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Abstract

We develop a model of contests on networks. Each player is con-

nected to a set of contests and exerts a single effort to increase the prob-

ability of winning each contest to which she is connected. We explore

how behavior is shaped by the pattern of interactions and characterize

the networks that tend to induce greater effort; in particular, we show

that the complete bipartite network is the unique structure that max-

imizes aggregate player effort. We also obtain a new exclusion result

– akin to the Exclusion Principle of Baye et al. (1993) – which holds

under the lottery CSF, and contrasts prior work in contests. Finally,

new insight into uniqueness of equilibrium for network contest games is

provided. Our framework has a broad range of applications, including

research and development, advertising, and research funding.
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1 Introduction

In recent years, economists have recognized the importance of understanding

how the structure of interactions affects economic behavior, which has fueled

research on networks. The importance of this field is unquestionable, given

the broad applicability of these models in many economically relevant settings.

Jackson and Zenou (2014) provide a comprehensive overview of the literature

on network games and emphasize three classes of games on which researchers

have focused: (1) games with linear best-replies; (2) games of strategic com-

plements and substitutes; and (3) games with an uncertain pattern of interac-

tions.1,2 In games with more complicated best-replies – contests, for example –

general conclusions prove difficult to ascertain due to the inherent complexity

of network models.

In this paper, we develop and study a contest network game.3 Our model

consists of a set of players and a set of contests, which form a bipartite graph.4

Each player competes in contests to which she is connected by exerting a single

effort; the contest success function (CSF) takes the form of the logit CSF.5

Similar to the setup in Xu et al. (2022), our general framework allows for an

arbitrary network structure, arbitrary player-specific convex cost functions as

well as contest-specific prize values and arbitrary concave impact functions.

Within this general framework, it is shown that there exists a unique pure-

strategy Nash equilibrium. Our uniqueness result extends that of Xu et al. to

accommodate the fact that an equilibrium in our model need not be contained

in the restricted strategy space over which Xu et al.’s result applies. As our

1See also Jackson (2008) and Bramoullé and Kranton (2016).
2Examples of models in the first two categories will be discussed later in the Introduction.

Examples of models in the third category include Jackson and Yariv (2007), Galeotti et al.
(2010).

3For relevant surveys of the contest literature see Nitzan (1994), Congleton et al. (2008),
and Konrad (2009).

4A bipartite graph is a graph in which the vertices may be partitioned into two disjoint
subsets; within each subset, no two vertices are connected. The bipartite structure of the
network in our model is similar to the oligopoly framework of Bimpikis et al. (2019) (see
also, Bulow et al., 1985).

5The logit-form CSF is used extensively in the contest literature. For a recent contribu-
tion, see, e.g., Rosokha et al. (2024)
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primary focus is to understand how patterns of interaction affect behavior in

contests, we defer the detailed discussion of this point to Section 3.1.

In order to obtain meaningful insights on how behavior is shaped by the

network, we then introduce more structure on the model. Under the lottery

CSF (Friedman, 1958; Tullock, 1980), we provide necessary and sufficient con-

ditions characterizing equilibrium. We provide sharp upper-bounds on individ-

ual and aggregate efforts, given in terms of network characteristics. We then

compare equilibrium behavior on different network structures, with an empha-

sis on characterizing the networks that induce greater aggregate player effort.

We show, in particular, that for a given set of players and contests/prizes, the

complete bipartite network is the unique network structure that maximizes

aggregate player effort.

To obtain further comparative statics and study the impact of player en-

try/exit, we then introduce some additional structure on the network. We

describe a class of “quasiregular” networks, which includes as special cases,

complete bipartite networks, biregular networks, star networks, and the class

of bilateral complete bipartite networks studied by Franke and Öztürk (2015);

henceforth FÖ. Within this class, we show that the entry [exit] of a partic-

ularly well-connected player may result in a decrease [increase] in aggregate

equilibrium effort. This finding contrasts a large body of work in contests on

the “Exclusion Principle” (Baye et al., 1993). The Exclusion Principle states

that aggregate equilibrium effort in a contest may increase if the most com-

petitive (the highest value) player is excluded. In single-prize contests, it is

well-known that the Exclusion Principle holds under the all-pay auction CSF

but does not apply to the Tullock CSF (see, for example, Fang, 2002; Matros,

2006; Menicucci, 2006).6 In this paper, we derive a new exclusion result, given

in terms of network characteristics, which also applies under the lottery CSF.

Our model has a number of applications including, for example, centralized

R&D decisions by multinational firms (MNFs). Prizes are commonly used

6These papers assume a linear or convex cost of effort. If costs are concave, then even
in a symmetric contest under the lottery CSF aggregate effort may be decreasing in the
number of players (see Gama and Rietzke, 2019).
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tools to encourage R&D activity,7 and contests can be used to model both

explicit R&D contests or patent races (e.g. Che and Gale, 2003; Baye and

Hoppe, 2003). To take advantage of economies of scale and scope, historically,

R&D activity within MNFs has tended to be centralized, and undertaken at

the corporate level (Gassmann and Von Zedtwitz, 1999). In this interpretation,

the firm chooses a single level of R&D effort, the benefits of which are then

realized by each branch of the firm. Our model could also be interpreted in

the context of a national advertising campaign by a geographically dispersed

franchised firm. In this context, each firm chooses a level of expenditure on a

national advertising campaign, which increases the share of the market each

franchise expects to capture.8 Finally, one might also interpret our model in

the context of project funding – e.g., researchers applying for grant funding

or start-up firms applying for venture capital funding. Many research funding

bodies offer matching grants, which cover only a fraction of the cost of a

given project; the other funds must be raised from other sources. In this

interpretation, researchers exert effort on a single project proposal, which they

submit to various funding bodies. Similarly, start-ups may seek out funding

from several different venture capitalists using the same funding proposal.9

The main contributions of this research are twofold. First, we contribute

to the literature on networks by analyzing a new class of network games. We

adapt the uniqueness argument of Xu et al. to accommodate our environ-

ment and, in so doing, extend their finding. We then provide necessary and

sufficient conditions characterizing equilibrium and study how network char-

acteristics influence individual and aggregate behavior. We provide insights

into the network structures that tend to induce greater aggregate effort and

we characterize the unique network structure that maximizes aggregate net-

work activity. Second, we contribute to the literature on contests by studying

7Innovation inducement prizes were a central feature of the Obama Administration’s
efforts to stimulate American innovation as part of the Recovery Act of 2009. Since 2010,
more than 800 inducement prizes have been offered by federal agencies in areas ranging from
national defense to education. See, http://challenge.gov/about.

8For a recent contribution on networks and advertising see Bimpikis et al. (2016).
9We thank the anonymous referee who suggested the example of start-ups applying for

venture capital.
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how behavior in contests is influenced by the structure of interactions between

players. Our new exclusion result illustrates how changing the pattern of in-

teractions can significantly alter existing conclusions from the literature.

There is a large literature on network games, with a broad range of ap-

plications – to name a few: job search and employment dynamics (Calvó-

Armengol and Jackson, 2004; Calvó-Armengol, 2004), the provision of pub-

lic goods (Bramoullé and Kranton, 2007; Bramoullé et al., 2014), collabo-

ration/research and development (Goyal and Moraga-Gonzalez, 2001; Goyal

and Joshi, 2003), and criminal activity (Calvó-Armengol and Zenou, 2004;

Ballester et al., 2006). But as already noted, the bulk of this literature has

focused on games with linear or monotonic best-replies; contests, inherently,

do not fall into either of these categories.

There is a growing literature that combines contests and networks. FÖ’s

analysis relates closely10 and it is worth pointing out the main differences

between our studies. First, FÖ examine bilateral conflicts, while we allow for

multilateral conflicts. Second, the players in FÖ’s model choose a vector of

efforts – one effort for each contest in which the player competes. As will

be discussed in Section 4.1, our model can be interpreted as one in which

each player has increasing returns-to-scale over contests, while FÖ’s model

can be interpreted as one in which players have decreasing returns-to-scale

over contests. This difference has significant consequences for behavior; for

instance, for a given quasiregular network in our model, individual efforts and

payoffs are greater for players with higher degrees, which contrasts the findings

in FÖ. Finally, to gain tractability, FÖ emphasize a class of complete bipartite

networks, which are a special case of our quasiregular networks.

