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Abstract

This thesis is comprised of four chapters.

Chapter 1 consists of preliminary definitions and descriptions of the notation we will

be using throughout.

In Chapter 2, we ask the following question: ‘for a given Banach space X and an

arbitrary closed subspace Y of X, is there necessarily an operator T ∈ B(X) for

which kerT = Y ?’

We prove that the answer to this question is yes when X = c0(Γ) or X = ℓp(Γ)

for Γ uncountable and 1 < p <∞, and that the answer is no for X = ℓ1(Γ).

In Chapter 3, we classify the lattice of closed ideals of the space of bounded operators

on the direct sums X =
(⊕

n∈N ℓ
n
2

)
c0
⊕ c0(Γ) and

(⊕
n∈N ℓ

n
2

)
ℓ1
⊕ ℓ1(Γ) for every

uncountable cardinal Γ.

In Chapter 4, we let X be one of the following Banach spaces, for which we know

the entire lattice of closed ideals of the Banach algebra B(X) of bounded operators

on X :

• X = (ℓ12 ⊕ ℓ22 ⊕ · · · ⊕ ℓn2 ⊕ · · · )c0 or X = (ℓ12 ⊕ ℓ22 ⊕ · · · ⊕ ℓn2 ⊕ · · · )ℓ1 ,

• X = (ℓ12⊕ℓ22⊕· · ·⊕ℓn2 ⊕· · · )c0 ⊕c0(Γ) or X = (ℓ12⊕ℓ22⊕· · ·⊕ℓn2 ⊕· · · )ℓ1 ⊕ℓ1(Γ)

for an uncountable index set Γ,

• X = C0(KA), the Banach space of continuous functions vanishing at infinity

on the locally compact Mrówka space KA associated with an almost disjoint

family A of infinite subsets of N, constructed such that C0(KA) admits ‘few

operators’.

We show that in each of these cases, the quotient algebra B(X)/I has a unique

algebra norm for every closed ideal I of B(X).
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Chapter 1

Preliminaries

The purpose of this chapter is to detail the notation and constructions that will

appear frequently, and to give some classical results of Banach space theory used

throughout this thesis. In each of Section 1.4, Section 1.5, and Section 1.6, we will

give technical details pertaining to specific Banach spaces that will be key points of

focus to us in later chapters.

1.1 Basic and miscellaneous terminology

We begin by detailing the terminology and notation that will repeatedly appear over

the course of this thesis.

The blackboard letters N, Q, R, and C will denote the set of natural, rational,

real, and complex numbers respectively. We abide by the convention that 0 /∈ N

and write N0 = N ∪ {0}. By a Banach space we mean a complete, normed vector

space. The choice of scalar field for all vector spaces in this thesis will be denoted

K, and can always be taken as equal to either of R or C unless otherwise stated.

A Banach algebra is a Banach space equipped with a multiplication between its

elements which is submultiplicative in the given norm. We define a bounded operator

to be a bounded, linear function between two Banach spaces, recalling that in this

setting, boundedness is equivalent to continuity. We sometimes simply refer to

bounded operators as operators since we will never be involving their unbounded

counterparts. The following Banach spaces appear repeatedly over the course of this

thesis:

1



2 CHAPTER 1. PRELIMINARIES

(a) Let B(X;Y ) denote the set of all bounded operators from a Banach space X

to a Banach space Y . Then B(X;Y ) is a Banach space with respect to the

operator norm, defined as

∥T∥op = sup{∥Tx∥ : (x ∈ X) ∧ (∥x∥ ⩽ 1)} .

We use the abbreviation B(X) := B(X;X) and note that B(X) is a Banach

algebra with respect to the operator norm, and with multiplication given by

operator composition.

(b) Let K be a compact Hausdorff space. We define C(K) to be the Banach

space of continuous functions from K to the scalar field K, equipped with the

supremum norm:

∥f∥∞ = sup{|f(x)| : x ∈ K} .

The specific topological spaces K that we will be using to define C(K) spaces

will be introduced in their relevant sections.

(c) For a locally compact Hausdorff space K (i.e. every element in K has a com-

pact neighbourhood), C0(K) will denote the space of all continuous functions

K → K vanishing at infinity, in the sense that the set {x ∈ K : |f(x)| ⩾ ϵ} is

compact for every ϵ > 0. These spaces are also equipped with the supremum

norm.

(d) Let X be a Banach space, and let Y be a closed subspace of X. The quotient

space X/Y is defined as the set {x + Y : x ∈ X} of all cosets of Y in X,

equipped with the norm

∥x+ Y ∥X/Y = inf{∥x+ y∥ : y ∈ Y } .

We say that a Banach space Z is a quotient ofX if Z is isometrically isomorphic

to X/Y for some closed subspace Y of X.

Seminorms on X which have kernel Y naturally induce norms on the quotient

space X/Y , and vice versa. As such, we will use the same notation ∥ · ∥X/Y

for the quotient norm on X/Y and the corresponding seminorm on X.
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Let A be a Banach algebra. An ideal of A is a non-empty subset I of A for

which a, b ∈ I =⇒ a + b ∈ I, and a ∈ I, b, c ∈ A =⇒ ca, ab, cab ∈ I. We

say that I is a closed ideal if it is closed in A.

Suppose that A is a Banach algebra, and that I is a closed ideal of A. Then

A/I is a Banach algebra with respect to the quotient norm ∥ · ∥A/I , with

multiplication defined by

(a+ I) · (b+ I) = ab+ I

for every a, b ∈ A.

(e) We require the Banach sequence spaces c0 and ℓp for 1 ⩽ p ⩽ ∞. These spaces

appear in the subsequent two sections, but we defer their precise definition

until Section 1.4 where we explain their generalised, transfinite counterparts.

They are defined in the usual way.

We omit subscripts on norms in this thesis, since this practice is unlikely to cause

confusion for us. Let Y denote the closure of a subset Y of a topological space X.

The density character of a topological space X is the least cardinality of any subset

Y which is dense in X, meaning that Y = X. A topological space is separable if it

has density character at most ℵ0, and is non-separable otherwise.

For a Banach spaceX, we write IX ∈ B(X) to denote the identity operator onX,

with action x 7→ x, and as usual we allow ourselves to abandon the subscript X when

it is not necessary to distinguish between different identity operators. Our notation

for the closed unit ball of a Banach space X will be BX := {x ∈ X : ∥x∥ ⩽ 1}.

For a Banach space X, we write X∗ to mean the (topological) dual space of

X, defined as the set of all functionals on X (i.e. the continuous linear functions

from X to its scalar field). We will use the duality bracket notation ⟨x, f⟩ = f(x)

whenever x ∈ X and f ∈ X∗. For each pair of Banach spaces X and Y , and

each T ∈ B(X;Y ), we define the adjoint (or dual) T ∗ of T as the unique operator

Y ∗ → X∗ for which ⟨Tx, f⟩ = ⟨x, T ∗f⟩ for every x ∈ X and every f ∈ Y ∗.

Let T ∈ B(X;Y ) for Banach spaces X and Y , and let c > 0. We say that T is

bounded below by c if ∥Tx∥ ⩾ c∥x∥ for every x ∈ X. If there exists c > 0 such that

T is bounded below by c, we say that T is bounded below. We will use repeatedly
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the fact that an operator between Banach spaces is bounded below if and only if it

is injective and has closed range. We write imT for the image of an operator T , and

kerT for the kernel.

For Banach spaces X and Y , an invertible operator X → Y is an isomorphism.

If such an operator exists, we say that X and Y are isomorphic, and we write

X ∼= Y . If an operator preserves norms, it is an isometry. If there is an isometric

isomorphism between X and Y , we say that the two Banach spaces are isometric,

and we write X ≡ Y .

Let X be a Banach space, and let Y be a closed subspace of X. An operator

P ∈ B(X) is a projection onto Y if P 2 = P and im(P ) = Y . If such an operator

exists, we say that Y is complemented in X. On occasion, we will treat a projection

P onto Y as an element of B(X;Y ) by identifying it with its corestriction to Y .

This is unlikely to cause confusion because each time a projection is introduced, its

domain and codomain will be clear.

1.2 Operators on direct sums of Banach spaces

Let N be an infinite subset of N and let p ∈ [1,∞). When D = c0 or D = ℓp, we

define the D-direct sum of an N -indexed sequence (Xn)n∈N of Banach spaces to be

the set
(⊕

n∈N Xn

)
D

consisting of N -indexed sequences (xn)n∈N with xn ∈ Xn for

each n ∈ N such that

∥xn∥ −→
N∋n→∞

0 for D = c0 ,∑
n∈N

∥xn∥p <∞ for D = ℓp .

Vector space operations on
(⊕

n∈N Xn

)
D

are coordinatewise, and the norm is given

by ∥∥(xn)n∈N∥∥ =

maxn∈N∥xn∥ for D = c0 ,(∑
n∈N∥xn∥p

) 1
p for D = ℓp .

Whenever a direct sum of Banach spaces is discussed without specifying the

corresponding space D defining its structure, this is because the choice of D is not

relevant and the discussion holds in full generality. Let ∆, Γ be subsets of N, finite
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or infinite, and for each δ ∈ ∆, γ ∈ Γ, let Xδ and Yγ be Banach spaces. Given an

operator

T : X =
⊕
δ∈∆

Xδ →
⊕
γ∈Γ

Yγ = Y (1.2.1)

between direct sums of Banach spaces, we associate with it the |Γ| × |∆| matrix

[T ] := (Tγ,δ)γ∈Γ,δ∈∆ whose (γ, δ)th entry is defined as

Tγ,δ = QγTJδ ∈ B(Xδ, Yγ) ,

where Qγ and Jδ are the standard projection Y → Yγ and inclusion Xδ → X

respectively.

The action of T on a sequence x = (xδ)δ∈∆ is given by the matrix-vector multipli-

cation [T ](xδ)δ∈∆, with the vector considered as a column in this setting. Frequently

for us in Chapter 3 and Chapter 4, we will be concerned with 2 by 2 matrices de-

scribing operators on a direct sum of a pair of Banach spaces.

Fix a space D ∈ {ℓp : 1 ⩽ p ⩽ ∞} ∪ {c0} and a subset N of N. Whenever we

have an N -indexed sequence of operators (Ti : Xi → Yi)i∈N between Banach spaces

Xi and Yi for every i ∈ N , we may define the operator

⊕
i∈N

Ti :

(⊕
i∈N

Xi

)
D

→

(⊕
i∈N

Yi

)
D

; (xi)i∈N 7→ (Tixi)i∈N .

The corresponding matrix to the above operator is diagonal, with entries Ti in

position (i, i) for each i ∈ N , and is 0 elsewhere. It is easy to verify that its norm is

sup{∥Ti∥ : i ∈ N}.

1.3 Ideals and Quotients of B(X)

An operator ideal (in the terminology of Pietsch [54]) is an assignment I which

designates to each pair (X, Y ) of Banach spaces a subspace I (X;Y ) of B(X;Y )

for which:

(i) there exists a pair (X, Y ) of Banach spaces for which I (X;Y ) ̸= {0};
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(ii) for any quadruple (W,X, Y, Z) of Banach spaces and any three operators S ∈

B(W ;X), T ∈ I (X;Y ), U ∈ B(Y ;Z), we have that UTS ∈ I (W ;Z).

We remark that the combination of the above two conditions implies the following

third condition:

(iii) for every pair (X, Y ) of Banach spaces, I (X;Y ) contains every finite-rank

operator X → Y .

Write I (X) to abbreviate I (X;X). For any operator ideal I , the map I sending

a pair of Banach spaces (X, Y ) to the norm closure of I (X;Y ) in B(X;Y ) is also

an operator ideal. If I = I , then we call I a closed operator ideal. Over the

course of this thesis, we will require the following operator ideals:

(a) For a Banach space D, we write GD for the assignment which designates to a

pair (X, Y ) of Banach spaces the subspace GD(X;Y ) of B(X;Y ) consisting of

operators T factoring through D, in the sense that T = UV for some operators

U ∈ B(D;X), V ∈ B(X;D). The assignment GD is an operator ideal when

D ∼= D ⊕ D (see e.g. the discussion after [40, Definition 3.6] for a proof of

this), which we state here for future reference holds true for the spaces D = c0

and D = ℓ1.

(b) We use the notation K to denote the assignment which maps every pair (X, Y )

of Banach spaces to the subspace K (X;Y ) of B(X;Y ) consisting of compact

operators from X to Y , which are those operators T ∈ B(X;Y ) for which

T (BX) is compact. For an operator T ∈ B(X;Y ), the quantity

∥T∥e := ∥T + K (X;Y )∥

is the essential norm of T . For a Banach space X, the quotient B(X)/K (X)

is colloquially the Calkin algebra of X.

(c) Let κ be an infinite cardinal. An operator T ∈ B(X;Y ) is κ-compact if for

each ϵ > 0, the closed unit ball BX of X contains a subset Xϵ with |Xϵ| < κ

such that

inf{∥T (x− y)∥ : y ∈ Xϵ} ⩽ ϵ
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for every x ∈ BX . Writing Kκ(X;Y ) for the set of κ-compact operators

from X to Y , we obtain a closed operator ideal Kκ. Notice that the definition

of ℵ0-compactness is that of compactness, so κ-compactness is indeed a gen-

eralisation of compactness. Naturally, we refer to the quotient B(X)/Kκ(X)

as the κ-Calkin algebra of X.

(d) An operator T ∈ B(X;Y ) is strictly singular if there exists no infinite dimen-

sional subspace of X on which T is bounded below. The assignment S which

designates to two Banach spaces X and Y the space S (X;Y ) of all strictly

singular operators X → Y , is a closed operator ideal. We note that for every

pair (X, Y ) of Banach spaces, we have that K (X;Y ) ⊆ S (X;Y ), with it

possible for this inclusion to be strict.

1.4 Transfinite Banach sequence spaces

Here, we define some generalisations of the classical Banach sequence spaces c0 and

ℓp for 1 ⩽ p ⩽ ∞. For this section, let Γ be an arbitrary indexing set.

(a) Define ℓ∞(Γ) to be the set of all bounded functions Γ → K, which is a Banach

space with the supremum norm.

(b) Define the space c0(Γ) of functions f : Γ → K for which {γ ∈ Γ ; |f(γ)| > ϵ}

is finite for all ϵ > 0. This is also a Banach space which we equip with the

supremum norm.

(c) For 1 ⩽ p <∞, we define the space ℓp(Γ) to be the set of functions f : Γ → K

which satisfy
∑

γ∈Γ |f(γ)|p < ∞. This is a Banach space with respect to the

norm ∥f∥ = (
∑

γ∈Γ |f(γ)|p)
1
p .

We consider elements of these spaces as sequences of scalars indexed by Γ, and write

ℓ∞, c0, and ℓp respectively whenever Γ = N. Further, when Γ = {1, . . . , n}, we write

ℓ∞(Γ) = c0(Γ) = ℓn∞, and ℓp(Γ) = ℓnp .

Let X be one of the spaces in the list above. We write (eγ)γ∈Γ for the set of

standard unit vectors of X, that is, eγ has value 1 in position γ ∈ Γ and 0 elsewhere.

We notice here that the notation eγ does not include reference to which sequence
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space it belongs to, and remark that this is unlikely to cause confusion. The support

of a (possibly transfinite) sequence x in X is then defined as

supp(x) := {γ ∈ Γ : xγ ̸= 0} .

It is inherent in the above definitions that the support of any element of c0(Γ) or

ℓp(Γ) for 1 ⩽ p < ∞ must be at most countable, regardless of the cardinality of Γ.

This can not be said for ℓ∞(Γ).

The spaces c0(Γ) and c0(∆) (respectively ℓp(Γ) and ℓp(∆) for 1 ⩽ p ⩽ ∞) are

isometrically isomorphic whenever |Γ| = |∆|. Thus for these Banach spaces we may

freely replace the indexing set Γ with the cardinal |Γ|, or with any other set of

cardinality |Γ| whenever it is convenient to do so.

We have that c0(Γ)∗ ≡ ℓ1(Γ), ℓ1(Γ)∗ ≡ ℓ∞(Γ), and for 1 < p <∞, ℓp(Γ)∗ ≡ ℓq(Γ),

where q is the conjugate exponent of p, i.e. the unique real number that solves

p−1 + q−1 = 1. As is standard practice, we make identifications of these spaces,

replacing all of these isometries with equalities. We have that for 1 < p < ∞, the

canonical embedding of ℓp(Γ) in ℓp(Γ)∗∗ is an isometric isomorphism, and hence the

space ℓp(Γ) is reflexive.

Daws [12, Theorem 7.4] has shown that for X = c0(Γ) or X = ℓp(Γ), where Γ is

an infinite cardinal and 1 ⩽ p <∞, the lattice of closed ideals of B(X) is

{0} ⊊ K (X) ⊊ Kℵ1(X) ⊊ · · · ⊊ Kκ(X) ⊊ Kκ+(X) ⊊ · · ·

· · · ⊊ KΓ(X) ⊊ KΓ+(X) = B(X) , (1.4.1)

where κ+ denotes the cardinal successor of κ.

An alternative description of the closed ideals of B(X) is given in [30, Theo-

rem 1.5], where it is shown that the non-zero closed ideals of B(X) take the form

SXκ(X), where Xκ = c0(κ) in the case of X = c0(Γ), and Xκ = ℓp(κ) in the case

that X = ℓp(Γ), and

SXκ(X) := {T ∈ B(X) : T is not bounded below on any copy of Xκ} .

Comparing this result with Daws’, we can identify the ideals Kκ(X) and SXκ(X) in
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n
2

)
D
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this setting. This lattice of closed ideals will be of key importance to us in Chapter 3

and Chapter 4.

1.5 The spaces
(⊕

n∈N ℓ
n
2

)
D

for D ∈ {c0, ℓ1}

Let X be either of the spaces
(⊕

n∈N ℓ
n
2

)
D

for D = c0 or D = ℓ1, with the latter

being the dual space of the former. Then it was shown in [40] by Laustsen, Loy and

Read, and in [41] by Laustsen, Schlumprecht and Zsak respectively, that the lattice

of closed ideals of B(X) is

{0} ⊊ K (X) ⊊ GD(X) ⊊ B(X) . (1.5.1)

Again, we will be focusing heavily on this lattice of ideals in Chapter 3 and Chapter 4.

The following result pertains to the middle inclusion of the lattice (1.5.1). We record

it here for future reference, and to highlight the importance of ‘factorisation through

idempotent’-style results in the domain of ideal classification.

Proposition 1.5.1. Let D = c0 or D = ℓ1, and let X =
(⊕

n∈N ℓ
n
2

)
D
. For every

operator T ∈ B(X) \ K (X), there exist operators A ∈ B(X;D), B ∈ B(D;X) for

which ID = ATB.

Proof. [40, Theorem 3.2] is a much more general version of this result, and [40,

Example 3.9] explains why the result is applicable to the spaces c0 and ℓ1.

The purpose of the above proposition in the ideal classification (1.5.1) is rather

simple. It proves immediately that there could not possibly be a closed ideal lying

strictly in between K (X) and GD(X). Indeed, if J is a closed ideal of B(X)

containing K (X) strictly, then it contains some noncompact operator T . Let R ∈

GD(X) and decompose as R = UV for U ∈ B(D;X), V ∈ B(X;D). Taking

A ∈ B(X;D), B ∈ B(D;X) with ID = ATB, we then see that R = (UA)T (BV ),

proving that R ∈ J . It follows that GD(X) ⊆ J , so because J is closed, we have

that GD(X) ⊆ J as claimed.

We shall sometimes make reference to the standard basis of
(⊕

n∈N ℓ
n
2

)
D
. This

basis is simply the sequence formed by concatenating the finite sequences of standard

basis vectors of the Hilbert spaces ℓn2 for n ∈ N, in ascending order of n.
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1.6 Almost disjoint families and Mrówka spaces

The following century-old combinatorial result originated from Sierpiński in [58].

We say that a family A of sets is almost disjoint if any distinct sets A,B ∈ A have

finite intersection.

Theorem 1.6.1. Let S be a countably infinite set. There exists an almost disjoint

family A of infinite subsets of S of cardinality 2ℵ0.

Proof. Let j : S → Q be a bijection. To each r ∈ R \Q, assign a sequence (srn)n∈N

in S such that j(srn) → r. Then

A := {{srn : n ∈ N} : r ∈ R \Q}

suffices.

We use this result to define a topological space as follows. Let [N]<ω and [N]ω

denote the sets of all finite and infinite subsets of N, respectively.

Definition 1.6.2. Consider a family A ⊆ [N]ω which is almost disjoint. Define a

set

KA := {xn : n ∈ N} ∪ {yA : A ∈ A} ,

with topology such that for each n ∈ N, xn is isolated in KA, and for each A ∈ A,

the collection of sets of the form

{yA} ∪ {xn : n ∈ A \ F} where F ⊂ N is finite

is a neighbourhood basis of yA.

The topological space KA is the Mrówka space associated with A, also known as

the Alexandroff–Urysohn space, the Ψ-space, and the Isbell–Mrówka space.

Some important topological properties about Mrówka spaces are the following.

Mrówka spaces KA are scattered as topological spaces, meaning that each non-empty

subset X of KA has a point which is isolated in X. They are also locally compact,

but non-compact whenever A is infinite.

Making minor appearances throughout this thesis until they are a main point

of focus in Section 4.4 are the spaces C0(KA) of continuous functions vanishing at
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infinity on Mrówka spaces. We remark here that there is a helpful way to construct

C0(KA) from the almost disjoint family A without invoking Definition 1.6.2.

Let A be an almost disjoint family of subsets of N and consider the closure XA

of the subspace of ℓ∞ spanned by the indicator functions 1A for A ∈ A and 1{n}

for n ∈ N. Then XA is a self-adjoint subalgebra of ℓ∞. Hence, assuming complex

scalars, we have that XA is isometrically isomorphic to C0(K) for a locally compact

Hausdorff space K. The space K turns out to be the Mrówka space KA associated

with A.

In the case of Mrówka spaces KA, the spaces C(α(KA)) and C0(KA) are iso-

morphic, where α(KA) is the one point compactification of KA. Indeed, let K be

a scattered, compact Hausdorff space. Then C(K) contains a complemented sub-

space isomorphic to c0, so C(K) is isomorphic to its hyperplanes (i.e. its closed,

codimension one subspaces). As an application of this observation, suppose instead

that K is a scattered, locally compact Hausdorff space. Then its one-point compact-

ification αK is scattered. Since C0(K) is a hyperplane in C(αK), these two Banach

spaces are isomorphic.

Koszmider in [37] defined a particular almost disjoint family A of subsets of N for

which the space C0(KA) of continuous functions vanishing at infinity on the resultant

Mrówka space KA has few operators, in the sense that each T ∈ B(C0(KA)) is the

sum of a scalar multiple of the identity operator and an operator with separable

range. The original construction of A in [37] required the Continuum Hypothesis.

A construction solely within ZFC is given in [38]. The lattice of closed ideals of

B(C0(KA)), as shown originally by Kania and Kochanek in [35, Theorem 5.5], is

{0} ⊊ K (C0(KA)) ⊊ X (C0(KA)) ⊊ B(C0(KA)) ,

where for a Banach space Y , we write X (Y ) for the set of operators on Y which

have separable range. This result was also obtained independently by Brooker (un-

published).

Notice that the ‘few operators’ property of C(K) tells us that the closed ideal

X (C(K)) has codimension one in B(C(K)) and is therefore maximal.
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Chapter 2

The kernel problem for a selection of

transfinite Banach sequence spaces

2.1 Background results and the statement of the

kernel problem

In 2018, Laustsen and White published a paper [42] investigating for a given Banach

space X, which closed subspaces of X are able to be realised as a kernel of a bounded

operator on X. The key result of their findings is the following theorem.

Theorem 2.1.1. There exists a reflexive Banach space E∗
W containing a closed

subspace Y , such that Y ̸= kerT for every operator T ∈ B(E∗
W ).

The space E∗
W is the dual of a certain reflexive and non-separable Banach space

EW , constructed by Wark in [64] and [65], which has the property that every T ∈

B(EW ) is the sum of an operator with separable range and a scalar multiple of the

identity on EW . The space EW has in this sense few operators, suggesting that it

has (informally speaking) few subspaces which are closures of images of bounded

operators. By reflexivity, its dual E∗
W therefore has few closed subspaces which are

kernels of bounded operators (see Lemma 2.2.10 below for more information).

However, the non-separability of E∗
W endows it with a certain ‘largeness’, sug-

gesting that it has many closed subspaces. This apparent discrepancy highlighted

E∗
W as a candidate for a space which may have a closed subspace not equal to the

kernel of any bounded operator on E∗
W , which motivated the research.

13
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This chapter can be seen as a continuation of the line of research started in the

aforementioned paper [42] of Laustsen and White, where we shall be attempting to

answer the following question for a selection of transfinite Banach sequence spaces.

