
1

Enabling Multi-Layer Threat Analysis in Dynamic
Cloud Environments

Salman Manzoor§, Antonios Gouglidis, Matthew Bradbury and Neeraj Suri
Lancaster University, UK

Email: {s.manzoor1, a.gouglidis, m.s.bradbury, neeraj.suri}@lancaster.ac.uk

✦

Abstract—Most Threat Analysis (TA) techniques analyze threats to
targeted assets (e.g., components, services) by considering static in-
terconnections among them. However, in dynamic environments, e.g.,
the Cloud, resources can instantiate, migrate across physical hosts, or
decommission to provide rapid resource elasticity to its users. Exist-
ing TA techniques are not capable of addressing such requirements.
Moreover, complex multi-layer/multi-asset attacks on Cloud systems are
increasing, e.g., the Equifax data breach; thus, TA approaches must be
able to analyze them. This paper proposes ThreatPro, which supports
dynamic interconnections and analysis of multi-layer attacks in the
Cloud. ThreatPro facilitates threat analysis by developing a technology-
agnostic information flow model, representing the Cloud’s functionality
through conditional transitions. The model establishes the basis to
capture the multi-layer and dynamic interconnections during the life
cycle of a Virtual Machine. ThreatPro contributes to (1) enabling the
exploration of a threat’s behavior and its propagation across the Cloud,
and (2) assessing the security of the Cloud by analyzing the impact of
multiple threats across various operational layers/assets. Using public
information on threats from the National Vulnerability Database, we
validate ThreatPro’s capabilities, i.e., identify and trace actual Cloud
attacks and speculatively postulate alternate potential attack paths.

Keywords—Cloud security; Cloud functional model; Threat analysis

1 INTRODUCTION

Cloud computing supports a variety of service models
that offer elastic access to shared pools of resources
(e.g., computational, storage, infrastructure) that are pro-
visioned on-demand to meet user requirements. Cloud
systems also entail the co-existence of both physical and
virtual components that consequently result in a com-
plex threat landscape. The overall effect is evident by the
emergence of a diverse and increasing number of attacks
and security breaches involving Cloud systems. A few
recent examples include attacks that led to the leakage
of users’ confidential information [1] while other attacks
have targeted the availability of the Cloud services [2].

To address security concerns in complex Cloud en-
vironments, multiple threat analysis approaches have
been proposed that investigate threats at either a systems
level [3], in the context of specific assets and technolo-
gies [4], or by exploring potential attack surfaces in the

§. The research was conducted when the author was affiliated with
Lancaster University.

Cloud that could be used by attackers to violate security
requirements [5]. Examples of asset-based schemes in-
clude, among others, threat analysis for evaluating cache
side-channel attacks [6], analyzing network attacks [7],
web attacks [8] or analyzing the impact of different
threats on Cloud storage systems [9]. The alternate
graphical model-based techniques, e.g., attack trees and
graphs, have been applied to identify attack patterns that
could potentially undermine the security of the Cloud.
For instance, the authors in [10] developed a model of
the Cloud data center and applied attack trees to identify
potential paths leading to a security violation. Similarly,
in [11], the authors proposed a security assessment
methodology targeted specifically at the Cloud users.

1.1 Problem Space and Contributions

While the above-mentioned methodologies offer valu-
able insights into threat analysis, it is essential to recog-
nize their focus areas and assumptions, i.e., they target
identifying threats within individual assets or make as-
sumptions regarding the static nature of interconnections
among the assets. While this observation highlights the
practical context in which these methodologies operate,
it also provides a pointer to their scope and constraints.
Specifically, the assumption of static interconnections
hinders their effective applicability to Cloud environ-
ments, which are inherently dynamic in nature given
their support for on-demand adaptive resource provi-
sioning. Furthermore, the limited capabilities of contem-
porary analysis techniques in incorporating user- and
service-specific security requirements within the Cloud
threat model leads to incomplete security analyses. Ex-
amples of user-specific requirements may stem from
service level agreements, authentication and enforcing
access control restrictions (e.g., time, location). Similarly,
service-specific requirements (e.g., content delivery ser-
vice) can be set by the application domain (e.g., finance,
medical) and result in prioritizing availability over confi-
dentiality. Hence, a threat analysis process is desired that
considers the incorporation and prioritization of user-
level and service-level security requirements.



2

To address these challenges, we propose ThreatPro, a
novel threat analysis methodology capable of modeling
both the dynamic environment of the Cloud and the
security requirements of a user. ThreatPro facilitates
Cloud service providers to evaluate the consequence of
actual or speculative threats and their progression across
the system under a dynamic configuration irrespective of
the underlying technologies; and to analyze the impact
of multiple threats across different operational layers and
services in the Cloud for specific security requirements.
As with similar solutions [12], [10], [13], ThreatPro also
enables the users to define the scope of their system and
the threats to the system. It means that the users will
need to decide at what level of abstraction to describe
their Cloud system and the types of threats to analyze.

Additionally, to develop a threat analysis methodol-
ogy that is technology-agnostic, ThreatPro proposes a
new information flow [14]1 based model to abstractly
capture the functional behavior of the Cloud. This is
accomplished by defining a set of transitions and a
rule-set specifying the conditions for executing the tran-
sitions. In contrast to existing models [10], [5], [16],
we emphasize on the interconnection of services and
the flow of information rather than performance and
computing measurements. Furthermore, we specify rules
prescribing the behavior of a threat as additional con-
straints to the transitions to determine the implication
of the threat. By tracing the sequence of transitions, we
can not only model the propagation of threats but can
also simulate speculative scenarios. Overall, the main
contributions of ThreatPro are:

• A Cloud model capable of representing the fun-
damental operations of a Cloud. This is achieved
by abstracting the essential services from real-world
Cloud deployments [Section 5].

• A technology-agnostic information flow model
based on the Cloud model. The model converts
service interactions to a set of rule-based transitions
to represent the functional behavior of the Cloud
[Section 6]. The rule-based transitions are capable
of facilitating the specification and analysis of the
information flow models.

• A path-illustrative approach to profile the flow of
threats and analyze their impact on targeted services
and the propagation of threats across the multiple
layers of the Cloud. This assists in identifying paths
that lead to the violation of the security require-
ments, i.e., an attack on the system [Section 7].

1.2 Paper Organization

The remainder of the paper is organized as follows: Sec-
tion 2 reviews contemporary threat analysis approaches
for the Cloud. A progressive overview of ThreatPro’s

1. By information flow we encapsulate system execution and the
flow of information between components within a system. This differs
from data flow [15], which specifically focuses on which data is
transferred between different system components.

three building blocks is presented in Section 3. In Sec-
tion 4, the first block of ThreatPro is presented, i.e.,
services abstraction to represent the functional behavior
of the Cloud. In Section 5, the second block of ThreatPro
is presented that translates the abstract Cloud model into
an information flow model to represent the functional
behavior of the Cloud operations. Section 6 concate-
nates these building blocks to develop the overall threat
analysis process including the approach to perform
speculative analysis. Section 7 validates the capability
of ThreatPro to trace and analyze real-world attacks.
Section 8 discusses ThreatPro’s capabilities for predictive
analysis, its potential for the plug-and-play services,
remarks on the automation of the modelling process, and
the limitations of this approach, and concluding remarks
are presented in Section 9.

2 RELATED WORK
We now provide an overview of contemporary threat
analysis approaches. For simplicity, the approaches are
broadly categorized into (1) asset-based techniques — used
to explore potential threats in specific assets, and (2)
graphical security models — used to identify potential
attack paths leading to a security requirement violation.

2.1 Asset-based Threat Analysis
Asset-based TA aims to uncover threats and their impact
on discrete assets (e.g., components, services, interfaces,
data) typically without factoring in operational consider-
ations. Some recent works have demonstrated the value
of TA in evaluating cache side-channel attacks [6] to
explore the possibility of using the cache to compromise
the confidentiality of tenants hosted on the same physi-
cal machine. A number of TA approaches exist that target
specific technologies. For example, the authors analyze
the impact of different threats in Cloud brokerage sys-
tems in [9]. On the other hand, the application of model
checking to verify the violation of security property has
been demonstrated in [7]. The primary objective was to
analyze network attacks violating the defined security
property. Similarly, modeling the behavior of an applica-
tion and applying probabilistic model checking to inves-
tigate the impact of elasticity on security requirements
was investigated in [16]. Furthermore, the outcome of
the analysis can be used as feedback to fine-tune the
behavior of the Cloud for governing its elasticity. A
risk assessment approach is proposed in [17] for access
control mechanisms in the Cloud. The objective was to
show the effectiveness of role-based access control on the
risk assessment of the asset.

These schemes either investigate specific hardware
vulnerabilities in their evaluation [6] or consider spe-
cific systems (e.g., CloudRAID) in their assessment [9].
Similarly, characteristics of the Cloud operations are
studied in to analyze the interplay between elasticity and
security, such as data loss or data leakage [16]. However,
this analysis is limited to only the elasticity aspect of the
Cloud.



3

2.2 Graphical Security Models

Multiple graphical security models have been developed
to visually trace and identify attack paths and patterns
that could potentially undermine the security of the
Cloud. Primarily, these have been in the form of attack
trees and attack graphs. Modelling a Cloud data center
and applying attack trees to identify potential paths have
been investigated in [10]. Similarly, the quantification of
the user’s security requirements is proposed in [18]. A
risk assessment framework for a sensor environment de-
ployed in the Cloud was presented in [19]. The objective
was to illustrate the cause-effect relationship and apply
security measures that minimize the attack’s impact. On
the other hand, concepts from requirement engineering
have been utilized in [20] to propose a methodological
approach to elicit a user’s security and privacy require-
ments and select the appropriate Cloud provider. The
approach performs a cost-benefit analysis for the users
thereby enabling them to make an informed decision
about migrating to the Cloud.

The application of attack and defense trees has been
detailed in [21]. The approach investigated the interplay
between attacks and the respective countermeasures and
proposed a framework to assess the associated risks of
the applied countermeasures. The work in [22] proposed
a graphical security model using Bayesian attack graphs
to quantify the likelihood of the network compromise
which feeds into an attack mitigation plan. This enables
system administrators to make an informed decision by
considering the trade-off between the attack and the
mitigation strategy. A reference model of the Cloud
incorporating the security controls and best practices
was developed in [23] to assess the security posture of
the Cloud offerings for confidentiality and integrity. This
was achieved by estimating probabilities of advanced
persistent threat infiltration in the Cloud. The underly-
ing technique utilized a Bayesian network model that
examines attack paths and assesses their impact on both
confidentiality and integrity requirements.

In [24], the authors address the limitation of attack
graphs that are restricted to a snapshot at the current
time by developing a time-independent model. There-
fore, the model can be utilized irrespective of the state of
the network. The fundamental premise behind the model
is the analysis of the security of multiple network states
considering the time duration of each network state and
the visibility of the network components to create an at-
tack graph that is representative of the network without
limiting it to a specific time window. Similarly, in [25],
the authors leverage the software-defined network tech-
nology to develop an attack graph-based that exhibits
dynamic behaviour by incorporating a moving target
defence technique. The model relies on shuffling a host’s
network configurations (e.g., MAC/IP/port addresses)
when an alert has been generated that identifies the
presence of an attacker in the system. The shuffling is
performed to reduce the likelihood of lateral movement

from the compromised network node.
Overall, these schemes leverage attack graphs/trees to

explore potential paths that identify a security violation.
Furthermore, quantifying the risks associated with each
path is fundamental to many of these schemes, enabling
system administrators to prioritize the paths and the
mitigation strategy accordingly. On the other hand, these
schemes assume that the attack paths are static and
the functional behavior does not create new intercon-
nections at run-time. This assumption does not hold
in the inherently dynamic Cloud environment, where
new interconnections might be introduced at run-time
through VM migration or by instantiating a new VM.

