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Abstract

Environmental contours are often used in engineering applications to describe risky combinations of

variables according to some definition of an exceedance probability. These contours can be used to both

understand multivariate extreme events in environmental processes and mitigate against their effects,

e.g., in the design of structures. Such ideas are also useful in other disciplines, with the types of extreme

events of interest depending on the context. Despite clear connections with extreme value modelling,

much of this methodology has so far not been exploited in the estimation of environmental contours; in

this work, we provide a way to unify these areas. We focus on the bivariate case, introducing two new

definitions of environmental contours. We develop techniques for their inference which exploit a non-

standard radial and angular decomposition of the variables, building on previous work for estimating

limit sets. Specifically, we model the upper tails of the radial distribution using a generalised Pareto

distribution, with adaptable smoothing of the parameters of this distribution. Our methods work

equally well for asymptotically independent and asymptotically dependent variables, so do not require

us to distinguish between different joint tail forms. Simulations demonstrate reasonable success of the

estimation procedure, and we apply our approach to an air pollution data set, which is of interest in

the context of environmental impacts on health.

Keywords: bivariate extremes; environmental contours; generalised additive model; generalised Pareto

distribution; structure function
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1 Introduction

In environmental, engineering, financial and health contexts, it is the exposure to extreme values of pre-

vailing conditions that cause the most risk. When these prevailing conditions relate to a univariate random

variable, the extreme values correspond to observations from either its lower or upper tail, depending on

the context, e.g., human health responds differently to cold weather or heatwaves, with such events being

linked to respective tails of the temperature variable. When the prevailing conditions are described by a

multivariate random variable X ∈ Rd, for d ∈ N\{1}, there is still a need for the identification of sets of

variable combinations that are the ‘riskiest’, as judged for the given class of problems.

For such a set of risky combinations of X to be useful, a probability needs to be associated with the

set, where this probability is small given the rarity of the events of interest. Hence, empirical methods

to identify such sets are infeasible, as typically the probability will be smaller than n−1, where n is the

sample size. In the reverse set-up, any set in Rd is not uniquely defined by the probability of its occurrence

alone, so additional criteria need to be imposed. These criteria could lead to sets being defined such that

they have a small probability of being exceeded, or by a contour of points representing the boundaries of

different regions, each with some specified shape and equal occurrence probabilities.

This paper aims to formalise these statements, in the case where X has a joint density function fX ,

to provide an inference framework for extreme sets related to combinations of X, which are typically

called environmental contours; see discussion in the engineering (Mackay and Haselsteiner, 2021) and

statistical (Hafver et al., 2022) literature. In engineering, these contours are critical to the practical

design of complex, multifaceted, structures that need to withstand environmental multivariate extreme

events (Huseby et al., 2015). Similar ideas can be applied in environmental settings, e.g., to specify safety

standards relating to combinations of pollutants, for mitigation against a range of health issues, as used as

the motivating example in Heffernan and Tawn (2004); or in finance when studying risk across portfolios

with different combinations of investments (Poon et al., 2004; Castro-Camilo et al., 2018).

The key complication with identifying such risky combinations is the lack of a natural ordering in mul-

tivariate problems. Barnett (1976) addressed this problem by identifying four possible ordering strategies:

componentwise maxima, concomitants, convex hulls and structure variables. Subsequent extreme value

theory and/or methodology has been developed for these four strategies in Tawn (1990); Ledford and

Tawn (1998); Eddy and Gale (1981), Brozius and de Haan (1987) and Davis et al. (1987); and Coles

and Tawn (1994), respectively. In the context of the convex hull, the asymptotic shape and number of

points contributing to the convex hull are studied, and links are drawn with multivariate extreme value

theory, but for environmental contours, interest lies additionally in events beyond the observed data. In

contrast, the recent study of a new basis for ordering, linked to the limiting shape of a scaled sample

cloud (Balkema et al., 2010; Nolde, 2014; Nolde and Wadsworth, 2022) seems to address these concerns.

For well-defined practical problems, it is the structure variable approach that is the most relevant for

identifying sets of risky values of X. Coles and Tawn (1994) present a statistical framework to study

extremes of structure variables. For a d-dimensional vector x = (x1, . . . , xd), they consider the structure

function ∆(x) : Rd → R, which is entirely determined by the context of the problem. For example, ∆
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could be the stress on an offshore structure with x being wave height and wind speed at that structure.

The function ∆ captures information about the impact under different values of x; as the value of ∆

increases, the severity of the impact also increases. Similarly, in a health context ∆ could be the effect of

air pollutants on human lungs, with x representing levels of the different air pollutants. In these contexts,

interest lies in the probability of occurrence of large structure variables, i.e.,

Pr{∆(X) > v} = Pr(X ∈ Av) =

∫
x∈Av

fX(x)dx, (1)

where Av = {x ∈ Rd : ∆(x) > v} is termed the failure region. If v is sufficiently large to be above any

observations of the univariate variable ∆(X), Bruun and Tawn (1998) show that there are substantial

advantages that can be achieved in estimating Pr{∆(X) > v} using a multivariate approach building out

of the right hand side of expression (1), over analysing univariate realisations of ∆(X); this is essentially

because knowledge of the structure function beyond the observations can be exploited. However, these

findings are subject to having a good inference method for multivariate joint tails, which is not always

straightforward. The method from Coles and Tawn (1994) only considered asymptotically dependent

models for fX , whereas Heffernan and Tawn (2004) and Wadsworth and Tawn (2013) extended these

models to also cover asymptotic independence, i.e., allowing for the possibility that only some subsets of

the components of X can be simultaneously extreme.

The structure variable approach provides an extreme set of risky combinations of X via the set Av,

with an associated joint probability p of occurrence given by (1). For a single structure function ∆, then

the boundary of the failure region gives the required environmental contour, Cp := {x ∈ Rd : ∆(x) = vp},
where vp is the (1− p)th quantile of the structure function ∆. For structure functions of interest, Cp will

be a connected subset of Rd and a continuous function of p. As an illustration, consider the sub-class

of this framework when ∆(x) = mini=1,...,d(ϕixi) for known constants ϕi > 0 (i = 1, . . . , d), so interest

lies in the joint survivor function on a given ray determined by the ϕi constants. Here, the risky set

is Avp = {x ∈ Rd : xi > vp/ϕi, i = 1, . . . , d}, and Cp = {x ∈ Rd : mini=1,...,d(ϕixi) = vp} is its lower

boundary, so that Cp is continuous over Rd and changes smoothly with p.

However, the structure variable formulation is overly simplistic in practice as it assumes that ∆ is en-

tirely known. To illustrate this, consider again the structure function ∆(x) = ∆(x;ϕ) = mini=1,...,d(ϕixi),

where ϕ = (ϕ1, . . . , ϕd) but now with the ϕi > 0 all unknown. In this case, both Avp and Cp vary with

ϕ as well as p. This means that either additional criteria are needed to optimise ϕ, or a broader defini-

tion of an environmental contour is required than one based on the approach of Coles and Tawn (1994)

with known ∆. For this particular class of structure function, when d = 2 and for a fixed probability

p, Murphy-Barltrop et al. (2023) estimate environmental contours corresponding to all combinations of

(x1(p), x2(p)) with Pr{X1 > x1(p), X2 > x2(p)} = p, i.e., the contour of equal joint survivor functions.

The fact that Murphy-Barltrop et al. (2023) need only to find a two-dimensional solution, whereas our set

up above suggested it should be three-dimensional over (ϕ1, ϕ2, vp), illustrates that to get identifiability

in our solution when using the ∆-approach, we need to impose that ϕ2 = 1− ϕ1 and ϕ1, ϕ2 ∈ [0, 1], say.