Question 2.1.2 (The kernel problem). Let X be a Banach space. Is it true that

every closed subspace of X is equal to kerT for some T ∈ B(X)?

In the statement of the kernel problem, we are only interested in whether closed

subspaces Y of X are kernels of some operator T ∈ B(X), and not whether they

are kernels of some operator R ∈ B(X;Z) for some arbitrary Banach space Z. This

is because the standard quotient map X → X/Y has kernel Y , so the question is

trivial in this setting. Also, since kernels of bounded operators are always closed,

the kernel problem becomes obviously trivial if we also consider also non-closed

subspaces of X.

Our research on the kernel problem has culminated in the following theorem;

this chapter is dedicated to its proof.

Theorem 2.1.3. Let Γ be any uncountable set.

(i) Let 1 < p < ∞. Let Y = ℓp(Γ) or Y = c0(Γ), and let X be a closed subspace

of Y . There exists T ∈ B(Y ) with ker(T ) = X.

(ii) There exists a closed subspace X of ℓ1(Γ) for which X ̸= kerT for all T ∈

B(ℓ1(Γ)).

The ultimate reason that Laustsen and White wanted to prove Theorem 2.1.1

was that White [66, Theorem 3.6.12] had proved that if E is a reflexive Banach space

which contains a closed subspace not equal to the kernel of any T ∈ B(E), then

B(E) as a dual Banach algebra fails to be ‘weak-∗ topologically left-Noetherian’.

The space E∗
W provided them with an example of such a space. Theorem 2.1.3(i)

shows us that taking the reflexive Banach space E = ℓp(Γ) for 1 < p < ∞ and Γ

uncountable would not have been suitable for their purposes.

Before giving our proof of Theorem 2.1.3, we will give an overview of the Banach

spaces other than E∗
W which are known to answer Question 2.1.2 either positively

or negatively. The first work pertaining to the kernel problem appears to be the

following result of Kalton.
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Proposition 2.1.4. [34, Proposition 4] Let T ∈ B(ℓ∞), let (en) be the standard

unit vectors in ℓ∞, and suppose that Ten = 0 for all n ∈ N. There exists an infinite

subset M ⊂ N for which Tx = 0 for every x belonging to the set

ℓ∞(M) := {t ∈ ℓ∞ : supp(t) ⊂M} .

In the statement of the above theorem, it is clear that the canonical copy of c0

in ℓ∞ has as a basis the sequence of vectors (en). Also clear is that ℓ∞(M) ≡ ℓ∞

cannot be contained in c0. What follows is a negative answer to Question 2.1.2 in

the case of ℓ∞.

Corollary 2.1.5. Let T ∈ B(ℓ∞). Then c0 ̸= kerT .

Again due to Laustsen and White in [42], our next result tells us that when

examining the kernel problem, we need only consider closed subspaces which give

non-separable quotients by their superspace as potential candidates for ‘non-kernel’

subspaces.

Proposition 2.1.6. [42, Proposition 2.1] Let X be a Banach space, and let Y be

a closed subspace of X for which X/Y is separable. Then Y = kerT for some

T ∈ B(X).

Because quotients of Banach spaces by their closed subspaces can never have

density character exceeding that of the original space, an immediate, obvious conse-

quence of Proposition 2.1.6 is the following, which explains why we are interested in

only the transfinite, non-separable analogues of the classical Banach sequence spaces

c0 and ℓp for 1 ⩽ p <∞ in this section.

Corollary 2.1.7. Let X be a separable Banach space. Every closed subspace of X

is the kernel of some operator T ∈ B(X).

A Banach spaceX is said to have the separable complementation property if every

separable subspace of X is contained within a separable, complemented subspace of

X. Another key result of Laustsen and White is given here, which again has the

above corollary as a trivial consequence.
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Proposition 2.1.8. [42, Proposition 2.2] Let X be a Banach space with the separable

complementation property. Every closed, separable subspace of X is the kernel of

some operator T ∈ B(X).

Finally, we have some very recent relevant results, which the author believes

completes the collection of known results on Question 2.1.2. A preprint of Horváth

and Laustsen [27] generalises Proposition 2.1.4 in the following way.

Theorem 2.1.9. Let Γ be infinite, and let A be an almost disjoint family of sub-

sets of Γ. Let YA denote the closed subspace of ℓ∞(Γ) spanned by the indicator

functions 1
⋂n

j=1 Aj
, where A1, . . . , An ∈ A. If A has cardinality greater than |Γ|,

then YA contains subspaces which are not expressible as the kernel of any operator

T ∈ B(YA; ℓ∞(Γ)).

This theorem not only implies negative answers to the kernel problem for ℓ∞(Γ)

for every infinite set Γ, but also for the exotic Banach spaces C0(KA) of continuous

functions vanishing at infinity on Mrówka topological spaces (see Section 1.6 for the

definition). To summarise in terms of the kernel problem, we have the following.

Corollary 2.1.10. Let X = ℓ∞(Γ) for some uncountable set Γ, or let X = C0(KA):

the space of continuous functions vanishing at infinity on a Mrówka topological space

defined via an uncountable, almost disjoint family A of subsets of N.

There exists a closed subspace of X which is not equal to ker(T ) for any T ∈

B(X).

Theorem 2.1.3(i) and (ii) combine to tell us that it is possible for a Banach

space X(= c0(Γ)) to answer Question 2.1.2 positively, whilst its dual X∗(= ℓ1(Γ))

answers Question 2.1.2 negatively. The dual E∗
W of Wark’s space EW remains the

only reflexive Banach space known to have a closed subspace that is not the kernel

of a bounded operator on itself, with the answer unknown for EW . With this in

mind, an interesting open question for future research on the kernel problem might

be the following.

Question 2.1.11. Does there exist a Banach space X answering Question 2.1.2

negatively, whilst X∗ answers Question 2.1.2 positively?
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Particularly intriguing considering the partial answer obtained for E∗
W is the

reflexive case for the above question:

Question 2.1.12. Does there exist a reflexive Banach space X for which X and X∗

give opposite answers to Question 2.1.2?

2.2 The proof of Theorem 2.1.3

Owing to Proposition 2.1.6, for the rest of this chapter we may restrict our attention

to non-separable Banach spaces, and the closed subspaces of them which yield non-

separable quotient spaces. The definitions of the transfinite Banach sequence spaces

that we shall be working with are given in Section 1.4. Our main strategy for

answering Question 2.1.2 for our selected spaces will be to check them against the

following simple lemma.

Lemma 2.2.1. Let X be a Banach space, and let Y be a closed subspace of X. Then

Y = kerT for some T ∈ B(X) if and only if there exists a bounded linear injection

X/Y → X.

Proof. Suppose that Y = kerT for some T ∈ B(X). The fundamental isomorphism

theorem states that there exists a bounded linear injection X/Y → Im(T ) ⊂ X.

On the other hand, if there exists a bounded linear injection R : X/Y → X,

then RQ ∈ B(X) and Y = ker(RQ), where Q is the standard quotient map X →

X/Y .

2.2.1 The case c0(Γ) for Γ uncountable.

Our answer to the kernel problem in the case of c0(Γ) will be based around the

concept of weak compact generation of Banach spaces.

Definition 2.2.2. Let X be a Banach space. We say that X is weakly compactly

generated (WCG) if it contains a set A, which is compact in the weak topology, such

that spanA = X.

Separable Banach spaces and reflexive Banach spaces are always WCG. Perhaps

the quintessential examples of WCG Banach spaces are the spaces c0(Γ) for Γ an
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arbitrary set. To verify that these spaces are indeed WCG, notice that the set

{eγ : γ ∈ Γ} ∪ {0} is weakly compact in c0(Γ) with dense span. A famous theorem

of Amir and Lindenstrauss [2] is as follows.

Theorem 2.2.3 ([2, Main Theorem]). Let X be a WCG Banach space. There exists

a cardinal ∆ and a bounded linear injection X → c0(∆).

Proof. See [2], or see e.g. [18, Corollary 13.17].

For our purposes, we require a slight strengthening of the above theorem, allowing

us to take ∆ to be the density character of X.

Lemma 2.2.4. Let X be a WCG Banach space with density character Γ. There

exists a bounded linear injection X → c0(Γ).

Proof. The case for X = {0} is trivial so we may suppose that X is non-zero,

meaning that Γ is an infinite cardinal.

Let W be a dense subset of X of cardinality Γ and define using Theorem 2.2.3

a bounded linear injection ϕ : X → c0(∆) for some cardinal ∆. Furthermore, define

the set

A =
⋃
w∈W

suppϕ(w) ⊆ ∆ .

Elements of c0(∆) have finite or countably infinite support, hence we have that

|A| = |W | × ℵ0 = Γ.

Let x ∈ X, and let (wn) be a sequence in W converging to x. If δ ∈ ∆ \A, then

ϕ(x)(δ) = lim
n→∞

ϕ(wn)(δ) = lim
n→∞

0 = 0 ,

hence supp(ϕ(x)) ⊆ A. It follows that the image of ϕ is contained within the set

span{eγ : γ ∈ A} ≡ c0(Γ). The result follows.

We are now ready to answer the kernel problem for the spaces c0(Γ).

Theorem 2.2.5. Let Y be a closed subspace of c0(Γ). There exists an operator

T ∈ B(c0(Γ)) for which Y = kerT .

Proof. For any infinite cardinal Γ, the space c0(Γ) is WCG, with density character Γ.

If Z is a quotient of c0(Γ) by one of its closed subspaces, then the density character ∆
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of Z is at most Γ. Further, since bounded linear maps are always weakly continuous,

and quotient maps are surjective, we have that Z is WCG.

Lemma 2.2.4 tells us that there is a bounded linear injection from Z to c0(∆),

which embeds naturally into c0(Γ). The result follows from Lemma 2.2.1.

2.2.2 The case ℓ1(Γ) for Γ uncountable.

A classical result of Pitt tells us that whenever 1 ⩽ p < q <∞, an operator from a

closed subspace of ℓq to ℓp must be compact. Rosenthal proved a generalised version,

which allows us to use the result on transfinite sequence spaces also. We state it

here.

Theorem 2.2.6 (Generalised Pitt’s Theorem). Let 1 ⩽ p < q < ∞, let Γ be

any infinite set, and let X be a closed subspace of ℓq(Γ). Then B(X; ℓp(Γ)) =

K (X; ℓp(Γ)).

Proof. See [55, Theorem A2].

Corollary 2.2.7. Let 1 ⩽ p < q < ∞, and let Γ be an uncountable set. Let

T ∈ B(ℓq(Γ); ℓp(Γ)). Then T is not injective.

Proof. Theorem 2.2.6 tells us that the operator T is compact, and therefore has

separable range. Hence, there exists a countable set A with A = im(T ). Enumerate

A as A = {an : n ∈ N}. Due to their belonging to ℓp(Γ), for each n ∈ N, an has

countable support. Hence the set ∆ :=
⋃

n∈N supp(an) is a countable subset of Γ.

It follows (similarly as to in the proof of Lemma 2.2.4) that supp(x) ⊂ ∆ for all

x ∈ im(T ).

Now, for each δ ∈ ∆ and k ∈ N, set

Ak
δ = {γ ∈ Γ : |(Teγ)(δ)| ⩾

1

k
} .

Suppose that T is injective. We must have that

⋃
δ∈∆,k∈N

Ak
δ = Γ
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because Teγ ̸= 0 for each γ ∈ Γ. Since ∆ is countable and Γ is not, there is some

δ ∈ ∆ and k ∈ N for which Ak
δ is uncountable.

Choose a sequence (αn)n∈N of distinct elements of Ak
δ , and for each n ∈ N, pick

norm one scalars σn ∈ K for which σn(Teαn)(δ) > 0. Then define x =
∑

n∈N
σn

n
eαn .

Because q > 1, we have that
∑

n∈N
1
nq <∞, and hence x ∈ ℓq(Γ). However,

(Tx)(δ) =
∑
n∈N

σn
n
(Teαn)(δ) =

∑
n∈N

|(Teαn)(δ)| ⩾
1

k

∑
n∈N

1

n
= ∞ ,

a contradiction.

The final result we need about the spaces ℓ1(Γ) is the lifting property - a powerful

and versatile result which we encounter many times throughout this thesis.

Proposition 2.2.8 (The lifting property). Let X be a Banach space of density

character Γ. Then X is isometrically isomorphic to a quotient space of ℓ1(Γ) by one

of its closed subspaces.

Proof. See e.g. [25, Theorem 5.1].

We are now ready to answer the kernel problem for the spaces ℓ1(Γ).

Theorem 2.2.9. For any uncountable cardinal Γ, there exists a closed subspace of

ℓ1(Γ) which is not the kernel of any T ∈ B(ℓ1(Γ)).

Proof. Let 1 < p < ∞. Then ℓp(Γ) is isometrically isomorphic to a quotient of

ℓ1(Γ) by one of its closed subspaces by Proposition 2.2.8, yet Corollary 2.2.7 tells us

that there are no bounded linear injections ℓp(Γ) → ℓ1(Γ). The result follows from

Lemma 2.2.1.

2.2.3 The case ℓp(Γ) for 1 < p <∞ and Γ uncountable.

For this section, let Γ be any infinite set, and let 1 < p <∞. Let q be the conjugate

exponent of p, i.e. the unique real number satisfying the equation p−1 + q−1 = 1.

We first remark that the answer to Question 2.1.2 is trivially ‘yes’ in the setting

of Hilbert spaces. To see this, let X be a closed subspace of any Hilbert space.

Then X is the kernel of the orthogonal projection onto the complement of X in said
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Hilbert space. So whilst the methods in this subsection work for the space ℓ2(Γ),

the cases of real interest to us are those of ℓp(Γ) for p ∈ (1,∞) \ {2}.

Since ℓp(Γ) is a reflexive space, it has the separable complementation property.

So, as discussed before, Proposition 2.1.8 tells us that every closed, separable sub-

space of ℓp(Γ) is the kernel of some T ∈ B(ℓp(Γ)). So for the rest of this section we

need only consider non-separable subspaces of ℓp(Γ) as candidates for ‘non-kernel’

subspaces.

The following lemma outlines the method that we shall use for answering the

kernel problem for the spaces ℓp(Γ) with p ∈ (1,∞). For a subspace Y of a Banach

space X, the annihilator of Y is the subspace

Y ⊥ = {f ∈ X∗ : ∀x ∈ Y, f(x) = 0}

of X∗. Note that this definition depends on X as well as Y . Simple direct calcula-

tions tell us that the annihilator of a subset of X is always closed in X∗, and that

im(T ∗) = ker(T )⊥ whenever T ∈ B(X).

For a reflexive spaceX, we may by identifyingX andX∗∗ consider the annihilator

of a subset of X∗ to be a subset of X. In this case, we may also utilise the well-known

fact that (Y ⊥)⊥ = Y for any subspace Y of X.

Lemma 2.2.10. Let X be a reflexive Banach space. Every closed subspace of X is

the kernel of some T ∈ B(X) if and only if every closed subspace of X∗ is the norm

closure of the image of some S ∈ B(X∗).

Proof. Suppose that every closed subspace of X is the kernel of some operator

T ∈ B(X). Let Z be a closed subspace of X∗, and let T ∈ B(X) be such that

Z⊥ = kerT . Then

Z = Z = (Z⊥)⊥ = (kerT )⊥ = im(T ∗) .

On the other hand, suppose that every closed subspace of X∗ is the closure of

the image of some S ∈ B(X∗), and let Y be a closed subspace of X. Let S ∈ B(X∗)

be such that im(S) = Y ⊥. Using the fact that that S∗∗ = S, we have

Y = Y = (Y ⊥)⊥ = im(S)⊥ = ((kerS∗)⊥)⊥ = kerS∗ .
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Solving the kernel problem positively for ℓp(Γ) therefore equates to proving that

each closed subspace of ℓq(Γ) is the closure of the image of some T ∈ B(ℓq(Γ)). It

is due to the similarity of structure between transfinite ℓp sequence spaces and their

dual spaces that we can now shift our attention to subspaces which are closures

of images of bounded operators rather than kernels thereof. The following result

characterises such subspaces in terms of the supports of transfinite sequences in

their possible dense spanning sets.

Lemma 2.2.11. Let Γ be an uncountable cardinal, let 1 < p <∞, and let Y be any

closed subspace of ℓp(Γ). The following conditions are equivalent.

(a) There exists an operator T ∈ B(ℓp(Γ)) with imT = Y .

(b) There exists a sequence (Dn)n∈N of subsets of Y for which span
⋃

n∈NDn = Y

and

supp(x) ∩ supp(y) = ∅

for every n ∈ N and any x, y ∈ Dn with x ̸= y.

(c) There exists a subset D of Y such that spanD = Y and the set

{d ∈ D : d(α) ̸= 0}

is countable for every α ∈ Γ.

Proof. (a)⇒(c). Suppose that T ∈ B(ℓp(Γ)) is an operator with imT = Y . We

shall show that the set D = {Teβ : β < Γ} satisfies (c). We have spanD = Y

because the span of {eβ : β < Γ} is dense in ℓp(Γ).

Let α < Γ. Since (Teβ)(α) = ⟨Teβ, e∗α⟩ = ⟨eβ, T ∗e∗α⟩ = (T ∗e∗α)(β) for every

β < Γ, we have that

{d ∈ D : d(α) ̸= 0} = {Teβ : β < Γ, (Teβ)(α) ̸= 0} = {Teβ : β ∈ supp(T ∗e∗α)} ,

which is countable because T ∗e∗α ∈ ℓq(Γ) has countable support.

(c)⇒(b) Let D satisfy the conditions of (c). Without loss of generality, we may
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suppose that 0 /∈ D. Define the functions

q : P(D) → P(D) ; B 7→ {d ∈ D : ∃b ∈ B ; supp(d) ∩ supp(b) ̸= ∅} ,

and

r : D → P(D) ; d 7→
⋃
n∈N

qn({d}) ,

where P(D) denotes the power set of D.

By hypothesis, the set {d ∈ D : d(γ) ̸= 0} is countable for every γ ∈ Γ.

Combining this with the identity

q(B) =
⋃
b∈B

⋃
γ∈supp b

{d ∈ D : d(γ) ̸= 0}

and the fact that vectors in ℓp(Γ) have countable support, we deduce that q(B) is

countable for every countable subset B of D. It follows by induction that qn(B)

must be countable for every countable set B and every n ∈ N. Then r(d) is a

countable union of at most countable sets for any d ∈ D, so we must have that

|r(d)| ⩽ ℵ0.

Let the relation ∼ on D be defined by c ∼ d if and only if there are n ∈ N and

elements b1, . . . , bn ∈ D such that c = b1, d = bn and supp bj ∩ supp bj+1 ̸= ∅ for

each j ∈ {1, . . . , n− 1}. It is easily checked that ∼ is an equivalence relation on D,

where the fact that 0 /∈ D ensures that we have reflexivity. The equivalence classes

of D/∼ are countable, as they are exactly the sets r(d) for d ∈ D.

Express the quotient D/∼ as D/∼ = {[cγ] : γ ∈ κ} for some indexing set

κ, and further enumerate each equivalence class in D/∼ as [cγ] = {cγn : n ∈ N}.

Two elements of D belonging to different equivalence classes of D/∼ must have

disjoint support by the definition of ∼, thus the sequence of sets (Dn) defined by

Dn = {cγn : γ ∈ κ} for each n ∈ N satisfy (b).

(b)⇒(a). Let (Dn)n∈N be a sequence of subsets of Y such that span
⋃

n∈NDn = Y

and supp(x) ∩ supp(y) = ∅ for every n ∈ N and every pair of distinct elements

x, y ∈ Dn. Because the density character of Y can be at most Γ, we may suppose

that |
⋃

n∈NDn| ⩽ Γ.

For each n ∈ N, normalise the elements of Dn to be unit vectors. Since the
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sets Dn consist of disjointly supported elements, there is an isometric isomorphism

Un : ℓp(Dn) → span(Dn) determined by Un(ed) = d for every d ∈ Dn, where (ed)d∈Dn

denotes the standard unit vector basis of ℓp(Dn). Let κ be the cardinal for which

there is an isometric isomorphism S : ℓp(κ) →
(⊕

n∈N ℓp(Dn)
)
ℓp

. Since |
⋃

n∈NDn| ⩽

Γ, we must have that dim
((⊕

n∈N ℓp(Dn)
)
ℓp

)
⩽ Γ. Consequently, we have that

κ ⩽ Γ.

Now define an operator U :
(⊕

n∈N ℓp(Dn)
)
ℓp
→ Y by

U(xn)n∈N =
∞∑
n=1

Unxn
2n

.

Since Dn ⊆ imUn for each n ∈ N, we conclude that U has dense image in Y , and

therefore the same is true for the composite operator T = JUSPκ ∈ B(ℓp(Γ)),

where J : Y ↪→ ℓp(Γ) denotes the inclusion map and Pκ : ℓp(Γ) → ℓp(κ) denotes the

canonical projection (considering κ as an initial segment of Γ).

Remark 2.2.12. We include here an alternative proof of (c)⇒(b) in the above

theorem using graph theoretic principles, in the hope that the reader might find the

method novel or illuminating in some respect. The terminology used, given below,

is all standard and elementary to graph theorists. Notice that our definition of edges

specifically excludes loops.

Definition 2.2.13.

• A graph is an ordered pair G = (V,E), where V is the set of vertices of G,

and E is a set of unordered pairs of distinct vertices called the set of edges of

G. A subgraph G′ = (V ′, E ′) of G is a graph for which V ′ ⊂ V and E ′ ⊂ E.

• The degree of a vertex v ∈ V is the cardinality of the set {e ∈ E : v ∈ e}.

• A colouring of G is a function f : V → C for some set C of colours. A

colouring of G is proper if f(x) ̸= f(y) whenever {x, y} ∈ E.

• A path in G beginning at a vertex v1 ∈ V and ending at vn ∈ V is a finite

sequence of vertices (v1, v2, . . . , vn) for some n ∈ N such that {vj, vj+1} ∈ E

for every j ∈ {1, . . . , n − 1}. Two vertices in V are connected if they belong

to a common path, and a graph is connected if any two vertices within it are

connected.
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• A connected component of G is a connected subgraph of G which is not a

subgraph of any strictly larger connected subgraph of G.

Alternative proof of (c)⇒(b). Define the graph G = (V,E), with vertices V = D

and edges

E = {{b, d} ⊂ V : [b ̸= d] ∧ [supp(b) ∩ supp(d) ̸= ∅]} .

Being p-summable, each of the vectors in V must have at most countable support,

and by (c) there are only at most countably many vectors in V that may be supported

at any given coordinate in Γ. As such, the degree of each vertex d ∈ V must be at

most ℵ0.

It follows that for any given d ∈ V , there are at most ℵ0 × n = ℵ0 vectors con-

nected to d via a path of length n, so there are at most |[ℵ0]
<∞| = ℵ0-many vectors

which may be contained in a path beginning at d. This means that the number of

vertices in the connected component of G containing d is at most countable.

We can therefore define a proper colouring f : V → N of G with ℵ0-many colours,

simply using each colour at most once per connected component. Then, the sets

Dn := {v ∈ V : f(v) = n}

for n ∈ N partition D and satisfy the conditions of (b).

We finish this section by proving that every closed subspace of ℓp(Γ) must have

a spanning set of the form described in Lemma 2.2.11(c), thus solving the kernel

problem in this setting.

Definition 2.2.14. Let X be a Banach space.

• Let Γ be an arbitrary index set, and let (xγ, fγ)γ∈Γ ⊆ X × X∗. We say that

(xγ, fγ)γ∈Γ is a biorthogonal system on X if for each γ ∈ Γ we have

fγ(xδ) =

 1 if γ = δ ,

0 if γ ̸= δ .

• Let K ⊆ X, and F ⊆ X∗ both be non-empty. We say that F separates the

points of K if for every x, y ∈ K with x ̸= y, there exists some f ∈ F for

which f(x) ̸= f(y).
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• A Markushevich basis of X is a biorthogonal system (xγ, fγ)γ∈Γ on X such

that span{xγ : γ ∈ Γ} = X, and {fγ : γ ∈ Γ} separates the points of X.

A popular way to characterise the second bullet point in the above definition

when K is a subspace of X is the following. If X is a Banach space, K is a subspace

of X, and F ⊆ X∗, then F separates the points of K if and only if whenever k ∈ K

and ⟨k, f⟩ = 0 for every f ∈ F , we must have that k = 0. This fact is easy to show

from the definition, and will be used to prove our next result.

Lemma 2.2.15. Let X be a closed subspace of ℓp(Γ) for some p ∈ (1,∞) and some

infinite set Γ. Then X contains a subset D such that spanD = X, where the set

{d ∈ D : d(γ) ̸= 0} is countable for each γ ∈ Γ.

