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Abstract. Quintessence models have been widely examined in the context of scalar-Gauss-
Bonnet gravity, a subclass of Horndeski’s theory, and were proposed as viable candidates for
Dark Energy. However, the relatively recent observational constraints on the speed of gravita-
tional waves cGW have resulted in many of those models being ruled out because they predict
cGW ̸= c generally. While these were formulated in the metric formalism of gravity, it was
found later that some Horndeski models could be rescued in the Palatini formalism, where the
connection is independent of the metric and the underlying geometry no longer corresponds
to the pseudo-Riemannian one. Motivated by this and the relation between scalar-Gauss-
Bonnet gravity and Horndeski’s theory, we put forward a new quintessence model with the
scalar-Gauss-Bonnet action but in Weyl geometry. We find the fixed points of the dynamical
system under some assumptions and determine their stability via linear analysis. Although
the past evolution of the Universe as we know it is correctly reproduced, the constraints on
cGW are shown to be grossly violated for the coupling function under consideration. The case
of cGW = c is regarded also, but no evolution consistent with other cosmological observations
is obtained.
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1 Introduction

Late Dark Energy (DE) models have become quite popular following the observational dis-
covery of the current accelerated expansion of the Universe from Type Ia supernovae [1, 2].
Planck Collaboration in particular finds that the equation of state (EoS) parameter of this DE
is consistent with a cosmological constant (CC) [3], arguably the simplest candidate for DE.
This CC is interpreted as vacuum energy in particle physics [4–6], but no convincing scenario
has been found where the actual observed energy scale of DE can be naturally accounted for
by vacuum energy ascribed to a particle physics model [7, 8].

Planck measurements also leave the door open to a dynamical scalar field (named
‘quintessence’ [9, 10]), with changing DE EoS parameter. This latter possibility allows for a
more sensible mechanism to explain DE [11–13] and paves the way for a unified description
(called ‘quintessential inflation’ [14–17]) of the late accelerated expansion era and early in-
flation. The inflationary phase in the early evolution of the Universe serves to explain the
primordial origin of the Large Scale Structures in the Universe while resolving the horizon
and flatness problems of the Hot Big Bang model [18–20].

Many of those quintessence DE models rely on modifications of gravity at large and
fall within the scalar-tensor theories chiefly [21–26]. Consequently, they have been (and
still are) under close examination after the detection of gravitational waves (GWs) made by
the Advanced LIGO and Virgo detectors [27–29] (see Refs. [30–35]). The multi-messenger
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observation of a binary neutron star system’s merger [36] placed stringent bounds on the
relative difference between the speed of propagation of GWs, cGW, and the speed of light in
vacuum, c [37]. Defining the parameter

αT ≡ c2GW − 1 , (1.1)

in units where c = 1, those bounds yield

|αT | < 10−15, (1.2)

given the delay between arrival times of the GWs and γ-rays emitted by the system’s merger.
Horndeski’s theory [38] is an example of theory of gravity that has been strongly con-

strained by Eq. (1.2).1 This theory is the most general one in four dimensions leading to
second-order field equations of the metric tensor gµν(x) and a scalar field ϕ(x). It can be
shown that, in order for GWs to propagate at the speed of light (αT = 0), only the stan-
dard, field-dependent conformal coupling to gravity G(ϕ)R, where R is the Ricci scalar, is
allowed. This reduces significantly the number of subclasses of Horndeski’s theory conducive
to modelling quintessence [31, 40].

Among those subclasses affected by the constraint (1.2), the scalar-Gauss-Bonnet (SGB)
model, the scalar-tensor generalisation of Einstein-Gauss-Bonnet (EGB) gravity [41], is a well-
known case [40] in cosmology. This model consists of a field-dependent coupling ξ(ϕ) to the
Gauss-Bonnet (GB) term

G ≡ R2 − 4RµνRµν +RαβµνRαβµν , (1.3)

where Rµν and Rα
βµν are the Ricci and Riemann tensors, respectively, in addition to the

Einstein-Hilbert action of General Relativity (GR). The upper bound on |αT | is satisfied if ξ
is constant. This is not surprising as the GB term is a topological term in four dimensions
and does not contribute to the field equations of the metric [41]. Hence, one is left with
Einstein’s theory of GR, which predicts that GWs propagate at the speed of light. Another
possibility is to impose the following condition:

ξ̈ = Hξ̇ , (1.4)

which restricts the functional form of the coupling ξ(t), such that ξ̇(t) ∝ a(t). H(t) ≡
ȧ(t)/a(t) is the Hubble parameter and a(t) the scale factor. Overdots denote time derivatives
and a homogeneous, isotropic and spatially-flat spacetime, described by the flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric gµν = diag

[
−1, a2(t), a2(t), a2(t)

]
, was assumed.

The consequences of the scaling of ξ after Eq. (1.4) have been studied in the literature in the
context of cosmic inflation [42–44], despite the fact that the neutron star system’s merger is
a low-redshift event, significantly lower than the estimated redshift value at the onset of DE
domination [45] and at a time much later than inflation. For this latter reason, we considered
Gauss-Bonnet Dark Energy (GBDE) models with αT = 0 in Ref. [46]. Unfortunately, we
found that one cannot make cGW = 1 if the density parameters of matter and DE are such
that ΩM ∼ ΩDE.

Leaving those two possibilities aside, there are works in which the effects of the constraint
on |αT | are examined and illustrated [47, 48], the first reference including a case of kinetic

1Regarding this bound, its consistency across the whole spectrum of GW frequencies has been discussed
within the context of Horndeski’s theory in Ref. [39].

– 2 –



coupling to curvature besides the coupling to the GB term. In Ref. [46], those effects were
explored in the GBDE models mentioned above. We came to the realisation that the bound
does not seem very constraining for those models. Contrary to this intuition however, it was
found that the constraint is easily violated at present time.2

Additionally, there has been an intensive research on Horndeski models in the frame-
work of the Palatini formalism [51–55].3 A striking result of that investigation has been the
realisation that Horndeski models in this formalism, with a conformal coupling depending on
the kinetic term X ≡ −1

2g
µν∂µϕ∂νϕ (that is, G(ϕ,X)R), do allow GWs propagating at the

speed of light [53]. This is in contrast to what the metric one prescribes. Similar attempts
were made to address this question for more complicated Horndeski models [54, 55], but the
connection field equations turn out to be differential rather than algebraic, so the connection
Γα
µν becomes a propagating degree of freedom of the theory. This entails relevant new aspects

in the physical content of the theory [51]. Even the fact of whether the SGB model remains a
subclass of Horndeski theory in the Palatini formalism is an unexplored issue in the literature
to the best of our knowledge.

Motivated by that relation between the SGB model and Horndeski’s theory in the metric
formalism, and the results of the referenced works involving the speed of GWs, we propose
a quintessence model with the SGB action assuming Weyl geometry, and determine the be-
haviour of the αT parameter. A previous analysis of EGB gravity with a Weyl connection in
higher dimensions was carried out in Ref. [59], but the present work considers a field-dependent
coupling function ξ(ϕ) instead. On top of this, we find that the very same homogeneous and
tensor perturbation equations derived here apply to another connection which, as opposed
to the Weyl connection, has non-vanishing torsion and is metric compatible. The role the
projective transformations play to achieve this is discussed in Sec. C of the Appendix.

Once the equations are derived, we perform a dynamical systems analysis assuming an
exponential potential, in line with Ref. [46]. This potential is very common in quintessence
scenarios [11, 12, 57, 60–62]. For an exponential coupling function ξ(ϕ), the fixed points
are calculated, those being relevant from the cosmological standpoint. We analyse their
stability and compute the αT parameter along trajectories that reproduce the observationally
constrained values of the density parameter of matter and the effective EoS parameter of the
DE fluid at the present time. While in the SGB model, Eq. (1.4) must be satisfied in order
for αT to vanish, here a different equation is obtained and its stability around the de Sitter
and scaling regimes is examined.

Natural units for which MPl ≡ (8πG)−1/2, MPl = 2.43 × 1018 GeV being the reduced
Planck mass, have been assumed in this work. G is Newton’s gravitational constant.

2 Theoretical Framework

2.1 Quadratic Gravity in the Palatini Formalism

In the metric formalism of gravity, the connection is set to be

Γ̊α
µν ≡ 1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν) , (2.1)

2Modifications to the SGB model including a coupling between the matter sector and the quintessence field
or a non-minimal coupling of the scalar field to gravity seem to satisfy the constraint (1.2) for very specific
initial conditions set in radiation domination and ξ(ϕ) ∝ ϕ2. See results reported in Refs. [49, 50].

3Recent quintessential inflation models have been proposed in this formalism in f(R) and f(ϕ,R) theories
[56, 57]. In the case of f(ϕ)R gravity, an example of quintessence scalar field couplings with metric and torsion
can be found in Ref. [58], where the growth of linear matter perturbations is studied.
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which is the well-known ‘Levi-Civita’ (LC) connection [63].4 It is torsion free and metric
compatible. Consequently

Γ̊α
µν = Γ̊α

νµ , (2.2)

∇̊αgµν = 0 , (2.3)

respectively, where ∇̊µ is the covariant derivative induced by the LC connection.
In the Palatini formalism of gravity however, the connection Γα

µν(x) does not depend
on the metric tensor gµν(x). The dynamics of Γα

µν is governed by appropriate field equa-
tions. While Γα

µν does not necessarily fulfill Eqs. (2.2) and (2.3), one can relate it to the LC
connection by

κ α
µν ≡ Γα

µν − Γ̊α
µν . (2.4)

Since κ α
µν is the difference of two connections, it transforms as a tensor under coordinate

transformations. This tensor is called the ‘distortion tensor’ [64]. By defining the torsion and
non-metricity tensors as

T α
µν ≡ Γα

[µν] = Γα
µν − Γα

νµ , (2.5)

Qαµν ≡ ∇αgµν , (2.6)

respectively, we find the following equations:

T α
µν = κ α

µν − κ α
νµ , (2.7)

Qαµν = −καµν − κανµ , (2.8)

where indices are raised and lowered with respect to the metric tensor gµν . We see that T α
µν

is antisymmetric in its first two indices, while Qαµν is symmetric in the last two.
In this work, we consider κ α

µν of the form

κ α
µν = δαµAν + δανAµ − gµνA

α. (2.9)

Aµ in the above expression is a vector field that we call ‘Weyl vector’ and Γα
µν with that

distortion tensor is known as the ‘Weyl connection’ [59]. Then, the corresponding torsion and
non-metricity tensors, using Eqs. (2.7) and (2.8), are respectively, Tα

µν = 0 and

Qαµν = −2gµνAα . (2.10)

Weyl connection then has non-vanishing non-metricity tensor. A more general connection is
regarded in App. A.

