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ABSTRACT
Ad-hoc teamwork models are crucial for solving distributed tasks

in environments with unknown teammates. In order to improve

performance, agents may collaborate in the same environment,

trusting each other and exchanging information. However, what

happens if there is an impostor among the team? In this paper, we

present BAE, a novel and efficient framework for online planning

and estimation within ad-hoc teamwork domains where there is an

adversarial agent disguised as a teammate. Our approach considers

the identification of the impostor through a process we term “Q-

valued Bayesian Estimation”. BAE can identify the adversary at the

same time the agent performs ad-hoc estimation in order to improve

coordination. Our results show that BAE has superior accuracy and

faster reasoning capabilities in comparison to the state-of-the-art.
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1 INTRODUCTION
Ad-hoc teamwork models are a relevant tool for addressing Multi-

Agent System (MAS) problems with unknown teammates [5, 20].

For example, we often encounter situations inwhichmultiple agents

are shipped together to collaborate and quickly resolve a common

objective without relying on pre-training or coordination protocols

[4]. Hence, enabling agents to estimate the capabilities of their

teammates might be necessary to guarantee performance.

The advancement of coordination is intrinsically linked to an

agent’s ability to comprehend the strategies and behaviour of dif-

ferent teammates [2, 11, 16, 19]. Consequently, studies assume that

agents might not adhere to pre-established rules, leading to diverse

behaviours inside a team, even if they seek the same objective [1, 3].
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The relevant question that arises is: What happens if there is
among us an impostor concealing its actual motivations?

In this context, an impostor is a smart agent acting as an ‘explicit

adversary’. While other agents try to enhance task completion,

the impostor endeavours to hinder performance, disrupt objective

achievement by blocking paths or fake its real intention.

Several multi-player games have explored this problem denomi-

nated as “Deduction” or “Hidden Roles” games [14]. Examples are

Among Us and Deceit, which present hypothetical situations where

“agents” need to collaborate in order to win the game but there is

an “impostor” trying to sabotage the team.

We also see the occurrence of similar situations in the real world:

(i) in robotic manufacturing, an adversary robot can slow down or

stop the production line by making the wrong moves or "being lazy"

on purpose; (ii) in robotic rescue missions, an impostor may attempt

to infiltrate and sabotage the operation, and; (iii) for autonomous
vehicles, if a single car gets hijacked, it can throw the traffic system

into chaos and put other vehicles and people at risk.

Inspired by this context, some works focus on developing algo-

rithms capable of performing planning and deduction in an online

manner [14, 17]. Note that performing online planning with de-

duction is crucial in these collaborative MAS contexts because it

enables agents to adapt their actions in real-time, improving coordi-

nation and reducing the adversarial harm to performance. However,

most of them make hard assumptions or rely on expensive training

to run, besides requiring previous knowledge about the world and

adversary models to guarantee good performance.

Therefore, we present Bayesian Adversary Estimation (BAE), a

novel algorithm capable of identifying an impostor agent among

the team in an online manner by performing estimations solely

using the observations collected while acting in the environment

and simulating potential outcomes. We propose the application of

what we denominate as the Q-valued Bayesian Estimation (QvBE)

approach, which considers approximating latent information about

the environment using Q-value estimations. In other words, our

approximation strategy considers evaluating action values by us-

ing information that is not directly available in the observable

world. QvBE does it by approximating agents’ probability distri-

bution function (pdf) using Q-value estimations. We focus on de-

veloping our approach using a Monte-Carlo Tree Search (MCTS)

based method; however, we emphasise that it can be extended to

any online planning algorithm that estimates Q-values. The main



idea behind our proposal is to embed the QvBE approach inside

an Adversarial-MCTS (A-MCTS), which performs planning from

scratch and estimates its own actions considering the existence of

an adversary. The Q-table found at the end of the search process is

used to estimate the impostor among the team.

Our approach can run alone or together with different state-

of-the-art estimation algorithms to improve coordination while

deducting the impostor. We performed experiments in the “Level-
based Foraging Environment”, a popular domain to test planning

and estimation methods [2, 19]. BAE could improve accuracy in

detecting the impostor without significantly increasing reasoning

time for distinct scenarios in a Level-based Foraging domain.

2 RELATEDWORKS
The estimation of the latent features of the environment presents

noteworthy contributions to the AI community [2, 10, 11]. Over-

all, the solutions improve coordination by boosting the intelligent

agent’s knowledge of its teammates and the surrounding world.

However, they typically fail when their models for types and world

representation do not adequately fit the target problem [19].

For example, AGA and ABU, proposed by Albrecht and Stone

(2017) [1], base their estimation on sampling and testing a set of

parameters that approximate the type probabilities for each agent

in the environment using gradient ascent or Bayesian updates for

estimation, respectively. However, these methods are constrained

by the quality of their templates (which are usually non-learning

model templates working in limited parameter spaces) because they

apply this type-based approach to handle the problem. If there is no

good template to estimate an agent’s behaviour (e.g. an adversary),

the method might fail. Our proposed QvBE approach used by BAE

requires only the Markov Decision Process (MDP) model to identify

adversaries and, consequently, improve planning.

OEATA-A [17] is a task-oriented estimation method that not

only considers type and parameter estimation using predefined

templates but also focuses on identifying adversarial agents within

a team. While the paper reports promising results, it presents three

crucial problems: (i) its adversarial detection strategy does not

directly impact or improve the ad-hoc agent’s planning process

because it represents a parallel process to planning; (ii) it often
misclassifies idle or less capable agents as adversaries due to its

task-oriented estimation approach, i.e., agents that rarely accom-

plish tasks are classified as adversaries, even if their intention is to

benefit the team, and; (iii) OEATA-A relies on hard assumptions to

ensure its estimation method works in ad-hoc estimation scenarios,

for example, assuming that every template will fail to estimate the

actions of adversarial agents in the team. In order to avoid these

problems, we propose an algorithm capable of integrating planning

and estimation results in order to improve performance in an online

manner and based on its current world knowledge. We show empir-

ically that BAE is capable of correctly spotting the impostor among

the teammates, if it exists, without relying on hard assumptions

about the teammates and under different teamwork settings.