Proof. Being a closed subspace of the reflexive Banach space ℓp(Γ), X is reflexive,

and therefore has a Markushevich basis (xj, fj)j∈κ (see, e.g., [25, Theorem 5.1]). We

may suppose that the vectors xj all have norm one. Define the set D = {xj : j ∈ κ}.

Then spanD = X by the definition of a Markushevich basis. Let γ ∈ Γ and n ∈ N.

We claim that the set

An
γ = {j ∈ κ : |xj(γ)| ⩾ 1/n}

must be finite. Assume the contrary. The Banach–Alaoglu theorem and reflexivity

imply that we can find a net (xjλ)λ∈Λ which converges weakly to some x ∈ X, where

jλ ∈ An
γ and jλ ̸= jµ for λ, µ ∈ Λ with λ ̸= µ.

Then, on the one hand, for each k ∈ κ, ⟨xjλ , fk⟩ −→
λ

⟨x, fk⟩, where all but at

most one term on the left-hand side vanish, so ⟨x, fk⟩=0. Since (fk)k∈κ separates

the points of X, we conclude that x = 0. On the other hand,

1

n
⩽ |⟨xjλ , e∗γ⟩| −→

λ
|⟨x, e∗γ⟩| ,

so |⟨x, e∗γ⟩| ⩾ 1/n > 0, a contradiction.

Hence An
γ is finite for each γ ∈ Γ and n ∈ N, so the union

⋃
n∈N

An
γ = {j ∈ κ : xj(γ) ̸= 0}
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is at most countable. This tells us that for each γ ∈ Γ we have

|{d ∈ D : d(γ) ̸= 0}| = |{j ∈ κ : xj(γ) ̸= 0}| ⩽ ℵ0 .

Theorem 2.2.16. Let X be a closed subspace of ℓp(Γ) for some 1 < p < ∞. Then

X = kerT for some T ∈ B(ℓp(Γ)).

Proof. By Lemma 2.2.15, closed subspaces of ℓq(Γ) satisfy the conditions of Lemma

2.2.11(c). The result follows.
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Chapter 3

The lattice of closed ideals of

bounded operators on a direct sum

of classical Banach spaces

3.1 Background

Very few Banach spaces X are known for which the lattice of closed ideals of the

Banach algebra B(X) is fully understood. When X is finite-dimensional, B(X) is

simple, meaning that it contains no non-zero, proper ideals, so for this chapter we

shall henceforth discuss infinite-dimensional Banach spaces only.

Our focus is on the ‘classical’ case, that is, Banach spaces that can be defined

by elementary means and/or were known to Banach and his contemporaries. We

begin this chapter with an overview of the classical Banach spaces whose lattices of

closed operator ideals are fully understood.

(i) Calkin [8] was the first to prove a result of this kind, showing that only non-

trivial closed ideal of B(ℓ2) is K (ℓ2).

(ii) Gohberg, Markus and Feldman [22] improved on Calkin’s result by showing

that for X = c0 or X = ℓp, 1 ⩽ p < ∞, the only non-trivial closed ideal of

B(X) is K (X).

(iii) Gramsch [23] and Luft [45] independently found the lattice of closed ideals

of B(ℓ2(Γ)) for uncountable cardinals Γ, showing that the non-trivial closed

29
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ideals of B(ℓ2(Γ)) are given by the sets of κ-compact operators on ℓ2(Γ) (see

page 6 for the precise definition), where ℵ0 ⩽ κ ⩽ Γ.

(iv) Unifying and generalising the results (i), (ii), and (iii), Daws [12, Theorem 7.4]

found the lattice of closed ideals of X = c0(Γ) and X = ℓp(Γ), where Γ is an

infinite cardinal and 1 ⩽ p <∞. This was discussed in Section 1.4.

(v) Let X =
(⊕

n∈N ℓ
n
2

)
D

for D = c0 or D = ℓ1. As discussed in Section 1.5, the

lattice of closed ideals of B(X) was found by Laustsen, Loy and Read, and by

Laustsen, Schlumprecht and Zsak respectively.

Our goal for this chapter is to combine the results (iv) and (v) to obtain two

new ‘hybrid’ families of Banach spaces, namely
(⊕

n∈N ℓ
n
2

)
c0
⊕ c0(Γ) and its dual

space
(⊕

n∈N ℓ
n
2

)
ℓ1
⊕ ℓ1(Γ), for any uncountable cardinal Γ, whose closed ideals of

operators we classify. The precise statement is as follows.

Theorem 3.1.1. Let (D,DΓ) = (c0, c0(Γ)) or (D,DΓ) = (ℓ1, ℓ1(Γ)) for an uncount-

able cardinal Γ, and set E =
(⊕

n∈N ℓ
n
2

)
D

and X = E ⊕ DΓ. Then the lattice of

closed ideals of B(X) is

{0}

K (X)

GD(X)

Kℵ1(X) Jℵ2(X)

Kℵ2(X) Jℵ3(X)

Kℵ3(X) Jℵ4(X)

...
...

KΓ(X) JΓ+(X)

B(X) ,
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where

Jκ(X) =

{T1,1 T1,2

T2,1 T2,2

 ∈ B(X) ; T1,1 ∈ GD(E), T1,2 ∈ B(DΓ;E),

T2,1 ∈ B(E;DΓ), T2,2 ∈ Kκ(DΓ)

}
(3.1.1)

for each cardinal ℵ2 ⩽ κ ⩽ Γ+, with an arrow from an ideal I pointing to an

ideal J denoting that I ⊊ J and there are no closed ideals of B(X) strictly

contained in between I and J .

The 2 × 2 matrices of operators in the definition of Jκ should be interpreted

according to the prescription in Section 1.2.

Remark 3.1.2. In addition to the ‘classical’ Banach spaces listed above, there are a

number of ‘exotic’, or purpose-built, Banach spaces whose closed ideals of operators

can be classified. We list them here. They belong to two main classes.

The first class of these Banach spaces consists of Argyros and Haydon’s construc-

tion of a Banach space solving the scalar-plus-compact problem, and some variants

of it. The second such class consists of spaces of continuous functions on certain

Mrówka topological spaces.

(i) Argyros and Haydon [3] constructed a Banach space XAH which is hereditarily

indecomposable, and has few operators, in the sense that each T ∈ B(XAH)

is the sum of a scalar multiple of the identity and a compact operator. This

space was the solution to the longstanding ‘scalar-plus-compact problem’. The

lattice of closed ideals of B(XAH) is given as

{0} ⊊ K (XAH) ⊊ B(XAH) ,

with the ‘few-operators’ property of XAH necessitating that K (XAH) is a

maximal ideal since it has codimension 1 in B(XAH), and the approximation

property giving that K (XAH) is minimal.

(ii) Tarbard in [60] defines for each k ∈ N with k ⩾ 2, a separable, hereditarily

indecomposable space Xk with a k-dimensional Calkin algebra. On this space,

there exists a non-compact, strictly singular operator S for which Sk = 0,
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and Sj ̸= 0 for all 0 ⩽ j < k, with the set {S0, S, S2, . . . , Sk−1} linearly

independent. Every bounded operator T on Xk is expressible as

T =
k−1∑
i=0

λiS
i +K

for some scalars λi for i ∈ {0, . . . , k−1} and some compact operator K on Xk.

As [60, Lemma 7.1], he displays the folowing closed ideal structure of B(Xk).

{0} ⊊ K (Xk) ⊊ ⟨Sk−1⟩ ⊊ ⟨Sk−2⟩ ⊊ · · · ⊊ ⟨S⟩ ⊊ B(Xk) ,

where for operators T1, T2, . . . Tn ∈ B(Y ) on a Banach space Y , ⟨T1, T2, . . . , Tn⟩

is the closed ideal generated by T1, . . . , Tn, i.e. the norm closure of the set{
n∑

j=1

AjTjBj : Aj, Bj ∈ B(Y ) ∀j ∈ {1, 2, . . . , n}

}

in B(Y ).

(iii) Kania and Laustsen in [36] found a proper closed subspace Y of XAH for

which every operator T ∈ B(Y ;XAH) is the sum of a scalar multiple of the

inclusion ι : Y ↪→ XAH and a compact operator. They then considered the

space Z = XAH ⊕ Y , and showed that B(Z) has this lattice of closed ideals:

{0} ⊊ K (Z) ⊊ E(Z) = M1 ∩M2
⊊ M1

⊊

⊊ M2 ⊊
B(Z) ,

where E(Z) denotes the set of inessential operators on Z, which are those oper-

ators for which IZ −V T has finite-dimensional kernel and cofinite-dimensional

image for every operator V ∈ B(Z).

The maximal ideals M1 and M2 are of codimension 1 in B(Z). As a left

ideal, M1 can be generated by just two given elements in the following way:

M1 =

A
I 0

0 0

+B

0 ι

0 0

 : A,B ∈ B(Z)

 .

The maximal ideal M2 cannot be generated as a left ideal by any finite set of
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operators, and is defined as

M2 =


0 αι

0 βIY

+K : α, β ∈ K, K ∈ K (Z)

 .

(iv) Giving constructions which also belong to the class of descendants of XAH ,

Motakis, Puglisi, and Zisimopoulou [49] found that for each countable, com-

pact metric space K, there exists a Banach space XMPZ which has Calkin

algebra isomorphic to C(K).

There exists a natural order-preserving bijection (i.e. an order isomorphism)

between the closed subsets of K (ordered by ⊊) and the non-zero closed ideals

of B(XMPZ) (also ordered by ⊊) (see [36, Remark 1.5]). This bijection defines

completely the desired lattice structure.

(v) The other class of exotic Banach spaces for which we know the entire lattice

of closed ideals of B(X) consists of the Banach space C0(KA) of continuous,

scalar-valued functions vanishing at infinity defined on Koszmider’s Mrówka

space KA (defined in Section 1.6), for which C0(KA) has few operators. We

clarify here that such spaces have few operators in a different sense to XAH ;

their bounded operators are all scalar multiples of the identity plus some op-

erator of separable range as opposed to scalar multiples of the identity plus

some compact operator. The space C0(KA) and the closed ideals of its space

of bounded operators will be central to Section 4.4.

A possible explanation for the scarcity of Banach spaces X whose closed ideals

of operators have been classified, especially among classical spaces, is that recent

research has shown that in many cases B(X) has 2c-many closed ideals, where c

denotes the cardinality of the continuum (i.e. c = 2ℵ0). Note that this is the largest

possible number of closed ideals of B(X) for a separable Banach space X, since it

coincides with the maximum number of possible closed subsets of B(X).

Spaces for which B(X) has 2c closed ideals include X = Lp[0, 1] for p ∈ (1,∞) \

{2} (see [33]), X = ℓp ⊕ ℓq for 1 ⩽ p < q ⩽ ∞ with (p, q) ̸= (1,∞) and X = ℓp ⊕ c0

for 1 < p < ∞ (see [19, 20]). Given in [33, Corollary 1] is a criterion for Banach

spaces X that have 1-unconditional bases, which if fulfilled implies that B(X) has
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2c-many closed ideals.

For several other spaces X, it is known that B(X) contains at least continuum

many closed ideals. This includes X = L1[0, 1], X = C[0, 1] and X = L∞[0, 1]

(see [32]; note that these results also cover X = ℓ∞ because ℓ∞ and L∞[0, 1] are

isomorphic as Banach spaces by [52]), as well as the Tsirelson space and the Schreier

space of order n ∈ N (see [7]). For X = ℓ1 ⊕ c0, the best known result is that B(X)

has at least ℵ1-many closed ideals (see [59]).

3.2 The proof of Theorem 3.1.1

To aid the presentation, we split the proof of Theorem 3.1.1 into a series of lemmas.

The proof itself requires results about the transfinite sequence spaces c0(Γ) and ℓ1(Γ)

only, not ℓp(Γ) for 1 < p < ∞. However, our first few results hold true also for the

latter spaces and with identical proofs, so we give these more general results.

For the transfinite Banach sequence spaces DΓ in question, with standard unit

vector basis (eγ)γ∈Γ, we will use P∆ ∈ B(DΓ) to denote the standard basis projection∑
γ∈Γ λγeγ 7→

∑
γ∈∆ λγeγ whenever ∆ ⊆ Γ.

Lemma 3.2.1. Let DΓ = c0(Γ) or DΓ = ℓp(Γ) for some p ∈ [1,∞) and some

set Γ ̸= ∅.

(i) Every separable subspace of DΓ is contained in the image of the basis projec-

tion P∆ for some countable subset ∆ of Γ.

(ii) Suppose that DΓ ̸= ℓ1(Γ). Then, for every Banach space E and every operator

T : DΓ → E for which there exists an injective operator from the image of T

into ℓ∞, there is a countable subset ∆ of Γ such that T = TP∆.

Proof. (i). By definition, every separable subspace E of DΓ has the form E = W

for some countable subset W of DΓ. Define ∆ =
⋃

w∈W suppw, which is a countable

union of countable sets and is thus countable. The continuity of the projection P∆

implies that x = P∆x for every x ∈ E. Hence the image of P∆ contains E.

(ii). Let U : T (DΓ) → ℓ∞ be an injective operator. Assume towards a contradic-

tion that the set

∆k,m =
{
γ ∈ Γ : |UTeγ(m)| ⩾ 1

k

}
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is infinite for some k,m ∈ N, so that it contains an infinite sequence (γn)n∈N of

distinct elements. For each n ∈ N, take a scalar σn of modulus one such that

σn · (UTeγn)(m) ⩾ 1/k. The sequence (|σn

n
|)n∈N = ( 1

n
)n∈N belongs to c0 and ℓp for

1 < p <∞, so because we assumed that DΓ ̸= ℓ1(Γ), we have x =
∑

n∈N
σn

n
eγn ∈ DΓ.

But

(UTx)(m) =
∑
n∈N

σn
n
(UTeγn)(m) ⩾

1

k

∑
n∈N

1

n
= ∞ ,

a contradiction. Hence ∆k,m is finite for each k,m ∈ N, and thus the union ∆ =⋃
k,m∈N ∆k,m must be countable. For each γ ∈ Γ \ ∆, we have that UTeγ = 0, so

Teγ = 0 by the injectivity of U , and therefore TP∆ = T .

Remark 3.2.2. The case DΓ = ℓ1(Γ) must be excluded in Lemma 3.2.1(ii) because

the statement is false for ℓ1(Γ), unless E = {0} or Γ is countable. Indeed, take

y ∈ E, and consider the summation operator

Sy : ℓ1(Γ) → E ; x 7→
∑
γ∈Γ

x(γ) y .

Since Sy(eγ) = y for every γ ∈ Γ, we see that Sy = SyP∆ if and only if y = 0 or

∆ = Γ.

Corollary 3.2.3. Let (D,DΓ) = (c0, c0(Γ)) or (D,DΓ) = (ℓp, ℓp(Γ)) for some p ∈

[1,∞) and some uncountable set Γ, and let E be any separable Banach space. Then

B(DΓ;E) = GD(DΓ;E) and B(E;DΓ) = GD(E;DΓ) .

Proof. The first identity for DΓ ̸= ℓ1(Γ), and the second identity in full generality,

both follow easily from Lemma 3.2.1 because the image of the projection P∆ for ∆

countable is either finite-dimensional or isomorphic to D.

It remains to show that every operator T : ℓ1(Γ) → E factors through ℓ1. We

use the lifting property of ℓ1 (Proposition 2.2.8) to verify this. Let ϵ > 0. Since E is

separable, we can use the lifting property of ℓ1 to find a quotient map Q : ℓ1 → E.

We have that for every y ∈ E, there is x ∈ ℓ1 with Qx = y and ∥x∥ ⩽ (1 + ϵ)∥y∥.

Hence, for each γ ∈ Γ, we can find xγ ∈ ℓ1 such that Qxγ = Teγ and

∥xγ∥ ⩽ (1 + ϵ)∥Teγ∥ ⩽ (1 + ϵ)∥T∥ .
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Define an operator R : ℓ1(Γ) → ℓ1 by Reγ = xγ for each γ ∈ Γ. To check that R is

bounded, let z =
∑

γ∈Γ λγeγ ∈ ℓ1(Γ) have norm 1. Then

∥R(z)∥ = ∥R
∑
γ∈Γ

λγeγ∥ = ∥
∑
γ∈Γ

λγxγ∥ ⩽ (1 + ϵ)∥T∥
∑
γ∈Γ

|λγ| ⩽ (1 + ϵ)∥T∥ .

It is clear that T = QR, proving the claim.

Lemma 3.2.4. Let D = c0 or D = ℓp for some p ∈ [1,∞), and let (En)n∈N be a

sequence of non-zero Banach spaces. Then there are operators R : D →
(⊕

n∈NEn

)
D

and S :
(⊕

n∈NEn

)
D
→ D such that SR = ID.

Proof. For each n ∈ N, choose yn ∈ En and fn ∈ E∗
n with

∥yn∥ = ∥fn∥ = ⟨yn, fn⟩ = 1 ,

and define operators R : (λn) 7→ (λnyn) for (λn) ∈ D and S : (xn) 7→ (⟨xn, fn⟩) for

(xn) ∈
(⊕

n∈NEn

)
D
.

To prove Lemma 3.2.7, we will require the following result about isomorphic

embeddings of finite dimensional Hilbert spaces. The result can be stated in several

different ways, and we will be using the statement as in [18, Theorem 6.15]. If X

and Y are isomorphic Banach space, the Banach-Mazur distance d(X, Y ) between

X and Y is the infimum of all quantities ∥T∥ · ∥T−1∥ ranging over all isomorphisms

T : X → Y .

Theorem 3.2.5 (Dvoretzky’s Theorem). For every ϵ > 0, there exists a constant

λ > 0 with the following property. Let X be an n-dimensional Banach space. There

exists an N(n)-dimensional subspace Y of X such that d(Y, ℓN(n)
2 ) ⩽ 1 + ϵ, where

N(n) is the largest integer less than or equal to λ log(n).

For our purposes, it helps to reinterpret Dvoretzky’s theorem as follows.

Corollary 3.2.6. Let ϵ > 0. There exists a constant λ > 0 with the following

property. For every n ∈ N, if X is a Banach space with dimension N(n) ⩾ exp(n
λ
),

there exists an n-dimensional subspace Y of X such that d(Y, ℓn2 ) ⩽ 1 + ϵ.

Recall the definition of a diagonal operator between direct sums of Banach spaces

(Section 1.2).
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Lemma 3.2.7. Let D = c0 or D = ℓp for 1 ⩽ p < ∞, and let C > 1. There

exists an operator U :
(⊕

n∈N ℓ
n
2

)
D

→ D for which ∥x∥ ⩽ ∥Ux∥ ⩽ C∥x∥ for all

x ∈
(⊕

n∈N ℓ
n
2

)
D
.

Proof. For every n ∈ N, there exists by Corollary 3.2.6 some N(n) ∈ N and a linear

injection Un : ℓn2 → DN(n) for which

∥x∥ ⩽ ∥Unx∥ ⩽ C∥x∥ , (∀x ∈ ℓn2 ) , (3.2.1)

where DN(n) denotes the canonical N(n)-dimensional version of D. Identify the

spaces D and
(⊕

n∈NDN(n)

)
D
. We may then define the diagonal operator

U =

(⊕
n∈N

Un

)
:

(⊕
n∈N

ℓn2

)
D

→

(⊕
n∈N

DN(n)

)
D

. (3.2.2)

That U satisfies ∥x∥ ⩽ ∥Ux∥ ⩽ C∥x∥ for every x ∈
(⊕

n∈N ℓ
n
2

)
D

follows from

(3.2.1), the definition of U , and the fact that ∥U∥ = supn∈N ∥Un∥.

We will be using the above lemma again in Chapter 4 where we require some

technical details about the operator U . We note here that isomorphic copies of(⊕
n∈N ℓ

n
2

)
D

are never complemented in D if D ̸= ℓ2.

Remark 3.2.8. For the purposes of this chapter, and its published version [4],

only a non-quantitative version of Lemma 3.2.15 needs proving. We shall prove a

stronger version where upper bounds are calculated on the norms of the operators

involved. This strengthening is necessary in Section 4.3 for showing that the Calkin

algebras of the spaces X =
(⊕

n∈N ℓ
n
2

)
D
⊕ DΓ have unique algebra norms, where

(D,DΓ) = (c0, c0(Γ)) or (D,DΓ) = (ℓ1, ℓ1(Γ)) for some infinite set Γ. To this end,

we require several additional steps, and thus the content from here until the end of

Lemma 3.2.15 deviates from that of [4].

Whenever we have a Banach space Y with unconditional basis (eγ)γ∈Γ and a

subset A of Γ, we use the notation PA ∈ B(Y ) to denote the basis projection onto

the coordinates indexed by the set A. If Γ = N, we write Pn for P{1,...,n}. The lack

of reference to the space Y in the notation PA is unlikely to cause confusion. By

convention we let P∅ = 0.
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The basis (eγ)γ∈Γ being unconditional implies the existence of some constant

C ⩾ 1 for which ∥PA∥ ⩽ C and ∥I − PA∥ ⩽ C for every subset A of Γ. The least

constant C for which this is true is the basis constant of (eγ)γ∈Γ, and we call the

basis C-unconditional.

The following lemma will prove helpful for us in future calculations of quotient

norms. It is an adapted version of a special case of [12, Proposition 5.1], and its

proof is similar.

Lemma 3.2.9. Let Y be a Banach space with a 1-unconditional basis (eγ)γ∈Γ. Let

T ∈ B(Z;Y ) for some Banach space Z. Then

∥T∥e = inf{∥(I − PA)T∥ : A ⊆ Γ, |A| <∞} .

Proof. Let A be a finite subset of Γ. Then ∥(I − PA)T∥ ⩾ ∥T∥e holds because PAT

is compact.

Suppose towards a contradiction that there is some ϵ > 0 and some compact

operator K ∈ K (Z;Y ) for which ∥T +K∥ ⩽ ∥(I−PA)T∥− ϵ for every finite subset

A of Γ.

Because K is compact, we can find a number n ∈ N for which K(BZ) is contained

in the union of n-many open balls of radius ϵ
4
. Let the centres of these balls be

denoted y1, y2, . . . , yn. Take a finite subset A of Γ for which ∥(I − PA)yj∥ ⩽ ϵ
4

for

every j ∈ {1, . . . , n}.

Let z ∈ BZ , and choose j ∈ {1, . . . , n} with ∥Kz − yj∥ ⩽ ϵ
4
. Then

∥(I − PA)Kz∥ ⩽ ∥(I − PA)(Kz − yj)∥+ ∥(I − PA)yj∥ ⩽
ϵ

4
+
ϵ

4
=
ϵ

2
.

So ∥(I − PA)K∥ ⩽ ϵ
2
, and we have that

∥(I − PA)T∥ = ∥(I − PA)(T + PAK)∥ ⩽ ∥T + PAK∥

⩽ ∥T +K∥+ ∥PAK −K∥ ⩽ ∥(I − PA)T∥ − ϵ+
ϵ

2
< ∥(I − PA)T∥ ,

a contradiction. Thus

∥T∥e ⩾ inf{∥(I − PA)T∥ : A ⊂ Γ, |A| <∞} ,
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completing the proof.

Lemma 3.2.10. Let Y be a Banach space with a 1-unconditional basis (eγ)γ∈Γ for

some infinite set Γ. Let T ∈ B(Y ) be such that ∥T∥e = 1.

(i) For all ϵ > 0, there is a strictly increasing sequence ∅ = B0 ⊊ B1 ⊊ B2 ⊊ . . . of

finite subsets of Γ, and a disjointly supported sequence (xn) of norm-1 vectors

in Y00 := span(eγ)γ∈Γ such that for each n ∈ N, we have

∥Txn∥ ⩾ ∥(I − PBn−1)Txn∥ > 1− ϵ and ∥(I − PBn)Txn∥ < ϵ .

Furthermore, if Γ = N, the sequence (xn) can be defined to be consecutively

supported.

(ii) Let W and Z be Banach spaces, and suppose that there is a quotient map

Q ∈ B(W ;Z). Let T ∈ B(Z;Y ). Then

∥TQ∥e = ∥T∥e . (3.2.3)

Proof. (i) We construct the desired sequences by induction. Let B0 = ∅. Since

1 = ∥T + K (Y )∥ ⩽ ∥T∥, and Y00 is dense in Y , we can take x1 ∈ Y00 with norm 1

such that ∥Tx1∥ = ∥(I −PB0)Tx1∥ > 1− ϵ. Let B1 ⊂ supp(Tx1) be finite such that

∥(I − PB1)Tx1∥ < ϵ.