Given the GB term in the metric formalism G̊

G̊ ≡ R̊2 − 4R̊µνR̊µν + R̊αβµνR̊αβµν , (2.11)

one might regard a similar collection of quadratic curvature scalars as the GB term in the Pala-
tini formalism. However, given the lack of symmetries in the latter formalism (see App. A),
one must take into account that the most general combination of quadratic terms is more
complicated. In fact, such a combination can be written as [65]

G = αR2 +Rµν (β1Rµν + β2Rνµ) + R̃µν
(
β3Rµν + β4Rνµ + β5R̃µν + β6R̃νµ

)
+ R̄µν (β7Rµν+

4Rings (overcircles) are used to denote geometric quantities defined with respect to the LC connection and
its first derivatives. We shall adopt this convention hereon, unless otherwise stated.
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+β8R̃µν + β9R̄µν

)
+Rαβµν (γ1Rαβµν + γ2Rβαµν + γ3Rµναβ + γ4Rαµνβ + γ5Rµανβ+

+γ6Rνβµα + γ7Rβνµα) , (2.12)

where R̃µν and R̄µν are the co-Ricci tensor and the homothetic curvature tensor, defined in
Eqs. (A.5) and (A.6) respectively.5 In the above, the constant coefficients α, {βi}i=1,...,6 and
{γi}i=1,...,7 are arbitrary. In order to recover Eq. (2.11) when κ α

µν = 0 (i.e. Γα
µν = Γ̊α

µν), we
set (α, β, γ) = (1,−4, 1), where

β ≡
6∑

i=1

βi , (2.13)

γ ≡ γ1 − γ2 + γ3 . (2.14)

The rest of γ coefficients are chosen such that γ4 = γ5 = γ6 = γ7 [65]. Since ˚̄R = 0, there is
no need to fix β7, β8 and β9.

With that parametrisation, G becomes the Lagrangian of quadratic terms that we use
in the action of the SGB model in the Palatini formalism, which reads

S =

∫
d4x

√
−g

[
M2

Pl
2

R− 1

2
ξ(ϕ)G − 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (2.15)

Also, R = R̊ + κ (see Eq. (A.9) in App. A). V (ϕ) is the scalar field potential and ξ(ϕ) the
GB coupling function.

2.2 Weyl-Gauss-Bonnet Action

Using the tensors defined in Eqs. (A.2)-(A.7), their symmetry properties that were shown in
App. A, and the scalar quantity κ defined in Eq. (A.9), we can write G as

G = G̊ + 2R̊κ− 8R̊µν κ̃µν + 2R̊αβµν κ̄αβµν + κ2 − 4κ̃µν κ̃µν + κ̄αβµν κ̄αβµν −
1

4
Υκ̄µν κ̄µν ,

(2.16)

where G̊ is defined in Eq. (2.11) and Υ is given by

Υ ≡ 1− β1 + β2 − 2β7 − 4β9 − 2γ1 + γ4 . (2.17)

As one can see, Υ depends on the arbitrary coefficients, whereas the rest of the terms in
Eq. (2.16) are oblivious to them.

In terms of the Weyl vector and its derivatives, G reads

G = G̊ + 8
[(

G̊µν − ∇̊νAµ
)
∇̊µAν −

(
R̊µν − 2∇̊µAν

)
AµAν +

(
∇̊σA

σ +AσA
σ
)
∇̊ρA

ρ−

−Υ∇̊µAν
(
∇̊µAν − ∇̊νAµ

)]
. (2.18)

Plugging this G into Eq. (2.15), we obtain the action of what we call the ‘Weyl-Gauss-Bonnet’
(WGB) model,

SWGB =
1

2

∫
d4x

√
−g
[
M2

PlR̊− ξ(ϕ)G̊
]
− 4

∫
d4x

√
−g

{
3

4
M2

PlAσA
σ −

(
G̊µν − ∇̊µAν

)
Aµ∂νξ−

5We refer the reader to Ref. [59], where ‘co-Ricci’ and ‘homothetic’ are used to name the respective tensors
as well.
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−
(
∇̊σA

σ +AσA
σ
)
∂ρξA

ρ − ξ(ϕ)Υ∇̊µAν (∂µAν − ∂νAµ)
}
−
∫

d4x
√
−g

[
1

2
gµν∂µϕ∂νϕ+ V (ϕ)

]
+

+

∫
d4x

√
−gLM(gµν ,Ψ) , (2.19)

where we have integrated by parts and used some well-known properties of the curvature
tensors in the metric formalism [63]. We drop the rings from now on as it is clear that every
geometric quantity is defined with respect to the LC connection and its derivatives once the
variables depending on the distortion tensor have been rewritten in terms of the Weyl vector
and its covariant derivative. Notice also that we have included the matter action SM,

SM[gµν ,Ψ] =

∫
d4x

√
−gLM(gµν ,Ψ) , (2.20)

given our interest in the late Universe. ‘Ψ’ is used to denote collectively the matter fields and
LM is the corresponding Lagrangian. As we see, the matter fields are minimally coupled to
gravity and the action SM is not a functional of the connection, only of the metric tensor.
This choice is made for simplicity, although one might explore the possibility of matter fields
coupled to the connection. In that case, besides the energy-momentum tensor, one obtains
the so-called ‘hypermomentum tensor’ from the variation of the action with respect to the
connection [66].

2.3 Homogeneous Field Equations

We now present the homogeneous equations of the WGB model. The field equation of the
vector field Aµ, derived from Eq. (2.19), is (remember that rings are dropped for simplicity)

3

2

(
M2

Pl −
4

3
∂νξA

ν

)
Aµ =

(
G ν

µ − 2∇µA
ν
)
∂νξ + (2∇σA

σ +AσA
σ) ∂µξ +

1

2
Υ∇ν

(
ξκ̄ ν

µ

)
.

(2.21)

A vector field of the form Aµ(t) ≡ (−Φ(t),0) is considered. That is, we take the spatial
components of the vector field to vanish at the background level. This is required to keep
the expansion of the Universe isotropic (see App. B). Such a choice implies κ̄µν = 0 in the
background. Consequently, Υ does not play any role in the dynamics of Φ. In particular, the
homogeneous part of Eq. (2.21) reads

Φ = 2
ξ̇

M2
Pl

(H − Φ)2 . (2.22)

For ξ̇ ̸= 0, one can write this equation as

Φ2 − 2Φ

(
H +

M2
Pl

4ξ̇

)
+H2 = 0 . (2.23)

It can be noticed from Eq. (2.22) that Φ = 0 for ξ̇ = 0 (constant ξ), and the LC
connection is recovered at the background level. Another possibility that leads to Φ = 0 is
H = Φ (see Eq. (2.22)), but this implies H = 0, which is not a valid solution when we regard
a time dependent scale factor.
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Eq. (2.23) is an algebraic equation that can be readily solved for ξ̇ ̸= 0

Φ = H

[
1 +

1

4µ

(
1±

√
1 + 8µ

)]
, (2.24)

where µ is defined as

µ ≡ ξ̇H

M2
Pl

. (2.25)

Notice that µ cannot be smaller than −1/8, otherwise Φ becomes complex. Since we shall
consider expanding universes (H > 0), this bound has to be taken into account if ξ̇ turns
negative.

The Weyl parameter W ≡ H − Φ is introduced, such that

W

H
= − 1

4µ

(
1−

√
1 + 8µ

)
, (2.26)

where the positive root in Eq. (2.24) has been discarded. The reason for this is that if one
takes ξ̇ = 0 in Eq. (2.22), then Φ = 0. But only the negative root in Eq. (2.24) yields Φ ≃ 0
(i.e. W ≃ H) when |µ| ≪ 1. On the other hand, |µ| ≫ 1 in Eq. (2.26) leads to

W

H
≃ 1√

2µ
, (2.27)

and hence W ≪ H. For W to be real, µ > 0 when |µ| ≫ 1 as was pointed out above in
relation to Φ.

Later we will make use of the inverse relation to Eq. (2.26). Using Eq. (2.22), we can
write the H(W, ξ̇) function as

H = W +Φ = W

(
1 + 2

ξ̇W

M2
Pl

)
. (2.28)

The homogeneous field equations of the metric and the scalar field are given by (see
App. B)

H2 =
1

3M2
Pl

[
1

2
ϕ̇2 + V (ϕ) + ρM + 12ξ̇W 3

]
+Φ2, (2.29)

Ḣ = − 1

2M2
Pl

[
ϕ̇2 + ρM + PM + 4ξ̇W 3 − 4

(
ξ̇W 2

)•
− 12ξ̇ΦW 2

]
− 3Φ2, (2.30)

ϕ̈+ 3Hϕ̇+ V,ϕ = −12ξ,ϕW
2
(
Ẇ +HW

)
. (2.31)

ρM and PM are the homogeneous energy density and isotropic pressure of the matter fields,
respectively. The energy density satisfies the following continuity equation:

ρ̇M = −3HρM (1 + wM) , (2.32)

where wM ≡ PM/ρM is the EoS parameter of the background fluid under consideration, which
we will assume to lie in the range 0 ≤ wM < 1. This range includes the values corresponding
to pressureless matter (wM = wm = 0) and radiation (wM = wr = 1/3).
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If Φ = 0, Eqs. (2.29)-(2.31) are the same as those of the SGB model [44]

H2 =
1

3M2
Pl

[
1

2
ϕ̇2 + V (ϕ) + ρM + 12ξ̇H3

]
, (2.33)

Ḣ = − 1

2M2
Pl

[
ϕ̇2 + ρM + PM + 4ξ̇H3 − 4

(
ξ̇H2

)•]
, (2.34)

ϕ̈+ 3Hϕ̇+ V,ϕ = −12ξ,ϕH
2
(
Ḣ +H2

)
. (2.35)

This is reasonable as we have not made use of the background equation of Φ, Eq. (2.22), yet.
Now, using Eq. (2.22), Eqs. (2.29)-(2.31) take on the form

W 2 =
1

3M2
Pl

[
1

2
ϕ̇2 + V (ϕ) + ρM

]
, (2.36)

Ẇ +ΦW = − 1

2M2
Pl

(
ϕ̇2 + ρM + PM

)
, (2.37)

ϕ̈+ 3Wϕ̇+ V,ϕ = −12ξ,ϕW
2

(
W 2 − ρM

1 + wM

2M2
Pl

)
. (2.38)

For Φ = 0, these equations reduce to

H2 =
1

3M2
Pl

[
1

2
ϕ̇2 + V (ϕ) + ρM

]
, (2.39)

Ḣ = − 1

2M2
Pl

(
ϕ̇2 + ρM + PM

)
, (2.40)

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 . (2.41)

We recover the equations of GR above because Φ = 0 implies ξ̇ = 0 (unless H = 0) by virtue
of Eq. (2.22).

2.4 Equations for Tensor Perturbations

We derived the homogeneous equations and solved the only non-trivial equation (2.22) that
governs the evolution of Aµ. Now, we perturb about the flat FLRW metric and consider
tensor perturbations

ds2 = −dt2 + a2(t) [δij + hij(t,x)] dxidxj , (2.42)

where hij(t,x) are the traceless-transverse tensor components, such that hii = 0 = ∂ih
i
j .

