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Abstract

Antiferromagnets, magnetic materials with antiparallel spin ordering and therefore lacking

magnetic moment have for a long time been studied for academic interest only. However, the

realization that antiferromagnets possess intrinsic magnetic resonance frequencies in the

Terahertz range, which is orders of magnitude higher than the Gigahertz ferromagnetic reso-

nance frequencies, has recently renewed the interest for antiferromagnets for applications in

energy efficient data storage and processing.

Moreover waves of spin precession, or magnons, have been proposed as new methods for

wave-based computing. The miniaturization of such potential technological devices requires

the spin waves to have nanometer scale wavelengths, which has proven to be challenging to

achieve in anitferromagnets.

In this thesis, we will study the ultrafast spin dynamics and magnons in a specific class

of antiferromagnetic iron oxides, the orthoferrites, RFeO3, where R is a rare-earth element.

These antiferromagnets possess a weak ferromagnetic moment due to the canting of the

antiparallel spins.

After introducing the field of ultrafast magnetism and magnonics and associated concepts

in Chapter 1, in the first part of this thesis, we will describe how the challenge of generating

nanoscale spin waves can be overcome by exciting a confined region of spins near the sample

face. We will show how strongly absorbed laser pulses will generate a propagating broad-band

wavepacket of spin waves.

In Chapter 2, we will introduce the basic concepts behind the experiments performed in

this work. We will introduce the principle of ultrafast pump-probe spectroscopy experiments

that can be used to measure such spin waves, and describe the design of the setup that allows

us to drive the spin dynamics with intense Terahertz pulses.

In Chapter 3, a thorough theoretical description of the technique to launch propagating

broadband wavepackets of magnons will be given. Additionally, we will model the detection

of these generated packets of spin waves acts in Magneto-Optical Kerr Effect experiments.

We find that through the emergence of the Brillouin condition, by the appropriate choice
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of the wavelength of the probe pulse, we can select the detected wavenumber component

of the wave packet, resulting in a probe wavelength dependent frequency observed in the

experiment.

In Chapter 4, we proceed to the experiment and search for the spin wave packets in

HoFeO3. We will show that by exciting the spin dynamics with high energy photons above

the bandgap energy, we can launch such propagating packets of spin waves. We find the

theoretically predicted dependence of the detected magnon frequency on the wavelength of

the probe light, and find that we excite a broad range of components of the spin wave packet.

In Chapter 5, we build upon the experiment in Chapter 4, and study how the propagating

spin waves can be controlled. We find that we can achieve a nonlinear control of the spin

waves by introducing a second pump pulse. From theoretical calculations, we show that

the coupling between the propagating magnon and photon acts as an additional nonlinear

torque on the spins. We will see that this nonlinear torque allows for the conversion of the

low frequency uniform precession mode of the spins into the higher frequency and higher

wavenumber modes of the propagating spin wave packet.

In Chapter 6, we will study the spin dynamics in ErFeO3 and TmFeO3 induced by intense

THz pulses. Despite the magnetic similarities of these materials, the spin dynamics shows a

very different trend at the Spin Reorientation Transition temperatures. In ErFeO3, we observe

an unexpected giant enhancement of the amplitude, whereas in TmFeO3, this amplitude is

suppressed. We will show that this difference in the dynamics can be attributed to the effect

of the coupling between the iron spins and rare-earth ions.

Finally, in Chapter 7, we will conclude our findings, and provide a concise outlook that

shows that the intense THz setup is not only suitable for the study of antiferromagnetic

oxides, but can also be used to study metallic thin films. We will demonstrate this with a short

summary of experimental data measured in the FeRh, which is an antiferromagnet at room

temperature and exhibits a phase transition to the ferromagnetic phase at high temperatures.
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Chapter 1

Introduction

Magnetism has been fascinating mankind ever since the ancient Greek times [1]. The origin

of the attractive (or repulsive) forces between certain materials has been a mystery for tens

of centuries afterward, but the attractive forces in an external magnetic fields have already

long ago been exploited for the development of, for example, compasses. In the 19th century,

great progress in the understanding of electromagnetism was made, and it was understood

that magnetism was intrinsically related to electricity. This relation was summarized in the

Maxwell’s equations.

A breakthrough in the understanding of the origin of magnetism was made in the early

20th century, with the discovery of quantum mechanics [2]. It is now known that magnetism

originates from electrons, that carry an intrinsic magnetic moment, that is referred to as spin.

The electron spins can order in a variety of ways, giving rise to a wide range of classes of

magnetic materials, which are illustrated in figure 1.1. The best known magnetic materials

are the ferromagnets, in which the electron spins order parallel with respect to each other.

This gives rise to a macroscopic magnetization.

On the other hand, if the spins are aligned in an antiparallel manner and carry compen-

sating magnetic moments, the material is referred to as an antiferromagnet. If the antiparallel

aligned spins do not compensate each other, a small magnetic moment remains. Materials

in which this occurs are referred to as ferrimagnets. Very recently, a new class of magnetic

materials was proposed, which is referred to as altermagnets [3]. The symmetry of these

materials is such, that the spin order is not only staggered in the coordinate space, but

also in the momentum space, resulting in the splitting of dispersion relations for opposite

chiralities of spin precession (see also section 1.7 for a more detailed description on the

magnon dispersion relations). Similar to the antiferromagnets, the ordering is antiparallel,

but the material exhibits many interesting properties that would otherwise be typical for
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ferromagnets. For instance, despite the lack of a magnetic moment, altermagnets may exhibit

strong magneto-optics [4] (see section 1.3 for a description of magneto-optics).

The materials that are studied in this thesis, the rare-earth orthoferrites, are proposed to

be examples of such altermagnets [5]. The spin ordering of the orthoferrites is antiferromag-

netic with a small canting of the magnetic sublattices with each other, resulting in a weak

ferromagnetic moment.

In contrast, in the paramagnets, all spins point in random directions. Therefore, all mi-

croscopic magnetic moments average out, resulting in the lack of a macroscopic magnetic

moment. The magnetic order in such materials occurs only in the presence of an external

magnetic field [6].

Figure 1.1: Illustration of the ordering of the magnetic moments for a) a ferromagnet, b) an antiferro-
magnet, c) an ferrimagnet, d) a weak ferromagnet. The arrows and colors represent the orientations of
the spins on the different sublattices.

Now, the magnetically ordered materials (in particular the ferromagnets) are at the core of

the current technologies for data storage and processing. This chapter will start by highlight-

ing the relevance of magnetism for data processing, and will sketch a general background of

the field of ultrafast magnetism. Moreover, some of the fundamental concepts that will be

required throughout this thesis will be introduced here.
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1.1 Magnetism for data technology

Over the past decades, the fast developments of modern technologies, specifically in the

Information (Communication) Technologies, cause data centers to be rapidly rising from

the ground [7]. As a result of this increasing demand for data storage and processing, the

global energy usage by such data centers is rapidly increasing [8]. This increasing energy

consumption is therefore increasingly contributing to the emission of greenhouse gasses [9],

and extensive research is going on to reduce the power consumptions of these centers [10].

Thus far, this rapid development has been supported by improving technologies that allow

the creation of the smallest computing components, transistors, to ever smaller sizes [11].

Already decades ago, shortly after the invention of the first computing devices, Moore saw

an exponential increase in the number of computing units on chips over time, which is the

now well known Moore’s Law [12]. The smallest feature sizes for the transistors are currently

diving below 10 nanometers, thus getting closer and closer to the atomic length scales [13].

Hence, the miniaturization seems to be approaching fundamental limits. Moreover, these

small sizes suffer from enormous electric dissipation with the risk of overheating [14], and

new fast and energy efficient technologies will be required to continue increasing computing

power and speeds.

As a result, a lot of research has been performed to find new ways to manipulate magnetic

moments, besides the conventional magnetic fields. This has for instance led to the develop-

ment of the field of spintronics, which includes spin degree of freedom into electronics [15].

In the field of magnonics, it has been proposed that information can be stored and manipu-

lated with spin waves [16]. However, to efficiently control magnetism on short time scales,

ultrafast stimuli are required, that cannot be achieved with conventional electronic current

pulses.

The rapid advances in laser technologies in the second half of the last century have given

access to ultra-short laser pulses, with durations down to the femtosecond range, by using

mode locked laser systems [17]. Ever since, many research fields have rapidly developed,

exploiting these ultrashort laser pulses to study the interaction of the electromagnetic light

with materials at ultrashort time scales and probe diverse physical phenomena with up to

femtosecond or even attosecond resolution [18]. Among these many fields of research is

ultrafast magnetism.

The progress in ultrafast magnetism could possibly provide solutions for this current

challenge of highly energy efficient and fast data storage and processing. For example, it has

already been shown over the last decades that it is possible to manipulate magnetic moments

using such short light pulses, and even switch the orientation of the magnetic moments. In
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the typical data technology used nowadays, the orientation of the magnetic moments would

correspond to the switching of a bit of information from a ’0’ state to a ’1’ state. Typically,

high magnetic fields are required to achieve this conversion of states, which would require

high currents and high energetic losses. Controlling magnetism with light has been shown

to be more energy efficient [19], and the availability of light pulses with ultra-short duration

allows for the ultrafast control of magnetism.

The following section will highlight the background of the field of ultrafast magnetism in

more detail.

1.2 Ultrafast magnetism

It was only shortly after the development of the mode-locked laser [20] that the field of

ultrafast magnetism emerged. It was soon realized that the properties of materials, among

which magnetism, can be controlled with the electromagnetic field of light. Nowadays, it

is widely recognized that the field of ultrafast magnetism was born by the discovery of the

ultrafast demagnetization in a ferromagnet [21]. The time-scale at which this demagnetiza-

tion occurred triggered a wide debate on the physics behind the control of the magnetization

at such sub-picosecond timescales. Soon after this discovery, extensive research has been

performed and a wide variety of ways to control magnetism were observed [22]. Examples of

this include the generation of coherent spin precession [23], light-induced spin reorientation

in antiferromagnets [24], or even complete changes in the magnetic ordering, as demon-

strated by the laser-induced phase transitions from an antiferromagnetic to ferromagnetic

phase [25].

The ultrafast dynamics of spins could be well understood by the fact that the electron

carries intrinsic angular momentum S, also referred to as spin, giving rise to a magnetic

moment µµµ = γS, where γ is the gyromagnetic ratio. The time evolution of this angular

momentum is given by the torque that the external magnetic field exerts on the spins. This

realization resulted in the Landau-Lifshitz equations, which reads in the simplest form (in

the CGS or Gaussian system of units) [22]

dM

d t
=−γM×H+αM× dM

d t
, (1.1)

where M is the magnetization, H is the magnetic field and α is a constant accounting for the

damping of the precession. This equation describes the precession of magnetization around

a magnetic field, as illustrated in figure 1.2.

Moreover, a lot of research is going on in the direction of the all-optical magnetization
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Figure 1.2: Depiction of the Landau-Lifshitz equation of the precession of magnetization M (black
arrow) around a magnetic field H (red arrow). The rate of change of the magnetization orientation
dM/dt is tangent to the dashed trajectory (blue arrow).

reversal in ferromagnets [26], and ferrimagnets [27], which has yielded results with a high

potential for all-optical magnetic recording [28].

For the application in data processing technologies discussed in the previous section, it

might seem the most obvious choice to focus the investigations on the ultrafast control of

magnetism on the ferromagnets, in which the spins align parallel to each other, giving rise to

a magnetic moment. On the other hand, antiferromagnets, in which the spins are ordered

in an antiparallel manner have for a long time been considered to be unsuitable for such

purposes and were thus only considered out of academic interest [29]. Over the years, this

view has changed and the antiferromagnets have gained renewed attention. For instance, the

class of antiferromagnets has a much higher natural abundance than the ferromagnets while

also exhibiting the spin ordering at much higher temperatures, and the absence of the net

magnetization makes the devices insensitive to stray magnetic fields or external magnetic

perturbations [30]. Perhaps most importantly, the spins in antiferromagnets typically precess

with frequencies in the Terahertz range (1 THz ≈ 1012 Hz), as compared with the typical

Gigahertz precession frequencies in the ferromagnets. Thus, to achieve the goal of ever-faster

data technologies, the antiferromagnets are now considered a highly promising material of

choice.

Thus far, it has been a question if all-optical recording would also be possible in antifer-

romagnetic systems, due to the fact that the absence of a net magnetic moment makes it

challenging to control the magnetization by optical means, and has thus been under exten-

sive investigations [31]. It was recently discovered that the antiferromagnetic order could be

written and read out by the use of electric pulses through the effect of spin transfer torques,
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where the spins on the electrons in spin polarized currents exert a torque on the magnetic

moments. These torques alternate between the individual sublattices of the antiferromagnets,

enabling the reorientation of the antiferromagnetic order [32, 33]. Although these observa-

tions seem auspicious, the switching and reading out rate is still on the order of miliseconds

to seconds [34], thus lacking the ultrafast aspect of the control of magnetism.

Some of the observations in ultrafast magnetism discussed above were explained by

thermal effects [24]. For example, the ultrafast heating of the sample can for example tem-

porarily change the magnetic anisotropy of the material, thereby changing the equilibrium

orientation of the magnetization [35,36]. As a result, the spins start to precess around the new

equilibrium. As the sample cools down, precession continues around the initial equilibrium

value [23]. Also, thermal effects were shown to be responsible for the switching dynamics

in GdFeCo, as the heating of electrons can bring the system in a strongly non-equilibrium

state, thereby driving the spin dynamics [27]. For prospects in ultrafast data technologies,

these effects are disadvantageous, as the clock-rate of the magnetization is restricted by the

cooling down rate that can be down to nanoseconds [37]. Besides, thermally driven dynamics

is incoherent, and the phase of magnetization dynamics cannot be controlled through the

phase of the excitation in such processes [38].

On the other hand, it was found that magnetism can also be controlled in a non-thermal

manner, by direct coupling of the magnetization with the electric and/or magnetic field

of light. This was demonstrated experimentally by the observation of the Inverse Faraday

effect in the antiferromagnet DyFeO3 [39]. In the experiment, circularly polarized light pulses

were shown to be able to produce a magnetization in the direction of the wavevector of the

light, where the helicity of the light determined the direction of the induced magnetization.

The dependence on the incident polarization of light demonstrated the non-thermal origin

of this effect. In this case, the laser pulses act as an effective magnetic field on the spins.

Microscopically, this effect can be seen as impulsive stimulated Raman scattering [40, 41].

The next section will give an more extensive overview of the magneto-optical effects, that

allow for both the generation of ultrafast magnetization dynamics and its detection.

1.3 Magneto-optical Effects

Magneto-optical effects encompass a broad class of effects that involve a change in the

properties of light as a result from magnetic properties of a material or vice versa. The

Zeeman interaction, which results in the splitting of absorption lines in magnetic materials is

at the basis of these effects [42]. Similarly, materials with strong spin orbit coupling exhibit a
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similar splitting of absorption lines, due to the magnetic field induced by the orbital motion

of the electrons, as shown in figure 1.3.

Figure 1.3: Illustration of the energy level splitting in a external magnetic field Hext (left panel) or
due to spin orbit coupling (right panel). The orbital motion of the electron charge e− gives rise to a
magnetic moment µL that couples with the spin magnetic moment µS resulting in the splitting of the
energy levels.

These effects, combined with ultrashort light pulses provide an excellent tool to study

magnetism on the ultrafast time-scale. On the other hand, as discussed in the previous

section, light pulses can also be used to control the magnetic state of a material. This section

will give a short summary of such magneto-optical effects.

To understand the interaction of magnetism with light, it has typically proven convenient

to consider the free energy of the spin system interacting with electromagnetic fields [43]. The

simplest case to consider is the light-magnet interactions in the electric dipole approximation,

for which the free energy is given by

F = 1

2

(
χi j (ω)E∗

i (ω)E j (ω)+χ∗i j (ω)Ei (ω)E∗
j (ω)

)
(1.2)

The indices i , j denote the x, y, z components and summation over the repeating indices

is implied. Note that in the above expression, the free energy is constructed as the product of

the electric electric field E and electric polarization P , F =−P ·E, where Pi =χi j E j . However,
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the polarization can be expanded in higher order terms (e.g. P = χ(1)E +χ(2)E ∗E + ...) [44].

Moreover, magnetic dipole and electric quadrupole contributions can be included. The form

of the tensor χi j is strongly related to the symmetry of the material. Thus, material symme-

tries play an important role in which electro- or magneto-optical effects are observable.

In the subsections below, we will separately highlight the most relevant magneto-optical

effects.

1.3.1 (Inverse) Faraday Effect

The Faraday effect was first discovered by Michael Faraday in 1845. He observed that the

polarization of light was rotated in a magnetized material, and found that this rotation angle

was given by

θF =V HL (1.3)

Here, V is the Verdet constant, H is the applied magnetic field and L is the thickness of the

material.

The Faraday effect is a form of Magnetic Circular Birefringence. This means that the

magnetization in the material causes right-handed and left-handed circularly polarized light

to experience different refractive indices. As linearly polarized light can be decomposed in

right-handed and left-handed polarizations, the polarization rotates if the circularly polar-

ized components experience different refractive indices. Microscopically, this effect can be

understood as the affected Larmor-precession eigen-frequency of the electronic orbits in the

presence of magnetic fields. Through the Kramer-Kronig relation, that relates the refractive

index to the absorption coefficient of a material, the split absorption line will also result in a

change of the refractive index.

The Faraday effect can also be described thermodynamically in terms of the Free energy

in the basis of circularly polarized light components. Note that cubic or isotropic media are

required for this specific effect [45].

F =χF H
(
E(+)E

∗
(+) −E(−)E

∗
(−)

)
(1.4)

Here E(+) and E(−) denote right-handed and left-handed circularly polarized light respec-

tively, and χF is the nonlinear susceptibility tensor responsible for the Faraday effect. As

the refractive index depends on the susceptibility (n2 = 1+χ) [46], we need to retrieve the

susceptibility tensor for the right-handed and left-handed circularly polarized components.

As the free energy in the electric dipole approximation is given by F =χi j Ei E j , we can see that

the modulation of the susceptibility tensor can be retrieved by taking the second derivative

24



with respect to the electric fields of light. As a result, we find that due to the Faraday effect,

the susceptibility for the left-handed and right-handed circularly polarized components of

light is different by ∆χ = 2χF H . Consequently, the experienced refractive index by these

components is proportional to the externally applied magnetic field. This magnetic field

induced birefringence gives rise to the rotation of polarization, which can be shown to be

given by [42]

θF = ω

2c
∆nL, (1.5)

where ω and c are the frequency and speed of light respectively, ∆n is the difference between

the refractive indices for the left- and right handed helicity of light, which is proportional to

the magnetic field or magnetization, and L is the thickness of the magneto-optical medium.

Besides the magnetization affecting the properties of light, the inverse effect is also

possible. For instance, circularly polarized light pulses can induce a magnetization [39, 47].

In this case, the electric fields of light induce an effective field Heff =− dF
dM , which results in

the induced magnetization

M(0) =χF
[
E(ω)×E∗(ω)

]
. (1.6)

1.3.2 (Inverse) Cotton Mouton Effect

The Cotton Mouton Effect shows similarities to the Faraday effect. This effect is an example

of magnetic linear birefringence, and describes the changes in the ellipticity and rotation

of light polarization if the light is passing perpendicular to an applied magnetic field. This

effect can typically be distinguished from the Faraday effect by the polarization dependence

of the incident probe light. Whereas the Faraday rotation does not depend on the incident

polarization of the light, the Cotton Mouton Effect shows a strong dependence of the obtained

signals on the incident polarization plane of the probe [48]. The rotation angle of the light

polarization ∆φ after passing through a magnetized material is given by [49]

∆φ= 2π
L

λ
∆n sin(2θ), (1.7)

where L is the thickness of the material, λ is the probe wavelength, ∆n is the magnetization-

induced birefringence that is proportional to the square of the magnetization, and θ is the

angle between the light polarization and the magnetization.

Similarly to the Faraday effect, we can also consider this effect in the terms of free energy.

For the effect of magnetic linear birefringence, we can consider a perturbation in the per-
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mittivity tensor that is quadratic in the external applied field. As a result, we can retrieve the

following expression for the free energy [50, 51]:

F =χi j kl Ei E j Mk Ml . (1.8)

Again taking the second derivative with respect to the electric fields, we obtain different

permittivity for incident light pulses polarized parallel and orthogonal to the magnetization.

This causes ellipticity and rotation of linearly polarized light pulses.

Moreover, similarly to the Inverse Faraday effect, we can calculate the light-induced

effective field by taking the derivative to the magnetization and find that this field scales

proportionally to the magnetization [51].

Heff,l =− dF

d Ml
=−χi j kl Ei E∗

j Mk (1.9)

For the case of the Inverse Cotton-Mouton effect, the symmetry of the susceptibility tensor

may for instance be such that only Ex and Ey components remain [40, 41]. Thus, one can see

that in such a scenario, the light-induced effective field depends on the orientation of the

incident pump polarization with respect to the magnetization, which results in a maximum

effective field for diagonal polarization.

1.3.3 (Magneto-Optical) Kerr Effect

The Kerr effect is very similar to the Faraday effect and the Cotton Mouton effect, but the Kerr

effect results in the polarization rotation of the light that is reflected from a magnetic material.

There are many variants of the Magneto-Optical Kerr effect, depending on the direction of

the incidence of the light with respect to the magnetization in the material. If the probe

irradiates the sample at normal incidence, the rotation is described by the polar Kerr effect.

The case when the magnetization is parallel or orthogonal to the plane of incidence of the

light is described by the longitudinal and transversal Kerr Effect respectively. In Chapter 3,

the Magneto-Optical Kerr Effect will be used as a tool for theoretical modeling of pump probe

experiments, so a more extensive description will be given there.

1.4 Rare-earth orthoferrites

In this thesis, we will be mainly concerned with the study of anti-ferromagnetic oxides, in

particular the rare-earth orthoferrites. The orthoferrites are a special case of the antiferromag-

nets, that were recently also suggested to be reclassified as altermagnets [5]. Their spin system
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Figure 1.4: Schematic of the orthorhombic crystallographic structure of RFeO3. The blue, green and
grey spheres indicate the Fe, R, and O atoms respectively. The spins on the Fe ions are shown for the
Γ2 phase. Note that the spin canting is exaggerated for clarity. The crystallographic a, b, and c axis
are represented with the red, green, and blue arrows respectively. Image is produced with the VESTA
Software [57].

consists of four sublattices of spins. Two of these sublattices are formed by the electron spins

located in the 3d-orbitals of the Fe3+ ions and the other two magnetic sublattices are formed

by the spins of the electrons in the 4f-orbitals of the rare-earth ions. The spins on the Fe3+

ions are ordered antiferromagnetically below the Néel temperature, which typically occurs

at high temperatures (TN ≈ 600−750 K) [52]. The spins in the rare-earth ions form a second

sublattice, that orders only at very low temperatures, depending on the specific rare-earth

ion in the orthoferrite. At the higher temperatures, the rare-earth spins are in a paramagnetic

state, but they are polarized by the iron spins due to the strong coupling of the iron spins

with the rare-earth spins. This interaction between the magnetic moments is responsible for

the typical spin reorientation transitions (SRT) [53, 54] and affects the dynamic properties of

the spins of the antiferromagnetic iron subsystem [55].

The orthoferrites are particularly interesting systems to investigate, as they exhibit a

combination of the properties of antiferromagnets and ferromagnets. Due to the presence of

a strong Dzyaloshinskii-Moriya interaction, the spins are not aligned in a perfectly antiparallel

manner [56]. As a result of the canting of the spins, a weak ferromagnetic moment emerges.

The crystallographic and magnetic structure of an example rare-earth orthoferrite (RFeO3) in

the magnetic Γ2 phase is schematically illustrated in figure 1.4. For illustrative purposes, the

spin canting on the iron spins is overemphasized.

To understand the magnetic properties of the orthoferrites, we also need to describe some
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details on the electronic structure. In a single atom without any external interactions the

electronic orbitals are energetically degenerate. However, when introducing surrounding

orbitals, the electron-electron repulsion will lift this degeneracy and split the energy levels.