2.3 Synopsis
As identified in Sections 2.1 and 2.2, both asset-based
TA and graphical security models are effective TA tech-
niques. However, their effectiveness is limited in analyz-
ing threats considering the holistic view of the Cloud’s
dynamic operations. For instance, asset-based schemes
consider assets in isolation without operational factors
and reveal threats pertinent to the specific asset. On the
other hand, graphical models assume that the intercon-
nection among assets is static and lacks the capability to
analyze threats in a dynamic environment. In this paper,
we propose ThreatPro that can incorporate (1) the asset’s
operational environment, (2) dynamic interconnections
across resources/services, and (3) specification of the
user’s security requirements, to provide a comprehen-
sive threat analysis process applicable to the Cloud.

3 BUILDING BLOCKS OF THREATPRO

The ThreatPro methodology is developed as a progres-
sion of three building blocks (i.e., functional Cloud
model, information flow model and threat analysis) as
depicted in Figure 1. In the following, we overview
each of these blocks prior to detailing their operations
in Sections 4, 5 and 6 respectively.

Block I: Functional
Cloud Model

Block II:
Information Flow

Model

Cloud services
abstraction

Dynamic interconnections

User' s security requirement

Threat behavior

Block III: Threat
Analysis

Cloud functional behavior

Speculative attack paths

Real-world attacks post-
mortem analysis

Section 4 Section 5

Section 6

Fig. 1: Blocks of ThreatPro

3.1 Block I: Functional Cloud Model
A number of delivery models exist for the Cloud, such
as Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS), primarily
emphasizing the functionality and performance in these
models. Furthermore, a considerable body of research
exists for modeling and analyzing the behavior of an ap-
plication in the Cloud [26], [27], [28]. However, ascertain-
ing threat propagation requires modeling the functional



4

behavior of the Cloud to capture the interaction across
services, and investigating the interplay between the
services’ interactions and the threat progression. Despite
that, work related to modeling the Cloud functionality
is very limited. Among the primary functions of the
Cloud IaaS, is offering and managing virtual resources
as VMs [29], [30]. These VMs are created through virtu-
alization technology, an enabling technology to share a
physical host with the VMs. [31]. Thus, we define an ab-
stract model for the Cloud emphasizing the interactions
of services during the life-cycle of a VM [32]. Generally,
the main stages of a VM’s life-cycle are VM creation,
storage assignment, server selection for deployment, VM
execution, and VM deletion. Furthermore, VM migra-
tion and VM snapshot may occur during its life-cycle.
The service interactions during the life-cycle of a VM
are conceptualized after surveying multiple open-source
Cloud computing environments [33], [34] and Cloud de-
ployments adopted by market leaders such as Amazon,
Google, and Microsoft. The model, depicted in Figure 2,
exhibits a 3-layer architecture of the Cloud consisting
of the control layer, infrastructure layer and storage
layer, where each layer performs distinct functions. The
model is flexible and can be extended to include vendor-
specific services at each layer. In this paper, we focus the
modelling on the functionality of launching a VM as it
is a fundamental offering of the Cloud.

3.2 Block II: Information Flow Model
The second building block of ThreatPro is a technology-
agnostic information flow model [14] of the Cloud op-
erations. This entails abstracting the technology and
vendor-specific characteristics to create a transition sys-
tem governed by rules that trigger transitions following
the fulfillment of the respective preconditions. For ex-
ample, the authentication credentials provided by the
user are a precondition to trigger different transitions
depending on the validity of the credentials irrespective
of the underlying authentication technology used to
check these credentials. In the case of valid credentials, a
user is directed to a dashboard/interface to access their
VMs. On the other hand, invalid credentials lead to an
error message, and the user is requested to reenter cre-
dentials. Thus, defining the pre-conditions and rules that
govern the triggering of transitions and passing of the
information among the services represent the functional
behavior of the Cloud. Furthermore, we incorporate the
security requirements of the users in the information
flow model to support the prioritization of threats that
violate specific requirements. We argue that the security
requirement of an application varies depending on the
functionality of the application. For example, a content
delivery application might set the availability of the
data as a high priority while an application dealing
with financial records might consider confidentiality as
its primary requirement. Therefore, considering such
security requirements is critical since it helps to identify
threats that may lead to their violation.

3.3 Block III: Threat Analysis
The third block of ThreatPro assesses the impact of
threats to Cloud services. We assess the impact of
multiple threats at different levels of abstraction, e.g.
considering threats at multiple services/layers and the
possibility of a threat’s combination to violate a security
requirement of the user. Furthermore, we investigate
the progression of a threat in the Cloud’s dynamic
environment where resources migrate from one physical
host to another or new resources can be instantiated.
ThreatPro is also able to perform a speculative analysis
to examine the potential of a threat to compromise a
security requirement. Following this overview, the sub-
sequent Sections 4, 5 and 6 detail each constituent block
of ThreatPro to result in a holistic threat propagation
analysis process for the Cloud.

3.4 Threat Model
Given these models, it is also necessary to consider the
threats that are intended to be analysed by ThreatPro. In
this paper we focus on modelling attacks on confidential-
ity and availability in cloud systems. Adversaries may
have a variety of different goals [35], however, due to
ThreatPro facilitating exploring a broad range of threats
we do not define specific adversary goals. Instead in Sec-
tion 7 we will look at case studies of exfiltrating sensitive
data and resource exhaustion to deny availability. The
key is that the attacks of interest can be modelled in
conjunction with ThreatPro’s functional and information
flow models.

4 THREATPRO’S BLOCK I: DEFINING THE
FUNCTIONAL MODEL OF THE CLOUD

Following the overview in Section 3.1, this section details
the first block of ThreatPro, i.e., how to represent the
Cloud’s functional behavior as a model. The reasons
for developing such a model are twofold. Specifically,
there is a lack of both (1) a generalized Cloud model
applicable to the spectrum of Cloud offerings, and (2)
approaches that can analyze the interplay between the
functional behavior of the Cloud and the attack paths.
In order to develop such a model, we first extracted
common services from multiple open-source Cloud com-
puting environments [34], [33] and major stakeholders
in the Cloud market, such as Amazon, Microsoft and
Google. There are obvious differences in terms of the
Cloud architecture and network configurations adopted
by each vendor. For instance, the controller node could
be distributed across the data center. However, these
differences are technology and optimization-driven and
consequently beyond the scope of this paper.

The Cloud model presented in Figure 2 depicts a gen-
eralized 3-layered (Control, Infrastructure and Storage)
architecture focusing specifically on the Cloud’s func-
tionality to be agnostic to the technologies implement-
ing the functionality. Each demarcated layer performs a



5

Cloud Admin

Cloud User
Hypervisor

HW

VM2VM1

Host 1

Hypervisor

HW

VM4VM3

Host 2

Hypervisor

HW

VM6VM5

Host 3

Hypervisor

HW

VM8VM7

Host 4

VM5 Database Server

VM3 Authentication Server 

VM1 VM2 Web Servers

Host 1

Host 2

Host 3

Host 4

Authentication
Server

Controller Node

Database Server

Contol Layer Infrastructure Layer Storage Layer

Network connectivity
A user's resources connection

User Data

Fig. 2: Multi-layer architecture of the Cloud

specific task in the life cycle of a VM. The role of the
control layer is to authenticate users and enable them to
request new VMs. The infrastructure layer receives the
request, creates the respective VM, and links it with the
existing resources of the user. The storage layer provides
storage capabilities for the data. We provide details of
each layer’s functionality in the following sections.

Control Layer: it consists of an authentication server,
database server and a controller node, orchestrates the
managing and scheduling of the Cloud resources —
physical and services — for the Cloud administrator and
the users.

Infrastructure Layer: As the name suggests, this layer
represents the actual physical hardware of the Cloud for
binding the VMs to physical hosts. The core function-
ality of the layer is provided by a hypervisor [36] that
runs on top of the hardware/OS along with other VM
management tools.

Storage Layer: This layer provides storage capacity and
delivers data when requested. This layer is also respon-
sible for providing consistency among different data
backups. As the placement of the VMs across different
hosts is permitted, the data could also be distributed
across different hosts.

These 3 layers collectively outline the operations of
any generalized Cloud system. As VM management
(creation, migrations and deletion cf. Section 3.1) is
the basic Cloud functionality, ThreatPro utilizes a VM-
centric approach for threat propagation and analysis. In
the following, we focus on the operations involved in
creating a VM to illustrate the information flows across
the operational layers of the Cloud prior to building
ThreatPro’s information flow model in Section 5.

4.1 Information Flow in Launching a VM
As mentioned, the authentication service is the user’s
interface to the Cloud. A user can only launch or request
a VM after being successfully authenticated. The details
of subsequent transitions at each layer are as follows:

Control layer transitions: Once authenticated, a user is
transferred to a dashboard presenting the allocated VMs

and the possibility of requesting additional VMs. If the
user decides to launch a new VM, the requested VM
configurations (e.g., CPU, RAM) are compared with the
assigned quota. A valid request leads to the invocation
of the scheduler service that determines a potential host
for the requested VM. The VM configuration and the
selected host are then passed to the infrastructure layer.

Infrastructure layer transitions: The infrastructure layer
receives the VM request and invokes image repository
service for the operating system and the network service
for the networking capabilities (e.g., Virtual Network
Interface Card (VNIC), IP addresses). Furthermore, the
infrastructure layer interfaces with the storage service
for allocating storage for the VM.

Storage layer transitions: The primary responsibilities
of the storage service are assigning storage to the VM
and keeping the data among the backups consistent.
This step is optional in case the user does not select the
storage capacity for the VM.

VM: After the configuration is finalized, the hypervi-
sor instantiates the VM and it is added to the database
against the corresponding user.

The aforementioned is an overview of the services
interaction to create a new VM. It should be noted
that the Cloud provider can initiate the VM instanti-
ation or migration to optimize the workload without
the user’s input but in compliance with the Service
Level Agreement (SLA) signed between the user and the
Cloud Service Provider (CSP). The next section translates
this model into an information flow model that focuses
on the service interaction and the flow of information
among the services.

5 THREATPRO’S BLOCK II: DEFINING THE IN-
FORMATION FLOW MODEL

Following on the overview from Section 3.2, this sec-
tion details the second building block of the ThreatPro
methodology, i.e., the development of an information
flow model of the Cloud. Requirements for the informa-
tion flow model are the following: (1) the model should
support expressing the functional behavior of the Cloud
as well as the threats in a technology-agnostic style, and
(2) there should be the ability to identify violations from
the sequence of events by determining the modifications
in the operations of the Cloud caused by spurious input
to the system.

These specifications are achieved by defining rules and
constraints that determine the triggering of transitions
after their respective preconditions have been fulfilled.
Consequently, we begin with a basic transition system
representing functional behavior and rules determining
the states’ transition. Subsequently, we leverage the rule-
based transition system to represent a login system for
user authentication and eventually represent the Cloud
functional behavior. Furthermore, we express a threat’s
behavior as an instantiation of the rule-based transition
system to use as spurious input to the system.



6

Start

iA CiB

Final

t

s
i

ccc
t

t

t

Additional
Input

InvalidInvalid

Fig. 3: An abstract example of a transition system

5.1 A Basic Transition System

Figure 3 presents an example transition system to
demonstrate how a system’s functionality can be rep-
resented. The received input at each state, depicted
on the arcs, enables transitioning between the states.
The transition system forms the basis for analyzing the
proper functioning of the system and provides the capa-
bility to identify modifications in system actions caused
by spurious inputs. The creation of such transitions is
imperative for Cloud systems. Although it is possible
to generate and reuse a library of profiles of transition
systems, it remains a limitation that an arbitrary number
of system profiles may be required in practice. In the
following, we do not delve into the process of automat-
ing the creation, storage and utilization of these profiles.
Such a mechanism warrants a dedicated consideration
beyond the scope of this work. Instead, we elaborate
on how such a transition system can be used. We now
describe the rules for transitioning between states which
eventually lead to a terminal state (Final or Invalid).