Perturbing the action (2.19) up to quadratic terms, we derive the equation of tensor pertur-
bations6(
M2

Pl − 4ξ̇W
)
ḧij+

[
3H
(
M2

Pl − 4ξ̇W
)
− 4

(
ξ̈W + ξ̇Ẇ

)]
ḣij−

[
M2

Pl − 4
(
ξ̈ + ξ̇Φ

)]
a−2∂k∂

khij = 0 ,

(2.43)
where ∂k∂

k ≡ δkl∂k∂l. Assuming that 4ξ̇W ̸= M2
Pl, the equation may be written as

ḧij + (3 + αM )Hḣij − (1 + αT ) a
−2∂k∂

khij = 0 , (2.44)

6We assume there is no contribution from the matter action in the form of an anisotropic stress tensor.
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where αM and αT are given by

αM ≡ − 4

H

ξ̈W + ξ̇Ẇ

M2
Pl − 4ξ̇W

, (2.45)

αT ≡ −4
ξ̈ − (H − 2Φ) ξ̇

M2
Pl − 4ξ̇W

. (2.46)

The speed of GWs predicted by the WGB model is then given by c2GW = 1 + αT , with αT of
Eq. (2.46). Using Eq. (2.22), we may write the αT parameter entirely in terms of W , ξ̇ and ξ̈

αT = − 4

M2
Pl

M2
Pl

(
ξ̈ − ξ̇W

)
+ 2ξ̇2W 2

M2
Pl − 4ξ̇W

. (2.47)

3 Dynamical Systems Analysis

3.1 Dynamical System

Given the homogeneous field equations (2.36)-(2.38), we analyse the generic behaviour of
the dynamical system. We find the corresponding fixed points and determine their stability
keeping in mind the known history of the Universe. To that end, the following dimensionless
variables are defined:

x ≡ ϕ̇√
6WMPl

, y ≡ 1

WMPl

√
V

3
, z ≡ 1

WMPl

√
ρM
3

, (3.1)

such that Eq. (2.36), which is the analogue of the Friedmann equation in GR, can be written
as

1 = x2 + y2 + z2. (3.2)

It is noticed that, in contrast to the definitions of x, y and z in Ref. [46], these are given in
terms of the Weyl parameter, W , not the Hubble one. W and H are related by Eq. (2.28).
Using the dimensionless variables, this relation can be written as

H = W (1 + ux) , (3.3)

where another dimensionless variable,

u ≡ 2
√
6
ξ,ϕW

2

MPl
, (3.4)

was defined.
A second difference between those definitions and the ones discussed in Ref. [46] is that

u is not constrained by Eq. (3.2). The reason for this independence is related to the fact that
the modifications of gravity are included in the definitions of x, y and z in Eq. (3.1) via the
Weyl parameter. In Ref. [46], on the other hand, the effects of modified gravity are accounted
for solely by the u variable (see Eq. (17) in that paper).

With the definitions of the dimensionless variables above, we can write the density
parameter of the background fluid ΩM as

ΩM ≡ ρM

3H2M2
Pl

=
1− x2 − y2

(1 + ux)2
, (3.5)
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where Eqs. (3.2) and (3.3) were used.
Using those very same equations, we define the density parameter of the scalar field ϕ

too and write it in terms of the dimensionless variables (3.1) and (3.4)

Ωϕ ≡
1
2 ϕ̇

2 + V

3H2M2
Pl

=
x2 + y2

(1 + ux)2
. (3.6)

Finally, the ‘effective’ density parameter associated with ξ is

Ωξ ≡
(2 + ux)ux

(1 + ux)2
, (3.7)

such that 1 = Ωϕ +ΩM +Ωξ.
Assuming an exponential potential

V (ϕ) = V0e
−λϕ/MPl , (3.8)

such that V,ϕ = − λ
MPl

V and λ > 0 is a non-zero constant, the dynamical equations become
self-similar given the definitions in Eqs. (3.1) and (3.4). This class of potentials gives rise to
scaling solutions and they are ubiquitous in quintessence models (see e.g. Ref. [25], where
the exponential potential is the large field limit of the one proposed therein). Then, taking
the derivatives of x, y, z and u, and using Eq. (2.31), the scalar field equation, the continuity
equation (2.32), and Eq. (3.3), we arrive at

x′ = − 1

1 + ux

[
(3x+ u)(1 + ux)−

√
3

2
λy2 + (x+ u)

Ẇ

W 2

]
, (3.9)

y′ = − y

1 + ux

(
Ẇ

W 2
+

√
3

2
λx

)
, (3.10)

z′ = −z

[
Ẇ

W 2

1

1 + ux
+

3

2
(1 + wM)

]
, (3.11)

u′ =
2

1 + ux

(
u
Ẇ

W 2
+ 6ξ,ϕϕW

2x

)
. (3.12)

Ẇ/W 2 can be expressed in terms of the dimensionless variables using Eq. (2.37). Plugging
Eq. (2.22) into Eq. (2.37) we find

− Ẇ

W 2
= x (3x+ u) +

3

2
z2 (1 + wM) . (3.13)

Primes denote derivatives with respect to the number of elapsing e-folds, which we choose to
be dN ≡ d ln a = Hdt.

Ẇ/W 2 can be related to the Hubble flow parameter ϵH , which is defined as [67]

ϵH ≡ − Ḣ

H2
. (3.14)

ϵH parametrises the acceleration of spatial slices. Using Eq. (2.28) we find

ϵH = − 1

1 + ux

[
Ẇ

W 2
+

(ux)•

H

]
. (3.15)
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Notice that no assumption regarding ξ(ϕ) has been made so far. All the previous equa-
tions are valid for any coupling function, including the exponential one

ξ(ϕ) = ξ0e
κϕ/MPl , (3.16)

such that ξ,ϕϕ = κ
MPl

ξ,ϕ, where κ > 0 is a non-zero constant.7 Assuming such a coupling
function, Eq. (3.12) is a self-similar equation too and the explicit dependence on W drops
out of the equation8

u′ =
2u

1 + ux

(
Ẇ

W 2
+

√
3

2
κx

)
. (3.17)

3.2 Fixed Points

Fixed points of the dynamical system of equations (3.9), (3.10) and (3.17) are denoted by xc,
yc and uc, respectively, and correspond to regions of the phase space where x′ = y′ = u′ = 0.
Among those, we can list the following ones:

• M: (xc, yc, uc) = (0, 0, 0) and ϵH |c =
3
2 (1 + wM);

• K±: (xc, yc, uc) = (±1, 0, 0) and ϵH |c = 3;

• I: (xc, yc, uc) =
(

λ√
6
,
√
1− λ2

6 , 0

)
and ϵH |c =

λ2

2 ;

• ScI: (xc, yc, uc) =
(√

3
2
(1+wM)2

λ2 ,

√
3
2
1−w2

M
λ2 , 0

)
and ϵH |c =

3
2 (1 + wM);

which are fixed points in GR too because Wc = Hc at those fixed points (see Eq. (3.3)). zc is
determined from the constraint equation (3.2), so we do not really need to impose z′ = 0; it
follows from the constraint equation.9

M represents the regime of the background fluid domination. K± stands for the period
of kination (dominance of the kinetic energy of the scalar field ϕ̇2/2) and I corresponds to a
regime of power law inflation (when λ <

√
2, so that ϵH |I < 1) where matter fields do not

contribute (zI = 0; see Eq. (3.2)). Notice that this latter fixed point exists if λ <
√
6, so yI is

real (remember that λ > 0). Lastly, we have the scaling regime (ScI). In this case, the EoS
parameter of the scalar field,

wϕ ≡
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
, (3.18)

becomes equal to that of the background fluid, wM. This fixed point yields

x2ScI + y2ScI =
3

λ2
(1 + wM) , (3.19)

7The strength of the exponential κ in Eq. (3.16) should not be confused with the scalar κ defined in
Eq. (A.9), discussed in Sec. 2.2 and App. A.

8For a linear coupling function ξ(ϕ) ∝ ϕ, the explicit dependence on the Weyl parameter W also disappears
from Eq. (3.12). However, as we will argue later on (see footnote 12), the linear coupling case can be discarded
on the basis of our knowledge of the past history of the Universe.

9Notice from Eq. (3.11) that, in order for z′ = 0, either zc = 0 or ϵH |c = 3
2
(1 + wM) (see Eq. (3.15)). Both

are satisfied (although not simultaneously) by the fixed points above and by the ones we discuss later. Besides
this, we remark that, unlike z, u′ = 0 is imposed as x′ = y′ = 0 are satisfied for u = u(N) and xc = ±1
and yc = 0, for example. As was argued already, this is due to the fact that the modifications of gravity are
included in all the definitions of the dimensionless variables, Eqs. (3.1) and (3.4), whilst in our previous work,
Ref. [46], these were only represented by u, which is defined in Eq. (17) of that paper.
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and, by virtue of Eq. (3.2), we obtain the following existence condition:

λ >
√

3(1 + wM) ≥
√
3 . (3.20)

Therefore, we observe that I and ScI coexist whenever
√
6 > λ >

√
3. If I corresponds to

power law inflation, then both fixed points cannot coexist because λ <
√
2 is required, as was

pointed out already.
In addition to the fixed points listed above, we find five other points:

• dS: (xc, yc, uc) =
(
0, 1,

√
3
2λ
)

and ϵH |c = 0;

• ScII±: (xc, yc, uc) =
(

κ√
6

1+3wM
3(1−w2

M)
∆±(κ,wM), 0, κ√

6
1

1+wM
∆±(κ,wM)

)
, where

∆±(κ,wM) ≡ 1±

√
1− 18

κ2
(1 + wM)(1− w2

M)

1 + 3wM
, (3.21)

and ϵH |c =
3
2 (1 + wM);

• K̂±: (xc, yc, uc) =
(
±1, 0,

√
3
2κ∓ 3

)
and ϵH |c =

∓ 3κ
2
√
6

1∓ 3κ
2
√
6

.

The first fixed point corresponds to the de Sitter expansion, where the total energy density
consists only of the CC. This fixed point exists in GBDE models even for λ ̸= 0. It is also
found in the SGB model (see Refs. [46, 68]) because xdS = 0 and WdS = HdS (see Eq. (3.3)).

Besides the de Sitter fixed point, we have a second scaling regime which consists of two
fixed points (ScII±), depending on the root sign in Eq. (3.21). These fixed points exist if

κ2 ≥ 18
(1 + wM)(1− w2

M)

1 + 3wM
, (3.22)

so that xScII± and uScII± are real. Then 1 ≤ ∆+ < 2 and 0 < ∆− ≤ 1. Also, Eq. (3.2)
demands

x2ScII± =
κ2

54

(1 + 3wM)2

(1− w2
M)2

∆2
± < 1 . (3.23)

Combining it with Eq. (3.22) we obtain

∆2
± <

3(1− wM)

1 + 3wM
. (3.24)

Given that 1 ≤ ∆2
+ < 4 and 0 < ∆2

− ≤ 1, we have 0 ≤ wM < 1
3 for ∆+ and 0 ≤ wM < 1

for ∆− (we remind the reader that the whole range of values of wM is assumed to be 0 ≤
wM < 1; see below Eq. (2.32)). Therefore, the scaling fixed point ScII+ in particular does
not exist if the background fluid under consideration corresponds to radiation for example,
where wM = wr = 1/3. The scaling regime is still represented by ScII− in that case though.