Xu et al. (2022) extends the analysis of FÖ in several interesting dimen-

sions. The authors adopt tools from the study of Variational Inequalities to

address issues such as existence and uniqueness of equilibrium; we rely greatly

on their approach and results to address these points in our model. Neverthe-

less, the focus of our studies is quite different. In particular, their comparative

10See also, Jiao et al. (2019), Doğan et al. (2020), and Huremovic (2020). See Corrales
and Arjona (2022) for a related experimental study.
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statics analysis focuses on changes in parameters in the game (prize values for

instance), rather than on changes in the network structure, which is the focus

of this study. König et al. (2017) studies a setting in which players, competing

for a single prize, are linked as enemies or allies. Several studies –including

Goyal and Vigier (2014) and Kovenock and Roberson (2018) – examine the

attack and defense of networked targets. Marinucci and Vergote (2011) and

Grandjean et al. (2016) study a model of network formation in an all-pay auc-

tion, and a Tullock contest, respectively. In these models, players compete for

a single prize, but the value of the prize to each player depends on the number

of links she forms. Jackson and Nei (2015) study the interaction between net-

works of alliances, international trade, and conflict. Finally, Dziubiński et al.

(2021) study a dynamic model in which “kingdoms” can attack their neighbors

and expand their empire. In contrast to our model in which players choose

a continuous level of effort, in Dziubiński et al. (2021), players are resource

constrained and choose only whether to attack their neighbor(s) or not.

The remainder of the paper is organized as follows: In Section 2, we intro-

duce the model. In Section 3, we analyze equilibrium behavior for an arbitrary

network. In Section 4, we introduce and study the class of quasiregular net-

works. In Section 5, we discuss an alternative modelling approach in which

the cost of effort depends on a player’s degree. Concluding remarks are given

in Section 6.

2 The Model

LetN = {1, . . . , N} denote the set of players, andM = {1, . . . ,M} denote the
set of contests. The structure of interactions can be represented by a bipartite

graph and summarized by the N ×M biadjacency matrix, G = (gim), where

gim = 1 if player i competes in contest m and gim = 0, otherwise. Figure 1

illustrates the bipartite structure of the network. We let Nm = {i ∈ N|gim =

1} denote the set of players competing in contest m and Mi = {m ∈ M|gim =

1} denote the set of contests in which player i competes. We let nm = |Nm|
denote the degree of contest m and vi = |Mi| denote the degree of player i.
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We denote by, v ∈ NN , the vector of player degrees and, n ∈ NM , the vector

of contest degrees. We assume throughout that for each m, nm ≥ 2 and for

each i, vi ≥ 1. This ensures there is at least some competition in each contest

and that each player competes in at least 1 contest. Throughout this analysis,

we express vectors in bold and should be understood to be column vectors.

We now extend the classical logit contest to our environment. If player i

wins contest m, she receives a prize, βm > 0. We let β = (β1, · · · , βM) be the

vector of all prize values. Player i chooses a single effort, xi ≥ 0, to increase

her probability of winning each contest in which she competes. If i chooses

effort xi, she incurs a cost of Ci(xi), where Ci : R+ → R+ is twice differentiable

with, Ci(0) = 0, C ′
i > 0 and C ′′

i ≥ 0. Let x−i ∈ RN−1
+ denote the profile of

efforts chosen by players other than player i and let x ∈ RN
+ denote the profile

of efforts chosen by all players. If the players’ efforts are x, the probability

that player i wins contest m ∈ M is

pim(xi,x−i) =


gimϕm(xi)∑
j∈Nm

ϕm(xj)
, maxj∈Nm{xj} > 0,

gim
nm

, maxj∈Nm{xj} = 0.

For each m, assume ϕm is twice continuously differentiable with ϕm(0) = 0,

ϕ′
m > 0, and ϕ′′

m ≤ 0. The expected payoff to player i is

πi(xi,x−i) =
∑
m∈M

pim(xi,x−i)βm − Ci(xi). (1)

Note that for any x−i, limxi→∞ πi(xi,x−i) < 0. So we may, without loss

of generality, restrict each player’s strategy space to ∆i = [0, xi] for some

arbitrarily large xi. We let S = ×i∈N∆i ⊂ RN
+ and S−i = ×j ̸=i∆j ⊂ RN−1

+ .

Player i takes x−i as given and solves, maxxi∈∆i
πi(xi,x−i).

Let sm =
∑

i∈Nm
xi denote the total effort allocated to contest m and s ∈

RM
+ denote the vector of total contest efforts. We also introduce two notions

of aggregate effort in the network: let zp =
∑

i∈N xi denote the aggregate

player effort and zc =
∑

m∈M sm denote the aggregate contest effort.11 We

11In a single-battle N -player contest, there is only one notion of aggregate effort; i.e., the
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Figure 1: The contest network as a bipartite graph.

let x∗
i denote the equilibrium effort of player, i, and let x∗ ∈ S denote the

profile of individual equilibrium efforts. We analogously define s∗m, s
∗, z∗p and

z∗c . Finally, we let βi =
∑

m∈Mi
βm denote the total value for which player i

competes and let B =
∑

m∈M βm denote the total value of all prizes.

3 Results

3.1 Existence and Uniqueness of Equilibrium

As is well-known, the logit-form contest success function gives rise to a discon-

tinuity in payoffs. “Off-the-shelf” existence and uniqueness results by Rosen

(1965) and Goodman (1980) therefore do not directly apply. Xu et al. (2022)

study a closely-related multi-battle contest model and apply results from Reny

(1999) to establish existence. The same arguments used by Xu et al. can be

applied in our setting.

Xu et al. also show that there is at most one equilibrium within a particular

subset of the strategy space. Following their notation, let S2 denote the subset

aggregate effort of the players is equal to the aggregate effort devoted to the contest. In our
environment, there are two distinct notions of aggregate effort, depending on whether one
aggregates over the players or over contests. As aggregating over contests necessarily leads
to double-counting the effort of any player connected to more than one contest, in general,
zc ≥ zp. We are grateful to the anonymous referee who suggested aggregating over contests.
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of the strategy space corresponding to profiles in which at least two players

are active (exert strictly positive effort) in every contest. Their Proposition 5,

which can be directly applied in our setting, shows that there is at most one

equilibrium in S2. To establish this result, Xu et al. first show that the problem

of characterizing equilibrium can be expressed as an equivalent variational

inequality problem. They then demonstrate that the operator associated with

that variational inequality possesses a strict monotonicity property on S2 (see

Proposition 3 in Xu et al.). Uniqueness of equilibrium (in S2) follows almost

immediately from this monotonicity property (see, Theorem 2 and Proposition

5 in Xu et al.).

In Xu et al.’s baseline model, each player chooses a vector of efforts – one

effort for each contest in which the player competes. If the cost function is

strictly increasing in each effort, Xu et al. show that any equilibrium must

be in S2. In this case, uniqueness of equilibrium is guaranteed. In our model,

players choose only a single effort; as a consequence, there may be equilibria

outside of S2. To see this, consider the conflict structure depicted in Figure

1. In this example, Player 1 competes in all 5 contests, Player 2 competes in

contests 1-4, and Player 3 competes only in contest 5. Suppose each contest

utilizes the lottery CSF (i.e., ϕm(xi) = xi), each prize is equal to 1 (i.e., βm = 1

for each m), and Ci(xi) = xi. It is straightforward to show that there is an

equilibrium in which Players 1 and 2 each choose x∗
1 = x∗

2 = 1, while player 3

is inactive: x∗
3 = 0. In this equilibrium, Player 1 is the only active player in

contest 5 and, hence, x∗ /∈ S2.

The example above demonstrates why Xu et al.’s uniqueness result does

not imply uniqueness of equilibrium in our framework. Nevertheless, in this

example, the equilibrium is unique. This begs the question of whether a similar

uniqueness result obtains over some larger subset containing S2. Indeed, we

show this is the case. Note that in equilibrium in our model (1) each contest

must have at least one active player; and (2) each active player, i, faces at least

one active opponent in some contest to which i is connected. Point (1) follows

since, if no player is active in some contest m, then any player connected to

that contest could increase her effort slightly and strictly increase her payoff.
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To understand point (2), note that if player i is active, but faces no active

opponents, then i could raise her payoff by slightly reducing her effort. Let

S̃2 denote the set of effort profiles, which satisfy (1) and (2). As just argued,

any equilibrium must be in S̃2; moreover, see that S2 ⊂ S̃2. Our first result

establishes existence and uniqueness of equilibrium. The arguments used to

establish uniqueness are similar to those made by Xu et al., but reveal that

there is at most one equilibrium in S̃2.