Detecting adversaries is also relevant when researching neural

network solutions [12, 15]. In these works, a common strategy is

to use action distribution information to validate the integrity of

their decision-making and prediction processes. They proposed this

validation using training data and previous knowledge about the

features of their adversaries. Hence, if there is a lack of knowledge or

training data for retrieving a robust set for validation, thesemethods

may fail. Our method can run estimations from scratch and, thus, it

does not rely on previous data or information. Furthermore, we use

the action distribution for estimating an adversary, but we do not

require a comparison to previously known templates. We employ a

Bayesian approach to update the probability of being the adversary

using information derived from the online planning process.

Kopparapu et al. (2022) [14] propose the “Hidden Agenda” game,

inspired by the popular multiplayer deduction game “Among Us”.

This N-player reinforcement learning (RL) environment pits Crew-

mates against Impostors. Crewmates aim to complete tasks as

quickly as possible, while Impostors aim to prevent them from

achieving this objective. Crewmates are unaware of others’ roles,

whereas Impostors possess full knowledge. Prior solutions for this

game leverage robust RL neural networks to enable task completion,

adversary deduction, and accurate voting. However, the solution’s

efficacy depends on the quality of the training data. Unfortunately,

the “Hidden Agenda” game is not publicly available for the com-

munity. Our Level-based Foraging environment is similar to the

game in terms of action and observation space size, besides the

adversarial behaviour. The main difference is the existence of a

voting phase where the agents actively vote to expel an agent from

the scenario – an ability out of this research’s focus –, besides our

assumption that agents have no prior information or data and must

learn only with the data collected while making decisions on the

fly, i.e., the data available through the process of online planning.

Finally, Carminati et al. (2023) [7] have initiated the formal study

of hidden-role games (e.g., Mafia/Werewolf family games, Avalon

and Hidden Agenda) from a game-theoretic perspective. Mathemati-

cally, they define a notion of equilibrium and computation efficiency

of algorithms in these games. Empirically, they show how their

mathematical results fit real-world instances of Avalon and show so-

lutions that consider the application of a parallelised version of the

PCFR+ algorithm [9] and the implementation of a simple algorithm.

These solutions, despite providing a good mathematical framework

that guarantees a reliable estimation for equilibrium, require the

application of large computational resources in order to solve the

problem (CPU compute cluster with 64 CPUs and 480 GB RAM). Our

proposal solves our proposed hidden-role problem, implemented

in a Level-based Foraging Environment, with fewer mathematical

guarantees but using significantly fewer computational resources

to solve it. Moreover, we focus on providing an online planning

approach while they propose an equilibrium solution.

3 PROBLEM FORMALISATION AND
BACKGROUND

Problem Description. We consider the problem where an intel-

ligent (strategic) agent 𝜙 is in a teamwork context, collaborating

with a set of non-strategic agents 𝜔 ∈ Ω but one of these non-

strategic agents is an impostor 𝜓 , i.e., a strategic agent trying to

disturb the accomplishment of the objectives by the team. Note that

a strategic agent is an agent that runs an algorithm for planning and

is capable of modelling other agents in its reasoning process, while

non-strategic agents do not model other agents in their reasoning



process [21]. The main goal of the team is to accomplish a common

and shared objective in the environment. Hence, 𝜙 is the ad-hoc

agent that is trying to maximise the performance of the team and

it must figure out which agent is𝜓 to improve coordination.

The model used by the ad-hoc agent 𝜙 considers that there are

|Ω | agents, apart from itself, which assumes |Ω \𝜓 | agents as non-
strategic agents and 𝜓 as an intelligent (strategic) agent. On the

other hand, the impostor 𝜓 ’s model also considers that there are

|𝜙∪Ω\𝜓 | agents (apart from itself), but all of them are non-strategic

agents, including 𝜙 . In summary, 𝜙 runs an adversarial reasoning

method, considering the optimisation of its own actions and the

estimation of the impostor actions to maximise the overall perfor-

mance, while𝜓 runs a direct minimisation algorithm, optimising

its own action to reduce the overall performance.

Formal Model. In this study, we focus on the application and

implementation of Markovian-based models together with RL al-

gorithms to handle the stated problem. Hence, we describe it as a

Multi-agentMarkovDecision Process (MMDP) [6], with𝑀 = |𝜙∪Ω |
agents sharing the same environment and comprising the team T .
The MMDPmodel contains a finite set of states 𝑠 ∈ Swith transition
probability T and expected reward equal to R(𝑠, J) depending on

the joint-actions of all agents J = {𝑎1, ..., 𝑎𝑀 }, where each action is

defined in the action space 𝑎𝑖 ∈ A. Therefore, given an MMDP, we

want to estimate the actions that maximise the expected reward

that all agents will receive as the system progresses through time.

Planning Algorithm. We use the defined MMDP to implement

our proposed planning algorithm, which is from the family of the

Monte-Carlo Tree Search (MCTS) algorithms. We choose to use this

state-of-the-art method considering its capabilities of performing

online planning and estimation, besides running it from scratch at

every execution as presented in other works [2, 18]. However, we

highlight here that our solution can be applied together with any

online planning algorithm capable of estimating Q-values.