There is a need for techniques to estimate environmental contours in more general settings than

Murphy-Barltrop et al. (2023) and which scale better with dimension, as the following examples illustrate.
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First, consider the scenario where ∆(x) = ∆(x;ϕ), for unknown ϕ, occurs in an engineering design phase,

e.g., for an oil-rig. It is possible that the general form of ∆ is known from previous constructions, but

that there are features of the design, determined by ϕ, which are specific to the location of the oil-rig. In

this case, it is not possible to evaluate ∆(x;ϕ) for all possible ϕ, as numerical evaluation of ∆(x;ϕ) can

be computationally demanding. Similarly, in health risk assessments for air pollutants in setting legal

maximum levels, there are a range of structure functions to assess, i.e., ∆i(·;ϕi) for i ∈ I, where the set

I corresponds to a collection of different health risks as a consequence of the pollutants x.

Ross et al. (2020) and Haselsteiner et al. (2021) provide recent reviews on environmental contours

from an engineering perspective. The earliest methods in that literature go back to the IFORM (Hasofer

and Lind, 1974; Winterstein et al., 1993), which is based on the implicit assumption of a Gaussian copula

and a range of approximations. Since then, there have been a series of extensions to the definitions; these

reduce the number and impact of various assumptions in different ways. Such extensions include the

direct sampling approach of Huseby et al. (2013), the high density contour approach of Haselsteiner et al.

(2017) and the ISORM (Chai and Leira, 2018), all of which are discussed in Mackay and Haselsteiner

(2021). If an environmental contour cannot be defined according to a known structure function, there

are a number of ways these ideas may be used and implemented in practice. Critically, these will depend

on the specific application and require knowledge from domain experts, so that statisticians have only a

limited role to play at such a stage. To illustrate this, we return again to our engineering and air pollution

motivating examples. In engineering contexts, if environmental contours are derived at an initial design

stage, then different points on the contour can be used to test a range of possible structures and narrow

down the specification to a known structure function ∆; from here, the previously-described structure

function approach could be used to finalise a specific design. In contrast, in health contexts, practitioners

may be able to identify the combinations of pollutants on the contour of interest that are the most likely

to lead to adverse health effects, possibly relating to a range of different symptoms. Contours in this

setting provide vital information about the most likely dangerous combinations of air pollutants and so

help guide the setting of new environmental air quality standards.

Environmental contours can be seen as an application of multivariate extremes, yet they have not been

studied systematically from a methodological perspective. In multivariate settings, statistical extreme

value methods have primarily focused on dependence characterisations and inference, rather than following

this through to implications for practitioners. For example, for any bivariate pair (Xi, Xj) ⊆ X, with

i ̸= j, much focus is given to determining the value of

χij = lim
u→1

Pr{FXj (Xj) > u | FXi(Xi) > u} ∈ [0, 1], (2)

where FXi and FXj are the marginal distribution functions of Xi and Xj , respectively. When χij > 0

(χij = 0) the variables (Xi, Xj) are said to be asymptotically dependent (asymptotically independent),

respectively (Coles et al., 1999). The key difference between these two forms of extremal dependence is

that under asymptotic dependence (asymptotic independence) it is possible (impossible) for both variables

to take their largest values simultaneously. The asymptotically independent limit can occur for widely

used dependence models, such as for all Gaussian copulas with non-perfect dependence, and distinguishing
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between these extremal dependence classes can be a non-trivial task in practice.

Some previous progress has been made in deriving contours linked to multivariate extreme value

methods. Specifically, Cai et al. (2011) estimate equal joint density contours in the tail of the joint

distribution. However, they make restrictive assumptions about the marginal and dependence structures;

they assume multivariate regular variation, which imposes identically distributed marginal distributions

that must be heavy tailed, and that the variables are either asymptotically dependent or completely

independent, meaning more general forms of asymptotic independence are excluded. Einmahl et al. (2013)

also focus on equal joint density contours, but select the contour such that the probability of X being

outside the contour is of a small target level. Although they allow different (though still heavy tailed)

marginal distributions, they also assume asymptotic dependence and conditions such that the spectral

measure is non-zero across all interior directional rays, for which no practical test currently exists.

The current methods have the potential to be improved using more advanced statistical techniques that

can be applied in both asymptotic dependence and asymptotic independence settings, and crucially, which

remove the need to determine in advance whether the variables are asymptotically dependent. Extensions

of these approaches should also remove the restriction that the estimated contours must correspond to

joint density contours. We aim to address all three of these gaps in current methodology in this paper.

We introduce two new environmental contour definitions and provide procedures for their estimation.

We build on the methods of Simpson and Tawn (2022) for estimating the limiting boundary shape of

bivariate sample clouds under some appropriate scaling. Following the strategy from copula modelling,

where dependence features are considered separately to the marginal distributions, we define our con-

tours on a standardised scale, with the variables first transformed to have common Laplace marginal

distributions, and the resulting estimated contours then back-transformed to the original margins.

We end our introduction with an overview of the paper. In Section 2, we introduce two new envi-

ronmental contour definitions, and explain how the approach of Simpson and Tawn (2022) is adapted

to estimate these contours in Section 3. The results of a simulation study are presented in Section 4,

demonstrating across a range of examples that our estimation procedure provides contours are close to

the truth, as well as being reasonably successful in obtaining regions with the desired proportion (prob-

ability) of observations lying outside them for within sample (out of sample) contours, respectively. An

application to modelling air pollution, considering differences in behaviour due to season, is presented in

Section 5. We conclude with a discussion in Section 6.

2 An outline of new contour definitions

2.1 Overview of the strategy

We make two key decisions when defining our new environmental contours. Firstly, we work on a marginal

Laplace scale, and secondly, the contours are defined in terms of radial-angular coordinates. Before

providing the contour definitions in Section 2.2, we discuss the motivation for these two choices.

It is common in the literature on both environmental contours and multivariate extremes to work on
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standardised margins. For instance, with the IFORM, one transforms to independent, standard Gaussian

margins, before estimating a circular contour and then back-transforming to the original marginal scale. In

the theoretical work of Nolde and Wadsworth (2022) and the methodological implementation of Simpson

and Tawn (2022), standard exponential margins are used, but this choice comes with the drawback of

only being able to capture positive dependence or independence. In order to additionally handle negative

dependence, as well as lower tails on the marginal scale, we define our contours for variables (XL, YL)

having standard Laplace margins (Keef et al., 2013), i.e., with marginal distribution functions

FXL
(z) = FYL

(z) =


1
2 exp(z), z ≤ 0,

1− 1
2 exp(−z), z > 0,

z ∈ R. (3)

As the Laplace marginal distribution has both upper and lower exponential tails, the probabilistic struc-

tural relationship between (XL, YL) is the same as between the associated variables on exponential vari-

ables, i.e., (XE , YE), in the joint upper region. However, only with Laplace margins do these relationships

hold, in a similar form, when considering joint tail regions involving both upper and lower tail events. So,

the benefit of using Laplace over exponential margins is that they automatically cover all joint tails in a

unified way, whilst being able to exploit existing theory derived using exponential variables.

In practice, as with the IFORM, we can apply a transformation to ensure the correct margins as a

preliminary step and then back-transform to obtain a contour on the original marginal scale if required;

this is discussed further in Section 3. We also demonstrate in Section 4.3 that estimation on a standardised

Laplace scale has benefits over an equivalent approach applied on the scale of the observed data.

The radial and angular components of (XL, YL) are defined as

RL =
√

X2
L + Y 2

L > 0, WL = tan−1(YL/XL) ∈ (−π, π],

respectively. Here, large values of RL can be thought of as corresponding to ‘extreme events’ in both

the Laplace and original space, with the value of RL defining the level of extremity; we exploit this in

our contour definitions and estimation procedures. In particular, both contours are defined in terms of

quantiles of RL | (WL = w) with w ∈ (−π, π], and this polar coordinate setting allows us to treat WL

as a covariate when modelling RL. This will be achieved by exploiting methods from univariate extreme

value analysis, with smoothing over WL realised using the framework of generalised additive models.

