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1. Introduction

The M5 forecasting competition is another milestone in the �eld of forecasting,
especially so since it may have been the �rst exposure for the larger �eld of data
scientists to probabilistic and quantile forecasting. Its importance to popular-
izing these important generalizations to more common expectation forecasting
cannot be overstated. Similarly, it focuses on one speci�c industry, retail, which
very much increases its relevance to this particular sector, compared to earlier
M competitions.

We give a few comments on both the M5 competition and the attendant papers
(Makridakis et al., 2020,), focusing (1) on the under-appreciated performance of
simple methods, (2) on more appropriate count models, (3) on the role of fore-
casters and explainability, and (4) on the return to investment for complexity.

2. With probability 92.5%, Exponential Smoothing will be best for
you (but Walmart is not a typical retailer)

In the Accuracy track, Makridakis et al. (2020) note in passing that only 7.5% of
the submitting teams outperformed the top performing benchmark, which was a
very simple automatically chosen Exponential Smoothing method with equally
simple bottom-up aggregation (ES_bu). Relatedly, an analysis of the Accuracy
submissions �nds that even the top performing method YJ_STU outperforms
ES_bu only on 58.5% of series in terms of MSE, which is certainly statistically
signi�cant, but not overwhelming. The second place Matthias was better than
ES_bu on only 6.7% of series, which de�nitely has to do with the fact that
Matthias only has integer values in their Accuracy submission �le. In 19.3% of
series, ES_bu was better than all �ve top submissions.
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We �nd this interesting, and under-appreciated when the rest of the paper
focuses (understandably) selectively on the top contestants. Even in an age of
Machine Learning (ML) and Data Science blossoming around the world, after
years of Kaggle competitions, only 7.5% of teams manage to beat an extremely
simple benchmark! Yes, those that do beat it do so by a goodly margin, but
this observation to us suggests that it is still quite hard to outperform the
simple benchmarks. One could interpret this provocatively as a very rough prior
probability: a priori, you only have a 7.5% chance of outperforming bottom-up
Exponential Smoothing.

Of course, this may be due to participants losing interest and not polishing their
submissions after the �rst one. That is quite possible. However, on the one hand,
we can't say whether this interpretation is correct, because that would require
deeper analysis of whether participants' later submissions improved in accuracy
on the holdout test set. And on the other hand, if this explanation holds, it
already tells us something: outperforming bottom-up Exponential Smoothing
requires more work than simply plugging together an ML pipeline. It is not
automatic.

Thus, one piece of forecasting wisdom is again supported: if you are tempted
to invest heavily in data scientists and expect wonders from them, make sure to
compare their methods to simple benchmarks that you can probably implement
at a fraction of the cost of an ML pipeline.

Now, just where does this surprising �nding come from? We suspect this is
a result of Walmart not being representative of many retailers. Speci�cally,
Walmart uses a so-called �Everyday Low Price� (EDLP) strategy, with very
low reliance on promotions to drive tra�c and sales. This is much easier on
the supply chain (and the forecasting team!) than a strongly promotion driven
strategy � and of course, the Exponential Smoothing benchmark will have an
easier time in forecasting series without strong promotional e�ects.

However, most retailers do rely on promotions. And in our experience, mar-
keters are enormously creative at dreaming up new promotions, in terms of
pricing, communication, tactics and conditions. �Buy three units of product X
at 20% o� and two units of product Y at full price, and present your app coupon
at the checkout, to have a chance of winning two tickets to Disneyland!� � how
will this drive sales of products X and Y, and of complementary or substitute
products (and how many Disneyland tickets should we budget for)? Indeed,
di�erent promotions vary widely in uplift, they interact with calendar e�ects,
seasonality and other dynamics, and promotions not only have an impact on
average demand, but also on the variance of demand (Fildes et al., in press),
and thus on the necessary safety stocks. Note also that promotional forecasts
are even more important than forecasts for regular sales, as little is as annoying
to the customer as not �nding promoted items in stock. (Conversely, stock left
over at the end of the promotion may clog the shelves for a long time � so we
may well decide we want a lower service level during promotions than outside
promotions.) Figure 1 shows sales time series of two SKUs at a European store
with an indication of the variety of promotions.
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Figure 1: Daily sales of two products in one European store, with scaled prices and Boolean
promotion predictors (promotion types, display types etc.) at the bottom. White space would
be �lled with other predictors for other products (note tickmarks). Note the varying length
and impact of promotions, and, e.g., that the highest selling promotions for the bottom SKU
are not the ones with the largest price reduction. Compare Fildes et al. (in press, Fig. 9).
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Incidentally, we should also keep the issue of variability of forecasts in mind.
Competitions, and especially the Kaggle format with continuously updated
leaderboards, incentivize participants to submit more variable forecasts, since it
does not matter whether they land in 20th or in 50th place � but with a highly
variable forecast, they have a chance of coming in among the coveted top 10.
One could call this �over�tting to the leaderboard,� and the e�ect has �rst been
pointed out and analyzed by Ma & Fildes (submitted). We emphasize that
this over�tting is probably unconscious, and that repeated strong performance
would increase our trust in the quality of a forecasting method. In particular,
the consistent strong showing of Gradient Boosted Machines (GBM) can in our
opinion not be due to over�tting alone.