Suppose that for some n ∈ N we have chosen disjointly supported vectors

x1, x2, . . . , xn ∈ Y00 of norm 1, along with finite subsets B0 ⊊ B1 ⊊ B2 · · · ⊊ Bn

of Γ for which ∥Txj∥ ⩾ ∥(I − PBj−1
)Txj∥ > 1 − ϵ and ∥(I − PBj

)xj∥ < ϵ for each

1 ⩽ j ⩽ n. In case Γ = N, suppose also that the vectors x1, . . . , xn are consecutively

supported. Set

An =


⋃n

j=1 supp(xj) if Γ ̸= N ,

{1, 2, . . . ,max supp(xn)} if Γ = N .

Since ∥(I − PBn)T (I − PAn)∥ ⩾ ∥T∥e = 1, we can choose a unit vector x′n+1 ∈
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span(eγ)γ∈Γ for which ∥(I − PBn)T (I − PAn)x
′
n+1∥ > 1− ϵ. Let

xn+1 =
(I − PAn)x

′
n+1

∥(I − PAn)x
′
n+1∥

.

Then ∥xn+1∥ = 1, and since ∥(I − PAn)x
′
n+1∥ ⩽ 1, we have that

∥Txn+1∥ ⩾ ∥(I − PBn)Txn+1∥ > 1− ϵ . (3.2.4)

Take a finite subset B′
n+1 of Γ for which ∥(I − PB′

n+1
)Txn+1∥ < ϵ, noticing that

necessarily B′
n+1 \ Bn is non-empty by the right-hand inequality of (3.2.4), and set

Bn+1 = Bn ∪ B′
n+1. Then Bn ⊊ Bn+1 and we have that ∥(I − PBn+1)Txn+1∥ < ϵ as

required. The induction is complete. The final claim referring to the case Γ = N

follows from the chosen definition of the sets An.

(ii) The inequality ‘⩽’ holds because ∥Q∥ ⩽ 1. In the other direction, suppose

that ∥TQ∥e < 1. It suffices to show that ∥T∥e < 1. By Lemma 3.2.9, there exists

some ϵ > 0 and a finite subset A of Γ for which we have that ∥(I−PA)TQ∥ < 1− ϵ.

Take z ∈ Z with ∥z∥ < 1. Because Q is a quotient map, we may choose w ∈ W

with ∥w∥ < 1 and Qw = z. We have that

∥(I − PA)Tz∥ = ∥(I − PA)TQw∥ ⩽ ∥(I − PA)TQ∥∥w∥ < 1− ϵ .

Then

∥T∥e ⩽ ∥(I − PA)T∥ ⩽ 1− ϵ < 1 ,

as required.

Lemma 3.2.11. Let (D,DΓ) = (ℓ1, ℓ1(Γ)) or (D,DΓ) = (c0, c0(Γ)) for some infinite

cardinal Γ, and let ϵ > 0. Let T ∈ B(DΓ) be such that ∥T∥e = 1. There exist

operators U ∈ B(D;DΓ) and V ∈ B(DΓ;D) for which ∥V ∥ = ∥U∥ = 1 and

∥V TU∥e ⩾ 1− ϵ.

Proof. Define using Lemma 3.2.10(i) a strictly increasing sequence ∅ = B0 ⊊ B1 ⊊

B2 ⊊ . . . of finite subsets of Γ, and a disjointly supported sequence (xn) of norm-1

vectors in span(eγ)γ∈Γ for which we have ∥Txn∥ ⩾ ∥(I − PBn−1)Txn∥ > 1 − ϵ
2

and
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∥(I − PBn)Txn∥ < ϵ
2

for each n ∈ N. Then for every n ∈ N we can deduce that

∥(PBn − PBn−1)Txn∥ ⩾ ∥(I − PBn−1)Txn∥ − ∥(I − PBn)Txn∥ > 1− ϵ .

Let A =
⋃

n∈N supp(xn) and B =
⋃

n∈NBn, and define the operator S :=

PBTPAJ ∈ B(PA(DΓ);PB(DΓ)), where J denotes the inclusion of PA(DΓ) into

DΓ, and we have considered PA as an operator on DΓ, but PB as an operator

DΓ → PB(DΓ).

For each n ∈ N, we have that PAJxn = xn, and because Bn−1 ⊊ Bn ⊊ B, we

also have that PBnPB = PBn , and PBnPBn−1 = PBn−1 . It follows that the operator

S satisfies

∥(I − PBn−1)S∥ ⩾ ∥(I − PBn−1)Sxn∥ = ∥(PB − PBn−1)Txn∥

⩾ ∥PBn(PB − PBn−1)Txn∥ = ∥(PBn − PBn−1)Txn∥ > 1− ϵ .

(3.2.5)

Now, if B′ is a finite subset of B, then there exists some n ∈ N0 for which

B′ ⊂ Bn. This fact combines with Lemma 3.2.9 to tell us that

∥S∥e = inf{∥(I − PBn)S∥ : n ∈ N0} .

The above expression together with (3.2.5) show that ∥S∥e ⩾ 1− ϵ. Because A and

B are countably infinite, we can find isometric isomorphisms RA : D → PA(DΓ) and

RB : PB(DΓ) → D. Then

∥S∥e = ∥RBSRA∥e = ∥RBPBTPAJRA∥e ⩾ 1− ϵ .

The result follows.

To prove Lemma 3.2.15, we introduce a quantitative version of a celebrated the-

orem of Rosenthal, originally stated as the first remark following [56, Theorem 3.4].

This theorem will be revisited later in the chapter.

Theorem 3.2.12. Let T ∈ B(c0(Γ);Y ), where Γ is an infinite set and Y is a

Banach space, and suppose that δ := inf{∥Teγ∥ : γ ∈ Γ} > 0. Then, for any
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ϵ ∈ (0, δ), there is a subset Γ′ of Γ of the same cardinality as Γ for which the

restriction of T to the subspace span{eγ : γ ∈ Γ′} is bounded below by ϵ.

Proof. Rosenthal stated the result without specifying for which values of ϵ > 0 we

can find a subset Γ′ of the same cardinality as Γ such that the restriction of T to

span{eγ : γ ∈ Γ′} is bounded below by ϵ. However, inspection of his proof shows

that this is possible for every ϵ < δ.

Also for the proof of Lemma 3.2.15, we require a classical result of Sobczyk. This

result is often only stated in the isometric case (C = 1), however the general form

that we require can be shown to be true by e.g. the proof of [1, Corollary 2.5.9]. To

state it precisely, we shall use the following notion.

Definition 3.2.13. Let C ⩾ 1, and let Y and Z be Banach spaces. An operator

T ∈ B(Y ;Z) is a C-isomorphism if it is an isomorphism with ∥T∥ ∥T−1∥ ⩽ C. We

say that X and Y are C-isomorphic if there exists a C-isomorphism of Y onto Z.

Theorem 3.2.14 (Sobczyk’s Theorem). Let Y be a separable Banach space, and

let Z be a subspace of Y which is C-isomorphic to c0 for some C ⩾ 1. Then Z is

complemented in Y by a projection with norm at most 2C.

Lemma 3.2.15. Let (D,DΓ) = (ℓ1, ℓ1(Γ)) or (D,DΓ) = (c0, c0(Γ)) for some infinite

cardinal Γ. Let X1 =
(⊕

n∈N ℓ
n
2

)
D

and X2 = DΓ, and let ϵ > 0. For each pair i, j ∈

{1, 2}, and every operator T ∈ B(Xi;Xj) satisfying ∥T∥e = 1, there are operators

U ∈ B(Xj;D), V ∈ B(D;Xi) for which we have ID = UTV and ∥V ∥∥U∥ ⩽ 2 + ϵ.

Proof. We examine each of the four possibilities for the pair (i, j) individually, and

further break down case (i, j) = (1, 1) into two sub-cases for D = c0 and D = ℓ1

respectively.

Notice that certain cases end by deferring to using another case on the compo-

sition of T with other operators. This is allowed since factoring ID through such a

composition is also a factorisation of ID through T , and care has been taken to avoid

circular arguments. Our norm calculations will make use of an arbitrary constant

δ > 0. The final bound of 2 + ϵ in the statement of the lemma can be shown by

taking δ small enough. Thus, let δ > 0.
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• (i, j) = (2, 2): In this case T ∈ B(DΓ). Using Lemma 3.2.11, find operators

V ∈ B(DΓ;D), U ∈ B(D;DΓ) that satisfy ∥V ∥ = ∥U∥ = 1 and

∥V TU∥e > 1− δ .

We may now apply [63, Lemma 3.3.6] to V TU ∈ B(D) and obtain operators

S,R ∈ B(D) for which ∥S∥∥R∥ ⩽ (1 − δ)−1 and SV TUR = ID. The result

follows.

• (i, j) = (1, 1), D = c0: In this case, T ∈ B(X1). Using Lemma 3.2.9, we can

find a finite subset A of N for which ∥(I −PA)T∥ < 1+ δ. Set S = (I −PA)T ,

so that

1 = ∥T∥e = ∥S∥e ⩽ ∥S∥ < 1 + δ .

Next, apply Lemma 3.2.10(i) with Y = X1 to obtain a sequence (yn) of nor-

malised blocks (i.e. finitely, consecutively supported vectors) in X1 for which

∥Syn∥ > 1 − δ for every n ∈ N. Let (zn) be a subsequence of (yn) for which

there is no k ∈ N such that the space ℓk2 contains support from more than one

of the vectors zn. The purpose of this is to ensure that for any i ∈ N and any

set of scalars λ1, . . . , λi ∈ K, we obtain

∥
i∑

n=1

λnzn∥ = sup{∥λn∥ : n ∈ {1, . . . , i}} ,

which is to say that the sequence (zn) is isometrically equivalent to the unit

vector basis (en) of c0. We can therefore define a function F : c0 → X1 by

action en 7→ zn for every n ∈ N, which is a linear isometry onto its range.

Now, ∥SFen∥ > 1 − δ for each n ∈ N, so we apply Theorem 3.2.12 to the

operator SF and get a subsequence (enk
) of (en) for which SF is bounded

below on span(enk
) by 1 − 2δ. Define the operator J ∈ B(c0) to act on the

standard basis by ek 7→ enk
for every k ∈ N. Then J is also an isometry, so we

have that ∀x ∈ c0, with ∥x∥ = 1,

1− 2δ ⩽ ∥SFJx∥ < 1 + δ .
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Then im(SFJ) is (1+δ)(1−2δ)−1-isomorphic to c0, so must be complemented

in X1 by a projection R : X1 → im(SFJ) with norm at most 2(1+δ)(1−2δ)−1

by Sobczyk’s theorem.

Now, RSFJ ∈ B(c0; im(SFJ)) is an isomorphism, which has inverse H ∈

B(im(SFJ); c0) having norm at most (1− 2δ)−1. Then

Ic0 = HRSFJ = HR(I − PA)TFJ ,

and

∥HR(I − PA)∥∥FJ∥ ⩽ ∥H∥∥R∥∥(I − PA)∥∥F∥∥J∥ ⩽ 2(1 + δ)(1− 2δ)−2 ,

completing the proof.

• (i, j) = (2, 1): In this case, T ∈ B(DΓ;X1). Use Lemma 3.2.7 to define an

operator J ∈ B(X1;D) by equation (3.2.2) (where it is called U) for which

∥x∥ ⩽ ∥Jx∥ ⩽ (1 + δ)∥x∥ (3.2.6)

for all x ∈ X1, defining the sequence (N(n))n∈N ⊂ N and identifying D with

the space
(⊕

n∈NDN(n)

)
D

as in the proof of Lemma 3.2.7. Here, DN(n) = ℓ
N(n)
∞

in case D = c0 and DN(n) = ℓ
N(n)
1 in case D = ℓ1.

For each n ∈ N, define the projections Sn ∈ B(D) and Rn ∈ B(X1) onto the

spaces
(⊕n

k=1DN(k)

)
D

and
(⊕n

k=1 ℓ
k
2

)
D

respectively. Take note of the relation

SnJ = JRn , (3.2.7)

which follows from the definition of the diagonal operator J . We claim that

1 ⩽ ∥JT∥e ⩽ (1 + δ) . (3.2.8)

The right-hand inequality holds true because ∥J∥ ⩽ (1+δ). We will prove the

left hand inequality by contradiction. So, suppose that ∥JT∥e < 1. For every

finite subset A of N, we can find some n ∈ N for which we have span{ej : j ∈
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A} ⊆ imSn. It follows from Lemma 3.2.9 that

∥JT∥e = inf{∥(I − Sn)JT∥ : n ∈ N} .

Take n ∈ N to satisfy ∥(I −Sn)JT∥ < 1. Then by (3.2.6) and (3.2.7), we have

that

∥T∥e ⩽ ∥(I −Rn)T∥ ⩽ ∥J(I −Rn)T∥ = ∥JT − JRnT∥

= ∥JT − SnJT∥ = ∥(I − Sn)JT∥ < 1 ,

a contradiction, proving claim (3.2.8).

Let {eγn : n ∈ N} be a countably infinite subset of the standard basis of DΓ,

and define the embedding L : D ↪→ DΓ by action en 7→ eγn for every n ∈ N.

Further, let P : DΓ → D be defined by

eγ 7→

en if γ = γn for some n ∈ N ,

0 otherwise ,

for every γ ∈ Γ. Because ∥L∥ = 1, we have that ∥LJT∥e ⩽ ∥JT∥e. Also, since

PL = ID and ∥P∥ = 1, we obtain

∥LJT∥e ⩾ ∥PLJT∥e = ∥JT∥e .

So ∥LJT∥e = ∥JT∥e. By (3.2.8), we then have that

1 ⩽ ∥LJT∥e ⩽ 1 + δ .

We proceed by applying case (i, j) = (2, 2) to LJT .

• (i, j) = (1, 1), D = ℓ1: Using Lemma 3.2.10(ii) in conjunction with the

lifting property of ℓ1(Γ) (Proposition 2.2.8), we can find a quotient map

Q ∈ B(ℓ1(Γ);X1) with ∥TQ∥e = 1. Then ∥Q∥ = 1, and we can apply case

(i, j) = (1, 2) to the operator TQ.

• (i, j) = (1, 2): In this case, T ∈ B(X1;DΓ). Using Lemma 3.2.1(ii), we have
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that there exists a countably infinite subset ∆ := {γn : n ∈ N} of Γ for which

T = P∆T . For each n ∈ N, let e′n ∈ X1 be the first standard basis vector from

the subspace ℓn2 of X1. Define P ∈ B(DΓ;X1) by

eγ 7→

e
′
n if γ = γn for some n ∈ N ,

0 otherwise ,

for every γ ∈ Γ. Further, define L ∈ B(X1;DΓ) to map the basis vectors

e′n to eγn for every n ∈ N, and to map all other basis vectors to zero. Then

LP = P∆, so LPT = T . Since ∥L∥ = 1 and ∥P∥ = 1, we have that

1 = ∥T∥e = ∥LPT∥e ⩽ ∥PT∥e ⩽ ∥P∥∥T∥e = 1 .

So ∥PT∥e = 1, and we may apply case (1, 1) to the operator PT .

Let X1 and X2 be Banach spaces. For the rest of this chapter, when considering

operators on the direct sum X1 ⊕ X2, for m ∈ {1, 2}, let Jm : Xm → X1 ⊕ X2

and Qm : X1 ⊕ X2 → Xm denote the mth coordinate embedding and projection,

respectively. Recall that an operator T on X1 ⊕X2 can then be decomposed as

T =
2∑

i,j=1

JiTi,jQj , (3.2.9)

which immediately tells us that

max
i,j∈{1,2}

∥Ti,j∥ ⩽ ∥T∥ ⩽
2∑

i,j=1

∥Ti,j∥ . (3.2.10)

Corollary 3.2.16. Let X =
(⊕

n∈N ℓ
n
2

)
D
⊕ DΓ, where (D,DΓ) = (c0, c0(Γ)) or

(D,DΓ) = (ℓ1, ℓ1(Γ)) for some infinite set Γ, and let I be an ideal of B(X). Then

either I ⊆ K (X) or GD(X) ⊆ I .

Proof. For notational convenience, write X = X1 ⊕ X2, where X1 =
(⊕

n∈N ℓ
n
2

)
D

and X2 = DΓ. Suppose that I ⊈ K (X), and choose T ∈ I \ K (X). Then

clearly Ti,j /∈ K (Xj;Xi) for some i, j ∈ {1, 2}. Lemma 3.2.15 implies that there

are operators U : D → Xj and V : Xi → D such that V Ti,jU = ID. Hence, for each
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S = R2R1 ∈ GD(X), where R1 ∈ B(X;D) and R2 ∈ B(D;X), because I is an

ideal of B(X), we have

S = R2V Ti,jUR1 = (R2V Qi)T (JjUR1) ∈ I .

This shows that GD(X) ⊆ I , as desired.

For a subset I of B(X1 ⊕X2) and j, k ∈ {1, 2}, we define the (j, k)th quadrant

of I by

Ij,k = {QjTJk : T ∈ I } ⊆ B(Xk;Xj) .

On the other hand, given subsets Ij,k of B(Xk, Xj) for j, k ∈ {1, 2}, we define

I1,1 I1,2

I2,1 I2,2

 =


T1,1 T1,2

T2,1 T2,2

 : Tj,k ∈ Ij,k

(
j, k ∈ {1, 2}

) ⊆ B(X1 ⊕X2).

Using the fact that for each T ∈ B(X) we have the decomposition (3.2.9), we

can deduce that for any pair X1, X2 of Banach spaces and any operator ideal I ,

T ∈ I (X1 ⊕X2) ⇐⇒ Ti,j ∈ I (Xj;Xi) for i, j ∈ {1, 2} . (3.2.11)

The next lemma shows that we can freely decompose and recompose ideals of

bounded operators on direct sums of Banach spaces.

Lemma 3.2.17. Let I be an ideal of B(X1 ⊕ X2) for some Banach spaces X1

and X2. Then

I =

I1,1 I1,2

I2,1 I2,2

 , (3.2.12)

and Ii,i is an ideal of B(Xi) for i ∈ {1, 2}. Moreover, Ii,j is closed in B(Xj, Xi)

for each i, j ∈ {1, 2} if and only if I is closed in B(X1 ⊕X2).

Proof. The inclusion ⊆ in (3.2.12) holds true by the involved definitions.

Conversely, suppose that T = (Ti,j)
2
i,j=1 with Ti,j ∈ Ii,j for each i, j ∈ {1, 2}, say

Ti,j = QiS
i,jJj, where Si,j ∈ I . Then by decomposing T using (3.2.9), we have

T =
2∑

i,j=1

JiTi,jQj =
2∑

i,j=1

(JiQi)S
i,j(JjQj) ∈ I



48 CHAPTER 3. CLOSED IDEAL LATTICES

because I is an ideal of B(X1 ⊕X2) and JkQk ∈ B(X1 ⊕X2) for k ∈ {1, 2}.

Next, we verify that Ii,i is an ideal of B(Xi) for i ∈ {1, 2}. It is clear that Ii,i

is a subspace. Suppose that S ∈ Ii,i and T ∈ B(Xi), say S = Ui,i, where U ∈ I .

Then UJiTQi ∈ I because I is an ideal of B(X1⊕X2) and JiTQi ∈ B(X1⊕X2),

and hence

Ii,i ∋ (UJiTQi)i,i = QiUJiTQiJi = ST .

The proof that TS ∈ Ii,i is similar.

The final clause follows easily from (3.2.10) and (3.2.12).

For a Banach space X, define

Ξ(X) = {I ; I is a closed ideal of B(X) and I ⊋ K (X)} ,

and order Ξ(X) by inclusion. For a pair of Banach spaces X1 and X2, we endow the

set Ξ(X1)× Ξ(X2) with the product order; that is,

(I1,I2) ⩽ (J1,J2) ⇐⇒ [I1 ⊆ J1] ∧ [I2 ⊆ J2] .

Let A and B be ordered sets. A function ϕ : A → B is an order isomorphism if it

is bijective and satisfies a < b if and only if ϕ(a) < ϕ(b) for every a, b ∈ A.

Proposition 3.2.18. Let X = E⊕DΓ, where E =
(⊕

n∈N ℓ
n
2

)
D

and either (D,DΓ) =

(c0, c0(Γ)) or (D,DΓ) = (ℓ1, ℓ1(Γ)) for some uncountable set Γ. The map

ξ : Ξ(E)× Ξ(DΓ) → Ξ(X) ; (I ,J ) 7→

 I B(DΓ;E)

B(E;DΓ) J

 ,

is an order isomorphism.

Proof. Recall from Corollary 3.2.3 that B(E;DΓ) = GD(E;DΓ) and B(DΓ;E) =

GD(DΓ;E), and that GD(E) ⊆ I and GD(DΓ) ⊆ J for every (I ,J ) ∈ Ξ(E) ×

Ξ(DΓ) by the ideal classifications (1.5.1) and (1.4.1), respectively. Using these facts,

one can easily verify that ξ(I ,J ) is an ideal of B(X) with K (X) ⊊ ξ(I ,J ).

Moreover, ξ(I ,J ) is closed because each of its quadrants is, so it belongs to Ξ(X).
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To see that ξ is surjective, let L ∈ Ξ(X). Theorem 3.2.17 shows that

L =

L1,1 L1,2

L2,1 L2,2

 ,

where L1,1 and L2,2 are closed ideals of B(E) and B(DΓ), respectively. Moreover,

Corollary 3.2.16 implies that GD(X) ⊆ L , so by (3.2.11), we have:

• L1,1 ⊇ GD(E), so L1,1 ∈ Ξ(E);

• L1,2 ⊇ GD(DΓ;E) = B(DΓ;E), so L1,2 = B(DΓ;E), and similarly L2,1 =

B(E;DΓ);

• L2,2 ⊇ GD(DΓ), so L2,2 ∈ Ξ(DΓ).

This verifies that L = ξ(L1,1,L2,2).

Finally, working straight from the definitions, we see that (I1,J1) ⩽ (I2,J2)

if and only if ξ(I1,J1) ⊆ ξ(I2,J2) for (I1,J1), (I2,J2) ∈ Ξ(E)×Ξ(DΓ). This

shows first that ξ is injective and thus a bijection, and secondly that both ξ and its

inverse are order-preserving.

We can now prove Theorem 3.1.1 easily.

Proof of Theorem 3.1.1. Both E and DΓ have the approximation property, so the

same is true for their direct sum X. Therefore K (X) is the smallest non-zero closed

ideal of B(X). Proposition 3.2.18 shows that any other non-zero closed ideal L

of B(X) has the form L = ξ(I ,J ) for unique closed ideals I ∈ Ξ(E) and

J ∈ Ξ(DΓ). By the ideal classifications (1.5.1) and (1.4.1), either I = GD(E) or

I = B(E), while J = Kκ(DΓ) for a unique cardinal ℵ1 ⩽ κ ⩽ Γ+.

Suppose first that I = GD(E). If κ = ℵ1, then J = GD(DΓ), so L = GD(X).

Otherwise κ ⩾ ℵ2 and L = Jκ(X) in the notation of (3.1.1).

Next, suppose that I = B(E), which is equal to Kκ(E) because E has density

character ℵ0 < κ. Hence we have L = Kκ(X). (Note that this is equal to B(X) if

κ = Γ+.)
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Chapter 4

Uniqueness of norms of quotients of

B(X)

4.1 Background

Definition 4.1.1. Let (A , ∥ · ∥) be a normed algebra. We say that the given norm

∥ · ∥ on A is maximal if, for every algebra norm ||| · ||| on A , there is a constant

C1 > 0 such that |||a||| ⩽ C1∥a∥ for every a ∈ A .

Analogously, we say that ∥ · ∥ is minimal if, for every algebra norm ||| · ||| on A ,

there is a constant C2 > 0 such that ∥a∥ ⩽ C2|||a||| for every a ∈ A .

A pair ∥ · ∥ and ||| · ||| of norms on some normed algebra A are equivalent if there

exist constants C3, C4 > 0 such that C3∥a∥ ⩽ |||a||| ⩽ C4∥a∥ for every a ∈ A.

We say that A has a unique algebra norm if the given norm is both maximal and

minimal, or in other words if every algebra norm on A is equivalent to the given

norm.

As the name suggests, equivalence of algebra norm on a normed algebra is an

equivalence relation on the class of all norms on said algebra. In the case where A is

a Banach algebra (which will be the case for us), the notion of uniqueness of algebra

norm should not be confused with the weaker notion of having a unique complete

algebra norm, which asserts that every complete algebra norm on A is equivalent

to the given norm. The Banach Isomorphism Theorem implies that whenever the

given norm on a Banach algebra A is either minimal or maximal, it is automatically

equivalent to any other complete norm on A , so A has unique complete algebra

51
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norm. Our aim for this final chapter is to prove the following theorem.