Finally, the setting of Laplace margins and polar coordinates results in contours ‘centred’ on the

marginal median values after back-transformation to the original scale. Even so, parallels with the setting

considered in Simpson and Tawn (2022) mean that much of their methodology can be applied and extended

here for estimation purposes, as discussed in Section 3.

2.2 Contour definitions

We obtain contours where the probability of lying outside these is p ∈ (0, 1); where in our extreme setting

p is taken to be small. The first contour type uses the same quantile level for the radial variable across

each angle, while the second allows the quantile level to vary with the density of the angular component.
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Contour definition 1 If the angular density fWL
(w) exists, for w ∈ (−π, π], define rp(w) such that

Pr {RL > rp(w) | WL = w} =

p, if fWL
(w) > 0,

0, if fWL
(w) = 0,

(4)

and the corresponding contour as C1
p := {rp(w) : w ∈ (−π, π]}. It is straightforward to show that the

probability of lying outside the contour C1
p is p, since∫ π

−π
Pr {RL > rp(v)|WL = v} dFWL

(v) = p

∫ π

−π
fWL

(v)dv = p.

When only a subset of the joint tail region is of practical concern, the definition of C1
p can be adapted

to reflect this. Specifically, in our Laplace marginal setting, interest may lie only with extreme values

of (XL, YL) having angles WL ∈ Ω ⊂ (−π, π]. For example, if only the joint upper tail of both vari-

ables is of interest, we could consider Ω = [0, π/2]. In this context, we suggest the contour C1
p(Ω) :=

{rp(w; Ω) : w ∈ Ω}, with rp(w; Ω) such that Pr {RL > rp(w; Ω) | WL = w} = p/Pr(WL ∈ Ω), for w ∈ Ω.

As we are interested in Ω, it follows that Pr(WL ∈ Ω) =
∫
Ω fWL

(v)dv > 0, and for WL ∈ Ω, the probability

of lying outside the contour C1
p(Ω) is p.

Contour definition 2 Assuming that fWL
(w) > 0 for all w ∈ (−π, π], define r∗p(w) such that

Pr
{
RL > r∗p(w) | WL = w

}
=

cp
max {fWL

(w), p/(2π)}
, (5)

with the constant cp chosen so that the probability of lying outside the contour C2
p :=

{
r∗p(w) : w ∈ (−π, π]

}
is p. This required value of cp is the solution to∫ π

−π
Pr

{
RL > r∗p(v)|WL = v

}
dFWL

(v) = cp

∫ π

−π

fWL
(v)

max {fWL
(v), p/(2π)}

dv = cp

∫ π

−π
min

{
1,

2πfWL
(v)

p

}
dv = p.

That is,

cp = p

[∫ π

−π
min

{
1,

2πfWL
(v)

p

}
dv

]−1

. (6)

The definition of C2
p is chosen so that the probability of lying outside the contour is smaller on angles

where the density is larger. We cannot take fWL
(w) as the denominator in the right-hand side of (5), since

cp would simplify to p/(2π), leading to the probability in (5) being greater than 1 if fWL
(w) < p/(2π), for

any w ∈ (−π, π]; see Section A of the Supplementary Material. In the Supplementary Material, we also

justify the choice to take the scaling function as max {fWL
(w), p/(2π)}. We note that as more extreme

contours are considered, i.e., as p → 0, scaling via the density only is recovered and cp ∼ p/(2π).

2.3 Contour examples

Figure 1 demonstrates our two new contour definitions at varying probability levels for a range of copulas;

their upper tail dependence features cover both asymptotic dependence and asymptotic independence, as
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Figure 1: Examples of C1
p (solid lines) and C2

p (dashed) for the case of independence, two Gaussian

copulas, and three bivariate extreme value copulas with logistic or asymmetric logistic models. For

p ∈ {0.1, 0.05, 0.01, 0.005, 0.001}, the contours lie progressively further from (0, 0). The grey dashed lines

show XL = 0, YL = 0, YL = XL and YL = −XL.

defined by limit (2). We first present examples for the independence setting (case (i)) and two bivariate

Gaussian copulas (cases (ii) and (iii)) with correlation matrices having off-diagonal elements ρ = 0.25, 0.75,

respectively. We then consider some common bivariate extreme value distributions having copula function

C(u, v) = exp {−V (−1/ log u,−1/ log v)} , u, v ∈ [0, 1],

with the exponent measure V satisfying certain constraints; see Coles et al. (1999). The joint distri-

bution of the corresponding variables (XL, YL) on standard Laplace scale is given by FXL,YL
(x, y) =

C {FXL
(x), FYL

(y)}, with FXL
(x), FYL

(y) defined as in (3). In Figure 1, examples (i) and (iv)-(vi) are all

variants of the bivariate asymmetric logistic model of Tawn (1988), having exponent measure

V (x, y) =
θ1
x

+
θ2
y

+

{(
1− θ1

x

)1/α

+

(
1− θ2

y

)1/α
}α

,

with x, y > 0, α ∈ (0, 1] and θ1, θ2 ∈ [0, 1]. Setting θ1 = θ2 = 1 gives independence, as in case (i); case

(iv) is the logistic model (Gumbel, 1960), where θ1 = θ2 = 0; in case (v), we set θ1 = 0 and θ2 = 0.5,

leading to a mixture structure where XL can only be large when YL is also large, but YL can be large

independently of XL; and in case (vi), we take θ1 = θ2 = 0.5, which has features of both the independence

and logistic models. Where the value of α is relevant, i.e., in cases (iv)-(vi), its value controls the strength

of dependence in the upper tails and therefore the width of the pointed section along the upper-right

diagonal; the closer α is to zero, the narrower this section of the contour. Having α ∈ (0, 1) corresponds

to asymptotic dependence, as defined by limit (2), while α = 1 recovers complete independence.
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The independence and Gaussian examples all exhibit asymptotic independence in both the upper and

lower joint tails. In contrast, while cases (iv)-(vi) have asymptotic dependence in their joint upper tails,

they exhibit asymptotic independence in their joint lower tails. Another commonly considered copula

in extreme value analysis is the inverted logistic model (Ledford and Tawn, 1997); we note that such

examples are not necessary here, since working on Laplace margins means that the contours C1
p and C2

p

for any inverted logistic copula are equivalent to its logistic counterpart (i.e., where both have the same

dependence parameter α) up to a rotation about the origin.

For any copula and p, contours C1
p and C2

p differ due to the angular density fWL
(w). For the copulas

in Figure 1, plots of the fWL
(w) values are shown in Figure 2. For independence and the Gaussian copula

with ρ = 0.25, the range of values taken by fWL
(w) for w ∈ (−π, π] is relatively small, meaning that C1

p

and C2
p are quite similar. For the logistic model and the Gaussian copula with ρ = 0.75, fWL

(w) takes

its largest values around w = π/4 and w = −3π/4, meaning that C2
p appears to be more stretched along

the diagonal YL = XL compared to C1
p ; this is also true of the two asymmetric logistic cases, but to a

lesser extent. The theory to derive contours such as those presented in Figure 1, for (XL, YL) having some

joint density fXL,YL
(x, y), is presented in Section B of the Supplementary Material. We will revisit these

copula examples in Section 4, where we demonstrate the efficacy of our estimation procedure.

3 Contour estimation

3.1 Overview of the inferential approach and our new contribution

We now introduce our approach to estimating the new contours C1
p and C2

p by adapting the approach

of Simpson and Tawn (2022), whose work focuses on limit sets, to allow for inference of sub-asymptotic

contours. We begin by outlining the main ways we adapt the existing methodology for our new purpose.

We then present our estimation approach for C1
p and C2

p in Sections 3.2 and 3.3, respectively, before

discussing tuning parameter selection in Section 3.4 and marginal modelling in Section 3.5.