3. Benchmarking against appropriate models

With regard to the M5 Uncertainty track (Makridakis et al., 2020), we have
some reservations about the benchmark methods used. The dataset consisted
of a hierarchy of supermarket sales, with the bottom level being on stock keeping
unit (SKU) × store × day granularity. Such data are invariably low counts and
usually intermittent (Fildes et al., in press). �Classical� forecasting methods
like Exponential Smoothing and ARIMA(X) presuppose homoskedastic nor-
mally distributed errors, and any quantile forecasts from them will also use
this normal distribution assumption � as do the benchmark quantile calcula-
tion methods used by Makridakis et al. (2020). A quantile forecast formula of
the form �µ̂± zασ̂� with an expectation forecast µ̂, a standard normal quantile
zα and a forecasted standard deviation σ̂ does not even make sense for count
data: it outputs noninteger or even negative quantiles. (We note, however, that
a normal distribution assumption on the bottom level, possibly together with
forecasts of product demand covariances, allows an easy derivation of distribu-
tional and quantile forecasts on higher hierarchical levels.)

We thus re-ran the M5 uncertainty analysis with benchmark methods tailored
to count data, as inspired by Kolassa (2016), whose Retailer A incidentally also
uses an EDLP strategy. For simplicity in benchmarking, methods were applied
to all series separately, without accounting for the hierarchical structure.

Empirical (Emp): The empirical quantiles of the entire historical series were
used, calculated using R's quantile() function with type=8, as recom-
mended by Hyndman & Fan (1996), and rounding to the nearest integer.

Empirical with Weekdays (Emp-Wd): As in the Emp method, but quan-
tiles were calculated separately for each weekday, using historical obser-
vations on the same weekday.

Poisson (Pois): Quantiles were taken from a Poisson distribution �tted to the
entire historical series via moment matching.
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Aggregation level
1 2 3 4 5 6 7 8 9 10 11 12 Average

Emp 0.501 0.465 0.484 0.486 0.502 0.451 0.458 0.465 0.464 0.387 0.339 0.312 0.443
Emp-Wd 0.507 0.449 0.473 0.475 0.477 0.424 0.428 0.444 0.439 0.378 0.334 0.310 0.428
Pois 1.074 0.953 0.941 1.025 1.007 0.899 0.869 0.863 0.813 0.529 0.425 0.360 0.813
NB-CMP 3.034 2.632 2.309 2.733 2.504 2.283 2.065 1.885 1.635 0.594 0.437 0.349 1.872
ZIP 1.074 0.953 0.938 1.022 1.002 0.896 0.864 0.859 0.808 0.460 0.375 0.327 0.798
ZINB 3.034 2.632 0.858 1.940 1.329 1.627 1.135 0.657 0.577 0.396 0.341 0.312 1.236

Table 1: The performance of the benchmark methods considered in terms of Weighted Scaled
Pinball Loss (WPSL). Compare Table 2 of Makridakis et al. (2020).

Negative Binomial/Conway-Maxwell-Poisson (NB-CMP): Quantiles were
taken from

� either a Negative Binomial distribution �tted to the entire historical
series via moment matching, if the series was overdispersed,

� or a Conway-Maxwell-Poisson distribution �tted to the entire histor-
ical series using the glm.cmp() function in the COMPoissonReg pack-
age (Sellers et al., 2019), if the series was equi- or underdispersed.

Zero-In�ated Poisson (ZIP): Quantiles were taken from a Zero-In�ated Pois-
son distribution �tted to the entire historical series using the zeroinfl()
function in the pscl package (Jackman, 2020; Zeileis et al., 2008). If the
minimum of the historical series was greater than zero, we fell back to the
Pois method.

Zero-In�ated Negative Binomial (ZINB): Quantiles were taken from a Zero-
In�ated Negative Binomial distribution �tted to the entire historical series
using the zeroinfl() function in the pscl package (Jackman, 2020; Zeileis
et al., 2008). If the minimum of the historical series was greater than zero,
we fell back to the NB-CMP method. For series where the �tting routine
threw an error because of a numerical singularity, we fell back to the ZIP
method.