Proposition 1. For any network, G, there exists a unique pure-strategy equi-

librium of the logit contest game.

3.2 Equilibrium Behavior

To gain some traction in the analysis, let us now suppose, for each m, the

CSF is the lottery CSF in which ϕm(x) = x; further, for each i suppose

Ci(xi) = xi. Let bi : RN−1
+ → R+ denote player i’s best-response: bi(x−i) =

argmaxxi∈∆i
πi(xi,x−i). As πi is strictly concave in xi, bi is a single-valued

function. Moreover, when bi(x−i) > 0, the first-order condition is necessary

and sufficient for characterizing the best-response. In particular, bi(x−i) is the

unique solution to:

∂πi(bi(x−i),x−i)

∂xi

=
∑
m∈M

gim

∑
j ̸=i gjmxj(

bi(x−i) +
∑

j ̸=i gjmxj

)2βm − 1 = 0. (2)

For each m let y−im =
∑

j ̸=i gjmxj denote the total effort of players other

than i to contest m and let y−i = (y−i1, · · · , y−iM). Examining Equation (2),

it is clear that bi depends on x−i insofar as it depends on y−i. Let b̃i(y−i)

be i’s best reply when the vector of others’ total efforts is y−i. By (2), when

interior, b̃(y−i) is defined by,

∑
m∈M

gim
y−im(

b̃i(y−i) + y−im

)2βm = 1. (3)

Now, although our game is not an aggregative game, we will use Equation
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(3) to construct an object analogous to the backwards reply mapping (see,

e.g., Novshek, 1984; Cornes and Hartley, 2005; Jensen, 2010). Specifically,

let ri(s) be the effort of player i that is consistent with i choosing a best-

response when the vector of total contest efforts is s ≫ 0.12 That is, ri(s) =

b̃i(s1 − gi1ri(s), · · · , sM − giMri(s)). From (3), it follows that if ri(s) > 0 then,

∑
m∈M

gim
sm − ri(s)

s2m
βm = 1. (4)

Thus,

ri(s) = max

{∑
m

gimβm

sm
− 1∑

m
gimβm

s2m

, 0

}
. (5)

As is typical in contest models, ri is non-monotonic. In particular, if ri(s) > 0,

it is straightforward to show that for any m ∈ Mi,
∂ri(s)
∂sm

> [<]0 if and only

if ri(s) > [<] sm
2
. We let r(s) = (r1(s), · · · rN(s))T . Our next result gives

necessary and sufficient conditions characterizing equilibrium.

Proposition 2. x∗ is an equilibrium profile of efforts if and only if x∗ = r(s∗)

where s∗ satisfies GT r(s∗) = s∗ and s∗ ≫ 0. Moreover, in equilibrium:

x∗
i =

∑
m∈M

pim(x
∗)(1− pim(x

∗))βm.

The condition x∗ = r(s∗) ensures that each player i chooses an optimal

action that is consistent with the vector of total contest efforts, s∗. The con-

dition, GT r(s∗) = s∗ ensures that the vector of total contest efforts, s∗, is

consistent with players’ individual efforts. That is, GT r(s∗) = s∗ ensures that

in each contest, m,
∑

i gimx
∗
i = s∗m. Finally, it should be clear that, in equi-

librium, it must be that for each m, s∗m > 0; if not, any player competing in

contest m could strictly increase their payoff by increasing effort slightly.

As far as we are aware, there is no way to express equilibrium efforts

in closed-form for a general network structure. Given the non-monotonicity

12For t ∈ RK , we write t ≫ 0 if tk > 0 for each k = 1, · · · ,K.
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of best-replies, performing comparative statics in contest models without a

closed-form representation of equilibrium efforts often proves challenging. Yet

the second part of Proposition 2 provides useful insights into equilibrium be-

havior and comparisons between behavior across different patters of interac-

tion. Note, for instance, that for any p ∈ [0, 1], p(1 − p) ≤ 1
4
. It follows

immediately that x∗
i =

∑
m∈M pim(x

∗)(1 − pim(x
∗))βm ≤ βi

4
. We state this

observation as a corollary.

Corollary 1. Individual equilibrium effort satisfies, x∗
i ≤

βi

4
.

Our next result characterizes an upper (lower) bound on aggregate player

(contest) effort. In what follows, for t ∈ RK , we let h(t) denote the harmonic

mean of the elements of t: h(t) = K∑
k t−1

k

; we also let η =
(

n1

β1
, · · · , nM

βM

)
.

Proposition 3. In equilibrium, aggregate player and contest efforts satisfy,

z∗p ≤ B − M

h (η)
≤ z∗c .

For a fixed prize vector, note that the upper (lower) bound on aggregate

player (contest) effort is increasing in h(η). As will be discussed in the next

section, the term, h(η), is a measure of both the overall number of com-

petitors in contests across the network, and the extent to which higher-value

contests are also those with more competitors. In the next section, we draw

comparisons between equilibrium behavior on different networks; we place a

particular emphasis on characterizing the network structures that induce the

greatest aggregate activity.

3.3 Comparing Networks

As we will now be comparing equilibrium behavior for different networks,

we make the dependence of equilibrium behavior on the network explicit and

write x∗(G) to denote equilibrium individual effort when the network isG. We

similarly use z∗p(G) and z∗c (G) to denote aggregate player and contest efforts

(respectively). Before proceeding it will be useful to define some particular

network structures of interest.
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Definition 1. The network G is biregular if nm = n ≥ 2 for each m ∈ M and

vi = v ≥ 1 for each i ∈ N . G is a player-symmetric biregular network if G is

biregular and βi = βj for each i, j ∈ N . G is a complete bipartite network if

G is biregular and n = N (and hence, v = M).

In a biregular network, each player has the same degree (v) and each contest

has the same degree, (n) (although it need not be the case that v = n); such

a network is completely summarized by the parameters, [n, v,N,M ]. In a

biregular player-symmetric network, each player competes for the same total

value. In a complete bipartite network, each player competes in every contest

and thus n = N and v = M . Note that a complete bipartite network is also a

biregular player-symmetric network in which, for each player i, βi = B. The

next definition describes a particular type of equilibrium that may be induced

by certain network structures.

Definition 2. The network G induces a competitively-balanced equilibrium if,

for each m ∈ M and i ∈ Nm, pim(x
∗) = 1

nm
.

If G induces a competitively-balanced equilibrium then, in equilibrium,

each player competing in contest, m, has an equal chance of winning that

contest. Our next result shows that networks that induce balanced competition

tend to generate greater aggregate player effort.

Proposition 4. Fix N , M , and β. Let G0 and G1 be two networks. Let

nk denote the vector of contest degrees in network Gk, and similarly define

ηk, where k ∈ {0, 1}. If G1 induces a competitively-balanced equilibrium and

h(η0) ≤ h(η1), then z∗p(G
0) ≤ z∗p(G

1). If, in addition, G0 does not induce a

competitively balanced-equilibrium or h(η0) < h(η1), then z∗p(G
0) < z∗p(G

1).

Given two networks, G0 and G1, Proposition 4 reveals that aggregate

player effort will be higher in G1 if (i) G1 induces a competitively-balanced

equilibrium and (ii) h(η0) ≤ h(η1). It is well-understood in single-prize con-

tests that a level playing field tends to induce greater aggregate effort. Condi-

tion (i) extends this idea to an environment with more complex interactions.