An important difference between this work and that of Simpson and Tawn (2022) is that the latter

considers variables having standard exponential marginal distributions, while we work on standard Laplace

scale. As mentioned in Section 2.1, this allows for positive and negative associations between the variables,

as well as flexibility in modelling both tails of each marginal distribution. In exponential margins, the

angular variable is restricted to [0, π/2], whereas in Laplace margins WL ∈ (−π, π]; since results at these

endpoints should coincide, we must now carefully consider the cyclic nature of the angular distribution

in our inferential procedure by updating our modelling choices to ensure this feature is preserved.

The definition of C2
p in (5) depends on the value of the angular density fWL

; estimation of this function

was not previously required, but must be considered in the present work. The cyclic nature of fWL
(w) over

w ∈ (−π, π] is again a key feature that needs to be considered in our estimation approach. In addition,

having the exceedance probabilities in (5) depend on fWL
means that some of the radial quantiles required

to estimate the contour may not be ‘extreme’; we must therefore introduce a way to estimate non-extreme

radial quantiles (as well as extreme ones) into our contour estimation procedure.
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A final adaptation comes in the estimation of the marginal distributions. The results in Simpson

and Tawn (2022) only required contours estimated on exponential scale, which was achieved via a rank

transformation approach, but here we need to transform the estimated contours on Laplace margins back

to the original scale. Reversing the rank transformation is not possible for extreme contours beyond

the largest observed value in a one or both margins. To overcome this, we now model each marginal

distribution via a combination of the empirical distribution function and generalised Pareto distributions

in the upper and lower tails, as outlined in Section 3.5.

3.2 Estimation of C1
p

Parametric estimation of a contour C1
p requires a model for RL | (WL = w) for each w ∈ (−π, π], from

which we can extract high quantiles. Since we are interested in values in the upper tail of the distribution

of RL | (WL = w), a natural model is provided by the generalised Pareto distribution (GPD) (Davison

and Smith, 1990). Following Simpson and Tawn (2022), for each w ∈ (−π, π], and for RL exceeding some

angle-dependent threshold uw > 0, we propose to have

Pr (RL < r | RL > uw,WL = w) = 1−
[
1 + ξ(w)

{
r − uw
σ(w)

}]−1/ξ(w)

+

, (7)

for x+ = max(x, 0), r > uw, σ(w) > 0 and ξ(w) ∈ R. Once an appropriate threshold uw has been selected,

and estimates σ̂(w) and ξ̂(w) of the scale and shape parameters have been obtained, the value of rp(w)

in (4) can be estimated by extracting the relevant quantile of (7), namely

r̂p(w) = uw +
σ̂(w)

ξ̂(w)

{ ζ̂u(w)

p

}ξ̂(w)

− 1

 , (8)

with ζ̂u(w) denoting an estimate of ζu(w) = Pr(R > uw | W = w), often taken to be empirical. A

corresponding estimate of the contour C1
p is given by Ĉ1

p := {r̂p(w) : w ∈ (−π, π]}.
Applying the GPD requires us to select thresholds uw and derive estimates of σ(w) and ξ(w) for

w ∈ (−π, π], using observations (rL,1, wL,1), . . . , (rL,n, wL,n) of (RL,WL). There will not be sufficiently

many equal observations of any given w value to be able to fit the generalised Pareto distribution in (7)

directly for RL | (WL = w). Instead, following Simpson and Tawn (2022) by assuming that the parameters

uw, σ(w) and ξ(w) in (7) vary smoothly with w, we employ a generalised additive modelling (GAM)

framework, which was adapted for use with the generalised Pareto distribution by Youngman (2019).

The thresholds uw are selected via quantile regression at some quantile level (1 − pu) with pu > p,

i.e., such that ζ̂u(w) = pu for all w ∈ (−π, π]. This is achieved by fitting an asymmetric Laplace (Yu and

Moyeed, 2001) GAM to logRL, with cyclic P-splines (see Wood, 2017) used for the model parameters

with WL as a covariate, before back-transforming to obtain quantile estimates of RL.

For exceedances above the threshold function, we again propose using cyclic P-splines for the parameter

log σ(w). A spline approach could also be used to model ξ(w), but taking this to be constant has shown

to produce less variable estimates in our experiments, which was also found by Simpson and Tawn (2022);

we therefore fix ξ(w) = ξ for all w ∈ (−π, π]. Estimation for the GPD-GAM framework is carried out in
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Figure 2: The angular density fWL
(w) for each of the models in Figure 1 (black). The red lines correspond

to estimates using our cyclic kernel density approach, for 100 different samples of size n = 10, 950.

the R package evgam (Youngman, 2020). Once all of these parameters have been calculated/estimated,

equation (8) can again be used to extract radial quantiles at the required level.

The degree of the splines used within this modelling framework can impact the success of the approach.

Following Simpson and Tawn (2022), we choose a spline degree d ∈ {1, 2, 3}, denoting the resulting radial

quantile estimates by r̂
(d)
p (w), for w ∈ (−π, π], in each case. Choice of d is discussed further in Section 3.4,

along with the selection of the other necessary tuning parameters. Once the appropriate degree, denoted

d∗, has been selected, our final estimate of C1
p is Ĉ1

p :=
{
r̂
(d∗)
p (w) : w ∈ (−π, π]

}
.

3.3 Estimation of C2
p

The main difference between the definitions of C1
p and C2

p is that the latter requires radial quantiles to be

extracted at different probability levels, while for the former this level is constant. This requires us to

estimate the angular density fWL
(w) and to take into account that some of the quantiles required in (5)

may fall below the GPD threshold, such that we also require a model for non-extreme events.

We propose to use kernel density estimation for fWL
(w). We have adapted the standard approach

implemented in the density base function of R to account for WL being cyclic. To enforce this cyclicity,

we first use data {(wL,1− 2π), . . . , (wL,n− 2π), wL,1, . . . , wL,n, (wL,1+2π), . . . , (wL,n+2π)}, resulting in a

kernel density estimate f̂∗
WL

(w) over (−3π, 3π]. We then take f̂WL
(w) = 3f̂∗

WL
(w) for w ∈ (−π, π]. Default

selections of the kernel bandwidth often rely on the standard deviation of the observations, but this will

be affected by our choice to artificially replicate the data. Instead, we use the approach of Sheather and

Jones (1991), which is a non-default option in R, that appears to work well in our setting. Estimation of

fWL
(w) is demonstrated in Figure 2 for the six examples in Figure 1.

The required probability in (5) can be calculated for any angle w by substituting f̂WL
(w) for fWL

(w);

the required scaling constant cp in (6) is calculated numerically. At any angle where the required ex-
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ceedance probability in (5) is less than the threshold exceedance probability pu, the appropriate radial

quantile can be extracted from the GPD-GAM model, giving us an estimate r̂∗p(w) of r∗p(w). How-

ever, for exceedance probabilities greater than pu, the GPD is not appropriate. At any such levels, we

adopt the same quantile regression model as for the threshold, using an asymmetric Laplace GAM for

logRL | (WL = w) at this quantile level, and extract the appropriate estimate r̂∗p(w) of r
∗
p(w). The overall

estimate of C2
p is Ĉ2

p :=
{
r̂∗p(w) : w ∈ (−π, π]

}
.

3.4 Tuning parameter selection

The estimation procedures introduced in Sections 3.2 and 3.3 require the selection of several tuning

parameters: the threshold-exceedance probability pu; the number and location of knots in the cyclic

P-splines; and the degree of the basis functions. We now discuss each of these choices in turn.