Moreover, in the case of a Kramers rare-earth ion (an odd number of electrons) the exchange

between the d-f electrons further breaks the symmetry, resulting in the splitting of Kramers

doublets [58]. We will see in Chapter 6 that this electronic structure can play a significant role

in the dynamics of the Fe3+ spins due to the interaction of these spins with the rare-earth ion

spins.

Besides these interesting magnetic properties, the orthoferrites also show very useful

optical properties for the experiments presented in this thesis. The orthoferrites show large

Faraday rotation resulting from the strong spin-orbit interaction [39].

1.5 Magnetic interactions

This section will give an introduction to the relevant interactions in magnetic materials.

1.5.1 Exchange Interaction

The strongest and most relevant magnetic interaction is the exchange interaction, and is in

the first place responsible for the existence of magnetic materials. This interaction follows

directly from quantum mechanics. In particular, it is a result of the antisymmetrization

of the electron wavefunction. The simplest case is to consider a two-electron system with

wavefunctions that are a product of the spatial part and a spin part. Exchanging the two

identical particles should result in the same wavefunction, with opposite sign. Calculating

the energy of the system, one can find that there is an energy splitting for the symmetric and

antisymmetric spatial parts of the wavefunction. This energy splitting is described by the

exchange integral J .

The resulting exchange energy may be represented in the following form:

Wex =−∑
i , j

JSi ·S j (1.10)

Here, i and j are indices that count over the spins. The nature of the magnetic ordering

depends on the sign of the exchange interaction. For exchange integral values J > 0, the spins

are favored to be aligned parallel to each other, thus resulting in ferromagnetic order, whereas

for negative values J < 0 the spins align antiparallel with respect to each other, resulting in

antiferromagnetic order. Antiferromagnetic order with different magnitudes of spin on the
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atoms results in ferrimagnetism. Paramagnetism emerges if the exchange energy is smaller

than the thermal energy, such that the spins are oriented randomly.

1.5.2 Dzyaloshinksii-Moriya Interaction

To explain the existence of weak ferromagnets, an additional interaction needs to be intro-

duced. The interaction responsible for spin canting was first phenomenologically described

by Dzyaloshinskii as a relativistic correction to the exchange interaction and Moriya later

identified the microscopic mechanism in terms of spin-orbit coupling [59, 60]. The energy of

this interaction is given by

WDMI =−∑
i , j

Di j ·
(
Si ×S j

)
(1.11)

Thus, in combination with the exchange energy, a small canting of the spins is favored.

Besides weak ferromagnetism, the DMI also gives rise to more exotic magnetic phenomena

such as skyrmions, in which spins arrange themselves in vortex-like structures [61].

1.5.3 Magnetic anisotropy

In magnetic materials, the spins have energetically favorable orientations with respect to the

crystallographic lattice. These preferred orientations are defined as the easy axis in the crystal

structure. This effect is described by the magnetic anisotropy, and has a variety of origins that

are strongly correlated with the crystallographic structure. Firstly, the shape anisotropy is a

result of the dipolar interactions. Secondly the magnetocrystalline anisotropy depends on

the crystallographic structure and originates from spin-orbit coupling. Moreover strain can

induce a magnetoelastic anistropy, and the broken symmetry at interfaces induces a surface

anisotropy [62].

The magneto crystalline anisotropy energy in an uniaxial crystal is given by [63]

Wani = K1 sin2(θ)+K2 sin4(θ)+ ... (1.12)

where K1,2 are the anistropy constants, and θ is the angle of the magnetization with respect

to the easy-axis.

29



1.5.4 Zeeman Interaction

The Zeeman Interaction is the most intuitive of the magnetic interactions. It is simply

responsible for the tendency of magnetic materials to align with the external magnetic field,

such as the alignment of a compass in a magnetic field. The associated energy is

WH =−M ·H (1.13)

When a magnetic material is irradiated with light, an electromagnetic wave, we can

interpret that the magnetic moment want to align with the magnetic field component of

this wave. In practice however, the magnetic field of the light pulse is too small and fast to

explain the amplitudes of spin precession found in experiments. It turns out that instead of

the H-field, we need to consider an effective magnetic field. This field can be larger due to

photo-induced changes in the magnet, which will acts as an additional torque to bring the

spins out of equilibrium. For example, it has been reported that the light pulse can induce

an ultrafast change in the equilibrium orientation by changing the ratio of D/J [64] or the

magnetic anisotropy [35]. In this manner, the effective fields can reach up to a Tesla.

1.5.5 Dipolar Interaction

Whereas the previous interactions were quantum mechanical in origin, the magnetic dipole

interaction can be understood from the classical point of view. One can view the spins as

magnetic dipoles, that exert a magnetic field component on the surrounding spins. These

spins will then tend to align with this external magnetic field [65]. For two spins separated at

a distance r, the dipole-dipole interaction energy is given by

W =−µ0γ1γ2ħ2

4π|r|3 [3(S1 · r̂)(S2 · r̂)−S1 ·S2] (1.14)

where γ1,2 are the gyromagnetic ratios and r̂ = r/|r| is the unit vector connecting the two spins.

The magnetic dipole interactions typically act over much longer ranges than the exchange

interaction.
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1.6 Magnetic properties of the orthoferrites

1.6.1 Static magnetic properties

To describe the spin dynamics in the orthoferrites, it is first required to investigate the static

properties. Both the static and dynamic properties of any magnetic materials are determined

by the interplay of many magnetic interactions. The canted antiferromagnets are most

conveniently described in terms of the weak ferromagnetic moment M = M1 +M2 and the

antiferromagnetic moment L = M1 −M2. Here M1 and M2 are the magnetizations on the

different sublattices. After applying the continuous medium approximation, converting

the individual spins to macroscopic magnetization vectors, the magnetic interactions are

summarized by the free energy density of the spin system, which is for the case of the

orthoferrite given by [66]

W = 1

2
J M 2 +D[MxLz −MzLx]+ 1

2
(Ky −Kx)L2

y +
1

2
(Kz −Kx)L2

z

+ 1

4
K4L4 +q ′(∇M)2 +q(∇L)2 −M ·h(t ). (1.15)

In this expression, J is the exchange constant, D is the Dzyaloshinksii-Moriya constant,

Kx,y,z,4 are anisotropy constant, and q ′ and q are constants describing the interaction be-

tween the inhomogeneously distributed ferromagnetic and antiferromagnetic moments

respectively. Considering the uniform state, the equilibrium orientation of the spins in the or-

thoferrites can be found by minimizing equation 1.15 with respect to the magnetic moments
∂W
∂Mi

= 0 and ∂W
∂Li

= 0, where i = x, y, z.

∂W

∂Mx
= J Mx +DLz = 0,

∂W

∂My
= J My = 0,

∂W

∂Mz
= J Mz −DLx = 0,

∂W

∂Lx
=−DMz +K4L3

x = 0,

∂W

∂Ly
= (Ky −Kx)Ly +K4L3

y = 0,

∂W

∂Lz
= (Kz −Kx)Lz +DMx +K4L3

z = 0

(1.16)
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Figure 1.5: Illustration of the (i)Γ1, (ii)Γ2 and (iii)Γ4 equilibrium phases in the orthoferrites. The black
arrows indicate the magnetization of the two iron sublattices M1 and M2, the blue arrow denotes the
antiferromagnetic vector L and the red arrow denotes the ferromagnetic vector M. The crystallographic
axes are denoted by a, b and c.

This system of six equations has three distinct solutions, that correspond to the three

common phases in the orthoferrites.

(i) Γ4 phase: Lx = L(Γ24)
0 , Mz = D

J Lx

(ii) Γ2 phase: Lz = L(Γ24)
0 , Mx =−D

J Lz

(iii) Γ1 phase: Ly =
√

Ky−Kx

K4
≡ L(Γ1)

0

The first spin configuration is the Γ4 phase, where the weak ferromagnetic moment M

is aligned along the crystallographic c-axis and the antiferromagnetic moment L is aligned

along the a-axis. The second stable configuration occuring typically at lower temperatures is

theΓ2 phase, where M and L rotate 90 degrees and orient themselves along the a-axis and the

c-axis respectively. The third configuration is the one that is most rarely found and is the Γ1

phase, where the spin canting disappears and the spins align in perfectly antiparallel manner

along the b-axis. These three distinct phases are schematically illustrated in figure 1.5.

1.6.2 Dynamic magnetic properties of the weak ferromagnets

Following up on the static properties of the orthoferrites, in this section, we will introduce

the dynamical properties using the Landau-Lifshitz-Gilbert equations, and derive the Klein-

Gordon equation for antiferromagnetic spin waves. As an example model, we will describe
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the spin dynamics in the Γ4 phase, although it should be noted that the description for the

Γ2 phase will be equivalent. The Landau-Lifshitz-Gilbert (LLG) equations have been used for

many decades to describe the spin dynamics of ferromagnets [67, 68] and reads

dM

d t
= γM×Heff +αM× dM

d t
. (1.17)

In equation (1.17), the effective field is determined by the derivative of the free energy of

the spin system with respect to the magnetization Heff = δW
δM . The solution to this equation has

the form of a damped harmonic oscillator, that describes the precession of the magnetization

value around the effective field.

In contrast to the ferromagnets, the magnetic order in antiferromagnets needs to be

described by at least two sublattices, as a result from the antiparallel arrangement of the spins.

As a result, we need to consider the LLG equation for both spins M1 and M2. In practice,

it is more convenient to introduce two new magnetization vectors, as the difference of the

two magnetizations L = M1 −M2 and their sum M = M1 +M2. The vector L is defined as the

antiferromagnetic moment, and the M is the ferromagnetic moment.

The LLG equations for the two-sublattice antiferromagnetic system may then be written

as follows [66]:

dM

d t
= γ(M× δW

δM
)+γ(L× δW

δL
),

dL

d t
= γ(M× δW

δL
)+γ(L× δW

δM
).

(1.18)

Note that for simplicity, we have neglected the damping here, but as it is known that the

solutions to the equations are harmonic oscillators, the damping can be reintroduced in the

final stage of the calculation. The free energy is a function of both M, L and their derivatives

∇M and ∇L, such that the following definition of the functional derivatives are employed:

δW

δM
= ∂W

∂M
−∇ ∂W

∂∇M
= ∂W

∂M
−

3∑
p=1

∂

∂xp

∂W

∂( ∂M
∂xp

)
. (1.19)

We can write the coupled equations of motion for each of the magnetization components

in equation (1.18), using the expressions for the effective fields as given by equation 1.15 and

(1.19).
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1

γ

d Mx

d t
= D(MxLy −Lx My )+Ly Lz[(Kz −Ky )+K4(L2

z −L2
y )]

+q ′(Mz∇2My −My∇2Mz)+q(Lz∇2Ly −Ly∇2Lz)+My hz(t )−Mzhy (t ),

1

γ

d My

d t
=−LxLz[(Kz −Kx)+K4(L2

z −L2
x)]

+q ′(Mx∇2Mz −Mz∇2Mx)+q(Lx∇2Lz −Lz∇2Lx)+Mzhx(t )−Mxhz(t ),

1

γ

d Mz

d t
= D(Ly Mz −My Lz)+LxLy [(Ky −Kx)+K4(L2

y −L2
x)]

+q ′(My∇2Mx −Mx∇2My )+q(Ly∇2Lx −Lx∇2Ly )+Mxhy (t )−My hx(t ),

1

γ

dLx

d t
= J (Ly Mz −Lz My )+D(Mx My −LxLy )+My Lz[(Kz −Kx)+K4L2

z]

−MzLy [(Ky −Kx)−K4L2
y ]+q ′(Lz∇2My −Ly∇2Mz)

+q(Mz∇2Ly −My∇2Lz)+Ly hz(t )−Lzhy (t ),

1

γ

dLy

d t
= J (Lz Mx −Lx Mz)+D(L2

x +L2
z −M 2

z −M 2
x )−Lz Mx((Kz −Kx)

−K4L2
z)+K4MzL3

x +q ′(Lx∇2Mz −Lz∇2Mx)+q(Mx∇2Lz −Mz∇2Lx)

+Lzhx(t )−Lxhz(t ),

1

γ

dLz

d t
= J (Lx My −Ly Mx)+D(My Mz −Ly Lz)+MxLy [(Ky −Kx)+K4L2

y ]

−K4My L3
x +q ′(Ly∇2Mx −Lx∇2My )+q(My∇2Lx −Mx∇2Ly )

+Lxhy (t )−Ly hx(t ).

(1.20)

In principle, these equations are strongly nonlinear but in practice the spin deflections

in antiferromagnets are often restricted to a few degrees [69, 70], such that we can apply

the linearization procedure. We can denote the spin deflections induced by the effective

field as the sum of the static magnetization and the field induced dynamic magnetization

M(t) = M0 +m(t) and L(t) = L0 + l(t), where m(t) << M0 and l(t) << L0. Moreover, we can

restrict our description to the spin system in one of the aforementioned phases. We choose

to focus on the spin system in the Γ4 phase, as the spin system in the previously performed

experiment was in the Γ4 phase. Note that from the symmetry of the Γ2 phase and the

Γ4 phase (the magnetizations rotate by 90 degrees in the xz-plane), the equivalent set of

equations will hold in the Γ2 phase.

We can assume that the constants J << D << K << q (′) and in the Γ4 phase, Mz = M0

and Lx = L0. Applying the linearization procudure, the set of six coupled equations (1.20)
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simplifies to two sets of three coupled equations:

1

γ

dmx(t )

d t
= L0D[

q ′

J
∇2 −1]my (t )− D

J
L0hy (t ),

1

γ

dmy (t )

d t
=−L0[(Kz −Kx)+q∇2]lz(t )−q ′L0

D

J
∇2mx(t )+ D

J
L0hx(t ),

1

γ

dlz(t )

d t
= L0[

D2

J
+ J −q ′∇2]my (t )+L0hy (t ),

(1.21)

and

1

γ

dlx(t )

d t
= L0

D

J
(q∇2 − (Ky −Kx))ly (t ),

1

γ

dly (t )

d t
=−L0(J −q ′∇2)mz(t )+L0D(2− q

J
∇2)lx(t )−L0hz(t ),

1

γ

dmz(t )

d t
= L0[(Ky −Kx)+ D2

J
−q∇2]ly (t ).

(1.22)

Introducing the parameters in equation (1.23),

ω
(qFM)
A = γL0(Kz −Kx),

ω
(qAFM)
A = γL0(Ky −Kx),

ωE = γL0 J ,

ωhy = γhy (t ),

ωḣz
= γ∂hz(t )

∂t
,

v2
qFM = γ2L2

0q ′ J ,

v2
qAFM = γ2L2

0q J ,

ω
(qFM)
0 =

√
ωEω

(qFM)
A ,

ω
(qAFM)
0 =

√
ωEω

(qAFM)
A .

(1.23)

we can combine the equations (1.21) and (1.22) and reintroduce the damping parame-

ter to obtain the two equations (1.24) for harmonic oscillators for the dynamic my and ly

components
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∂2my (t )

∂t 2
+ (ω2

0 − v2
qFM∇2)my (t )+2α

∂my (t )

∂t
= L0ωhhy (t ),

∂2ly (t )

∂t 2
+ (ω2

0 − v2
qAFM∇2)ly (t )+2α

∂ly (t )

∂t
=−L0ωhḣz(t ).

(1.24)

Here, vqAFM and vqFM represents the maximum propagation velocity of the spin waves.

These equations have the form of the wave equation, which is commonly referred to as

the Klein-Gordon equation. Thus we see that the two-sublattice magnetic dynamics will

be defined by two orthogonal (and therefore non-interacting) modes [71] oscillating with

distinct frequencies ω0 =p
ωEωA, as the anisotropy constants differ for the the modes. These

two modes are referred to as the quasi-ferromagnetic (q-FM) and the quasi-antiferromagnetic

(q-AFM) modes. Note that as the anisotropy is typically strongly dependent on temperature

[72, 73], the resonance frequency will also depend on the temperature.

1.7 Magnonics

The antiferromagnetic resonance precession can in principle be viewed as spin waves, in the

time domain. The quanta of spin waves are referred to as magnons and the field that studies

the propagation of such waves is referred to as magnonics. In the case of a strongly uniform

excitation, all of the spins will precess with the same phase, but if spins are inhomongeneously

excited, the spin waves in the spatial domain can also emerge. These spin waves are defined

as the k = 0 and k ̸= 0 magnons. The comparison of such magnons is illustrated in figure 1.6.

Figure 1.6: Illustration of the difference between the ferromagnetic a) k=0 magnon and b) k ̸=0 magnon.
As the spins precess in phase for the k=0 magnon, the spatial profile of spin deflections is uniform,
whereas a spatial wave is formed for the case of the k ̸= 0 magnon.

Such waves were already predicted in 1930 by Bloch [74]. The precessional frequencies and

wavenumbers of the spin waves are related through the dispersion relation. This dispersion
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Figure 1.7: Plot of the dispersion relation for magnons in the orthoferrites. The dashed line represents
the magnon velocity limit, which is typically around 20 nm/ps in the orthoferrites.

relation is significantly different for ferromagnets and antiferromagnets. As mentioned in

section 1.2, the typical precessional frequencies are in the GHz range and the dispersion

relation is parabolic and dependent on the bias field [75]. In contrast, in the orthoferrites

the frequencies the antiferromagnetic resonance are in the THz range. As will be shown in

Chapter 3, the dispersion relation in the orthoferrites is quasi-linear and given by

ω2 =ω2
0 + v2

swk2 +2iαω, (1.25)

with ω0 the frequency of the k = 0 mode, vsw the velocity limit of the spin wave, k the

wavenumber, and α a term accounting for the damping of the spin precession. Note that

the dispersion relation may differ for the q-FM and q-AFM mode. This dispersion relation is

plotted in figure 1.7.

These propagating spin waves have attracted high interest for their potential to store and

transport information [76–79] and for wave-based computing [80].

Due to the high magnetic moment in ferromagnets, they have been the obvious system for

the study of magnons, and a lot of progress in the field of magnonics has been made [79]. For

instance, the spin waves have been optically excited in a localized region by focusing a laser

pulse [81–83] and magneto-optically probed by tightly focused probe pulses while scanning
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over the surface. Alternatively, techniques have been developed to perform (ultrafast) imaging

of the spin waves [84–86].

It was realized that the wave-like character of magnons could be exploited to manipulate

and steer the spin waves by variation of the magnetic landscape, acting as a sort of varying

refractive index for magnons [87], analogous to the control of light. This field in magnonics

research is defined as graded-index magnonics. Examples of achievements in graded-index

magnonics include the experimental realization of magnonic lenses for the focusing of

spin waves [88]. Confinement [89] and steering [90] of the spin waves has also proven

possible. Moreover, there have been attempts on the demonstration of magnon-based logic

operations. [83, 91]

Despite the rapid progress in the field, one of the challenges that magnonics has been

facing, is the miniaturization of such spin waves. In the typical ferromagnets, the spin waves

are dominated by the long range magneto-static dipole interactions , which restricts the

wavelength of such spin waves to the µm-scale or larger. To make the spin waves suitable for

implementation in future computing devices, downscaling the wavelengths to the nm-scale

is a prerequisite. Although such short wavelength magnons have been demonstrated as

standing waves in thin films [92, 93], such magnons lack the desired propagation.

The alternative is to generate magnons in the antiferromagnets, in which the spin waves

are exchange-dominated. The additional advantage here is that the spin wave velocities are

much higher than in the ferromagnets [94,95]. Exciting magnons in such systems has however

proven difficult, due to the lack of net magnetic moments. Besides, the nanoscale spin waves

require a strongly localized excitation spot. The conventional technique of focusing the laser

tightly, does not work as the light typically cannot be focused more tightly than tens of µm,

due to the diffraction limit. As a consequence, it was only possible to excite the k=0 uniform

precession magnon modes. Possible solutions involve the coupling of the magnons to

terahertz frequency pulses of light. These hybrid modes are referred to as magnon-polaritons,

and enable the transport of the magnon at high speeds of around 1 % of the speed of light

in the medium [96–98], but comes at the cost of the increased magnon wavelength on the

scale of about 10 µm. Consequently, the realization of spin wave transport was restricted to

diffusive propagation of incoherent magnons [99–101] and evanescent modes [102].

Only recently, a way was discovered to achieve coherent spin wave transport in antiferro-

magnets [70]. This will be highlighted further in Chapter 3.

Although the physics in magnonics is strongly nonlinear, nonlinear effects in antifer-

romagnetic magnons remain unexplored. For instance, it is highly desirable to be able to

amplify (or suppress) magnons through nonlinear interactions for the use in magnon logic
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gates, as the spin waves strongly attenuate during their propagation [79]. Such nonlinearities

will be investigated in Chapter 5.

1.8 Terahertz spectroscopy

As we have seen above, the spin wave resonances in antiferromagnets are in the THz range.

Therefore, it would make sense to use THz light pulses, such that the magnetic field of the

light can couple directly and resonantly to the spins by exerting a Zeeman torque [103, 104].

The THz range photon energies are not only in resonance with the magnons, but also

for instance with molecular rotations and with phonons, which are vibrations in the crys-

tallographic lattice structure [105]. As phonons and magnetism are closely coupled, the

use of resonant pumping of phonons has also been shown to provide an efficient pathway

to manipulate magnetism [106, 107]. For instance, it was recently demonstrated that the

ferromagnetism can be induced at temperatures above the Curie temperature through optical

manipulation of the crystal lattice [108], and switching of the magnetization through resonant

phononic excitations by infrared light pulses has been reported [109].

However, the challenge with the use of THz pulses was the lack of powerful THz sources,

resulting in the so called THz gap as the frequencies are too high for conventional electronics,

but too low for conventional optics [110]. Such pulses can nowadays be generated using

Free Electron Lasers in large scale facilities [111], but are therefore very costly with limited

availability.

Developments in the field of nonlinear optics [112] has provided a pathway for generating

table-top THz sources. By converting laser light by optical rectification, intense THz sources

have become available. The details on the nonlinear optical techniques to generate such

intense pulses will be described more extensively in Chapter 2.

This has resulted in a wide variety of spectroscopic techniques involving TeraHertz radia-

tion. The main technique involving THz light used in this thesis is the intense THz-pump -

optical probe spectroscopy [113].

On the other hand, THz pulses may also be used as a probe for THz frequency dynamics

in THz Time Domain Spectroscopy technique. [114] As it is possible to track the temporal

profile of the THz pulse using methods as Electro-Optic Sampling (see Chapter 2 for a

description), studying the THz profiles after emission from or transmission through a sample

provides direct information on the spin dynamics. THz light can also be emitted from

magnetic materials as magnetic dipole radiation. This technique is defined as THz emission

spectroscopy [64, 115, 116]. Alternatively, broadband THz pulses can be used as a probe and
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changes in the THz pulse can be detected, for instance as a result of changes induced by an

optical pump [117].

1.9 Outline of this Thesis

The contents of this thesis are distributed as follows: In Chapter 1, we have already illustrated

some background to the field of antiferromagnetic magnonics. In Chapter 2, we will intro-

duce the experimental tools, where a more detailed description of the used experimental

techniques is given. This Chapter will also guide through the design process of the newly

built intense THz generation setup. In Chapter 3, we will describe the generation of coherent

propagating magnons, from a theoretical point of view by exploiting the band gap excitation

to achieve strong localization of the excitation. Then, in Chapter 4, we performed the experi-

ment based on the theory in Chapter 3, and basic experimental results on the generation and

detection of the propagating coherent magnons in HoFeO3 will be given. Chapter 5 will build

further upon this experiment, and we will introduce a second pump pulse to search for non-

linear effects in the propagation of magnons. In particular, we will highlight the possibility to

convert the k = 0 magnon mode to the k ̸= 0 magnon mode. The intense THz pump - optical

probe setup will be employed in Chapter 6, where we will search for high-amplitude spin

dynamics in ErFeO3. In Chapter 7, we will draw conclusions and provide an outlook. This

will be accompanied by some preliminary results demonstrating that the intense THz pump

can also be used to study other systems than iron oxides. More specifically, we will show the

THz-induced ultrafast dynamics in the metallic Iron-Rhodium (FeRh).
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Chapter 2

Experimental methods

In this chapter, we will provide an introduction to the experimental techniques used for the

experiments in the remainder of this thesis. The first part of this chapter will describe the

basics of pump-probe spectroscopy, and give details of the setup for the experiment on the

generation and detection of THz spin waves in antiferromagnets (Chapter 4). Also, a more

advanced setup to investigate nonlinear characteristics of the spin waves by exciting the

dynamics with two time delayed pump pulses will be shortly introduced. A more thorough

description of this experiment will be given in Chapter 5. In the second part of this chapter,

another experimental method for efficient, resonant excitation of the antiferromagnetic spin

precession by broadband THz pulses will be discussed (Chapter 6).

