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Abstract—Machine learning-based semantic communication
is a promising enabler for future-generation wireless network
systems such as 6G networks. In practice, effective semantic
communication requires online training for unknown content. In
highly mobile vehicular networks, however, reliable, and efficient
model training becomes significantly challenging. The existing
distributed learning approaches are also unable to effectively
operate in highly dynamic vehicular semantic communication
networks. To address these challenges, we propose a novel
mobility-aware split-federated with transfer learning (MSFTL)
framework based on vehicle task offloading scenarios in this
paper. To enable adaptation to the complex vehicle semantic
communication, the proposed framework divides the training
of the model into four parts and uses the proposed new split-
federated learning. Furthermore, to improve training efficiency,
model accuracy, and the ability to adapt in highly mobile
environments, we also present a new transfer learning approach
integrated into the proposed framework. Particularly, we propose
a high-mobility training resource optimisation mechanism based
on a Stackelberg game for MSFTL to further reduce training
costs and adapt vehicle mobility scenarios. We also investigate
the performance of the proposed schemes through extensive
simulations. The results validate the proposed approach and
indicate its superiority compared to the conventional learning
frameworks for semantic communication in vehicular networks.

Index Terms—Vehicle semantic communication networks, split
federated learning, transfer learning, Stackelberg game, resource
optimisation.

I. INTRODUCTION

6G communication network systems will support numerous
challenging applications including intelligent transport and

vehicular networks [1]. A tremendous amount of data will be
generated and transmitted over the vehicular networks, and
thus requires the introduction of edge cloud (EC) facilities
to provide additional computing and caching resources for
the vehicles [2], [3]. This advancement empowers vehicles to
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access these resources by offloading tasks like object/image
recognition and spatial computing to the edge in real-time
through a communication link. As a result, there is a notable
increase in the communication loads between vehicles and the
edge. This results in higher required spectrum efficiency and
affects the required reliability, and quality of service (QoS) for
the vehicular network. Therefore, effectively addressing the
challenge of enhancing communication efficiency, reliability,
and QoS for the future vehicular network emerges as a central
concern in the ongoing evolution of 6G-enabled vehicular
networks. However, since wireless physical layer capacity is
approaching the Shannon limit, current wireless technologies
are becoming increasingly insufficient to satisfy such a so-
phisticated, data traffic and diverse offloading need in future
6G vehicular networks [4]. Semantic communication is a new
intelligent communication paradigm for 6G and is considered
a promising solution to address these challenges [5].

Fig. 1. Semantic versus conventional communication transmission systems.

Different from the conventional Shannon paradigm [6],
semantic communication is a genuinely intelligent system that
only selects the necessary information to be transmitted. It
concentrates on the meaning of the information transmitted
and ignores irrelevant information by employing deep learning



(DL) approaches. Using this approach, the network spectral
efficiency is significantly reduced and transmission message
reliability is dramatically increased [7]. It thus can improve
the performance of the vehicular communication network and
is one way to address these issues efficiently. Exploring the in-
tegration of semantic communication into vehicular networks
is essential.

The existing research works are generally focused on de-
signing semantic communication systems as a DL-based joint
source-channel (DLJSC) coder to substitute the conventional
transmission system [8] (Fig. 1). In this approach, the DLJSC
encoder and decoder are deployed separately but are required
to be trained for particular transmission contents together.
Hence, the DLJSC transmission input and transmission out-
put can be ensured to be the same. To do this, various
semantic communication studies have been developed for
image transmission [9], [10], text transmission [11], [12],
video transmission [13], [14], speech [15], and visual question
answering transmission [16]. These efforts demonstrated the
excellent performance of the semantic communication systems
in upgrading communication efficiency and transmission ac-
curacy. Therefore, DLJSC encoders deployed on the vehicles
and DLJSC decoders deployed on the ECs look promising
to improve communication efficiency during task offloading
of vehicles. Nevertheless, the existing proposed schemes are
mostly point-to-point systems but fail to consider the appli-
cation of semantic communication systems in actual multi-
point networks. In practice, the DLJSC coder model needs
to continue learning and updating on previously untrained
content (e.g., image, speech and video), i.e., new content in
the knowledge base (KB), to ensure providing a consistent
QoS [17]. Conventional centralised training, however, may
raise users’ privacy concerns. Furthermore, a larger number
of models can also occupy the scarce storage resources on the
vehicles.