Simpson and Tawn (2022) propose to set pu = 0.5, and while this does seem to provide quite a low

choice for the threshold of the GPD, we have also found it to work well in our setting (see Section C of the

Supplementary Material for simulation results that support this choice). We therefore adopt this as our

default tuning parameter. The plots in Figure 1 demonstrate that there are important angles in particular

settings, which it may be wise to consider when selecting spline knot locations. Under independence,

the angles w ∈ {−π/2, 0, π/2, π} correspond to the largest radial values on any given contour and the

contours also exhibit a pointed shape here. If we are to capture such features using splines, it would

be useful to have knots placed at these angles. For similar reasons, in the symmetric models exhibiting

positive asymptotic dependence (cases (ii) and (iv)), the angle w = π/4 is particularly important. Angles

w ∈ {3π/4,−π/4,−3π/4} would also be important under negative asymptotic dependence or asymptotic

dependence with one variable large while the other is small. All together, this suggests knots should be

placed at all angles w = −π + jπ/4, j = 1, . . . , 8. However, this is generally not a sufficient number of

knots, so we propose to add additional, equally-spaced knots between these angles, so the knot locations

are w = −π + 2jπ/κ, j = 1, . . . , κ, with κ a multiple of eight; our default choice is κ = 24.

For C1
p , to choose the spline degree d∗, we again adopt the approach of Simpson and Tawn (2022)

to derive local estimates of rp(w) and use these to inform the value of d∗; the procedure is summarised

here. For a given angle w, a ‘local estimate’ is obtained by defining a neighbourhood of radial values

corresponding to the m nearest points to w. Maximum likelihood estimation is then used to fit the

generalised Pareto distribution in (7) using these radial values. This is repeated over k angles w∗
j = −π+

jπ/100, j = 1, . . . , k, with the desired radial quantiles extracted and denoted by r̂localp (w∗
1), . . . , r̂

local
p (w∗

k).

As in Simpson and Tawn (2022), our default tuning parameter choices are m = 100 and k = 200. It is

clear from Figure 1 that some contours have smooth, curved shapes, while others are quite ‘pointy’; this

suggests that in some cases, linear basis functions may be appropriate, while in others, quadratic or cubic

splines will perform better. We therefore estimate three different versions of the quantiles in (8) via the

GAM-GPD approach, using degree d = 1, 2, 3 basis functions for both the log uw model and log σ(w). We
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denote the resulting estimates by r̂
(d)
p (w), for w ∈ (−π, π], d = 1, 2, 3. To select the spline degree, we find

d∗ = argmin
d=1,2,3

k∑
j=1

∣∣∣r̂(d)p (w∗
j )− r̂localp (w∗

j )
∣∣∣ ,

i.e., the choice of basis function degree that allows the estimates to be as close to the local estimates

as possible, but with the added benefit of smoothness in the resulting contour estimate. An equivalent

approach is used to choose the spline degree in the estimation of C2
p , but at angles where a non-extreme

radial quantile is required, an empirical quantile is used as the local estimate.

3.5 Marginal model

We end by describing the approach used to transform the original margins to Laplace scale. This is

applied separately to each of the variables X and Y to obtain standard Laplace margins XL and YL, from

where the contour estimation procedure can be implemented. We focus on the model for X in this section,

but an analogous approach is used for Y . Supposing that X has distribution function FX , transformation

to Laplace scale can be achieved through application of the probability integral transform, defining

XL =

log {2FX(X)} , FX(X) ≤ 1/2,

− log [2{1− FX(X)}] , FX(X) > 1/2,
(9)

so that the distribution function of XL is as in (3). In practice, the distribution of X is unknown, so we

use a combination of the empirical distribution function, denoted by F̃X , and generalised Pareto models

for both tails. That is, for vL and vU denoting lower and upper thresholds, respectively, we take

FX(x) =


λL

{
1 + ξL(vL−x)

σL

}−1/ξL

+
, x ≤ vL,

F̃X(x), vL < x < vU ,

1− λU
{
1 + ξU (x−vU )

σU

}−1/ξU

+
, x ≥ vU ,

(10)

where σL > 0, σU > 0, ξL ∈ R, ξU ∈ R, λL = Pr
(
X < vL

)
and λU = Pr

(
X > vU

)
. This is the two-tailed

extension of the marginal modelling approach presented by Coles and Tawn (1991).

Model (10) requires the selection of two thresholds, which we choose such that λL = λU = 0.05.

More sophisticated threshold selection techniques are available (see Scarrott and MacDonald (2012) for

an overview, and Wadsworth (2016) or Northrop et al. (2017) for examples of recent developments), but

we choose this approach for ease. Estimation of the scale (σL, σU ) and shape (ξL, ξU ) parameters is

carried out via maximum likelihood estimation, as implemented in the R package ismev (Heffernan and

Stephenson, 2018). Once all parameters in (10) are estimated, transformation (9) can be applied to each

observation to provide the marginal observations on Laplace scale. Inversion of the transformation is also

possible if the final results are required on the original scale; when inverting the empirical distribution

function, we linearly interpolate where values between available X observations are required.
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4 Simulation study

4.1 Overview

We now demonstrate how well the inferential procedure we introduced in Section 3 estimates the two

types of contour defined in Section 2. We consider two scenarios: in Section 4.2 we work directly with

data on Laplace margins; in Section 4.3 we allow the data to have more general, unknown margins. In

the latter case, we compare our approach of estimating the contours on the transformed Laplace marginal

scale before back transforming to the data scale, with an equivalent approach applied directly on the

original scale of the data, which we demonstrate can lead to undesirable results.

Before presenting our results, we first detail the different tools and metrics that are used in our

simulation study. We assess our methods based on how well the true contours are estimated, given data

sampled from a range of different copula models (based on those presented in Figure 1). Throughout this

section, we simulate data sets of size n = 10, 950 (corresponding to a realistic scenario of daily observations

over 30 years) and we use 100 replicates for each setting.

Our first strategy is to compare our estimated contours to the truth pictorially, allowing us to assess

the estimation procedures by eye. We formalise this assessment by using two metrics for comparison. In

the first, we count the number of points in the sample lying outside the estimated contour, denoting this

by n̂p, so that the proportion of points outside the contour is n̂p/n. We then quantify the relative error

from p, the target contour exceedance probability, to this empirical proportion by calculating the empirical

relative error n̂p/(np)− 1. When n̂p/(np)− 1 = 0 we have correctly recovered the true probability.

The empirical relative error measure is suitable when the exceedance level p and the sample size n

are such that a reasonable number of points is expected to lie outside the true contour. To cover more

extreme cases, we also adopt the symmetric difference metric △, used by Einmahl et al. (2013), which

measures the difference between a true contour C and its estimate Ĉ via

C △ Ĉ =

∫
{EC\EĈ}∪{EĈ\EC}

fX,Y (x, y)dxdy,

where EC denotes the set of (x, y) ∈ R that are more extreme than C, with EĈ defined similarly, and

fX,Y (x, y) is the joint density under the true marginal and copula specification. In our setting we calculate

this in Laplace space using the polar coordinates (RL,WL) with associated joint density fRL,WL
(r, w).

Here, EĈ and EC are given by {(r, w) : r > r̂(w),−π < w ≤ π} and {(r, w) : r > rtrue(w),−π < w ≤ π}
respectively, with r̂(w) and rtrue(w) given implicitly by the forms of Ĉ and C, and

C △ Ĉ =

∫ π

−π

∫ rmax(w)

rmin(w)
fRL,WL

(r, w)drdw ≈
k∑

i=1

(2π/k)

∫ rmax(−π+ 2πi
k

)

rmin(−π+ 2πi
k

)
fRL,WL

(
r,−π +

2πi

k

)
dr, (11)

where rmin(w) = min{r̂(w), rtrue(w)} and rmax(w) = max{r̂(w), rtrue(w)}, for each w ∈ (−π, π]. Symmet-

ric difference results for contours C1
p and C2

p can be deceptive when comparing across different probability

levels p. We instead present a scaled symmetric difference, i.e., (C1
p △ Ĉ1

p)/p for contour definition 1.
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Figure 3: Top two rows: estimated contours Ĉ1
0.1 (purple), Ĉ1