The MCTS algorithm aims to find the optimal action 𝑎∗ for a
given state 𝑠 and agent by simulating the world steps within a

tree structure. In order to perform MCTS planning, the literature

suggests the application of UCT or UCT-H algorithms [13, 22]. In

our model, each node in the Monte-Carlo tree 𝔗 is represented by

(𝑠 ,V , N , 𝜙), i.e., a tuple with a state 𝑠 , a value V(𝑠, 𝑎), a visitation
count N(𝑠, 𝑎) for each action 𝑎 ∈ A and the agent 𝜙 which will

define the perspective of simulation within the tree. We define this

agent perspective 𝜙 because it enables us to run a single-agent MDP

model while performing the tree search procedure, hence, theMCTS

will estimate values and simulate the actions and world transitions

considering 𝜙 as the ad-hoc agent and the other agents 𝜔 ∈ Ω
as part of the environment. The value of the node represents the
expected cumulative reward for the simulated states. The number

of visits to the state 𝑠 is represented by N(𝑠) = ∑
𝑎∈AN(𝑠, 𝑎).

In the adversarial reasoning case, the node in the MCTS will be

represented by the tuple (𝑠 , V , N , 𝜙 , 𝜓 ) where the 𝜓 agent will

define the impostor perspective in the min-max MCTS process –

with 𝜙 being the max and𝜓 the min part of the tree simulation. The

tree represented by this tuple will be an adversarial tree 𝔗𝜓 and we

denominate this MCTS process as an Adversarial-MCTS (A-MCTS).

The actual difference between the MCTS and A-MCTS approaches

is highlighted in the simulation process presented below.

Simulations. While performing simulations within an MCTS,

each state in the search tree is viewed as a multi-armed bandit

taking actions chosen by the Upper Confidence Bound (UCB1)

algorithm. In a traditional maximisation problem, UCB1 tries to
increase the value of less-explored actions by attaching a bonus

inversely proportional to the number of times each action is tried,

following𝑈𝐶𝐵1(𝑠, 𝑎) := V(𝑠, 𝑎)+𝑐
√︃

𝑙𝑜𝑔 (N(𝑠 ) )
N(𝑠,𝑎) . The constant scalar

𝑐 is the exploration constant, which is responsible for weighting the

exploration value

√︃
𝑙𝑜𝑔 (N(𝑠 ) )
N(𝑠,𝑎) . We can fit this constant to the target

problem by considering the desired balance, exploiting close and

future rewards. Analogously, while solving a minimisation problem,

the UCB1 function considers the subtraction of the exploration

value 𝑈𝐶𝐵1(𝑠, 𝑎) := V(𝑠, 𝑎) − 𝑐
√︃

𝑙𝑜𝑔 (N(𝑠 ) )
N(𝑠,𝑎) in order to correctly

balance the exploration and exploitation levels within the tree.

Now, algorithm-wise, the simulation process is categorised by

the expansion of the tree considering possible paths or succession

of nodes that a sequence of actions can lead to in the problem’s

world. In this case, the simulation only considers the perspective

of the ad-hoc agent 𝜙 , simulating its actions, and the other agents

Ω as part of the environment. Hence, a path in the tree is the suc-

cession of actions 𝑎𝑡 taken by 𝜙 that aims to find the best sequence

{𝑎0, 𝑎1, ..., 𝑎𝐷 } that maximises its reward collection.

On the other hand, in A-MCTS, the simulation process is also

categorised by the expansion of the tree considering the possible

paths in the world. However, it considers the sequence of actions

taken by 𝜙 and𝜓 to find the best path that maximises or minimises

reward collection. Therefore, the path in the tree is the succession

of action pairs {𝑎𝜙
0
𝑎
𝜓

0
, 𝑎

𝜙

1
𝑎
𝜓

1
, ..., 𝑎

𝜙

𝐷
𝑎
𝜓

𝐷
} taken by 𝜙 and𝜓 . Note that

this characteristic leads the tree to present an architecture that

always alternates between an 𝜙 node to an𝜓 node and vice-versa.

Estimation Strategy. Bayesian inference is a powerful tool for

updating the probability of a hypothesis when more evidence or

information becomes available. Mathematically, it is represented by

the equation 𝑃 (𝐴|𝐵) = 𝑃 (𝐵 |𝐴)𝑃 (𝐴)
𝑃 (𝐵) , where 𝐴 is the hypothesis and

𝐵 is the observation or evidence from the model. Hence, 𝑃 (𝐴) is the
prior probability, 𝑃 (𝐵) themarginal likelihood, 𝑃 (𝐵 |𝐴) the likelihood
of observing 𝐵 given𝐴, and 𝑃 (𝐴|𝐵) our posterior probability. In this

work, we will develop this Bayesian application to estimate the

probability of an agent being an adversary (hypothesis), given the

action performed by it in the real world (evidence). We adapt the

tree search process together with the idea of roles in a Multi-Agent

Reinforcement Learning (MARL) system to estimate teammates

and adversaries. Further details are provided in the next section.

4 ONLINE PLANNING USING Q-VALUED
BAYESIAN ESTIMATIONS

In this paper, we present Bayesian Adversary Estimation (BAE),

a novel lightweight estimation method capable of identifying ad-

versarial agents in an online manner. BAE performs planning in

the context we denote as Ad-hoc Reasoning context, which is de-

scribed by ad-hoc teamwork problems with adversaries. In this

section, we present our methodology behind BAE, explaining its

implementation step by step as we discuss the main contributions.



Initialisation. From the perspective of an intelligent agent 𝜙 ,

we initialise the probability of being an adversary for every agent

𝜔 ∈ Ω sharing the environment with𝜙 . By default, we set a uniform

distributionUΩ as the initial probability distribution across agents

Ω. So, BAE assumes an equal probability for all agents to be the

impostor among the team equal to 𝑃 (𝜔 = 𝜓 ) = 1

|Ω | ,∀𝜔 ∈ Ω. If

there is any additional information about the target problem, it is

possible to adjust this initial distribution to the knowledge available

accordingly. Note that the described step defines the probability

distribution function (pdf) that will be used for sampling potential

adversaries at each traversal in the tree.

Initialisation Example. Let us assume that 𝜙 is acting in an en-

vironment together with three other agents, i.e. |Ω | = 3. 𝜙 knows

there is an impostor in the team but not who it is. Therefore, 𝜙

initialises its tree search structure and the probability of each agent

𝜔 ∈ Ω to be the impostor following the uniform distributionUΩ .