5.2 Normal Behavior

There are multiple paths that represent the normal op-
eration of the system. Any modification in these paths
might be considered a threat to the system.

• Path 1: Start s−→ A
c−→ Final

• Path 2: Start s−→ A
i−→ B

c−→ Final
• Path 3: Start s−→ A

i−→ B
i−→ C

c−→ Final
• Path 4: Start s−→ A

i−→ B
i−→ C

i−→ Invalid

Paths 1, 2, 3 and 4 demonstrate the correct functional be-
havior of the transition system, i.e., the paths start from
the state Start and terminate to either the Invalid or
the Final state. The inputs start, invalid, and correct are
respectively denoted by {s, i, c} and are used to trigger
different paths depending on the input provided to the
system. For instance, in path 1, an input triggers the state
Start which passes on s as information to state A. The
received input initiates multiple paths from state A, for
instance, the input corresponding to a correct value c
leads to the Final state. Conversely, an invalid input
i at state A moves the system to state B and the same
process is followed at state B. However, at state C, an
invalid input i terminates the system at the invalid state.

5.3 Incorporating Malicious Inputs to the System
The rules determine the functional behavior despite
the different underlying technologies. The rules can be
added (or removed) to introduce new (or speculative)
specifications or constraints from users/systems. In Fig-
ure 3, additional inputs are introduced to both states B
and C to analyze their corresponding impacts on the
behavior of the system. For example, at state B, an
input t can modify the state and result in transitioning
subsequently to an invalid state instead of the state C or
Final. Thus, a rule-based transition system highlights
manipulation caused by malicious inputs and enables
the speculative (what-if) analysis. The complete paths
for both the malicious input are given below.

• Path M1: Start s−→ A
i−→ B

t−→ Invalid
• Path M2: Start s−→ A

i−→ B
i−→ C

t−→ Final

5.4 Representing a Transition System
We have demonstrated the benefits of using a rule-based
transition system to enumerate the behavior of a system
and to speculate on the behavior by adding spurious
constraints. We leverage this rule-based transition sys-
tem concept to develop an information flow model of
the Cloud depicting its functionality. There exist multiple
methods to model the functionality of a system. In
the following, we detail two prominent alternatives of
labelled transition systems and Petri nets.

5.4.1 Labelled Transition System (LTS)
LTS has been extensively applied to model the Cloud
operations, including the modeling of client-Cloud in-
teractions [37], [38], [39]. The benefit of using such
models is to elaborate the behavior of a system and
identify a potential violation of the specified property
using a model checker. To this end, the complete model
and the property specification are provided to a model
checker that generates a counterexample identifying the
property violation. The specified property is often a safe-
ty/liveness property, but the process can be replicated
for specific security properties. On the other hand, LTS
becomes cumbersome for concurrent systems due to the
state explosion problem [40]. Further, the states and the
associated actions in LTS are global, i.e., the complete
state information is required to recognize the firing of a
transition. A state cannot be distributed into multiple
local states with different preconditions to trigger a
transition locally if a certain precondition is satisfied.
Moreover, these models are deterministic, while model-
ing the Cloud requires triggering of transitions at certain
time intervals to replicate e.g., VM migration.

5.4.2 Petri nets
An alternative to an LTS are Petri nets, which can
describe the functional behavior of distributed systems.
Petri nets have been used to model the workflow
of concurrent systems [41], resource management in



7

the Cloud [42], and fault detection in distributed sys-
tems [43]. A difference between Petri nets and LTSs are
that the states can be distributed locally as places in
the former enabling them to hold different information
required for a transition. Moreover, the transitions are
fired locally and non-deterministically without requiring
a global view of the system. Furthermore, the Petri nets
support time-driven firing of the transitions, i.e., firing
the transition at a specific time instance. Similar to LTS,
Petri nets also encounter the issue of state explosion [40].

5.5 ThreatPro’s Requirements

We have described the possible options for modeling the
behavior of a system, and now we proceed to elicit the
specific requirements for modeling the Cloud. The Cloud
is a distributed and concurrent system, and modeling its
functional behavior entails assigning information to each
place2 and passing on either a complete or a subset of
information according to the triggering event. Further-
more, certain events might create an impact both locally
and globally. For example, a threat targeting a service
affects that service, but can also progressively target
the interlinked services. On the other hand, perform-
ing a speculative analysis requires assigning constraints
(threats preconditions) to different services to analyze
their consequence on the benign operation of the Cloud.
An additional requirement is the capability to model
time-driven events. For example, a VM can instantiate,
decommission or migrate at run-time according to the
workload. These requirements favor the use of Petri
nets to model the information flow. A brief overview
of Petri nets is presented before demonstrating its use in
developing the information flow model of the Cloud.

A typical Petri net has two elements, places and
transitions3, depicted as circles and bars, respectively, as
shown in Figure 4. A transition signifies the occurrence
of an event and the place holds the tokens (information)
that enables the transition. The conditions that govern
the flow of tokens are represented on the arcs between
input and output places. The pre-conditions are rep-
resented on the arcs that connect places to transitions
and the output flow (post-condition) from a transition
governs the flow of token (information). A transition is
fired only if both pre- and post-conditions are satisfied.
A token from an input place is transferred onto the
respective output place after the transition is triggered.

In this paper, we use a variant of Petri nets called
High-Level Petri nets (HLPN) [44], which provide fur-
ther flexibility in assigning multiple tokens of different
data types to a place. Moreover, in HLPN, a subset of the
token (information) can be passed onto the next place
depending on the triggering condition. For example,

2. A place holds the token in Petri nets, in other words, places are
comparable to states in transition system.

3. We use three different fonts to make it clear what type of item
within a Petri net is being referred to. These are: a Place in the Petri
net, an Input provided, and a TRANSITION that can be taken.

On_Us

rs

Usr_A

ccns

Log_R

eqs
Auth_S

Auth_F

Place

Data Type

Transition

cond Flow condition

STRxSTR

STRxSTR

STR

Fig. 4: Login system using HLPN

TABLE 1: Description of Places in Figure 4

Place Description Mapping

ϕ(Log Reqs) Login credentials P(Usernames × Passwords)
ϕ(Usr Accns) Sever credentials P(Usernames × Passwords)
ϕ(On Usrs) Online Users P(Usernames)

the authentication service holds both usernames and
passwords and passes on only the username to the
next place that provides a list of the user’s existing
VMs. Furthermore, the constraint can be time-driven.
For instance, after a certain time interval, a VM mi-
gration process can start requiring a new VM instance
creation and the model needs to capture such dynamic
interconnections. These dynamic interconnections are
captured in the model through time-driven firing of
the transition. Moreover, the transitions are fired locally
without contemplating the global state of the system.
This enables the model to capture new VM instances
requested during the VM run place or concurrent VM
requests from the same user.

5.6 Instantiation of the Cloud Login System

In the previous section, we have explained a basic tran-
sition system and rules that determine the functional
behavior of the system through the flow of information
among the states. We also described the advantages
of using HLPN for the development of the informa-
tion flow model. This section leverages the rule-based
transition system to create an authentication system for
the Cloud before translating the complete Cloud model
(cf., Figure 2). This authentication system is shown
in Figure 4, where there are three places (Log_Reqs,
Usr_Accns and On_Usrs) described in Table 1 and two
transitions (AUTH F, AUTH S). The transition AUTH F
represents failed authentication due to invalid creden-
tials, while AUTH S depicts a successful authentication.
The firing of these transitions follows the rules in Equa-
tions (1) and (2). The action taken when the predicate
in Equation (1) holds is shown in Equation (3). This is
represented in Guarded Command Language [45] in the
form Name ::= Predicate → Statements, where the list of
statements are executed when the guard predicate holds.



8

Fig. 5: Snippet of CPN tools of the Login system

R(AUTH S) = ∃u ∈ U : u ∈ C ∧ u.username ̸∈ O (1)
R(AUTH F) = ∀u ∈ U : u ̸∈ C ∨ u.username ∈ O (2)

SuccessfulLogin ::= R(AUTH S) → O′ := O ∪ {u.username} (3)

The transition AUTH S in Figure 4 is fired if the
necessary preconditions are fulfilled, i.e., the user-
name and password provided by the user match the
username and password stored at the user accounts
and the user is not already online. These precondi-
tions are represented on the arcs using: (i) the set
of users U attempting to log in, where ∀u ∈ U :
u = (u.username, u.password) represents the username
u.username and password u.password provided by a user,
(ii) the set C of credentials known to the server, where
∀c ∈ C : c = (c.username, c.password) represents the
username c.username and password c.password known
by the server, and (iii) set O represents the usernames
that are already online. A successful authentication of the
user transfers them to the list of online users by adding
the new user to the set O, for which the updated set is
denoted by O′. On the other hand, a violation in any
of the conditions results in the firing of the transition
AUTH F instead. The predicate R(T) denotes if a specific
transition T is taken. We show the implementation of
these predicates in Listing 1 of our supplemental mate-
rial which was performed using CPN tools [46]4.

Figure 5 shows a snippet of the CPN tools after
defining the places, transitions and the guards to the
respective transitions. For instance, the place ON_Usrs
holds the users that are online and currently it is empty.
The Log_Reqs currently has a single token (information)
with the username "sm" and password "t1". This is
compared against the stored credentials at Usr_Accns.
Therefore, the data type of both the places is UNxPW. A
place can hold multiple tokens and the green circle
shows the exact number of tokens the place currently
holds. To distinguish tokens from each other, a separator
++ is used in the CPN tools. The AUTH S is highlighted
to indicate that the transition is enabled. In Petri nets the
transitions are enabled after all the input places to the

4. Each of the following Petri net models were implemented using
CPN tools and the implementation can be found at https://github.
com/salman-manzoor/Threatpro.

transition have at least one token but the transition is
only fired after both the transition guard and the output
condition of the transition are satisfied. The firing results
in taking the respective tokens from the input places and
adding them to the output places in compliance with
the output condition. A weightage can be assigned to
the output condition which then determines the number
of tokens moved from the input places. Furthermore,
a timing delay can also be applied to the transition
which would restrict the firing of the transition until the
assigned time period has elapsed. In the case of AUTH S,
the transition guard is to match credentials and the
output condition is to add the user to the On_Usrs place.
Once these conditions are fulfilled, the user becomes
online and is added to On_Usrs.

It is evident that rules-based information flow is in-
dependent of the underlying technology since any ap-
propriate technology could be used to validate creden-
tials. The subsequent section expands the authentication
system by introducing additional Cloud functionality
and eventually representing the Cloud behavior using
HLPN. Consequently, the resulting information flow
model is agnostic to specific underpinning technologies.

5.7 Instantiation of the Cloud Functional Behavior
We extend the authentication system by adding addi-
tional services from the Cloud model (cf., Figure 2) and
eventually, translating the Cloud model to an HLPN
model which is shown in Figure 6. The description of
places and their data types are mentioned in Table 2. The
function domain(V) takes a HLPN place V and returns
the set of all possible values that V could have.

We revisit the instantiation of the VM from the per-
spective of creating rules to govern the flow of informa-
tion among the services and replicating the functional
behavior of the Cloud.

1) Transitions T1.1a/T1.1b/T1.2 determine credential
validity. A successful authentication leads to a dash-
board enabling the user to access their existing VMs.