Finally, the fourth and fifth fixed points listed above have vanishing potential energy
and the energy density of the background fluid is zero. We denote them by ‘K̂±’ and call the
corresponding regime ‘pseudo-kination’ since 3W 2

K̂±M
2
Pl = ϕ̇2

K̂±/2, although WK̂± ̸= HK̂±.
Irrespective of the sign, if κ ≫ 1, then ϵH |K̂± → 1. This value of the Hubble flow parameter,
for large κ, leads into a universe that does not accelerate.
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For xc = +1 (i.e. K̂+) and κ < 2
√

2
3 , ϵH |K̂+ < 0 (remember that κ is defined to be

positive; see below Eq. (3.16)). This implies that the Universe accelerates faster than during
de Sitter, where it accelerates exponentially.10

Lastly, choosing λ = κ allows for all xc, yc and uc being non-zero at once as can be
seen from Eqs. (3.10) and (3.17). The same occurs in the SGB model (see Ref. [46]). The
corresponding fixed ‘curves’ are

• ScIII: (x, y, u) =

 3
2
(1+wM)√

3
2
λ− 3

2
uc(1+wM)

,

√√√√√
3
2
λuc+

3
2
(1+wM)

(
3
2
(1−wM)−

√
3
2
λuc+

1
2
(1+3wM)u2

c

)
(√

3
2
λ− 3

2
uc(1+wM)

)2 , uc


and ϵH |c = 3

2(1 + wM);

• ÎV: (x, y, u) =
(
xc,
√

1− x2c ,−3xc +
√

3
2λ
)

and ϵH |c =
√

3
2
λxc

1−3x2
c+

√
3
2
λxc

.

We then have a third scaling solution, ScIII, and a regime of zero energy density of the
background fluid, corresponding to the fixed ‘curve’ ÎV. This curve is denoted that way
following the convention in Ref. [46] (see Table I in that paper), although neither of those
two fixed ‘curves’ are found in the SGB model strictly because Wc ̸= Hc, so carets are used
on the latter to differentiate it from the fixed curve in the SGB model (similarly to what was
done with the pseudo-kination fixed points we just discussed).

Those two regimes (especially the scaling one) could be of interest, although in this work
we shall consider κ ̸= λ. We leave the stability analysis of these two fixed curves and possible
solutions for future works.

3.3 Stability

To perform the stability analysis of the fixed points shown above, we perturb Eqs. (3.9),
(3.10) and (3.17) linearly such that

(1 + ucxc) δx
′ = −

[
3− 9x2c − 2ucxc −

3

2
(1 + wM)

(
1− 3x2c − y2c − 2ucxc

)]
δx+

+ yc

[√
6λ− 3(1 + wM)(xc + uc)

]
δy −

[
1− x2c −

3

2
(1 + wM)

(
1− x2c − y2c

)]
δu , (3.27)

(1 + ucxc)δy
′ = −yc

[√
3

2
λ− uc − 3xc(1− wM)

]
δx−

[(√
3

2
λ− 3xc − uc

)
xc−

10In order to see why it accelerates faster than exponential, we solve ϵH = −α, where α > 0 is constant (ϵH
is constant at the fixed points K̂±, indeed)

H(t) =
H0

1− αH0t
, (3.25)

where H0 = H(t = 0). Solving for a(t) we obtain

a(t) =
a0

(1− αH0t)1/α
, (3.26)

such that a0 = a(t = 0). Assuming an expanding universe, H0 > 0 and t < ts ≡ 1/(αH0). Then, a(t) diverges
(approaches a(ts)) faster than if a(t) ∝ eH0t.
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−3

2
(1 + wM)

(
1− x2c − 3y2c

)]
δy + ycxcδu , (3.28)

(1 + ucxc) δu
′ = 2uc

[√
3

2
κ− uc − 3xc (1− wM)

]
δx+ 6ucyc (1 + wM) δy+

+ 2

[(√
3

2
κ− 3xc − 2uc

)
xc −

3

2
(1 + wM)

(
1− x2c − y2c

)]
δu , (3.29)

where the constraint equation (3.2) was used to replace z2 in Eq. (3.13).
We begin our stability analysis with the fixed points M and K±, given the relevance

of the latter in particular in early stages in models of quintessential inflation. In the case of
M, which corresponds to the stage of the background fluid domination, as was commented
already, the eigenvalues, which we denote by ‘m’, are the following ones:

m1 = −3

2
(1− wM) , (3.30)

m2 =
3

2
(1 + wM) , (3.31)

m3 = −3 (1 + wM) . (3.32)

One of the eigenvalues, m2, which corresponds to the eigenvector v = (0, 1, 0),11 is non-
negative, whereas m1,m3 < 0. In view of this, M is a saddle point and is unstable in the y
direction.

Regarding K±, the eigenvalues are given by

m1 = 3 (1− wM) , (3.33)

m2 = 3∓
√

3

2
λ , (3.34)

m3 = −6±
√
6κ , (3.35)

where the upper sign corresponds to the fixed point K+. m1, corresponding to the eigenvector
v = (1, 0, 0), is always positive, irrespective of λ and κ. Thus, the kination period is unstable
in the x direction. The stability of these fixed points, M and K±, that is shown here,
resembles the one in the SGB model [46, 68].

We now analyse the stability of the fixed points ScI and dS, which stand out amongst the
rest of the fixed points given our interest in quintessence cosmology. For ScI, the eigenvalues
can be easily calculated to be

m1 = 3(1 + wM)
(κ
λ
− 1
)
, (3.36)

m2,3 = −3

4
(1− wM)

{
1∓

√
1− 8

1 + wM

1− wM

[
1− 3

λ2
(1 + wM)

]}
. (3.37)

Since λ >
√
3(1 + wM) (see Eq. (3.19)), m2,3 are complex eigenvalues whose real part is

always negative. On the other hand, if κ > λ, m1 will be positive, and the fixed point ScI
11We order eigenvector components as v = (vx, vy, vu).

– 14 –



will be a saddle point. This same feature is shared with the SGB model [46, 68], and it is an
important one because the scaling regime, in which the expansion of the Universe does not
accelerate in contrast to observations [69], is brought to an end.12

The Universe can enter the de Sitter phase depending on the stability of this fixed point.
The eigenvalues are

m1 = −3 (1 + wM) , (3.38)

m2,3 = −3

2

[
1∓

√
1− 4

3
λ2
(κ
λ
− 1
)]

. (3.39)

As long as κ > λ, all the eigenvalues will have negative real parts, and dS will be a stable
fixed point (an attractor). The condition κ > λ was sufficient in order for ScI to be unstable
(see Eq. (3.36)), and therefore, the Universe may transition from ScI to dS. This reproduces
the evolution of the Universe as we know it: from radiation/matter domination to an eventual
exponentially expanding universe. The fact that dS may be a stable fixed point is a well-
known result in the SGB model as well [46, 68].

For completeness, we include the stability analysis of I before getting to the other two
fixed points with uc ̸= 0. In this case, the eigenvalues read

m1 = λ2
(κ
λ
− 1
)
, (3.40)

m2 =
1

2

(
λ2 − 6

)
, (3.41)

m3 = λ2 − 3 (1 + wM) . (3.42)

Since λ2 < 6 in order for I to exist (so that yI is real, as was commented earlier), we have
that m2 < 0. Given the range of values of wM, m3 may be non-negative (λ2 would have to
be smaller than 3(1 + wM) otherwise). Considering power law inflation though, such that
λ2 < 2, we see that m3 is definitely negative. Regardless of wM and λ, m1 will be positive if
κ > λ. Then, I will be unstable if κ > λ.

The fixed point K̂+ could lead to a phase of faster than exponential acceleration,
ϵH |K̂+ < 0, if κ < 2

√
2
3 (remember that we are assuming that κ does not vanish; see

Eq. (3.16)). We study the stability of the two fixed points K̂±. The eigenvalues are

m1 = − 2

2∓
√

3
2κ

[
±
√

3

2
κ+

3

2
(1 + wM)

(
2∓

√
3

2
κ

)]
, (3.43)

m2 =
∓
√

3
2λ

2∓
√

3
2κ

(κ
λ
− 1
)
, (3.44)

12For a linear coupling function ξ(ϕ) ∝ ϕ, we have that κ = 0 because ξ,ϕϕ = 0. This implies that m1 < 0 in
Eq. (3.36), irrespective of λ. Then, the scaling fixed point is stable. Moreover, we see that dS is unstable (see
Eq. (3.39), where m2 > 0). The stability of the scaling fixed point ScI contradicts observations indicating
that the Universe undergoes a phase of current accelerating expansion, which cannot correspond to the scaling
regime with ϵH = 3

2
(1 + wM) as commented already. Therefore, the linear coupling can be discarded. Also,

κ = 0 implies that either uc = 0 or ϵH |c = 0 (see Eqs. (3.17) and (3.15)). This implies that no other scaling
regime with uc ̸= 0 exists. The same conclusions can be drawn in the SGB model (see Ref. [46]).
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m3 = − 2

2∓
√

3
2κ

(
3∓

√
3

2
κ

)
, (3.45)

the upper sign corresponding to K̂+. In the case of K̂−, the fixed point will be unstable
whenever κ > λ (because m2 > 0), regardless of the magnitude of κ (given that m1 and m3

are always negative for K̂−). For K̂+ and κ < 2
√

2
3 , m1 and m3 are both negative too.

If we assume that κ > λ, then m2, corresponding to the eigenvector v = (0, 1, 0), will be
negative and the phase of super-acceleration will be stable.13 If not, it will be unstable in the
y direction. Irrespective of the sign of xc, if κ ≫ 1, but λ > κ, the asymptotic phase of zero
acceleration, corresponding to ϵH |K̂± = 1, will be stable as well.