Figure 1 illustrates this initialisation process.

Impostor
Probability

𝜔1

[0.33]

𝜔2

[0.33]

𝜔3 = 𝜓

[0.33]

Figure 1: The BAE initialisation process in an environment
with 3 other agents where one is an impostor.

After initialisation, we begin the search process with A-MCTS,

where𝜙 reasons about its best action considering different potential

impostor agents𝜓 in the environment.

Search and Q-table Extraction. The search process in this

paper follows the same high-level procedure defined in the literature

to run the A-MCTS approach and estimate Q-values for each action

of ad-hoc and adversarial agents. In general, we can describe the

search process as the expansion of a tree structure that ends with

the back-propagation of the found values through traversal in the

tree. Figure 2 depicts the effect of the search process.

Root

Impostor

Ad-hoc

Ad-hoc

(a) Initial tree
structure.

(b) Tree expansion
(simulation).

V

V
V

V

(c) Tree back-
propagation.

Figure 2: A high-level view of the tree search process. The
arrows with dotted lines represent the existence of further
paths in the tree not included in the illustration.

Whenever we initiate a traversal within the tree or a simulation

process (Figure 2a), our objective is to expand the initial tree struc-

ture, thereby identifying new promising paths within the tree that

solve our problem (Figure 2b). Each path or branch within the tree

corresponds to a specific sequence of actions that our agent simu-

lates to predict a possible outcome. Every time we finish a simula-

tion on the tree, we update the value of all nodes encountered along

the path through the process denominated as back-propagation

(Figure 2c). These estimated and back-propagated values determine

the best action for the ad-hoc agent considering the existence of

the potential adversary in the environment.

When running a single-adversary A-MCTS search process with

a previously known adversary, it considers the perspective of an

ad-hoc 𝜙 and an adversarial agent 𝜓 to perform the simulations

within the tree. In our case, when running a single-adversary A-

MCTS search process with different potential adversaries in the

environment, we propose calculating the expected Q-values via

sampling within the tree. We refer to this approach as “Expected Q-

value MCTS” (EQ-MCTS) and consider that an agent 𝜔 is sampled

to be simulated as an impostor every time we start a simulation

procedure. We consider the current estimated adversarial pdf across

agents to weigh impostor sampling.

Since the simulation procedure is performed multiple times, the

result of successive simulations, considering each sampled adver-

sary at each traversal in the tree, will estimate the Q-values for

each action in the adversary nodes that represent the expected value
for all potential impostors across all actions. Because our MMDP

considers the perspective of an impostor agent𝜓 , we also consider

spatial features while simulating actions and transitioning between

states, i.e., all agents’ positions and actions in the environment. At

the end of the search process, we can decide the best action for

the ad-hoc agent to take in the real world and hence extract the

Q-table for the adversary after stepping into the adversarial node

that succeeds the best action. The below example intends to clarify

and illustrate the adversary Q-table extraction process.

Q-table Extraction Example. Let us consider the tree shown in

Figure 2a. Each time we perform the expansion (Figure 2b), we

consider the perspective of 𝜙 to take an action in the blue nodes,

and the perspective of a sampled agent𝜓 as our adversary taking

actions in the red nodes. Therefore, note that 𝜙 is fixed through the

search, and𝜓 is resampled every time for each simulation.

Once we find a stop condition in the simulation (e.g., reach the

maximum depth of the tree, or find a terminal state), we back-

propagate all rewards found through the traversal in the tree to the

root node (Figure 2c). These rewards update each node’s Q-table

values. From the root, we can select the best action for our ad-hoc

agent 𝜙 , and from the next node stepping on the tree, considering

𝜙 ’s best action, we can extract the adversary Q-table.

Q-table
(Ad-hoc)
LEFT 0.78234
RIGHT 0.3456

(a) Tree structure.

Q-table
(Adversary)

RIGHT 0.3210
LEFT 0.89111

(b) Adversary.

Figure 3: The selection of the best action and the extraction
of the Q-table for the ad-hoc 𝜙 and the adversary𝜓 agent.



Figure 3 demonstrates this situation, highlighting the node from

which the Q-table is extracted. From the ad-hoc agent’s Q-table

(Figure 3a), the “LEFT” action is the best one for our 𝜙 , since it

maximises value. Stepping into the left node, we find the 𝜓 node

from which we extract its Q-table and best action to minimise

rewards (i.e., “RIGHT”). We will step into the right node to update

the tree because we cannot confirm the real action of the adversary

(since we do not know the true adversary) but we estimated that

“RIGHT” is the best action to minimise the overall value.

Q-table Translation and our Bayesian Update. After per-
forming the Q-table extraction, we translate the final Q-table values

from the adversary’s perspective (i.e., the adversarial “root” in the

tree search process) into probabilities to be used in a Bayesian up-

date process. As previously mentioned, we consider the probability

of an agent being an adversary as our hypothesis, and the action

performed by it in the real world 𝑎𝜔 as our evidence in the inference

process. Therefore, we can rewrite the Bayesian equation as such:

𝑃 (𝜔 = 𝜓 |𝑎𝜔 ) =
𝑃 (𝑎𝜔 |𝜔 = 𝜓 )𝑃 (𝜔 = 𝜓 )

𝑃 (𝑎𝜔 )
(1)

The prior probability 𝑃 (𝜔 = 𝜓 ) in the equation is the initialised

value at the very first iteration, which will be replaced by the up-

dated value for the next iteration. On the other hand, our likelihood

𝑃 (𝑎𝜔 |𝜔 = 𝜓 ) is the normalised value of the estimated Q-value

for the action 𝑎𝜔 extracted from the final Q-table from the search

process, following the equation:

𝑃 (𝑎𝜔 |𝜔 = 𝜓 ) = 1 − 𝑄 (𝑎𝜔 )∑
𝑎′∈A𝑄 (𝑎′) (2)

Note that this equation essentially represents the inverse of

the normalised Q-value for actions within the [0, 1] interval. As
a consequence, actions with lower values for quality (i.e., lower

𝑄 (𝑎𝜔 )) will be translated into higher probabilities. We adopt this

approach to assign higher probabilities of being an adversary to

agents who take actions 𝑎𝜔 that minimise problem completion since

the impostor’s objective is to hinder the team’s overall performance.