2) Transitions T1.3a/T1.3b are triggered after a user
initiates the VM creation process and provides prop-
erties for the VM (e.g., CPU, RAM, disk space).
These properties are checked for compliance with
the associated quota of the user.

3) Transition T1.4 is fired after the scheduler service
determines a potential data center and a host to run
the requested VM.

4) Transition T1.5 is triggered after multiple services
provide the respective tokens (information). For ex-
ample, a disk image is provided from the repository
and the network service initializes a virtual network
interface card and assigns MAC/IP addresses. These
configurations are pushed onto the hypervisor con-
figuring the VM instance accordingly.

5) Transition T1.6 is fired after it receives the final
configuration and the VM has started executing
successfully. The VM place in Figure 6 shows the
terminating place of the Cloud model.

https://github.com/salman-manzoor/Threatpro
https://github.com/salman-manzoor/Threatpro


9

UI
AS

T1.1a: Auth_F

AS_c

T1.1b: Auth_S

DB

CA

T1.2: Ctrl_S

INT

UQ

SL

T1.3a: VM_F

T.13b: VM_S

VM_req

UQ_q

DI

NET

NIC

T.1.4: Srvr_lookup

AR

HS

HYP

VM

T.1.5: Final_confs

T.1.6: VM_run

UI User interface

AS Authentication server

CA Control access

DB Database

INT VM request interface

UQ User quota

SL

AR Available resources

Server lookup

HS Host server

NIC Network interface card

DI

NET Networking functionality

Disk image

HYP Hypervisor

VM VM is instantiated

Fig. 6: Transforming Cloud Model to HLPN

TABLE 2: Description of Places in the Cloud Model

Place Description Domain

UI
Interface to enter
credentials P(Usernames × Passwords)

AS
Authentication server
storing credentials P(Usernames × Passwords)

CA Access restrictions P(Usernames)

DB Stored list of VMs P(Usernames × VMs)

INT Interface to run VMs P(Username × CPU × RAM ×
Disk × Arr)

UQ
Users quota and
configurations

P(Username × CPU × RAM ×
Disk)

SL
Potential server for the
VM request

P(Usernames × CPU × RAM ×
Disk)

AR
Available resources to
launch the requested VM P(Loc × DC)

HS
Receives hosting server
and VM config.

P(Loc × DC × Usernames ×
CPU × RAM × Disk)

NIC MAC address MAC

NET Assigns dynamic IP P(IP × MAC)

DI Holds VM disk image P(DI)

HYP
Receives configuration
and launches the VM

P(CPU × RAM × Disk × IP ×
MAC × DI)

VM
VM is started on the
server

P(Loc × DC × Usernames ×
CPU × RAM × Disk × DI × IP
× MAC)

We define rules that govern the flow of tokens (in-
formation) from input to output places. A new token
is generated each time a user tries to login triggering
transitions AUTH F and AUTH S to determine the va-
lidity of the user’s credentials, UI c is the set of provided
credentials and AS c is the set of credentials stored at
the server. These credentials are used in Equations (4)
and (5) to check the validity of the user’s credentials.

R(AUTH F) = ∀u ∈ UI c : u ̸∈ AS c (4)
R(AUTH S) = ∃u ∈ UI c : u ∈ AS c (5)

Equation (4) represents that the credentials provided
by the user are invalid, and therefore the user is re-
quested to reenter the valid credentials. On the other
hand, the valid credentials trigger AUTH S transition,
and correspondingly, access privileges are granted to the
user. The user is transferred to an interface to access
the assigned VMs or request new VM instances. Equa-
tions (6) and (7) determine the success or failure of the
VM request considering several factors, including the
quota associated with the user. The VM req stores the
configurations of the requested VM such (CPU, RAM
and Disk) which are checked for compliance against the
allocated quota of the user. The users quota are stored
in UQ and UQ q is the quota of the specified user.

R(VM F) = ∀d ∈ VM req : (d.username ̸= UQ q.username ∨
d.cpu ̸= UQ q.cpu ∨
d.ram ̸= UQ q.ram ∨
d.disk ̸= UQ q.disk)

(6)

R(VM S) = ∃d ∈ VM req : (d.username = UQ q.username ∧
d.cpu = UQ q.cpu ∧
d.ram = UQ q.ram ∧
d.disk = UQ q.disk)

(7)

Equation (6) determines the invalidity of the VM
request due to a lack of access privileges for additional
VM or if the configurations of the requested VM do not
comply with the associated quota. The compliance of the
requested VM invokes the scheduler service that selects
an appropriate server to instantiate the requested VM.
Furthermore, the server selection triggers multiple ser-
vices to configure the VM. For instance, the disk image
service provides a guest operating system for the VM.
The network service provides networking capabilities to
the VM, i.e., initiating a virtual network interface card,
assigning a MAC address, and determining the mapping
between the machine’s virtual and physical interfaces.
NET is responsible for leasing IP addresses and the



10

Fig. 7: Snippet of CPN tools of the Final Configurations

corresponding IP address mapping to the MAC address.
These configurations are pushed onto the hypervisor,
which executes the VM on the physical hardware. These
configurations follow Equation (8) for triggering the
respective transition. In Equation (8), we use ++ to
denote tuple concatenation and := to denote assignment,
resulting in an updated variable.

R(FINAL CONFS) = ∃im ∈ domain(DI) : im = ret di ∧
∃vn ∈ domain(NIC) : vn = ret vnic ∧
∃dh ∈ domain(NET) : dh = ret dhcp ∧
dh.mac = vn.mac ∧
config := VM req srvr ++ (im) ++ dh

(8)

Final confs ::= ∃im ∈ domain(DI) : im = ret di ∧
∃vn ∈ domain(NIC) : vn = ret vnic ∧
∃dh ∈ domain(NET) : dh = ret dhcp ∧
dh.mac = vn.mac →
config := VM req srvr ++ (im) ++ dh

(9)

The implementation of Equation (8) in CPN tools is
shown in Listing 2 of our supplemental material and the
respective snippet of the transitions and places in CPN
tools is shown in Figure 7. The place SL receives VM
configurations and the server lookup is initiated to select
the server that can run the requested VM. The selected
server and the VM configurations are passed onto the
place HS which temporarily holds this information. The
variable VM req srvr in Figure 7 holds both the VM con-
figurations and the server information which is passed
to the FINAL CONFS transition. Further inputs to this
transition are from (i) DI which provides an operating
system for the VM, (ii) NET provides IP and MAC
addresses, and (iii) NIC maps the provided MAC to the
network interface card. The transition guard compares
vnic with ret dhcp and a valid guard leads to the firing
of the transition. The final configurations (VM req srvr,
ret di, ret dhcp) are passed onto the hypervisor which
runs the VM as per the received configurations.

This section explained the functional behavior of the
Cloud as a rule-based transition system irrespective of
the underlying technologies. The rules determine the
information flow among the services for the proper
functioning of the Cloud. On the other hand, a threat’s
input can alter the behavior of the Cloud leading to
malfunctioning. Thus, the following section defines the
behavior and characteristics (e.g., preconditions, conse-
quence, etc.) of a threat that are given as the spurious

Servi

ce

Rec

T1.1: PreCon_F

T1.2: PreCon_S

soft_

iss

Cons

Actio

n

Atk_

sur

T2.1: Exploit_F

T2.2: Exploit_S

Fig. 8: Modeling a threat’s behavior using HLPN

TABLE 3: Description of Places in Figure 8

Place Description Mapping

Service Targeted services. P(Services × Issues)
Rec Reconnaissance step input. P(Services × Issues)
soft_iss Potential issues in the target. P(Services × Issues)
Action Action to exploit the issues. P(Action)
Atk_sur Attack surface. P(Atk sur)
Cons The consequence of the threat. P(Cons)

input to the Cloud to analyze the threat’s impact on the
functional behavior of the Cloud.

5.8 Instantiation of a Threat’s Behavior
The previous sections described the normal functional
behavior of the Cloud similar to the basic transition sys-
tem (cf., Figure 3 in Section 5.1) in a technology-agnostic
manner. As previously described, in Figure 3, the paths
to the terminal states are modified by additional inputs.
This section presents threats as the additional inputs to
the Cloud. We define a threat’s behavior by representing
the necessary conditions required for one or more threats
to exploit a vulnerable service. It is worth noting that
we do not need to explicitly define the type of the threat
actor or threat vectors (e.g., local, network) since any
modeled vulnerability will eventually be exploited, if its
conditions are met. Moreover, modeling the behavior of
threat(s) facilitates assessing the impact of a threat on a
particular service and consequently track its progression
across the system. The threats are given as input to
the Cloud model, and the consequence of the threat
dictates the next place in the Cloud model. Furthermore,
in combination with the CPN tools [47], the HLPN can
be simulated to enumerate benign behavior to validate
the functionality of the Cloud and conversely investigate
the attack paths generated due to the threat. The instan-
tiation of a threat using HLPN is shown in Figure 8
and Table 3 describes the places used in the HLPN
model along with their description and data types. The
significance and utilization of these places in defining
the threat behavior are explained in the following.

5.9 Reconnaissance Step
This step uncovers potential weaknesses in a system
that could be exploited by an attacker. Examples weak-
nessess include: the installation of a vulnerable version



11

of software or a misconfigured service. Additionally, this
step explores the necessary preconditions to exploit the
weakness. The reconnaissance step can be done using
different tools but for our purposes, the Vulnerability
Database [48] suffices since our purpose is to collect
weaknesses in the services as a triggering condition of a
transition and consequently track the progression of the
threat in the system. Equations (10) and (11) determine
if the preconditions of the potential weakness are met.

R(PRECON S) = ∃r ∈ domain(Rec) : r ∈ ser (10)
R(PRECON F) = ∀r ∈ domain(Rec) : r /∈ ser (11)

If Equation (10) is true then then a service with a
potential issue discovered during the reconnaissance
step exists. The absence of such an exploitable weakness
instead fires PRECON F as Equation (11) is true.

5.10 Exploit Step
This step is triggered if a service has an existing issue
that could be exploited. This requires an attacker to
utilize an action specifically designed to exploit the
specific weakness. An absence of such an action indicates
an open window of compromise. The rules governing
the exploit step are described in Equations (12) and (13).

R(EXPLOIT S) = ∃i ∈ domain(soft_iss) : i = iss ∧
∃a ∈ domain(Action) : (a = act ∧ a = iss.issue) ∧
∃as ∈ domain(Atk_sur) : as = a (12)

R(EXPLOIT F) = ∀i ∈ domain(soft_iss) : i ̸= iss ∨
∄a ∈ domain(Action) : (a = act ∨ a = iss.issue) ∨
∄as ∈ domain(Atk_sur) : as = a (13)

A successful exploit might affect the normal oper-
ations of a system. For instance, a Denial of Service
(DoS) would limit the availability of the service. These
consequences are represented as the Cons in Figure 8.
On the other hand, if the consequence of the threat is
to bypass authentication then the consequence of the
threat is the next available place for the attacker after
circumventing the authentication service.

The implementation of threat’s instantiation in the
CPN tools is given in Listing 3 of our supplemental
material and the respective snippet from the CPN tools
is shown in Figure 9. For simplicity, we only show
the success cases of the rules, i.e., implementation of
Equation (10) and Equation (12). The figure shows that
the service Auth is vulnerable to token mismanagement
and is discovered during the reconnaissance phase. Fol-
lowing the discovery, the respective action is taken from
the Action place which holds actions at an attacker’s
disposal. An action can be used to exploit multiple issues
or it might be the case that exploiting an issue requires
multiple independent actions. Therefore, these actions
are not tied to specific services or issues. A successful
exploit leads to the Cons place that holds the impact of
the exploit. As mentioned before, the level of granularity
depends on the user, i.e., a user can mention a vulnerable

Fig. 9: Snippet of CPN tools depicting threats behavior

AS Authentication Service

Threats Encapsulates transitions
and places of Fig. 9

DoS Threat's Consequence on a VM

Cloud Encapsulates transitions and places of
Fig. 6 (except AS, VMReq and VM)

VM Terminal state

VMReq Threat's Consequence
on AS service

Fig. 10: Link between threats and the Cloud Model

service or software version as well as the corresponding
action for that specific vulnerability. However, for our
purpose, the description from the NVD suffices as our
objective is to perform threat analysis and show the
propagation of threats in the Cloud.