To provide some intuition for condition (ii), note that the term, h(η), is greater
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if the average number of competitors across contests is greater and/or contests

with greater prizes are also those with more competitors. To see these points,

first see that condition (ii) obviously holds if there are more competitors in

each contest in the network G1 (i.e., if n0
m ≤ n1

m for each m). Next, see that

if βm = β for each m, then h(η) = h(n)
β

. In this case, condition (ii) holds if

and only if the average (in the harmonic sense) number of competitors across

contests is higher in network G1. Next, suppose the prize values differ across

contests and, without loss of generality, suppose β1 ≥ β2 ≥ · · · ≥ βM . If

n1 is such that n1
1 ≥ n1

2 ≥ · · · ≥ n1
M and n0 is any permutation of n1 then,

h(η0) ≤ h(η1).13

Of course, the statement of Proposition 4 is only useful if one can identify

classes of networks that induce competitively balanced equilibria. The next

observation does just that.

Observation 1. If G is a biregular player-symmetric network, then G induces

a competitively-balanced equilibrium. In particular, the complete bipartite net-

work induces a competitively-balanced equilibrium.

Bipartite player-symmetric networks are not the only network structures

that will induce a competitively-balanced equilibrium. For instance, if G is

a collection of disconnected bipartite player-symmetric subnetworks, then G

will also induce a competitively-balanced equilibrium. In general, to give rise

to such an equilibrium, the network must induce a strong symmetry between

the players in each contest (but the players in different contests, need not share

this symmetry). As a consequence of Proposition 4 and Observation 1, we can

characterize the network that induces the greatest aggregate effort, for a given

N , M , and β.

Proposition 5. Fix N , M , and β. Let G1 denote the complete bipartite

network and let G0 be any network such that G0 ̸= G1. Then z∗p(G
0) <

z∗p(G
1), z∗c (G

0) < z∗c (G
1) and, for each m, s∗m(G

0) < s∗m(G
1).

13In general, h(η) = M∑
m∈M F (βm,nm) , where F (β, n) = β

n . Since F is strictly submodular

in (β, n), it follows from well-known results from the literature on matching (e.g., Becker,
1973) that

∑
m F (βm, n1

m) ≤
∑

m F (βm, n0
m), and hence, h(η0) ≤ h(η1).

13



Proposition 5 shows that, for a given N , M and β, the complete bipartite

network, in which all players compete for every prize, is the unique network

structure that maximizes aggregate effort. Obviously, the complete bipartite

network must also be the unique network that maximizes total effort within

each contest. There are two driving forces for this result: First, the complete

bipartite network maximizes the total value for which each player competes.

Second, the complete bipartite network induces symmetry between all players,

which, as discussed following Proposition 5, promotes greater player activity.

Our final result in this section describes the network structure that induces

the greatest effort of some individual player, holding fixed the total value for

which that player competes.

Proposition 6. Let G1 be a biregular player-symmetric network with contest

degree n1 = 2 and total player prize value β
1

i = β
1
for each i. Let G0 be any

network and let β
0

i be the total prize value of some player i in this network. If

β
0

i ≤ [<]β
1
then x∗

i (G
0) ≤ [<]x∗

i (G
1).

Holding the total prize value of some player i fixed, Proposition 6 reveals

that a biregular player-symmetric network in which two players compete in

each contest induces the greatest individual effort from player i.

Our characterization of equilibrium in Section 3.1 has proved fruitful for

performing some comparative statics and characterizing the network structures

that induce the greatest aggregate/individual effort. However, in order to

perform some additional comparative statics and study the effects of entry/exit

from the network, a more complete characterization of equilibrium is necessary.

In the next section, we introduce some additional structure on the network that

enables such an analysis.

4 Quasiregular Networks

In this section, we analyze behavior in a class of networks, which we refer to

as quasiregular networks. In order to focus exclusively on how equilibrium

behavior is affected by patterns of interactions, in this section we assume that

14



βm = βm′ = β for each m,m′ ∈ M. Without loss of generality, we normalize

β = 1; hence, for each i, βi = vi. The following definition describes the class

of quasiregular networks.

Definition 3. Let Km(γ) denote the number of players with degree γ who

compete in contest m : Km(γ) =
∑

i∈N gim1(vi = γ), where 1(·) is an indicator

function. We say that the network G is quasiregular if for each m,m′ ∈ M
and γ ∈ {1, . . . ,M}, nm ≥ 2 and Km(γ) = Km′(γ).

In a quasiregular network, the number of players with degree γ ∈ {1, . . . ,M}
competing in a contest is equal across contests. Obviously, this means that

each contest has the same degree, which we denote by n. Player degrees need

not be equal but the following link property is satisfied:

∑
i∈N

vi = Mn. (6)

The left-hand side of (6) is the number of links from players to prizes; the

right-hand side is the number of links from prizes to players; obviously, these

two numbers must be equal. The class of quasiregular networks includes some

important sub-classes, such as biregular networks (defined in Section 3.3), com-

plete biregular networks, star networks,14 and the class of bilateral complete

bipartite networks, studied in FÖ.15

As each contest in a quasiregular network has the same total number

of competitors and the same number of competitors with each degree, γ ∈
{1, . . . ,M}, it should be clear that there is a symmetry between each contest

in the network. Players, on the other hand, need not be symmetric and may

have different degrees. But given the symmetric nature of the contests, the

14In a star network, one central player has degree, M ; each of M periphery players has
degree 1; and the degree of each contest is 2. See the left panel of Figure 4 for an illustration.

15In a bilateral complete bipartite network players are partitioned into two coalitions,
say C1 and C2. Each member of coalition Cj competes with each member in the opposing
coalition, Ck, in one bilateral contest. No two members of the same coalition compete with
one another. Note that each player in coalition Cj has degree |Ck|. This structure is a
quasiregular network: Each contest has one player with degree, |C1| and one player with
degree, |C2|.
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only meaningful source of asymmetry between two players is their respective

degree; i.e., the identities of the contests in which a player competes do not

matter. Indeed, it will be shown that, in a quasiregular network, two players

choose the same equilibrium effort if and only if those two players have the

same degree. Therefore, in what follows, when we refer to the asymmetry of a

quasiregular network, this should be understood to be a reference to the level

of dispersion of player degrees.

Given the discussion above, it will be useful to have a measure summarizing

the overall dispersion in player degrees. In this spirit, for t ∈ RK , we let

a(t) =
1
K

∑
k tk

h(t)
≥ 1 denote the ratio of the arithmetic mean of entries of t to

the harmonic mean of elements of t. For a quasiregular network, a(v) can

be interpreted as a measure of overall asymmetry between players. Note, for

instance, that if v is such that vi = vj for each i and j, while v′ is such that

v′i ̸= v′j for some i and j then a(v) = 1 < a(v′). More generally, given two

quasiregular networks, G1 and G0 with M contests and N players, if player

degrees inG1 are a mean-preserving spread of the player degrees in networkG0

then a(v0) < a(v1) (see Mitchell, 2004). Our first result provides an explicit

characterization of equilibrium efforts for quasiregular networks.

Proposition 7. Let G be a quasiregular network with N players, M contests,

and contest degree, n. Let s∗ = M(n−1)
N

and suppose, for each i, vi > s∗.

In the unique equilibrium, x∗
i = s∗ − s∗2

vi
> 0. Moreover, for each contest,

m, s∗m = s∗ and hence, z∗c = Ms∗. Aggregate player effort can be expressed,

z∗p = M(n− 1)
(
1− n−1

n
a(v)

)
.

The assumption, vi >
M(n−1)

N
, ensures that the equilibrium is interior (i.e.,

all players choose a strictly positive effort in equilibrium); it is satisfied by, for

example, any biregular network, star network, or bilateral complete bipartite

network. This assumption is made for ease of exposition, but a complete

characterization of equilibrium behavior without the interiority assumption,

may be found in our working paper (Matros and Rietzke, 2018).

In the next subsection, we provide several comparative statics results for

quasiregular networks. We then examine the effects of player entry/exit from

16



the network. Throughout this next section, we will maintain the interiority

assumption, vi >
M(n−1)

N
for all i; however, some of our illustrative examples

do not satisfy this condition. Analogous comparative statics results without

the interiority assumption can be found in our aforementioned working paper.

4.1 Comparative Statics on Quasiregular Networks

Our first result shows that, for a given quasiregular network, players with

higher degrees exert greater effort and receive higher equilibrium payoffs.

Proposition 8. Let G be a quasiregular network. For any two players, i and

j, the following statements are equivalent: (i) x∗
i > x∗

j ; (ii) πi(x
∗) > πj(x

∗);

and (iii) vi > vj.