For simplicity, we normalise all the results, for each agent and its

probability, a posteriori, so
∑
𝜔∈Ω 𝑃 (𝜔 = 𝜓 |𝑎𝜔 ) = 1. Therefore, we

will only consider the upper part of Equation 1 and then normalise.

Q-table Translation and Bayesian Update Example. With the ad-

versary Q-tables in hand, we now transform its values into prob-

abilities, i.e., the final estimated value will be translated into the

probability of an adversary taking the action using the 𝑃 (𝑎𝜔 |𝜔 = 𝜓 )
equation. Let us consider the Q-tables presented in Figure 3. We

can update the impostor probabilities following 𝑃 (𝑎𝜔 |𝜔 = 𝜓 ) =
1 − 𝑄 (𝑎𝜔 )∑

𝑎′ ∈A𝑄 (𝑎′ ) . Therefore, we have that

∑
𝑎′∈A𝑄 (𝑎′) = 1.2121,

hence 𝑃 (𝑎 = R|𝜔 = 𝜓 ) = 1 − 0.3210
1.2121 ≈ 0.735 and 𝑃 (𝑎 = L|𝜔 = 𝜓 ) =

1 − 0.89111
1.2121 ≈ 0.265. Following the rationale and performing this

procedure, we can already apply the result in Equation 1 and update

the probability of each agent being the impostor in our problem.

Let us assume the following actions were observed for each agent

in the environment: 𝑎𝜔1
= “L”, 𝑎𝜔2

= “L”, and 𝑎𝜔3
= “R”. The result

of our Bayesian Update follows the steps shown in Figure 4. After

successive iterations using this update approach, BAE correctly

estimates the impostor among the team without increasing the

execution time or relying on extra resources.

𝜔1

Prior Impostor
Probability

[0.33] [0.33] [0.33]

Bayesian
Update [0.265 ∗ 0.33] [0.265 ∗ 0.33] [0.735 ∗ 0.33]

Update
Result [0.09] [0.09] [0.24]

Normalised
Result [0.215] [0.215] [0.57]

𝜔2 𝜔3 = 𝜓

Figure 4: An illustration of BAE’s update.

Outline. Algorithm 1 presents the pseudo-code for BAE.

5 EVALUATION SETTINGS
Simulation Environment. We performed experiments and col-

lected data in the Level-Based Foraging (LBF) environment [2, 19].

The environment and all benchmark scenarios were implemented

in AdLeap-MAS [8]. Our code is publicly available on GitHub
1
.

LBF Benchmark Scenarios. The LBF environment is commonly

used in the literature to test online planning algorithms and esti-

mation methods [2, 19]. In this scenario, agents are placed in a 2D

grid world, where they can navigate and attempt to collect boxes

distributed in the environment. However, the collection of a box

is successful only if the sum of the levels of the agents involved in

loading it is equal to or higher than the box’s weight (or level). In ad-

dition to the level, each agent has a certain vision radius and angle

as parameters. Considering this ad-hoc environment, agents must

estimate their teammates’ parameters to improve performance. In

this study, we disguised an adversarial agent among the team in an

attempt to minimise performance (by disturbing the box collection).

To run our experiments, we defined 4 different scenarios:

• (LBF.a) The first one is a “small scenario” (Figure 5a). It is a 5× 5
environment where the ad-hoc agent 𝜙 must estimate between

two agents which one is the impostor (a total of 3 agents), and

there is only one individualistic task available for accomplishment

in the environment. An individualistic task is a task that any

agent can accomplish without cooperating with others.

• (LBF.b) Our “medium scenario” (Figure 5b) extends the first one

by increasing the dimensions of the environment from 5 × 5 to
9 × 9, and the number of tasks from 1 to 5. We kept the total

number of agents at 3.

• (LBF.c) Our third scenario (Figure 5c) develops the second sce-

nario by increasing the number of agents from 3 to 5, adding 2

new non-strategic agents as potential impostors. We denominate

this setting as the “big scenario”.

• (LBF.d) Our last scenario uses the big scenario configuration

(Figure 5c); however, we extend this benchmark by requiring
agents to cooperate between themselves to accomplish some tasks.

Hence, tasks are mostly cooperative, rather than individualistic,

in contrast to the LBF.c scenario.

We refer the reader to our Technical Appendix
2
for further details

about each agent type and parameters besides each task weight.

1
BAE’s GitHub: https://github.com/lsmcolab/bae-adversary-detection

2
BAE’s Technical Appendix on GitHub: https://github.com/lsmcolab/bae-adversary-

detection/blob/main/Technical_Appendix.pdf

https://github.com/lsmcolab/bae-adversary-detection
https://github.com/lsmcolab/bae-adversary-detection/blob/main/Technical_Appendix.pdf
https://github.com/lsmcolab/bae-adversary-detection
https://github.com/lsmcolab/bae-adversary-detection/blob/main/Technical_Appendix.pdf
https://github.com/lsmcolab/bae-adversary-detection/blob/main/Technical_Appendix.pdf


Algorithm 1 Bayesian Adversary Estimation. P𝜓𝜔 is the vector of probabilities 𝑃 (𝜔𝑖 = 𝜓 ) = 𝑝
𝜓
𝜔𝑖
, ∀𝑖 = [0, 𝑁 − 1];𝑄𝜙 is the Q-table for the

ad-hoc agent; 𝑄𝜓 is the Q-table for the adversary agent, and; P𝜓𝑎 is the vector of probabilities 𝑃 (𝑎𝑖 |𝜔 = 𝜓 ) = 𝑝
𝜓
𝑎𝑖 , ∀𝑖 = [0, 𝑀 − 1].