Notice that, for that super-accelerated phase (see Eq. (3.3)),

H

W

∣∣∣∣
K̂+

= 1 + uK̂+xK̂+ = 1 +

(√
3

2
κ− 3

)
(3.46)

is negative (remember that κ < 2
√

2
3). For the rest of the fixed points treated above, the

ratio H/W is 1 (positive in the case of ScII± as one can check from the values of x and u at
those fixed points; see before Eq. (3.21)) because uc = 0. The same is true for K̂− given that

H

W

∣∣∣∣
K̂−

= 1 + uK̂−xK̂− = 1−

(√
3

2
κ+ 3

)
(3.47)

is always negative for κ > 0.
Finally, for the second scaling solution, ScII±, the eigenvalues are

m1 =
3

2
(1 + wM)

(
1− λ

κ

)
, (3.48)

m2,3 = −3

4
(1− wM)

1∓

√√√√1 + 8
1 + wM

1− wM

[
1− 1− 3wM

3(1− wM)
∆± − 12

κ2
(1 + wM)2

1 + 3wM

] . (3.49)

We see that m1, which corresponds to the eigenvector v = (0, 1, 0), is positive (and hence
neither of the scaling fixed points ScII± is stable) whenever κ > λ (same condition as that
of the former scaling solution; see Eq. (3.36)). The instability is in the y direction. On the
other hand, m2,3 do not depend on the magnitude of λ.

From the existence condition of the fixed points (see Eq. (3.22)) we find

1− 3wM

3(1− wM)
∆± +

12

κ2
(1 + wM)2

1 + 3wM
≤ (1− 3wM)∆± + 2

3(1− wM)
. (3.50)

Also, since 1 ≤ ∆+ < 2 and 0 ≤ wM < 1
3 for the fixed point ScII+ (see Eq. (3.24)), then

1− 3wM

3(1− wM)
∆+ +

12

κ2
(1 + wM)2

1 + 3wM
<

2

3

2− 3wM

1− wM
≤ 4

3
. (3.51)

13‘Super-acceleration’ in relation to ϵH < 0 is used, for example, in Refs. [70, 71].
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Fixed point: (xc, yc, uc) Stability

M (0, 0, 0) Unstable

K± (±1, 0, 0) Unstable

I
(

λ√
6
,
√
1− λ2

6 , 0

)
Unstable whenever κ > λ

ScI
(√

3
2
(1+wM)2

λ2 ,

√
3
2
1−w2

M
λ2 , 0

)
Unstable whenever κ > λ

dS
(
0, 1,

√
3
2λ
)

Stable unless κ < λ

ScII±
(

κ√
6

1+3wM
3(1−w2

M)
∆±, 0,

κ√
6

1
1+wM

∆±

)
Unstable whenever κ > λ

K̂±
K̂+

(
+1, 0,

√
3
2κ− 3

) Unstable whenever κ < λ

and κ < 2
√

2
3

K̂−
(
−1, 0,

√
3
2κ+ 3

)
Unstable whenever κ > λ

Table 1: Summary of the fixed points considered in this work and their stability according
to κ and λ for an exponential coupling function (see Eq. (3.16) and remember that κ ̸= λ is
assumed). We determine the stability of each fixed point assuming an EoS parameter of the
background fluid in the range 0 ≤ wM < 1. ∆±(κ,wM) is defined in Eq. (3.21).

In the case of ScII−, we assume that 0 ≤ wM < 1
3 as well, although wM was constrained to

be smaller than 1. Since 0 < ∆− ≤ 1, we have

1− 3wM

3(1− wM)
∆− +

12

κ2
(1 + wM)2

1 + 3wM
≤ 1 . (3.52)

Thus only in the case of ScII− will m2,3 always be real (again, assuming 0 ≤ wM < 1
3). For

complex m2,3, the real part of both eigenvalues is negative and ScII+ is stable if λ > κ. For
the rest of the possibilities, that depends on the value of wM under consideration.

A summary of all the fixed points we studied in this section, and their stability, is
provided in Table 1.

3.4 Numerical Simulations

In view of the fixed points shown in Sec. 3.2 and their stability, we are interested in the
trajectories that begin close to kination, pass near the scaling regime ScI and approach the de
Sitter fixed point, depicting the evolution of the Universe as suggested by the observations. To
that end, Eqs. (3.9), (3.10) and (3.17) are solved numerically, taking the constraint equation
(3.2) into account. We select those trajectories in the phase space that satisfy ΩM = 0.3147±
0.0074 and wf = −0.957 ± 0.080 [3] at N = 0, which corresponds to the present time. To
define wf, we use the relation [46]

ϵH =
3

2

ρϕ(1 + wf) + ρM(1 + wM)

ρϕ + ρM
. (3.53)
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wf can be interpreted as the EoS parameter of the DE fluid causing the accelerated expansion
of the Universe [69]. Then

wf = −1 +
1

x2 + y2

[
2

3
ϵH −

(
1− x2 − y2

)
(1 + wM)

]
, (3.54)

where ϵH is given in Eq. (3.15). The background fluid EoS parameter is chosen to be that of
pressureless matter, wM = wm = 0 (therefore ΩM = Ωm).

As initial values, we set u0 = 10−23 and y0 = 10−3. Such a small initial value of u
is imposed to ensure a negligible initial contribution from the GB coupling, given that the
trajectories in phase space begin near the fixed points K± and M, in accordance with the
evolution prescribed by the quintessence models. The initial value of x is chosen differently
within the range (−1, 1). All the trajectories obtained from the simulations end up at the de
Sitter fixed point ydS = 1 (these trajectories correspond to the different values assigned to x0).
Since δu ∝ exp

[
3
(
κ
λ − 1

)
N
]

during the scaling regime (see Eq. (3.36), where wM = wm = 0),
κ/λ can be chosen to be of order O(1), so it takes longer for the Universe to abandon the
scaling regime.

We see in Figs. 1a and 1b the results of some simulations for κ/λ = 1.4 (so the ratio
κ/λ is of order O(1), as argued above) depicting the evolution of interest as explained at the
beginning of this section. The 3D phase portrait is shown in Fig. 1e. In Figs. 1a and 1e, the
M fixed point has been represented by a square. The kination fixed points K± correspond to
the left and right leaning triangles, depending on the sign. The de Sitter fixed point is given
by the circle instead, and the scaling regime corresponds to a star onto which the trajectories
converge. It can be noticed that, before the de Sitter phase is reached, the density parameter
of the scalar field (see Eq. (3.6)) becomes larger than 1 given that Ωξ (see Eq. (3.7)) turns
negative. We obtained this in many other simulations, with different values of λ and κ.
Likewise, the growth of wf reaches the value of the EoS parameter of pressureless matter and
surpasses it for a brief moment of time. There is an equally short period where it takes on
phantom values before settling down at wdS = −1, which is the expected value during de
Sitter. Note that slightly phantom DE is preferred by the observational data [3].

We observe another feature shared with other simulations: the density parameter Ωξ is
always the dominant contribution to DE at the present time. This occurs unless the scalar
field energy density takes over during the scaling regime, which is discarded given that the field
is supposed to be light and may alter the successful predictions of Big Bang Nucleosynthesis
(BBN).

The Universe may enter the second scaling regime ScII± instead, where yScII± = 0,
starting from kination. If ΩM is larger than the sum of the rest of the density parameters,
Ωϕ + Ωξ, during the scaling regime, then ΩM|ScII± > 0.5.14 For pressureless matter (wM =
wm = 0), Ωm|ScII± reads

Ωm|ScII± =
54
(
54− κ2∆2

±
)(

54 + 3κ2∆2
±
)2 . (3.56)

14One might argue that this is not necessarily true if Ωξ is negative. However, this is discarded in this
situation given that Ωξ < 0 implies −2 < ux < 0 (see Eq. (3.7)). At ScII±, we obtain

uScII±xScII± =
1 + 3wM

3(1− wM)
u2
ScII± , (3.55)

and because 0 ≤ wM < 1, Ωξ|ScII± is never negative.

– 18 –



Then Ωm|ScII± > 0.5 implies κ∆± <
√
6. The fixed point ScII+ can be discarded because

κ > 3
√
2 in order for the fixed point to exist, and 1 ≤ ∆+ (see Eq. (3.22) and discussion

below), which means that κ ≤ κ∆+ <
√
6. Regarding the fixed point ScII−, we have (see

Eq. (3.21))
κ∆− = κ−

√
κ2 − 18 <

√
6 , (3.57)

and hence κ > 2
√
6 for Ωm to be larger than Ωϕ+Ωξ during the scaling regime, in agreement

with the BBN predictions.
If the fixed points ScII± are unstable only in the y direction (see discussion below

Eq. (3.49)), then m2,3 should be complex, given that the real part in that case is always
negative (see Eq. (3.49)). Unfortunately, this cannot happen in the case of ScII− (see
Eq. (3.52) and discussion below), and only at this fixed point can Ωm dominate over Ωϕ+Ωξ.

An example of trajectories going through the second scaling solution (corresponding to
the fixed point ScII−, which is being represented by a triangle pointing downwards) are the
red and cyan ones in Fig. 1c, where κ/λ = 4.41 and u0 = 10−5. The purple line no longer
passes near the scaling regime, but approaches the I fixed point, represented by the diamond
in the plot. The corresponding 3D phase portrait is shown in Fig. 1f. In Fig. 1c we show
the density parameters and wf associated with the red trajectory, which are compatible with
the constraints on Ωm and wf. Unfortunately, the scaling regime does not last long enough
for this particular case, although we see that Ωm takes on the value that we expect in view
of Eq. (3.56) and the corresponding value of κ. Also, in line with what we explained earlier,
the fixed point ScII+ falls within the forbidden region because κ > 3

√
2. Such a fixed point

is represented by a triangle pointing upwards. The forbidden region corresponds to the pale
red coloured stripe, which excludes values of x > 1 that violate the constraint equation (3.2).

3.5 The Speed of Gravitational Waves

In this last section we examine the evolution of the αT parameter. We first write it in terms of
the dimensionless variables defined in Eqs. (3.1) and (3.4), and of the Hubble flow parameter
ϵH (see Eqs. (2.47) and (3.15))

αT = − 2

1− 2ux

{
(1 + 2ux)(ux)′ − ux [1− ux− ϵH (1 + ux)]

}
. (3.58)

It can be readily seen that

αT |M = αT |K± = αT |I = αT |ScI = αT |dS = 0 . (3.59)

For the rest of the fixed points, the αT parameter is given by

αT |ScII± = −
18(1 + wM)(1− w2

M)− 2κ2(1 + 3wM)∆±
27(1 + wM)(1− w2

M)− 2κ2(1 + 3wM)∆±

[
2− κ2

18

(1 + 3wM)(5 + 3wM)

(1 + wM)(1− w2
M)

∆±

]
,

(3.60)

αT |K̂± = −(6∓
√
6κ)(4∓

√
6κ)

7∓
√
6κ

. (3.61)

αT |K̂+ in particular is zero if κ = 3
√

2
3 , which does not satisfy the bound κ < 2

√
2
3 and falls

out of the super-accelerated phase region. The other possibility is κ = 2
√

2
3 , but in that case

ucxc = −1 and Hc = 0 (see Eq. (3.3)). Since κ > 0, αT |K̂− never vanishes exactly.
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(b) Ω’s and wf drawn from the red trajectory.
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(d) Ω’s and wf drawn from the red trajectory.
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(f) 3D phase portrait for λ = 0.72
√
3 and κ/λ = 4.41.