We downloaded the Rdata �le from the Google Drive folder linked from the M5
competition GitHub site at https://github.com/Mcompetitions/M5-methods
on January 6, 2021. All methods were implemented in R (R Core Team, 2020).

Table 1 contains the results, in an analogous format to Table 2 of Makridakis
et al. (2020). Figure 2 shows the performance of the top 50 submissions and the
benchmarks considered for aggregation level 12 (SKU × store) only. Both are
given in terms of Weighted Scaled Pinball Loss (WSPL).

Results show that the proposed discrete benchmarks are competitive with the
top 50 M5 submissions on the most granular aggregation level 12, which is most
relevant for operational store replenishment. On higher levels � where count
series behave more like continuous series � they do not perform well. Particularly
notable are the abysmal results of NB-CMP on levels 1-9 and ZINB on levels 1-6.
It may well be that the high volumes at these aggregation levels led to numerical
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Figure 2: The performance of the top 50 submissions and the benchmark methods considered
on aggregation level 12, in terms of Weighted Scaled Pinball Loss (WPSL).
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instabilities in model estimation, but we did not investigate this more deeply,
since our main focus is on the more disaggregate data on level 12.

It was surprising to us that judging from Figure 2 in Makridakis et al. (2020), the
ARIMA benchmark appears to perform better than our count data benchmarks
even on level 12. Capturing time series dynamics (as ARIMA does, but not
our discrete benchmarks) may be more important than modeling count data
as such (as our benchmarks do, but not ARIMA). It may be interesting to
model these series using dedicated methods like Integer Autoregression (INAR;
Mohammadipour & Boylan, 2012; Weiÿ, 2018), which unfortunately have not
received the attention they deserve in the forecasting community.

Two extremely simple benchmarks � Empirical and Empirical with Weekdays �
outperformed the �statistically more sophisticated� benchmarks, and that across
all aggregation methods. This is in agreement with the �ndings of Kolassa
(2016).

Thus, our �ndings indicate that the results of the M5 uncertainty competition
hold even when submissions are judged against benchmarks that observe the
integer character of the bottom level series, at least in terms of forecast accuracy
as measured by the WSPL.

4. The role of forecasters and explainability

Do the results of the M5 competition sound the death knell for trained forecast-
ers? �Will these results lead to the demise of forecasters as we know them and
the ascent of data scientists who take their place?� (Makridakis et al., 2020)
Will ML tools, plugged together by an IT consultant with no scienti�c training
in forecasting, become the norm and consign us to the dustbin of history? We
do not believe so.

First, even with great forecasts, the point will come when someone questions
them. If you run millions of forecasts every day (Fildes et al., in press), a few
will be o�. And then, someone will complain. The forecaster had better have a
response to these complaints, and ideally to analyze and improve the forecast,
not just say that it's what the black box spit out. In practice, even a tiny
number of truly bad forecasts in a vast sea of reasonable or even great ones will
lead to a lack of trust in the entire forecasting system (Dietvorst et al., 2015;
Prahl & Van Swol, 2017, and literature cited therein). And if the end users
do not trust the forecasting system, they will start modifying the forecasts or
creating their own forecasts from scratch.

Second, recall the discussion of retailers' promotional strategies above. Retail-
ers' promotions change constantly, and forecasting their impact requires under-
standing both the logic of the promotion, and how the forecasting method will
deal with predictors, so that the business logic can be translated into predictors
which are modeled in a reasonable way by the forecasting tool.
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Figure 3: Distribution of logistical units for 929 SKUs at a European retailer. For instance,
168 SKUs are replenished in pack sizes of 1, but 381 SKUs can only be replenished in cartons
containing 12 eaches.

Thus, we believe that forecasting experts with domain knowledge will continue
to play an important role. One task will be troubleshooting problematic fore-
casts (or indeed, explaining statistical variation to non-experts) and improving
existing models, and another one will be expanding models to cover new busi-
ness requirements. These tasks will require statistical and business knowledge
� as well as programming and communication skills (Kolassa, 2016).

Both tasks hinge crucially on the explainability and analyzability of forecasts,
which have indeed been noted by retailers as key requirements of a forecasting
system (Yelland et al., 2019; Ulrich et al., 2021) and should be the topic of more
future research. Shapley values, which have been used for GBMs (Antipov &
Pokryshevskaya, 2020) and can also be applied for other ML methods, may be
helpful but are still not very interpretable for non-expert end users, who typically
prefer an additive decomposition of the impact of predictors on forecasts.