It is worth comparing Proposition 8 with results from FÖ. In their model,

for regular or complete bipartite networks, FÖ find that players with higher

degrees exert less effort in each contest and receive lower equilibrium payoffs.

This point of contrast arises because of a fundamental difference in the ex-

ternalities that exist across contests in the two models. In FÖ’s model, the

network effects are captured through a linkage between each of i’s efforts in

the quadratic cost function.16 Thus, greater effort by player i in contest m

raises the marginal cost of effort in all of i’s other contests, yielding negative

externalities between contests. In our model, there are positive externalities

across contests – greater effort in contest m reduces the marginal cost of effort

(to zero) in all of i’s other contests. As a consequence, there is a difference in

the returns-to-scale over contests for each player. If some player, i, with de-

gree, vi, wants to allocate the same effort, say x, to each of her contests, then

in FÖ’s model, the total cost of doing so is v2i x
2. The average cost per-contest

is vix
2, which is clearly increasing in vi. In this way, the setup in FÖ can

be interpreted as one in which players have decreasing returns-to-scale over

contests. In our model, the average cost per-contest of delivering x units of

16Specifically, in FÖ’s model, if xi ∈ Rvi
+ is the vector of efforts chosen by player i then

the cost of effort is C(xi) =
(∑

m∈Mi
xim

)2
.
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effort to each of i’s contests is x
vi
, which is clearly decreasing in vi and can be

interpreted as a form of increasing returns-to-scale over contests.17 We revisit

this issue in Section 5 when we introduce a model with degree-dependent costs.

We now explore how the structure of a quasiregular network affects equilib-

rium behavior. Our first result shows the impact of increasing the number of

competitors in each contest (i.e., increasing the prize degree, n) on aggregate

efforts.

Proposition 9. Fix N and M . Let G0 and G1 be two quasiregular networks;

let nk denote the contest degree in network Gk and suppose n0 < n1. Then,

(i) For each m, s∗m(G
0) < s∗m(G

1) and, hence, z∗c (G
0) < z∗c (G

1).

(ii) If a(v1) ≤ [<] min
{
a(v0), n0n1

n0n1−1

}
, then z∗p(G

0) ≤ [<]z∗p(G
1).

Fix N and M . Consider two contest networks, G0 and G1, and suppose

each contest in Gk has nk ≥ 2 competitors. If n0 < n1, under what conditions

will it be true that the total effort in each contest is higher in G1? Proposition

9(i) provides one set of sufficient conditions addressing this question. In par-

ticular, if G0 and G1 are both quasiregular then, indeed, total effort in each

contest is higher in G1. To understand why quasiregularity is important for

this finding, it is instructive to first examine an example where G0 and G1 are

not quasiregular:

Example 1. Consider the two networks illustrated in Figure 2. Let G0 denote

the network on the left and let G1 denote the network on the right. In G0,

each contest has degree n0 = 2; in G1, each contest has degree, n1 = 3.

Neither network is quasiregular. In G0, the total equilibrium effort in contest

c1 is approximately 1.476. In G1, the total equilibrium effort in contest c1 is

approximately 1.111.

17Note that it is not the linearity of the cost function in our model that drives the difference
between our result and the result of FÖ. Rather, it is the fact that there are positive
externalities between contests, combined with the fact that the total cost of effort to player
i is independent of her degree. For instance, if each player has cost function, C(xi), then

the average cost per contest of i delivering x units of effort to each contest is C(x)
vi

, which

is decreasing in vi. For the cost function, C(xi) = x2
i (which is analogous to FÖ) it is

straightforward to show that the statement of Proposition 8 remains true.
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Figure 2: The two network structures discussed in Example 1. Players are represented by
hollow nodes; contests are represented by solid nodes.

Example 1 illustrates that, in general, if the degree of each contest in-

creases, total effort in any particular contest may decrease. Intuitively, al-

though there are fewer competitors in each contest in network G0, the compe-

tition is relatively balanced: the two competitors in c1 – players 1 and 2 – both

compete in a total of 3 contests; in equilibrium, player 1 wins c1 with prob-

ability of about .506, while player 2 wins with probability .494. In network

G1, by contrast, competition in c1 is relatively imbalanced. Players 2 and 3

compete for only a single prize, while player 1 competes for a total of six. The

presence of the high-value player discourages effort from players 2 and 3; in

equilibrium, player 1 is the only active player in c1. The comparatively high

effort from player 1 is not enough to offset the loss of effort from the inactive

players and total effort in c1 decreases when the network changes from G0 to

G1.

Within the class of quasiregular networks, strong discouragement effects

are also possible. Indeed, an increase in the degree of each contest may result

in a reduction in aggregate player effort. At the same time, the structure of

these networks is such that, in any particular contest, some level of competition

is preserved. Our next example illustrates.

Example 2. Consider the two networks in Figure 3. Let G0 denote the net-

work on the left and let G1 denote the network illustrated on the right. In

G0, the contest degree is n0 = 3. In G1, the contest degree is n1 = 4. Both

networks are quasiregular. In equilibrium in G0 all players are active and

s∗1(G
0) = s∗2(G

0) = 2
3
, and z∗p(G

0) = 4
3
. In equilibrium in G1 only players 3

and 4 are active and s∗1(G
1) = s∗2(G

1) = z∗p(G
1) = 1.

Similar to Example 1, when the network changes fromG0 toG1 in Example

2, competition in each contest becomes relatively imbalanced. In G0, each
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player competes for a total value of 1, and this network induces a competitively-

balanced equilibrium. In G1, players 3 and 4 compete for a total value of 2,

while players 1,2, 5, and 6 compete in a single contest. The presence of the two

high-value players discourages effort from all other players; in equilibrium only

players 3 and 4 are active. But, contrasting Example 2, within each contest,

the increased competition between players 3 and 4 offsets the loss of effort

from the inactive players; total effort in each contest increases.

Example 2 illustrates a general feature of quasiregular networks: If G0

and G1 are quasiregular networks with contest degrees, n0 < n1, then, within

each contest, the degree of at least two players must be higher in G1.18 As

a consequence, in any particular contest, discouragement effects are offset by

the increased competition between the players of higher degree.

1

2

3

4

5

6

1

2

Players Contests

1

2

3

4

5

6

1

2

Players Contests

4

Figure 3: The two network structures described in Example 2.

Example 2 also demonstrates that an increase in the contest degree may re-

sult in a reduction in aggregate player effort, even while the total effort in each

contest increases. Intuitively, adding additional links may have two competing

18For instance, suppose n1 = n0 + 1. Then,
∑

i v
1
i −

∑
i v

0
i = Mn1 − Mn0 = M . This

means that in network G1, M new links must be created between players and contests. It
cannot be the case that the degree of 1 player increases by M (otherwise, that player must
have been competing in 0 contests in network G0). Hence, the degree of at least two players
must increase. But since each contest contains an equal number of players of every degree,
this means that the degree of at least two players in each contest must increase.

20



effects on aggregate network effort. For those players whose degree increases,

effort tends to increase since these players now compete for a greater number

of prizes. However, additional links may give rise to a greater overall asym-

metry between players, as measured by a(v). Using the characterization of

equilibrium in Proposition 7, it is clear that aggregate player effort is decreas-

ing in a(v). Of course, additional links may also reduce the level of player

asymmetry, giving rise to a more competitive contest network. Proposition

9(ii) shows that if additional links are added to a network in such a way that

the resulting structure is “symmetric enough” then aggregate equilibrium ef-

fort in the network increases. The next example illustrates; Figure 4 depicts

the two networks described in the example.

Example 3. Let G0 denote the star network in the left panel of Figure 4 and

G1 denote the augmented star depicted in the right panel. For the star network,

n0 = 2 and a(v0) ≈ 1.444. In the augmented star, n1 = 3, and a(v1) = 1.125.

It is straightforward to check that the hypotheses of Proposition 9 are satisfied

in this example. And indeed it holds, z∗p(G
0) ≈ 1.389 < z∗p(G

1) = 2.5.

Example 3 illustrates a scenario in which a higher contest degree results

in a reduction in overall player asymmetry. In G0 there is a single player

with degree 5 and 5 players with degree 1. In G1, the discrepancy between

the high and low-value players is reduced – there is one player of degree 5

and 5 players of degree 2. When the network changes from G0 to G1, overall

player asymmetry, as measured by a(·), decreases and aggregate player effort

increases.