2.1 Pump probe spectroscopy

Using ultrafast lasers with sub-picosecond pulse durations allows for the study of a multitude

of phenomena at picosecond time scales. Pump-probe spectroscopy is a commonly used

technique to study ultrafast dynamics in the time domain. The principle of this spectroscopic

technique is as follows: A light pulse from a pulsed laser is split into two beams of photons,

for example by the use of a beam-splitter. Typically, one of these portions will have much

higher power than the other portion. This high power part acts as the pump pulse, and will

launch the dynamics of the sample, for example by inducing spin precession. The second

portion of the light pulse is typically strongly attenuated, such that the pulse intensity is

much weaker than the pump pulse. This pulse will act as a probe and can measure the state

of the sample, for instance through magneto-optical effects. By sending the pulse through a

delay line, the time delay ∆t = 2∆x/c, with ∆x the change in position of the delay line and

c the speed of light, can be controlled with sub-picosecond resolution. This allows one to
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track the photo-induced ultrafast dynamics. The concept of pump-probe spectroscopy is

summarized in figure 2.1.

Figure 2.1: Schematic of the pump probe experiment. The concept of the experiment is discussed in
the main text.

Note that with a small modification in the setup, it is possible to introduce a second pump,

which may for example be used to investigate nonlinear physical phenomena.

In our pump probe experiment, we are most often focused on measuring the Faraday or

Kerr effect, thus the polarization rotation of the probe pulse. This pump-induced rotation is

measured with a set of balanced photo-detectors and a Wollaston Prism. When the probe

pulse passes through the Wollaston prism, the probe pulse is split into two orthogonally

polarized beams that propagate with an angle with respect to each other. These separated

beams are sent to a pair of photodetectors that measure the intensity of the probe pulse.

The photodetectors are balanced in the absence of the pump pulse using a λ/2 plate to

achieve the highest sensitivity to the pump-induced changes (this balanced condition would

correspond to diagonal polarization, i.e. equal contributions of horizontal and vertically

polarized components). Thus, the polarization rotation will result in a changing intensity on

both photo-detectors, and the difference between the signals on these detectors provide a

direct measure for the rotation.

We extract only the pump induced signals on the photodetectors with a lock-in amplifier.

The next section provides a description of the working principles of the lock-in detection

technique.
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Lock-in detection technique

The photo-induced magneto-optical signals in pump probe experiments are typically very

small, and direct measurement would thus suffer from a poor signal to noise ratio. Moreover,

it is important to distinguish the signals that are pump-induced from the static signals. The

lock-in technique provides a solution to these two challenges, and thus the signals from

the photodetectors are analyzed with a lock-in amplifier. The lock-in amplifier requires

modulated input signals with a certain frequency, and filters out all signal and noise occuring

at any other frequency. This fact can be exploited to distinguish the pump induced signals

from the static signals. To this end, an optical chopper is placed in the path of the pump pulse.

This chopper rotates at a frequency of fpump = fprobe

2 = 500 Hz, such that every other pump

pulse is blocked or transmitted. The lock-in amplifier takes this frequency as a reference,

and mixes it with the input signal [118]. Assuming the signal is periodic with frequency ωin,

and the reference signal is periodic with frequency ωref, we can write the output signal after

mixing in the amplifier as

Vout =VinVref sin(ωint +φin)× sin(ωreft +φref) (2.1)

Using trigonometric identities, we can rewrite this product as

Vout = VinVref

2

(
cos([ωin −ωref]t +φin −φref)−cos([ωin +ωref]t +φin +φref)

)
(2.2)

When this signal is passed through a lowpass filter, the second term, which oscillates at

high frequency is filtered out. Then, the acquired signals are integrated over time, for the

duration of the lock-in time constant.

Due to the orthogonality of the sinusoidal functions, the only components that will remain

in the output of the lock-in amplifier will be the signals that oscillate at the same frequency

as the reference. Thus, the lock-in amplifier acts as a filter to remove all signals and noise

occuring at any other frequencies.

The resulting output will be

Vout = VinVref

2
cos(φin −φref) (2.3)

This part of the signal is referred to as the real part of the signal. Similarly, by multiplying

the input signal in with the reference that is phase-shifted 90°, the imaginary part is obtained

(in equation (2.3), the cosine will be replaced by the sine).

Thus, the lock-in detection is phase sensitive. To obtain the maximum signal amplitude,

the phase shift between the reference and the input signal must be chosen appropriately.
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Alternatively, the magnitude can be calculated from the real and imaginary part, to remove

the phase sensitivity.

To summarize this section, we have seen that the lock-in amplifier can be used to sensi-

tively detect small signals by filtering out all noise and other frequency signals. This principle

is very important in pump-probe spectroscopy, as it allows us to be sensitive solely to the

pump-induced signals. Although the lock-in amplifier is commonly used in pump-probe

spectroscopy, it is important to highlight the operational principle for the understanding of

some of the results in this thesis. In particular, in Chapter 5 we will extend the pump-probe

scheme by introducing a second pump pulse to search for nonlinear effects. In this scenario,

it is important to understand that we are only sensitive to the photo-induced changes to

the pumps that are chopped by the chopper. For instance, it is possible to pass both pump

pulses through the chopper, in which case we should see the summation of the linear signals,

and the nonlinear signal. If we position the optical chopper such that only one of the pump

pulses passes through however, we will only be sensitive to the linear signals of the pump,

and the nonlinear effect that the pump that is not chopped has on the pump that is chopped.

The linear signals of the pump that is not chopped will not be visible in such an experimental

configuration.

2.2 THz generation

Besides using the direct output of the laser system as both the pump and probe, it is also pos-

sible to convert the laser pulse to different wavelengths through nonlinear optical processes.

In this section, we will describe how 800 nm light can be converted to intense THz pulses.

2.2.1 Theory of optical rectification

This section gives an introduction to the nonlinear process of optical rectification, where

difference frequency generation occurs within the electric field of a laser pulse. For such

processes, high input powers are required.

For very high electric fields, the material response is not linear anymore, but can be Taylor

expanded into the following expression:

Pi =χ(1)
i j E j +χ(2)

i j k E j Ek + ... (2.4)

where summation over repeating indices is implied. In this equation the indices represent the

x,y or z components of the polarization P and the electric field E . The linear susceptibility of
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Figure 2.2: a) Schematic of the process of OR. Two identical ultrashort pulses are absorbed and as a
result a broadband THz pulse is emitted. b) Representation of the OR process in the spectral domain.
This process occurs for all components ω1 and ω2 in the pulse, resulting in a broadband THz pulse.

the material is given byχ(1)
i j , andχ(2)

i j k is the nonlinear susceptibility. The nonlinear susceptibil-

ity gives rise to various nonlinear optical phenomena, such as Second Harmonic Generation

(SHG), Sum Frequency Generation (SFG), Difference Frequency Generation (DFG) and Op-

tical Rectification (OR). In SHG, two photons of the same energy are converted to a single

photon with double the energy. In SFG, mixing of two light sources with different photon

energies result in a photon energy that is the sum of the two energies, whereas in DFG the

resulting energy is the difference between the two photon energies.

OR is somewhat comparable to the process of DFG. However, in OR, the resulting photon

energy is the difference between energy components within the same broadband pulse [119].

This is illustrated in figure 2.2. This self-interaction of the broadband light pulses typically

yields difference frequencies that are in the THz range.

2.2.2 Phase matching

In nonlinear optics, the phase matching condition is essential for efficient conversion pro-

cesses of light. Due to the dispersion of light in the medium, the input photons and the

converted photons typically travel with different velocities through the material, resulting in

a relative phase shift. This phase mismatch causes the generated THz waves to interfere with

each other destructively, thereby reducing the generation efficiency. The phase matching

condition can be written as [120]
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∆k = k1 −k2 −k3 = 0. (2.5)

Here k1 and k2 represent the wave vectors of the incoming pump photons at frequencies

ω1 and ω2, and k3 is the wave vector of the generated THz photon at frequency ω3 (see

figure 2.2). Whether these conditions are satisfied depends largely on the nonlinear optical

crystal of choice and the wavelength. If the phase matching conditions are not satisfied,

various techniques are available to achieve phase matching. For instance, the birefringence

of the crystal can be exploited to select an appropriate angle of incidence, such that the

refractive indices of the input and generated rays [121]. Alternatively, the nonlinearity can

be periodically poled after the walk-off length during which the generated light goes out of

phase with the input [122]. This technique is suitable for the generation of narrow-band THz

pules [123]. In this thesis, the tilted pulse front phase matching technique will be used for

efficient THz generation. More details on this technique will be given in the following section

containing the description of the experimental setup.

2.3 Experimental Setup

In this section, an overview of the experimental setup is given. The following sections will

provide a stepwise guide through the relevant components of the setup. The global schematic

of the intense THz pump - optical probe setup is shown in figure 2.3.

2.3.1 Laser system

For the generation of intense THz pulses, we require the use of a laser that can achieve high

pump pulse energies. We use a Ti:Sapphire laser system with an OPA, providing laser pulses

with a duration of about 40 fs and a repetition rate of 1 kHz. The laser system can provide

laser pulses with an energy up to 7 mJ at the center wavelength of 800 nm. We note that the

optimal duration of the laser pulses is approximately 300 fs, for which the THz generation

efficiency can reach up to 5%. For our laser system, the expected efficiency is ≈ 1% [124].

On the other hand, as can be seen in the description on OR, the pulse width determines the

spectral width. The short duration pulses will be broadband in the frequency domain, and

thus allow for the generation of a broader band of THz radiation.
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Figure 2.3: Schematic Illustration of the intense THz pump setup. The laser output is split in the pump
and probe. The pump is converted to THz radiation with OR in the LiNbO3 prism. More specifics on
the involved optics will be discussed in the main text. Cylindrical lenses are denoted by f, and spherical
lenses are denoted by L. PM indicate the parabolic mirrors. The angle of incidence on the grating and
the diffracted angle are indicated by θi and θd respectively. The half wave plates are indicated by λ/2
and the quarter wave plates by λ/4. WP is the Wollaston prism, and PD represents the photodetectors.
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2.3.2 Tilted Pulse Front THz generation

One of the most efficient nonlinear optical materials available is LiNbO3, due to its large

nonlinear optical coefficient [125]. However, one of the major difficulties using OR for THz

generation in LiNbO3, is the large difference in the refractive index for the near-IR pump and

the THz. For the 800 nm near-IR pump pulse, the refractive index is about 2.2 [126], whereas

the refractive index for the THz is about 5 [127]. As a result, the pump pulse and the THz

pulse propagate with drastically different velocities through the medium, which causes a

large phase mismatch.

Recently, a technique for highly efficient THz generation has been developed, namely

THz generation using a tilted pulse front. As illustrated in figure 2.4, the phase matching

condition is satisfied by introducing a tilting angle of the pulse front. To match the projection

of the group velocity of the pump pulse with the velocity of the generated THz, the following

tilt angle of the pulse front is required [128]:

ngr
p = cos(γ)nph

THz. (2.6)

Here ngr
p is the refractive index for the group velocity of the pump pulse and nph

THz is the

refractive index for the velocity of the generated THz pulse and γ is the tilting angle of the

pulse front, as illustrated in figure 2.4.

Using the aforementioned refractive indices for the LiNbO3 crystal, we find that the

optimal tilt angle is about 64°.

In our experimental setup, we use a LiNbO3 crystal, which is cut at an angle of 62°. The

dimensions of the input faces are 10 mm × 10 mm. The LiNbO3 prism is doped with MgO

to increase the damage threshold. We create the tilted pulse front by using a diffraction

grating, and two cylindrical lenses to produce the image of the diffraction grating on the

LiNbO3 crystal. A theoretical study has been performed by Tokodi et al. [129] to optimize the

parameters of the tilted pulse front THz generation setup containing a two-lens telescope. In

our experimental design, we closely follow the optimization described in this paper. From

this they found that the optimal angle of incidence θi on the diffraction grating is given by

sin(θi ) = λ0

d
(1− a

nng
). (2.7)

Here, d is the spacing between grooves on the diffraction grating, λ0 is the pump wave-

length, and n and ng are the refractive indices of the LiNbO3 crystal for the phase and group

velocities respectively. The parameter a is as follows:
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Figure 2.4: Sketch of the tilted pulse front technique for efficient THz generation by Optical Rectifica-
tion. The propagation direction of the pump pulse is given by kp and the propagation direction of the
THz pulse is indicated by kTHz. The red and blue waves represent the pump and output THz profiles
respectively, and the vertical lines indicate the constant phase wave fronts.

a = n2ng p

2λ0

√√√√ λ2
0

n2
g p2 tan4(γ)

+ 4

n2
− n2

2tan2(γ)
. (2.8)

In this equation γ is the pulse front tilting angle corresponding to the angle of the LiNbO3

prism and p = 1/d is the grating periodicity.

The diffraction angle θd is directly obtained from the diffraction equation

sin(θi ) = λ0

d
− sin(θd ). (2.9)

In addition, the optimal ratio between the focal lengths of the two cylindrical lenses

is [130]:

f1

f2
=p

a. (2.10)

Finally, we chose the optimal groove density on the grating for the highest THz generation

efficiency, which is given by [129]

p = λ0

2

√
1+ 2n

ng tan2(γ)
. (2.11)
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We use a 1800 grooves/mm grating to create the tilting of the pulse front. We employ

the above equations to find the optimal ratio f2/ f1 = 0.6. This ratio is typically used for the

imaging optics for intense THz generation using a tilted pump pulse front. Hence, we use

cylindrical lenses with focal lengths of f1 = 100 mm and f2 = 60 mm. In addition, we place

a half-wave plate in between these lenses, to allow control of the polarization state of the

pump pulse. The half-wave plate allows us to rotate the polarization of the pump pulse along

the z-axis of the LiNbO3 crystal, for which the THz generation is found to be optimal [131].

The diffraction angle was set such that the angle of incidence was 38°, such that the pulse

front would be tilted by 62°. All of the optics are aligned using a pyroelectric THz detector.

The maximal THz pulse energy found using this pyroelectric detector is approximately 4.5µJ.

After generation of the THz pulse, it needs to be transported to the sample. As the water

molecules in humid air have absorption bands around the center of the THz pulse (1.2

THz [132]) (see next section), the pathlength of this transport should be as short as possible,

or the THz should propagate through dry air. To this end, we designed a purging box enclosing

the THz generation setup, through which dry air flows.

Finally, the generated THz signal is transported to the sample. Due to the internal reflec-

tions in the LiNbO3 crystals, we need to make sure these reflections are blocked and cannot

accidentally reach the sample, as the high power may damage the sample. To this end, we

place a stack of two 1 mm thick teflon plates directly after the LiNbO3 prism, as this blocks

800 nm light and transmits THz well (Tteflon ≈ 95%). Finally the beam is transported to and

focused on the sample. To this end, we use three parabolic mirrors, with focal lengths of 1

inch, 6 inch and 2 inch respectively. In the next section, more details will be given on the

choice for the parabolic mirrors.

We use a set of two wire-grid polarizers to control the polarization of the THz pulse. As

the transmitted electric field through such a polarizer is E = E0 cos(θ), where θ is the angle

between the polarization of light and the transmissive axis of the polarizer, the use of the

polarizers allows us to control the intensity of the THz pulses irradiating the sample.

Finally, we have the possibility to place the sample in a closed-cycle liquid Helium cryostat,

that allows us to control the sample temperature down to 3 K.

2.3.3 Focusing of the THz pulse

One of the major challenges in the field of THz optics is the relatively long wavelength of

THz radiation. The wavelength of the THz sources lies in the sub-millimeter range (1 THz ≈
0.3 mm).

Because the minimal achievable beam waist is proportional to the wavelength of the
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Figure 2.5: Illustration of the propagation of a Gaussian beam going through a focus. The beam radius
is indicated with w(z), and the radius of the beam waist is w0.

light, it is significantly more challenging to tightly focus THz frequency light than the more

commonly used visible or near-infrared light pulses. Besides, the THz beams experience a

strong divergence due to their long wavelength, as can be seen from equation (2.12) [133].

w(z) = w0

√
1+ λz2

πw 2
0

(2.12)

Here w(z) is the spot size at distance z from the beam waist w0 (figure 2.5).

The minimal spot size of a Gaussian laser beam after focusing with an optic is given by

w0 = 4 f λ

πw 2
(2.13)

and is thus proportional to the ratio of the focal length of the focusing optic and the

beam diameter before the focusing optic. This fact needs to be exploited to reach the highest

peak electric fields of the THz light as possible, by using the optic with the shortest focal

length, and THz beam with the largest diameter possible. However, the focal distance and

the expansion of the beam are restricted by geometric limitations in the setup.

The above equations can be written in a more general form in terms of a beam parameter

q , transformed after propagation through space or after passing through an arbitrary optical

element. This beam parameter is defined as

1

q
=−i

λ

πw 2
+ 1

R
. (2.14)

Thus, we see that the beam parameter is a complex value, where the imaginary part
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describes the waist of the beam and the real part describes the radius of curvature of the beam.

Therefore, to find the optimal set of parabolic mirrors, we performed numerical calculations

on the evolution of this beam parameter during propagation between the parabolic mirrors

using 2x2 ray transfer matrices, also referred to as the ABCD matrices [134].

The ABCD transformation matrices for beam propagation over distance z (Mprop) and

focusing by a parabolic mirror (Mpm) are given by

M =
(

A B

C D

)
, Mprop =

(
1 z

0 1

)
, Mpm =

(
1 0

− 1
f 1

)
(2.15)

Defining the beam parameter as the vector q =
(

q

1

)
, the beam parameter then trans-

forms as

q ′ = Aq +B

C q +D
. (2.16)

Using such matrices is convenient, as the resulting transformation matrix can simply be

obtained by matrix multiplication. After transformation of the beam parameter, we can then

finally retrieve the spot size at any point in the propagation path from the imaginary part of

the beam parameter, as seen from equation (2.14).

w =
√

−λ
πIm(1/q(z))

(2.17)

In our simulations, we assume that the radius of curvature of the wavefront of the THz

is negligible after the generation. We assume an initial spot size of wi ≈3 mm directly after

the LiNbO3 prism, as was found with knife-edge measurements (see following section). The

results of this simulation are shown in figure 2.6.

Care must be taken during the alignment of parabolic mirrors. With improper alignment,

the resulting beam spot may become elliptical. As THz is invisible by the human eye and

challenging to visualize without advanced equipment, we used an auxiliary HeNe laser to

align the parabolic mirrors.

The size and profile of the THz pulse can be determined experimentally using a variety of

methods. For instance, the THz beam profile can be imaged with a THz camera to estimate

the THz beam diameter. Alternatively, for more accurate beam size determination, knife-edge

measurements can be performed. For illustration, an example of THz camera measurement

and a knife-edge measurement in the focal spot of the THz beam is shown in figure 2.7.
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Figure 2.6: a) Simulation of the evolution of the beam size after propagation and focusing with the
parabolic mirrors for various frequencies in the THz pulse. The positions and the focal lengths of
the three parabolic mirrors (PM) and the position of the sample is indicated. b) Zoom-in around the
sample position, indicating the spot sizes in the focus.

The image taken with the THz confirms that the THz pulse is focused properly in a circular

spot. To obtain the spot size in the THz focus, we fit the knife-edge measurement with the

Error Function (the integral of a cut-off Gaussian), and found that the FWHM of the Gaussian

profile is 0.5 mm.

2.3.4 Electro-Optic Sampling

The generated THz pulses can be resolved in the time domain by electro-optic sampling

(EOS). The technique of EOS is a nonlinear optical technique where the birefringence of the

crystal is modified under external electric fields. As a result of the electric field component

of the THz pulse that passes through the crystal, the probe passing through the detection

crystal will become slightly elliptically polarized. Similarly to how the half-wave plate is used

to balance the polarization rotation, we use a quarter-wave plate to balance the ellipticity.

The THz-induced ellipticity will similarly result in a change in the difference in signal on the

photo-detectors. Thus, by varying the delay between the THz and the probe pulse, the profile

of the THz pulse in the time domain can be revealed.

For our EOS measurements, we used a 100µm thick GaP nonlinear detection crystal, for

the relatively high response and broad detection bandwidth [135]. This crystal was placed in

the sample position in the experimental scheme that was illustrated in figure 2.3.

The THz profiles measured in this way are shown in figure 2.8. The spectra under normal

circumstances and when the setup is enclosed and purged with dry air are compared.
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Figure 2.7: a) Image of the THz spot in the focus measured with a THz camera. b) Measurement of the
diameter of the beam with the knife-edge method. The result is fitted with the Error Function, and the
resulting FWHM of the Gaussian is indicated.

2.3.5 Calibration of the THz Electric field

In this section, we discuss how the THz electric field can be calibrated. Note that in this

section, the equations will describe the calibration is SI units. The ellipticity induced in the

probe pulse by the THz pulse as measured in EOS scales linearly with the THz electric field.

Knowledge of the proportionality factor will thus allow for a proper calibration of the THz

electric field strength.

For the arbitrary orientation of the input polarization direction of the THz (α) and probe

(φ) with respect to the crystallographic c-axis of the detection crystal, the ellipticity induced

by the THz pulse is given by [136]

∆I

I0
= ωn3ETHzr41L

2c

(
cos(α)sin(2φ)+2sin(α)cos(2φ)

)
. (2.18)

Here, ∆I is the difference signal due to the ellipticity on the photo-detectors for a static

detector signal I0, ω is the angular frequency of the probe pulse, r41 ≈ 0.5 pm/V is the nonlin-

ear optical coefficient of GaP [137], L is the crystal thickness, and c is the speed of light. Due

to the large refractive index of the THz in the detection crystal, a large fraction of pulse will be

reflected. The transmission of the THz into the detection crystal is

t = 1− r = 1−
∣∣∣∣n1 −n2

n1 +n2

∣∣∣∣ . (2.19)

Assuming the refractive index of THz in GaP is approximately 3.4 [138], we find that only
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Figure 2.8: THz pulses (a) and their spectrum (b) generated with the tilted pulse front and measured
with EOS, in humid and dry air.

45% of the THz field passes into the detection crystal.

Also accounting for the absorption by the teflon plates,and setting the pump and probe

polarization ideal (Epr||c,ETHz ⊥ c) we find that the THz field is

ETHz = ∆I

I0

2c

ωn3r41Ltteft
. (2.20)

where ttef is the transmission coefficient of the THz through the teflon plates. The electric

field that we typically retrieve using this method, is 300 kV/cm. We noted that THz electric

field after extensive optimization of the setup is always lower than the previously reported

values of more than 1 MV/cm for similar experimental configurations [130].

Therefore, we decided to compare this calibration with an alternative approach with the

measured power. The energy of the THz pulse U can be expressed as the spatial integral of

the square of the electric field.

U =
∫ ∞

−∞
1

2
ϵ0E 2(r)dV (2.21)

We can assume the transverse profile of the pulse to be Gaussian with the FWHM deter-

mined from the beam profiling measurements and the longitudinal profile can exactly be

probed through EOS. Knowing the integral over the Gaussian, we get

E0 =
√

2U

ϵ0πd 2
∫

E(z)d z
. (2.22)

We calculate the integral over E(z) numerically using the experimentally obtained EOS

scans.
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As a result, we find that for the measured spot size of 0.5 mm FWHM, the resulting electric

field is approximately 1 MV/cm, more closely matching the previously reported values.