We have shown the Cloud model and the instantiation
of threat behavior using Petri nets and their implemen-
tation in CPN tools. However, the correlation across the
Cloud and the threats warrants consideration. This is
shown in Figure 10, where after successfully bypassing
the authentication server (AS), the next place available
to the attacker is VMReq. VMReq is the same as INT5

in Figure 6. On the other hand, a running VM can be
targeted with threats causing a denial of service which
is shown with the DoS place. The functionality of both
the Threats and the Cloud Model in Figure 10 is hidden.
These are termed hierarchical Petri nets, and the hier-
archy highlights the connection among different blocks
while hiding individual block’s places and transitions.
For instance, the Threats block encompasses the places
and transitions represented in Figure 8. These hierar-
chical Petri nets make the model modular and enable
adding new modules (e.g., extending the Cloud model
by adding new services such as billing, etc) or removing
existing modules (e.g., focusing only on specific services
such as the authentication mechanisms in the Cloud)
simpler. The VM is the terminating place of the model.

This section described the necessary blocks to model
the Cloud, which captured service interactions represent-
ing the system behavior. The information flow model

5. INT is a reserved keyword in CPN tools and hence cannot be used
as name for a place.



12

and the threat behavior are defined using HLPN, which
allows us to assign multiple constraints to each service
and trigger the transition after the satisfaction of precon-
ditions. In the following sections, these blocks are used
in the CPN tools to (1) validate the benign operation
of the Cloud, (2) perform speculative attack scenarios
when threat conditions are satisfied, and (3) perform
post-mortem analysis of real-world attack scenarios.

6 THREATPRO BLOCK III: THREAT ANALYSIS

The details of the first two building blocks of ThreatPro,
i.e., the Cloud model and the information flow model are
described in the previous sections (cf., Sections 4 and 5).
The Cloud model is an abstraction of services from real-
world deployments, while the information flow model
governs the flow of information among the services
using transitions that are triggered after their respective
conditions are satisfied. Section 5.8 comprehensively de-
tailed the threats and their required preconditions in the
form of constraints to transitions, so this section builds
on these blocks to perform threat analysis in the Cloud.
However, before proceeding to threat analysis, we first
validate the correct behavior of the Cloud. Specifically,
we examine if the Cloud always terminates to the VM
place each time a user requests a new VM or starts an
existing VM. Consequently, allowing us to enumerate
all the execution paths that lead to the correct terminal
place. The terminal place is VM for both (a) starting
an existing VM or (b) launching a new instance of the
VM. Thereafter, we insert additional constraints acting as
threats to different services in order to investigate paths
leading to violations of security requirements.

Using an HLPN to build the information flow model
facilitates the use of CPN tools [47] to simulate the
model and enumerate the Cloud behavior. The simula-
tion allows for the analysis of Cloud’s behavior when
no adversary is present, i.e., given a valid VM request
the terminating place should always be the VM place.
CPN tools also supports triggering transitions at cer-
tain time intervals which facilitates modelling dynamic
Cloud behavior. This is accomplished by triggering new
events (e.g., launching a new VM, migrating a VM, or
fulfillment of a threat’s preconditions) after a certain time
period has elapsed in the simulation. This establishes
the handling of the dynamic behavior of the Cloud by
discerning the impact of the new events in the model. In
the following sections, we utilize CPN tools to generate
places enumerating the Cloud’s benign behavior and
also its behavior when inserting threats to different
services in order to perform threat analysis.

6.1 Enumerating the Cloud behavior
We begin by validating the behavior of the Cloud with-
out threats to understand its normal operations. We
achieved this by simulating the HLPN in Figure 6 using
CPN tools. Figure 6 dictates that VM should be the termi-
nating place when a user requests a VM instance. Using

CLI

Control

DB

Dboard

VM_Run VM_Req

Ad_Conf

Srvr_det

ECCDINetwork

Data

CLI

Control

Hyp

VM_conf

VM_Run

Data

Dboard

VM_Run
VM_Req

Ad_Conf
Data

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

Data

Srvr_det

ECCDI

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

Data

Network

Hyp

VM_conf

VM_Run

Data

Path to run a VM
Path to create a new VM

Path to run a VM Path to create a new VM

User interface 

Authen�ca�on server 

Control access 

Database 

VM request interface 

User quota 

Server lookup 

Host server Networking func�onality 

Disk image VM is instan�ated UI

AS

CA

DB

INT

UQ

SL

HS

NIC Network interface card 

DI

NET

Hyp Hypervisor 

VM

Fig. 11: Example of valid execution paths in the Cloud

CPN tools, we generate the sequence of places for the
scenario where a valid user requests a VM. In this valid
request, the execution always terminates at the VM place.
An illustration of a subset of valid paths is shown in
Figure 11 where those paths all terminate at the VM place.
There are some paths that show VM+Data instead of VM
to represent the scenario in which a user had requested
storage capacity along with a VM. This is simply used
to differentiate between VMs with and without storage.
These paths correspond to the instantiation of the Cloud
behavior presented in Section 5.7.

In Figures 11 to 14 that represent executions in the
Cloud environment, invalid paths and unsuccessful tran-
sitions are omitted as the purpose of these figures is to
show the validity of the Cloud model through simula-
tion, i.e., a valid request should always terminate at VM.
In these figures VM+Data is shown to indicate that there
is storage attached to the requested VM. The storage for
VM is optional and hence, it is only shown for some
VMs rather than all the instantiated VMs.

6.2 Threat analysis

We now perform the threat analysis by adding con-
straints (e.g., threat conditions at different services) to
the HLPN and simulating the Cloud behavior in the
presence of these threats. The threats are added at dif-
ferent layers and services to investigate both the cause-
effect relationship and to analyze their impact on the
Cloud’s functional behavior. To demonstrate the gener-
alization of our approach, we perform speculative anal-
ysis using vulnerabilities from the national vulnerability
database [48] to identify corresponding attack scenar-
ios. This analysis aims to identify potential paths that
attacker could use to undermine a security requirement.



13

The selected vulnerabilities in our analysis serve as a
proof-of-concept. However, we acknowledge that some
threats can have varying dependencies and prerequisites
that may shape the execution of attacks, which may
result in multifaceted attack scenarios. Automating such
a process is not within the scope of this paper, and
should be considered as future work.

We use the vulnerabilities in Table 4 to demonstrate
the effectiveness of using ThreatPro to analyze the po-
tential impact of threats at different layers of the Cloud
and the potential of a threat to progress in the Cloud.
The attack graph generated from these vulnerabilities
is shown in Figure 12. The multiple paths violating
security requirements are explained below, where each
path enumerates an attack.

Path 1: A successful exploitation of vulnerabilities in
path 1 of Figure 12 leads to attaining additional resources
in the Cloud from a disabled user. It is accomplished
by exploiting CVE-2013-4222/CVE-2012-4457 to request
a new authorization token of the disabled user which
is used to access the victim’s resources. A precondition
of the attack requires authentication of the user which
could be achieved by exploiting either vulnerability
CVE-2013-2006 at the CA or CVE-2015-3646 DB service.

Path 2: Exploiting CVE-2014-5251 at the control service
allows attackers to bypass access restrictions and poten-
tially discover restricted projects. However, in combina-
tion with CVE-2018-14432, an attacker can escalate the
impact to retain the access of these restricted projects
with an expired authorization token. Alternatively, an
attacker in combination with CVE-2016-0757 at SL might
be able to change the VM’s configuration. This path
specifically shows that combining vulnerabilities from
different services can increase the overall impact and
therefore, the potential of a threat’s progression should
be considered in the threat analysis process.

Path 3: Similar to Path 2, this path has multiple
potential consequences depending on the vulnerabilities
exploited. In path 3a, the vulnerability CVE-2014-9623 at
the disk image service is exploited to bypass the storage
quota and thus enabling attackers to upload a large
image file causing a denial of service. However, path 3b
illustrates alternative paths in which the vulnerability
is combined with a hypervisor vulnerability (CVE-2014-
0134), resulting in either reading the configuration file
of the physical server, breaching the confidentiality, or
potentially causing the VM to migrate. The latter case
opens up new attack surfaces such as exploiting CVE-
2018-04635 during VM migration which could allow
attackers to intercept network traffic, or CVE-2013-7130
facilitating attacker’s access other users’ data.

These attack surfaces are introduced due to the elastic
behavior of the Cloud. Since this analysis happens at
run-time ThreatPro is able to identify these attack paths.
Other threat analysis tools that only consider a static
view of the system would only incorporate changes in
the system after re-execution. These tools might require
a large number of re-executions in order to process all

the changes that elastic Cloud behavior may introduce.
Speculative Analysis: The speculative analysis allows

the exploration of the potential paths an attacker could
use to accomplish their objectives. Moreover, this fa-
cilitates a proactive approach to threat mitigation and
prioritization of threats according to their impact or
the threat’s degree of centrality in the path. In the
following section, we perform a post-mortem analysis of
two cases that violate different security requirements, to
demonstrate the effectiveness of ThreatPro in identifying
threat progression in the system as well as disclosing
alternative attack paths through speculative analysis.

7 VALIDATION: REAL-WORLD CASE STUDIES

The previous sections outlined the processes of Threat-
Pro in conducting actual and speculative threat analysis
to identify attack paths. To validate ThreatPro, in this
section, we use multiple CVEs related to real-world at-
tacks to enumerate the attack paths used to compromise
the system. In addition, ThreatPro is able to conduct a
post-mortem analysis on these attacks by introducing
speculative conditions and exhibiting alternative poten-
tial cases of violation of the security requirements. In
essence, these potential attack paths determined through
speculative analysis highlight ThreatPro’s predictive ca-
pabilities for identifying alternate possible attacks.

We now present two case studies of actual Cloud at-
tacks to illustrate ThreatPro’s methodology. The first at-
tack is the Equifax attack on breach of confidentiality [49]
where attackers exfiltrated confidential data of Equifax’s
customers. The second attack is a resource consumption
attack which impacts the application’s availability [50].

7.1 Case I: Confidentiality as a Requirement

The first attack scenario covers the violation of a con-
fidentiality requirement. We review the Equifax data
breach where attackers successfully ex-filtrated the fi-
nancial and private records of approximately 148 million
users, making it one of the largest data breaches and an
attack with one of the largest financial settlements [51].
Furthermore, this case specifically highlights the signifi-
cance of multi-layer attacks where supposedly negligible
issues at different layers were combined to create an
aggregated impact. Although threat analysis techniques
are useful to determine these issues individually at each
service, ThreatPro provides the capability of assessing
the outcomes of the threats and their possible combina-
tion in the system. This is achieved through modeling
the functional behavior to determine a threat’s possible
progression in the system. A brief analysis of the attack is
presented which illustrates the path taken by attackers to
access the confidential data of the users. We refer readers
to [49] for a complete analysis of the data breach.

1) Attackers exploited a vulnerability in the web portal
granting them access to the web server.