0.01 (blue) and Ĉ1
0.001 (red) for 100 data

sets sampled under independence, from two Gaussian copulas, and from three bivariate extreme value

copulas with logistic or asymmetric logistic models. Bottom two rows: equivalent estimated contours

Ĉ2
p , p ∈ {0.1, 0.01, 0.001}. The true contours are shown in black in all cases, for p = 0.1 (dotted lines),

p = 0.01 (dashed lines) and p = 0.001 (solid lines).
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4.2 Estimation on Laplace margins

Figure 3 shows visual assessments of our estimators where we have known Laplace marginal distribu-

tions and the dependence structure is given by the six copula models shown in Figure 1, covering both

asymptotic independence and asymptotic dependence examples for the joint upper tail. Here, we produce

estimates of C1
p and C2

p at probabilities p ∈ {0.1, 0.01, 0.001}. These plots show that our approach gives

reasonably limited bias, but with increasing variability as p decreases, i.e., as we extrapolate further into

the tails of the radial distributions at each angle. The performance appears to be equally good over all

angles, for all six copulas and for both contour types. The methods pick up the contour shape whether

it is pointed on the diagonal, or more rounded and flat in that region, for asymptotically dependent

and asymptotically independent cases, respectively. The contours that are estimated for the asymmetric

logistic models are especially impressive, given their very different levels of smoothness. The key to us

achieving such flexibility comes from our selection of appropriate degrees of smoothing in the splines of

the GPD parameters.

For a subset of the estimated contours in Figure 3, results for the empirical relative error metric

n̂p/(np)− 1 are presented in Figures 4 and 5 for C1
p and C2

p , respectively. For clarity, we omit results for

one of the Gaussian copulas (case (ii)) and one of the asymmetric logistic copulas (case (v)), but these

are similar to those that are shown. Results are shown for both the estimated and true contours, with

the same simulated data sets used in each case. We include these empirical relative errors for the truth

to demonstrate the base level of sampling variability for this metric; we cannot expect to improve on

this level of performance with the estimated contours. The empirical relative errors for the true contours

naturally show no bias but exhibit increasing variability with decreasing p.

In Figures 4 and 5, there is no discernible difference between the performance of our estimators across

the two different contour types, indicating that the additional complexity of estimating the angular density

in C2
p does not appear to have had an adverse effect. The performance, as judged by this metric, is very

similar across the copula choices, with no evidence that contours for complex copulas are any more

difficult to estimate than for the independence copula. Our estimation procedure is generally successful

and unbiased, particularly for the p = 0.1 and p = 0.01 contours. For further extrapolation, i.e., the

p = 0.001 contours, the empirical relative errors tend to be positive, but are less than one, suggesting

the bias is small. Importantly, over all combinations of copula, p and contour type, the variability of the

empirical relative error for our estimated contours is similar to that of the true contours, indicating that

much of the variability in our estimators is due to sampling-variability rather than from our inference.

With a larger sample size, we would expect improved contour estimates for the p = 0.001 cases, but we

can see from the results for the true contour that given this sample size, the empirical relative error metric

has limitations at such small levels of p. In Figure 6, we therefore present a scaled symmetric difference

(C1
p △ Ĉ1

p)/p for p ∈ {0.1, 0.01, 0.001}. We only show results for the contour C1
p , given the similarity

of results for the contour types seen in Figures 4 and 5. Although the symmetric differences naturally

decrease with decreasing p, the scaled versions instead increase, in a similar pattern to the empirical

relative errors. However, for the smallest p, they reveal that the asymmetric logistic with α = 0.25 has
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Figure 4: Boxplots of the empirical relative errors in the probability of lying outside the estimated contours

Ĉ1
p (top row) and true contours C1

p (bottom row) for 100 data sets sampled under independence (i), from

a Gaussian copula with ρ = 0.75 (iii), and from two bivariate extreme value copulas with a logistic (iv) or

asymmetric logistic (vi) model, with p ∈ {0.1, 0.01, 0.001}. Here, the numbering of the copulas is chosen

to be consistent with Figures 1-3, but with cases (ii) and (v) omitted.

Figure 5: These boxplots are equivalent to those in Figure 4, but for Ĉ2
p .
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Figure 6: Boxplots of the scaled symmetric difference (C1
p △ Ĉ1

p)/p for 100 data sets sampled under

independence (i), from two Gaussian copulas (ii-iii), and from three bivariate extreme value copulas with

logistic or asymmetric logistic models (iv-vi), with p ∈ {0.1, 0.01, 0.001}. We used k = 800 in (11).

the most difficult contour to estimate of the copulas we have considered, with both the largest mean and

variance in the scaled symmetric differences over replicated samples.

4.3 Estimation on original margins

A natural question is why we choose to define the contours on Laplace scale rather than considering (X,Y )

as generic random variables, and defining the polar coordinates as R =
√
X2 + Y 2 and W = tan−1(Y/X)

to construct the corresponding contours directly on the original (X,Y ) scale. We considered this approach

during development of this work, but found it often didn’t work well, particularly when the dependence

exhibited some mixture structure (e.g., in the asymmetric logistic model). We now provide additional

simulations to demonstrate this issue.

One issue when working on the general (X,Y ) scale is that the variables do not necessarily have a

natural centre at (0, 0), as they do in the Laplace case. To overcome this, we considered defining the

marginal medians as mX and mY for X and Y , respectively, and the polar coordinates as

R =
√

(X −mX)2 + (Y −mY )2, W = tan−1

{
Y −mY

X −mX

}
.

Contours can be defined analogously to C1
p and C2

p , but using these radial-angular coordinates. Estimation

can be carried out in a similar way to the approach described in Section 3, but with mX and mY added

marginally to the resulting contour estimates as a final step, to obtain a contour centred on (mX ,mY ).

Figure 7 presents results for the asymmetric logistic copula model from case (iv) of Figure 1 with
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Figure 7: Left: example of data simulated from a bivariate extreme value copula with an asymmetric

model, where X and Y have marginal GEV distributions with −0.1 and +0.1 shape parameters, respec-

tively. Centre: 100 examples of contour estimates analogous to C1
0.01 but having polar coordinates defined

on the original (X,Y ) scale. Right: 100 examples of contour estimates of C1
0.01 calculated on Laplace

margins and then transformed back to the original (X,Y ) scale.

margins following generalised extreme value (GEV) distributions. For X, the GEV location, scale and

shape parameters are (0, 1,−0.1), and for Y they are (0, 1, 0.1), so Y has the heavier upper tail. In

Figure 7, we show a sample of size n = 10, 950 from this model, as well as estimated contours at the 0.01

probability level from 100 samples of size n, using both approaches. Visually, Figure 7 clearly shows that

the approach of transforming to Laplace margins before estimating the contours gives more consistent

results, and there is no need to use the metrics introduced in Section 4.1 to see the distinct improvement

using our proposed method. Specifically, our method is better at identifying the non-convex shape of the

distribution. For these reasons, we prefer to define and estimate the contours on Laplace scale.

5 Air pollution application

We now apply our approach to air pollution data collected at a site in Bloomsbury, London, between 1

January 1993 and 31 December 2020. These data were provided by the Department for Environment Food

and Rural Affairs (Defra) and are available to download from https://uk-air.defra.gov.uk1. We focus

on daily maximum concentrations for two components of air pollution (nitric oxide NO and particulate

matter PM10) for the full year and also for summer (June, July, August) and winter (December, January,

February) seasons. Values in the data set are rounded to the nearest whole number, so we add random

noise simulated independently from a Uniform(−0.5, 0.5) distribution (or Uniform(0, 0.5) if the value

is zero, to preserve non-negativity of concentration) to each observation, to mitigate issues with over-

rounding. Approximately 9% of the NO values and 10% of the PM10 values are missing; we assume that

they are missing at random and proceed with estimating our contours. Retaining only those instances

where both pollutants are available leaves us with 8,865 complete observations.