2.3.6 Outlook

After extensive usage of our setup, we believe that the setup is still susceptible to some

improvements. We found that in practice, the parabolic mirrors are not completely filled

yet, allowing us to expand the THz beam more by changing the focal length of the parabolic

mirror that collects the THz from the prism. A recent improvement involved the replacement

of this parabolic mirror to one with shorter focal length (25 mm → 15 mm). This allows for

the further expansion of the beam, and thus tighter focusing. Indeed, we found that the EOS

signals with GaP improved by approximately a factor of 2, and confirmed the reduction of the

spot size by a factor 2, both with the knife-edge and THz camera measurements

Moreover, the diameter of the parabolic mirrors may be increased further to 3 inch to allow

for even further beam expansion and thus tighter focusing. However, such a configuration

would come with spatial restrictions in the experimental setup.

Additionally, we noticed that the output power of the THz does not depend strongly on

the input power of 800 nm, implying that the THz generation is in the saturation regime.

Therefore, we may consider to expand the input 800 nm beam further using a telescope and

use a bigger LiNbO3 prism, for example with dimensions 20 mm×20 mm.
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Chapter 3

Theory of the generation and detection of

propagating THz magnons in

antiferromagnets

In this chapter, we theoretically describe the optical generation and detection of propagating

packets of spin waves in antiferromagnets, by solving the equations of motions for the spin

system in response to a light induced effective magnetic field. The model discussed in this

chapter will be valid for small spin deflections, thus in the linear regime. We apply the model

to a variety of pulses that can launch spin excitations, from simple approximations to realistic

experimentally available light pulses, and analyze the waveforms of the resulting spin waves.

Then we theoretically show the selective detection of the spin waves by the magneto-optical

Kerr Effect.

3.1 Introduction

Propagating waves of spin precession, whose quanta are referred to as magnons have at-

tracted a lot of interest over the last decades, for their potential to replace to current electronic

based techniques of storing and processing information [139]. However, until recently it has

proven to be extremely challenging to generate such spin waves. Currently, ferromagnets

have been mostly studied, where the resonance frequencies lie in the GHz range, whereas

antiferromagnetic materials exhibit much faster spin dynamics, in the THz range. Moreover,

to compete with the miniature scales at which data can be stored and processed today, it

is crucial to excite magnons with nanoscale wavelengths [140]. This has been particularly

challenging by optical means, as the minimal spot size of an optical excitation is typically
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restricted to be on the micrometer scale.

As a result, the spin waves that were excited in ferromagnetic systems typically had long

wavelength as characterized by the magnetic dipole interaction. Exchange dominated spin

waves can however go down to the nanometer wavelength scale. It has been proposed that

such exchange dominated magnons in ferromagnets can be realized by fabricating an an-

tiferromagnetic layer on top of a ferromagnetic layer. These layers are strongly coupled

by the exchange bias, and the excitation of the antiferromagnetic layer acts as a strongly

localized effective field in the ferromagnetic layer, resulting in the emission of spin wave

with nanometer scale wavelength, propagating normal to the interface [141]. Theoretical

studies have also shown that it is possible to generate short wavelength spin waves in ferro-

magnets by a microwave excitation at the interface of two coupled ferromagnetic layers. The

inhomogeneity due to this interface allows spin waves to be emitted in the material, with

their amplitudes depending on the difference between the magnetic susceptibility of the

two materials. As the resonance frequencies of antiferromagnets is far from the resonance

frequency of the ferromagnets, spin wave generation from the interface of ferromagnets and

antiferromagnets has been considered highly promising [142].

However, the excitation of short wavelength and high frequency spin waves in antifer-

romagnets has proven another challenge. Although short wavelength and high frequency

magnons have recently been achieved in thin films, these magnon modes involved only

standing waves, thus these spin waves do not propagate [143]. A breakthrough was made in

2021, when propagating packets of spin waves were reported for the first time in DyFeO3 by

the optical excitation with photons having energies exceeding the band gap energy of the

antiferromagnet [70]. As a result, the photons responsible for the excitation of the magnons

remain confined in a nanoscale region near the sample boundary. As a result of this strongly

inhomogeneous excitation, a propagating wavepacket of spin waves will propagate away

from this region, into the material. This concept is illustrated in figure 3.1.

The concept of the laser confinement is illustrated in figure 3.1a). A pump pulse with

photon energy of 3.1 eV (400 nm) excites the spin precession. As the inset shows, this

photon energy corresponds to an electronic transition, that results in the strong absorption

of the photons in a region of approximately 50 nm to the boundary. The spin precession

launched in this region transfers to the neighboring spins in the form of propagating spin

wave with supersonic velocity v0. The spin dynamics is then detected by a second weaker

probe pulse. As seen from figure 3.1b) and 3.1c), the detected dynamics will occur at very

different frequencies depending on whether the dynamics is detected in a transmissive or

reflective configuration.
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Figure 3.1: Illustration of the first observation of propagating THz spin waves in an antiferromagnet.
Figure from reference [70].
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In this chapter, a thorough description from a theoretical viewpoint will be given to explain

the previously performed experiment. The first part of the chapter will discuss numerical

simulations on the generation of these spin waves, whereas the second part of the chapter

will focus on the detection of these spin waves, and explain how different frequencies are

observed in the pump-probe experiment with the transmissive and reflective configuration.

3.2 Model

In figure 3.2, a schematic of our model is depicted. As mentioned before, we consider the

canted antiferromagnet in the magnetic Γ4 phase, where the ferromagnetic moment M is

oriented along the z-axis and the antiferromagnetic moment L is oriented along the x-axis.

The spins are excited with a strongly absorbed laser pulse, that is therefore confined to a region

of d = 50 nm near the boundary. The light pulse acts as an effective magnetic field by changing

the magnetic parameters of the system [64]. As discussed in Chapter 1, such effective fields

may for instance arise from thermal effects such as the light-induced changes to the magnetic

anisotropy [144, 145], exchange interaction [146, 147] or other internal magnetic interactions,

but also from non-thermal effects such as the Inverse Faraday Effect or the Inverse Cotton

Mouton Effect. The spin waves are thus launched by the effective magnetic field component

of the laser pulse h(z, t ) traveling in the z-direction (normal to the sample boundary). As the

characteristic wavelength of the THz magnons (∼ 100 nm) is much shorter than the typical

diameter of a focused laser spot (> 1 µm), we can neglect the lateral Gaussian distribution of

the laser pulse and may assume the excitation of the surface to be uniform. We account for the

absorption of the laser pulse, resulting in an exponentially decaying spatial distribution of the

effective field h(z, t ) = h0e−z/d (see figure 3.2a). We consider only the spin wave propagation

from the first boundary, as the penetration depth of the excitation is much smaller than the

thickness of the sample. In addition, we assume that the lifetime of the spin wave is short

enough for the spin wave to fully decay before reaching the boundary at the back of the

sample, such that reflections of the spin waves may be ignored.

In the following section, we will first generally describe the solution and then consider

the propagation of the spin waves for more specific examples of effective field profiles. After

this, we model their detection in a typical pump probe experiment, where the polarization

rotation induced by the dynamic magnetization is tracked as a function of the time delay

after excitation by the pump pulse (figure 3.2b).
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Figure 3.2: Schematic of the modeling of spin dynamics in a (canted) antiferromagnet. The spin
dynamics is excited by the effective magnetic field induced by a laser pulse h(z,t), which is assumed to
have an exponential decay into the medium as it is absorbed. The spin excitations near the boundary
propagate into the medium as waves with velocity vsw. b) The spin waves are magneto-optically
detected by a second laser pulse arriving after a time delay ∆t . The dynamic magnetization gives
rise to the Faraday rotation ∆θF in the transmission configuration, or the Kerr rotation ∆θK in the
reflective configuration.
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3.3 Spin wave generation

3.3.1 General solution

With the obtained Klein-Gordon for both modes in the antiferromagnets, we can model how

the spin waves propagate after excitation with a laser pulse. As the mode that was observed

experimentally most closely matched to the q-AFM mode, we will describe in the following

only the equation for this mode. We take the last equation of equation (1.24) and convert

the component ly into the angle of spin deflection as ly = L0sin(φ) ≈ L0φ for small deflection

angles and obtain the following:

∂2φ(z, t )

∂t 2
+2α

∂φ(z, t )

∂t
+ (ω2

0 − v2
sw∇2)φ(z, t ) =−ωh

∂h(z, t )

∂t
. (3.1)

In the absence of the effective field, the solution of this equation will be a plane wave

Ae i (ωt−k(ω)z). By substituting this plane wave expression in equation (3.1) the dispersion

relation for antiferromagnets is obtained:

ω2 =ω2
0 + v2

swk2 +2iαω, (3.2)

where ω is the angular precession frequency, and k is the wave number of the propagating

magnon.

The full solution to equation (3.1) can most easily be found in the frequency domain, after

performing the Fourier transformation

−ω2φ̃(z,ω)+2iαωφ̃(z,ω)+ (ω2
0 − v2

sw∇2)φ̃(z,ω) =−iωωhh̃(z,ω), (3.3)

where φ̃(z,ω) = ∫ +∞
−∞ φ(z, t)e−iωt d t denotes the Fourier Transformation of the spin de-

flection and h̃(z,ω) denotes the Fourier transform of the effective field. Only the profiles of

the effective fields will be considered that can be driven as a product of a time- and a space-

dependent functions. The spatial dependence of the effective field will be an exponential

decay resulting from the absorption of the laser pulse:

h̃(z,ω) = H̃(ω)e−z/d . (3.4)

Here d is the penetration depth of the laser excitation. Since the diameter of the laser spot

is much larger than the excitation depth and the wavelength of the spin waves, we assume

that the spin waves propagate uni-directionally, normal to the sample surface. We can then

see that the full solution for the spin deflection is
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φ̃(z,ω) = A f (ω)e−i ksw(ω)z + Ap (ω)e−z/d . (3.5)

The first term in equation (3.5) corresponds to the solution for freely propagating magnons,

where A f (ω) is the spectral amplitude of the freely propagating waves and ksw(ω) is the

wavevector determined by the dispersion relation (equation (3.2)). The value of ksw(ω) is

complex, and the imaginary part is responsible for the spatial decay of the spin wave. To

ensure this, the complex value of ksw is defined as ksw = κ− iη, where κ and η are real. The

second term in equation (3.5) corresponds to the forced spin precession driven by the ef-

fective magnetic field of the laser pulse. The spectral amplitude Ap (ω) of this driven spin

precession is directly obtained from equation (3.3).

Ap (ω) = −iωωh H̃(ω)

−ω2 +ω2
0 +2iαω− v2

sw/d 2
(3.6)

To find the amplitude of the freely propagating spin wave, it is required to specify the

boundary conditions. We apply the exchange boundary condition, which reads [148]

∂φ

∂z
(z = 0)+ξφ(z = 0) = 0. (3.7)

The pinning parameter ξ determines the stiffness of the spins at the surface. In the case of

ξ= 0, spin deflections can occur freely at the boundary, whereas for ξ→∞, spin deflections

at the surface are forbidden. Applying these boundary conditions to expression (3.5) allows

us to relate the amplitudes of the free and forced solutions:

A f (ω) = Ap (ω)
1/d −ξ

ξ− i ksw(ω)
. (3.8)

Finally, the inverse Fourier transform can be applied numerically to equation (3.5) to

obtain the evolution of the spin waves in the time domain. In the remainder of this section,

the results of these calculations will be discussed for several indicative effective magnetic

field profiles. The general method of obtaining the results is as follows: The spectrum of

the exciting field H̃(ω) is calculated (for most cases this can be done analytically), and the

spectrum of the spin deflection is calculated for each of the coordinates z, using equation

(3.5). Then, all these spectra are separately inverse Fourier transformed into the time domain,

to obtain the spin deflection at each spatial coordinate as a function of time. Thereby, we

create a two dimensional map, with the spatial coordinate on the horizontal axis and the

temporal coordinate on the vertical axis as illustrated in figure 3.3. By selecting the horizontal

cross-sections of this map, we thus obtain the spatial profile of the spin wave deflections at a
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given time. By shifting the cross-section continuously, movies that illustrate the propagation

of the wave packet can be made. Such movies are available in the supplemental materials to

reference [149].

Figure 3.3: Example 2D map of the spin deflection φ(z, t ) with the time coordinate along the vertical
axis and the spatial coordinate along the horizontal axis for the impulsive excitation.

3.3.2 Impulsive excitation

The simplest case that can be considered is the impulsive excitation, where the laser pulse

is modelled to be infinitesimally short in time: h(t ) = τh0δ(t ), where the typical laser pulse

duration τ = 0.1 ps is used to normalize the Dirac delta function. This approximation de-

scribes well typical experiments with femtosecond pump pulses acting as opto-magnetic

fields, which are much shorter than the period of antiferromagnetic modes. Performing the

Fourier transform of the effective field h(t ), we obtain for the driven solution:

Ap (ω) = −iωτ
p
πωh

−ω2 +ω2
0 +2iαω− v2

sw/d 2
. (3.9)

In our simulations, we choose the following set of parameters: ω0 = 2π×0.15 THz, α=
10−2ω0, d = 50 nm, c = 20 nm/ps [66, 70]. The results of the simulations are shown in figure

3.4a) for the pinned boundary condition and figure 3.4b) for the free boundary condition.
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Figure 3.4: Snapshots of the spin waves for an impulsive excitation profile. a) The spin waves at
various time points for the pinned boundary condition. b) The spin waves at various time points for
the free boundary condition. In both panels, the dashed lines represent the profile of the effective
field acting at t=0 ps and the insets show the corresponding spectra at a distance of z = 0.2µm from
the boundary. All snapshots are normalized to the maximum absolute value of the spin deflection at
t = 1 ps.

The main panels display the snapshots of the propagating packets of the spin waves, as

obtained by the numerical inverse Fourier transform of equation (3.5). Note that these plots

are normalized to the maximum absolute value of the magnetization of the snapshot at

t = 1 ps. In the insets, the spectra at a point of z = 0.2µm from the boundary are shown. We

notice that the spectrum in the pinned boundary condition is much wider than the spectrum

in the free boundary condition, giving rise to higher frequency components and a more

pronounced wavepacket with slightly shorter wavelengths as compared to the spin waves in

the free boundary condition.

3.3.3 Displacive excitation

The next pulse profile that we consider is the displacive excitation, where the spin deflection

is continuously excited, but with a over time decaying excitation amplitude: h(t ) =Θ(t )e−βt ,

where Θ(t) is Heaviside step function and 1/β is the lifetime of the excitation. This model

accounts for the abrupt photoinduced change in magnetic anisotropy, which may slowly

decay in time [150]. We take the same modelling parameters as for the impulsive excitation,

with a modified frequency distribution
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Ap (ω) = −iωωh

(β+ iω)(−ω2 +2iαω+ω2
0 − v2

sw/d 2)
. (3.10)

If we consider the case β >> ω0, the lifetime of the excitation is much shorter than a

single oscillation, and as a result the excitation can again be approximated by the Dirac

delta function. We confirmed that indeed for these short lifetimes of the effective fields, our

simulation yields identical results to the ones shown in figure 3.4. For the case β<<ω0, the

decay of the excitation is slow, and the effective field will act during many spin oscillations.

The resulting spin waves for β= 0.001ω0 are depicted in figure 3.5.

Figure 3.5: Snapshots of the spin waves excited by the displacive excitation for a) the pinned boundary
conditions and for b) the free boundary conditions, and the excitation damping parameterβ= 0.001ω0.
The dashed lines represent the profile of the effective field acting at t=0 ps. The insets show the
corresponding spectra at a distance z = 0.2µm from the boundary. The spin waves are normalized to
the maximum absolute value of the spin wave at t = 1 ps.

Note that these conditions also quite closely correspond to the impulsive excitation of

the q-FM mode, as the derivative of the slowly decaying step function can be approximated

as the Dirac delta function, and the driving torque of the q-FM mode is proportional to the

effective field, whereas the driving torque of the q-AFM mode is proportional to the derivative

of the effective field.

3.3.4 Propagating Gaussian excitation

Here we consider a more experimentally realistic scenario, exciting the spin dynamics with

a propagating Gaussian laser pulse, propagating through the medium with the velocity of
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light vopt = c/n. We again account for the absorption of this pulse near the boundary, and

approximate the refractive index of the medium to be n ≈ 2.3, which is a typical value for the

antiferromagnetic oxides such as DyFeO3. We model the propagating Gaussian pulse as

h(z, t ) = h0e−(t−z/vopt)2/τ2
e−z/d . (3.11)

In the Fourier domain, the solution is then given by

φ̃(ω, z) = A f (ω)e−i kswz + Ap (ω)e−z/d e iωz/vopt . (3.12)

The effect of propagation slightly modifies the relation between A f (ω) and Ap (ω) through

the boundary conditions:

A f (ω) = Ap (ω)

1
d −ξ+ iω

vopt

ξ− i ksw(ω)
. (3.13)

The spectral amplitude of the field-driven spin oscillations is now determined by the

Fourier transform of the Gaussian envelope of the laser pulse, which is thus given by

Ap (ω) = −iωωhτ
p
πe−ω2τ2/4

ω2
0 −ω2 − v2

sw/d 2 +2iαω
. (3.14)

To observe the effect of the propagation of the light pulse, we consider a transparent

configuration by setting the confinement region of the effective field to d = 0.5 cm. For the

pulse width of the Gaussian pulse, we choose τ = 100 fs, which is a commonly used pulse

duration in ultrafast pump-probe experiments. The spin waves launched by this propagating

pulse are shown in figure 3.6.

As the velocity of light is much larger than the propagation velocity of the magnon, the

oscillations as a result of the free magnon propagation and the driven spin precession by the

effective field occur on very different length scales. Therefore, we distinguish the spin waves

on the micrometer length scales in figure 3.6a) and on the centimeter length scale in figure

3.6b). These results are again shown for the pinned boundary conditions. From these results,

we confirm that the propagating packets of spin waves decay within of a few micrometers.

We can see these waves as the magnonic analogue to electro-magnetic transition radiation,

arising from a discontinuity in the medium [151]. We see that the forced oscillations occur on

the centimeter time scale, and this driven precession manifests itself as the quasi-uniform

in-phase precession of the spins in the micrometer length scale. In the typical transmission

pump probe experiments, the forced oscillations in the bulk dominate the measured response.

As a consequence, in most experiments to date only these zero-wavenumber quasi-uniform
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Figure 3.6: Snapshots of the propagating spin waves for a Gaussian propagating excitation in the
pinned boundary condition a) in a region of a micrometer near the boundary and b) in a longer region
of 1 cm into the bulk of the antiferromagnet. The wavelength of the spin wave in panel a) is determined
by the inhomogeneity resulting from the pinned boundary condition, whereas the oscillating offset is
a result from the uniform precession. In panel b), the wavelength is determined by the driven uniform
precession and the propagation of the Gaussian pulse. The black dashed lines in a) and the blue
dashed line in b) represent the effective fields at t=0 ps and t=20 ps respectively. The inset in a) shows
the spectrum of the spin oscillation at a distance of z = 0.2µm from the boundary, and the inset in b)
shows the spectrum at a distance z = 0.4µm from the boundary. The spin waves are normalized to the
maximum absolute value of the spin wave at t = 1 ps.
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oscillations were reported.

Furthermore, we note that in the absorptive configuration, (d = 50 nm) the spin profiles

similar to the impulsive excitation mechanism are retrieved (figure 3.4) and we can conclude

that the experimentally realistic laser pulse can be well approximated as an instantaneous

impulsive excitation.

3.3.5 Propagating single cycle THz pulse

Although all the above cases allow for an analytical solution in the Fourier domain, any field

profile may be used, simply by plugging the spectrum of this profile in equation (3.6). One

of the most interesting cases to consider is the resonant excitation with a THz field, that

oscillates on a picosecond time scale, comparable to the time scale of the spin oscillations. In

this case, the spins are driven through the Zeeman torque induced by the magnetic field of

the THz pulse [152]. The method of obtaining the spin wave profile is similar as described

for the Gaussian excitation, with the amplitude of the driven solution now defined by the

spectrum of the THz pulse. Again, we assume that the THz pulse propagates with the speed

of light in the orthoferrite. For the refractive index of the THz pulse, we take n ≈ 5 [153]. The

simulation results are shown in figure 3.7.

In figure 3.7a), the THz pulse as we measured in the experiment (see Chapter 2 for more

details) and its spectrum is shown. Although the measured pulse contains no propagation,

we build in the propagation of the pulse in a similar manner to the Gaussian pulse, namely

by introducing the phase factor e iωz/vTHz to the Fourier transform, and then performing

the inverse Fourier transform back to the time domain. Again, we separately consider the

transmissive (d = 0.5 cm) and absorptive (d = 50 nm) configurations. Figure 3.7b) shows the

snapshots of the propagation of the spin wave in the bulk in the free boundary condition

for the transmissive configuration and see a similar result as for the propagating Gaussian

excitation, with a small modification due to the fact that the spatial distribution of the

propagating Gaussian will be slightly broader, and thus affects the field driven oscillation

in the region near the wavefront. Finally, we shift our attention back to the region near the

boundary for different conditions, and compare the spin waves in the pinned boundary

conditions and the free boundary conditions for both the absorptive configuration and the

transmissive configuration. In figures 3.7c-f) these cases are compared. We see that in

the pinned boundary conditions, the waves are modified and the spatio-temporal features

become visible. These features are most pronounced for the snapshots at short time delays,

as the magnon wavefront is still close to the boundary. In the free boundary conditions, these

ripples in the wavefront are not as clearly visible. Note that the freely propagating spin waves
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Figure 3.7: Spin waves induced by a propagating single cycle THz pulse. a) Snapshots of the propaga-
tion of an experimentally measured THz pulse, with its spectrum shown in the inset. b) Snapshots of
the spin wave in the bulk for the free boundary condition, and a transparent configuration (d = 0.5 cm),
induced by the propagation of the THz pulse. The inset shows the spectrum at z = 0.4 cm. c-f) Snap-
shots of the spin waves close to the boundary, for both boundary conditions, and for the transmissive
and absorptive configurations.
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in the transmissive configuration are only observed in the pinned boundary condition, as this

boundary condition introduces a inhomogeneity in the spin excitation. In the free boundary

condition, all spins, including the spins at z = 0 are allowed to precess, whereas in the pinned

boundary condition, the spins at z ̸= 0 will be deflected, and the spin at z = 0 remains in

its equilibrium. This strong inhomogeneity gives rise to the freely propagating spin wave.

Again, because the propagation velocity of the THz pulse is much faster than the propagation

velocity of the free spin wave, all spins near the boundary are excited homogeneously, and the

wavepacket becomes invisible. This highlights the essence of the inhomogeneity of the spin

excitation, which may thus also be achieved by pinning the spins to the surface. As a result,

the propagating packets of spin waves can also emerge in the transmissive configuration,

without the need for the localization of the effective field driving the spins near the boundary.

Finally, we note that for the same values of the effective magnetic field as were used in the

previously discussed temporal excitation profiles, no significant changes in the amplitude of

the spin waves are observed.

3.3.6 Effect of various parameters

In this section, we consider the excitation profiles discussed before, and investigate the

effect of various parameters. In particular, the effect of the excitation depth d , the spin wave

velocity limit vsw, the pinning parameter ξ and the lifetime of the displacive excitation 1/β

will be discussed. Comparisons of the spin wave profiles for a variety of these parameters are

summarized in figure 3.8.

These figures confirm expectations about the behavior of magnons. Firstly, we see in

figure 3.8a) that the confinement of the excitation to the boundary affects the spin wave

profiles, as for reducing values of d , the exponential decay arising from the quasi-uniform

driven precession disappears, and a stronger contribution of the freely propagating packet

of spin waves emerges. Long excitation depths result in the emergence of a background on

the oscillations, as the spins are getting more homogeneously excited by the driving field.

If the excitation depth is much shorter than the wavelength of the magnons, d <<λsw, the

contribution of the driven precession fully disappears, and only the freely propagating packet

remains. The small excitation depth also results in a diminished amplitude. The inset in

figure 3.8a) shows a normalized zoom of the spin wave for d = 0.1 nm. We note that the

fast and small amplitude oscillations appear as the result of artifacts in the simulations and

become noticeable when the spin wave amplitude is small.