14

CVE-2013-7130

CLI

Control

DB

Dboard

VM_Run VM_Req

Ad_Conf

Srvr_det

Data

CLI
Control

Dboard

VM_Run VM_Req

Ad_Conf

Srvr_det

Data

DINetwork

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

ECCDINetwork

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

Vulnerable service

DI

Ad_Conf

VM_Run

Data

Additional resources

DoS

Consequence

VM_Run

Srvr_det

VM_conf

VM_Run

Change VM configs

Hyp

VM_conf

VM_Run

VM migration

Elastic behavior of the Cloud

CVE-2013-4222 or
CVE-2012-4457

CVE-2013-2006 or
CVE-2015-3646

Path 1

CVE-2014-5251 &
CVE-2018-14432

CVE-2016-0757

Path 2

CVE-2014-9623

Read host details

CVE-2014-0134

Inspect network trafic Users data

CVE-2018-14635

Access storage

CVE-2015-2687

Path 3a

Path 3b

Exploited vulnerability
Path to run a VM
Path to create a new VM
Attack Paths

Fig. 12: Attack Paths based on the selected vulnerabilities

TABLE 4: List of vulnerabilities from NVD.
The first column in the table is the CVE entry,
while the second and third columns show the
targeted service and its corresponding HLPN
place. The last three columns show the vul-
nerability’s consequence on Confidentiality, In-
tegrity, and Availability (CIA). A full impact
with ✓ and a partial impact is indicated with
P. Where a partial impact means that a subset
of data was revealed to an adversary (confi-
dentially) or a subset of data was corrupted
(integrity).

CVE# Service Place C I A

2012-4457 Authentication AS ✓
2013-2006 Authentication AS ✓
2013-4222 Authentication AS ✓
2013-7130 Compute HYP ✓
2014-0134 Compute HYP ✓
2014-2573 Neutron NET P
2014-9623 Glance DI P
2015-2687 Compute HYP ✓
2016-5362 Neutron NET ✓
2016-0757 Cinder SL ✓
2018-14432 Cinder CA ✓
2018-14635 Neutron NET P

2) User names and passwords were saved in plain text
facilitating attackers to penetrate further into the
system using these credentials.

3) Networks and systems were not segmented prop-
erly allowing attackers to move laterally across the
network and systems without any restriction.

This attack is an example of attackers moving across
the services/layers and eventually reaching restricted
states of the system due to the presence of negligible
issues at each service/layer. A proper partitioning of the
network/systems and encrypting the credentials at rest
would have limited the impact of the attack. However,
the combination of these issues across different ser-
vices/layers amplified the impact of the attack. Threat-
Pro generates the sequence of steps that enable attackers
to access the data which are shown in Figure 13.

Figure 13 shows the attacker compromised the web
server running on the VM at host 1 by exploiting
the publicly known vulnerability CVE-2017-5638. This
allowed attackers to gain access to the VM resources
and the storage of the unencrypted credentials which
facilitated penetrating further into the system by using
these credentials. Systems/networks were not properly
segmented allowing attackers to use the credentials on
VMs running at different hosts, e.g., host 2 in Figure 13.
We now demonstrate the capability of ThreatPro in re-
vealing alternative attack paths at the attacker’s disposal.

7.1.1 Speculative Analysis
Figure 13 shows the potential issues that were exploited
by the attacker, however, the speculative analysis of the

CLI

Control

DB

Dboard

VM_Run VM_Req

Ad_Conf

Srvr_det

CLI
Control

Dboard

VM_Run VM_Req

Ad_Conf

Srvr_det

Data

Hyp

VM_Run

Data

Hyp

VM_Run

Data

ECCDINetwork

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

Data

VM_Run

Host 2

Storage

Host 1

Storage

Lacks
segmentation

VM_Run Vulnerable Server

Data Unencypted Data 

Network connection

Attack path

Path to run a VM
Path to create a new VM

Fig. 13: Attack Path: Equifax data breach (Section 7.1)

Equifax data breach reveals that the attackers have alter-
native attacks paths at their disposal to accomplish their
goals. For instance, if the network is partitioned properly,
an alternative route for the attacker could be to intercept
network traffic by exploiting CVE-2016-5363/CVE-2016-
5362 at the network service. Thus, speculative analysis
is useful to determine the alternative paths exploitable
by an attacker in case a mitigation strategy is deployed.



15

CLI

Control

DB

Dboard

VM_Run VM_Req

Ad_Conf

Srvr_det

Data

CLI
Control

Dboard

VM_Run VM_Req

Ad_Conf

Srvr_det

Data

DINetwork

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

ECCDINetwork

Hyp

VM_conf

VM_Run

Hyp

VM_conf

VM_Run

Data

Hyp

VM_conf

VM_Run

Data

Vulnerable service

VM_Run

Data

RC Resource Consumption

VM_Run

RC

Path 1 

Path 2

DI

Ad_Conf

RC

Hyp

CVE-2016-5362 or
CVE-2016-5363

RC

CVE-2014-9623

CVE-2014-2573CVE-2017-17051 or
CVE-2015-3241

RC

Path to run a VM
Path to create a new VM
Attack path

Fig. 14: Attack Path: resource consumption attack (Section 7.2)

7.2 Case II: Availability as a requirement
The second attack illustrates the use of ThreatPro in
determining the paths violating the availability require-
ments of an application. Specifically, this attack entails
exhausting the resources to limit the availability of an
application and eventually causing a denial of service.
These attacks typically target content delivery applica-
tions where timely delivery of content is the primary
objective [52], [53]. Recently, Amazon reported that it
has thwarted the biggest attack on its services [50].
The documented information is limited in these cases
to avoid leakage of propriety information that could
potentially be used in future attacks. However, using
the threats published in the NVD, ThreatPro is able to
depict scenarios where an attacker can target individual
services or discover a combination of vulnerabilities to
cause exhaustion of the resources. These attack paths are
shown in Figure 14 and are explained below.

7.2.1 Paths 1 and 2
Using CVE-2016-5362 or CVE-2016-5363 at the network
service, an attacker can intercept traffic and cause a re-
source consumption attack. This vulnerability allows the
interception of traffic destined for other hosts and thus,
could potentially be used to intercept snapshots of the
VM during a migration and consequently enable attack-
ers to exhaust resources. Alternatively, in path 2, exploit-
ing CVE-2014-9623 at the disk image service combined
with a vulnerability at the hypervisor (CVE-2014-2573)
leads to a resource consumption attack. Furthermore,
exploiting either CVE-2017-17051 or CVE-2015-3241 at
the hypervisor also leads to exhausting resources by
repeatedly rebuilding instances with new disk images.

7.2.2 Speculative analysis
Performing speculative analysis reveals alternative paths
that might result in exhausting a resource, e.g., the

vulnerabilities CVE-2017-17051 and CVE-2015-3241 can
be used to exploit the functionality of a hypervisor
to exhaust resources by repeatedly building the same
instance. This causes double allocations and repeating
the process causes a DoS as the resources get exhausted.

These attack scenarios illustrate that a proactive ap-
proach is required to analyze a threat in the Cloud to
explore possible attack paths that can be exploited by
attackers. ThreatPro can be used to perform speculative
cause-effect analysis to determine the impact of a threat
at a single service and to analyze the impact of multiple
threats towards violating a security requirement.

8 DISCUSSION
ThreatPro provides a methodology to perform threat
analysis in dynamic Cloud environments. It is based on
the manual specification of an information flow model
that is developed using HLPNs. Services and threats are
represented as rules or constraints, which are added to
the model and evaluated against security requirements.
As stated in Section 5.4, in contrast to LTSs, HLPNs lever-
age distributed places and allows actions to be applied
locally. Hence, any impact of new rules or constraints is
determined locally at the targeted service. Consequently,
a threat’s propagation starts from the targeted service
instead of the system’s starting point. The latter assists in
performing cause-effect analysis of new services and al-
lows Cloud Service Providers (CSPs) to identify security
implications introduced by a service. The process can be
repeated for threats at different services, and thus, assist
CSPs to track the propagation of threats in the Cloud. In
the following, we discuss how ThreatPro can perform
predictive analysis and how to add new services to the
information flow model.

The modelling of the dynamic interconnections is pri-
marily achieved by launching new VM instances while
the previous ones are either in a running state or at a
later stage of their creation (e.g., final configurations at
the hypervisor). In Petri nets, the actions to places are
local and hence, multiple requests can be launched con-
currently. Furthermore, VM requests can be be restricted
to instantiate only after certain time period has elapsed.
The aim of ThreatPro is to speculatively evaluate the
consequences of threats by ascertaining their potential to
propagate across different layers of the dynamic Cloud
environments. The capability for exploratory analysis
can form the basis of automating this in future work.

The performance analysis and scalability of ThreatPro
is constrained by CPN tools. When considering large-
scale Cloud environments, with thousands of compo-
nents and services, computational complexity can be
a challenge. Nevertheless, CPN tools, by encapsulating
system behavior hierarchically and offering parallel pro-
cessing, provides scalability to the approach. While the
exact performance depends on analysing the model and
function definitions, CPN tools can handle the intricacies
and scale of modern Cloud environments, helping Cloud
service providers make informed decisions [54].



16

8.1 Predictive Analysis
In Sections 6 and 7, we presented how ThreatPro can
perform speculative threat analysis and post-mortem
analysis of security requirements such as confidentiality
and availability. However, ThreatPro can be extended
handle attacks where information is missing or a coun-
termeasure has been applied. In the Equifax data breach
example, exploring possible attack paths after hardening
the network or mitigating the vulnerability at the web
server shows the result of the countermeasure. Addition-
ally, when the network is partitioned properly, but the
CVE-2016-5363 or CVE-2016-5362 are present, either can
be exploited to intercept network traffic from other hosts
and for attackers to circumvent network partitioning.
The ability to complete paths in case of missing informa-
tion or to find alternative paths of attacks can empower
CSPs to mitigate additional attack paths. This results
in eventually moving away from threat analysis being
reactive to proactive. Furthermore, mitigation strategies
can focus on services that have a higher degree of
centrality in attack paths to reduce the impact of attacks.

8.2 Plug and Play Services
As stated in Section 3, Cloud deployments may vary be-
tween vendors. In this paper, the adopted Cloud model
is an abstraction of common services used in the life-
cycle of a VM. However, the model can be extended to
include vendor-specific or additional services to enhance
the Cloud functionality. To achieve this, new places and
their respective transitions and constraints need to be
added to the information flow model. As shown in
Figure 10, the advantage of hierarchical Petri nets is that
it hides the functionality of individual blocks to focus on
the interaction between blocks. This makes extension of
the model simpler, i.e., new functionality can be added as
an independent block and the respective connections can
occur on the edge transitions. The added functionality
can be simulated to assess its influence on the functional
behavior of the Cloud, i.e., if the added functionality
leads to a proper terminating place or introduces any
issue. Similarly, threats introduced with new services can
be added to assess their propagation paths. ThreatPro’s
methodology remains agnostic to underlying technolo-
gies since constraints from both threats and services are
at the functional level. In case the functionality has to be
removed, all that is required is to disconnect the blocks
to restore the previous place of the model.

8.3 Automation
ThreatPro currently relies on the manual generation
of the models and threats as inputs, which can be a
restriction and prone to human errors; however, it is
a common problem in all model-based systems that
require human intervention. ThreatPro already supports
automated speculative analysis as an output of the tool
in Sections 7.1.1 and 7.2.2. Therefore, in this discussion,
we focus on automating building inputs to ThreatPro.

8.3.1 Constructing Petri Net Models of Threats
There is an ongoing effort to create a uniform format
for vulnerabilities in standardized formats [55]. This
data can contain vulnerability preconditions and, to a
certain extent, mechanisms to exploit the vulnerability.
This information could be used to automate the construc-
tion of Petri net specifications for many vulnerabilities
(as was performed manually in Section 5.8). However,
the vulnerability data is limited, especially regarding a
logical specification of the threat and its impact.