Figure 6

Figure 7: Hybrid Network

3

Figure 4: The two network structures described in Example 3. Players are represented by
hollow nodes and contests are represented by solid nodes.
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4.2 Effects of Player Entry/Exit

In this section, we study the effects of player entry/exit. We focus on the

impact of the entry/exit of a particularly “well-connected” player on the ag-

gregate player effort. Specifically, our next result examines a scenario in which

a player with degree M is added to a biregular network.

Proposition 10. Let G be a biregular network summarized by [n, v,N,M ].

Let G+ be the quasiregular network formed by adding an additional player

with degree M to the network, and let v+ denote the vector of player degrees

in network G+. Then z∗p(G
+) < z∗p(G) if and only if

1 +
1

n3
< a(v+). (7)

Proposition 10 demonstrates that the entry [exit] of an additional player

may result in lower [greater] aggregate player effort. Condition (7) can be

interpreted as saying that the new entrant induces a significant amount of

asymmetry in the network. Our result closely relates to the Exclusion Prin-

ciple (Baye et al., 1993). The driving force behind the Exclusion Principle

is well-understood in single-prize contests: a player with a high prize value

discourages competition from players with lower prize values. Removing the

high-value player, levels the playing field and results in a more competitive

contest. As discussed in the introduction, prior work has found that the Ex-

clusion Principle holds under the all-pay auction CSF but does not apply under

the lottery CSF with linear/convex costs (see, e.g., Stein, 2002; Fang, 2002;

Matros, 2006). The reason is that the lottery CSF introduces a significant

amount of noise in determining the winner, which dampens the discourage-

ment effect.19

But previous work in the contest literature focuses on one particular pat-

tern of interactions (one in which all players compete for a single prize); the

entry/exit of one player does not affect this structure.20 In contrast, the en-

try/exit of a player in our model, has indirect effects on other players, which

19For more recent work on the discouragement effect see also Chowdhury et al. (2023),
Drugov and Ryvkin (2022) and Cortes-Corrales and Gorny (2022).

20Two exceptions are Dahm and Esteve-Gonzalez (2018) and Dahm (2018). Both studies
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stem from the player’s influence on the structure of interactions.21 When indi-

rect network effects are taken into account, our Proposition 10 shows that the

phenomenon behind the Exclusion Principle can also apply under the noisy

lottery CSF. The following example illustrates our finding; Figure 5 depicts

the networks described in the example.

Example 4. Let G denote the biregular network consisting of only players

1-6 in Figure 5. Let G+ denote the network formed when player 7 is added.

It holds that a(v+) = 52
49

≈ 1.06 > 1 + 1
n3 = 1 + 1

27
≈ 1.04. Consistent

with Proposition 10, the addition of player 7 reduces aggregate player effort.

Specifically, z∗p(G
+) = 120

49
≈ 2.45 < z∗p(G) = 8

3
≈ 2.67.

1

2

3

7

4

5

6

5

Figure 5: The networks described in Example 4. Players are represented by hollow nodes;
contests are represented by solid nodes.

5 Degree-Dependent Costs

In Sections 3.2–4, we assumed that the cost of effort to player i is independent

of the number of contests in which i competes. In some situations of inter-

est, this assumption may be overly restrictive. In the context of R&D, for

example, a multinational firm may undertake R&D centrally and distribute

that technology to each market in which the firm operates. But the cost of

explore a particular network structure in which all players compete for a main prize, while
a subset of disadvantaged players also compete for a secondary prize. Dahm (2018) shows
that excluding an advantaged player altogether may increase total effort under the all-pay
auction CSF, but even greater effort can be generated by only excluding the advantaged
player from competing for the secondary prize.

21A similar effect is described in Ballester et al. (2006)
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distributing that technology may be non-trivial and may impact her initial

investment decision. In this section we explore this issue.

Suppose if player i chooses effort, x, her total cost is, Ci(x) = c(vi)x,

where c : R+ → R+ is weakly increasing, twice continuously differentiable,

and satisfies c(0) = 0. The payoff to player i is, πi(x) =
∑

m
gimxi∑
j gjmxj

− c(vi)xi.

In this alternative model, the qualitative nature of our results from Section

3 continue to hold, but with regards to equilibrium expenditures. For instance,

the characterization of equilibrium individual behavior given in Proposition

2 remains true if one replaces x∗
i with e∗i = c(vi)x

∗
i ; that is, it can be shown

that in equilibrium, e∗i =
∑

m pim(x
∗)(1 − pim(x

∗))βm. The upper-bound on

aggregate player effort given in Proposition 3 also holds if one replaces z∗p

by aggregate equilibrium expenditures, z∗e , where, z
∗
e =

∑
i e

∗
i . Similarly, the

comparisons between equilibrium aggregate player efforts for different network

structures given in Section 3.3 also hold if one replaces aggregate player effort,

z∗p , by aggregate player expenditures, z∗e . In particular, fixing N and M , the

complete network is the unique network structure that maximizes aggregate

player expenditures.

Note, however, that in the degree-dependent cost model, the comparative

statics of equilibrium efforts are highly dependent upon the shape of the cost

function, c(·). For instance, for any quasiregular network, Proposition 8 shows

that x∗
i > x∗

j if and only if vi > vj. Moreover, it is implied by Proposition 9

that, for biregular networks, an increase in the contest degree, n, yields greater

aggregate player effort. Our next result summarizes how these comparative

statics may change in the degree-dependent cost model.

Proposition 11. Consider the degree-dependent cost model with equal prize

values across contests. Let f(v) = v
c(v)

and suppose f(vi) >
M(n−1)∑

i c(vi)
22 for each

i. Then,

(i) If G is a quasiregular network, then for any two players, i and j, the

22This condition is analogous to the condition given in Proposition 7 that vi > s∗. It
ensures that, for quasiregular networks, the equilibrium is interior (i.e., all players choose
strictly positive effort). It is always satisfied for biregular networks. A statement analogous
to (i) holds without this interiority assumption for any two active players.
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following statements are equivalent: (i) x∗
i > x∗

j and (ii) f(vi) > f(vj).

(ii) Let G0 and G1 are two biregular networks with N players, M contests,

and contest degrees, n0 and n1, respectively, and suppose n1 > n0. If

f ′ < 0, then z∗p(G
0) > z∗p(G

1).

Proposition 11(i) reveals which players choose the greatest effort in the

model with degree-dependent costs. Note that c′′ < 0 implies f is strictly

increasing; in this case, the average cost per contest, c(vi)xi

vi
is decreasing in

vi. Hence, c′′ < 0 can be interpreted as a form of increasing-returns-to-scale

over contests. Analogously, c′′ > 0 can be interpreted as a form of decreasing-

returns-to-scale over contests. Thus, it is implied by Proposition 11(i) that,

for quasiregular networks, if there are increasing returns-to-scale over contests

then the players with the highest degrees choose the greatest efforts. Similarly,

with decreasing returns-to-scale, the players with the lowest degrees choose the

highest efforts. Following the same interpretation, Proposition 11(ii) reveals

that, for biregular networks, if there are decreasing returns-to-scale over con-

tests then aggregate player effort is decreasing in the contest degree.

6 Conclusion

In this paper we propose a new framework for studying contests on networks.

We provided necessary and sufficient conditions characterizing equilibrium for

an arbitrary network and gave insights into how behavior depends on the

structure of interactions. For a given set of players and contests, we showed

that the complete network is the unique network structure that maximizes

aggregate effort. We also introduced a class of quasiregular networks, which

enabled further comparative statics results. Finally, we derived a new exclusion

result, akin to the Exclusion Principle of Baye et al. (1993), given in terms of

network characteristics, which is relevant under the lottery CSF. This finding

shows that prior conclusions from the contest literature may be significantly

affected by changing the pattern of interactions.
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Appendix

A Proofs

Proof of Proposition 1

The proof of existence follows nearly identical arguments as those made by Xu

et al., so we omit this here. The proof of uniqueness also follows along similar

lines as the proofs in Xu et al. For this reason, we will provide only an outline

of most of the arguments but we will be more explicit when appropriate. Let

S̃2 be as defined in the discussion prior to Proposition 1. As argued in the

main body, if x∗ is an equilibrium profile then x∗ ∈ S̃2. We will show that

there cannot exist two distinct equilibria in S̃2.