1: procedure BAE(P𝜓𝜔 )

2: # 1. Initialising adversary’s probabilities
3: if P𝜓𝜔 = ∅ then
4: P𝜓𝜔 ← Initialisation(Ω)
5:

6: # 2. Performing the search process
7: # and extracting the Q-tables
8: 𝑎𝑏𝑒𝑠𝑡 ,𝑄𝜙 ,𝑄𝜓 ← Search(𝜙 ) ⊲ A-MCTS
9:

10: # 3. Translating the𝜓 Q-values into probabilities
11: P𝜓𝑎 ← QtableTranslation(𝑄𝜓 )
12:

13: # 4. Updating the adversary’s probabilities
14: P𝜓𝜔 ← Update(P𝜓𝜔 , P

𝜓
𝑎 )

15:

16: # 5. Returning planning and estimation results
17: return 𝑎𝑏𝑒𝑠𝑡 , P

𝜓
𝜔

1: procedure Initialisation(Ω)

2: # 1. Uniform initialisation
3: 𝑁 ← |Ω | , P𝑖𝑛𝑖𝑡 ← [𝑝𝜓𝜔

0
, 𝑝

𝜓
𝜔
1
, ..., 𝑝

𝜓
𝜔𝑁 −1 ]

4: for 𝜔𝑖 ∈ Ω do
5: 𝑝

𝜓
𝜔𝑖
← 1

𝑁

6:

7: return Pinit

1: procedure QtableTranslation(𝑄𝜓 )

2: # 1. Transforming Q-values into probabilities
3: 𝑀 ← |A | , P𝜓𝑎 = [𝑝𝜓𝑎

0
, 𝑝

𝜓
𝑎
1
, ..., 𝑝

𝜓
𝑎𝑀−1 ]

4: for 𝑎𝑖 ∈ A do
5: 𝑝

𝜓
𝑎𝑖
← 1 − 𝑄 (𝑎𝑖 )∑

𝑎′ ∈A𝑄 (𝑎′ ) ⊲ Eq. 2

6:

7: return P𝜓𝑎

1: procedure Update(P𝜓𝜔 , P
𝜓
𝑎 )

2: # 1. Updating adversary probabilities
3: for 𝜔𝑖 ∈ Ω do
4: 𝑝𝑝𝑟𝑖𝑜𝑟 = 𝑝

𝜓
𝜔𝑖

5: 𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑝
𝜓
𝑎𝜔𝑖

6:

7: 𝑝
𝜓
𝜔𝑖
← 𝑝𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑝𝑟𝑖𝑜𝑟 ⊲ Eq. 1

8:

9: # 2. Normalising the result
10: 𝛽 ← ∑𝑀

𝑖=0 𝑝
𝜓
𝜔𝑖

11: for 𝜔𝑖 ∈ Ω do
12: 𝑝

𝜓
𝜔𝑖
← 𝑝

𝜓
𝜔𝑖
/𝛽

13:

14: return P𝜓𝜔

(a) Small scenario. (b) Medium scenario. (c) Big scenario.

Figure 5: Level-based Foraging benchmark scenarios.

Experimental Setup. We propose two different setups to test

the capabilities of BAE and our defined baselines.

• Adversarial Detection: focused on evaluating the capability for

detecting the true adversary, i.e., identifying the impostor agent

among the team. To do so, we consider that the ad-hoc agent has

full knowledge of their teammates’ types and parameter values.

• Ad-hoc Adversarial Detection: focused on evaluating the im-

pact of running ad-hoc teamwork algorithms at the same time we

run our adversarial detection approach, BAE. Therefore, we con-

sider that the ad-hoc agent has no knowledge of its teammates’

types or their parameter values.

Baselines. We propose the following three methods as our base-

lines for Adversarial Detection, divided into two groups:

• Type-based methods – AGA andABU [2], estimation methods

based on gradient ascent and bayesian updates, respectively.

• Adversarial detection method – OEATA-A [17] an ad-hoc

teamwork algorithm capable of running the OEATA estimation

algorithm together with the detection of adversaries.

See our Related Work for further details regarding each baseline

or check our implementations and documentation at GitHub.

As aforementioned, we want to test the impact of running an ad-

hoc teamwork algorithm at the same time we run BAE’s adversarial

detection in the Ad-hoc Adversarial Detection setting. Therefore,

we propose two new estimation methods for this analysis:

• AGA-BAE and ABU-BAE are adaptations that consider the em-

bedding of our proposed method into AGA and ABU algorithms,

respectively. They use ad-hoc teamwork methods to perform

type and parameter estimations while applying BAE’s detection

strategy to identify adversaries in the environment.

Adversarial Detection using Type-based baselines. To per-

form experiments using type-based baselines, we generated a simple

adversarial behavioural template, denoted𝜓 , and added it to their

knowledge. To enable a fair comparison between BAE and these

approaches, the type-based agent will approximate the probability

of an agent being the adversary across 𝑁 templates (which matches

the number of teammates in the environment), where 𝑁 − 1 tem-

plates are non-strategic templates and one is the created impostor

template. After performing the estimation across templates, we

normalise the probability of being the adversary across agents and

then use it as the adversarial detection metric.

Table 1 presents the real and template types used in each scenario

to run the type-based methods, AGA and ABU. We kindly refer the

reader to Shafipour Yourdshahi et al. (2022) [19] for further details

about the types used as templates in this work.

Table 1: Real and template types per scenario for the Adver-
sarial Detection experimental setup. Note that each type in
the “Real Types” column refers to the true type of each agent
in the scenario, and all types in the “Template Types” column
will be used to approximate each agent’s behaviour.