Figure 1: Phase portraits and density parameters and wf for some values of the parameters λ
and κ. In Fig. 1a, all the trajectories begin either close to K± or near M. They all converge at
ScI and transition to dS. In Fig. 1c, the red and cyan trajectories in particular pass near the
scaling regime ScII− (triangle pointing downwards) before reaching dS. The rest converge at
I instead (the diamond in between K+ and M in the plot). The stripe indicates the forbidden
region explicitly due to the constraint equation (3.2) and, the triangle pointing upwards, the
scaling fixed point ScII+. Same phase portraits in 3D are shown in Figs. 1e and 1f.
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Figure 2: |αT | predicted by the WGB model for some values of the parameters λ and κ
and different initial conditions of x. The stripe in the smallest graph on the left indicates the
excluded region starting at redshift z = 0.00980 ± 0.00079 (see Ref. [45]). We see that the
bound |αT | < 10−15 is grossly violated for the cases under consideration. These cases have
been selected given that they did satisfy the constraints on ΩM and wf.

Regarding αT |ScII±, in the case of the fixed point ScII+, the αT parameter cannot be
zero due to the existence conditions of the fixed point derived below Eq. (3.21) and the range
of values of wM under consideration. One might have αT |ScII− = 0 though. However, given
wM = wm = 0, αT |ScII− = 0 if κ2∆−(κ, 0) = 36/5 or κ2∆−(κ, 0) = 9 (see Eq. (3.60)). We do
not obtain solutions for κ in those cases. Thus, αT never vanishes at ScII− when wM = 0.

Although the value of |αT | at the fixed points is useful to have an indication of its
evolution, the current state of the Universe cannot be described by any of those fixed points.
Moreover, |αT | does not have to be exactly zero, instead it must satisfy the bound in Eq. (1.2).
Then, we show the evolution of αT connecting the different fixed points and make sure it does
not surpass the upper bound from the observational constraint.

That bound is applicable in the relatively recent history of the Universe. To be precise,
|αT | is constrained from redshift15 z = 0.00980 ± 0.00079 until today (z = 0).16 Selecting
models which reproduce trajectories that go through the scaling solution ScI, before entering
de Sitter, with different values of the parameters κ and λ, and different initial condition x0,
we plot the evolution of the |αT | parameter over the number of e-folds N (see Fig. 2). In
that plot, we zoom in on the excluded region, marked by a vertical, pale red coloured stripe,

15If one consults Ref. [72] the redshift value, z = 0.0099, is the geocentric redshift of the host galaxy. The
cosmological redshift by contrast, which is the one shown here and what we need in this case, is given in
Ref. [45].

16Do not confuse ‘z’ here denoting the redshift with the dimensionless variable defined in Eq. (3.1) and
related with the energy density of the background fluid.
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and we observe that the bound is violated by many orders of magnitude, similarly to the
SGB model [46]. The cases shown in the plot were chosen given that they did satisfy the
constraints on Ωm and wf at the present time.

If we examine Eq. (3.58), we can understand why the bound is so strongly violated.
We notice that for ux of order O(0.1)-O(1), then Ωξ is of order O(0.1) (see Eq. (3.7)). We
observed numerically that Ωξ is always the density parameter that dominates over the rest
by the time Ωm and wf satisfy the constraints. In addition to this, we remark that it grows
at that time. Then ux → 1/2 (i.e. Ωξ → 0.6) while the numerator in Eq. (3.58) remains of
order O(0.1)-O(1). This causes |αT | to increase near the present time, although it does not
diverge because (ux)′ increases eventually as well, even though Ωξ remains constant. This
can be seen by simply taking the derivative of Eq. (3.7)

Ω′
ξ =

2(1− Ωξ)

1 + ux
(ux)′. (3.62)

When Ωξ → 1, Ω′
ξ → 0.

The fact that |αT | does not remain below the observational bound 10−15 while we ap-
proach the present time indicates that the exponential coupling function in the WGB model
must be discarded. Similar results are obtained in the SGB model [46].

3.6 The Case of αT = 0

In this section, instead of specifying the functional form of ξ(ϕ) and consider examples other
than the exponential case, we impose the condition αT = 0. In the SGB model, such a
condition translates into Eq. (1.4). In the WGB model, however, αT = 0 leads to the
following equation (see Eq. (2.47)):

ξ̈ = ξ̇W

(
1− 2

ξ̇W

M2
Pl

)
. (3.63)

Using Eq. (2.26), Eq. (3.63) becomes

ξ̈ = − ξ̇H

2µ

(
1 + 2µ−

√
1 + 8µ

)
. (3.64)

Now, the equation of Ḣ in the SGB model when ξ̈ = Hξ̇ reads (see Eq. (2.34))

−2Ḣ
(
M2

Pl − 4ξ̇H
)
= ϕ̇2 + ρM (1 + wM) . (3.65)

This implies that in de Sitter, ϕ̇ = 0 (so Ḣ = 0). However, this value of ϕ̇ is problematic
when we integrate Eq. (1.4). Indeed, the integral on the LHS of the equation∫ ξ̇1

0
d ln(|ξ̇|) =

∫ a1

adS

d ln a , (3.66)

does not converge. In the WGB model however, since we have Φ in addition to H, there is a
chance that Ḣ = 0 but still ϕ̇ ̸= 0. To verify this, we must write an equation analogous to
Eq. (3.65). Bearing Eq. (3.64) in mind, we write Eq. (2.30) as

−
2M2

PlḢ√
1 + 8µ

= ϕ̇2 + ρM(1 + wM)− 4ξ̈H2 (1−
√
1 + 8µ)2

16µ2
√
1 + 8µ

− 4ξ̇H3 (1−
√
1 + 8µ)3

64µ3
, (3.67)
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where Eq. (2.26) was used. Plugging Eq. (3.64) into Eq. (3.67), we obtain

−
2M2

PlḢ√
1 + 8µ

= ϕ̇2 + ρM (1 + wM) + 3H2M2
Pl

(
1−

√
1 + 8µ

)2
16µ2

√
1 + 8µ

(
1 + 4µ−

√
1 + 8µ

)
. (3.68)

We see that the last term vanishes when |µ| ≪ 1, recovering Eq (3.65) for |ξ̇H| ≪ M2
Pl (µ

was defined in Eq. (2.25)). Unfortunately, each term on the RHS is non-negative meaning
that Ḣ = 0 implies ϕ̇ = 0 and hence ξ̇ = 0, same as in the SGB model.

Knowing this, we proceed to analyse the stability of the de Sitter and scaling fixed
points, dS and ScI respectively, when the new condition αT = 0 is imposed, in line with was
done in Ref. [46]. Firstly, we write Eq. (3.63) as

(ux)′ =
ux

1 + ux

[
1− (3x+ 2u)x− 3

2
(1 + wM)

(
1− x2 − y2

)]
, (3.69)

where we used Eq. (3.13), the constraint equation (3.2) and Eqs. (3.4) and (3.12), given that
we do not assume a coupling function form in particular. This is equivalent to αT = 0 in
Eq. (3.58). We however make it clear that we use Eq. (3.12) to write it that way.

We perturb Eq. (3.69) around the de Sitter fixed point (which is still a fixed point of the
system despite Eq. (3.69)), that can only correspond to x = 0 and z = 0 as we just argued

δx′ = δx . (3.70)

This equation implies that δx ∝ eN . The rest of the equations read17

δx′ = −3δx−
√

3

2
λ (1 + 3wM) δy − δu , (3.71)

δy′ = −3(1 + wM)δy . (3.72)

The second equation gives δy ∝ e−3(1+wM)N . Using Eq. (3.70), Eq. (3.71) gives δu. Since δy
dies out but δx grows, δu will increase too. Then we see that the de Sitter fixed point dS is
unstable, as in the SGB model [46].

Regarding the scaling regime ScI, since uScI = 0, this is still a fixed point despite
Eq. (3.69). Linearising Eq. (3.69), we obtain

δu′ = −1

2
(1 + 3wM) δu . (3.73)

Hence δu ∝ e−
1
2
(1+3wM)N , and given the eigenvalues in Eq. (3.37) (which remain the same

despite αT = 0), we have that ScI becomes stable, a result similar to the one obtained in
the SGB model in Ref. [46] and in quintessence models in GR. When it comes to the second
scaling regime, where yScII± = 0, we can see that they are not even fixed points of the new
system of equations that includes Eq. (3.69).

Consequently, the WGB model with αT = 0 cannot reproduce a long scaling regime
with small u followed by a period of accelerated expansion, and hence can be discarded.

17Notice that, although we have not assumed a specific coupling function ξ(ϕ) in this section, udS =
√

3
2
λ,

as in the case of the exponential function. This can be seen from Eq. (3.9) with xdS = 0 and ydS = 1.
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4 Summary and Conclusions

Gauss-Bonnet (GB) gravity with ξ(ϕ)G (the scalar-Gauss-Bonnet (SGB) model), where G
is the GB term, has become a popular dark energy (DE) model and it is known to predict
the propagation speed of gravitational waves (GWs) cGW ̸= 1 (in units where c = 1). For
simple coupling functions ξ(ϕ) which reproduce the past evolution of the Universe as we know
it, the SGB model does not satisfy the observational constraints on |αT | ≡ |c2GW − 1| from
GRB170817A [37] when applied to the late Universe in particular [46]. The same occurs with
Horndeski’s theory [38]. The model is actually a subclass of that theory and one can recover
the SGB action for a non-trivial choice of the functions of the theory [40].

In spite of those well-known results, it was shown recently that Horndeski’s theory where
G(ϕ,X)R with X ≡ −1

2g
µν∂µϕ∂νϕ does predict GWs propagating at the speed of light in

vacuum when formulated in the Palatini formalism [53]. All the previous claims of cGW ̸= 1
were made assuming the metric case instead, where the connection is the Levi-Civita (LC) one,
which fully depends on the metric and its first derivative. In the Palatini formalism however,
the connection is independent of the metric and obeys some field equations, meaning that
the geometry differs from the pseudo-Riemannian one. Given this, in the present work we
considered the SGB action but in Weyl geometry where the connection (the Weyl connection)
has zero torsion but it is not metric compatible. We named this model Weyl-Gauss-Bonnet.
A similar action was analysed in Ref. [59] but ours considers the field-dependent coupling to
the GB term and restricts to four dimensions. Thus, the goal in our work was to investigate
whether the SGB gravity, as a DE model, when formulated in a different geometry, fulfilled the
constraint (1.2) and yet displayed a period of matter domination followed by an accelerated
expanding phase of the Universe in accordance with other constraints on the density and
equation of state (EoS) parameters.