Theorem 4.1.2. Every quotient of B(X) by one of its closed ideals has a unique

algebra norm for each of the following Banach spaces X :

(i) X =
(⊕

n∈N ℓ
n
2

)
c0

and X =
(⊕

n∈N ℓ
n
2

)
ℓ1
;

(ii) X =
(⊕

n∈N ℓ
n
2

)
c0
⊕ c0(Γ) and X =

(⊕
n∈N ℓ

n
2

)
ℓ1
⊕ ℓ1(Γ) for an uncount-

able index set Γ;

(iii) X = C0(KA), the Banach space of continuous functions vanishing at infinity

on the Mrówka space KA associated with an almost disjoint family A of infinite

subsets of N, chosen such that C0(KA) admits ‘few operators’.

We refer to Section 1.6 for details of the terminology used in (iii). One usually

requires that an algebra norm on a unital algebra A must take the value 1 at the

multiplicative identity 1A . We shall not adhere to this convention. This will not

cause any problems because, given any algebra norm ∥ · ∥ on A ,

|||a||| = sup
{
∥ab∥ : b ∈ A , ∥b∥ ⩽ 1

}
(a ∈ A )

always defines an equivalent algebra norm on A which satisfies |||1A ||| = 1. Much

more general results are given in [10, Proposition 2.1.9] or [51, Proposition 1.1.9].

One of the earliest results regarding equivalence of algebra norms of quotients of

the Banach algebra B(X) of operators on a Banach space X (predating even the

term ‘Banach algebra’) is due to Eidelheit, and is given below.

Theorem 4.1.3 ([15, Theorem 1]). Let X be a Banach space. Then B(X) has a

unique complete algebra norm.

Building on Eidelheit’s methods, one can deduce a stronger conclusion, which

we shall state in Theorem 4.1.9 below, once we have established the necessary ter-

minology.

Many related results have subsequently been obtained; [62, §0] contains an ex-

cellent survey of what was known around the turn of the millenium. We would like

to highlight the following results, which provide the most important context for our

work:
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Example 4.1.4. (i) Meyer [46] proved that the Calkin algebra B(X)/K (X)

has a unique algebra norm for each of the classical sequence spaces X = c0

and X = ℓp, where 1 ⩽ p < ∞. For later reference, we recall the classical

result of Gohberg, Markus and Feldman [22] that the ideal K (X) of compact

operators is the unique non-trivial closed ideal of B(X) for each of these

Banach spaces X.

(ii) Astala and Tylli [6] gave the first known examples of Banach spaces X for

which the Calkin algebra B(X)/K (X) fails to have a unique algebra norm;

more precisely, B(X)/K (X) admits an algebra norm which is dominated by

the quotient norm without being equivalent to it. Tylli [61] obtained similar

examples for quotients of B(X) by closed ideals other than the compact oper-

ators. These results were in fact not originally proved to produce counterex-

amples to questions about the uniqueness of algebra norm, but after becoming

aware of these applications, Tylli [62, §1] wrote a survey presenting this body

of work from that perspective.

(iii) In his dissertation [63], Ware launched a systematic attack on the uniqueness-

of-algebra-norm question for Calkin algebras, generalising the aforementioned

results of Meyer by showing that the Calkin algebra B(X)/K (X) has a unique

algebra norm for a wide range of Banach spaces X, including the following [63,

§§5.2–5.5]:

• every finite direct sum of spaces from the family {c0}∪{ℓp : 1 ⩽ p <∞};

• the infinite direct sums
(⊕

n∈N ℓ
n
p

)
c0

and
(⊕

n∈N ℓ
n
p

)
ℓq

for 1 ⩽ p ⩽ ∞ and

1 ⩽ q <∞;

• the Tsirelson space T and its dual T ∗;

• the quasi-reflexive James spaces Jp for 1 < p <∞.

(iv) In a somewhat different direction, Ware [63, Section 6] generalised Meyer’s

results to the non-separable setting as follows. Take an uncountable index

set Γ, and set X = c0(Γ) or X = ℓp(Γ) for some 1 ⩽ p <∞. Then the quotient

B(X)/I has a unique algebra norm for every closed ideal I of B(X). Daws’
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classification [12] of the closed ideals of B(X) for these Banach spaces X plays

a key role in this work (see Page 8 for this lattice).

(v) More recently, Johnson, Phillips and Schechtman [31] have answered one of

the main questions left open in Ware’s dissertation [63] by showing that the

Calkin algebra B(Lp[0, 1])/K (Lp[0, 1]) has a unique algebra norm whenever

1 < p < ∞. Moreover, for p ̸= 2, they have shown that B(Lp[0, 1]) contains

a closed ideal I for which the quotient B(Lp[0, 1])/I admits at least two

non-equivalent algebra norms.

Motivated by these results, especially (i), (iv) and (v), we asked ourselves the

following question.

Question 4.1.5. For which Banach spaces X other than c0(Γ) and ℓp(Γ) for 1 ⩽

p <∞ and Γ infinite, is it true that every quotient of B(X) by a closed ideal has a

unique algebra norm?

Our focus was naturally turned towards the relatively meagre list of Banach

spaces X for which the lattice of closed ideals of B(X) is fully classified. The

comprehensive list of such Banach spaces X was discussed in Remark 3.1.2. Hence,

the spaces X of Theorem 4.1.2 were chosen.

It is well-known that maximality of the norm can be rephrased in terms of auto-

matic continuity of homomorphisms, which is one of the oldest topics in the theory

of Banach algebras. Here, and elsewhere, the term ‘homomorphism’ means a linear

and multiplicative map between two algebras. There are many ways to express this

relationship. We have chosen the following, which reflects the applications we have

in mind. A much more comprehensive result can be found in [51, Theorem 6.1.5].

Proposition 4.1.6. The following conditions are equivalent for a Banach algebra

(A , ∥ · ∥) :

(a) The given norm ∥ · ∥ on A is maximal.

(b) Every homomorphism from A into a normed algebra is continuous.

(c) Every injective homomorphism from A into a Banach algebra is continuous.

(d) The quotient norm on A /I is maximal for every closed ideal I of A .
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(e) Every homomorphism from A /I into a normed algebra is continuous for

every closed ideal I of A .

Proof. This is standard. For example, it is easy to adapt the proof of [10, Propo-

sition 2.1.7] to verify that conditions (a)–(c) are equivalent, and therefore condi-

tions (d) and (e) are also equivalent. We note that this part of the proof does not

require completeness of A . Completeness is, however, required to prove that (b)

implies (e); see [10, Proposition 2.1.5] for details. Finally, the implication (e)⇒(b)

is trivial.

B. E. Johnson [29] proved what has become the classical automatic continuity

result for homomorphisms from the Banach algebra B(X). We state it in a simplified

non-technical form, as it will suffice for our purposes.

Theorem 4.1.7 (Johnson). Let X be a Banach space which is isomorphic to its

square X ⊕ X. Then every homomorphism from B(X) into a Banach algebra is

continuous.

Proposition 4.1.6 has a counterpart for minimality. Its statement involves the

notion of an operator being bounded below (see Page 3 for the definition). We give

it here, along with its straightforward proof.

Lemma 4.1.8. Let (A , ∥ · ∥) be a normed algebra. Then its norm ∥ · ∥ is minimal if

and only if every injective homomorphism from A into a normed algebra is bounded

below.

Proof. Let ∥ · ∥ be minimal on A. Let ϕ be an injective homomorphism from A into

any normed algebra. The function |||·||| : a 7→ ∥ϕ(a)∥ from A to [0,∞) defines a

new algebra norm on A. By minimality of ∥ · ∥, there is a constant c > 0 such that

|||a||| ⩾ c∥a∥ for every a ∈ A. The constant c is a lower bound of the homomorphism

ϕ as desired.

On the other hand, suppose that every injective homomorphism from A into

a normed algebra is bounded below. The identity map from (A, ∥ · ∥) into any

renormed version of A defines an injective algebra homomorphism. The existence

of a lower bound for this homomorphism proves that ∥ · ∥ is dominated by this new

norm.
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The subsequent result originates in the work of Eidelheit [15, Lemma 1 and

Theorem 1], as already mentioned in this section. It can for instance be found in

[10, Theorem 5.1.14] or [51, Theorem, page 107].

Theorem 4.1.9. Let X be a Banach space, and let A be a subalgebra of B(X)

which contains the finite-rank operators. Then the operator norm on A is minimal.

In a forthcoming paper [31], W. B. Johnson, Phillips and Schechtman introduce

and explore the concepts of incompressibility and uniform incompressibility.

Definition 4.1.10. A normed algebra (A , ∥ · ∥) is:

• incompressible if every continuous, injective homomorphism from A into a

normed algebra is bounded below;

• uniformly incompressible if there is a function f : (0,∞) → (0,∞) such that

every continuous, injective homomorphism φ from A into a normed algebra

is bounded below by f(∥φ∥).

Remark 4.1.11. Let A and B be isomorphic Banach algebras. Whilst it is simple

to prove that B is incompressible whenever A is, it is not clear to us whether

B must be uniformly incompressible whenever A is. This concern motivates us

later on to introduce Definition 4.2.1 - an even stronger condition than uniform

incompressibility, which is invariant under Banach algebra isomorphism.

It is clear then that uniform incompressibility is strictly stronger as a condition

than incompressibility, and in view of Lemma 4.1.8, incompressibility is slightly

weaker than minimality of the algebra norm, with incompressible normed algebras

able to be the domain of an injective algebra homomorphism which is not bounded

below, if that homomorphism were to be discontinuous.

The author thanks Yemon Choi for the following result and its proof, which is

strictly a strengthening of Theorem 4.1.9 using the notion of uniform incompressibil-

ity. Recall the standard tensor notation for rank-one operators on a Banach space

X: For f ∈ X∗ and x ∈ X, f ⊗ x denotes the operator on X defined by

(f ⊗ x)y = ⟨y, f⟩x (y ∈ X) . (4.1.1)
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Proposition 4.1.12. Let X be a Banach space, and let A be a subalgebra of B(X)

which contains the finite-rank operators. Then A is uniformly incompressible

Proof. Let T ∈ A with ∥T∥ = 1. For every C > 1, we can take a norm one vector

x ∈ X for which ∥Tx∥ ⩾ 1/
√
C, and thus also norm one functional ϕ ∈ X∗ such that

|ϕ(Tx)| ⩾ 1
√
C. We can then let λ ∈ X∗ be a rescaling of ϕ for which ∥λ∥ ⩽ C and

λ(Tx) = 1. Now define the operator V = λ ⊗ x ∈ A, so that ∥V ∥ ⩽ ∥x∥∥λ∥ ⩽ C,

and

(TV )2 = (λ⊗ Tx)(λ⊗ Tx) = λ⊗ Tx = TV .

The operator TV is therefore a non-zero idempotent in A . We thus have that if ψ

is a continuous homomorphism from A into a normed algebra, then

1 ⩽ ∥ψ(TV )∥ ⩽ ∥ψ(T )∥∥ψ∥C .

Since this holds for all C > 1, we have that A is uniformly incompressible with

the control function f : (0,∞) → (0,∞) which has action f(∥ψ∥) = ∥ψ∥−1.

Lemma 4.1.8 shows that incompressibility is equivalent to minimality of the norm

if every homomorphism from A into a normed algebra is continuous. More precisely,

we have the next result.

Lemma 4.1.13. A normed algebra (A , ∥ · ∥) has a unique algebra norm if and only

if A is incompressible and the given norm ∥ · ∥ is maximal.

Proof. This is immediate from Lemma 4.1.8 because, by Proposition 4.1.6, maxi-

mality of the norm ∥ · ∥ means that every homomorphism from A into a normed

algebra is continuous.

One difficulty with some of the notions discussed so far in this section is that

they have similarities and interactions which are at times subtle. To their advantage

however, they can be combined elegantly.

Corollary 4.1.14. The following three conditions are equivalent for a Banach al-

gebra A :

(a) Every quotient algebra of A by a closed ideal has a unique algebra norm.
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(b) Every homomorphism from A into a Banach algebra is continuous and has

closed range.

(c) Every homomorphism from A into a Banach algebra is continuous, and A /I

is incompressible for every closed ideal I of A .

Proof. (a)⇒(b). Let φ : A → B be a homomorphism into a Banach algebra B.

Proposition 4.1.6 shows that φ is continuous because the norm on A is maximal.

In particular, the ideal kerφ is closed in A, and the quotient norm on A / kerφ is

therefore minimal. Let φ̃ : A / kerφ → B be the induced homomorphism given by

φ̃(a+ kerφ) = φ(a). It satisfies:

(i) φ̃[A / kerφ] = φ[A ],

(ii) φ̃ is injective and therefore bounded below by Lemma 4.1.8,

(iii) φ̃ is continuous, hence it has closed range by (ii), and therefore so does φ

by (i).

(b)⇒(c). Let I be a closed ideal of A , and consider some continuous, injec-

tive homomorphism φ : A /I → B into a normed algebra B. By hypothesis, the

composite homomorphism ιφπ : A → B̂ has closed range, where π : A → A /I

is the quotient map and ι : B → B̂ is the isometric embedding of B into its com-

pletion B̂. It follows that the injection ιφ has closed range because π is surjective,

so ιφ is bounded below, and therefore the same is true for φ.

(c)⇒(a). This follows from Proposition 4.1.6 and Lemma 4.1.13.

We are now equipped to outline our strategy to prove Theorem 4.1.2. Accord-

ing to Corollary 4.1.14, we must show that each of the Banach spaces X listed in

clauses (i)–(iii) of Theorem 4.1.2 satisfies:

(I) every homomorphism from B(X) into a Banach algebra is continuous;

(II) B(X)/I is incompressible for every closed ideal I of B(X).

Conveniently for us, in each case (I) is already known to hold true. This fol-

lows from Johnson’s result stated in Theorem 4.1.7 above for the Banach spaces

listed in clauses (i)–(ii) because they are all isomorphic to their squares, while [38,
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Corollary 39] verifies it for the particular Banach space X = C0(KA) considered in

clause (iii), which fails to be isomorphic to its square.

When verifying (II), we may clearly suppose that the closed ideal I is proper be-

cause B(X)/B(X) ≡ {0} is incompressible trivially. Also, we may suppose that I

is non-zero because incompressibility of B(X)/{0} ≡ B(X) follows directly from

Theorem 4.1.9. Moreover, Ware [63] has already handled some cases, as previously

mentioned. These results partially prove the following theorem, for certain spaces X

and certain closed ideals J of B(X). In the rest of this chapter, we shall complete

its proof, which will consequently complete the proof of Theorem 4.1.2.

Theorem 4.1.15. Let X be any of the Banach spaces listed in Theorem 4.1.2, and

let J be a closed ideal of B(X). Then B(X)/J is uniformly incompressible.

This will be achieved by showing that certain idempotent operators admit ‘quan-

titative factorisations’ through the operators in B(X)\I and then applying Lemma

4.1.16 below, which is an adaptation of [31, Lemma 0.2], specialised for our purposes.

See also [47] for a related, more abstract version of this result.

Factorisations of idempotent operators play a key role in the classifications of

the closed ideals of B(X) for each of the Banach spaces X we consider. A simple

example illustrating why this is the case is given in the discussion immediately after

Proposition 1.5.1.

Such factorisations are therefore natural tools to bring to bear on the problem

at hand. In order to do so, we require norm bounds on the auxiliary operators used

in the factorisations, as we specify in our next result, Lemma 4.1.16. The statement

involves the standard definition of operator ideals, which is due to Pietsch [54] and

is given in Section 1.3.

Lemma 4.1.16. Let X be a Banach space and J a closed operator ideal. Suppose

that there exists a constant C ⩾ 1 such that, for every T + J (X) ∈ B(X)/J (X)

of norm 1, there exist a Banach space Y and operators R ∈ B(X;Y ) and S ∈

B(Y ;X) with ∥R∥ ∥S∥ ⩽ C such that RTS + J (Y ) is a non-zero idempotent

in B(Y )/J (Y ). Then B(X)/J (X) is uniformly incompressible.

Proof. If J (X) = B(X), there is nothing to prove, so suppose that the closed

ideal J (X) is proper. Choose C ⩾ 1 as specified, and let φ be a continuous, injective
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homomorphism from B(X)/J (X) into a normed algebra. Given an element t =

T +J (X) of norm 1 in B(X)/J (X), we can find a Banach space Y and operators

R ∈ B(X, Y ) and S ∈ B(Y,X) with ∥R∥ ∥S∥ ⩽ C such that P + J (Y ) is a

non-zero idempotent, where P = RTS ∈ B(Y ). Then P /∈ J (Y ), and we have

P 3−P = (IY +P )(P 2−P ) ∈ J (Y ), so the operator Q = (TSR)2 ∈ B(X) satisfies

RQTS = P 3 /∈ J (Y ) and Q2 −Q = TS(P 3 − P )R ∈ J (X) .

It follows that q = Q+J (X) is a non-zero idempotent in B(X)/J (X). Therefore

its image under the injective homomorphism φ is also a non-zero idempotent, which

implies that ∥φ(q)∥ ⩾ 1. Set u = SR + J (X) ∈ B(X)/J (X), and observe that

∥u∥ ⩽ ∥S∥ ∥R∥ ⩽ C and q = (tu)2. Combining these facts, we conclude that

1 ⩽ ∥φ(q)∥ =
∥∥(φ(t)φ(u))2∥∥ ⩽ ∥φ(t)∥2∥φ(u)∥2 ⩽ ∥φ(t)∥2∥φ∥2C2 ,

which shows that the definition of uniform incompressibility is satisfied with respect

to the function f : (0,∞) → (0,∞) given by f(x) = (Cx)−1 for every x ∈ (0,∞).

Remark 4.1.17. Recall from Remark 3.1.2 that the closed ideals of B(X) have been

classified for several Banach spaces X other than those mentioned in Theorem 4.1.2.

These spaces are all descendants of the famous Argyros–Haydon space XAH which

solved the scalar-plus-compact problem [3]. We do not know whether B(XAH)

has a unique algebra norm because we do not know whether every homomorphism

from B(XAH) into a Banach algebra is continuous. This question is also open for the

variants ofXAH whose closed operator ideals have been classified in [60, Theorem 2.1]

and [36, Theorem 1.4], respectively. (We shall consider the latter Banach space in

much more detail in Example 4.1.18 below.)

The situation is even more intriguing for the family of Banach spaces XMPZ

of Motakis, Puglisi and Zizimopoulou [49], each defined by a compact, countable

space K, with the key property of the space XMPZ being that its Calkin algebra is

isometrically isomorphic to the Banach algebra C(K) of continuous, scalar-valued

functions on K. It is undecidable in ZFC whether every homomorphism from C(K)

into a Banach algebra is continuous; more precisely, Dales [9] and Esterle [17] inde-

pendently proved that discontinuous homomorphisms from C(K) exist if we assume



4.1. BACKGROUND 61

ZFC and the Continuum Hypothesis, whereas Solovay and Woodin constructed a

different model of ZFC in which all such homomorphisms are continuous; see [11]

for an exposition of this result.

Therefore, it is also undecidable in ZFC whether every homomorphism from

B(XMPZ) into a Banach algebra is continuous. Note that we have a complete

classification of the closed ideals of B(XMPZ), as discussed in Item (iv).

To justify within the context of quotients of B(X) the differences between incom-

pressibility and uniform incompressibility, we conclude this section with an example

of a Calkin algebra which is incompressible, but not uniformly incompressible.

Example 4.1.18. This example is based on the Banach space Z studied in [36],

and described in Remark 3.1.2. It is given by

Z = XAH ⊕∞ Y , (4.1.2)

where XAH denotes the Banach space of Argyros and Haydon already mentioned

in Remark 4.1.17, Y is a certain closed, infinite-dimensional subspace of XAH con-

structed in [36, Theorem 1.2], and the subscript ∞ indicates that we equip Z with

the norm

∥(x, y)∥ = max{∥x∥, ∥y∥} (x ∈ XAH, y ∈ Y ) .

The key property of Z that we require is that, according to [36, Equation (1.2)],

every operator T ∈ B(Z) has the form

T =

α1,1IXAH α1,2J

0 α2,2IY

+K , (4.1.3)

where α1,1, α1,2, α2,2 ∈ K, J : Y → XAH denotes the inclusion map and K ∈ K (Z).

(We note in passing that Z has a basis, so the ideal of finite-rank operators is dense

in K (Z), which proves that K (Z) is the minimal closed ideal in B(Z).)

Johnson, Phillips and Schechtman [31] observed that the subalgebra
α β

0 α

 : α, β ∈ K
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of the algebra M2(K) of scalar-valued 2 × 2 matrices, equipped with the spec-

tral norm, is incompressible, but not uniformly incompressible. Building on this

example, we shall show that the same conclusion holds true for the Calkin alge-

bra B(Z)/K (Z).

First, (4.1.3) shows that B(Z)/K (Z) is finite-dimensional. Trivially, it is there-

fore incompressible.

Second, we observe that the scalars α1,1, α1,2 and α2,2 in (4.1.3) are uniquely

determined by T because the operators IXAH , J and IY are non-compact, so for each

δ ∈ (0, 1), we can define a map ϕδ : B(Z) →M2(K) by

ϕδ(T ) =

α1,1 δα1,2

0 α2,2

 .

Straightforward calculations show that ϕδ is a unital algebra homomorphism. More-

over, ϕδ is continuous with norm 1 provided that we equip M2(K) with the norm

induced by identifying it with the Banach algebra B(ℓ2∞), that is,∥∥∥∥∥∥
α1,1 α1,2

α2,1 α2,2

∥∥∥∥∥∥ = max
{
|α1,1|+ |α1,2|, |α2,1|+ |α2,2|

}
.

Since kerϕδ = K (Z), the Fundamental Isomorphism Theorem implies that ϕδ in-

duces a continuous, injective, unital algebra homomorphism ϕ̃δ : B(Z)/K (Z) →

M2(K), also of norm 1, by the formula ϕ̃δ(T + K (Z)) = ϕδ(T ).

Consequently, if B(Z)/K (Z) were to be uniformly incompressible, there would

be a constant c > 0 such that ϕ̃δ is bounded below by c for every δ ∈ (0, 1).

However, it was shown in [36, Lemma 4.2] that the operator J has distance 1 to the

subspace K (Y ;XAH) of compact operators, so∥∥∥∥∥∥
0 J

0 0

+ K (Z)

∥∥∥∥∥∥ = 1 .

This implies that, for every δ ∈ (0, 1),

c ⩽

∥∥∥∥∥∥ϕ̃δ

0 J

0 0

+ K (Z)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
0 δ

0 0

∥∥∥∥∥∥ = δ ,
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which contradicts that the same constant c > 0 should work for every δ ∈ (0, 1).

Hence we conclude that the Calkin algebra B(Z)/K (Z) fails to be uniformly in-

compressible.

4.2 The proof of Theorem 4.1.15 for X =
(⊕

n∈N ℓ
n
2

)
c0

and X =
(⊕

n∈N ℓ
n
2

)
ℓ1

Throughout this section, set D = c0 or D = ℓ1 so that D is isomorphic to its

square and hence G D, defined on Page 6, is indeed a closed operator ideal. Let X

denote either of the Banach spaces X =
(⊕

n∈N ℓ
n
2

)
D
, the latter being the dual space

of the former. The lattice of closed ideals of B(X), as previously discussed on Page

9, is

{0} ⊊ K (X) ⊊ G D(X) ⊊ B(X) . (4.2.1)

A result of Ware [63, Theorem 5.3.1], already mentioned in the second bullet

point of clause (iii) on page 53, tells us that the Calkin algebra B(X)/K (X) of X

has a unique algebra norm for both of these Banach spaces X. In particular, this

tells us that it is incompressible. We remark that Lemma 4.1.16 in conjunction with

case (i, j) = (1, 1) of Lemma 3.2.15 proves that it is uniformly incompressible too.

Before proceeding, we introduce the following notion.

Definition 4.2.1. Let C ⩾ 1. A Banach algebra A has the idempotent factorisation

property with constant C (abbreviated C-IFP) if, for every a ∈ A of norm 1, there

are b, c ∈ A with ∥b∥ ∥c∥ ⩽ C such that bac is a non-zero idempotent.

To see why the C-IFP is relevant for our purposes, observe the following result,

the proof of which is similar to the latter part of the proof of Lemma 4.1.16.

Lemma 4.2.2. Every Banach algebra which has the C-IFP for some constant C ⩾ 1

is uniformly incompressible.

Proof. Let C ⩾ 1 and let A be a Banach algebra with the C-IFP. Let ϕ be a

continuous, injective homomorphism from A into some normed algebra. Let a ∈ A

have norm one, and using the C-IFP of A, take b, c ∈ A such that bac is a nonzero

idempotent and ∥b∥∥c∥ ⩽ C.
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Since ϕ is an injective homomorphism, we have that ϕ(bac) is a nonzero idem-

potent, so that ∥ϕ(bac)∥ ⩾ 1. This tells us that

1 ⩽ ∥ϕ(bac)∥ ⩽ ∥ϕ(b)∥∥ϕ(a)∥∥ϕ(c)∥ ⩽ ∥ϕ(a)∥∥ϕ∥2∥b∥∥c∥ ⩽ ∥ϕ(a)∥∥ϕ∥2C .