Let S1 denote the set of all effort profiles in which at least one player is

active in each contest; i.e., S1 = {x ∈ R+|∀m ∈ M,maxi∈Nm{xi} > 0}. It

follows by definition of S̃2 that S̃2 ⊂ S1. Define the operator F : S1 → RN :

F(x) = −


∂π1(x)
∂x1
...

∂πN (x)
∂xN

 .

Following similar arguments made by Xu et al. in the proof of their Proposition

1, it can be shown that x∗ is a Nash equilibrium if and only if,

x∗ ∈ S1 and ⟨F(x∗),x− x∗⟩ ≥ 0, ∀x ∈ S1, (8)

where ⟨·, ·⟩ denotes the inner product. For x ∈ S1, let M(x) denote the

Jacobian matrix of F: M(x) = ∇xF(x), x ∈ S1.

A critical step in the proof of Xu et al.’s uniqueness result is showing that
1
2
(M(x) + M(x)T ) is positive definite for x ∈ S2; here, we will show that is

true for any x ∈ S̃2. To do so, we follow Xu et al. and apply a result from

Goodman (1980), which ensures that 1
2
(M(x)+M(x)T ) is positive definite for

x ∈ S̃2 if on S̃2 for each i, (1) ∂2πi(x)

∂x2
i

< 0, (2) πi is convex in x−i for each xi,

and (3)
∑

i πi is concave in x. Points (2) and (3) follow from similar arguments
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made in Xu et al. Here, we show point (1). Take any i ∈ N and let m ∈ Mi.

At any x ∈ S2, pim is twice differentiable in xi and

∂2pim(x)

∂x2
i

=

(∑
j∈Nm\{i} ϕm(xj)

) [
ϕ′′
m(xj)

∑
j∈Nm

ϕm(xj)− 2ϕ′
m(xi)

2
]

(∑
j∈Nm

ϕm(xj)
)3 .

See that ϕ′′
m ≤ 0 < ϕ′

m =⇒ ∂2pim(x)

∂x2
i

≤ 0, holding with strict inequality

if
∑

j∈Nm\{i} ϕm(xj) > 0. Moreover, x ∈ S̃2 implies that for at least one

m† ∈ Mi,
∑

j∈N
m†\{i} ϕm†(xj) > 0 and hence,

∂2p
im† (x)

∂x2
i

< 0. These facts along

with the convexity of Ci imply,

∂2πi(x)

∂x2
i

=
∑

m∈Mi

∂2pim(x)

∂x2
i

βm − C ′′
i (xi) ≤

∂2pim†(x)

∂x2
i

βm† < 0,

which establishes that 1
2
(M(x)+M(x)T ) is positive definite for x ∈ S̃2. From

here, the remaining arguments are similar to those made by Xu et al. in the

proofs of their Proposition 3 and Theorem 2. Namely, for x ∈ S̃2 1
2
(M(x) +

M(x)T ) positive definite implies F is a strictly monotone operator on S̃2:

x′,x′′ ∈ S̃2,x′ ̸= x′′ =⇒ ⟨F(x′)− F(x′′),x′ − x′′⟩ > 0. (9)

Then suppose x∗∗ and x∗ are two distinct equilibria. By (8),

⟨F(x∗),x∗∗ − x∗⟩ ≥ 0 and ⟨F(x∗∗),x∗ − x∗∗⟩ ≥ 0,

which implies

⟨F(x∗)− F(x∗∗),x∗ − x∗∗⟩ ≤ 0.

But since x∗,x∗∗ ∈ S̃2 the inequality above contradicts (9), which means that

any equilibrium must be unique.
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Proof of Proposition 2

First we show necessity. Let x∗ be a PSNE. For each i ∈ N and m ∈ M, let

s∗m =
∑

j gjmx
∗
j and let y∗−im = s∗m − x∗

i . The fact that s∗ ≫ 0 follows from

arguments made in the proof of Proposition 1 (recall that any equilibrium

must be in S̃2). Now choose any player i. By definition of equilibrium, x∗
i =

b̃i(y
∗
−i1, · · · , y∗−iM) = b̃i(s

∗
1 − gi1x

∗
i , · · · , s∗M − giMx∗

i ). By definition of ri, it

follows that x∗
i = ri(s

∗), where s∗ = (s∗1, · · · , s∗M). Thus, for each i ∈ N ,

x∗
i = ri(s

∗). So, for each m ∈ M, s∗m =
∑

j gjmx
∗
j =

∑
j gjmrj(s

∗). This

means, GT r(s∗) = s∗.

Now let x∗ = r(s∗), where GT r(s∗) = s∗ ≫ 0. We will show that x∗ is

an equilibrium profile. To this end, it suffices to show that, for each player, i,

ri(s
∗) is a best-response to r−i(s

∗) = (r1(s
∗), · · · , ri−1(s

∗), ri+1(s
∗), · · · , rN(s∗)).

Consider any player, i. Suppose ri(s
∗) > 0. See that

∂πi

∂xi

|(ri(s∗),r−i(s∗)) =
∑
m∈M

gim

∑
j ̸=i gjmrj(s

∗)(∑
j∈N gjmrj(s∗)

)2βm − 1

=
∑
m∈M

gim
s∗m − ri(s

∗)

s∗2m
βm − 1

= 0.

The second equality follows from the first since GT r(s∗) = s∗. The final

equality follows by definition of ri(s
∗) (see Equation (4)). By strict concavity

of πi in xi, ri(s
∗) is the best-response for player i.

Next, suppose ri(s
∗) = 0. This means

∑
m∈Mi

βm

s∗m
≤ 1. Then, for any

xi > 0, ∂πi

∂xi
|(xi,r−i(s∗)) =

∑
m∈Mi

s∗m
(xi+s∗m)2

βm − 1 <
∑

m∈Mi

βm

s∗m
− 1 ≤ 0. Hence,

for any xi > 0, πi(xi, r−i(s
∗)) < πi(ri(s

∗), r−i(s
∗)). This establishes that x∗ is

an equilibrium profile.

Finally, let x∗ be a PSNE; we will show x∗
i =

∑
m∈M pim(x

∗)(1−pim(x
∗))βm.

This is trivially true if x∗
i = 0; so suppose x∗

i > 0. Using equation (4) along

with the fact that x∗
i = ri(s

∗), in equilibrium it holds, x∗
i =

∑
m∈M gim

x∗
i s

∗
m−x∗2

i

s∗2m
βm;

or x∗
i =

∑
m∈M pim(x

∗)(1− pim(x
∗))βm.
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Proof of Proposition 3

We first show s∗m ≥ nm−1
nm

βm. We proceed by contradiction. Contrary to

the proposition, suppose there exists a contest m̃ such that, in equilibrium,

sm̃ < nm̃−1
nm̃

βm̃. Now, for each active player, i ∈ Nm̃,
∂πi(x

∗)
∂xi

=
sm̃−x∗

i

s2m̃
βm̃ +∑

m ̸=m̃
sm−x∗

i

s2m
βm−1 ≥ sm̃−x∗

i

s2m̃
βm̃−1. Thus,

∑
i∈Nm̃

∂πi(x
∗)

∂xi
≥

∑
i∈Nm̃

(
sm̃−x∗

i

s2m̃
βm̃ − 1

)
=

nm̃βm̃−βm̃−nm̃sm̃
sm̃

> 0, where the final inequality holds since sm̃ < nm̃−1
nm̃

βm̃. But

this means that, for at least one player i ∈ Nm̃,
∂πi(x

∗)
∂xi

> 0, which contradicts

(4). Thus, for each m, s∗m ≥ nm−1
nm

βm. By definition of z∗c , z
∗
c ≥

∑
m∈M

nm−1
nm

βm

We now show z∗p ≤
∑

m∈M
nm−1
nm

βm. Using Proposition 2,

z∗p =
∑
i∈N

∑
m∈M

pim(x
∗)(1− pim(x

∗))βm

=
∑
m∈M

βm

∑
i∈Nm

pim(x
∗)(1− pim(x

∗))

=
∑
m∈M

βm −
∑
m∈M

βm

∑
i∈Nm

pim(x
∗)2,

where the final equality holds since
∑

i∈Nm
pim(x) = 1 for all m and x. For

any contest, m, consider the following constrained minimization problem:

minpm∈[0,1]nm βm

∑
i∈Nm

p2im subject to the constraint
∑

i∈Nm
pim = 1. There

is a unique solution to this problem, which is to choose pim = 1
nm

for each

i ∈ Nm. Therefore,

∑
m∈M

βm −
∑
m∈M

βm

∑
i∈Nm

pim(x
∗)2 ≤

∑
m∈M

βm −
∑
m∈M

βm

∑
i∈Nm

1

n2
m

=
∑
m∈M

nm − 1

nm

βm.

