Section 5), we find that SimHeur’s advan-

tage vs. DetHeur tends to increase as σ increases. The FCFS policy becomes stronger (relative

to SimHeur) as σ increases, while DStat’s performance deteriorates rapidly with σ. However, by

comparing the results in Tables 2, 5 and 6, we may infer that SimHeur’s advantage over DetHeur

tends to diminish as the number of bad weather periods increases. Furthermore, in the σ = 0.1

case, Table 6 indicates that SimHeur may be inferior to DetHeur when n= 3.

Shone, Glazebrook and Zografos: A New Simheuristic Approach for Stochastic Runway Scheduling

50 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Table 5 Performance comparisons between SimHeur (SH), DetHeur (DH), First-come-first-served (FC) and

DStat (DS) with respect to the value of the weighted objective function (13) for the experiments with n= 2.

Pct. Improvement Pct. of Experiments

σ value Count SH vs. DH SH vs. FC SH vs. DS SH best DH best FC best DS best

Any value 1000 8.50 ± 0.96 46.92 ± 0.70 51.82±1.76 66.80 30.90 0.40 1.90

0.1 200 0.23± 1.74 53.78± 1.20 11.72± 1.79 46.50 47.50 0.00 6.00

0.3 200 5.28± 1.82 51.62± 1.16 47.67± 2.29 65.00 34.50 0.00 0.50

0.5 200 11.46± 2.22 49.15± 1.20 59.57± 3.89 72.50 24.50 0.00 3.00

0.7 200 11.86± 2.22 42.93± 1.34 68.62± 2.14 74.50 25.50 0.00 0.00

0.9 200 13.70± 2.22 37.13± 1.66 71.56± 2.10 75.50 22.50 2.00 0.00

Table 6 Performance comparisons between SimHeur (SH), DetHeur (DH), First-come-first-served (FC) and

DStat (DS) with respect to the value of the weighted objective function (13) for the experiments with n= 3.

Pct. Improvement Pct. of Experiments

σ value Count SH vs. DH SH vs. FC SH vs. DS SH best DH best FC best DS best

Any value 1000 7.65 ± 1.01 47.54 ± 0.68 53.03 ± 1.65 66.20 31.70 0.10 2.00

0.1 200 −1.75± 1.82 54.43± 1.20 12.38± 1.87 42.50 48.50 0.00 9.00

0.3 200 4.98± 2.11 52.44± 1.19 49.06± 2.24 63.50 35.50 0.00 1.00

0.5 200 9.58± 2.28 49.43± 1.17 63.27± 2.20 69.50 30.50 0.00 0.00

0.7 200 11.67± 2.25 43.90± 1.29 68.70± 2.02 76.00 24.00 0.00 0.00

0.9 200 13.76± 2.18 37.49± 1.50 71.73± 2.25 79.50 20.00 0.50 0.00

Further inspection of the results reveals that when there are multiple periods of bad weather,

the nature of the problem changes in such a way that operational delays become more critical. One

consequence of this is that it becomes more important for planes to be ‘grouped together’ in strings

of based on their weight classes, in order to minimize average separation times. Indeed, as discussed

in Section 2.3, the effect of bad weather is that the required separation times are increased by a

scalar factor ϕ, so time separations become more critical in the objective function. Even if the

current weather conditions are fine, it makes sense that if a future bad weather period is expected,

then runway throughput rates should be maximized in order to mitigate the adverse effects of the

future weather. In Section 5.5 we have outlined the reasons why SimHeur’s advantage over DetHeur

tends to diminish as the relative importance of operational delays (as opposed to schedule delays)

becomes higher. In order for SimHeur to perform better under such circumstances, we conjecture

that it would need to become more efficient in converging to strong-performing solutions without

needing to generate so many random trajectories.