Hence ϕ is bounded below by (∥ϕ∥2C)−1. The result follows.

In view of our remarks on page 58, it will suffice to prove the following result in

order to establish Theorem 4.1.2(i).

Theorem 4.2.3. Let X =
(⊕

n∈N ℓ
n
2

)
D
, where D = c0 or D = ℓ1. Then the

quotient algebra B(X)/G D(X)has the C-IFP for every C > 1 and thus is uniformly

incompressible.

Thus, we shall in this section show that the quotients X =
(⊕

n∈N ℓ
n
2

)
D
, where

D = c0 or D = ℓ1 have the C-IFP for some constant C ⩾ 1.

For this section, let N be a countable subset of N. Recall from Section 1.2

the definition of a D-direct sum of an N -indexed sequence (Xn)n∈N of Banach

spaces Xn. For m ∈ N , we reserve the symbols Jm : Xm →
(⊕

n∈N Xn

)
D

and

Qm :
(⊕

n∈N Xn

)
D
→ Xm for the canonical mth coordinate embedding and projec-

tion, respectively.

Suppose that N is infinite, let T ∈ B(
(⊕

n∈N Xn

)
D
), and identify T with its

canonical matrix expression (see Section 1.2 for details on this correspondence).

Following [40], we say that the operator T has finite rows with respect to N if the

set {k ∈ N : Tj,k ̸= 0} is finite for each j ∈ N ; and analogously T has finite columns

with respect to N if the set {j ∈ N : Tj,k ̸= 0} is finite for each k ∈ N . An operator

which has both finite rows and finite columns with respect to N has locally finite

matrix with respect to N . Indeed, when examining the matrix representation [T ] of

T , the concept of T having finite rows/columns with respect to N corresponds to

[T ] having finitely supported rows/columns as expected.
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The case D = c0.

Throughout this subsection, we consider the Banach space

X =
(⊕
n∈N

ℓn2

)
c0
.

The following indexmϵ(T ), which was originally introduced in [40, Definition 5.2(ii)],

played a key role in the classification (4.2.1) of the closed ideals of B(X), and it

will also be an essential ingredient in our proof of Theorem 4.2.3.

Definition 4.2.4. For ϵ > 0 and an operator T ∈ B
((⊕

n∈N Hn

)
c0
;E), where

N ⊆ N is finite, Hn is a Hilbert space for each n ∈ N and E is a Banach space, we

define

mϵ(T ) = sup

{
m ∈ N0 :

∥∥∥T ◦
⊕
n∈N

(IHn − PGn)
∥∥∥ > ϵ for every subspace Gn of Hn

with dimGn ⩽ m for each n ∈ N

}
∈ N0 ∪ {±∞} ,

where PGn denotes the orthogonal projection of Hn onto the subspace Gn.

Loosely speaking, mϵ(T ) is the largest number of dimensions that we can remove

from each of the Hilbert spaces in the domain of T and still obtain an operator with

norm greater than ϵ.

Suppose that T ∈ B(X) is an operator with finite rows with respect to N. The

operator QjT : X → ℓj2 acts trivially on all but finitely many of the spaces ℓn2 in

its domain X. As described in [40, Remark 5.4], the above definition of mϵ can

therefore be applied to define mϵ(QjT ) for every j ∈ N in a natural way by ignoring

the cofinite number of Hilbert spaces in the domain of QjT on which it acts trivially.

The following lemma explains why the quantities mϵ(QjT ) for j ∈ N are relevant

in our investigation. It is proved in [40, Theorem 5.5(iii)]. The bounds on the norms

of the operators R and S are not stated explicitly in [40], but can be found easily

by examining the proof of the result.

Lemma 4.2.5. Let T ∈ B(X) be an operator with locally finite matrix with respect

to N, and suppose that the set {mϵ(QjT ) : j ∈ N} is unbounded for some ϵ > 0.

Then there are operators R, S ∈ B(X) with ∥R∥ ⩽ 1 and ∥S∥ ⩽ 1/ϵ such that

STR = IX .
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In order to apply this result, we require specific values of ϵ > 0 for which the set

{mϵ(QjT ) : j ∈ N} is unbounded. The following lemma addresses this point.

Lemma 4.2.6. Let T ∈ B(X) \ G c0(X) be an operator with locally finite matrix

with respect to N, and suppose that the set {mϵ(QjT ) : j ∈ N} is bounded for some

ϵ > 0. Then ∥T + G c0(X)∥ ⩽ ϵ.

Consequently the set {mϵ(QjT ) : j ∈ N} is unbounded whenever we have that

0 < ϵ < ∥T + G c0(X)∥.

Proof. Set m = sup{mϵ(QjT ) : j ∈ N} ∈ N0. Our proof uses the machinery from

[40, Construction 4.2], so we begin by introducing the necessary notation. For every

j ∈ N, define Nj = {k ∈ N : Tj,k ̸= 0}, which is finite, let Bj =
(⊕

k∈Nj
ℓk2
)
c0

, and

let Lj : Bj → X be the natural inclusion map. Moreover, set B =
(⊕

j∈NBj

)
c0

and

T̃ =
⊕
j∈N

QjTLj ∈ B(B;X) .

The operator V ∈ B(X;B) with ∥V ∥ = 1 defined with matrix coordinates

Vm,n :=

J
Bm
n if Nm ̸= ∅,

0 otherwise,
∈ B(ℓn2 , Bm) ,

for every m,n ∈ N, where JBm
n donotes the natural embedding of ℓn2 into Bm, (as

found in [40, Construction 4.2]), satisfies T = T̃ V . The convention described after

Definition 4.2.4 means that

mϵ(QjTLj) = mϵ(QjT ) ⩽ m for every j ∈ N .

Therefore we can find orthogonal projections Pj,k ∈ B(ℓk2) for k ∈ Nj, each having

rank at most m+ 1, such that

∥∥∥QjTLj ◦
⊕
k∈Nj

(Iℓk2 − Pj,k)
∥∥∥ ⩽ ϵ . (4.2.2)

Set Rj =
⊕

k∈Nj
Pj,k ∈ B(Bj) and R =

⊕
j∈NRj ∈ B(B). Since each of the

projections Pj,k has rank at most m + 1, the image of R embeds isometrically into

a direct sum of the form (ℓm+1
2 ⊕ ℓm+1

2 ⊕ · · · )c0 , which in turn is isomorphic to
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(ℓm+1
∞ ⊕ ℓm+1

∞ ⊕ · · · )c0 ≡ c0. This shows that R factors through c0, and therefore the

same is true for the composite operator T̃RV . Hence we have

∥T + G c0(X)∥⩽ ∥T − T̃RV ∥ = ∥T̃ (IB −R)V ∥

⩽
∥∥∥⊕

j∈N

QjTLj(IBj
−Rj)

∥∥∥ ∥V ∥ ⩽ ϵ ,

where the final estimate follows because ∥V ∥ = 1 and ∥QjTLj(IBj
− Rj)∥ ⩽ ϵ for

every j ∈ N by (4.2.2). The final clause is immediate.

We now have everything required to prove that the quotient Banach algebra

B(X)/G c0(X) has the C-IFP for every C > 1, and thus is uniformly incompressible

by Lemma 4.2.2.

Proof of Theorem 4.2.3 for D = c0. Fix a constant C > 1, and take an operator

T ∈ B(X) with ∥T + G c0(X)∥ = 1. By [40, Lemma 2.7(iii)], we can find a compact

operator K ∈ K (X) such that T −K has locally finite matrix with respect to N.

Noting that compact operators on X necessarily factor approximately through c0,

we see that

1/C < 1 = ∥T + G c0(X)∥ = ∥T −K + G c0(X)∥ ,

so Lemma 4.2.6 shows that the set {m1/C(Qj(T − K)) : j ∈ N} is unbounded.

Consequently there are operators R, S ∈ B(X) with ∥R∥ ⩽ 1 and ∥S∥ ⩽ C such

that S(T −K)R = IX by Lemma 4.2.5. The latter identity implies that

STR + G c0(X) = STR− SKR + G c0(X) = IX + G c0(X) ,

which is a non-zero idempotent in B(X)/G c0(X). Hence the conditions for applying

Lemma 4.1.16 are satisfied for any constant C > 1 (and using the Banach space

Y = X for every operator T ). The conclusion follows.

The case D = ℓ1.

We now turn our attention to the Banach space X =
(⊕

n∈N ℓ
n
2

)
ℓ1

. It identifies

naturally with the dual space of the Banach space
(⊕

n∈N ℓ
n
2

)
c0

that we considered

in the previous subsection. Our proof is essentially a dual version of the proof
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we have just completed. As observed in [41, Remark 2.13], the dualisation is not

straightforward because we can no longer perturb operators by compact operators

to arrange that they have locally finite matrix with respect to N; only finite columns

with respect to N can be achieved. Fortunately, that will suffice to carry out the

necessary steps, beginning with the following index originally introduced in [41,

Definition 2.4], which is the dual version of Definition 4.2.4 above.

Definition 4.2.7. For ϵ > 0 and an operator T ∈ B
(
E;
(⊕

j∈M Hj

)
ℓ1
), where E is

a Banach space, M ⊆ N is finite and Hj is a Hilbert space for each j ∈M , we define

nϵ(T ) = sup

{
n ∈ N0 :

∥∥∥∥(⊕
j∈M

(IHj
− PGj

)
)
T

∥∥∥∥ > ϵ for every subspace Gj of Hj

with dimGj ⩽ n for each j ∈M

}
∈ N0 ∪ {±∞} ,

where PGj
denotes the orthogonal projection of Hj onto the subspace Gj, as before.

Hence nϵ(T ) is loosely speaking the largest number of dimensions that we can

remove from each of the Hilbert spaces in the codomain of T and still obtain an

operator with norm greater than ϵ.

When T ∈ B(X) has finite columns with respect to N, for each k ∈ N we have

that the image of the operator TJk is contained in a finite direct sum ℓn1
2 ⊕ · · · ⊕ ℓ

nj

2

for some n1 < · · · < nj, so we can apply Definition 4.2.7 to the operator TJk by

simply ignoring the Hilbert spaces ℓm2 in the codomain of TJk corresponding to the

cofinite set of indices m ∈ N for which QmTJk = 0. Then, as one would hope,

the quantities nϵ(TJk) for k ∈ N measure how close the identity operator on X

is to factoring through T . More precisely, we have the following counterpart of

Lemma 4.2.5, originally proved as part of [41, Proposition 2.11]. The norm bounds

on U and V are not stated explicitly in [41], but follow easily from the proof of the

implication (ii)⇒(iii) therein.

Lemma 4.2.8. Let T ∈ B(X) be an operator with finite columns with respect to N,

and suppose that the set {nϵ(TJk) : k ∈ N} is unbounded for some ϵ > 0. Then there

are operators U, V ∈ B(X) with ∥U∥ ⩽ 1/ϵ and ∥V ∥ ⩽ 1 such that V TU = IX .

Our next lemma serves an analogous purpose as Theorem 4.2.6, and its proof is

similar.
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Lemma 4.2.9. Let T ∈ B(X) \ G ℓ1(X) be an operator with finite column with

respect to N, and suppose that sup{nϵ(TJk) : k ∈ N} is finite for some ϵ > 0. Then

∥T + G ℓ1(X)∥ ⩽ ϵ.

Consequently the set {nϵ(TJk) : k ∈ N} is unbounded whenever we have that

0 < ϵ < ∥T + G ℓ1(X)∥.

Proof. Set n = sup{nϵ(TJk) : k ∈ N} ∈ N0. For each k ∈ N, we see that the set

Mk = {j ∈ N : Tj,k ̸= 0} is finite because T has finite columns with respect to N.

Define Yk =
(⊕

j∈Mk
ℓj2
)
ℓ1

, and let Lk : Yk → X and Sk : X → Yk denote the natural

inclusion map and projection, respectively. Further, define Y =
(⊕

k∈N Yk
)
ℓ1

and

let

T̃ =
⊕
k∈N

SkTJk ∈ B(X;Y ) .

Then, for each element (yk) ∈ Y , the series
∑

k∈N Lkyk converges absolutely in X,

and the operator W ∈ B(Y ;X) given by W (yk) =
∑

k∈N Lkyk satisfies ∥W∥ = 1

and T = WT̃ .

For every k ∈ N, we have n ⩾ nϵ(TJk) = nϵ(SkTJk), so we can find orthogonal

projections Pj,k ∈ B(ℓj2) for j ∈Mk, each having rank at most n+ 1, such that∥∥∥∥(⊕
j∈Mk

(Iℓj2
− Pj,k)

)
SkTJk

∥∥∥∥ ⩽ ϵ . (4.2.3)

Set Rk =
⊕

j∈Mk
Pj,k ∈ B(Yk) and R =

⊕
k∈NRk ∈ B(Y ), and observe that R

factors through ℓ1 because the image of R embeds isometrically into (ℓn+1
2 ⊕ ℓn+1

2 ⊕

· · · )ℓ1 , which is isomorphic to (ℓn+1
1 ⊕ ℓn+1

1 ⊕ · · · )ℓ1 ≡ ℓ1. Consequently we have

∥T + G ℓ1(X)∥ ⩽ ∥T −WRT̃∥ = ∥W (IY −R)T̃∥ ⩽ ∥W∥
∥∥∥⊕
k∈N

(IYk
−Rk)SkTJk

∥∥∥ ⩽ ϵ

by (4.2.3), as required. The final clause is immediate.

We now have everything we need to conclude this section by proving that the

quotient Banach algebra B(X)/G ℓ1(X) has the C-IFP for every C > 1, and thus is

uniformly incompressible by Lemma 4.2.2.

Proof of Theorem 4.2.3 for D = ℓ1. Take any constant C > 1 and let T ∈ B(X)

with ∥T + G ℓ1(X)∥ = 1. Apply [40, Lemma 2.7(i)] to find a compact operator
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K ∈ K (X) such that T −K has finite columns with respect to N. Then

1/C < 1 = ∥T + G ℓ1(X)∥ = ∥T −K + G ℓ1(X)∥ .

We have that the set {n1/C(Qj(T −K)) : j ∈ N} is unbounded by Lemma 4.2.9,

so we can use Lemma 4.2.8 to obtain operators U, V ∈ B(X) with ∥U∥ ⩽ C and

∥V ∥ ⩽ 1 for which V (T −K)U = IX , so

V TU + G ℓ1(X) = V TU − V KU + G ℓ1(X) = IX + G ℓ1(X)

is a nonzero idempotent in B(X)/G ℓ1(X). Lemma 4.1.16 therefore applies and the

result follows.

4.3 The proof of Theorem 4.1.15 forX =
(⊕

n∈N ℓ
n
2

)
D
⊕

DΓ

The aim of this section is to show that every quotient algebra of B(X) by one of its

closed ideals has a unique algebra norm for the direct sums

X =
(⊕
n∈N

ℓn2
)
c0
⊕ c0(Γ) and X =

(⊕
n∈N

ℓn2
)
ℓ1
⊕ ℓ1(Γ) ,

where the index set Γ is an uncountable cardinal number. To enable us to discuss

the two cases simultaneously, we reintroduce from Chapter 3 the notation (D,DΓ) =

(c0, c0(Γ)) or (D,DΓ) = (ℓ1, ℓ1(Γ)), meaning that in either case we can simply use

the notation

X =
(⊕
n∈N

ℓn2

)
D
⊕DΓ , (4.3.1)

which we fix for the rest of this section.

We first give a fairly simple general result, Lemma 4.3.1 below, which allows us

to combine IFP-style results for direct sums of Banach algebras.

Lemma 4.3.1. Let A1, . . . ,An be Banach algebras, where n ∈ N, and suppose that

for every i ∈ {1, . . . , n}, we have that Ai has the Ci-IFP for some constant Ci ⩾ 1.

The direct sum A1 ⊕ · · · ⊕ An has the C-IFP for C = max{C1, . . . , Cn}.
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Proof. Take a ∈ A with ∥a∥ = 1, and write a = a1 + · · · + an, where ai ∈ Ai for

every i ∈ {1, . . . , n}. Let j ∈ {1, . . . , n} be such that ∥aj∥ = 1. Then, because Aj

has the Cj-IFP, we can find b, c ∈ Aj for which bajc is a non-zero idempotent in Aj

with ∥b∥∥c∥ ⩽ Cj.

Now, the canonical embedding Jj : Aj → A and projection Pj : A → Aj both

have norm 1, and aj = Pja, meaning that (JjbPj)a(JjcPj) is a non-zero idempotent

in A , with ∥(JjbPj)∥∥(JjcPj)∥ ⩽ Cj. The result follows.

Fix n ∈ N and Banach spaces X1, X2, . . . , Xn. For a subset I of B(X1 ⊕X2 ⊕

· · · ⊕Xn)∞ and j, k ∈ {1, 2, . . . , n}, we define

Ij,k = {QjTJk : T ∈ I } ⊆ B(Xk;Xj) .

This notion generalises the idea of ‘quadrants’ as seen in Chapter 3.

The following result makes clear how Lemma 4.3.1 can be used in our context.

Proposition 4.3.2. Let J be a closed ideal in B(ED⊕DΓ) which properly contains

K (ED ⊕DΓ). Then, there are closed ideals J1 of B(ED) and J2 of B(DΓ), both

of which strictly contain the set of compact operators on their respective spaces, such

that

J ≡ (B(ED)/J1)⊕∞ (B(DΓ)/J2) .

Proof. Since I is a closed ideal of B(X) and K (X) ⊊ I , Proposition 3.2.18

tells us that J1,1 and J2,2 must be closed ideals of ED and DΓ strictly containing

the compact operators, and that the quadrants I2,1 and I1,2 of I are their entire

respective spaces of bounded operators B(X1;X2) and B(X2;X1). It follows that

∥T + J ∥ = max{∥T1,1 + J1,1∥, ∥T2,2 + J2,2∥} ,

from which the result follows easily.

Given that the hypothesis of the above proposition necessitates that J contains

strictly the space of compact operators, we must consider the Calkin algebra of X

as a separate case, and hence the finale of the proof of Theorem 4.1.2(ii) needs to

be split into two parts.
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The Calkin algebra of X is uniformly incompressible

We first tackle the case for the Calkin algebra of X. The desired result, Proposi-

tion 4.3.3 below, is a simple consequence of Lemma 3.2.15.

Proposition 4.3.3. Let (D,DΓ) = (ℓ1, ℓ1(Γ)) or (D,DΓ) = (c0, c0(Γ)) for some

infinite cardinal Γ. Let X1 =
(⊕

n∈N ℓ
n
2

)
D
, X2 = DΓ, and X = X1 ⊕ X2. The

Calkin algebra of X is uniformly incompressible.

Proof. Let T ∈ B(X) be such that ∥T∥e = 1, and let ϵ > 0. As usual, for each

i, j ∈ {1, 2}, let Ji and Qj denote the natural inclusion and projection Xi → X and

X → Xj respectively.

We may decompose the operator T as T =
∑2

i,j=1 JiTi,jQj, for operators Ti,j ∈

B(Xj;Xi), i, j ∈ {1, 2}. It follows that there is a pair i, j ∈ {1, 2} for which

∥Ti,j∥e = ∥JiTi,jQj∥e ⩾
1

4
.

Now, Lemma 3.2.15 tells us that ID factors through Ti,j as UTi,jV = ID for some

operators U ∈ B(Xi;D), V ∈ B(D;Xj), with ∥U∥∥V ∥ ⩽ 8(1 + ϵ). Then

ID = UTi,jV = UQiTJjV .

The result follows from Lemma 4.1.16.

Quotients of B(X) by large closed ideals are uniformly incompressible

Here, we will show that all of the quotients of B(X) by a closed ideal strictly contain-

ing K (X) have the C-IFP for every C > 1, and hence are uniformly incompressible

by Lemma 4.2.2. The proof of this part of the result has four main ingredients:

(i) The fact that each quotient of B(
(⊕

n∈N ℓ
n
2

)
D
) by one of its closed ideals has

the C-IFP for every C > 1, which was established previously in this chapter.

(ii) The fact that each quotient of B(DΓ) by one of its closed ideals has the C-IFP

for every C > 1, which Ware proved in his dissertation [63].

(iii) The classification of the closed ideals of B(X), which is displayed on Page 30,

and proved in Chapter 3.
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(iv) Lemma 4.3.1 and Proposition 4.3.2 above, which allow us to combine the

results for the two summands in (i) and (ii) to draw the desired conclusion for

their direct sum (4.3.1).

Given the above conditions and the statement of Lemma 4.3.1, the claim in

Lemma 4.2.3 that for Y =
(⊕

n∈N ℓ
n
2

)
D
, where D = c0 or D = ℓ1, the quotient

algebra B(Y )
/

G D(Y ) has the C-IFP for every constant C > 1, plays a key role

going forwards.

As displayed on Page 8, the lattice of closed ideals of B(DΓ) was classified by

Daws in [12], and the non-trivial closed ideals of B(DΓ) are the ideals of κ-compact

operators on DΓ for the cardinals κ with ℵ0 ⩽ κ ⩽ Γ.

Ware [63, Propositions 6.3.1–6.3.2] observed that Daws’ proofs of [12, Theo-

rems 6.2 and 7.3] establish the following conclusions, stated here using our propri-

etary terminology for this subsection.

Lemma 4.3.4. Let Γ and κ be uncountable cardinal numbers with κ ⩽ Γ. Then:

(i) The κ-Calkin algebras of c0(Γ) and ℓp(Γ) for 1 < p <∞ have the 4-IFP.

(ii) The κ-Calkin algebra of ℓ1(Γ) has the C-IFP for every constant C > 1.

Proposition 4.3.5. Let J be a closed ideal of B(X) for which K (X) ⊊ J . The

quotient algebra B(X)/J is uniformly incompressible.

Proof. By Proposition 4.3.2, we have that B(X)/J is isometrically isomorphic to

(B(X1)/J1,1) ⊕∞ (B(X2)/J2,2) where J1,1 and J2,2 are closed ideals of B(X1)

and B(X2) respectively, strictly containing their entire sets of compact operators.

Moreover, using the ideal classifications (4.2.1) and (1.4.1) for B(X1) and B(X2),

we find

I1,1 =

G D(X1) for I = Jκ(X), where ℵ1 ⩽ κ ⩽ Γ+ ,

B(X1) for I = Kκ(X) , where ℵ1 ⩽ κ ⩽ Γ,

and

I2,2 =

Kκ(X2) for I = Kκ(X) or I = Jκ(X), where ℵ1 ⩽ κ ⩽ Γ ,

B(X2) for I = JΓ+(X) .
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Consequently, Lemmas 4.2.3 and 4.3.4 imply that B(X1)/I1,1 and B(X2)/I2,2 have

the 4-IFP whenever they are non-zero. If they are both non-zero, then Lemma 4.3.1

shows that B(X)/I has the 4-IFP. Otherwise we have Ij,j = B(Xj) for one

j ∈ {1, 2}, and B(X)/I ∼= B(Xk)/Ik,k, where k = 2 if j = 1 and k = 1 if j = 2,

so B(X)/I also has the 4-IFP in this case. It is therefore uniformly incompressible

by Lemma 4.2.2, as desired.

4.4 The proof of Theorem 4.1.15 for the space X =

C0(KA) of continuous functions vanishing at in-

finity on Koszmider’s Mrówka space

We begin this section with two definitions and two classical results, positioned here

ahead of the main body of work.

Definition 4.4.1. A Banach space X is an Asplund space if every separable sub-

space of X has a separable dual space.

Definition 4.4.2. A Banach space X has the Schur property if every weakly con-

vergent sequence in X converges in norm.

Theorem 4.4.3 (Gantmacher’s Theorem). A bounded operator between Banach

spaces is weakly compact if and only if its adjoint operator is.

Theorem 4.4.4 (Schauder’s Theorem). A bounded operator between Banach spaces

is compact if and only if its adjoint operator is.

4.4.1 Incompressibility of the Calkin algebra of the Banach

space of continuous functions on a scattered, locally

compact space

Let K be a locally compact Hausdorff space. Recall that a topological space is

scattered if each subspace of it contains an isolated point, and recall from Page 2

the definition of the Banach space C0(K).
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The aim of this section is to prove the following theorem which, broadly speaking,

says that the idempotent factorisation property considered in Lemma 4.1.16 is not

only sufficient, but also necessary for the (uniform) incompressibility of the Calkin

algebra of C0(K). Moreover, it provides an equivalent condition (a) which may be

easier to verify in applications. Section 4.4.2 provides an example of this method in

action.