Secondly, in figure 3.8b) we observe expected behavior upon the variation of the spin wave

velocity: As the velocity is increased, the spin wave propagates further from the boundary in
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Figure 3.8: Spin wave profiles under variation of several parameters: a)Variation of the optical exci-
tation depth d . The inset shows a zoom in for the excitation depth of d = 0.1 nm. b) Variation of the
spin wave velocities vsw. c) Variation of the pinning parameter ξ. d) Variation of the optical excitation
decay parameter β for the displacive excitation. All spin waves are shown at time t = 30 ps.

the same time span.

Thirdly, in figure 3.8c) the effect of the pinning parameter is illustrated. We see that this

parameter strongly affects the profile of the spin waves. For the free boundary conditions

(ξ= 0), we see that the at the boundary can freely oscillate, and the spatial derivative of the

spin wave at the boundary is zero. In the pinned boundary condition (ξ→∞, which we

approximate as ξ= 1040 in our numerical code, spin precession at the boundary is restricted.

The pinning parameter affects the ratio between the amplitudes of the freely propagating and

the driven quasi-uniform spin precession. For the special case where the pinning parameter is

close to the inverse of the penetration depth of the light pulse (ξ= 1/d), no freely propagating

wavepacket is observed. We can explain this directly with equation (3.8), from which it can

be seen that for such pinning parameters, the spectral amplitude of the freely propagating

component is suppressed.
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Finally, we can see that the amplitude and the wavelength of the wavepacket are affected

by the time during which the spins are exposed to the effective field. For long lifetimes (small

values of β) we obtain short wavelengths with high amplitudes, whereas upon decreasing

the lifetime of the excitation, the wavelength becomes slightly longer and the amplitude

diminishes. For the very short excitation times β<<ω0, the amplitude becomes negligible

compared to the longer lifetime spin waves, and as mentioned previously, the profile of the

spin becomes similar to the impulsive excitation.

3.3.7 Excitation at infinitesimal region near the boundary

We have previously seen that the width of an experimentally realistic Gaussian laser pulse

can be neglected and that the spin waves are localized to the boundary of the material. As our

interest is primarily on the freely propagating component of the spin wave, we conclude our

investigations of the generation of these spin waves by considering the impulsive excitation

in an infinitesimally thin slab at the boundary, by modelling the excitation profile as a Dirac-

delta function in both space and time h(z, t ) = δ(z)δ(t ). This approximation ensures that the

driven solution is absent everywhere, except at z = 0, allowing us to focus solely on the freely

propagating wave. In this model, we need to alter our boundary conditions. To this end, we

assume that the spin wave is reflected at a distance δz from the boundary, such that we can

write the full wave as the sum of a wave propagating to the right, and a wave propagating to

the left in the region z < δz. We can then write:φ̃(z,ω) = Ae−i kswz +Be i kswz z < δz

φ̃(z,ω) =Ce−i kswz z > δz
. (3.15)

To find the amplitudes, we integrate equation (3.3) over an infinitesimal region around the

material boundary. We find from this that φ̃(z,ω) is continuous and its derivative ∂φ(z,ω)/∂z

is discontinuous at the boundary. This discontinuity is determined by the amplitude of the

excitation. We may then also apply the pinning boundary conditions. In the final step of the

calculation, we can take the limit δz → 0. We then find that the spin wave propagating in the

material is given by

φ(z,ω) = iωωh

v2
sw(ξ− i ksw)

e−i kswz . (3.16)

These propagating spin waves are depicted in figure 3.9 for both the pinned boundary

conditions and the free boundary conditions, with their spectra shown in the insets.

We see a drastic difference in the spectra, as in the pinned boundary conditions, the
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Figure 3.9: Snapshots of the propagating spin wave in a) the pinned boundary condition and b) the
free boundary condition. The excitation exists solely at the boundary z = 0, such that h(z, t ) = δ(z)δ(t ).
Insets show the corresponding spectra at z = 0.2µm.

spectral weight increases above the resonance frequency whereas in the free spins boundary

condition, the spectral weight is distributed as the more typical peak shape around f0. As

the oscillation at the boundary is allowed in the free boundary condition, the wave profile is

more pronounced than for the pinned boundary condition.

We finally note that, as expected, these results show an excellent match with the simu-

lations for the case of the exponential decay with optical penetration depths much shorter

than the characteristic magnon wavelength d <<λsw, as was shown in figure 3.8a).

The situation modeled here may be realized in an antiferromagnet capped by a thin

ferromagnetic metal layer of a few nm coupled to the antiferromagnetic order through for

example exchange bias [154]. The laser pulse can instantaneously heat the metal and destroy

its magnetization, thereby exerting a torque on the antiferromagnetic spins at the interface. It

is therefore possible that in previous pump-probe studies of metal-antiferromagnetic bilayers,

magnetic modes with unusual frequencies could actually be attributed to the propagating

spin waves launched from the boundary between the metal and antiferromagnet, instead of

for example magnetic impurities [155].

3.4 Detection of antiferromagnetic spin waves

In the typical pump-probe experiments, the spin dynamics is detected with magneto-optical

effects. The dynamic magnetization may for example induce a rotation of the polarization of

incoming linearly polarized light. These effects can be found in both the transmissive and

reflective configuration. We will refer to the polarization rotation in the transmissive configu-
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ration as the Faraday rotation and to the polarization rotation in the reflective configuration

as the Kerr rotation. We have shown before that the propagating spin waves decay within a

region of a few µm to the boundary. Hence, we focus here on the reflective detection scheme,

such that only the spin dynamics in the region close to the sample surface is probed.

In this section, we will calculate the rotation of the polarization of the probe pulse, as

a result from the Magneto-Optical Kerr Effect (MOKE). This effect arises from the helicity

dependent refractive index in materials with broken time reversal symmetry. For example,

this time reversal symmetry can be broken by the magnetization. We start our calculation

by considering a linearly polarized light pulse, that is perfectly polarized along the x-axis.

The (normalized) incident electric field vector of the probe light can then be written as the

superposition of a right-handed and a left-handed circularly polarized component:

ei = 1

2
e++ 1

2
e− = 1

2

(
1

−i

)
+ 1

2

(
1

+i

)
(3.17)

As both of these components experience a different refractive index, both components

are reflected differently. We denote the reflectivity of the right-handed helicity as r+ and of

the reflectivity of the left-handed helicity as r−, such that the reflected electric field vector

will be:

er = 1

2
r+e++ 1

2
r−e− = 1

2

(
r++ r−

i (r−− r+)

)
(3.18)

Assuming the polarization rotation is small, we can then see that the angle of rotation θ is

given by:

θ ≈ tan(θ) = i (r−− r+)

r−+ r+ (3.19)

We can write the reflectivity as the sum of a static and dynamic contribution, where the

dynamic part is induced by the spin wave:

r+ = r+
0 +∆r+

r− = r−
0 +∆r− (3.20)

Now that the polarization rotation is expressed in terms of the reflectivity of the circularly

polarized components, we need to find exactly how the dynamic magnetization affects the

the reflectivity of the circularly polarized light. In a medium with magnetization along the
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z-axis, the magnetization modulates the permittivity of the material, thereby affecting the

refractive index of the left-handed and right-handed polarized component as follows [42]:

n2
± = ϵ± g = ϵ+∆ϵ. (3.21)

Here g is the gyration term, which is typically proportional to the magnetization (g = aM ).

Thus, we see that the permittivity of the material is modulated by the dynamic magnetization

as

∆ϵ(z, t ) =±aM(z, t ). (3.22)

The change in reflectivity due to the modulation in the permittivity has previously been

derived for the ultrafast detection of acoustic phonons, in which the reflectivity was affected

by the phonon-induced strain [156], which reads:

r = r0 +
i k2

0

2k
t0 t̃0

∫ ∞

0
d z ′e2i kz ′∆ϵ(z, t ). (3.23)

In this expression, r0 is the static reflection coefficient and t0 and t̃0 are the transmission

coefficients into the medium and into free space respectively, in the absence of perturbations

in the permittivity. The wave-vector of the probe pulse in vacuum is given by k0 = 2π
λ and by

k = 2πn
λ

, with λ the probe wavelength and n the corresponding refractive index.

As our interest is on the dynamic part, we can simplify our model and consider a pure

antiferromagnet, with a negligible static magnetization, such that the static components of

the reflectance and transmittance are the same for both helicities. Using equation (3.22) we

can then simplify equation (3.23) to

r± = r0 ±∆r, (3.24)

where

∆r = i
ak2

0

2k
t0 t̃0

∫ ∞

0
d z ′e2i kz ′M(z ′, t ). (3.25)

For the magnetization in this expression, we can use the previously derived and calculated

spin wave profiles, by taking the Inverse Fourier Transform of equation (3.5). Note that the

solution to the Klein-Gordon equation was technically valid for the ly component, whereas

in our detection scheme, we assumed that the dynamic ferromagnetic moment was along

the z-axis. Therefore, we can perform the numerical conversion of the ly component to the

mz component as seen from the full Landau-Lifshitz equations [64].
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∂mz(t )

∂t
= (ωA − v2

sw

ωE
∇2)ly (t ) (3.26)

We can then also relate both components in the frequency domain for both the freely

propagating and driven parts of the solution:

fmz (ω) = 1

iω
(ωA + v2

swk2
sw(ω)

ωE
) fly (ω)

pmz (ω) = 1

iω
(ωA − v2

sw/d 2

ωE
)ply (ω).

(3.27)

The Inverse Fourier Transform of the magnetization of equation (3.5) is now substituted

in equations (3.25) and (3.24) and subsequently inserted in the expression for the polarization

rotation angle (equation (3.19)). As the wave-vector of the spin wave is complex and was

written as ksw = κ−iη (η ̸= 0), the forward propagating spin waves decay, such that the integral

over z converges, and the spectrum of the dynamics in the Fourier domain is obtained. The

dynamics in the time domain is then found by applying the Inverse Fourier Transform.

θ(t ) = ak2
0

2kr0
t0 t̃0

∫ ∞

−∞
dωe iωt (A f (ω)

1

2k −ksw(ω)
+ Ap (ω)

1

2k + i /d
). (3.28)

Here, the integral over the frequency ω represents the Inverse Fourier Transform, and

A f (ω) and Ap (ω) represent the spectral weights of the mz components, as given by equation

(3.27). One can see that in the detected spectrum, a pole emerges for magnon wave-vectors

of ksw(ω) = 2k. For this condition, the pole 1/(2k −ksw(ω)) would diverge, but the inclusion

of damping (imaginary part of the magnon wave-number) prevents the expression from

diverging. In terms of wavelengths, the spin waves with wavelengths of 2λsw = λprobe are

detected, which may be recognized as the Bragg condition. Consequently, magnons with

a specific wavenumber can be selectively detected by choosing the probe wavelength, and

the peak in the spectrum will arise at the frequency corresponding to this wavenumber as

determined through the magnon dispersion (equation (3.2)). This condition of selective

detection is referred to as the Bragg or Brillouin condition [157]. The emergence of this

Brillouin condition can be interpreted by considering the propagating spin wave to effectively

act as a propagating diffraction grating due to the spatial modulation of the permittivity,

enhancing the reflectivity of certain wavelengths of the probe pulse [158].
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3.5 Calculated magneto-optical detection spectra

In this section, we will calculate the predicted spectrum of the Kerr rotation angle by evalua-

tion of the integrand in equation (3.28) for various wavelengths of the probe pulse. The time

domain signal may then be obtained by the Inverse Fourier Transformation. As we saw before

that the realistic laser excitation can well be approximated as an impulsive excitation, we

again our pulse to be infinitesimally short in time. We model the detection of the spin waves

for both the pinned and the free boundary condition, for the excitation depth of d = 50 nm.

The results are shown in figure 3.10a) for the pinned boundary condition and in figure 3.10b)

for the free boundary condition.

Figure 3.10: Spectra for an impulsive spin wave excitation as would be detected in a MOKE experiment.
The spectra are calculated for multiple probe wavelengths λ. a) Calculated spectrum in the pinned
boundary condition. In the inset, the dispersion relation is shown, with the colored points indicating
the selected wave-vectors (and thus frequencies) by the various probe wavelengths. b) Spectra in the
free boundary condition.

These results show that there is a noticeable difference between the spectra in the free

and pinned boundary conditions. The spectral amplitude at the fundamental resonance

frequency of 0.15 THz disappears completely when the spins are perfectly pinned to the

surface, whereas this feature remains if the spins are allowed to precess freely at the surface.

Also, we observe that if we detect the spin dynamics in a reflective configuration, the most

prominent spectral feature is a peak at a blue-shifted frequency, which corresponds to the

Bragg-selected wave-vector components of the broadband wave-packet fk . As expected

from the Brillouin condition, the frequency of this peak is dependent on the wavelength

of the probe pulse. The wave-vector of the probe pulse selects which wave-vector of the

propagating magnon wavepacket is detected. As illustrated in the inset in figure 3.10a), the

peaks then appear at the frequencies that are matched to these wave-vectors as determined
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by the dispersion relation. The results of this model are in excellent agreement with the

experimental data reported in Ref. [70].

Additionally, we investigated the effect of the laser excitation confinement on the detected

dynamics, by performing simulations for various excitation depths. The results are shown in

figure 3.11a) and 3.11b) for the pinned and free boundary conditions respectively.

Figure 3.11: Spectra of the spin waves for various values of the excitation depth d . The probe
wavelength is 800 nm. a) Spectra in the pinned boundary condition. b) Spectra in the free boundary
condition.

Again, the reduced spectral amplitude at the resonance frequency can be seen in the

pinned boundary condition. For long excitation depths, a very small feature at the frequency

f0 may become observable. The excitation depth only has a minor effect on the spectral

amplitude of the Brillouin condition selected frequency, which may likely be attributed due

to the small difference in amplitudes of the waves, that was also observed in figure 3.8a). In

the free boundary condition, the effect of the confinement on the detection is much more

pronounced. We see that the ratio between the peak at the fundamental k = 0 peak and the

fk peak is strongly affected by the excitation depth. For long excitation depths, the detected

oscillations occur mainly at the frequency f0, whereas the oscillations for short excitation

depths are primarily at the higher fk frequency. For intermediate excitation depths, that

become comparable to the magnon wavelengths (d ≈ 100 nm), we see that the amplitudes

become comparable, and beatings in the signals in the time domain may be expected. This

implies that with the appropriate choice of the excitation confinement, the character of the

boundary condition can be experimentally determined.

Finally, we study the effect of the pinning parameter on the detection scheme. This effect
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is shown in figure 3.12.

Figure 3.12: a) Calculated MOKE spectra for a variety of pinning parameters and the predicted signals
in the time domain, as obtained by the Inverse Fourier Transform by the spectra in a). Simulations are
performed for a probe wavelength of λ= 800 nm and an excitation depth of d = 50 nm.

As was already discussed before, in the free boundary condition, the spectrum consists

of a feature at the f0 frequency and at the fk frequency, whereas in the pinned boundary

condition, the peak at the f0 frequency fully disappears. As we already noticed in figure 3.8c),

in the special case when the pinning parameter is equal to the inverse of the excitation depth

ξ≈ 1
d , the freely propagating solution is fully suppressed. As there is no freely propagating

wave-packet in this case, only the peak at the ksw = 0 is observed in the spectrum. Note that

the frequency of this peak is red-shifted as a result of the damping and the confinement of the

pump pulse. For intermediate pinning parameters, that are in the same order of magnitude

as the inverse penetration depth, we observe further red-shifting of the ksw = 0 mode. We

understand this as the emergence of an extra pole in the spectral amplitude A f (ω) in the

detection equation (3.28). As can be seen from equation (3.8), the additional pole will occur

where ξ≈ i ksw(ω) yielding the low-frequency peak in the MOKE spectrum. Thus, this peak

will appear at the frequency where the imaginary part of the magnon wave-vector is equal

to the pinning parameter. As the wave-vector of the spin wave is imaginary for the angular

frequencies ω<ω0, these red-shifted peaks indeed appear at frequencies f < f0. In figure

3.12b), some characteristic waveforms in the time domain are shown, as obtained by Inverse

Fourier Transformation of the spectra. This illustrates how the waveforms may depend on

the spectra. In the pinned boundary condition (purple curve), and for ξ= 1/d (blue curve)

we see a monochromatic oscillation, whereas in the free boundary condition (black curve) a

small beating pattern becomes visible. For the pinning parameters close to, but not equal

to 1/d (red and green curves), the amplitudes of the two modes become comparable, and
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characteristic beating patterns can be observed in the time domain.

3.6 Conclusions

In this chapter, we have discussed a model for the optical generation of propagating packets

of spin waves and their detection. We considered multiple cases of excitation, among which

we approximated the effective field to act as an impulsive and displacive excitation, but we

also considered experimentally realistic cases, namely excitations by a Gaussian laser pulse

and a (nearly) single-cycle THz pulse. We found that for experimentally realistic parameters,

the laser excitation can be appropriately approximated to act as an infinitesimally short

excitation. When the pulse frequency or duration become comparable with the precession

frequencies (as the case for the THz excitation), slight modifications in the spin waves can be

observed. We found that these optical excitations launch packets of spin waves that travel

much slower than the light pulses, and decay in a region of a few µm near the boundary.

Therefore, propagation effects may be neglected.

Furthermore, a formalism for the magneto-optical detection of the magnons was derived,

by calculating the magneto-optical Kerr rotation in reflective geometry, which demonstrated

that the components of the wavepacket are selectively detected through a Brillouin condition.

As a consequence, the detected frequency of the spin wave blue-shifts with increasing probe

light frequency. The observations in our model can be confirmed experimentally by varying

the probe pulse or angle of incidence. The results of the model are in excellent agreement

with the recently performed experiment of optical generation and detection of propagating

magnons in an antiferromagnet [70]. Furthermore, we have identified differences in the

detection of the spin waves in the pinned boundary conditions. This implies the theoretical

possibility to distinguish these boundary conditions experimentally. As the boundary condi-

tions are strongly determined by the non-uniformity of the exchange field and the surface

anisotropy of the material, experimental observation of these boundary conditions could

provide further insight in the material properties [148].

As a final note, we remark that this develop formalism is applicable very generally. Al-

though we considered the orthoferrites as an example system, the equations used in this

model should be valid for any antiferromagnetic system. In principle this model is able to

describe the spin dynamics for any form of the excitation, and may therefore be used in

future experiments on antiferromagnetic magnonics.
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Chapter 4

Experimental observation of propagating

packets of spin waves in HoFeO3

4.1 Introduction

This chapter will discuss the pump-probe experiment used to excite and detect propagating

packets of spin waves that was theoretically described in Chapter 3. Here, we will be restrict-

ing ourselves to the regime of linear spin excitations, as was approximated in the previously

described model. More specifically, we will be considering the rare-earth orthoferrite HoFeO3.

We find that we can map out a broad band of frequencies and wavenumbers, thereby demon-

strating the realization of packets of spin waves propagating at high velocities close to their

limit. Furthermore, we explore in more detail the excitation mechanism and find that despite

relying on absorptive features to confine the light excitation, the spin wave excitations occur

through non-thermal, coherent effects. Here, only the basic experiments involving a single

pump beam will be discussed, which will act as preliminary data for the following chapter, in

which we extend on this concept by introducing second pump pulse.

4.2 Experimental Setup

A more detailed description of the general concepts of the pump probe setup was given in

Chapter 2, but a short summary will be given here.

The schematic of the setup used to launch and detect the propagating spin waves in

HoFeO3 is illustrated in figure 4.1.

In our experiment, we used a 800 nm amplified Ti:Sapphire laser system with pulse

duration of 100 fs and a repetition rate of 1kHz. The majority of this laser beam was sent to an
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Figure 4.1: Illustration of the experimental setup to demonstrate the spin waves in HoFeO3. The
lenses in the setup are indicated by f1to f5. Pol and λ/2 denote the polarizer and the half wave plates
respectively. WP represents the Wollaston Prism, and BBO is the nonlinear crystal converting the
800 nm pulse to a 400 nm pump pulse through SHG. The remaining 800 nm is removed by a BG39
bandpass filter. The pump pulse passes through a delay line creating time delay∆tprobe between pump
and the probe with tunable wavelength generated in the OPA. An electromagnet applies a magnetic
field B3 in the plane of the sample (see also main text).
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Optical Parameteric Amplifier (OPA), that converts the near-infrared photons into UV-visible

photons, with tunable wavelength. We used this tunable output of the OPA as the probe

pulse. The remainder of the 800 nm was split off and converted through Second Harmonic

Generation (SHG) into the 400 nm pump pulse by focusing this light on a beta Barium Borate

(BBO) crystal. The remainder of the 800 nm was filtered out with a BG39 Schott filter. A set of

filters attenuated the power of the 800 nm beam incident on the BBO crystal and the pair of

half wave plate (λ/2) and polarizer was used to further control the pulse energy of the pump

beam. A second λ/2 plate was used to control the polarization of the pump beam incident

on the sample. The pump beam was focused on the sample by a lens that was placed slightly

away from the focal distance, to irradiate a large spot of the sample of approximately 1 mm,

as confirmed by a knife-edge measurement. The probe beam was attenuated with filters

and focused to a tighter spot, and spatially overlapped with the pump beam. Also the probe

polarization was controlled with a λ/2 plate. The sample was placed in a open cycle cryostat,

and was cooled down with liquid Helium to temperatures down to 5 K. A small magnetic

field of Bext=25 Gauss was applied to saturate magnetic domains. The transmitted probe light

and the reflection from the sample were collimated with lenses and guided to a balanced

photo-detector. A flipper-mirror allowed us to quickly change between the transmissive and

reflective configuration. A built-in Wollaston prism separated the orthogonally polarized

components of the probe beam. The signals could be balanced by rotation of the balanced

photo-detector, and the rotation of the polarization due the dynamic magnetization was

obtained with the pump-induced change of the signals on the photo-detectors. The signals

on the detector were analyzed with a lock-in amplifier, with the input reference frequency

synchronized with the frequency of the optical chopper (500 Hz), to enhance the sensitivity

to only the pump-induced signals.

4.3 Properties of HoFeO3

The weak ferromagnet HoFeO3 is a quite unique material in its class, due to its relatively

complex phase structure. It exhibits antiferromagnetic ordering of the spins below the Neel

temperature of TN ≈ 650 K. In the low temperature phase T < T1 ≈ 38 K, the spins are in the

Γ2 phase. At T1 < T < T2 ≈ 52 K the spins are in the Γ12 phase, where the antiferromagnetic

moment gradually rotates in the bc-plane. As the temperature reaches T2, the antiferro-

magnetic moment instantaneously jumps to the ac-plane and enters the Γ24 phase. At high

temperatures T > T3 ≈ 58 K the spins are in the Γ4 phase, and the weak ferromagnetic mo-

ment is aligned along the crystallographic a-axis [159]. In our experiment, we use a c-cut
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HoFeO3 sample, and we oriented the sample such that the a-axis was horizontal and aligned

with the external magnetic field. The sample thickness is 60µm. Moreover, HoFeO3 is an

insulator with a large bandgap of approximately 3 eV [160], which is a characteristic for most

orthoferrites [161]. Thus, illumination of the HoFeO3 sample with 400 nm (3.1 eV) photons

can result in interband excitations, resulting in strong absorption bands for these photon

energies.

4.4 Temperature dependence of the spin dynamics

The frequencies of the spin dynamics in the orthoferrites are typically strongly dependent

on temperature. To observe the propagating packets of spin waves, it is necessary to know

exactly the frequency of the quasi-uniform precession f0. We therefore measured the spin

dynamics at a variety of temperatures, in both the transmissive and the reflective config-

uration. The transmissive configuration allows us to obtain the frequency f0, whereas the

reflective configuration allows us to pick up the higher frequency components corresponding

to the non-zero magnon wavenumbers km(ω) through the Brillouin condition. The Brillouin

condition was derived in Chapter 3, and is given by equation (4.1) for oblique incidence of

the probe pulse.

km(ω) = 2πn cos(γ)

λpr
(4.1)

The wavelength, refractive index and the angle of incidence of the probe pulse are represented

by λpr, n and γ respectively. The results of this experiment are shown in figure 4.2.