5. Return on investment for complexity

Finally, is the added complexity in ML methods worth the improvement in
(quantile) forecasts? In contrast to some of the papers cited by Makridakis
et al. (2020), we usually �nd that improvements in retail forecast accuracy have
a surprisingly low impact on stock performance. Suppose you sell 3 units in a
week. Then a forecast of 4 is indubitably better than one of 6. But if the store
can only order in pack sizes of 8 and have no stock on hand, this di�erence
in forecast accuracy does not matter � we will order one pack of 8, no matter
which of the forecasts we rely on. (Similarly, if we have 6 units on hand, neither
forecast will cause us to order anything.)

How in�uential is this issue? As we are not aware of published research or open
datasets on common retailers' logistical units, Figure 3 provides the distribution
of logistical pack sizes for 929 SKUs of a European retailer we are working with
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Figure 4: Histograms of the 97.5% quantiles from the benchmark methods de�ned in section 3
(horizontal axis truncated at the 99th percentile of forecasts for clarity). Vertical lines indicate
the proportion of these forecasts that are at most 6 or 12 units.
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at the moment. We note that only 168 out of the 929 SKUs (18%) have a
logistical pack size of 1, that the most common pack size is 12 and that pack
sizes range up to 100.

Next, Figure 4 shows the distribution of the 97.5% quantiles from the benchmark
methods de�ned in section 3 and indicates which proportion of these quantile
forecasts is at most 6 or 12 (chosen arbitrarily, inspired by Figure 3). Depending
on the method, up to 90% of quantile forecasts are no higher than 6 base units.
Note that the (quantile) forecasts between di�erent methods are usually highly
correlated (after all, they are all aiming at the same actual value) and that
forecasts will only result in an order being released if the current stock position
is insu�cent to satisfy the predicted demand. It thus stands to reason that two
forecasting methods, even if their WSPLs are statistically signi�cantly di�erent,
will not di�er by much in the stock position they result in.

A detailed analysis of this e�ect would, in addition to the logistical pack sizes,
need to take the replenishment schedule into account, i.e., when orders need
to be released (one, two or more days before the delivery) and how frequently
stock is delivered (every day vs. only on certain days in the week). Another
potentially important aspect is how forecasts on daily levels are convolved for
aggregation to multi-day periods between deliveries. Most published research
on stock control in retail that we are aware of only uses ad hoc assumptions
on these parameters, and studies that couple the state of the art in forecasting
with stock simulations based on true logistical parameters would be welcome
indeed.

We note that the papers Makridakis et al. (2020) cite to support the claim
that �small improvements in accuracy lead to considerable inventory reductions�
do not apply to operational daily retail replenishment: Syntetos et al. (2010)
discuss monthly (not daily, as in the M5!) sales of an entire pharmaceutical
company, not a single supermarket, which is where store replenishment takes
place; Ghobbar & Friend (2003) are concerned with aviation spare parts, which
are typically much more expensive and do not come in packs of eight; and Pooya
et al. (2019) use model parameter values that are very unrealistic in retail.

As a matter of fact, this aspect is related to our point about promotions above.
Forecast accuracy during promotions does matter indeed, since promotions typ-
ically involve much larger amounts of product that may dwarf logistical units.

We thus again need experts with knowledge both of forecasting and of the
business domain. Speci�cally, we need to understand when our scarce resources
are better invested in a quest for ever higher accuracy, and when we are better
served by challenging logistical constraints in our supply chain.

6. Conclusion

In summary, we �nd multiple points on which the M5 competition stimulates
further discussion and research. As such, these are important papers that will

10



continue to inspire forecasters for years, and we are grateful to be able to par-
ticipate in this discussion.

In contrast to the M5 authors, we still see an important role for forecasters
even in the Data Science world. They may not be called �forecasters�, but
�data scientists�, but that does not matter. What does matter is that their
purview will need to expand beyond statistics and programming to encompass
an understanding of business needs and processes � and communication skills
to explain what they are doing to non-experts (Kolassa, 2016). In addition, the
forecasting tools they use will need to be explainable in order to be debuggable,
and to build trust by the end user, because otherwise, our beautiful models will
simply be ignored.

We are less sanguine than Makridakis et al. (2020,) about the monetary im-
provement possible through improved quantile forecasts. Much of the literature
that posits a direct relationship between (quantile) forecast accuracy and a bet-
ter inventory position is simply not applicable to supermarket replenishment.
Future research should make an e�ort to also obtain logistical information so
the impact of forecasts on the stock position can be assessed.

Finally, we �nd it fascinating that quite simple benchmarks are still quite com-
petitive. We hope that future retail forecasting competitions feature promo-
tional data, on which more compliated causal methods should be more clearly
superior to simple bottom-up Exponential Smoothing. However, in the light of
the complexity of many retailers' promotions, adequately explaining the promo-
tional data (and the logistical data, see above!) would be complex indeed, and
likely undermine any required anonymity on the part of the retailer.
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