Finally, using the definitions of h(·) and B, straightforward algebraic ma-

nipulation reveals that
∑

m∈M
nm−1
nm

βm = B − M
h(η)

.
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Proof of Proposition 4

Let G0 and G1 be as given in the proposition. From the proof of Proposition

3 it is clear that the upper-bound given in the proposition is achieved if and

only if the network induces a competitively-balanced equilibrium. So, if G1

induces a competitively-balanced equilibrium then, z∗p(G
1) = B − M

h(η1)
. As

h(η0) ≤ h(η1), z∗p(G
0) ≤ B− M

h(η0)
≤ B− M

h(η1)
. Note that the first inequality,

which holds by Propositon 3, is strict if G0 does not induce a competitively

balanced equilibrium; and the second inequality is strict if h(η0) < h(η1).

Proof of Observation 1

Let G be a biregular player-symmetric network with contest degree, n, and

common total prize value, βi = β. Following arguments analogous to those

presented in the proof of Proposition 7, it is straightforward to confirm that

in the unique equilibrium x∗
i = x∗

j = β
(
n−1
n2

)
for each i, j ∈ N . Thus, for each

m and i ∈ Nm, pim(x
∗) = 1

n
.

Proof of Proposition 5

Fix M , N , and β. Let G1 denote the complete bipartite network and let

G0 ̸= G1. Let nk
m denote the degree of contest m in Gk and let nk denote

the vector of contest degrees. By Observation 1, G1 induces a competitively-

balanced equilibrium. Moreover, n1
m = N for each m. Obviously, it must be

that n0
m ≤ N for each m; moreover, since G0 ̸= G1, n0

m′ < N for at least

one m′. It follows that h(η0) < h(η1). By Proposition 4, z∗p(G
0) < z∗p(G

1).

Moreover, for each m, s∗m(G
0) ≤ z∗p(G

0) < z∗p(G
1) = s∗m(G

1). By definition of

z∗c , it follows that z
∗
c (G

0) < z∗c (G
1).

Proof of Proposition 6

Let G1 be a biregular player-symmetric network with total prize value β
1
and

contest degree n1. As shown in the proof of Observation 1, x∗
i (G

1) = β
1

4
. The

result follows immediately by Corollary 1.
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Proof of Proposition 7

Let s∗ be the M×1 column vector, whose entries are equal to s∗ = M(n−1)
N

. Let

x∗ = (x∗
1, · · · , x∗

N)
T , where x∗

i = s∗ − s∗2

vi
. To show that x∗ is an equilibrium

profile, Proposition 2 implies that it is sufficient to show x∗
i = ri(s

∗) for each

i and that
∑

i gimri(s
∗) = s∗ for each contest, m.

First, see that ri(s
∗) = max

{∑
m

gim
s∗m

−1∑
m

gim
s∗2m

, 0

}
= max

{
vis

∗−s∗2

vi
, 0
}

= s∗ −
s∗2

vi
= x∗

i , where the second-to-last equality holds since vi > s∗i , by assumption.

Thus, x∗
i = r(s∗).

Before completing the proof, we provide a simplification of the sum, tm =∑
i
gim
vi
. Note that tm can be written as tm =

∑M
γ=1

Km(γ)
γ

, where Km(γ) is as

defined in Definition 3. But, by definition of a quasiregular network, for each

m,m′ ∈ M Km(γ) = Km′(γ). Thus, for each m,m′ ∈ M, tm =
∑

i
Km(γ)

γ
=∑

i
Km′ (γ)

γ
= tm′ = t. It follows that

∑
m tm = Mt =

∑
m

∑
i
gim
vi

= N . Thus,

for each m ∈ M , tm = N
M
.

Now let m be given. We will show
∑

i gimri(s
∗) = s∗. As already shown,

x∗
i = ri(s

∗). So,
∑

i gimri(s
∗) =

∑
i gim(s

∗ − s∗2

vi
) = ns∗ − s∗2tm = ns∗ −

s∗2 N
M

= M(n−1)
N

= s∗, where the second-to-last inequality holds by plugging in

s∗ = M(n−1)
N

to the expression prior. This establishes that x∗ is an equilibrium

profile of efforts.

Now see that z∗p =
∑

i x
∗
i = Ns∗−s∗2

∑
i v

−1
i = M(n−1)

(
1− M(n−1)

N
1

h(v)

)
=

M(n− 1)
(
1− n−1

n
a(v)

)
, where the first equality holds by plugging in the ex-

pression for s∗; the second equality holds since 1
N

∑
i vi =

Mn
N

by (6).

Proof of Proposition 8

The fact that x∗
i > x∗

j if and only if vi > vj follows immediately from the

characterization of equilibrium efforts in Proposition 7. Now see that πi(x
∗) =

vi
x∗
i

s∗
− x∗

i = s∗2

vi
+ vi − 2s∗; under the interiority assumption vi > s∗ and it is

straightforward to show that πi(x
∗) is strictly increasing in vi.
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Proof of Proposition 9

Part (i) is immediate from the characterization in Proposition 7. Here, we

show Part (ii). Using the characterization provided in Proposition 7,

1

M
(z∗p(G

1)− z∗p(G
0)) = n1 − n0 − (n1 − 1)2

n1
a(v1) +

(n0 − 1)2

n0
a(v0)

≥ [>]n1 − n0 − a(v1)

[
(n1 − 1)2

n1
− (n0 − 1)2

n0

]
= n1 − n0 − a(v1)

(
n1 − n0

n0n1

)
(n0n1 − 1)

≥ [>]0.

The first inequality follows since a(v1) ≤ [<]a(v0). The final inequality

holds since n1 > n0 and a(v1) ≤ [<] n0n1

n0n1−1
.

Proof of Proposition 10

Let G and G+ be as described in the proposition. The network, G+ is a

quasiregular network with contest degree, n+1. Using Proposition 7, equilib-

rium aggregate player effort in G+ is, z∗p(G
+) = Mn[1− n

n+1
a(v+)]; aggregate

player effort in the biregular network simplifies to, z∗p(G) = M(n−1)
n

. Using

these two expressions, it holds that z∗p(G
+) < z∗p(G) if and only if expression

(7) holds.

Proof of Proposition 11

Following analogous steps as in the proof of Proposition 7, it may be verified

that if G is a quasiregular network with N players, M contests and contest

degree, n then, in the unique equilibrium, x∗
i = s∗ − s∗2

f(vi)
, where s∗ = M(n−1)∑

i c(vi)
.

Moreover, in each contest, s∗m = s∗. The statement of item (i) follows imme-

diately from this characterization.

In a biregular network, vi = v for each i. In this case, the characterization

above simplifies to yield, s∗m = s∗ = M(n−1)
Nc(v)

and x∗
i = x∗ = s∗ − c(v)

v
s∗2. Using
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the fact that in a biregular network, Mn ≡ Nv, aggregate player effort can be

written z∗p = n−1
n

M

c(Mn
N )

. Momentarily viewing n as a continuous variable, note

that sgn
(

∂z∗p
∂n

)
= sgn

(
1
n
− (n−1)M

N
c′(v)
c(v)

)
. Then, f ′(v) < 0 implies c′(v)

c(v)
> 1

v
for

all v > 0. It follows that 1
n
− (n−1)M

N
c′(v)
c(v)

< 1
n
− M(n−1)

Nv
= 2−n

n
≤ 0, where

the final equality holds by using the identity Mn ≡ Nv. Item (ii) follows

immediately.
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