In Figure 8, we present our estimated contours Ĉ1
p and Ĉ2

p for p ∈ {0.1, 0.01, 0.001}, using data from

1© Crown copyright 2021 Defra via uk-air.defra.gov.uk, licensed under the Open Government Licence.
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Figure 8: Estimates of C1
p (top row) and C2

p (bottom row) for nitric oxide and PM10 across the full

year (left), summer only (centre) and winter only (right). Estimated contours (solid lines) are shown

for p ∈ {0.1, 0.01, 0.001}, lying progressively further from (0, 0), alongside pointwise 95% bootstrapped

confidence intervals (dotted lines). The grey points represent the data in each case.

Figure 9: Data, estimated contours and confidence intervals from Figure 8 shown after back-

transformation to the original margins of the data.
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each of the three time periods (full year, summer, winter). The results are shown on Laplace scale,

with the marginal transformations applied separately in each time period. We also provide pointwise

95% confidence intervals for the estimated radial quantiles at each angular value. This uncertainty is

quantified using 200 bootstrapped samples via the block bootstrap scheme of Politis and Romano (1994);

the samples are taken from the data after transformation to Laplace margins with the missing values

retained. As the time series of NO and PM10 observations both exhibit strong auto-correlation, we fix the

average block-length in the bootstrapping procedure to be 14 in all cases. Carrying out bootstrapping after

marginal transformation means that only uncertainty in the dependence features is taken into account in

the confidence intervals, but allows for equivalent contours and confidence intervals to be obtained on the

original scale by reversing the marginal transformations; these results are given in Figure 9.

From Figures 8 and 9, we can see that the dependence properties of the data vary between season.

In particular, there is much stronger extremal dependence in both the upper and lower tails of NO and

PM10 in the winter than in the summer; this feature is visible in the data and successfully captured by

our contour estimates. Further, our contours are able to capture the mixture of dependence features that

is present when considering data for the full year. The maximum value across NO concentrations is 336

in summer and 1251 in winter, while PM10 has a smaller variation between seasons, with a maximum of

399 in summer and 243 in winter. Since the winter months dominate the upper tail of the NO values,

the feature from the summer months that NO can be large while PM10 takes values close to its median

is obscured when considering data across the full year. On the other hand, features corresponding to the

upper tail of PM10 in both summer and winter are preserved when considering the full year, i.e., NO and

PM10 can be simultaneously large but PM10 can also be large when NO takes values around its median.

Focusing only on the separate summer and winter plots in Figure 9, we now consider the implications

that these estimated environmental contours have for potentially setting environmental controls. Given

that large values of each pollutant have impacts on health, the key segments of the environmental contours

in this case are where either of PM10 and NO are large. Large values of NO only occur in winter whereas

very similar large levels of PM10 occur in both seasons, so if there are implications on health from jointly

large values of these two pollutants, winter is the period of most risk. However, it is these segments

of the environmental contours that are most uncertain, particularly in winter, with approximate 95%

confidence intervals differing up to ±25% from the point estimates, even without accounting for the

marginal estimation uncertainty. For these two pollutants, there are relatively small differences in the

estimates of the two different environmental contours in the key segments; this is due to the angular

distributions on Laplace margins being reasonably uniform here. Here, we have focused on the contour C1
p

but equally, given interest in large values of the pollutants, we could have focused instead on the contour

C1
p([0, π/2]) proposed in Section 2.2.

Having estimated the environmental contours, contributions from domain experts are now essential.

Although in this pollutant example they may not have a formally defined structure function, they should

be able to identify combinations of pollutants on the contours that are the most likely to lead to adverse

health effects, possibly relating to a range of different symptoms. Likewise, the pollutant regulatory
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bodies can use this information to see if certain combinations of pollutants they have concerns about are

likely to occur too often. If this is the case, they could look to set new control limits, or aim to remove

or reduce the sources of these air pollutants so that future extreme combination levels are lowered.

6 Discussion

In some application areas, there may be only a subset of angles WL that are of interest. If this were the

case, the contour definitions could be adapted to only consider radial exceedance probabilities for angles

in a subset of (−π, π]. The estimation procedure we present could still be used, but with radial quantiles

at a different set of levels extracted from the final estimates.

An area where our approach could be improved is in the construction of the splines used in the GPD

threshold model and log-scale parameter. We use basis functions of the same degree across all knots,

with this degree chosen as described in Section 3, irrespective of whether the copula is asymptotically

independent or asymptotically dependent. However, in some cases, it may be more appropriate to allow

different types of basis function at different knots. An example of this is the asymptotically dependent

logistic model, where in case (ii) of Figure 1, we can see that the contours are ‘pointy’ in the upper-

right quadrant (so that linear basis functions may be more appropriate) and smooth in the lower-left

quadrant (so that quadratic or cubic basis functions may perform better). Considering such bespoke

spline constructions would add a significant level of complexity to our modelling procedure, so we did

not pursue this idea here, but it does present a possible avenue for future work. Critically, our proposed

method does not require us to pre-specify whether or not the copulas are asymptotically dependent, and

this is a feature that it would be desirable to retain in any extension of the methodology.

Although the primary motivation for developing these novel environmental contours was for applica-

tions to engineering safety design and for setting environmental standards, an alternative potential use

for these methods is in bivariate outlier or anomaly detection. Of course, multivariate outlier detection

is a very widely studied topic, which goes well beyond simply using extreme value methods (see, e.g.,

Hubert et al., 2015), although they are highly relevant for some problems (Dupuis and Morgenthaler,

2002). Unlike the latter paper, we use univariate extreme value methods without needing to adopt a

copula model, so adapting our approach to the anomaly detection setting may have the advantage of

additional flexibility over existing methods.

We have focused on developing methodology for estimating bivariate contours, but the contour defi-

nitions can be extended to higher dimensions. With more than three dimensions, visualising the contours

is impossible, and care would be needed to present the results in a usable format that offers easy inter-

pretation. An option may be to project the contours onto lower dimensional subsets of interest.

Finally, the approach we have taken in this paper involves a combination of extending previous work

related to limit set estimation and gauge functions (Simpson and Tawn, 2022), and exploiting an alterna-

tive radial-angular representation for a given, common marginal distribution (here, Laplace). This appears

to be a profitable line of future research; specifically, while our paper has been in the review process, two

independently developed papers (Mackay and Jonathan, 2023; Papastathopoulos et al., 2023) have been
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uploaded to arXiv that consider aspects linked to these strategies, though with different objectives.

Acknowledgements

We thank the two referees for their clear, thoughtful, and rapid comments which have helped both the

presentation of the manuscript and comparisons with previous approaches.

Declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

Balkema, A. A., Embrechts, P., and Nolde, N. (2010). Meta densities and the shape of their sample

clouds. Journal of Multivariate Analysis, 101(7):1738–1754.

Barnett, V. (1976). The ordering of multivariate data (with discussion). Journal of the Royal Statistical

Society. Series A (General), 139(3):318–355.

Brozius, H. and de Haan, L. (1987). On limiting laws for the convex hull of a sample. Journal of Applied

Probability, 24(4):852–862.

Bruun, J. T. and Tawn, J. A. (1998). Comparison of approaches for estimating the probability of coastal

flooding. Journal of the Royal Statistical Society. Series C (Applied Statistics), 47(3):405–423.

Cai, J.-J., Einmahl, J. H. J., and de Haan, L. (2011). Estimation of extreme risk regions under multivariate

regular variation. The Annals of Statistics, 39(3):1803–1826.

Castro-Camilo, D., de Carvalho, M., and Wadsworth, J. L. (2018). Time-varying extreme value depen-

dence with application to leading European stock markets. Annals of Applied Statistics, 12(1):283–309.

Chai, W. and Leira, B. J. (2018). Environmental contours based on inverse SORM. Marine Structures,

60:34–51.

Coles, S. G., Heffernan, J. E., and Tawn, J. A. (1999). Dependence measures for extreme value analyses.