The time domain signals are typically associated with a step, due to a light-induced

phase transition. [159] Our focus is only on the oscillations, and therefore we subtract the

background after the temporal overlap by fitting the data with a polynomial function and

considering the residuals of this fit. In figure 4.2a) the dynamics detected in reflection and

transmission are compared at the temperature T=37 K. The confinement of the laser pulse

and the spin precession in a micrometer scale region close to the sample surface makes it chal-

lenging to detect dynamics in the transmissive configuration. Therefore, we interchanged the

pump and probe and launched the spin dynamics with the 480 nm output from the OPA and

probed with the 800 nm light. In the reflective configuration, we used the 660 nm output from

the OPA for the probe and the 400 nm for the pump. The signals were Fourier transformed and

the spectra are shown in figure 4.2b). A clear shift in oscillation frequencies can be observed,

as a result of the selective detection with the Brillouin condition of the k ̸= 0 components of

the wavepacket. Figure 4.2c) shows the extracted frequencies in transmission (black spheres)

86



Figure 4.2: Temperature dependence of the spin dynamics in HoFeO3 in both the transmissive (black)
and reflective (red) experimental geometries. a) Example of the oscillations in the transmissive and
reflective configuration at temperature T=37 K. b) Spectra of the oscillations in a). c) Dependence
of the extracted frequencies on the temperature. d) Dependence of the extracted amplitudes on the
temperature. The amplitudes are normalized.
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and reflection (red spheres)as a function of temperature. The detected frequencies in the

reflective geometry fk were converted to the k = 0 frequencies using the Brillouin condition

and the dispersion relation (purple triangles). The expected k = 0 frequencies from the data

measured in reflection match closely with the k = 0 frequencies found in the transmissive

geometry. We also compared the data with the literature values of the q-FM (green circles)

and q-AFM (blue circles) modes [55] and found that the data matches most closely with the

q-FM mode. The resemblance is closest in the range of 30-45 K and deviates for the lower

temperatures, likely due to inaccuracies of the temperature control in the cryostat at the

low temperatures. Finally, the amplitudes of the oscillations are plotted in figure 4.2d). We

see that the amplitudes of the measured oscillations increases with increasing temperature,

up to 37 K, and then rapidly drops. On the other hand, the transmission signal increases

around this temperature. One could argue that this is demonstration of the spin reorien-

tation transition, as the weak ferromagnetic moment rotates out of plane with increasing

temperature. When measuring the MOKE, the probe is expected to be more sensitive to the

in plane component, whereas when measuring the Faraday effect in transmission the probe

becomes more sensitive to the out of plane component.

4.5 Probe wavelength dependence

The key experiment to demonstrate the propagating packet of spin waves is the measurement

of the spin dynamics for a variety of probe wavelengths. Figure 4.3 shows the results of this

experiment.

Figure 4.3a) shows an example scan measured at 37 K with the corresponding spectrum

shown in figure 4.3b). This spectrum displays the emergence of two peaks, where the low

frequency peak at 80 GHz the peaks at 190 GHz corresponds to the k = 0 uniform precession

mode, and the high frequency peak corresponds to the k ̸= 0 component of the wavepacket.

Similar scans were measured for probe wavelengths ranging from 480 nm to 1000 nm, and

the frequency fk was tracked. The Brillouin condition (4.1) allows the conversion of the

probe wavelength to the detected wavenumber. We found that a broadband range of almost

100 GHz could be mapped out, indicating the presence of high wave number components in

the magnon wavepacket. The detected frequencies are well fitted with the magnon dispersion

relation (3.2) (blue solid line). The fitted dispersion relation shows that the magnons can

propagate with supersonic velocities of up to 22 nm/ps. We note that we achieved the high

wavenumber regime, where the dispersion relation becomes quasi-linear. The magnons in

this range are therefore expected to exhibit relativistic behaviors, similar to photons.
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Figure 4.3: Single pump-probe MOKE signal for a probe wavelength of 660 nm. The signal is normal-
ized and the non-oscillatory background signal is subtracted. b) Fourier transform of the data in panel
a). The spectrum is fitted with the sum of two Lorentzian functions. Inset b): the retrieved magnon
dispersion, which is fitted with the solid blue line based on the dispersion relation.

4.6 Pump polarization dependence

To investigate the mechanism through which the spin waves were excited, we excited the spin

waves with the linear pump polarization at various angles with respect to the crystallographic

b-axis. Example scans are shown in figure 4.4a) and the extracted amplitudes are shown in

figure 4.4b).

The apparent dependence of the amplitudes on the linear polarization angle demon-

strates that the spin dynamics is excited through a non-thermal effect. The amplitudes of the

spin dynamics is maximal for diagonal polarization, which matches most closely with the

Inverse Cotton Mouton Effect (ICME). [40] For this particular effect, the effective field is given

by

Heff ∝ ExEy , (4.2)

which is maximized for diagonal pump polarization.

4.7 Fluence dependence

Finally, we investigated whether the excitation of the magnons exhibits any nonlinearity by

measuring the effect of the pump fluence on the amplitudes. The results of these measure-

ments are shown in figure 4.5.

We see that the spin wave amplitude already saturates at relatively low fluences of
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Figure 4.4: Pump polarization dependence of the measured spin wave signals. Example scans are
shown in panel a) and the amplitude at the dashed line in tracked in panel b).

Figure 4.5: a) Spin wave signals measured for a variety of pump fluences. b) Magnitude of the peak in
the spectrum as a function of pump fluence. The solid line shows a guide to the eye.
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100µJ/cm2. The solid line shows a guide to the eye through the data, that was obtained

by fitting with an exponential saturation function. This saturation implies a high efficiency

of the spin wave excitation, from a non-thermal effect, as was discussed in the previous

section. As a result, the magnon propagation may be intrinsically nonlinear. In the following

section, we further examine nonlinearities by performing a double pump-probe spectroscopy

experiment.

4.8 Conclusion

In this chapter, we discussed some preliminary experiments on the experimental generation

and detection of propagating magnons in the canted antiferromagnet HoFeO3. We found that

the the spin waves are generated through non-thermal magneto-optical effects with confined

laser pulses and detected the spin waves in a time resolved MOKE experiment, through the

Brillouin condition theoretically considered in Chapter 3. By varying our probe wavelength,

we could map out a broadband of components of the wavepacket, and detected frequencies

of up to more than 200 % of the antiferromagnetic resonance frequency, and found supersonic

spin wave propagation with velocities approaching 22 km/s. Moreover, in contrast to the

previously reported experiment in Ref. [70] we observed both modes corresponding to the

k=0 and k ̸=0 precession. From this observation the question arises how these two modes

interact. In the following chapter, we will expand on the experiment performed here, and

demonstrate a way to convert these modes into each other by using a second pump pulse.
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Chapter 5

Ultrafast nonlinear optical Conversion of

propagating magnons in HoFeO3

In this chapter, we will discuss a nonlinear interaction of the k = 0 magnon and the k ̸= 0

magnon, mediated through photons. We realize this experimentally by introducing a second

pump pulse, using the double pump-probe spectroscopy technique. The first pump will

launch the spin dynamics as discussed in the previous chapter. We will demonstrate that the

second pump introduces a nonlinear interaction that exerts an additional torque on the spins

that allows for the up-conversion of the quasi-uniform precession mode to higher frequency

modes of the propagating wavepackets.

5.1 Introduction

One of the fundamental questions in antiferromagnetic magnonics is how to demonstrate

nonlinearities in the magnon-magnon interaction, for example in the demonstration of

magnon transistors or logic gates. Despite the fact that progress towards the realization of

such devices has been made over the last years [86,139], the studies on magnonics have so far

been limited to the studies on either ferromagnetic materials, possessing relatively low GHz

resonance frequencies and/or relatively long wavelengths of the spin waves. On the other

hand, the antiferromagnets with high resonance frequencies have until recently shown the

lack of propagation of the magnons [70], restricting the magnons to the center of the Brillouin

zone. As a result, the potential of antiferromagnetic materials for magnon-based devices has

not yet been extensively investigated. In particular, for such devices nonlinear interactions

are required. Here, we will demonstrate a method of nonlinear control of magnons by using

the double pump-probe spectroscopy technique, extending on the experiments discussed
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in Chapter 4. As illustrated in figure 5.1, we will see that this double excitation technique

allows for the conversion between the magnon modes. The first pumps launches a spin wave

that propagates normal the sample boundary into the material with high frequencies fk , as

theoretically discussed in Chapter 3 and experimentally shown in Chapter 4. Simultaneously,

this pump drives a static k = 0 quasi-uniform precession mode at frequency f0 The second

pump pulse introduces a nonlinear interaction that allows for the up-conversion of this quasi-

uniform precession mode into a new wavepacket of propagating spin waves with higher

frequencies fk .

5.2 Experimental setup

The operational principle of the setup is largely similar to the setup described in Chapter 4,

with a few modifications. The experimental scheme is shown in figure 5.2.

In this experiment, we introduced a second pump pulse by splitting the beam with a beam

splitter that reflects 50% and transmits 50% of the pulse intensity. The beam was sent in an

Michelson-Interferometer, using two back-reflecting mirrors that were placed on translation

stages. We kept one of the stages in a fixed position, whereas the other stage could be moved

to control the time delay τ = t1 − t2 between the two pumps [162]. In figure 5.2, the fixed

stage is referred to as the ’x-stage’ and the stage that was moved to control the time delay

is referred to as the ’y-stage’. An optical chopper was placed in the setup. As discussed in

Chapter 2, the optical chopper is used to modulate the pump at a frequency of 500 Hz, which

is synchronized to the lock-in amplifier. As a result, only the signals that are induced by the

pump pulse will be detected, and all signals and noise occurring at different modulation

frequencies are filtered out. In our experiment, we placed this optical chopper at two different

positions. Firstly, the optical chopper was placed after the interferometer arm. As a result,

both of the pumps coming from the x-stage and y-stage are modulated with the lock-in

frequency, and we could expect to see the coherent interaction between the two excited spin

waves in the form of interference. Additionally, nonlinear interactions in the signal can be

isolated by placing the chopper in the static interferometer arm. In this configuration, the

signals induced by the pump coming from the time delayed y-stage are invisible, and only

the nonlinear effect on the signals induced by the pump from the x-stage are observable. In

this configuration we performed two-dimensional spectroscopy experiments. We measured

the spin waves similarly to described in Chapter 4 for various time delays between the two

pumps.
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Figure 5.1: Schematic of the up-conversion of the quasi-uniform precession to the propagating
magnon modes. Top panel: before the arrival of the first pump, the spin system is in equilibrium.
Middle panel: The first pump, arriving at t = t1 excites spin dynamics, consisting of the quasi-uniform
precession with intrinsic resonance frequency f0, (blue) and a propagating magnon wave-packet with
higher frequencies (red). Bottom panel: At the time of arrival of the second pump t2 = t1 +τ, the
wave-packet excited by pump 1 has propagated away, and the remaining quasi-uniform precession is
converted in an amplified spin wave.
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Figure 5.2: Schematic of the double-pump probe setup used to demonstrate the nonlinear conversion
of magnon modes. The lenses are indicated with f1 to f5, and the half wave plates, polarizer and
Wollaston Prism are indicated by λ/2, Pol, and WP respectively. Note the similarities with the setup
depicted in figure 4.1. The second pump is introduced by separating the input pump beam in an
interferometer, containing of two moveable mirrors on the x-stage and y-stage. A time delay τ= t1 − t2

is created by moving the mirror on the y-stage.
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5.3 Experimental results

To extract the nonlinearity from the time domain signals, we need to perform Fourier Trans-

formations of the experimental data, to illustrate how the amplitudes and frequencies of the

signals are modulated. As the nonlinear response in our experiment is induced by the second

pump pulse, only the signals after the arrival of the second pump pulse will be considered.

As was mentioned in Chapter 4, the signals are also associated with a step due to the light-

induced phase transitions. Therefore, we fit the signals with a polynomial after the arrival

of the second pump to remove zero-frequency components, and neglect the signals before

this pump arrives. Note that the output of the OPA that is used as the probe is not passing

through any delay lines, and therefore has a fixed arrival time. On the other hand, the time

delay between the pump from the static x-stage and probe (∆tprobe)is introduced by the delay

line, and the time delay between the x-stage pump and y-stage pump is created by moving

the back-reflecting mirror on the y-stage. As the two delay lines are in the same path, the

delay between the two pumps τ= t1 − t2 will also affect the temporal overlap of the pump

from the y-stage with the probe pulse.

We started our 2-dimensional pump-probe spectroscopy experiment by investigating

the coherent control, or interference, of the spin waves. To this end, the optical chopper

was placed after the beams passed through the interferometer, such that both of the pumps

are modulated. The probe wavelength used in these measurements was 660 nm, and the

data was measured at the temperature of T=44 K. This temperature corresponds to the

temperature close to the spin reorientation phase transition. The data measured in this

configuration are shown in figure 5.3. Note that as compared to the temperature dependence

data presented in Chapter 4, there is a shift in temperature, which we attribute to the fact

that these measurements were performed at a later time and in different experimental

configuration. The losses in power in the Michelson-interferometer stage may reduce the

heating on the sample, resulting in a temperature shift in the data as compared to the single

pump experiment.

The data presented in figure 5.3a) shows the measured MOKE signals for various delays

between the two pumps. The signals in this figure are normalized with respect to the signal

that was obtained for synchronous arrival times of the two pump pulses. Figure 5.3 shows the

corresponding Fourier transforms. These results show a clear modulation of the amplitude of

the spin waves. At first glance, one may argue that the observed amplification and suppression

of the spin waves is simply a result of the linear superposition of the two pump-induced

signals. However, upon closer inspection, we see that the oscillations can also invert their sign,

which cannot be explained solely by interference. We further investigated this modulation
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Figure 5.3: a) Normalized probe polarization rotation traces, for various delays between the 2 pump
pulses. Both of the pumps are modulated, and the data are shown after the arrival of the second pump
pulse. The non-oscillatory background signal is subtracted. b) Fourier transforms of the traces in a). c)
2D Fourier transform of the data measured in a), with the Fourier transform along the probe delay
t on the vertical axis and the Fourier transform along the pump delay τ on the horizontal axis. The
upper part shows the spectrum along the pump frequency at the magnon frequency detected by the
probe. d) Reference 2D Fourier transform obtained by adding two single pump reference scans.
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frequency by performing a 2-dimensional Fourier Transformation. Figure 5.3c) shows the

obtained 2D-spectrum, with the Fourier transform along the probe delay on the vertical

axis and the Fourier transform along the pump delay along the horizontal axis. Indeed, we

see the presence of a diagonal peak in this spectrum, at the frequencies ( fk, fk) which can

exactly be explained by interference of the k ̸= 0 magnon modes. In principle, a nonlinear

interaction may also be featured in this diagonal peak, however it is impossible to confirm

this in this experimental configuration. In addition, an off-diagonal peak is detected in

the 2D-spectrum. The frequencies at which this feature occurs corresponds to the ( f0, fk)

frequencies. Thus, we see that the frequency at which the spin wave amplitude k ̸= 0 is

modulated beyond interference and the modulation occurs through a nonlinear interaction

between the k = 0 uniform precession mode and the k ̸= 0 magnon mode. This implies that

the quasi-uniform precession mode f0 is converted into the higher frequency modes of the

propagating wavepacket fk. We checked carefully whether this off-diagonal feature is the

result of artifacts in our analysis procedure, by creating a reference map that is created by

adding two single pump signals obtained from the x-stage and the y-stage. This generated

reference map only shows the diagonal feature, as would be expected from the linear response

resulting from the interference of the two pump-induced signals. Thus, we confirmed that

the modulation of amplitude is indeed caused by a nonlinear interaction. Besides, we notice

that the spectral weight of the off-diagonal peak is stronger than the peak corresponding to

the interference, thus indicating the strongly nonlinear regime of magnon propagation.

To further confirm that the observed features are a result of nonlinear magnon interac-

tions, we repeated the experiment by placing the optical chopper in the static interferometer

arm, such that only the linear signal emanating from the static pump pulse and the nonlinear

signal introduced by the second pump pulse will be observable. The results of this experiment

are depicted in figure 5.4.

Similarly to our observation in the previously described experimental configuration, figure

5.4a) and figure 5.4b) shows the amplification and suppression of the spin waves depending

on the time delay between the two pump pulses. In this experiment, this modulation cannot

be explained by the linear superposition of the spin waves as must thus be a result of a

nonlinear interaction. We performed a similar 2D frequency analysis, and observed the

features at the exact same frequencies. Interestingly, now the emergence of the diagonal

( fk, fk) peak cannot be ascribed to the coherent superposition of the spin wave signals. Thus,

this feature may be also be attributed to the similar interaction allowing for the amplification

and suppression of the propagating magnon modes.

Finally, we checked that the modulation of the amplitudes is not a result from amplitude
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Figure 5.4: a) Normalized probe polarization rotation traces, for various delays between the 2 pump
pulses. Only one of the pumps is modulated and the data are shown after the arrival of the second
pump pulse. The non-oscillatory background signal is subtracted. b) Fourier transforms of the traces
in a). c) 2D Fourier transform of the data measured in a), with the Fourier transform along the probe
delay on the y-axis and the Fourier transform along the pump delay on the x-axis. The upper part
shows the spectrum along the pump frequency at the magnon frequency detected by the probe. d)
Reference 2D Fourier transform obtained by adding two single pump reference scans.
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Figure 5.5: Comparison of the amplitudes of the spin waves before and after arrival of the second
pump pulse. The left panel shows example data for the case when both pumps are modulated (figure
5.3), and the right panel shows the data for the case of the single pump modulated with different
fluences for both pumps (figure 5.6d).

fluctuations already induced by the first pump, by looking at the residuals before and after

the arrival of the second pump simultaneously for various pump delays for some example

data sets, as shown in figure 5.5.

These results clearly illustrate nearly identical waveforms before the second pump arrives.

On the other hand, we see that a small change in arrival time of the second pump can

drastically modulate the amplitude, and that indeed the amplitude of the oscillation can be

enhanced or suppressed by the second pump pulse.

Comparisons for different experimental conditions

We have repeated the experiments for a variety of experimental conditions, such as different

probe wavelength, pump fluences, and temperatures, and consistently observed the peaks

in the 2D-spectrum appearing at ( fk, fk) diagonal frequencies and ( f0, fk) off-diagonal fre-

quencies. These findings are summarized in figure 5.6. This conversion was most clearly

seen at the temperatures at the temperature of T=44 K, which is close to the phase transition

temperature, where the spin wave amplitudes at this temperatures were maximized (see

Chapter 4). Also, at this temperature, the frequency of the k ̸= 0 propagating magnon mode

is roughly double the frequency of the k = 0 magnon mode, fk ≈ 2 f0, which may further

enhance the efficiency of the conversion through parametric amplification [163]. Moreover,

we see that the frequency of the oscillations slightly decrease using the high fluence for both

pumps. This can be attributed to the heating of the sample, which effect is expected to be

strongly present when using the strongly absorbed 400 nm photons.
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(a) Experimental 2D map, for similar conditions as the
data in the main text, with opposite polarity of the
external magnetic field.

(b) Experimental 2D map, for T=44 K, one modulated
pump, and low fluences of 0.04 mJ/cm2 of both pumps.

(c) Experimental 2D map, for T=44 K, one modulated
pump, and high fluences of 0.2 mJ/cm2 of both pumps.

(d) T=44 K, single pump modulated, mixed fluences of
0.04 mJ/cm2 for the modulated pump, and 0.2 mJ/cm2

for the other pump.

(e) T=44 K, both pumps modulated, probe wavelength
490 nm.

(f ) T=29 K, single pump modulated, probe wavelength
660 nm.

(g) T=37 K, single pump modulated, 660 nm probe
wavelength, external field positive.

(h) T=37 K, 660 nm probe, single pump modulated,
external field negative.

Figure 5.6: Summary of additionally measured data sets for various experimental conditions. The
left panels show the 2D spectra obtained from magneto-optical detection experiments, and the
right panels show the cross-sections highlighted by the dashed white line. The frequencies of the
propagating magnon mode fk and the uniform precession mode f0 are indicated.
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5.4 Simulations on the origin of nonlinear conversion

5.4.1 The light-induced nonlinear torque

To confirm our interpretation of the experimental data, we extended the theoretical formalism

for the spin wave generation and detection as discussed in Chapter 2. Initially, we performed

the linearization procedure to be able to find the linear solution, and omitted all terms

containing products of m(t), l (t), and h(t). In order to understand nonlinear interactions,

we need to solve the Landau-Lifshitz-Gilbert equations while retaining the some nonlinear

terms. In particular, in our double pump experiment we introduce the coupling between the

dynamics magnetization components m(t) and the effective magnetic field by the second

light pulse h(t ).

The dynamics of the components of the M and L vector were previously shown in equation

(1.20). To include the nonlinear interaction, we again used this set of equations as the starting

point. We proceed with the solution by considering our experimental conditions. At the low

temperatures at which the experiments were performed, the HoFeO3 sample is in the Γ2

phase, such that M aligns with the x-axis and L aligns with the z-axis. Moreover, as we saw in

Chapter 4, the spin dynamics is excited through the Inverse Cotton-Mouton effect. The only

non-zero component of the effective field induced by this effect will be directed along the

x-axis [40, 41]. As a result, we obtain for the dynamics of the q-AFM mode:

1

γ

dmx

d t
= L0[(Kz −Kx)+q∇2]ly

1

γ

dly

d t
= L0[J −q ′∇2]mx +L0Dlz −L0hx − lzhx

1

γ

dlz

d t
=−L0

D

J
[(Ky −Kx)−q∇2]ly + ly hx

(5.1)

The terms highlighted in red are the nonlinear terms containing the coupling between

the magnons and the photons and thus indicate the terms that were neglected in the linear

spin wave theory.

Moreover, we again assume small spin deflections such that we can write the spin deflec-

tions as follows in terms of angle (see also figure 5.7)

ly (t ) = Ly (t )−Ly
0 = L0 sin(φ(t )) ≈ L0φ(t )

lz(t ) = Ly (t )−Lz
0 = L0 cos(φ(t )) ≈ L0(1−φ(t )2/2)−L0 ≈ 0.

(5.2)
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Figure 5.7: Schematic of the spin deflection in the Γ2 phase.

In this approximation, we retrieve the nonlinear Klein-Gordon equation

d 2φ(z, t )

d t 2
= (ωEωA + v2

sw∇2)φ(z, t )−ωh
dhx(z, t )

d t
+ωDωhφ(z, t )h̃(z, t ). (5.3)

Thus, the second pump pulse interacts with the magnon mode to create an additional

torque on the spin system, which is given by ωDωhφ(z, t)h̃(z, t). Here, ωD = γL0D is a

parameter containing the Dzyaloshinskii-Moriya interaction. Note that this torque is only

present during the arrival of the second pump pulse, as initially φ(z, t ) = 0, and this effect can

be expected to only be observable in the canted antiferromagnets.

5.4.2 Magneto-Optical detection of the converted magnons

The spin dynamics is probed by the Brillouin scattering of the probe pulse, as described

in Chapter 2. To understand the detection of the converted magnons, we apply a similar

description for the detection of the converted propagating magnon modes. Here, the focus

will be mainly on the explanation for the emergence of the off-diagonal peak in the 2D-

spectrum as a result from the spin wave amplitude at frequency f0.

We start the derivation by reminding ourselves that the MOKE rotation of a linearly

polarized probe pulse due to the precessing magnetization is given by

θK = i
ak2

0

2k

t0 t̃0

r0

∫ ∞

0
d z ′e2i kz ′M(z ′, t ). (5.4)
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The linear solution which is induced by the first pump pulse was also derived in Chapter

3:

φ1(z, t ) =
∫ ∞

−∞

(
A1 f (ω)e−i ksw(ω)z + A1p (ω)e−z/d

)
e iωt dω, (5.5)

where the first term and second terms correspond to the freely propagating solution and

the driven precession respectively, which are related by the exchange boundary conditions.