N agents Real Types Template Types

Small scenario 2 [𝑙1,𝜓 ] [𝑙6,𝜓 ]
Normal scenario 2 [𝑙3,𝜓 ] [𝑙6,𝜓 ]
Individualistic 4 [𝑙1, 𝑙2, 𝑙3,𝜓 ] [𝑙4, 𝑙5, 𝑙6,𝜓 ]
Cooperative 4 [𝑙1, 𝑙2, 𝑙3,𝜓 ] [𝑙4, 𝑙5, 𝑙6,𝜓 ]

Impostor Template. We created the impostor template𝜓 as a

simple Q-learning adversarial model, where, for each benchmark

https://github.com/lsmcolab/bae-adversary-detection
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(a) Small scenario (LBF.a).
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(c) Individualistic (LBF.c).
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Figure 6: BAE’s impostor probability across iteration per
agent for each defined scenario in the LBF environment.

scenario, we ran 200 episodes and saved the estimated Q-values for

each state. We ran the same minimisation MCTS implemented to

run the true impostor 𝜓 . For each search process, we performed

1000 iterations of simulations, each with a maximum depth of 25.

Whilst simulating an agent running 𝜓 , we sample the action,

given a state 𝑠 , by first transforming the estimated Q-values into

probabilities and sampling a random action from this distribution.

If 𝑠 was never visited before, hence, there is no estimated Q-values

for 𝑠 , we sample a random action from the uniform distribution.

Metrics and Analysis. We use the following metrics:

• Average impostor probability 𝑃 (𝜔𝜓 = 𝜓 ), which is the average

estimated probability of the true adversary being the adversary.

• Average planning time (t), which is the average time spent by the

ad-hoc agent to plan its actions and perform estimations.

Mean results are calculated across 50 executions. Every exper-

iment runs independently, so no knowledge is carried from one

execution to another. The calculated errors (±𝐸𝑟𝑟 ) represent the
confidence interval of a two-sample t-test with 99% of confidence;

we label a result as “significant” if it is statistically significant con-

sidering 𝜌 ≤ 0.01 unless otherwise stated.

6 EMPIRICAL RESULTS AND DISCUSSION
In this section, we present the main results found in our experimen-

tal dataset. We invite the reader to see our Technical Appendix and

find further plots that support the numerical results’ visualisation.

Adversarial Detection. Our empirical analysis starts with the

Adversarial Detection Setting results. Figure 6 shows the perfor-

mance of BAE in detecting the impostor among the team members,

while Table 2 presents a summary of all results, including baselines.

From Figure 6, it is evident that BAE successfully detects the

impostor agent across all scenarios with statistical significance.

However, although BAE did not attain a maximum confidence

level of 𝑃 (𝜔𝜓 = 𝜓 ) = 1, it was able to effectively distinguish, in

probability, the agent most likely to be the impostor.

We now turn our attention to the summary of the results given in

Table 2. Numerically, we observe that BAE consistently outperforms

its baselines in detecting adversaries across all scenarios, with the

sole exception being the Medium scenario (LBF.b), against which

the p-value stands at 𝑝 ≥ 0.23. In addition, it is important to state

that in the Big scenario (LBF.c), a significant difference between BAE

and AGA is only observed when considering a p-value 𝑝 < 0.06.

This enhancement of performance can be attributed to BAE’s

improved capability to discern the agents’ objectives by abstracting

their actions while considering the current knowledge available in

real time. In contrast to the type-based baselines, BAE exhibits the

ability to swiftly identify variations in agent behaviour by relying

on its rationale, defined by its planning strategy, together with the

conducted simulation processes.

While we acknowledge that enhancing the complexity of the

template for approximating adversarial behaviour could potentially

boost the performance of type-based methods, it remains a fair com-

parison because BAE performs adversarial detection from scratch

and does not rely on previously known templates.

In OEATA-A’s case, we attribute our better performance to the

fact that we do not rely on hard assumptions to update our knowl-

edge. Two main assumptions lead OEATA-A to fail in estimating

the impostor: (i) all templates for non-strategic agents must fail
(after an update) in estimating the correct task to approximate the

“suspicious agent” (i.e., the success counter of all estimators must
be equal to 0 to increase the suspicious probability), and (ii) the

update of an agent’s estimators only occurs after completing a task.

However, the impostor agent in our experimental settings does not
complete tasks since it wants to minimise the team’s reward collec-

tion. Therefore, OEATA-A fails in these assumptions and, hence,

never updates its probability for suspicious agents.

In terms of time efficiency, BAE demonstrates an enhanced ability

to detect adversaries without significantly increasing its necessary

time to perform decision-making. In the small scenario (LBF.a), we

can see that BAE significantly outperforms AGA, ABU, and OEATA-

A in terms of reasoning time. In the LBF.b and LBF.c scenarios, BAE

exhibits a slightly higher average reasoning time, but this difference

lacks statistical significance (p-values 𝑝 > 0.6). However, in the

LBF.d scenario, BAE does show a higher reasoning time compared

to its baselines. We attribute this increase in reasoning time to

BAE’s simulation at deeper levels of the search tree. Its ability to

better identify the adversarial agents results in a preference for

exploring branches often following the actions of the most likely

adversary. Hence, instead of performing more simulation steps

during the rollout phase, we conjecture that BAE often performs

more simulation steps inside the existent tree (slower than the

rollout’s simulations) due to its confidence in identifying the true

adversary. That is, as the confidence about who is the true impostor

increases, the probability of exploring new paths in the tree should

decrease, since we better estimate the true state and the adversarial

actions. Note that, OEATA-A requires significantly more time to run

than other baselines due to its estimation approach, which requires

https://github.com/lsmcolab/bae-adversary-detection/blob/main/Technical_Appendix.pdf


Table 2: Summarised results for each adversary detection approach. The highlighted values indicate when a method presents
statistical significance in its results among all competitors.