Extremes, 2(4):339–365.

Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events. Journal of the Royal

Statistical Society. Series B (Methodological), 53(2):377–392.

Coles, S. G. and Tawn, J. A. (1994). Statistical methods for multivariate extremes: an application

to structural design (with discussion). Journal of the Royal Statistical Society. Series C (Applied

Statistics), 43(1):1–48.

23



Davis, R., Mulrow, E., and Resnick, S. I. (1987). The convex hull of a random sample in R2. Communi-

cations in Statistics. Stochastic Models, 3(1):1–27.

Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion).

Journal of the Royal Statistical Society. Series B (Methodological), 52(3):393–425.

Dupuis, D. J. and Morgenthaler, S. (2002). Robust weighted likelihood estimators with an application to

bivariate extreme value problems. Canadian Journal of Statistics, 30(1):17–36.

Eddy, W. F. and Gale, J. D. (1981). The convex hull of a spherically symmetric sample. Advances in

Applied Probability, 13(4):751–763.

Einmahl, J. H. J., de Haan, L., and Krajina, A. (2013). Estimating extreme bivariate quantile regions.

Extremes, 16:121–145.

Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association,

55(292):698–707.

Hafver, A., Agrell, C., and Vanem, E. (2022). Environmental contours as Voronoi cells. Extremes,

25:451–486.

Haselsteiner, A. F., Coe, R. G., Manuel, L., Chai, W., Leira, B., Clarindo, G., Guedes Soares, C.,
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Supplementary Material:
Inference for new environmental contours using extreme value analysis

A Justification of the scaling in equation (5)

For contour C2
p , we scale the radial exceedance probabilities by the angular density, assuming that

fWL
(w) > 0 for each w ∈ (−π, π]. If we set

Pr
{
RL > r∗p(w) | WL = w

}
=

cp
fWL

(w)
,

the probability of lying outside the corresponding contour
{
r∗p(w) : w ∈ (−π, π]

}
would be∫ π

−π
Pr

{
RL > r∗p(v)|WL = v

}
dFWL

(v) =

∫ π

−π

cp
fWL

(v)
fWL

(v)dv =

∫ π

−π
cp dv = 2πcp,

and equating this with p leads us to set cp = p/(2π), and hence

Pr
{
RL > r∗p(w) | WL = w

}
=

p

2πfWL
(w)

.

If fWL
(w) < p/(2π), this implies Pr

{
RL > r∗p(w) | WL = w

}
> 1. To avoid this, we set

Pr
{
RL > r∗p(w) | WL = w

}
=

cp
max {fWL

(w), ϵ}
, (S1)

for some ϵ ≥ mf := min
w∗∈(−π,π]

fWL
(w∗), chosen to guarantee valid probabilities in (S1) for all w ∈ (−π, π].

We set ϵ = kmf for some k ≥ 1 to be selected. The constraint

Pr
{
RL > r∗p(w) | WL = w

}
≤ 1 ⇐⇒ cp ≤ max {fWL

(w), kmf}

must hold for all w ∈ (−π, π]. This implies that

cp ≤ min
w∈(−π,π]

[max {fWL
(w), kmf}]

= max

[{
min

w∈(−π,π]
fWL

(w)

}
, kmf

]
= kmf (since k ≥ 1). (S2)

To ensure the probability of lying outside the contour is p, we also need

cp

∫ π

−π
max {fWL

(v), kmf}−1 fWL
(v)dv = p

⇒ cp = p

[∫ π

−π
min

{
1 ,

fWL
(v)

kmf

}
dv

]−1

. (S3)

Combining equations (S2) and (S3), we have the requirement that

p

[∫ π

−π
min

{
1 ,

fWL
(v)

kmf

}
dv

]−1

≤ kmf

⇒ p ≤
∫ π

−π
min {kmf , fWL

(v)} dv. (S4)

1



We can find an upper bound on the right-hand side of (S4) by noting that∫ π

−π
min {kmf , fWL

(v)} dv ≤ min

{∫ π

−π
kmfdv,

∫ π

−π
fWL

(v)dv

}
= min {2πkmf , 1} .

Substituting this for the right-hand side of (S4), we require the smallest k ≥ 1 such that

p ≤ min {2πkmf , 1} . (S5)

Setting k = p/(2πmf ) means that equation (S5) simplifies to p ≤ min(p, 1) = p, but does not guarantee

that k ≥ 1. Hence, we instead set k = max {p/(2πmf ), 1}, which still guarantees that (S5) holds.

Substituting this back into (S1), our chosen scaling for each w ∈ (−π, π] becomes

Pr
{
RL > r∗p(w) | WL = w

}
=

cp
max {fWL

(w), p/(2π), mf}
=

cp
max {fWL

(w), p/(2π)}
.

Additionally, since all components are non-negative, this leads to a valid probability.

B Calculations for obtaining the contours defined in Section 2

Here, we explain how to calculate the theoretical contours C1
p and C2

p for a fixed value of p ∈ (0, 1) and

(XL, YL) having joint density fXL,YL
(x, y).

In the definition of C1
p , for each w ∈ (−π, π], we are interested in the radial quantile rp(w) defined in (4).

To calculate rp(w) theoretically, we need to find the conditional density of RL | WL and then use this to

extract the required quantile. Inverting the transformation to polar coordinates requires XL = RL cosWL

and YL = RL sinWL, so that the Jacobian of the transformation is given by J = RL. Hence, the joint

density of (RL,WL) is

fRL,WL
(r, w) = rfXL,YL

(r cosw, r sinw), r > 0, w ∈ (−π, π].

Therefore, for each fixed w ∈ (−π, π] and p ∈ (0, 1), the quantile rp(w) is the solution to∫ rp(w)
0 tfXL,YL

(t cosw, t sinw)dt

fWL
(w)

= 1− p, (S6)

where

fWL
(w) =

∫ ∞

0
tfXL,YL

(t cosw, t sinw)dt.

In general, both integrals in (S6) will need to be found numerically, as will the corresponding value of rp(w).

Similarly, for C2
p , with the scaling constant cp defined as in (6), we find r∗p(w) by numerically solving∫ r∗p(w)

0 tfXL,YL
(t cosw, t sinw)dt

fWL
(w)

= 1− cp
max {fWL

(w), p/(2π)}
.
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Figure A: Estimated contours Ĉ1
0.1 (purple), Ĉ1

0.01 (blue) and Ĉ1
0.001 (red) for 100 data sets sampled under

independence, from a Gaussian copula, and from a bivariate extreme value copulas an asymmetric logistic

model. These estimates are obtained with pu = 0.4 (top row), pu = 0.3 (middle row) or pu = 0.2 (bottom

row). The true contours are shown in black in all cases, for p = 0.1 (dotted lines), p = 0.01 (dashed lines)

and p = 0.001 (solid lines).
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C Simulation results validating our threshold choice in Section 3.4

When modelling using a generalised Pareto distribution, as in our model (7) for the tail of RL | WL = w,

selection of an appropriate threshold is a key consideration. We choose to apply quantile regression to

calculate our thresholds uw, where the threshold exceedance probability Pr(RL > uw | WL = w) = pu

is fixed across all angles w ∈ (−π, π]. Our default throughout the paper was to set pu = 0.5. We

now demonstrate that this is a reasonable choice, by providing additional simulation results for higher

thresholds, with exceedance probabilities pu ∈ {0.4, 0.3, 0.2}. All other tuning parameters are as described

in Section 3.4 of the paper.

Figure A shows simulation results equivalent to Figure 3 of the main paper for C1
p and cases of

independence (i), a Gaussian copula with ρ = 0.75 (iii) and an asymmetric logistic copula with α = 0.25

(v); results for C2
p and the other copula examples are omitted since the results are very similar. There

is clear stability across all choices of pu, suggesting that selection of the threshold level is not especially

crucial in our estimation procedure, and our choice to set pu = 0.5 is reasonable.
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