We assumed a spatially-flat FLRW metric and a background Weyl vector with temporal
component Φ(t) and no spatial components breaking spatial isotropy. The resulting action
once the LC and non-Riemannian parts were written separately was given in Eq. (2.19).
The αT parameter was calculated in Sec. 2.4. In Sec. 3, we performed a dynamical systems
analysis assuming an exponential potential, which is common in quintessence scenarios. The
dimensionless variables in Eqs. (3.1) and (3.4) were formulated in terms of the newly defined
Weyl parameter W ≡ H − Φ, thereby including the modifications to Einstein’s gravity in
contrast to the metric formalism where these are accounted for by u alone. Fixed points of
the dynamical system were found in Sec. 3.2 under the assumption that ξ(ϕ) is an exponential
function (see Eq. (3.16)). This choice makes all the equations self-similar so the explicit
dependence on W disappears. Another possibility was the linear GB coupling (because ξ,ϕϕ =
0; see Eq. (3.12)), but it was argued that this did not lead to the expected evolution of the
Universe, as was noticed in the metric formalism as well [46]. A stability analysis of the fixed
points was carried out in Sec. 3.3.

Among the fixed points calculated in this work, the scaling ScI (where u = 0) and de
Sitter dS ones had been found in the SGB model of the metric formalism too [46], and were
shown to satisfy the same stability conditions in both the WGB and SGB models. While
the scaling fixed point is unstable if κ > λ, dS becomes an attractor and the Universe
is predicted to abandon a period of matter domination and enter a regime of accelerated
expansion, where κ and λ are the strength of the exponentials involved in the GB coupling
and the scalar potential, as shown in Eqs. (3.16) and (3.8) respectively. If κ < λ however, the
roles are switched over and de Sitter becomes unstable (a saddle point) whereas ScI is stable.
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On top of these and other known fixed points, we found a second scaling regime consisting
of two fixed points ScII± (where y = 0) and a regime of ‘pseudo-kination’ where the Weyl
parameter, Wc, satisfied 3W 2

c M
2
Pl = ϕ̇2

c/2 but Wc ̸= Hc. This regime is associated with two
fixed points K̂± as well. In the case of ScII+, it was shown not to exist if the EoS parameter
of the background fluid fell within the range 1

3 ≤ wM < 1, thereby excluding background
radiation but including pressureless matter wM = 0. Regarding the pseudo-kination regime,
we found that K̂+ led to a universe that accelerated faster than during de Sitter, where it
accelerates exponentially, if κ < 2

√
2
3 . Also, regardless of the sign of xK̂±, if κ ≫ 1, then the

Universe was predicted not to accelerate. Moreover, both situations, the super-accelerated
and uniform expansion phases, were shown to be stable if κ > λ and κ < λ, respectively. The
scaling regime ScII± was determined to be unstable whenever κ > λ, same as in the case of
ScI. The instability in the former case was found to be in the y direction of the phase space.
We found also that ScII+ is always stable only if λ > κ because two of the three eigenvalues,
which do not depend on λ, are complex with negative real parts. The summary of the fixed
points and their stability was provided in Table 1.

In Sec. 3.4 we performed some numerical simulations assuming pressureless background
matter wM = wm = 0 and checked trajectories crossing both scaling regimes. When it comes
to those approaching ScI, we plotted the 2D phase portrait in Fig. 1a and the 3D one in
Fig. 1e for some values of λ and κ. These were chosen among other simulations given that
they satisfied the constraints on Ωm and wf [3] at present time (N = 0), where wf is the EoS
parameter of the DE fluid responsible for the current accelerated expansion of the Universe.
The evolution of the density parameters and wf for one of the trajectories in the phase portrait
was displayed in Fig. 1b. The system’s behaviour is reproduced as expected: starting from a
period of kination, the Universe enters a long period of background fluid domination which
gives way to the present epoch of DE domination. An eventual period of de Sitter is predicted
after a transient epoch where the effective density parameter associated with the GB coupling
ξ(ϕ), Ωξ, dominates and wf takes on phantom values (i.e. wf < −1). We pointed out that
a common feature of all the simulations was that, during DE domination, Ωξ was always
dominant over the density parameter of the scalar field Ωϕ.

A similar but much shorter period of matter domination was reproduced in the case of
the second scaling solution ScII− (see Fig. 1d). The corresponding 2D phase diagram was
shown in Fig. 1c and the 3D phase space in Fig. 1f. In order for Ωm to dominate over Ωϕ+Ωξ

during the scaling regime (so BBN predictions are not affected), it was demonstrated that
κ > 2

√
6. As to ScII+, the bound translated into κ <

√
6 and was at odds with the existence

condition of that fixed point. Indeed, we saw that ScII+ was located in the excluded region
of the phase portrait 1c (the coloured stripe).

The αT parameter was written in terms of the dimensionless variables, defined in
Eqs. (3.1) and (3.4), their derivatives, and the Hubble flow parameter ϵH in Eq. (3.58).
We noticed that it is always non-vanishing for K̂−, and for K̂+ only if one considers the
super-accelerated regime. Also, αT never vanishes at ScII− if wM = 0. However, it was
argued that the value of |αT | at the fixed points was not enough because the current Universe
had to be somewhere in between the scaling and de Sitter fixed points in the phase space. We
plotted in Fig. 2 the evolution of |αT | for different values of the constants λ and κ and initial
conditions x0. Unfortunately, the constraint in Eq. (1.2) was found to be grossly violated at
present time, when Ωm and wf satisfy the aforementioned constraints. It is to that moment
that Eq. (1.2) applies approximately given that the binary neutron star system’s merger oc-
curred in the relatively recent past history of the Universe. This was indicated in an inset
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plot, where the constrained region corresponds to the coloured narrow stripe.
Despite the negative results, similar to the ones we obtained in [46] for the SGB model in

the metric formalism, the analysis performed in this work did not consider coupling functions
other than the exponential and linear cases (so the equations are self-similar), which might
lead to different conclusions. We then regarded the case of αT = 0, without making any
assumption on the coupling function, and analysed the stability of the scaling and de Sitter
fixed points in particular given their importance in late time cosmology. We found that the
latter was only possible if ϕ̇ = 0, same as in the SGB model, despite the presence of the
new variable Φ(t) in the equations. The subsequent analysis of the stability indicated that,
whereas the de Sitter regime became unstable, the scaling one was stable, contradicting the
known evolution of the Universe. Consequently, when αT = 0 for a non-constant coupling
function ξ(ϕ), we encountered the same stability of ScI and dS as that in Ref. [46].

Assuming that the Weyl vector has vanishing spatial components, one can apply the
very same results of this work to a connection compatible with the metric but with non-
zero torsion. We showed this in App. C. In App. A we introduced such a connection and the
geometric structures used in this manuscript briefly. The background equations used in Sec. 2
and those including the homogeneous spatial components of the Weyl vector were detailed in
App. B.

As mentioned above, we have regarded only exponential and linear coupling functions
in this work, given that the equations were self-similar and the dynamical systems analysis
could be easily done. On top of this, the case of κ = λ, which was analytically considered
in Ref. [73] in the metric case, was not tackled here (because, again, it was not amenable to
the presented methods of analysis). It would be interesting to apply an analysis similar to
that of the referenced paper, although two fixed ‘curves’ were calculated in Sec. 3.2 already,
one of them corresponding to a third scaling solution of cosmological interest. Also, despite
that the homogeneous spatial components of the Weyl vector were fully neglected under the
assumption of spatial isotropy, one might regard the presence of such components so that
they are relevant in the dynamical analysis but subdominant enough not to generate a large
scale anisotropy. During inflation, this and even the fully dominant presence of the vector
field were shown to be consistent with observations in Ref. [74]. We leave these questions for
future publications.

With this work, we hope to have brought attention to the fact that SGB gravity could
be rescued in the Palatini formalism with the aim of addressing the late time evolution of the
Universe, where the stringent observational bounds on the speed of propagation of GWs are
an unavoidable test for scalar-tensor theories at large.
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A Palatini Formalism and Curvature Tensors

In this section of the Appendix, we turn our attention to various geometric structures in the
Palatini formalism. The Riemann tensor is defined only with respect to the connection and
its first derivatives as [63]

Rα
βµν ≡ ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γα

µλΓ
λ
νβ − Γα

νλΓ
λ
µβ . (A.1)

In the metric formalism, the above expression can be written in terms of the second derivatives
of the metric by virtue of Eq. (2.1). In the Palatini formalism, on the other hand, the Riemann
tensor does not depend on the derivatives of the metric tensor. However, in that case, we can
write Eq. (A.1) as the sum of the LC part, and the distortion tensor (defined in Eq. (2.4))
and its derivatives

Rα
βµν = R̊α

βµν + καβµν , (A.2)

where we introduced a tensor καβµν , given by

καβµν ≡ ∇̊µκ
α

νβ − ∇̊νκ
α

µβ + κ α
µλ κ λ

νβ − κ α
νλ κ λ

µβ . (A.3)

An important second-rank tensor that is related to the Riemann one is the Ricci tensor,
which is defined as

Rµν ≡ Rσ
µσν = R̊µν + κµν , (A.4)

where κµν ≡ κσµσν . While R̊µν is symmetric, Rµν does not possess any symmetry a priori.
Another related tensor, which in the metric formalism coincides with the Ricci tensor,

is the co-Ricci tensor
R̃µν ≡ gαβRµανβ = R̊µν + κ̃µν , (A.5)

where κ̃µν ≡ gαβκµανβ .
The last second-rank tensor that can be obtained from the Riemann tensor is the ‘homo-

thetic curvature tensor’, R̄µν . In the Palatini formalism, the Riemann tensor is not generically
antisymmetric in its first two indices. The only symmetry it has is the antisymmetry in the
last two indices, which can be inferred from Eq. (A.1). Therefore, R̄µν is defined as

R̄µν ≡ Rσ
σµν = κ̄µν , (A.6)

where
κ̄µν ≡ κσσµν = ∇̊µκ

σ
νσ − ∇̊νκ

σ
µσ . (A.7)

This tensor is fully antisymmetric. Consequently, the Ricci scalar

R ≡ gµνRµν = R̃σ
σ = R̊+ κ , (A.8)

is the only non-vanishing scalar one can extract from the Riemann tensor. In the above
expression, the scalar κ is defined as

κ ≡ gµνκµν = κ̃σσ . (A.9)

The Weyl connection considered in Eq. (2.9) is a concrete example of a more general
one with distortion tensor

κ α
µν = c1δ

α
µAν + c2δ

α
νAµ − c3gµνA

α, (A.10)
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where c1, c2 and c3 are constants. The torsion and non-metricity tensors read (see Eqs. (2.7)
and (2.8), respectively)

T α
µν = (c1 − c2)

(
δαµAν − δανAµ

)
, (A.11)

Qαµν = −2c2gµνAα − (c1 − c3) (gµαAν + gναAµ) . (A.12)

We see that for (c1, c2, c3) = (1, 1, 1), the torsion tensor vanishes although the non-metricity
tensor is not zero, leading to Eq. (2.10). Besides, the choice (c1, c2, c3) = (1, 0, 1) leads to a
connection compatible with the metric (i.e. with vanishing non-metricity tensor), but with
non-zero torsion. A connection with non-zero torsion and non-metricity tensors corresponds
to (c1, c2, c3) = (0, 1, 0). This latter connection is well-known for being the most general
solution to the connection field equations derived from the Einstein-Hilbert action in the
Palatini formalism [75, 76].