A1p (ω) = −iωωhh̃(ω)

−ω2 +ω2
0 +2iαω− v2

sw/d 2

A1 f (ω) = 1/d −ξ
ξ− i ksw(ω)

A1p (ω)

(5.6)

Now we return to the nonlinear Klein-Gordon equation and assume the form of the

effective fields from the first and second laser pulse h1(z, t) and h2(z, t) to be identical. We

consider the simplest case of the impulsive excitation arriving at time t2 and the absorption

of the pulse in a nanoscale region d near the surface (h̃1,2(z, t ) = δ(t − t1,2)e−z/d ).

The nonlinear Klein-Gordon equation for the spin deflection induced by the second

pump pulse will be

∂2φ2(z, t )

∂t 2
+ (ω2

0 − v2
sw∇2)φ2(z, t )+2α

∂φ2(z, t )

∂t
=−ωh

∂h2(z, t )

∂t
+ωDωhφ1(z, t )h̃2(z, t ). (5.7)

For simplicity, we define the arrival time of the first pump t1 = 0 such that the second

pump arrives at time t2 = τ. Because the linear solution is already known, in the following we

will consider focus on the nonlinear torque. At a later stage, the effect of interference can be

reintroduced by adding a similar linear solution including an additional phase factor e iωτ to

the solution induced by pump pulse 1. We can now again Fourier transform the Klein-Gordon

equation with the nonlinear torque to obtain

(−ω2 +ω2
0 +2iαω− v2

sw∇2)φ2(ω, z) =ωDωhφ1(z,τ)e−z/d e−iωτ. (5.8)

The solution to equation (5.8) will be similar to the linear solution, with modified am-

plitude. Besides, the nonlinear torque will be effectively confined to a region d/2 from the

surface.

φ2(ω, z) = A2 f (ω)e−i ksw(ω)z + A2p (ω)e−2z/d (5.9)
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We can again find the amplitude A2p (ω) directly from equation (5.8) and relate the ampli-

tude A2 f (ω) through the exchange boundary condition. The resulting amplitudes are

A2p (ω) = ωDωh
∫ +∞
−∞ p1(Ω)e−i (ω−Ω)τdΩ

−ω2 +ω2
0 +2iαω−4vsw2 /d 2

A2 f (ω) = 2/d −ξ
ξ− i ksw(ω)

A2p (ω)

. (5.10)

Here the integral over Ω represents the Fourier Transform over the delay between the two

pumps, which in essence represents the state of the spin deflection at the arrival time of the

second pump τ.

Finally, as we measure in MOKE configuration and directed the probe pulse along the x-

axis, we are sensitive to the x-component of the magnetization (this corresponds to the q-AFM

mode in the Γ2 phase.) Therefore, we convert the spin deflection of the antiferromagnetic

moment to the x-component of the weak ferromagnetic moment using equation (5.1) and

(5.2).

mx(ω, z) = 1

iω
(ωA − v2

sw

ωE
∇2)φ(ω, z) (5.11)

We can now combine equations (5.4), (5.9), (5.10), and (5.11) to obtain the MOKE spec-

trum.

We will consider separately the detection of the driven component and the freely propa-

gating component, which are

θ
p
K (ω,Ω) = i

ak2
0

2k

t̃0t0

r0

1

iω
(ωA − 4v2

sw

d 2ωE
)(

1

2k +2i /d
)

ωDωh p1(Ω)e−iωτ

−ω2 +ω2
0 +2iαω−4v2

sw/d 2
(5.12)

and

θ
f
K (ω,Ω) = i

ak2
0

2k

t̃0t0

r0

1

iω
(ωA + v2

swksw(ω)2

ωE
)(

2/d −ξ
ξ− i ksw(ω)

)

× (
1

2k −ksw(ω)
)

ωDωh p1(Ω)e−iωτ

−ω2 +ω2
0 +2iαω−4v2

sw/d 2
. (5.13)

The full solution resulting exclusively from the nonlinear torque will then be given by the

inverse Fourier Transform of the sum of equation (5.12) and (5.13). Finally, we reintroduced
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the effect of interference by adding the linear solution (3.28) multiplied by a factor (1+e iωτ)

to account for the arrival time of the second pump pulse. Using these expressions, we

plotted a 2-dimensional spectrum, corresponding to the Fourier transforms along the probe

delay (t →ω) and the pump delay (τ→Ω). The spectrum obtained with this calculation is

illustrated in figure 5.8. The numerical values of the parameters that were used are shown in

table 5.1. Most of the values that were used in the simulations are material parameters and

can be estimated from literature, or are controlled with the experimental conditions. The only

parameters that are not accurately known are the confinement depth d and the effective field

heff. The ratio of the excitation depth d and the spin wave velocity vsw slightly affects the exact

frequency of the antiferromagnetic resonance. In principle variation of these parameters

allows for optimization of the match with the experimental data. We find that a good match

is achieved for a excitation depth of d = 60 nm and spin wave velocity of vsw = 20 km/s, which

is very close to the reported parameters for DyFeO3 [70]. Finally, we see that the amplitude of

the nonlinear torque is proportional to the Dzyaloshinskii-Moriya interaction strength, the

magnitude of the effective field, and the amplitude of spin precession, which itself is linear

with the magnitude of the driving effective field. Therefore, in order to make the nonlinear

conversion and interference simultaneously visible in the modelled spectrum, the effective

field parameter needs to be tuned appropriately. We found that to see the nonlinearity in the

simulations, a small effective field of no more than 10 Gauss is required. Note that this value

is lower than the previously reported values for effective fields in pump probe experiments

for studying ultrafast spin dynamics [39], which agrees with the fact that low fluences sufficed

for launching the spin waves in HoFeO3 (see Chapter 4).

Figure 5.8: Calculated 2D MOKE spectrum for the experimentally relevant parameters for a) canted
antiferromagnets with a nonzero Dzyaloshinskii-Moriya interaction (D ̸= 0) and b) in the absence of
the Dzyaloshinskii-Moriya interaction (D = 0).
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Parameter Value
ω0 2π∗100 GHz
d 60 nm

vsw 20 km/s
λ 660 nm
n 2.23
β 24◦

α 10−2ω0

heff 10 G
L0 2000 emu/cm3

M0 20 emu/cm3

J 107/L0

K 103/L0

D M0/L0 ∗ J
ξ →∞

Table 5.1: Table summarizing the relevant parameters used in the simulations.

5.5 Conclusion

To conclude, we have demonstrated a strongly nonlinear effect in the canted antiferromagnet

HoFeO3 using the double-pump probe spectroscopic technique. This nonlinear effect is

induced by the coupling between magnons excited by the first pump pulse and the second

pump pulse, and is governed by the Dzyaloshinskii-Moriya interaction. This effect allows

for amplification and supression of the propagating magnon modes, and the conversion

from the static to the propagating magnon modes. We modeled the 2D-spectra in the MOKE

experiment and found that the model agrees qualitatively accurately with the experimental

observations. In very recent experiments, breakthroughs were made to demonstrate non-

linear interactions between light-induced magnetic, phononic, and electronic excitations,

all these experiments were restricted to studying magnons at the center of the Brillouin

zone [107, 164–166], thus not exhibiting any characteristics of magnon propagation. The

findings discussed in this chapter hold the potential for realizing future magnonic data pro-

cessing devices operating at THz frequencies, for which the nonlinear control of magnons is

a crucial requirement.
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Chapter 6

THz driven spin dynamics in ErFeO3 and

TmFeO3

In this chapter, we employ the intense THz pulse setup that was introduced in Chapter

2, to search for high amplitude spin dynamics in the orthoferrites through direct resonant

excitations. We study ErFeO3 and TmFeO3 samples that have very similar magnetic properties.

We will show that despite the similarities in magnetic structure, the spin dynamics in the Spin

Reorientation Transition (SRT) region shows a completely different behaviour. In ErFeO3, we

observe a drastic increase in spin dynamic amplitudes in the SRT region, which is absent

in TmFeO3, highlighting the role of the rare-earth ions in the spin dynamics of the iron ion

spins.

6.1 Introduction

Intense THz pulses have been proposed to be an efficient tool to achieve efficient control over

electronic spins, with the potential for resonantly driving high amplitude and high frequency

spin dynamics. The electric field of such pulses couple to the electronic charge degree of

freedom and has been shown to be able to induce insulator to metal phase transitions [167],

while the magnetic field component of couples to the spin degree of freedom [104]. The

electric-dipole interaction is generally an order of magnitude stronger than the magnetic-

dipole contribution, making the control over the spin degree of freedom through the Zeeman

interaction with the THz magnetic field relatively inefficient [113]. Thus, to achieve control

over magnetism through direct resonant light-spin coupling, intense THz pulses are required.

This has triggered research towards other indirect pathways to control magnetization through

the electric field component of THz pulses.
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Moreover, in particular in the orthoferrites, the energy scale of the electronic levels of the

rare-earth ions lies in the meV (THz) range such that electronic transitions can be selectively

excited with the electric fields of broadband THz pulses [113].

Recent studies have already shown promising results towards spin switching in antiferro-

magnets, using a metallic antenna mounted on a TmFeO3 sample to locally enhance the THz

field up to 10 MV/cm. Electric fields of this amplitudes were reported to be sufficient to drive

the spins over their potential barrier to bring them in a new equilibrium orientation [168].

Here we study ErFeO3 and TmFeO3 in the search for high amplitude spin dynamics, and

will highlight that the rare-earth ions play a decisive role in the spin dynamics of the iron spin

system.

6.2 Magnetic Properties of ErFeO3 and TmFeO3

The magnetic properties of the orthoferrites were already introduced in Chapter 1, but

the specific properties of the ErFeO3 and TmFeO3 will be summarized here. Both of these

orthoferrites have a very similar magnetic structure. At room temperature, the iron spins

are ordered antiferromagnetically, with a small canting angle due to the Dzyaloshinskii-

Moriya interaction. At low temperatures T < T1, both orthoferrites are in the Γ2 phase, such

that the weak ferromagnetic moment M is aligned along the crystallographic a-axis and

the antiferromagnetic vector L is aligned the c-axis. At high temperatures T > T2, the spin

system is in the Γ4 phase, with M along the c-axis and L along the a-axis. In the intermediate

temperature region T1 < T < T2, the spin reorientation transition (SRT) occurs, where M

gradually rotates from the a-axis to the c-axis. This magnetic phase is the Γ24 phase, and the

angle of M with respect to the crystallographic a-axis is given by [113]

θ0 = arcsin(

√
T −T2

T1 −T2
). (6.1)

For ErFeO3, the boundaries of the SRT region are T1 = 88 K and T2=97 K [169], and for

TmFeO3 these temperatures are T1 = 85 K and T2 = 93 K [170]. The AFMR contains two modes,

the q-FM mode and the q-AFM mode (see also Chapter 3). The q-FM mode corresponds to

the precession of M, and the q-AFM mode are the oscillations in the length of the M. This SRT

and the modes of AFMR are summarized in figure 6.1.

Although the rare-earth magnetic moments are paramagnetic, the rare-earth 4f moments

are polarized by the antiferromagnetic ordering of the iron spins. Only below the Néel

temperature for the rare-earth ions, the spins in the rare-earth order antiferromagnetically.
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Figure 6.1: a) Illustration of the SRT of the ErFeO3 and TmFeO3 with an indication of the two modes
of AFMR. b) Angle θ of the weak ferromagnetic moment M with respect to the a-axis as a function of
temperature.

The Néel temperature of the Er sublattice is TN ≈ 4 K for ErFeO3 [171] and antiferromagnetic

ordering of the Tm sublattice has not been observed at temperatures above 1.6 K in TmFeO3

[172].

The 4f spins in the rare-earth ions play an important role in the static and dynamic

properties of the iron 3d spins due to their strong coupling [173].

The interaction of the rare-earth electrons with the surrounding crystal field leads to

splitting of the rare-earth 4f electronic levels. On top of this splitting, if the rare-earth is a

Kramers ion with an odd number of electrons in the 4f shell, the d-f exchange further breaks

the symmetry and further lifts the degeneracy of the energy levels [174, 175].

The splitting of the Kramers doublets introduces an important difference between the

ErFeO3 and TmFeO3. The Er3+ ion has an odd number of electrons in the 4f shell, and is

thus a Kramers ion that shows the crystal field splitting of the energy levels into doublets.

In contrast, the 4f shell of the Tm3+ ion contains an even number of electrons, and is thus a

non-Kramers ion in which the crystal field removes the degeneracy entirely.

As a result, the energy level structure of the 4f electrons in ErFeO3 is more complex than in

TmFeO3, and contains a multitude of possible high frequency transitions, ranging from 1.2-1.5

THz, and low frequency transitions (due to the Kramers doublet splitting) of approximately

100 GHz [58, 176]. In TmFeO3, the crystal field splitting results in energy levels that are 0.55

THz, 1.2 THz and 2.1 THz from the ground state [170]. On top of this, in RFeO3, impurity Fe3+

transitions around 300 GHz have been reported [177].

Thus, we see that besides resonant coupling of the magnetic field of THz pulses to the
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AFMR, the electric field component can also be used to excite electronic transitions of the rare-

earth ions. This fact has been exploited previously to demonstrate nonlinear spin dynamics,

due to THz-induced changes to the magnetic anisotropy [113].

6.3 Experimental Setup

In our experiment, we drive the spin dynamics in ErFeO3 and TmFeO3 with intense THz

pulses generated by Optical Rectification and focused on the sample by a set of three parabolic

mirrors, and probe the spin dynamics by measuring the Faraday rotation of time delayed

probe pulses using a Wollaston prism and a pair of balanced photodetectors, as was described

in Chapter 2. A schematic of the experiment is illustrated in figure 6.2. We measured the

THz pulse with EOS, and obtained an electric field strength of about 300 kV/cm, such that

the corresponding magnetic field is approximately 0.1 T (see figure 6.2b). The samples were

placed in a closed cycle liquid Helium cryostat, allowing us achieve temperatures down to

3.5 K.

Figure 6.2: a) Illustration of the THz pump-optical probe experiment (more details in Chapter 2). b)
Time resolved THz pulse by EOS and its spectrum (inset).

We used a pair of wire-grids polarizers to control the THz fluence. Moreover, the combi-

nation of two wire-grids polarizers allowed us to control the polarization of the THz pulses.
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6.4 THz-induced spin dynamics in ErFeO3

In our experiment, we studied a b-cut ErFeO3 sample, such that the wire grids polarizers

allowed us to set the magnetic field of the THz pulse either along the a-axis or along the c-axis.

We measured the temperature dependence for a wide range of temperatures, across the SRT.

Indicative results of the measured spin dynamics are shown in figure 6.3.

Figure 6.3: a) Temperature dependence of the THz-driven spin dynamics in ErFeO3. b) Fourier
transforms of the time domain data in a). The inset shows the amplitude of the q-FM and the q-AFM
mode as a function of the THz fluence, extracted as the integrated spectral weight of the shaded
regions. c) Extracted frequencies of the q-FM and q-AFM mode extracted from the spectra. The error
bars indicate an estimation of the FWHM of the peaks. The solid lines indicate digitized data from
reference [55].

In figure 6.3a), we see a distinct short envelope with high frequency oscillations at low

temperatures. The Fourier transformation (figure 6.3b) demonstrates that these oscillations

correspond to a broad feature of modes, centered around 1.2 THz and 1.5 THz. This feature

is suppressed upon approaching the SRT temperature. We attribute these high frequency

oscillations to the magnetic-dipole active transitions of the crystal-field split Er3+ energy

levels, which are resonantly excited by the magnetic field of the THz pulse.
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Besides this high frequency mode, we also observe the q-FM mode and the q-AFM

mode. In our experiment, the THz magnetic field component was polarized along the

crystallographic c-axis, thus in the Γ2 phase, the magnetic field BTHz was orthogonal to the

weak ferromagnetic moment M. In the high temperature Γ4 phase, M is oriented such that is

parallel with BTHz. In our experiment, the q-FM mode is dominant in the Γ2 phase, whereas

in the high temperature Γ4 phase, the q-AFM mode is dominant. This is in accordance with

the selection rules [166] and can be seen from equations (1.21) and (1.22).

We tracked the frequencies of the q-FM mode and the q-AFM mode as a function of

temperature from the spectra, as shown in figure 6.3c). We see that the frequencies of the

AFMR modes match excellently with previously reported data [55].

Furthermore, from the literature data one can observe that the frequencies of one of the

rare-earth mode and the q-FM mode display an avoided crossing around the SRT temperature.

This is an indication of the strong interaction between the iron spins and rare-earth orbitals

at this temperature.

Interestingly, across the SRT, we observe a giant enhancement in the q-FM amplitude,

with a maximum in the middle of the SRT around T=91 K. At these temperatures, the q-FM

mode seems to merge in a broadband feature of modes, which we may attribute to the

interaction of the magnetic mode corresponding to the low frequency transitions in the split

Kramers doublets with the q-FM mode.

At the same time, we see a gradual increase of the q-AFM amplitude across the SRT. This

can be simply understood by the fact that the M gradually rotates towards the c-axis. Thus,

the projection of the magnetic field component of the THz pulse on M increases, resulting in

an increased excitation of the q-AFM mode.

The increase in the q-FM amplitude is actually unexpected, as the projection of M on the

axes orthogonal to BTHz decreases.

To propose a potential mechanism for the enhancement of the q-FM mode, we checked

how the amplitudes were affected by the THz fluence. To this end, we controlled the electric

field strength of the THz pulses with a pair of wire-grid polarizers, which were carefully

calibrated using EOS. The obtained results are shown in the inset in figure 6.3b).

Furthermore, we investigated the probe polarization dependence to elucidate the detection

mechanism of these various modes. We measured the spin dynamics for various probe

polarization both at T=42 K and T=92 K, and extracted the amplitudes while accounting for

the phase from the real part of the Fourier transformation. The polarization dependencies

are shown in figure 6.4.

We see that at T=42 K, the oscillations barely depend on the incident probe polarization.
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(a) Probe polarization dependence at T=42 K

(b) Probe polarization dependence at T=92 K.

Figure 6.4: Probe Polarization dependencies at T=42 K and T=92 K. The top left panel shows the
measured Faraday rotation, and the Fourier transforms are shown in the right panel. The amplitude of
the oscillations were extracted from the real part of the Fourier transforms, to account for the changes
in sign. The amplitude as function of probe polarization angle is plotted in the bottom panels.
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This scenario implies that the detection mechanism is dominated by the Faraday effect. On

the other hand, at T=92 K, we see a strong dependence of the amplitudes of both the q-FM and

q-AFM mode on the incident probe polarization. This corresponds to the dominant Cotton

Mouton Effect for the detection. Therefore, it is important to note that the enhancement in

the amplitude of the q-FM mode is only detectable at the appropriate probe polarization.

To check the polarization dependence, we rotated the sample by 90 degrees, such that the

a-axis was aligned with the magnetic field component of the THz, and measured the spin

dynamics at various temperatures. The results are shown in figure 6.5.

Figure 6.5: a) Faraday rotation as a result of THz-induced spin dynamics for various temperatures. b)
Fourier transforms of the data in panel a).

For this orthogonal orientation of the sample, we observe an opposite pattern in the

emergence of the modes of AFMR. In this case, in the low temperatureΓ2 phase, M aligns with

the magnetic field of the THz and thus the q-AFM mode is excited. In the high temperature

Γ4 phase, M is orthogonal to BTHz, thus the q-FM mode is excited. In the middle of the SRT,

the amplitude of the q-FM mode is again maximized. Moreover, we see that the excitation of

the rare-earth modes is strongly polarization dependent. These modes are only excited in
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Figure 6.6: a) Temperature dependence of the THz-driven spin dynamics in TmFeO3. b) Fourier
transforms of the time domain data in a). c) Extracted frequencies of the q-FM and q-AFM mode
extracted from the spectra. The error bars indicate an estimation of the FWHM of the peaks. The solid
lines indicate digitized data from reference [55].

the low temperature phase, when the THz magnetic field is aligned with the crystallographic

a-axis.

6.5 THz-induced spin dynamics in TmFeO3

To see if a similar enhancement can be observed in other orthoferrites, we additionally

studied a sample of TmFeO3, whose properties are very similar to ErFeO3. The indicative

results are shown in figure 6.6.

In our TmFeO3 sample, the a-axis was aligned perpendicular to the magnetic field of the

THz, such that similarly to ErFeO3, we again observe the q-FM mode in the Γ2 phase and

the q-AFM mode in the Γ4 phase. In contrast to the ErFeO3 measurements however, we find

that the q-FM mode is actually suppressed in the TmFeO3. This can be understood as the

projection of the BTHz on M increases as the magnetization rotates over the SRT. Besides, no
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features of the rare-earth modes are visible in TmFeO3.

As a nonlinearity in the q-FM amplitude was previously observed in TmFeO3 [113], we

checked the dependence of the amplitude on the THz fluence. As shown in the inset in figure

6.6, the amplitude of the q-FM mode scales linearly. This may be attributed to the fact the

the measurements were performed with a lower THz magnetic field than the ones reported

in [113], as in that report the LiNbO3 was cryocooled, which gives rise to a broader THz

spectrum with higher peak amplitudes.

6.6 Comparison between ErFeO3 and TmFeO3 and theoretical

interpretation

In the previous sections, we already indicated differences of the spin dynamics in ErFeO3 and

TmFeO3, particularly in the amplitude of the q-FM mode in spite of the similar properties of

these orthoferrites. Here, we will make a direct comparison of the amplitudes of the modes

in , and provide a theoretical explanation for the enhancement of the q-FM mode in ErFeO3,

and the lack thereof in TmFeO3.

To compare the results directly, we extracted the ampltidudes of the q-FM and q-AFM

modes from figures 6.3 and 6.6. These are plotted in figure 6.7. As the spin dynamics is

driven resonantly, and the spectral weight of the THz pulse varies strongly, particularly for

low frequencies below 300 GHz (see figure 6.2b), we normalized the amplitudes with respect

to the spectral amplitude of the THz pulse.

As mentioned before, we can explain the increase of the q-AFM mode, by the increased

projection of M on BTHz, sin(θ0(T )), as M rotates in the SRT. The discrepancies of the ex-

perimentally obtained amplitudes with the expected torque due to the projection may be

explained by the fact that the detection can also be affected by the rotation of the magnetiza-

tion, especially since a strong dependence of the amplitudes on the incident polarization

was observed.

The giant amplitudes of the q-FM mode in the middle of the SRT cannot be explained by

such means. The dome-like structure of the q-FM as a function of temperature can be well

fitted with a function sin(θ0(T ))cos(θ0(T )), where θ0(T ) is the angle of M with the a-axis (see

figure 6.1) and is given by equation (6.1). In the following section, we propose a theory that

can explain this observed trend.
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Figure 6.7: Comparison of the amplitudes of a) the q-FM mode in ErFeO3 and TmFeO3 and b) the
q-FM mode and q-AFM mode as a function of temperature. The solid lines in b) are guides to the eye
drawn from the theoretical model. The amplitudes are normalized with the spectral weight of the THz
pulse. The q-FM amplitudes of TmFeO3 are magnified for better visibility.

Theory of the effect of the Rare-Earth on the q-FM mode

As we have seen a completely different trend in the amplitude of the q-FM mode in ErFeO3

and TmFeO3 across the SRT, we propose here a theoretical explanation by considering the

interaction of the iron spins with the rare-earth ions.

The free energy of the orthoferrites is determined by the interactions between the spins of

the d-electrons in Fe3+ and the f-electrons in the Er3+ ions. The full magnetic energy density

of the system is

Fm =Fd-d +Fd-f +Ff-f. (6.2)

Here, Fd-d is the energy density of the Fe3+ 3d-electron spin system and Ff-f is the free

energy density of the 4f-electron spin system on the rare-earth ions. The free energy density

from the interaction between these d-electrons and f-electrons is given by [173]
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− Fd-f

N
= fx[µx(Hx +aFx)+B ′

zGz]+ fyµy (Hy +aFy )+ fz[µz(Hz +aFz)+BxGx]

+ cxµx y (Hy +aFy )+ cy [µy x(Hx +aFx)+B ′′
z Gz]+ czByGy . (6.3)

Here, f and c indicate the ferromagnetic and antiferromagnetic moment of the rare-earth

f-spins respectively, and F and G indicate the ferromagnetic and antiferromagnetic moment

of the iron spins respectively. The isotropic exchange constants is denoted by a, and the

anisotropic exchange constants are denoted by B .