Theorem 4.4.5. Let K be a scattered, locally compact Hausdorff space. Then the

following conditions are equivalent:

(a) There exists a constant δ ∈ (0, 1) such that, for every non-compact operator

T ∈ B(C0(K)) with ∥T∥e = 1, C0(K) contains a sequence (fn)n∈N with

sup
k∈K

∞∑
n=1

|fn(k)| ⩽ 1 and inf
n∈N

∥Tfn∥ > δ . (4.4.1)

(b) There is a constant C > 1 such that, for every non-compact operator T ∈

B(C0(K)) with ∥T∥e = 1, there are operators U ∈ B(C0(K); c0) and V ∈

B(c0;C0(K)) with ∥U∥ ∥V ∥ < C such that UTV = Ic0.

(c) The Calkin algebra B(C0(K))/K (C0(K)) is uniformly incompressible.

(d) The Calkin algebra B(C0(K))/K (C0(K)) is incompressible.

There are currently no known spacesK for which the conditions of Theorem 4.4.5

are not satisfied. Take Kn to be the ordinal interval [0, ωn) equipped with the order

topology, and for each n ∈ N, let Cn be a constant satisfying Theorem 4.4.5(b) for

K = Kn (The fact that c0 ∼= C0(Kn) for every n ∈ N proves that such Cn exist).

Although we were not able to prove this concretely, the author suspects that the

sequence (Cn)n∈N must tend to infinity. With this in mind, we leave the following

open question which highlights a promising candidate for such a space K.

Question 4.4.6. Is it true that K = [0, ωω) fails to satisfy the conditions of Theo-

rem 4.4.5?

Remark 4.4.7. Let K be a scattered, locally compact Hausdorff space. Recall from

Page 11 that C0(K) is a hyperplane in C(αK), and hence the two Banach spaces

are isomorphic.
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Consequently, in view of the of the isomorphic invariance of Theorem 4.4.5, we

could have stated it only for compact K without formally losing any generality. We

have nevertheless chosen to state it in the locally compact case for the following

reasons:

(i) The isomorphism between C0(K) and C(αK) is not isometric (for an example,

consider c0 and c), and the constants δ and C in conditions (a) and (b) may

therefore change when passing from one space to the other. We consider the

values of these constants to be of some interest.

(ii) The present version includes the case K = N (or in other words C0(K) = c0)

explicitly, which seems natural given the role c0 plays in the result. Perhaps

more importantly, in the proof of Theorem 4.4.5, we shall apply various lemmas

to c0 as well as C0(K). If the latter class did not contain c0, some statements

would become more complicated.

(iii) In Subsection 4.4.2 we shall apply Theorem 4.4.5 in the locally compact case,

where the ‘vanishing at infinity’ property will be convenient for us.

To help the presentation of the proof of Theorem 4.4.5, we have split it into a

number of separate statements, some of which may also be of independent interest.

The first of these will be essential when showing that conditions (a) and (b) are

equivalent.

Lemma 4.4.8. Let (fn)n∈N be a sequence in C0(K) for some locally compact Haus-

dorff space K. Then there is an operator V ∈ B(c0;C0(K)) such that V en = fn for

every n ∈ N if and only if

sup
k∈K

∞∑
n=1

|fn(k)| <∞ . (4.4.2)

If one, and hence both, of these conditions are satisfied, the norm of the operator V

is equal to the supremum (4.4.2).

Proof. Let C ∈ [0,∞] denote the supremum in (4.4.2), and observe that

C = sup

{ m∑
n=1

|fn(k)| : k ∈ K, m ∈ N
}
.
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⇒. Suppose that V ∈ B(c0;C0(K)) is an operator with V en = fn for every

n ∈ N, and take m ∈ N and k ∈ K. For each n ∈ {1, . . . ,m}, choose σn ∈ K such

that |σn| = 1 and σnfn(k) ⩾ 0. Then x =
∑m

n=1 σnen ∈ c0 has norm 1, so

∥V ∥ ⩾ ∥V x∥∞ =

∥∥∥∥ m∑
n=1

σnfn

∥∥∥∥
∞

⩾

∣∣∣∣ m∑
n=1

σnfn(k)

∣∣∣∣ = m∑
n=1

σnfn(k) =
m∑

n=1

|fn(k)| .

This proves that C ⩽ ∥V ∥ <∞.

⇐. Suppose that the supremum C is finite. Since c00 is dense in c0, it suffices

to show that the linear map V : c00 → C0(K) given by V en = fn for every n ∈ N

is bounded. To verify this, we observe that, for m ∈ N and α1, . . . , αm ∈ K with

max1⩽n⩽m|αn| ⩽ 1,

∥∥∥∥V ( m∑
n=1

αnen

)∥∥∥∥
∞

=

∥∥∥∥ m∑
n=1

αnfn

∥∥∥∥
∞

= sup
k∈K

∣∣∣∣ m∑
n=1

αnfn(k)

∣∣∣∣ ⩽ sup
k∈K

m∑
n=1

|αn| |fn(k)| ⩽ C .

Hence V is bounded with ∥V ∥ ⩽ C. The final clause follows by combining the

estimates obtained in the two parts of the proof.

Lemma 4.4.9. Let X be a Banach space with a normalised, bimonotone basis

(bn)n∈N, and suppose that

∥∥∥∥ m∑
n=1

αnbn

∥∥∥∥ =

∥∥∥∥ m∑
n=1

αnbn+1

∥∥∥∥ (m ∈ N, α1, . . . , αm ∈ K) . (4.4.3)

Then, for every C > 1 and every operator T ∈ B(X) such that IX − T ∈ K (X),

there are operators U, V ∈ B(X) with ∥U∥ ∥V ∥ < C such that UTV = IX .

Proof. Equation (4.4.3) shows that the linear map R given by Rbn = bn+1 for n ∈ N

is an isometry. Now consider the linear map L given by Lb1 = 0 and Lbn+1 = bn for

n ∈ N. For each m ∈ N and α1, . . . , αm+1 ∈ K, it satisfies

∥∥∥∥L(m+1∑
n=1

αnbn

)∥∥∥∥ =

∥∥∥∥ m∑
n=1

αn+1bn

∥∥∥∥ =

∥∥∥∥R( m∑
n=1

αn+1bn

)∥∥∥∥ =

∥∥∥∥ m∑
n=1

αn+1bn+1

∥∥∥∥
=

∥∥∥∥(IX − P1)
(m+1∑

n=1

αnbn

)∥∥∥∥ ⩽

∥∥∥∥m+1∑
n=1

αnbn

∥∥∥∥
by bimonotonicity. Hence X admits shift operators R,L ∈ B(X), both having
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norm 1, and

LnRn = IX and RnLn = IX − Pn (n ∈ N) . (4.4.4)

Let C > 1, and suppose that S := IX − T ∈ K (X). Then PnS → S as n→ ∞,

so we can find n ∈ N such that ∥(IX −Pn)S∥ ⩽ 1− 1
C
. Combining this with (4.4.4),

we obtain

∥IX − LnTRn∥ = ∥Ln(IX − T )Rn∥ = ∥LnSRn∥

⩽ ∥LnS∥ = ∥RnLnS∥ = ∥(IX − Pn)S∥ ⩽ 1− 1

C
.

This implies that the operator LnTRn is invertible by the C. Neumann series,

and its inverse has norm at most C. Consequently we can define operators U =

(LnTRn)−1Ln ∈ B(X) and V = Rn ∈ B(X) with ∥U∥ ⩽ C and ∥V ∥ = 1, and

UTV = IX by definition.

We now come to what is arguably the most important ingredient in the proof of

Theorem 4.4.5, namely a generalisation of a theorem of Dowling, Randrianantoanina,

and Turett [14, Theorem 6].

Theorem 4.4.10. Let W be a closed subspace of a Banach space X for which the

unit ball of X∗ is weak* sequentially compact, and suppose that W contains a closed

subspace which is isomorphic to c0. Then, for every C > 1, there is a projection

P ∈ B(X) with ∥P∥ ⩽ C such that P [X] is contained in W and C-isomorphic to c0.

Proof. For X = W , this is precisely the result which Dowling, Randrianantoanina,

and Turett proved in [14, Theorem 6]. In order to adapt their proof to the set-

ting where W ⊊ X, it suffices to observe that they define the projection P using

Hahn–Banach extensions of the coordinate functionals corresponding to a (1− δ)−1-

isomorphic copy of c0 inside W , for a suitably defined δ ∈ (0, 1). By extending these

coordinate functionals to all of X, rather than only to W , we can follow the rest of

their proof verbatim to obtain the stated result.

Remark 4.4.11. In the case of real scalars, Galego and Plichko [21, Theorem 4.3]

have proved a result similar to Theorem 4.4.10 under the weaker hypothesis that X
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does not contain a copy of ℓ1. However, it is not clear to us whether this result

carries over to complex scalars. Therefore we have opted for the above version,

which will suffice for our purposes.

We note in passing that Galego and Plichko do not state explicitly that the C-

complemented copy of c0 they construct inside W is C-isomorphic to c0. However,

a close inspection of their proof reveals that it is.

Lemma 4.4.12. Let (nk) be a strictly increasing sequence of natural numbers, and

let (wk) be a sequence of unit vectors in c0 for which supp(wk) ⊆ [nk, nk+1) for all

k ∈ N. The operator on c0 that sends ek to wk for each k ∈ N is an isometry, and

its image is complemented in c0 by a projection of norm 1.

Proof. That the operator in question is an isometry is easy to see. For the remainder

of the proof see e.g. [43, Proposition 2.a.1].

A basis (en)n∈N of a Banach space Z is shrinking if the sequence (e∗n)n∈N ⊂ Z∗

of its coordinate functionals forms a basis of Z∗. This property clearly holds for the

standard basis of c0 whose coordinate functionals give a basis to ℓ1.

Lemma 4.4.13. Let T ∈ K (X;Y ) for some Banach spaces X and Y for which X

has a shrinking basis. For each n ∈ N, let Pn ∈ B(X) be the canonical projection

onto the first n coordinates in said basis. Then TPn → T as n→ ∞.

Proof. Suppose towards a contradiction TPn does not converge to T as n → ∞. It

follows that there is some ϵ > 0 such that for every N ∈ N, there is some n > N

for which ∥TPn − T∥ ⩾ ϵ. Thus, we can find a subsequence (mn)n∈N of N such that

∥TPmn − T∥ ⩾ ϵ for every n ∈ N, and hence a sequence (xn)n∈N ∈ BX for which

∥T (I − Pmn)xn∥ ⩾ ϵ for every n ∈ N . (4.4.5)

Now, for each n ∈ N, define yn = (I − Pmn)xn ∈ BX . Because T is compact,

we can (by replacing with a subsequence if necessary) suppose that (Tyn)n∈N is

convergent with some limit z ∈ Y , where (4.4.5) tells us that z ̸= 0.

The sequence (Tyn)n∈N ⊆ Y is also weakly convergent to z, hence for all f ∈ Y ∗,

we have that

⟨xn, (I − Pmn)
∗T ∗f⟩ = ⟨yn, T ∗f⟩ = ⟨Tyn, f⟩ → ⟨z, f⟩ (4.4.6)
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as n→ ∞. Now, the operator (I−Pmn)
∗ ∈ B(X∗) is simply the standard projection

onto the coordinates N \ [1, . . . ,mn], and so because the basis of X is shrinking, we

must have that (I − Pmn)
∗T ∗f → 0 as n→ ∞ for any f ∈ Y ∗. Hence

|⟨xn, (I − Pmn)
∗T ∗f⟩| ⩽ ∥xn∥∥(I − Pmn)

∗T ∗f∥ → 0

as n → ∞ for every f ∈ Y ∗, so by (4.4.6), we have that z = 0. This contradiction

proves the claim.

Lemma 4.4.14. Let R ∈ B(X;Y ) be a non-compact operator between Banach

spaces X and Y , where X is C-isomorphic to c0 for some constant C ⩾ 1. Then,

for each η ∈ (0, 1), X contains a C-complemented subspace W which is C-isomorphic

to c0 and satisfies

1− η

C
∥R∥e∥w∥ ⩽ ∥Rw∥ ⩽ (1 + η)C∥R∥e∥w∥ (w ∈ W ) . (4.4.7)

Proof. Take an isomorphism U ∈ B(c0;X) with ∥U∥ ∥U−1∥ ⩽ C, and set S =

RU ∈ B(c0;Y ). Choose T ∈ K (c0;Y ) such that ∥S + T∥ ⩽ (1 + η
2
)∥S∥e. Using

Lemma 4.4.13, we have TPn → T as n → ∞, so ∥T (Ic0 − Pm0)∥ ⩽ η
2
∥S∥e for some

m0 ∈ N.

On the other hand, ∥S(Ic0 − Pm)∥ > (1− η
2
)∥S∥e for each m ∈ N. Consequently

we can find an integer k > m and a unit vector w ∈ span{ej : m < j ⩽ k}

such that ∥Sw∥ > (1 − η
2
)∥S∥e. Using this, we can recursively choose integers

m0 < m1 < m2 < · · · and unit vectors wn ∈ span{ej : mn−1 < j ⩽ mn} such that

∥Swn∥ >
(
1− η

2

)
∥S∥e (n ∈ N) .

Using Lemma 4.4.12, the linear map on c0 determined by en 7→ wn for each

n ∈ N is an isometry, and Theorem 3.2.12 implies that we can find a subsequence

(wnj
) of (wn) such that the restriction of S to the subspace W0 = span{wnj

: j ∈

N} is bounded below by (1 − η)∥S∥e. Furthermore, (wnj
) is a normalised block

basic sequence of (en), so W0 is isometrically isomorphic to c0, and we can take a

projection Q of c0 onto W0 with ∥Q∥ = 1. Consequently the subspace W = U [W0]

is C-isomorphic to c0 and complemented in X via the projection UQU−1, which has
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norm at most C.

Finally, to verify (4.4.7), take w ∈ W , and set w0 = U−1w ∈ W0. Then Rw =

Sw0 and w0 = (Ic0 − Pm0)w0, so

∥Rw∥ ⩽ ∥(S + T )w0∥+ ∥T (Ic0 − Pm0)w0∥ ⩽ (1 + η)∥S∥e∥w0∥

⩽ (1 + η)∥R∥e∥U∥ ∥U−1∥ ∥w∥ ⩽ (1 + η)C∥R∥e∥w∥

and

∥Rw∥ ⩾ (1− η)∥S∥e∥w0∥ ⩾ (1− η)
∥SU−1∥e
∥U−1∥

∥Uw0∥
∥U∥

⩾
1− η

C
∥R∥e∥w∥ .

Definition 4.4.15. Let W , X and Y be Banach spaces. An operator R ∈ B(X;Y )

fixes a copy of c0 if there is a subspace W of X with W ∼= c0 for which R|W is an

isomorphism onto its range.

Corollary 4.4.16. Let X and Y be Banach spaces for which the unit ball of Y ∗

is weak* sequentially compact, and let R ∈ B(X;Y ) be an operator which fixes a

copy of c0. Then, for every ϵ ∈ (0, 1), there exist a constant C > 0 and a closed,

infinite-dimensional subspace W of X such that

(1 + ϵ)C∥w∥ ⩾ ∥Rw∥ ⩾ (1− ϵ)C∥w∥ (w ∈ W ) , (4.4.8)

and the subspace R[W ] is (1 + ϵ)-complemented in Y and (1 + ϵ)-isomorphic to c0.

Consequently there are operators U ∈ B(Y ; c0) and V ∈ B(c0;X) such that

URV = Ic0 and ∥U∥ ∥V ∥ ⩽
(1 + ϵ)2

(1− ϵ)C
.

Proof. Given ϵ ∈ (0, 1), choose η > 0 such that η2 + 2η ⩽ ϵ. Since R fixes a copy

of c0, we can take a closed subspace X1 of X such that X1 is isomorphic to c0 and

the restriction of R to X1 is bounded below. By James’ Distortion Theorem [28], X1

contains a closed subspace X2 which is (1+η)-isomorphic to c0. The restriction of R

to X2 is non-compact because it is bounded below, so we can apply Lemma 4.4.14
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to obtain a closed subspace X3 of X2 such that X3 is isomorphic to c0 and

(1 + η)2∥R|X2∥e∥w∥ ⩾ ∥Rw∥ ⩾
1− η

1 + η
∥R|X2∥e∥w∥ (w ∈ X3) . (4.4.9)

In particular, R[X3] is also isomorphic to c0. Since the unit ball of Y ∗ is weak* se-

quentially compact, Theorem 4.4.10 implies that R[X3] contains a closed subspace Z

which is (1+ϵ)-complemented in Y and (1+ϵ)-isomorphic to c0. SetW = R−1[Z]∩X3

and C = ∥R|X2∥e. Then R[W ] = Z, and (4.4.8) follows from (4.4.9) because the

choice of η implies that 1 + ϵ ⩾ (1 + η)2 and 1− ϵ ⩽ (1− η)/(1 + η).

To prove the final clause, take a projection Q of Y onto Z with ∥Q∥ ⩽ 1+ ϵ and

an isomorphism S ∈ B(c0;Z) with ∥S∥ ∥S−1∥ ⩽ 1+ ϵ, and let R̃ ∈ B(W ;Z) denote

the restriction of R, which is an isomorphism with ∥R̃−1∥ ⩽ 1
(1−ϵ)C

because R is

bounded below by (1− ϵ)C on W . Then we have a commutative diagram:

c0
Ic0 //

S
��

c0

Z R̃−1
//W R̃ //

J
��

Z

S−1

OO

X
R // Y

Q

OO
(4.4.10)

where J is the inclusion map. Consequently the operators U = S−1Q ∈ B(Y ; c0)

and V = JR̃−1S ∈ B(c0;X) satisfy URV = Ic0 , and

∥U∥ ∥V ∥ ⩽ ∥S−1∥ ∥Q∥ ∥J∥ ∥R̃−1∥ ∥S∥ ⩽
(1 + ϵ)2

(1− ϵ)C
.

Our next result shows that Theorem 4.4.10 and Corollary 4.4.16 apply to C0(K),

justifying their inclusion in our work.

Theorem 4.4.17. Let K be a scattered, locally compact Hausdorff space.

(i) The unit ball of C0(K)∗ is weak* sequentially compact.

(ii) An operator from C0(K) into a Banach space is compact if and only if it is

weakly compact, if and only if it does not fix a copy of c0.
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Proof. In view of Remark 4.4.7 and the isomorphic nature of both parts of this

result, we may suppose that K is compact by replacing it with its one-point com-

pactification if necessary.

(i). This follows by combining two famous results: First, Hagler and Johnson [24,

Theorem 1(b)] have shown that the unit ball of X∗ is weak* sequentially compact

for every Asplund space X, and second Namioka and Phelps [50, Theorem 18] have

shown that C(K) is an Asplund space whenever K is a scattered compact space.

(ii). A classical result of Pełczyński [53] states that an operator defined on a

C(K)-space is weakly compact if and only if it does not fix a copy of c0, and of

course every compact operator is weakly compact.

To complete this proof, suppose that R is a weakly compact operator defined

on C(K). By Gantmacher’s Theorem, its adjoint R∗ is also weakly compact. This

implies that R∗ is compact because a famous result of Rudin [57] states that its

codomain C(K)∗ is isomorphic to ℓ1(K), which has the Schur property. Hence R is

compact by Schauder’s Theorem.

With these results at hand, we can establish the first of the two main ‘building

blocks’ that the proof of Theorem 4.4.5 will rely on; specifically, the equivalence of

conditions (a) and (b) will be an easy consequence of the following proposition.

Proposition 4.4.18. Let T ∈ B(C0(K);Y ) be a non-compact operator, where K is

a scattered, locally compact Hausdorff space and Y is a Banach space for which the

unit ball of Y ∗ is weak* sequentially compact, and let C > 1. Then C0(K) contains

a sequence (fn)n∈N for which

sup
k∈K

∞∑
n=1

|fn(k)| ⩽ 1 and inf
n∈N

∥Tfn∥ >
1

C
(4.4.11)

if and only if there are operators U ∈ B(Y ; c0) and V ∈ B(c0;C0(K)) such that

UTV = Ic0 and ∥U∥ ∥V ∥ < C . (4.4.12)

Proof. To prove the implication ⇒, take a sequence (fn) in C0(K) which satis-

fies (4.4.11). Lemma 4.4.8 shows that we can define an operator V0 ∈ B(c0;C0(K))

of norm at most 1 by V0en = fn for each n ∈ N. Choose η > 1 such that
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infn∈N∥Tfn∥ > η3/C. Then infn∈N∥TV0en∥ > η3/C, so Theorem 3.2.12 implies

that N contains an infinite subset N such that the restriction of TV0 to the subspace

X = span{en : n ∈ N} is bounded below by η3/C.

Set R = TV0|X ∈ B(X;Y ). We can now establish (4.4.12) by essentially repeat-

ing the arguments from the last part of the proof of Corollary 4.4.16, beginning just

below (4.4.9). Indeed, since R[X] is isomorphic to X, which in turn is isomorphic

to c0, and the unit ball of Y ∗ is weak* sequentially compact, we can apply Theo-

rem 4.4.10 to find a closed subspace Z of R[X] for which there are a projectionQ of Y

onto Z with ∥Q∥ ⩽ η and an isomorphism S ∈ B(c0;Z) with ∥S∥ ∥S−1∥ ⩽ η. The

fact that R is bounded below by η3/C implies that we can regard its restriction R̃

to W = R−1[Z] as an isomorphism onto Z, and ∥R̃−1∥ ⩽ C/η3.

In this way we obtain the same commutative diagram (4.4.10) as in the proof

of Corollary 4.4.16. Since R = TV0|X , it follows that the operators U = S−1Q ∈

B(Y ; c0) and V = V0J0R̃
−1S ∈ B(c0;C0(K)), where J0 : W → c0 is the inclusion

map, satisfy (4.4.12); that is, UTV = Ic0 and

∥U∥ ∥V ∥ ⩽ ∥S−1∥ ∥Q∥ ∥V0∥ ∥J0∥ ∥R̃−1∥ ∥S∥ ⩽
η2C

η3
=
C

η
< C .

Conversely, suppose that U ∈ B(Y ; c0) and V ∈ B(c0;C0(K)) are operators sat-

isfying (4.4.12), and set fn = 1
∥V ∥V en ∈ C0(K) for each n ∈ N. Then Lemma 4.4.8

shows that supk∈K
∑∞

n=1|fn(k)| = 1 because the operator V/∥V ∥ has norm 1. Fur-

thermore, since UTfn = 1
∥V ∥en for each n ∈ N, we have

inf
n∈N

∥Tfn∥ ⩾
1

∥U∥ ∥V ∥
>

1

C
,

so the sequence (fn) satisfies (4.4.11).

The other major ‘building block’ we require in the proof of Theorem 4.4.5 (specif-

ically to verify that (d) implies (b)) is an alternative algebra norm ν on the Calkin

algebra of C0(K) for a scattered, locally compact Hausdorff space K. To define

this norm, note that according to the proof of [35, Proposition 5.4(ii)], the identity

operator on c0 factors through every non-compact operator on C0(K). (This is also

a consequence of Corollary 4.4.16 and Theorem 4.4.17, as we shall explain in detail

at the beginning of the proof of Proposition 4.4.19 below.) Consequently we can
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define a map ν : B(C0(K))/K (C0(K)) → [0,∞) by

ν(T+K (C0(K))) :=


0 if T ∈ K (C0(K)),

sup

{
1

∥U∥ ∥V ∥
: Ic0 − UTV ∈ K (c0)

}
otherwise.

(4.4.13)

As already indicated, our aim is to establish the following result.

Proposition 4.4.19. Let K be a scattered, locally compact Hausdorff space. Then ν

defined by (4.4.13) is an algebra norm on B(C0(K))/K (C0(K)), and

ν(T + K (C0(K))) ⩽ ∥T∥e (T ∈ B(C0(K))) . (4.4.14)

Before engaging with the proof, let us point out that Proposition 4.4.19 is heavily

inspired by a similar result in [31] concerning operators that the identity operator

on ℓ2 factors through. Our version, which involves replacing ℓ2 with c0, is somewhat

harder to prove because c0 has a much richer subspace structure than ℓ2.

The following elementary lemma will help us shorten a couple of steps in the

proof of Proposition 4.4.19.

Lemma 4.4.20. Let X, Y and Z be infinite-dimensional Banach spaces, and sup-

pose that the operators R ∈ B(X;Y ), T ∈ B(Y ;Z) and U ∈ B(Z;X) satisfy

IX − UTR ∈ K (X) . (4.4.15)

Then R[X] is closed and isomorphic to a closed subspace of finite codimension in X,

and the restriction of T to any closed, infinite-dimensional subspace of R[X] is non-

compact.