In the case of the Weyl connection, the contributions from the distortion tensor to the
Ricci, co-Ricci and homothetic curvature tensors read

κµν = ∇̊µAν − 3∇̊νAµ + 2AµAν − gµν

(
∇̊σA

σ + 2AσA
σ
)
, (A.13)

κ̃µν = −∇̊µAν − ∇̊νAµ + 2AµAν − gµν

(
∇̊σA

σ + 2AσA
σ
)
, (A.14)

κ̄µν = 4
(
∇̊µAν − ∇̊νAµ

)
, (A.15)

respectively. One can easily show that the relation among the three tensors above can be
written as

κµν = κ̃µν +
1

2
κ̄µν . (A.16)

Notice that κ̃µν (and thus R̃µν) is symmetric in this particular case. Moreover, κ̃µν is
the symmetric part of κµν ; i.e. κ(µν) = κ̃µν . The antisymmetric part, on the other hand, is
given by κ[µν] =

1
2 κ̄µν .

The scalar κ, defined in Eq. (A.9), becomes

κ = −6
(
∇̊σA

σ +AσA
σ
)
. (A.17)

Regarding καβµν , we have the following symmetry relations:

καβµν = κ̄αβµν +
1

4
gαβκ̄µν , (A.18)

καβµν − κµναβ =
1

4
(gαβκ̄µν − gµν κ̄αβ − gβν κ̄µα + gµακ̄βν − gµβκ̄αν + gαν κ̄µβ) , (A.19)

where κ̄αβµν ≡ κ[αβ]µν .
Among the various options discussed below Eq. (A.12), the second connection with

torsion is addressed in App. C.

B Homogeneous Spatial Vector

For completeness, we derive the homogeneous equations when the Weyl vector has non-zero
homogeneous spatial components. This induces background anisotropy, as expected. To that
end, we vary the action with respect to the inverse metric first.
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The variation of the scalar-Gauss-Bonnet part of the action in Eq. (2.19) is

δSSGB =
M2

Pl
2

∫
d4x

√
−g

{
Gµν −

4

M2
Pl

(
R α β

µ ν + 2Sα
µδ

β
ν − gµνG

αβ −Rµνg
αβ
)
∇α∂βξ−

− 1

M2
Pl

[
∂µϕ∂νϕ− 1

2
gµν

(
gαβ∂αϕ∂βϕ+ 2V

)]}
δgµν , (B.1)

where Sµν is the traceless tensor defined as

Sµν ≡ Rµν −
1

4
gµνR . (B.2)

We remind the reader we dropped the rings (overcircles) here because, as was argued below
Eq. (2.19), every geometric quantity is defined with respect to the LC connection once the
LC and non-Riemannian parts (the latter depending on the Weyl vector and its derivatives)
have been written separately. Then

δSSGB =
M2

Pl
2

∫
d4x

√
−g

{[
3H2 − 12

ξ̇

M2
Pl
H3 − 1

M2
Pl
ρϕ

]
δg00 −

[
2Ḣ + 3H2 − 4

ξ̈

M2
Pl
H2−

−8
ξ̇

M2
Pl
H3 − 8

ξ̇

M2
Pl
HḢ +

1

M2
Pl
Pϕ

]
gijδg

ij

}
, (B.3)

where the spatially-flat FLRW metric was assumed, and ρϕ and Pϕ are defined as the energy
density and pressure of the canonical scalar field ϕ

ρϕ ≡ 1

2
ϕ̇2 + V (ϕ) , (B.4)

Pϕ ≡ 1

2
ϕ̇2 − V (ϕ) , (B.5)

respectively.
Regarding the action of the vector field Aµ, which we shall call ‘SA’, such that SWGB =

SSGB + SA + SM (see Eq. (2.20) where SM was introduced) and

SA = −4

∫
d4x

√
−g

[
3

4
M2

PlAσA
σ − (Gµν −∇µAν)Aµ∂νξ − (∇σA

σ +AσA
σ) ∂ρξA

ρ−

−1

2
ξΥFµνFµν

]
, (B.6)

where we defined

Fµν ≡ ∇µAν −∇νAµ = ∂µAν − ∂νAµ , (B.7)

i.e. Fµν = 1
4 κ̄µν , we have

δSA = −4

∫
d4x

√
−g

{[
3

8
M2

PlΦ
2 − 1

2
ξ̇Wa−2AiA

i − 9

2
ξ̇HΦW − 3

2
ξ̇Φ3 − 1

2
ξΥa−2ȦiȦi+

+
3

8
M2

Pla
−2AiA

i

]
δg00 − 3

2
M2

Pl

[
Φ− 2

ξ̇

M2
Pl

(
W 2 − 1

3
a−2AjA

j

)]
Aiδg

0i +

[
1

2

(
3

2
M2

Pl+
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+ξ̈ + 3Hξ̇ − 2ξ̇Φ
)
AiAj + ξ̇ȦiAj + ξΥȦiȦj +

(
ξ̈HΦ− 1

2
ξ̈Φ2 +

3

8
M2

PlΦ
2−

−3

8
M2

Pla
−2AkA

k + ξ̇HΦ̇ + ξ̇ḢΦ− ξ̇ΦΦ̇− 1

2
ξ̇Φ3 +

3

2
ξ̇H2Φ− 1

2
ξ̇Wa−2AkA

k−

−1

2
ξΥa−2ȦkȦk

)
gij

]
δgij

}
, (B.8)

after some tedious calculations. Ai(t) are the homogeneous spatial components of the Weyl
vector; i.e.

Aµ(t) ≡ (−Φ(t), Ai(t)) . (B.9)

Spatial indices are raised and lowered with respect to δij .
The off-diagonal part in Eq. (B.8) vanishes because of the Φ equation which, in the

presence of the homogeneous spatial component, is

Φ = 2
ξ̇

M2
Pl

(
W 2 − 1

3
a−2AjA

j

)
. (B.10)

The equation of Ai, which can be obtained from Eq. (2.21), reads

Υ
[
ξÄi +

(
ξ̇ + ξH

)
Ȧi

]
=

(
3

4
M2

Pl + ξ̇W

)
Ai . (B.11)

The M2
PlGij = T eff

ij metric field equations, T eff
µν being the effective energy-momentum

tensor, can be read off from Eqs. (B.3) and (B.8) (including the matter fields)

−M2
Pl

(
2Ḣ + 3H2

)
gij = −

(
4ξ̈H2 + 8ξ̇H3 + 8ξ̇HḢ − Pϕ − PM

)
gij + 4

(
3

2
M2

Pl + ξ̈ + 3Hξ̇−

−2Φξ̇
)
AiAj + 8ξ̇Ȧ(iA j) + 8ξΥȦiȦj + 8

(
ξ̈HΦ− 1

2
ξ̈Φ2 +

3

8
M2

PlΦ
2 − 3

8
M2

Pla
−2AkA

k + ξ̇HΦ̇+

+ξ̇ḢΦ− ξ̇ΦΦ̇− 1

2
ξ̇Φ3 +

3

2
ξ̇H2Φ− 1

2
ξ̇Wa−2AkA

k − 1

2
ξΥa−2ȦkȦk

)
gij . (B.12)

Assuming that the homogeneous spatial vector lies along the z direction without the loss of
generality, A(t) = (0, 0, Az(t)), we see that T eff

xx = T eff
yy ̸= T eff

zz , which means spatial anisotropy
(and the off-diagonal components vanish).

Finally, M2
PlG00 = T eff

00 reads

3H2M2
Pl = ρϕ + ρM + 3

(
Φ2 + a−2AiA

i
)
M2

Pl − 4ξΥa−2ȦiȦi + 12ξ̇W

(
W 2 − 1

3
a−2AiA

i

)
.

(B.13)

C Projective Transformations and Torsion

In this section of the Appendix, the homogeneous equations (2.36)-(2.38) and the tensor per-
turbation equation (2.43) are shown to be valid for a connection that is metric compatible but
has non-zero torsion. For this purpose, we review the so-called ‘projective transformations’,
which are given by (see Ref. [77])

Γα
µν → Γα

µν +Bµδ
α
ν , (C.1)
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where Bµ is an arbitrary vector. This amounts to

κ α
µν → κ α

µν +Bµδ
α
ν . (C.2)

The κ tensors defined in App. A transform as

καβµν → καβµν + δαβ F̊µν , (C.3)

κµν → κµν + F̊µν , (C.4)

κ̃µν → κ̃µν − F̊µν , (C.5)

κ̄µν → κ̄µν + 4F̊µν , (C.6)

where F̊µν ≡ ∇̊µBν − ∇̊νBµ. The scalar κ is invariant under these transformations because
the tensor F̊µν is antisymmetric. Notice also that the tensor κ̄αβµν , which was defined as the
antisymmetrisation of the first two indices of καβµν below Eq. (A.19), is invariant as well.

Now, let us apply this transformation to the Weyl connection. The G in Eq. (2.16)
becomes

G → G − 4F̊µνF̊µν − 4Υ

(
1

2
κ̄µν + F̊µν

)
F̊µν . (C.7)

Under this transformation, the distortion tensor of the Weyl connection is given by

κ α
µν → δαµAν + δαν (Aµ +Bµ)− gµνA

α. (C.8)

If Bµ = −Aµ, we obtain the connection compatible with the metric but with non-zero torsion
which was the second of the three cases extracted from Eq. (A.10) with (c1, c2, c3) = (1, 0, 1).
Furthermore, if the projective transformation is applied to the LC connection, the result-
ing connection corresponds to the third example, which had non-vanishing torsion and non-
metricity tensors, (c1, c2, c3) = (0, 1, 0). For Bµ = −Aµ, we have

F̊µν = −1

4
κ̄µν , (C.9)

hence the G with torsion and vanishing non-metricity is

G = GWeyl − 1−Υ

4
κ̄µν κ̄µν . (C.10)

We see that G and GWeyl only differ by the term κ̄µν κ̄µν . Actually, we can see that the new
G does not depend on Υ

G = G̊ + 2R̊κ− 8R̊µν κ̃µν + 2R̊αβµν κ̄αβµν + κ2 − 4κ̃µν κ̃µν + κ̄αβµν κ̄αβµν −
1

4
κ̄µν κ̄µν . (C.11)

So the calculations are the same as in the case of the Weyl connection if we simply set Υ = 1
(see Eq. (2.16)).

If Ai(t) = 0, the Υ term does not contribute to the homogeneous and tensor perturba-
tions equations as it multiplies κ̄µν (which vanishes in that case; see Eq. (2.21)). Consequently,
for a background Weyl vector that has solely a non-zero temporal component (so it does not
break spatial isotropy), the results derived in this work are the same as those obtained as-
suming the (c1, c2, c3) = (1, 0, 1) connection with non-zero torsion and metric compatible.
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