LBF.a LBF.b LBF.c LBF.d

𝑃 (𝜔𝜓 = 𝜓 ) t (sec) 𝑃 (𝜔𝜓 = 𝜓 ) t (sec) 𝑃 (𝜔𝜓 = 𝜓 ) t (sec) 𝑃 (𝜔𝜓 = 𝜓 ) t (sec)
BAE 0.76 ± 0.06 2.15 ± 0.40 0.61 ± 0.06 6.08 ± 0.60 0.35 ± 0.02 10.45 ± 1.45 0.31 ± 0.04 13.73 ± 1.10
AGA 0.53 ± 0.10 2.79 ± 0.63 0.51 ± 0.09 5.50 ± 0.56 0.25 ± 0.07 9.44 ± 1.24 0.27 ± 0.07 10.63 ± 1.17
ABU 0.52 ± 0.11 2.83 ± 0.63 0.51 ± 0.11 5.54 ± 0.55 0.27 ± 0.08 9.48 ± 1.21 0.27 ± 0.09 10.11 ± 1.13
OEATA-A 0.50 ± 0.00 9.98 ± 1.23 0.50 ± 0.00 19.11 ± 2.07 0.25 ± 0.00 74.96 ± 29.96 0.25 ± 0.00 75.52 ± 26.81

Table 3: Summarised results for the Ad-hoc Adversary Detection experimental setup. The highlighted values indicate instances
when AGA-BAE improves AGA’s results and when ABU-BAE improves ABU’s results with statistical significance.

LBF.a LBF.b LBF.c LBF.d

𝑃 (𝜔𝜓 = 𝜓 ) t (sec) 𝑃 (𝜔𝜓 = 𝜓 ) t (sec) 𝑃 (𝜔𝜓 = 𝜓 ) t (sec) 𝑃 (𝜔𝜓 = 𝜓 ) t (sec)
AGA-BAE 0.58 ± 0.09 2.79 ± 0.62 0.56 ± 0.08 5.20 ± 0.55 0.29 ± 0.04 8.92 ± 1.20 0.28 ± 0.03 8.94 ± 1.00
ABU-BAE 0.57 ± 0.10 2.82 ± 0.62 0.58 ± 0.08 5.29 ± 0.54 0.27 ± 0.03 9.28 ± 1.21 0.30 ± 0.03 8.61 ± 1.06

the generation and evaluation of a large amount of estimators one

by one to successfully perform estimations.

Overall, our method demonstrated success in detecting impostor

agents across three out of four scenarios with statistical significance,

all while maintaining efficiency in terms of time. We highlight

that BAE achieved these results without relying on pre-defined

templates and by conducting adversary detection from scratch.

Ad-hoc Adversary Detection. Table 3 provides a summary of

our results. Upon comparing the results in Table 2 to those in Table

3, we see that BAE demonstrates a significant enhancement in the

performance of AGA and ABU methods with regard to adversary

detection performance. This improvement was observed across

all scenarios for both presented solutions, AGA-BAE and ABU-

BAE, with the exception of ABU and ABU-BAE in the Big scenario

(LBF.c), where the p-value was notably high at 𝑝 = 0.99, and AGA

and AGA-BAE in the Cooperative scenario (LBF.d), where 𝑝 = 0.15.

As for reasoning time, AGA-BAE consistently achieves estima-

tions significantly faster than AGA across three out of the four

scenarios, with all p-values below 0.01. The only exception was

the Small scenario (LBF.a), where 𝑝 = 0.98. On the other hand,

ABU-BAE exhibits notably faster estimation times than ABU in

two out of four scenarios, with p-values under the 0.01 threshold.

The Small (LBF.a) and Big (LBF.c) scenarios stand out as exceptions,

with p-values of 𝑝 = 0.81 and 𝑝 = 0.19, respectively.

Overall, we summarise that the proposed approach significantly

enhances the performance of type-based estimation methods in

detecting adversarial agents within an environment while avoiding

the need to create a reliable template type for impostors or train

the method using historical data. Additionally, BAE proved capable

of reducing the time required for estimation for both baselines, an

attribute that can be beneficial in certain scenarios and applications.

Limitations and Future Works. Our empirical findings high-

light limitations in BAE’s estimations regarding the size of the

action space. When insufficient actions are available to distinguish

between non-adversarial and adversarial agents, our method may

require more time to find states that accurately update the impostor

probabilities. The underlying rationale is that if all agents are often

performing the same actions (even considering the spatial differ-

ence between them, i.e., their position), the absence of distinctive

actions will prevent the correct identification of adversaries.

In future work, we aim to enhance our algorithm’s sensitivity to

spatial features and the adversary agent’s model. As a preliminary

step, we conducted tests and evaluations on an alternative version

of BAE, which we named the Multi-Tree MCTS BAE, that simulates

each potential impostor within distinct adversarial trees. In con-

trast to EQ-MCTS, this approach eliminates the need to aggregate

multiple estimated Q-values from different impostors during the

tree search. We believe that by isolating each potential adversary

within its own tree and focusing solely on their spatial and temporal

characteristics, we may potentially improve the results, albeit at

the cost of increased computational resources. However, we did

not observe any significant improvement in the outcomes. Now,

concerning the adversary agent’s model, enabling the impostor to

strategically plan its actions while considering the existence of an

ad-hoc agent in the environment would introduce a new level of

complexity to the problem. However, it is crucial to acknowledge

that if the impostor does not know who is the true ad-hoc agent

beforehand, it must also estimate its potential “adversaries” during

its planning phase, similarly to the ad-hoc agent. Therefore, we

leave this improvement for future work.

7 CONCLUSIONS
BAE is a novel algorithm for online planning and estimation in ad-

hoc reasoning domains, where agents share the same environment

but have no information about their teammates’ type, parameters

and true intentions. We show that our method is capable of effi-

ciently identifying an impostor agent across four different scenarios

without relying on pre-trained models or previously available data.
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