8.3.2 Constructing Petri Net Models of System Model
Similarly, automating the generation of Petri net models
for system representation may facilitate the adoption
of ThreatPro. Expanding beyond the manual methods
in Section 5.7, here we explore potential techniques for
automatically constructing Petri net models of systems.

One approach for automation may involve utilizing
the high-level specifications of systems. Specifications
could be represented formally using a domain-specific
language or modeling framework which can then be
translated into a Petri net. Such methods may ensure
that the resulting model accurately captures the intricate
interactions and dependencies within a system [56].

Natural language processing (NLP) offers another
promising approach for automating the generation of
Petri net models from system descriptions. Through
NLP techniques, natural language specifications can be
analyzed [57], and key elements can be extracted to
construct a corresponding Petri net.

Additionally, the automatic construction of Petri net
models could be achieved by extracting information
from system logs. Analyzing logs generated by systems
provides insights into the runtime behavior, resource
utilization, and communication patterns. This data can
be utilized to dynamically generate Petri net models that
capture the evolving dynamics of a system [58].

8.3.3 Automation Limitations
For ThreatPro, the expectation is that threats of interest
will need to be manually defined according to the se-
curity properties of interest and manually incorporated
into a system’s analysis. If detailed vulnerability spec-
ifications are available in the future, then these could
be used to automatically derive threat definitions in
ThreatPro to avoid needing to add threats manually.
However, the types of threats to consider will likely
need to remain a manual process, as how specifications
for systems or vulnerabilities are automatically modelled
will need to take into account the threats of interest.

8.4 Limitations
The threat landscape is evolving rapidly and coverage
for all possible threats is not feasible for a threat analysis
technique. ThreatPro focuses on threats that are publicly
documented in NVD to perform threat analysis. How-
ever, it is also able to incorporate new threats by adding



17

them as additional constraints or rules to the information
flow model, even from other repositories than NVD
(e.g., Microsoft’s security bulletin [59], Google’s open-
source vulnerability database [60]). Thus, ThreatPro can
be extended to consider novel threats associated with a
service and determine the execution paths followed by
incorporating them into the Cloud model.

9 CONCLUSIONS

This paper introduced ThreatPro as a dynamic Cloud
threat analysis methodology that addresses the evolving
Cloud security landscape. By integrating the dynamic
nature of the Cloud into threat analysis, ThreatPro
goes beyond traditional approaches, providing a flexible
framework for assessing potential security threats. Our
key findings in the paper are the following.

ThreatPro offers a powerful framework for conducting
predictive threat analysis in dynamic Cloud environ-
ments. It enables CSPs to identify potential attack paths
and assess their consequences proactively. This approach
helps mitigate security risks before they manifest, mov-
ing Cloud security from a reactive to a proactive stance.

ThreatPro’s flexibility allows for seamlessly integrat-
ing vendor-specific or additional services into the in-
formation flow model. This extensibility simplifies the
process of incorporating new functionality and assessing
its impact on the Cloud’s security. ThreatPro’s modular
approach, with the use of Petri nets, enables the addition
of new services without disrupting the existing model.

The rapidly evolving threat landscape presents a
significant challenge for Cloud security. ThreatPro is
designed to accommodate new threats from various
sources, not limited to the NVD. By enabling the inclu-
sion of novel threats associated with services, ThreatPro
ensures that Cloud security remains up-to-date and re-
silient in the face of emerging security challenges.

In summary, ThreatPro offers a comprehensive and
proactive approach to enhance Cloud security by en-
abling predictive threat analysis, customizing the secu-
rity model with ease, adapting to evolving threat sce-
narios, and positioning it to effectively tackle emerging
security challenges in Cloud environments.

REFERENCES

[1] B. Edwards, S. Hofmeyr, and S. Forrest, “Hype and heavy tails: A
closer look at data breaches,” International Journal of Cybersecurity,
vol. 2, pp. 3–14, 2016.

[2] M. Masdari and M. Jalali, “A survey and taxonomy of dos
attacks in cloud computing,” International Journal of Security and
Communication Networks, vol. 9, pp. 3724–3751, 2016.

[3] H. Abusaimeh, “Security attacks in cloud computing and corre-
sponding defending mechanisms,” Intl. Journal of Advanced Trends
in Computer Science and Engg., vol. 9, pp. 4141–4148, 2020.

[4] D. Sgandurra and E. Lupu, “Evolution of Attacks, Threat Models,
and Solutions for Virtualized Systems,” ACM Computing Surveys,
vol. 48, pp. 1–38, 2016.

[5] N. Gruschka and M. Jensen, “Attack surfaces: A Taxonomy for
Attacks on Cloud Services,” in Proc. of Intl. Conference on Cloud
Computing. Miami, FL, USA: IEEE, 5–10 July 2010, pp. 276–279.

[6] L. Wang, Z. Zhu, Z. Wang, and D. Meng, “Colored Petri net Based
Cache Side Channel Vulnerability Evaluation,” IEEE Access, vol. 7,
pp. 169 825–169 843, 2019.

[7] R. Ritchey and P. Ammann, “Using model checking to analyze
network vulnerabilities,” in Proceedings of the Symposium on Secu-
rity and Privacy, USA, 14–17 May 2000, pp. 156–165.

[8] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song,
“Towards a formal foundation of web security,” in IEEE Computer
Security Foundations Symposium, 17–19 July 2010, pp. 290–304.

[9] K. Torkura, M. Sukmana, M. Meinig, A. Kayem, F. Cheng,
H. Graupner, and C. Meinel, “Securing Cloud Storage Brokerage
Systems Through Threat Models,” in Proceedings of the Interna-
tional Conference on Advanced Information Networking and Applica-
tions. Krakow, Poland: IEEE, 16–18 May 2018, pp. 759–768.

[10] N. Alhebaishi, L. Wang, S. Jajodia, and A. Singhal, “Threat Mod-
eling for Cloud Data Center Infrastructures,” in Intl. Symposium
on Foundations & Practice of Security. Québec, Canada: Springer
International Publishing, 24–25 October 2016, pp. 302–319.

[11] A. Nhlabatsi, J. Hong, D. Kim, R. Fernandez, A. Hussein, N. Fe-
tais, and K. Khan, “Threat-specific security risk evaluation in the
cloud,” IEEE Trans. on Cloud Computing, vol. 9, pp. 1–13, 2018.

[12] P. Wang, W.-H. Lin, P.-T. Kuo, H.-T. Lin, and T. C. Wang, “Threat
risk analysis for cloud security based on attack-defense trees,” in
Proc. of the International Conference on Computing Technology and
Information Management, Seoul, South Korea, 2012, pp. 106–111.

[13] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer, “DAG-based
Attack and Defense Modeling: Don’t Miss the Forest for the
Attack Trees,” Computer Science Review, vol. 13–14, pp. 1–38, 2014.

[14] V. Varadharajan, “Petri net based modelling of information flow
security requirements,” in Proceedings of the Computer Security
Foundations Workshop, Franconia, NH, USA, 1990, pp. 51–61.

[15] T. DeMarco, Structured Analysis and System Specification. Engle-
wood Cliffs, NJ, USA: Prentice-Hall, 1979.

[16] A. Naskos, A. Gounaris, H. Mouratidis, and P. Katsaros, “Online
analysis of security risks in elastic cloud applications,” IEEE Cloud
Computing, vol. 3, pp. 26–33, 2016.

[17] D. Santos, R. Marinho, G. Schmitt, C. Westphall, and C. Westphall,
“A framework and risk assessment approaches for risk-based
access control in the cloud,” Journal of Network and Computer
Applications, vol. 74, pp. 86–97, Oct. 2016.

[18] A. Nhlabatsi, K. Khan, J. Hong, D. Kim, R. Fernandez, and
N. Fetais, “Quantifying Satisfaction of Security Requirements of
Cloud Software Systems,” IEEE Trans. on Cloud Computing, pp.
1–18, 2021.

[19] A. Sen and S. Madria, “Risk assessment in a sensor cloud frame-
work using attack graphs,” IEEE Trans. on Services Computing,
vol. 10, pp. 942–955, 2017.

[20] S. Islam, M. Ouedraogo, C. Kalloniatis, H. Mouratidis, and
S. Gritzalis, “Assurance of security and privacy requirements
for cloud deployment models,” IEEE Trans. on Cloud Computing,
vol. 6, pp. 387–400, 2018.

[21] P. Saripalli and B. Walters, “QUIRC: A Quantitative Impact and
Risk Assessment Framework for Cloud Security,” in Proceedings
of the International Conference on Cloud Computing. Miami, FL,
USA: IEEE, 2010, pp. 280–288.

[22] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk
management using bayesian attack graphs,” IEEE Trans. on De-
pendable and Secure Computing, vol. 9, pp. 61–74, 2012.

[23] D. Gonzales, J. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods,
“Cloud-Trust—a Security Assessment Model for Infrastructure as
a Service (IaaS) Clouds,” IEEE Trans. on Cloud Computing, vol. 5,
pp. 523–536, 2017.

[24] S. Y. Enoch, J. B. Hong, and D. S. Kim, “Security modelling and
assessment of modern networks using time independent graphi-
cal security models,” Journal of Network and Computer Applications,
vol. 148, p. 102448, 2019.

[25] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-Nelson, and
H. Lim, “Attack graph-based moving target defense in software-
defined networks,” IEEE Trans. on Network and Service Manage-
ment, vol. 17, no. 3, pp. 1653–1668, 2020.

[26] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson,
“Statistics-driven workload modeling for the cloud,” in Interna-
tional Conference on Data Engineering Workshops. Long Beach, CA,
USA: IEEE, 1–6 March 2010, pp. 87–92.

[27] F. Machida, E. Andrade, D. Kim, and K. Trivedi, “Candy:
Component-based Availability Modeling Framework for Cloud



18

Service Management Using SysML,” in Proceedings of the Interna-
tional Symposium on Reliable Distributed Systems. Madrid, Spain:
IEEE, 4–7 October 2011, pp. 209–218.

[28] F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev, and P. Heegaard,
“Modeling of aggregated iot traffic and its application to an iot
cloud,” Proceedings of the IEEE, vol. 107, pp. 679–694, 2019.

[29] S. Manvi and G. Shyam, “Resource Management for IaaS in
Cloud Computing: A Survey,” Intl. Journal of Network & Computer
Applications, vol. 41, pp. 424–440, 2014.

[30] A. Younge, G. Laszewski, L. Wang, S. Lopez-Alarcon, and
W. Carithers, “Efficient Resource Management for Cloud Com-
puting Environments,” in Proc. of the International Conference on
Green Computing. Chicago, IL, USA: IEEE, 2010, pp. 357–364.

[31] R. Smith, “Computing in the cloud,” International Journal of
Research-Technology Management, vol. 52, pp. 65–68, 2009.

[32] X. Jin, Q. Wang, X. Li, X. Chen, and W. Wang, “Cloud virtual ma-
chine llifecycle security framework based on trusted computing,”
Journal of Tsinghua Science & Technology, vol. 24, pp. 520–534, 2019.

[33] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: Toward an
open-source solution for cloud computing,” International Journal
of Computer Applications, vol. 55, no. 3, pp. 38–42, Oct. 2012.

[34] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-Source
Cloud-Computing System,” in Proc. of the Intl. Symposium on
Cluster Computing and the Grid. IEEE/ACM, 2009, pp. 124–131.

[35] S. Manzoor, T. Vateva-Gurova, R. Trapero, and N. Suri, “Threat
Modeling the Cloud: An Ontology Based Approach,” in Informa-
tion and Operational Technology Security Systems. Springer Intl.
Publishing, 2019, pp. 61–72.