With the energy of the d-f electrons interactions known, the ground state can be found

by minimizing the free energy with respect to the four magnetic vectors. It was shown in

reference [173] that in this case, the orientation of the magnetic moments of the rare-earth

ions are defined by the orientation of the magnetic moments in the iron ions. The only

nonzero components are then

Fx = F0Gz

Fz =−F0Gx

fx = (aµxFx +B ′
zGz)λ′

5 + (aµy xFx +B ′′
z Gz)λ7

λ′
1λ

′
5 −λ2

7

fz = aµzFz +BxGx

λ′
3

cy =
(aµx y Fx +B ′′

z Gz)λ′
1 + (aµxFx +B ′

zGz)λ7

λ′
1λ

′
5 −λ2

7

(6.4)

In the Γ24 phase, we can parametrize the magnetic moments of the Fe3+ spins in terms of the

rotation angle. These magnetic moments can be written as

Gx =Gcos(θ) Fx =−F sin(θ)

Gz =Gsin(θ) Fz = F cos(θ)
(6.5)

Using the free energy of the spin system, we can obtain the equation of motion for the

angle of the spin deflection of the magnetic moments of the iron spins as is given by the

Lagrangian formalism [113].

Substituting the expressions (6.5) into the equilibrium components of the rare earth

moments in equation (6.4), one can see that the components fx and cy are proportional to
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sin(θ), and fz is proportional to cos(θ).

We now assume that the THz pump pulse induces spin dynamics of the ferromagnetic vec-

tor f and antiferromagnetic vector c of the rare-earth subsystem, thus bringing the rare-earth

spins out of their equilibrium orientation. We assume that the deflection from equilibrium is

small, and that at the same time, the iron spins are frozen. Thus, effectively the orientation

angle of the rare earth moments will become θ→ θ+δθ. Substitution of this THz induced

spin deflection in the components of the rare earth moments and applying the sum rules

assuming δθ << 1 yields

fx = K1 sin(θ+δθ) ≈ K1 [sin(θ)+δθcos(θ)]

fz = K2 cos(θ+δθ) ≈ K2 [cos(θ)−δθ sin(θ)]

cy = K3 sin(θ+δθ) ≈ K3 [sin(θ)+δθcos(θ)]

(6.6)

Here K1, K2 and K3 are proportionality constants that are extracted from equation (6.4).

Due to the coupling between the iron spins and the rare-earth spins, the deflection of the

rare-earth spins changes the free energy and will therefore act as an additional torque on the

magnetic moments of the iron ions.

This torque can be found from the Euler-Lagrange equation, which reads

d

d t

(
dL

d θ̇

)
− dL

dθ
= 0. (6.7)

The Lagrangian is given by L =T −F , where T is the kinetic energy of the system and F

is the free energy of the system. The equations of motion are already well known for the iron

system in the orthoferrites, and will yield the Klein-Gordon equations in the linear regime, or

the sine-Gordon equations in the nonlinear regime [66].

The extra torque induced by the small spin deflection of the rare-earth moments δθ will

arise from the term dL
dδθ , or − dF

dδθ . For simplicity, we now assume that the magnetic field of the

THz only acts at t = 0 and then induces free precession of the rare-earth moments, such that

we can neglect the magnetic field components in the expression for the free energy. Moreover,

the neglection of the magnetic field may be justified by the fact that the magnetic field of the

THz pulse is orders of magnitude smaller than the typical exchange fields.

Now, the expanded non-zero components can be substituted in our expression for the

free energy, yielding
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−Fd-f

N
= K1

[
sin(θ)+δθcos(θ)

](
µx aF+B ′

zG
)

sin(θ)+K2
[

cos(θ)−sin(θ)δθ
](
µz aF+BxG

)
cos(θ)

+K3
[

sin(θ)+δθcos(θ)
](
µy x aF +Bz"G

)
sin(θ). (6.8)

Calculating the derivative of the free energy with respect to the spin deflection angle of

the rare earth moment δθ yields the following torque:

∆T = dL

dθ
= [−K1(µx aF +B ′

zG)−K2(µz aF +BxG)+K3(µy x aF +Bz"G)]sin(θ)cos(θ). (6.9)

Thus, we see that the strength of this torque is determined by the angle θ in the ac-plane

and follows the symmetry of cos(θ)sin(θ). This torque due to the d-f coupling is thus maxi-

mized when θ =π/4, which occurs exactly at the midpoint of the Γ24 phase. The temperature

dependence of the amplitude of the q-FM mode that we found experimentally is in excellent

agreement with this symmetry.

The theoretical explanation described above can well explain why the enhancement

occurs only in ErFeO3 and not in TmFeO3. We already saw from the digitized literature data

in figure 6.3 that the frequencies of the rare-earth mode and the q-FM mode cross, suggesting

a strong interaction between the iron spins and the rare-earth spins. The crossing of the

frequencies of these two modes allow for the efficient resonant transfer of the rare-earth spin

precession to the iron spin precession. Thus, the low energy splitting of the Kramers doublets

in ErFeO3 that gives rise to the low frequency rare-earth modes plays a crucial role in the

enhancement of the q-FM mode.

6.7 Observation of second harmonics in ErFeO3

Further optimizations of the experimental setup allowed us to observe clear features of the

second harmonic of the q-FM mode, as summarized in figure 6.9.

All throughout the Γ2 phase where the q-FM mode is most pronounced, we see the emer-

gence of an additional high frequency oscillations, next to the small q-AFM feature (figure

6.9b). We tracked the frequency of the modes and see that the additional peak consistently

appears at double the frequency of the q-FM mode, and overlaps with the q-AFM mode at

low temperatures. (figure 6.9c). In the SRT, the feature becomes hidden in the broad structure
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Figure 6.8: Schematic of energy level diagrams of the ErFeO3 and TmFeO3 and the mechanism of the
resonant enhancement of the q-FM mode in the SRT in ErFeO3 and the lack thereof in TmFeO3.
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Figure 6.9: Observation of the second harmonic of the q-FM mode in ErFeO3. a) Time traces of the
Faraday rotation at various temperatures. b) The corresponding Fourier transforms, highlighting the
observed q-FM mode and its Second Harmonic (SH), the q-AFM and the Rare-Earth (RE) modes. c)
Extracted frequencies of the q-FM mode the q-FM SH, and the q-AFM mode. d) Dependence of the
amplitude of the q-FM mode and its SH as a function of the THz electric field strength.

of low frequency peaks. The observation of Second Harmonics (SH) is a clear signature of

nonlinearity, potentially indicating the achievement of high amplitude spin precession. To

confirm this nonlinearity, we checked the dependence of the amplitudes of the q-FM mode

and the SH on the THz field strength, and find that the amplitude of the q-FM mode again

scales linearly with the ETHz. In contrast, the q-FM SH mode scales quadratically with the

ETHz.

Similar nonlinearities have been reported previously in similar experiments, for instance

in the ferromagnetic resonance of thin metallic films [178] and in other orthoferrites [166,179].

In the orthoferrites, this observation was attributed to the quadratic magnetorefractive effect

due to the interaction of the spin system and the probe pulse [180], where the quadratic

dependence of the detected rotation as a function of the amplitude of the deflection results

in double frequency features in the spectrum.
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6.8 Low Temperature SRT in ErFeO3

The emergence of the antiferromagnetic ordering below the Néel temperature of 4 K in ErFeO3

is associated with an additional phase transition. This phase transition is the Γ2 →Γ12 phase

transition, where the antiferromagnetic vector starts to rotate out of plane towards the b-

axis [181]. We extended the above described measurements to the low temperatures below

4 K, and again performed the measurements for the different orientations of the sample. The

results obtained with the THz magnetic field aligned along the c-axis are shown in figure 6.10.

Figure 6.10: Low temperature measurements of THz induced spin dynamics in ErFeO3 below the Néel
temperature, with the THZ magnetic field aligned along the c-axis. a) Shows the signals in the time
domain, b) shows the Fourier transforms, and c) the extracted amplitude of the three observed modes
of AFMR.

The rare-earth modes are again pronounced around 1.3-1.5 THz when BTHz||c. As the

temperature is further decreased, we see a further increase in the amplitude of the rare-

earth modes, particularly of the mode around 1.3 THz and the rare-earth mode structure

becomes narrower and more resolved. Besides, we see that two features around 0.3 THz start

to appear at 3.65 K. These frequencies match with the difference frequencies of the rare-earth

modes, possibly indicating transitions between the more closely separated energy levels.

This increased resolution in the rare-earth peak structure and the emergence of low-energy

transitions is likely due to the increasing population of the ground state at low temperatures.

Moreover, we see that upon decreasing temperature, the q-FM feature disappears and a

q-AFM feature starts to emerge.
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We repeated the measurements for the orthogonal sample orientation, such that the a-axis is

aligned with BTHz. As the q-AFM mode was already visible in the Γ2 phase, this allowed us to

study the evolution of this mode in more detail. The results are shown in figure 6.11.

Figure 6.11: Low temperature measurements of THz induced spin dynamics in ErFeO3 below the Néel
temperature, with the THz magnetic field aligned along the a-axis. a) Shows the signals in the time
domain, b) shows the Fourier transforms, and c) the extracted amplitude of the q-AFM mode.

In this experimental configuration, we see very clean oscillations at the q-AFM frequency,

that increase rapidly in amplitude upon cooling down into the Γ12 phase. This observation is

not trivial, as the weak ferromagnetic moment rotates away from the axis along which the

THz magnetic field is aligned, thus reducing the torque that excites the q-AFM mode.

The mechanism through which this enhancement occurs must be different than the one

that enhances the the q-FM mode in the Γ24 phase, as no efficient coupling between the

rare-earth modes and the q-AFM mode is expected, due to the large gap in their frequencies.

The low-temperature enhancement in the Γ12 phase may be explained by the increase of

the magnetic permeability in this phase. Such an orders of magnitude enhancement of the

permeability has been previously reported in the Γ12 phase of HoFeO3 [182].

6.9 Conclusions

In this chapter, we studied the spin dynamics in orthoferrites induced by intense THz pulses

in the search for nonlinearities in the spin dynamics. Although nonlinear spin dynamics

was not yet observed in contrast to the previous report [113], likely due to insufficiently high
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peak amplitudes of the THz pulse, we observed a great enhancement of the q-FM mode in

the middle of the SRT in ErFeO3. TmFeO3, in which the iron spin system has a very similar

magnetic structure, did not reveal a similar behavior in the SRT. We attributed this difference

to the effect of the rare-earth ions on the iron spins. From calculations, including a coupling

between the rare-earth spin and the iron spins, we found that this d-f interaction acts as an

additional torque on the iron spins, which is maximized exactly in the center of the SRT. We

found that the symmetry of this torque matches the experimentally measured data very well.

Further improvements in our setup have shown some first signs of nonlinearities. We

have observed the second harmonic of the q-FM modes in the Γ2 phase. Moreover, we have

achieved spin dynamics measurements at extremely low temperatures, below the ordering

temperature of the rare-earth spins, which induces another SRT, bringing the iron spins in

the Γ12 phase.

Recent further improvements to our experimental setup allowed us to achieve tighter

focusing of the THz pulse, due to which the peak THz field can now exceed 1 MV/cm. As the

electric field is estimated to be more than doubled, the experiments may be repeated to find

nonlinear effects and drive the spin dynamics with even higher amplitudes.
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Chapter 7

Summary and Outlook

7.1 Summary

In this thesis, we have investigated spin dynamics in antiferromagnetic oxides, the orthofer-

rites, which were recently proposed to be considered as altermagnets. The orthoferrites are

of great interest due to their canted antiferromagnetic moments, providing high-frequency

resonances characteristic for the antiferromagnets, while retaining a weak ferromagnetic

moment and high magneto-optical responses. This makes them excellent candidates for

high-speed, and all-optical, energy-efficient data storage and processing. Although magnons

in ferromagnets have already been under intensive investigation, until recently, exciting and

controlling nanoscale wavelength and THz frequency magnons has remained challenging.

The work and achievements presented in this thesis are summarized as follows:

• We have developed a theoretical formalism to understand how magnons in antifer-

romagnets can be generated by strongly absorbed light pulses, and how they can be

detected by light pulses.

• We have performed ultrafast pump-probe spectroscopy to study the magnons experi-

mentally in HoFeO3.

• We have applied a novel 2D spectroscopy technique to study magnons, which has

shown to allow for the conversion of the uniform precession mode into the propagating

modes.

• We have designed and built a novel experimental terahertz pump - optical probe

spectroscopy, allowing for the resonant excitation of the orthoferrites at cryogenic

temperatures down to 3 K.
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In the first part of the thesis, we have shown how the challenge of generating magnons

in antiferromagnets can be overcome. Through the solution of the Klein-Gordon equation

for antiferromagnetic spin dynamics, which can be derived from the Lagrangian formalism,

we showed that one can exploit the strong absorption band in the insulating orthoferrites,

to achieve nanoscale confinement of the spin excitations by optical stimuli. Consequently,

spins in this region are quasi-uniformly excited by the effective field of the light pulse acting

on the spins, and propagating packets of high-frequency spin waves with nanometer scale

wavelengths are emitted from the region of excitation. In addition, we modeled the magneto-

optical detection of such propagating spin waves and found that the spin waves act as a

propagating diffraction grating for a probe light pulse, that results in the polarization rotation

of the probe pulse. Through the emergence of the Brillouin/Bragg condition, this rotation is

selectively enhanced for the right matching between the wave numbers of the probe pulse

and the magnon, thus allowing for selective detection of the magnon. We found that our

theory provides an excellent agreement with the first experiment that reported such spin

waves in DyFeO3 [70].

We then reported the observation of the propagating magnons in another orthoferrite,

HoFeO3, and addressed a second major challenge in THz magnonics. This challenge involves

the demonstration of nonlinearities of magnons, that allow for the control of the properties of

one magnon by another unit, which is essential for mimicking transistor-like operations using

magnons instead of electric charge. More specifically, we have shown that we can achieve

such nonlinear control in the canted antiferromagnets, through magnon-photon interactions.

Our experiment using the double-pump probe spectroscopy technique, showed that the

low-frequency quasi-uniform precession modes can be up-converted to higher frequency

and higher wavenumber modes of a propagating wavepacket. This effect is proportional

to the strength of the Dzyaloshinskii-Moriya Interaction, and can thus only be found in

canted antiferromagnets, making the orthoferrite a suitable system for the investigation of

this nonlinearity.

In the last part of this thesis, we returned to uniform k = 0 spin dynamics and searched

for high amplitude spin dynamics in the orthoferrites ErFeO3 and TmFeO3 using intense

THz pulses generated through optical rectification with tilted pulse fronts in LiNbO3. The

magnetic field component of these THz frequency pulses can couple directly and resonantly

to the spins through magnetic dipole coupling, but previous reports [69] have also demon-

strated resonant nonlinear pathways for the control of spins through the electric field in

TmFeO3.

We studied the spin dynamics at various temperatures and found the two different modes
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of antiferromagnetic resonance, the q-FM and q-AFM mode, in both samples, depending on

the temperature and sample orientation. In ErFeO3, a giant increase in amplitude of the q-FM

mode was observed upon crossing the Spin Reorientation Transition temperature region,

with the maximum amplitude in the center. In contrast, in TmFeO3 the amplitude of this

mode decreased over this region, despite the fact that the macroscopic magnetic properties

of the iron systems in these orthoferrites are nearly identical.

We attributed this discrepancy between these two materials to the effect of the rare-earth

spins on the spin dynamics of the iron spin system. We confirmed our interpretation from a

theoretical perspective, by calculating the torque on the iron spins as a consequence of their

interaction with the rare-earth ions, and found that this torque is maximized in the center of

the Spin Reorientation Transition.

In spite of the large amplitude of the q-FM mode in ErFeO3, we observed a linear depen-

dence on the THz field. Our proposed model for the enhancement is in agreement with the

observed linear dependence.

Owing to the capabilities of our experimental setup, we have also been able to observe

another phase transition in ErFeO3 at low temperatures below the Néel temperature of 4 K

where the rare-earth sublattice starts to order antiferromagnetically. In this phase transition,

we observed a large enhancement of the q-AFM mode, which we attributed to the increase of

magnetic susceptibility in this phase.

Moreover, we observed second harmonics in ErFeO3, which is a signature of nonlinear

spin dynamics. We found that the modes at double the frequency of the q-FM mode scale

quadratically with the THz field amplitude.

7.2 Outlook

This section will provide an outlook for potential further continuation of the research pre-

sented in this thesis. We have seen that the generation of the spin waves in the antiferro-

magnets requires a strong nanoscale confinement of the pump. In the work presented here,

this was achieved with strongly absorbed light pulses, which provide a substantial risk of

damaging the samples. Therefore, we may search for other sources on confinement. For

instance, by using micro-objectives, tight focusing of optical excitations may be achieved.

Besides, as the spin waves in this thesis propagate into the material, they are only indirectly

detectable through the Brillouin condition. Combining the confined pulses with nanometer

scale focused pulses allows the spin waves to propagate along the surface. The propaga-

tion of such surface spin waves can be more directly monitored with time-resolved imaging
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techniques.

Further studies on the nonlinear conversion mechanism may also be performed. Al-

though we have investigated the dependence of the nonlinear conversion on many param-

eters, we have not studied the dependence on the pump wavelength dependence of the

individual pumps. For instance, we may investigate whether the confinement of the first

pump pulse is relevant. This can be done by using pulses in the transparency region, for

instance using 800 nm pulses. This excites the quasi-uniform precession throughout the

thickness of the sample, and we can investigate how the spin waves excited by the second

pump propagate and are modulated as a function of the time delay.

Although we have seen in Chapter 6 that the THz field drives strongly enhanced spin

dynamics in the Spin Reorientation Transition by resonantly pumping transition in the rare-

earth system, we still observe that the amplitude scales linearly with the THz magnetic field,

in contrast with previous reported measurements on TmFeO3. The origin of this discrepancy

requires further study. For instance, the crystal-cut may be relevant for the observation of the

nonlinear effect, and thus crystals of different cuts. Moreover, further improvements to the

THz pulses may be made, for instance by cooling the LiNbO3 in a cryostat. This may result in

higher peak amplitudes and broader spectra, where the high frequencies may be relevant for

the excitations of the nonlinearities.

7.3 THz pumping of metallic thin films

Although the work presented in this thesis was devoted to the study of the antiferromag-

netic oxides, which are insulators, here we will demonstrate that our intense THz setup

is also suitable for the study of metals. To this end, some recent measurements on thin

FeRh metallic films will be highlighted in this section. FeRh is an interesting material, as

it is an antiferromagnet at room temperature, but undergoes a phase transition to the fer-

romagnetic phase at 370 K upon heating, which is accompanied by an expansion of the

crystallographic lattice [183]. This phase transition shows hysteresis, and the material returns

to the ferromagnetic state at 340 K upon cooling [184].

Many studies to date have utilized the optical pump to drive the spin dynamics, and

have been shown to drive demagnetization in the ferromagnetic phase [185], or induce

magnetization in the antiferromagnetic phase [186].

In our experiments, we explored how the intense THz pulses interact in this material in

both the high-temperature ferromagnetic phase, and the room temperature antiferromag-

netic phase.
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Figure 7.1: a) Short range THz-induced spin dynamics in FeRh at various temperatures (upon cooling).
b) Temperature hysteresis curve for the cooling (blue) and heating (red) cycles, extracted from the
peak values in a).

We mounted the sample on a heater, and applied a vertical external magnetic field, such

that the horizontal magnetic field component of the THz pulse applies a torque on the

magnetization. This torque will be proportional to the length of the magnetization vector,

allowing is to monitor the phase transition with THz pulses, as shown in figure 7.1.

We see that the dynamics of the magnetization in the ferromagnetic phase closely follows

the shape of the THz pulse, thus indicating the direct Zeeman torque coupling of the THz

pulse to the spins.

Moreover, we observe a small step in the negative and positive time delays, which can

be an indication of demagnetization of the ferromagnetic domains, or nucleation of extra

ferromagnetic domains, or this can be a sign of low frequency oscillations of the ferromag-

netic moment. We therefore investigated the dynamics at long time delays in two different

configurations. The configuration with the external magnetic field applied in plane allows us

to detect the oscillations of the ferromagnetic vector. To increase our experimental sensitivity

to the changes in the length of the ferromagnetic vector, corresponding to demagnetization

or induction of magnetization, we applied the magnetic field out of plane.

The temperature dependence of the long range dynamics is shown in figure 7.2.

In these measurements, we started in the high temperature ferromagnetic phase, and

cooled down the sample. When the magnetic field is applied in plane, we can observe

clear low frequency oscillations, at a frequency of about 14 GHz, which matches well with

the frequency of ferromagnetic resonance that can be expected with our applied external

magnetic field [187]. We see that during the phase transition, the oscillations disappear, and
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Figure 7.2: a) Measured long range spin dynamics in FeRh at various temperatures with the external
magnetic field applied in plane. b) Measured long range spin dynamics in FeRh at various temperatures
with the magnetic field applied out of plane.

upon cooling into the antiferromagnetic phase, higher frequency oscillations appear with a

frequency of about 50 GHz. Such room temperature oscillations were not observed before,

and the origin of these oscillations is not yet known.

When the field is applied out of plane, we clearly see that at in the high temperature ferro-

magnetic phase, the Faraday rotation signal temporarily decreases strongly before relaxing

back to the initial state, indicating the demagnetization. As the temperature is decreased, the

step in the signal changes sign, thus implying that the ferromagnetic order can be enhanced

by the use of THz pulses.

Thus, this section has shown that the intense THz pulses are not only a suitable tool for

control of magnetization in insulating antiferromagnetic oxides, but can also be utilized for

the control and study of metallic films.

134



References

[1] Y. Yamamoto, Pull Of History: The Human Understanding Of Magnetism And Gravity

Through The Ages. World Scientific, 2017.

[2] S. Blundell, “Quantum magnetism,” in Magnetism: A Very Short Introduction, Oxford

University Press, 06 2012.

[3] L. Šmejkal, J. Sinova, and T. Jungwirth, “Emerging research landscape of altermag-

netism,” Physical Review X, vol. 12, no. 4, p. 040501, 2022.

[4] I. Mazin et al., “Altermagnetism—a new punch line of fundamental magnetism,” Physi-

cal Review X, vol. 12, no. 4, p. 040002, 2022.

[5] A. Kimel, A. Zvezdin, et al., “Universal orthoferrites and orthoferrites as a universe,”

Photonics Insights, vol. 1, no. 2, pp. C03–C03, 2023.

[6] E. Spain and A. Venkatanarayanan, “13.02 - review of physical principles of sensing and

types of sensing materials,” in Comprehensive Materials Processing (S. Hashmi, G. F.

Batalha, C. J. Van Tyne, and B. Yilbas, eds.), pp. 5–46, Oxford: Elsevier, 2014.

[7] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A

survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 732–794, 2016.

[8] J. Koomey et al., “Growth in data center electricity use 2005 to 2010,” A report by

Analytical Press, completed at the request of The New York Times, vol. 9, no. 2011, p. 161,

2011.

[9] K. M. U. Ahmed, M. H. Bollen, and M. Alvarez, “A review of data centers energy con-

sumption and reliability modeling,” IEEE Access, vol. 9, pp. 152536–152563, 2021.

[10] J. Judge, J. Pouchet, A. Ekbote, and S. Dixit, “Reducing data center energy consumption,”

Ashrae Journal, vol. 50, no. 11, p. 14, 2008.

135



[11] D. Burg and J. H. Ausubel, “Moore’s Law revisited through Intel chip density,” PloS one,

vol. 16, no. 8, p. e0256245, 2021.

[12] R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum, vol. 34, no. 6,

pp. 52–59, 1997.

[13] P. Ball, “Semiconductor technology looks up,” Nature Materials, vol. 21, no. 2, pp. 132–

132, 2022.

[14] J. Cho and K. E. Goodson, “Cool electronics,” Nature Materials, vol. 14, no. 2, pp. 136–

137, 2015.
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