Proof. It follows from (4.4.15) that UTR is a Fredholm operator. This implies thatR

is an upper semi-Fredholm operator (see e.g. [39, Proposition 3.3.2 (v)]), so it has

closed range, and kerR is finite-dimensional. Let W be a closed, complementary

subspace of kerR; that is, W+kerR = X and W ∩kerR = {0}. Then the restriction

of R to W is an isomorphism onto R[X].

Suppose that Y0 is a closed subspace of R[X] such that T |Y0 is compact, and set

X0 = R−1[Y0]. Then we may regard the restriction R̃ of R to X0 as an operator
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into Y0; it satisfies UTR|X0 = UT |Y0R̃, which implies that UTR|X0 is compact.

Hence X0 is finite-dimensional by (4.4.15), so R[X0] = Y0 is also finite-dimensional.

Proof of Proposition 4.4.19. We shall use Corollary 4.4.16 several times in this proof,

in each case for a non-compact operator R whose domain and codomain are (iso-

morphic to) either c0 or C0(K). To avoid repetition, let us once and for all state

that Theorem 4.4.17 ensures that the hypotheses of Corollary 4.4.16 are satisfied in

this case.

This observation shows in particular that the identity operator on c0 factors

through every non-compact operator on C0(K), so the definition of ν makes sense.

Furthermore, it is clear that ν is faithful and absolutely homogeneous.

In the remainder of the proof, suppose that T1, T2 ∈ B(C0(K)).

Subadditivity. Let us begin by observing that the inequality

ν(T1 + T2 + K (C0(K))) ⩽ ν(T1 + K (C0(K))) + ν(T2 + K (C0(K)))

is trivial if T1 + T2 is compact. Otherwise, for each ϵ ∈ (0, 1), we can find operators

U ∈ B(C0(K); c0) and V ∈ B(c0;C0(K)) such that

Ic0 − U(T1 + T2)V ∈ K (c0) (4.4.16)

and
1

∥U∥ ∥V ∥
⩾ (1− ϵ)ν(T1 + T2 + K (C0(K))) .

Set Ri = UTiV ∈ B(c0) for i = 1, 2. By (4.4.16), at least one of these operators is

non-compact, say R1 (relabelling them if necessary). Therefore we can apply Corol-

lary 4.4.16 to find a constant C1 > 0 and a closed, infinite-dimensional subspace W1

of c0 such that

(1 + ϵ)C1∥w∥ ⩾ ∥R1w∥ ⩾ (1− ϵ)C1∥w∥ (w ∈ W1) (4.4.17)



4.4. THE PROOF OF THEOREM 4.1.15 FOR X = C0(KA) 87

and Ic0 = U1R1V1 for some operators U1, V1 ∈ B(c0) with

∥U1∥ ∥V1∥ ⩽
(1 + ϵ)2

(1− ϵ)C1

.

Furthermore, Corollary 4.4.16 states that R1[W1] is isomorphic to c0, which implies

that W1 is isomorphic to c0 because the restriction of R1 to W1 is an isomorphism

onto R1[W1] by (4.4.17).

Now we split in two cases, beginning with the case where the restriction of R2

to W1 is non-compact. Since W1 is isomorphic to c0, we can apply Corollary 4.4.16

once more, this time to the operator R2|W1 , to find a constant C2 > 0 and a closed,

infinite-dimensional subspace W2 of W1 such that

(1 + ϵ)C2∥w∥ ⩾ ∥R2w∥ ⩾ (1− ϵ)C2∥w∥ (w ∈ W2) (4.4.18)

and Ic0 = U2R2V2 for some operators U2, V2 ∈ B(c0) with ∥U2∥ ∥V2∥ ⩽ (1+ϵ)2

(1−ϵ)C2
.

Then, for i ∈ {1, 2}, we have Ic0 = UiRiVi = (UiU)Ti(V Vi), so

ν(Ti + K (C0(K))) ⩾
1

∥Ui∥ ∥U∥ ∥V ∥ ∥Vi∥
⩾

(1− ϵ)2Ci

(1 + ϵ)2
ν(T1 + T2 + K (C0(K))) .

(4.4.19)

The left-hand inequalities in (4.4.17)–(4.4.18) and the fact that W2 ⊆ W1 imply that

(1 + ϵ)(C1 + C2) ⩾ ∥(R1 +R2)|W2∥ ⩾ ∥(R1 +R2)|W2∥e = ∥Ic0|W2∥e = 1 , (4.4.20)

where the penultimate equality follows from (4.4.16). Adding up the estimates

(4.4.19) for i = 1 and i = 2 and substituting the lower bound on C1 + C2 from

(4.4.20) into this sum, we obtain

ν(T1+K (C0(K)))+ν(T2+K (C0(K))) ⩾
(1− ϵ)2

(1 + ϵ)3
ν(T1+T2+K (C0(K))) . (4.4.21)

We claim that this inequality also holds true in the case where R2|W1 is compact.

Indeed, the estimate (4.4.19) remains valid for i = 1, while we can modify (4.4.20)
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in the following way:

(1 + ϵ)C1 ⩾ ∥R1|W1∥ ⩾ ∥R1|W1∥e = ∥(R1 +R2)|W1∥e = ∥Ic0 |W1∥e = 1 .

Now (4.4.21) follows by using the trivial lower bound 0 on ν(T2 + K (C0(K))).

Since (4.4.21) holds true for arbitrary ϵ ∈ (0, 1), we conclude that ν is subaddi-

tive.

Submultiplicativity. The desired inequality

ν(T2T1 + K (C0(K))) ⩽ ν(T2 + K (C0(K)))ν(T1 + K (C0(K)))

is trivial if T2T1 is compact. Otherwise, for each ϵ ∈ (0, 1), we can find operators

U ∈ B(C0(K); c0) and V ∈ B(c0;C0(K)) such that

Ic0 − UT2T1V ∈ K (c0) and
1

∥U∥ ∥V ∥
⩾ (1− ϵ)ν(T2T1 + K (c0)) . (4.4.22)

Applying Corollary 4.4.16 and Lemma 4.4.20 twice, we obtain constants C1, C2 > 0,

closed subspaces W1 ⊆ V [c0] and W2 ⊆ T1[W1] and operators U1, U2 ∈ B(C0(K); c0)

and V1, V2 ∈ B(c0;C0(K)) such that T1[W1] and T2[W2] are isomorphic to c0 and

satisfy

(1 + ϵ)Ci∥w∥ ⩾ ∥Tiw∥ ⩾ (1− ϵ)Ci∥w∥, UiTiVi = Ic0 ,

∥Ui∥ ∥Vi∥ ⩽
(1 + ϵ)2

(1− ϵ)Ci

(4.4.23)

for every w ∈ Wi and i ∈ {1, 2}. To explain this construction in detail, for

i = 1 we apply Corollary 4.4.16 to the operator T1|V [c0]; this is justified because

Lemma 4.4.20 and the first part of (4.4.22) show that the domain V [c0] is isomorphic

to c0 and T1|V [c0] is non-compact. Then, for i = 2, we apply Corollary 4.4.16 to the

operator T2|T1[W1]; by construction its domain T1[W1] is isomorphic to c0, and since

T1[W1] ⊆ T1V [c0], we can apply Lemma 4.4.20 and (4.4.22) once more to deduce

that T2|T1[W1] is non-compact.
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The second and third identity in (4.4.1) show that

ν(T2 + K (C0(K)))ν(T1 + K (C0(K))) ⩾
1

∥U2∥ ∥V2∥ ∥U1∥ ∥V1∥

⩾
(1− ϵ)2C1C2

(1 + ϵ)4
. (4.4.24)

Set W0 = V −1[T−1
1 [W2] ∩W1]. This is a closed subspace of c0 such that

V [W0] = T−1
1 [W2] ∩W1 and T1V [W0] = W2 .

The latter identity implies that W0 is infinite-dimensional. Combining this with the

first part of (4.4.22) and the left-hand inequality in (4.4.1), we find

1 = ∥Ic0|W0∥e = ∥UT2T1V |W0∥e ⩽ ∥U∥ ∥T2|W2∥ ∥T1|W1∥ ∥V ∥ ⩽ (1+ϵ)2C1C2∥U∥ ∥V ∥ .

This produces a lower bound on C1C2, which we can substitute into (4.4.24) to

obtain

ν(T2 + K (C0(K)))ν(T1 + K (C0(K))) ⩾
(1− ϵ)2

(1 + ϵ)6∥U∥ ∥V ∥

⩾
(1− ϵ)3

(1 + ϵ)6
ν(T2T1 + K (C0(K))) .

Since this inequality holds true for arbitrary ϵ ∈ (0, 1), we conclude that ν is sub-

multiplicative.

Finally, the inequality (4.4.14) follows from the fact that if Ic0 −UTV ∈ K (c0),

then

1 = ∥Ic0∥e = ∥UTV ∥e ⩽ ∥U∥ ∥T∥e ∥V ∥ .

Proof of Theorem 4.4.5. Proposition 4.4.18 shows that conditions (a) and (b) are

equivalent. (Note that Proposition 4.4.18 applies because the unit ball of C0(K)∗ is

weak* sequentially compact by Theorem 4.4.17(i).)

We shall now complete the proof by showing that conditions (b), (c) and (d) are

equivalent. Lemma 4.1.16 shows that (b) implies (c), which trivially implies (d), so

it only remains to show that (d) implies (b).

To this end, suppose that B(C0(K))/K (C0(K)) is incompressible, and consider
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the identity map ι on B(C0(K))/K (C0(K)), which is obviously an algebra isomor-

phism. Proposition 4.4.19 shows that ι is continuous if we endow its domain with

the essential norm and its codomain with the algebra norm ν given by (4.4.13).

Consequently the hypothesis implies that ι is bounded below; that is, we can find a

constant η > 0 such that

ν(T + K (C0(K))) ⩾ η∥T∥e (T ∈ B(C0(K))) .

Note that η ⩽ 1 by (4.4.14). We claim that (b) is satisfied for any constant C > 1/η.

Indeed, let T ∈ B(C0(K)) be a non-compact operator with ∥T∥e = 1, and take

ξ ∈ (1/C, η). Then we have ν(T + K (C0(K))) ⩾ η > ξ, so the definition of ν

implies that there are operators U1 ∈ B(C0(K); c0) and V1 ∈ B(c0;C0(K)) such

that

Ic0 − U1TV1 ∈ K (c0) and
1

∥U1∥ ∥V1∥
> ξ .

Since Cξ > 1, Lemma 4.4.9 shows that U2(U1TV1)V2 = Ic0 for some operators

U2, V2 ∈ B(c0) with ∥U2∥ ∥V2∥ < Cξ. Hence the operators U = U2U1 and V = V1V2

have the required properties.

4.4.2 Application of Theorem 4.4.5 to certain C0(K) spaces.

Definition 4.4.21. LetK be a subset of a topological space. The Cantor-Bendixson

derivative K ′ of K is defined as

K ′ = {x ∈ K : x ∈ K \ {x}} .

In words, K ′ is the set of all points in K which are not isolated in K.

Definition 4.4.22. LetK be a topological space. We say thatK is zero-dimensional

if every k ∈ K has a neighbourhood base consisting of clopen sets.

In this subsection, we apply Theorem 4.4.5 to C0(K) whereK is a zero-dimensional,

locally compact Hausdorff space for which K ′′ = ∅. Explicitly, the following theorem

is our goal.

Theorem 4.4.23. Let K be a zero-dimensional, locally compact, Hausdorff space

K with K ′′ = ∅. The Calkin algebra C0(K) is uniformly incompressible.
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Before embarking on the proof of Theorem 4.4.23, let us show how we can apply

it to establish our desired conclusion, Theorem 4.1.2(iii) (restated as Corollary 4.4.25

below). For the construction of Mrówka spaces, see Section 1.6.

The setting is as follows: Recall that in the context of an uncountable, almost

disjoint family A ⊆ [N]ω, we say that C0(KA) has few operators if every bounded

operator on C0(KA) is the sum of a scalar multiple of the identity operator and an

operator which has separable range.

The existence of almost disjoint families A of subsets of N for which C0(KA) has

few operators was discussed in Section 1.6, where we also described how when C0(KA)

has few operators, B(C0(KA)) contains only four closed ideals, namely

{0} ⊊ K (C0(KA)) ⊊ X (C0(KA)) ⊊ B(C0(KA)) . (4.4.25)

We require the following lemma, which shows why at the end of the proof of

Corollary 4.4.25, we may apply Theorem 4.4.23.

Lemma 4.4.24. Let K be a locally compact, scattered, Hausdorff space. Then K is

zero-dimensional.

Proof. Let L be a non-empty, connected subset of K. Because K is scattered, L

must contain some isolated point, l. Since L is connected and l is isolated in L,

we must have that L = {l}. Thus, any subset of K containing more than one

point is disconnected, i.e., K is totally disconnected. For locally compact spaces,

the property of being totally disconnected implies zero-dimensionality (see e.g., [16,

Theorem 6.2.9]).

Corollary 4.4.25. Let A ⊆ [N]ω be an uncountable, almost disjoint family for which

C0(KA) has few operators. Then every quotient of B(C0(KA)) by one of its closed

ideals has a unique algebra norm.

Proof. Every algebra homomorphism from B(C0(KA)) into a Banach algebra is

continuous by [38, Corollary 39], so Proposition 4.1.6 shows that the quotient norm

on B(C0(KA))/J is maximal for every closed ideal J of B(C0(KA)).

According to (4.4.25), B(C0(KA)) contains only four closed ideals J . We check

that the quotient norm on B(C0(KA))/J is minimal in each of these cases.
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For J = {0}, we have that B(X)/J = B(X), so the result follows from

Theorem 4.1.9. The result is trivial for the case J = X (C0(KA)) because the ‘few

operators’ property of C0(KA) tells us that B(C0(KA))/X (C0(KA)) ∼= K. The

result is also trivial for J = B(C0(KA)) because B(C0(KA))/B(C0(KA)) = {0}.

Finally, we remark that it is clear from the definition of KA from Section 1.6

that K ′
A = {yA : A ∈ A} and thus K ′′

A = ∅. Further, because KA is scattered and

locally compact, Lemma 4.4.24 shows that we can combine Theorem 4.4.23 with

Lemma 4.1.13 to reach the conclusion for J = K (C0(KA)).

It remains to prove Theorem 4.4.23. To execute our strategy, we verify that

Theorem 4.4.5(a) is satisfied for every locally compact, zero-dimensional, Hausdorff

space K with K ′′ = ∅. To facilitate the presentation of this argument, we introduce

the following list, in which K always denotes a locally compact, zero-dimensional,

Hausdorff space with K ′′ = ∅.

• A (finite or infinite) sequence (fn) of scalar-valued functions, all defined on

the set K, is disjoint if f−1
m (0) ∪ f−1

n (0) = K whenever the indices m and n

are distinct. Note that this is a slight weakening of the conventional notion of

disjointly supported functions since the support of a function in a C(K) space

is defined as the closure of the set {k ∈ K : f(k) ̸= 0}, however our definition

is strong enough to ensure that a sequence (fn)n∈N of functions of norm 1 in

C0(K) which is disjoint in this sense can satisfy (4.4.1).

• Let 1L : K → {0, 1} denote the indicator function of a subset L of K.

• Let A be a finite set of pairs (x, U) where U is compact and open in K, x ∈ U ,

and whenever (x, U) and (y, V ) are distinct elements of A, we have that x /∈ V .

Define the operator PA on C0(K) by

PA(f) :=
∑

(x,U)∈A

f(x)1U ,

for every f ∈ C0(K).

• Because K ′′ = ∅, we have that K ′ is a discrete set. Let k ∈ K. Using the

zero-dimensionality of K, take an open subset U1 of K with U1 ∩K ′ = {k}.
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Now, using the fact that K is locally compact, take U2 ⊂ K to be a compact

neighbourhood of k. Now, since U1 ∩ U2 is a neighbourhood of K, by zero-

dimensionality, we can take a clopen neighbourhood U(k) ⊂ U1 ∩ U2 of K.

Then U(k) is compact and open neighbourhood of k, for which U(k) ∩K ′ =

{k}. Thus, if l ∈ K ′ with l ̸= k, we must have that U(k) ∩ U(l) ⊂ K \K ′.

Let these sets U(k) be fixed for the rest of the chapter.

The author would like to thank Richard Smith for his suggestion of notation for

the projections PA, which considerably simplified the calculations in this subsection

and has improved its readability.

Lemma 4.4.26. Let K be a locally compact, zero-dimensional Hausdorff space with

K ′′ = ∅, and for each k ∈ K ′, let U(k) be defined as above. Take

f1, . . . , fn ∈ span{1U(k),1{l} : k ∈ K ′, l ∈ K \K ′}

for some n ∈ N. There exist finite subsets L ⊂ K \K ′ and M ⊂ K ′ such that

f1, . . . , fn ∈ span{1U(k)\L,1{l} : k ∈M, l ∈ L} ,

and for which

U(k) ∩ U(m) ⊆ L

whenever k and m are distinct elements of M .

Proof. For each j ∈ {1, . . . , n}, define Aj = {k ∈ K ′ : fj(k) ̸= 0}, which must be

finite. Further, there is a finite subset Bj of K \K ′ for which

fj =
∑
l∈Bj

λjl1{l} +
∑
k∈Aj

λjk1U(k) ,

where λjl is some scalar for every l ∈ Bj ∪ Aj.

Define the set

D =
⋃{

U(k) ∩ U(m) : k,m ∈
n⋃

j=1

Aj, k ̸= m

}
.
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For any distinct k,m ∈ K ′, since U(k) may not contain m, we have that U(k)∩

U(m) is a compact subset of the discrete set K \K ′. Thus U(k) ∩ U(m) is finite,

and hence D is a finite union of finite sets so is also finite.

So, to complete our proof, we define the sets L =
⋃n

j=1Bj∪D, and M =
⋃n

j=1Aj.

The claim concerning the pairwise disjointness of the sets U(k)\L for k ∈M follows

easily from the definition of D.

Lemma 4.4.27. Let K be a locally compact, zero-dimensional Hausdorff space with

K ′′ = ∅, and let A be a finite set of pairs (x, U) where U is a compact and open

subset of K, x ∈ U , and whenever (x, U), and (y, V ) are distinct in A, we have that

x /∈ V . The following properties of PA hold.

(i) PA is a projection.

(ii) Suppose that A is non-empty and that the sets U for which (x, U) ∈ A for

some x ∈ K, are disjoint from one another. Then ∥PA∥ = 1. Further, if A

contains only pairs of the form (x, {x}) for x ∈ K, then ∥I − PA∥ = 1 also.

Proof. (i) Let f ∈ C0(K). Then

P 2
Af =

∑
(x,U)∈A

(PAf(x))1U =
∑

(x,U)∈A

f(x)1U = PAf .

(ii) The first claim is easy to see from the definition of PA. For the second, we

notice that if A is as specified and f ∈ C0(K), then (I − PA)f acts identically to f

on K except for on the set of x ∈ K for which (x, {x}) ∈ A, which it maps to zero.

Proof of Theorem 4.4.23. As previously mentioned, our plan will be to verify that

Theorem 4.4.5(a) is satisfied for the zero-dimensional, locally compact space K for

which K ′′ = ∅. More precisely, fix δ ∈ (0, 1
3
), and let T ∈ B(C0(K)) be any operator

which satisfies ∥T∥e = 1. By recursion, we shall construct a disjoint sequence (fn)n∈N

in BC0(K) such that

∥Tfn∥ ⩾ δ for every n ∈ N , (4.4.26)

from which the conclusion will follow.



4.4. THE PROOF OF THEOREM 4.1.15 FOR X = C0(KA) 95

To facilitate this recursive construction, we consider two distinct cases, depending

on the norms of the restrictions of a certain family of operators to the subspace

X00 := span{1{l} : l ∈ K \K ′} .

Case 1: Suppose that

∥T (I − PE)|X00∥ > δ (4.4.27)

for every finite set E of pairs of the form (x, {x}) where x ∈ K \K ′. In this case,

we shall construct the disjoint sequence (fn)n∈N satisfying (4.4.26) inside BX00 .

To start the recursion, we apply (4.4.27) with E = ∅ to see that ∥T |X00∥ > δ, so

we can select f1 ∈ BX00 such that ∥Tf1∥ > δ.

Now assume recursively that, for some n ∈ N, we have selected a disjoint sequence

of functions (fj)nj=1 in BX00 for which ∥Tfj∥ > δ for each j ∈ {1, . . . , n}. By another

application of (4.4.27), this time with E being the set of pairs of the form (x, {x})

where x ∈
⋃n

j=1 supp(fj), we can find gn+1 ∈ BX00 such that

∥T (I − PE)gn+1∥ > δ .

Define fn+1 = (I − PE)gn+1 ∈ X00. Then we have that ∥Tfn+1∥ > δ, and that the

support of fn+1 is contained entirely in (K \ K ′) \ E, making it disjoint from fj

for every j ∈ {1, . . . , n} by the definition of E. Further, ∥fn+1∥ ⩽ ∥gn+1∥ ⩽ 1 by

Lemma 4.4.27(ii).

Case 2: Suppose that there exists a finite set E of pairs of the form (x, {x})

where x ∈ K \K ′ for which

∥T (I − PE)|X00∥ ⩽ δ . (4.4.28)

Set S = T (I − PE). Because PE is finite rank, we have that ∥S∥e = ∥T∥e = 1. Let

Z00 = span{1U(k),1{l} : k ∈ K ′, l ∈ K \K ′}

and notice that Z00 is dense in C0(K).

We shall construct a disjoint sequence (gn)n∈N in BZ00 for which ∥Sgn∥ > δ for all
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n ∈ N. Then for each n ∈ N we shall let fn = (I − PE)gn, so that (fn) is a disjoint

sequence, which belongs to BZ00 by Lemma 4.4.27(ii), and ∥Tfn∥ = ∥Sgn∥ > δ,

completing the proof.

To begin, since ∥S∥ ⩾ ∥S∥e > δ, we can simply take g1 ∈ BZ00 for which

∥Sg1∥ > δ. Next, suppose that we have chosen disjoint functions g1, . . . , gn ∈ BZ00

such that ∥Sgj∥ > δ for all j ∈ {1, . . . , n}.

Use Lemma 4.4.26 to find finite subsets L ⊂ K \K ′ and M ⊂ K ′ for which

g1, . . . , gn ∈ span{1U(k)\L,1{l} : k ∈M, l ∈ L} ,

such that the set {U(k) \ L : k ∈M} is pairwise disjoint. Now, set

A = {(l, {l}), (k, U(k) \ L) : l ∈ L, k ∈M} .

Since PA is finite-rank, we have that ∥S(I − PA)∥ ⩾ ∥S∥e = 1. Thus, using the

density of Z00 in C0(K), we can take some hn+1 ∈ BZ00 for which

∥S(I − PA)hn+1∥ ⩾ 1 > 3δ .

For every k ∈ K ′, if there exists some j ∈ {1, . . . , n} with gj(k) ̸= 0, then we have

k ∈M with (k, U(k) \ L) ∈ A, from which we see that

(I − PA)hn+1(k) = hn+1(k)−
∑

(x,U)∈A

hn+1(x)1U(k)

= hn+1(k)− hn+1(k)1U(k)\L(k) = 0 . (4.4.29)

We next apply Lemma 4.4.26 once more, this time to the functions

g1, . . . , gn, (I − PA)hn+1 .

From this, we obtain a finite subset L0 of K \K ′ and a finite subset M0 of K ′ for

which

g1, . . . , gn, (I − PA)hn+1 ∈ span{1U(k)\L0 ,1{l} : k ∈M0, l ∈ L0} ,
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with the sets U(k) \ L0 for k ∈M0 pairwise disjoint. Define ∆ = {(l, {l}) : l ∈ L0},

and let

gn+1 = (I − P∆)(I − PA)hn+1 .

We have that

∥Sgn+1∥ ⩾ ∥S(I − PA)hn+1∥ − ∥SP∆(I − PA)hn+1∥ > 3δ − 2δ = δ ,

where the second inequality holds by (4.4.28) since P∆ has its image in X00 and

(I − PA) can have norm at most 2.

We complete the proof by showing that the function gn+1 is disjoint from the

previous functions g1, . . . , gn. Indeed, if k ∈ K ′, then gn+1(k) = (I − PA)hn+1(k),

which we showed via (4.4.29) to be 0 whenever gj(k) = 0 for any j ∈ {1, . . . , n}.

Moreover, if l ∈ K \K ′ with gn+1(l) ̸= 0, then l /∈ L0, so there must be some k ∈M0

for which l ∈ U(k) \ L0, and this k must be unique because the sets U(k) \ L0 are

pairwise disjoint. Thus, if j ∈ {1, . . . , n}, then gn+1(k) = gn+1(l) ̸= 0. So, our

preceding argument implies also that gj(k) = gj(l) = 0, as required.
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