[36] A. Desai, R. Oza, P. Sharma, and B. Patel, “Hypervisor: A survey
on concepts and taxonomy,” International journal of Innovative
Technology and Exploring Engineering, vol. 2, pp. 222–225, 2013.

[37] Z. Benzadri, F. Belala, and C. Bouanaka, “Towards a Formal
Model for Cloud Computing,” in Service-Oriented Computing.
Cham: Springer International Publishing, 2013, pp. 381–393.

[38] K. Bósa, R. Holom, and M. Vleju, A Formal Model of Client-Cloud
Interaction. Springer Intl. Publishing, 2015, pp. 83–144.

[39] H. Sahli, C. Bouanaka, and A. Dib, “Towards a Formal Model for
Cloud Computing Elasticity,” in IEEE 23rd International WETICE
Conference, Parma, Italy, 23–25 June 2014, pp. 359–364.

[40] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Progress on
the State Explosion Problem in Model Checking. Berlin, Heidelberg:
Springer-Verlag, 2001, pp. 176—-194.

[41] K. Salimifard and M. Wright, “Petri net-based modelling of
workflow systems: An overview,” European journal of operational
research, vol. 134, pp. 664–676, 2001.

[42] A. Brogi, A. Canciani, J. Soldani, and P. Wang, A Petri Net-
Based Approach to Model and Analyze the Management of Cloud
Applications. Springer Berlin Heidelberg, 2016, pp. 28–48.

[43] R. Boubour, C. Jard, A. Aghasaryan, E. Fabre, and A. Benveniste,
“A petri net approach to fault detection and diagnosis in dis-
tributed systems,” in Proceedings of the IEEE Conference on Decision
and Control, vol. 1, San Diego, CA, USA, Dec. 1997, pp. 720–725.

[44] ISO Central Secretary, “High-level Petri nets - Part 1: Concepts,
Definitions and Graphical notation,” Intl. Organization for
Standardization, Geneva, Switzerland, Standard ISO/IEC 15909-
1:2019, Aug. 2019. [Online]. Available: https://www.iso.org/
standard/67235.html

[45] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Commun. ACM, vol. 18, no. 8, pp. 453—
-457, aug 1975.

[46] K. Jensen and L. Kristensen, CPN ML Programming. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, ch. 3, pp. 43–77.

[47] K. Jensen, L. Kristensen, and L. Wells, “Coloured Petri Nets and
CPN Tools for Modelling and Validation of Concurrent Systems,”
International Journal on Software Tools for Technology Transfer, vol. 9,
pp. 213–254, 2007.

[48] NIST, “National vulnerability database.” [Online]. Available:
https://nvd.nist.gov/

[49] P. Wang and C. Johnson, “Cybersecurity incident handling: a case
study of the equifax data breach.” Issues in Information Systems,
vol. 19, pp. 150–159, 2018.

[50] J. Porter, “Amazon Mitigated the Largest DDoS Attack Ever
Recorded,” 2020. [Online]. Available: https://www.theverge.
com/2020/6/18/21295337/

[51] S. Cowley, “Equifax to Pay at Least 650 Million in Largest-Ever
Data Breach Settlement,” 2019. [Online]. Available: https://www.
nytimes.com/2019/07/22/business/equifax-settlement.html

[52] Cloudfare, “Famous DDoS attacks: The largest DDoS attacks
of all time,” 2021. [Online]. Available: https://www.cloudflare.
com/en-gb/learning/ddos/famous-ddos-attacks

[53] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in IoT:
Mirai & other Botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[54] CPN Tools, “Performance analysis,” 2013. [On-
line]. Available: https://cpntools.org/category/documentation/
doc-tasks-performance/

[55] B. Jordan, R. Piazza, and T. Darley, Eds., STIX Version
2.1. OASIS Standard, 10 June 2021. [Online]. Available:
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.pdf

[56] J. Brandt and W. Reisig, “Modeling Erlang processes as Petri
nets,” in Proceedings of the 17th ACM SIGPLAN International Work-
shop on Erlang, ser. Erlang 2018. ACM, 2018, pp. 6–66.

[57] E. Sarmiento, J. C. Leite, E. Almentero, and G. S. Alzamora,
“Test scenario generation from natural language requirements
descriptions based on petri-nets,” Electronic Notes in Theoretical
Computer Science, vol. 329, pp. 123–148, 2016.

[58] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “In-
ferring models of concurrent systems from logs of their behavior
with CSight,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. ACM, 2014, pp. 468–479.

[59] MS, “Microsoft security response center,” n.d. [Online]. Available:
https://msrc.microsoft.com/update-guide/vulnerability

[60] Google, “Open source vulnerabilities,” n.d. [Online]. Available:
https://osv.dev/list

Salman Manzoor has a PhD from Lancaster
University and is currently employed at Bar-
clays. His research interests are in threat
modelling and security assessment. His pro-
file is available at https://ssg.lancs.ac.uk/people/
salman-manzoor/.

Antonios Gouglidis is a Senior Lecturer (As-
sociate Professor) at the School of Computing
and Communications at Lancaster University in
the UK. He is interested in formal methods for
security. His professional profile is available at
https://ssg.lancs.ac.uk/people/gouglidis/.

Matthew Bradbury is a Lecturer at the School
of Computing and Communications at Lancaster
University in the UK. He is interested in the se-
curity, privacy and trust in resource-constrained
and distributed systems. His professional profile
is available at https://mbradbury.github.io/.

Neeraj Suri is a Distinguished Professor of Cy-
bersecurity at Lancaster University and an ad-
junct Professor in the Department of CS at the
Univ of Massachusetts at Amherst. His research
interests are in the specification and analysis of
system level security. His professional profile is
available at https://ssg.lancs.ac.uk/people/suri/.

https://www.iso.org/standard/67235.html
https://www.iso.org/standard/67235.html
https://nvd.nist.gov/
https://www.theverge.com/2020/6/18/21295337/
https://www.theverge.com/2020/6/18/21295337/
https://www.nytimes.com/2019/07/22/business/equifax-settlement.html
https://www.nytimes.com/2019/07/22/business/equifax-settlement.html
https://www.cloudflare.com/en-gb/learning/ddos/famous-ddos-attacks
https://www.cloudflare.com/en-gb/learning/ddos/famous-ddos-attacks
https://cpntools.org/category/documentation/doc-tasks-performance/
https://cpntools.org/category/documentation/doc-tasks-performance/
https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.pdf
https://msrc.microsoft.com/update-guide/vulnerability
https://osv.dev/list
https://ssg.lancs.ac.uk/people/salman-manzoor/
https://ssg.lancs.ac.uk/people/salman-manzoor/
https://ssg.lancs.ac.uk/people/gouglidis/
https://mbradbury.github.io/
https://ssg.lancs.ac.uk/people/suri/


1

Enabling Multi-Layer Threat Analysis in Dynamic
Cloud Environments - Supplemental

Salman Manzoor§, Antonios Gouglidis, Matthew Bradbury and Neeraj Suri
Lancaster University, UK

Email: {s.manzoor1, a.gouglidis, m.s.bradbury, neeraj.suri}@lancaster.ac.uk

✦

Listing 1: CPN ML implementation of Equation (1)
1 colset Usernames = string; (* Type of Usernames is string *)
2 colset Passwords = string; (* Type of Passwords is string *)
3 colset UNxPW = record un:Usernames * pw:Passwords; (* Type for multiple fields *)
4 var un:Usernames; (* Variable of type Usernames *)
5 var pw:Passwords; (* Variable of type Passwords *)
6 var U,C:UNxPW; (* Variables of type UNxPW *)
7 Auth_S = [#un(U)<>O andalso #un(U)=#un(C) andalso #pw(U)=#pw(C)] (* Trans. guard*)
8 O’ = Oˆ#un(U) (* Username is added to online users *)
9 Auth_F = [#un(U)=O orelse #un(U)=#un(C) orelse #pw(U)=#pw(C)] (* Trans. guard *)

Listing 2: CPN ML implementation of Equation (8)
1 colset CPU = string; (* Type of CPU is string *)
2 colset RAM = int; (* Type of RAM is int *)
3 colset DISK = int; (* Type of RAM is int *)
4 colset USERNAMExCPUxRAMxDISK = record un:USERNAME * cpu:CPU * ram:RAM * disk:DISK
5 var VM_req:USERNAMExCPUxRAMxDISK; (* Variable of type USERNAMExCPUxRAMxDISK *)
6 colset LOCxDC= record loc:LOC * dc:DC; (* Type of multiple fields *)
7 var srvr:LOCxDC; (* Type of LOCxDC *)
8 colset VMCONF = product USERNAMExCPUxRAMxDISK * LOCxDC (* Immutable fields *)
9 var VM_req_srvr:VMCONF; (* Variable of type VMCONF *)

10 colset IP = string; (* Type of IP is string *)
11 colset MAC= string; (* Type of MAC is string *)
12 colset IPxMAC= record ip:IP * mac:MAC; (* Type of multiple fields *)
13 var ret_dhcp:IPxMAC; (* Variable of type IPxMAC *)
14 colset DI = string; (* Type of DI is string *)
15 var get_di:DI; (* Variable of type DI *)
16 colset FCONF = product VMCONF * DI * IPxMAC;
17 var config:FCONF;
18 Final_confs = [#mac(ret_dhcp) = ret_vnic] (* Trans. guard*)

Listing 3: CPN ML implementation of Equation (10) and Equation (12)
1 colset SERVICE = string; (* Type of service is string *)
2 colset ISSUE = string; (* Type of ISSUE is string *)
3 colset SERxISS = record s:SERVICE * i:ISSUE;
4 var ser, rc, iss:SERxISS; (* Variable of type SERxISS *)
5 var act, atk:STRING;
6 PreCon_S = [#s(ser) = #s(rc) andalso #i(ser) = #i(rc)] (* Trans. guard*)
7 Exploit_S = if #i(iss) = act
8 then 1‘"bypass"
9 else empty (* Trans. guard and output condition merged *)

§. The research was conducted when the author was affiliated with Lancaster University.


	Enabling_Multi_Layer_Threat_Analysis_in_Dynamic_Cloud_Environments__R1_-3
	Introduction
	Problem Space and Contributions
	Paper Organization

	Related Work
	Asset-based Threat Analysis
	Graphical Security Models
	Synopsis

	Building blocks of ThreatPro
	Block I: Functional Cloud Model
	Block II: Information Flow Model
	Block III: Threat Analysis
	Threat Model

	ThreatPro's Block I: Defining the Functional Model of the Cloud
	Information Flow in Launching a VM

	ThreatPro's Block II: Defining the Information Flow model
	A Basic Transition System
	Normal Behavior
	Incorporating Malicious Inputs to the System
	Representing a Transition System
	Labelled Transition System (LTS)
	Petri nets

	ThreatPro's Requirements
	Instantiation of the Cloud Login System
	Instantiation of the Cloud Functional Behavior
	Instantiation of a Threat's Behavior
	Reconnaissance Step
	Exploit Step

	ThreatPro Block III: Threat Analysis
	Enumerating the Cloud behavior
	Threat analysis

	Validation: Real-world Case Studies
	Case I: Confidentiality as a Requirement
	Speculative Analysis

	Case II: Availability as a requirement
	Paths 1 and 2
	Speculative analysis


	Discussion
	Predictive Analysis
	Plug and Play Services
	Automation
	Constructing Petri Net Models of Threats
	Constructing Petri Net Models of System Model
	Automation Limitations

	Limitations

	Conclusions
	References
	Biographies
	Salman Manzoor
	Antonios Gouglidis
	Matthew Bradbury
	Neeraj Suri


	Enabling_Multi_Layer_Threat_Analysis_in_Dynamic_Cloud_Environments__R1_-2