How to efficiently update semantic coders in the network in
real-time is among the main challenges for semantic communi-
cation. Nevertheless, the existing studies are extremely limited
in addressing this challenge of semantic communication. [5]
and [18] investigated the possibility of applying the federated
learning (FL) framework for general semantic communication
networks. The FL framework is a privacy-preserving technol-
ogy. It allows multiple clients to share the weight parameters
of the trained model for joint training with multiple training
data in a privacy-preserving manner. However, the deployment
of existing FL-based semantic communication frameworks [5],
[18] in vehicular semantic communication networks for task
offloading faces the following challenging questions:

Q1: Encoders that extract semantic information from dif-
ferent vehicles may have different models. This prevents the
vehicle from participating in coder model aggregation for FL.

Q2: FL requires the entire coder (encoder and decoder) to
be trained on the vehicle. This however significantly increases
the computational workload on the vehicle. In addition, the
required storage of the trained decoder model for each type of
transmission content increases the vehicle’s storage overhead.

Q3: The high mobility of vehicles also presents the chal-
lenge of selecting appropriate vehicles for collaborative train-

ing. There is also a trade-off to be made in terms of technical
factors such as training delays, and energy costs.

Several other distributed learning frameworks may have
the potential to replace the existing FL-based framework for
semantic communication. Vepakomma et. al [19] presented
split learning (SL). In SL, part of the model is trained on
distributed users and another part is trained on distributed
central nodes. However, it is not applicable to vehicular
semantic networks. Because the training data of vehicles for
EC loss value calculation is unavailable to ECs due to privacy
considerations. [20], [21] and [22] also introduced different
frameworks integrating FL and SL. They, however, face the
same problems as SL and cannot be used in vehicular semantic
communication networks directly.

To the best of our knowledge, there is no previous effective
learning framework able to update the semantic coder model
in a real-time mobile vehicular offloading environment while
addressing Q1-Q3, simultaneously.

In this paper, we propose a new split-federated learning
framework for vehicle semantic communication to address
these Q1-Q3 urgent needs. Moreover, to satisfy the high mobil-
ity of the vehicle, we propose a novel TL paradigm integrated
into the presented framework to increase training efficiency,
decrease training costs and enable the framework to adapt
mobility scenarios. We refer to our proposed mobility-aware
split-federated with transfer learning framework as MSFTL.
In particular, a high-mobility training resource optimisation
mechanism is also presented based on the Stackelberg game
for MSFTL to further reduce training costs and adapt high-
mobility scenarios. The main contributions of this paper are
as follows:

• We propose a novel MSFTL framework for vehicular
semantic communication networks. The proposed model
splits the coder into four separate components for train-
ing. The vehicle only needs to train parts of the coder to
reduce the cost of computing. MSFTL addresses unique
challenges for semantic communications in vehicular
networks that were not addressed by the existing learning
framework for semantic communication networks.

• A new TL-based learning approach is presented in the
developed MSFTL. Here, by utilising the part of the un-
updated semantic encoder model, the MSFTL increases
the convergence speed and accuracy. It decreases the
training computing and communication costs. This ap-
proach also reduces storage load and performs well on a
few sample learning scenarios.

• A Stackelberg game-based resource optimisation mecha-
nism is developed to further reduce the training cost and
optimise the proposed framework. The most appropriate
amount of training data is selected fairly for each ve-
hicle and the entire network. It jointly considers factors
such as vehicle residence time, computational load, and
communication overhead.

• For verification of the effectiveness of the framework and
optimisation mechanism, we employ a classic semantic
communication model [9] as our training model. The
task offloading scenario is set as object/image recognition
task offloading. We compare the simulation results of



our method with the existing frameworks for semantic
communications and demonstrate the outperforming of
our approaches.

The rest of the paper is organised as follows: Section
II presents the related works and Section III presents the
vehicle system model. The proposed MSFTL framework and
the analysis of its computing and communication overhead
are presented in Section IV. In Section V, the game theoreti-
cal mechanism design is proposed for resource optimisation.
Section VI presents the simulation results showing that our
proposed framework and mechanism achieve excellent perfor-
mance. Finally, the paper is concluded in Section VII.

II. RELATED WORKS

Due to the lack of a distributed learning framework for
semantic coder updating over vehicular semantic communi-
cation networks, we first discuss the feasibility of existing
frameworks for semantic coder updating in general networks.
Xie and Qin [23] proposed a lite distributed semantic commu-
nication system under power and latency constraints. It demon-
strated the possibility of applying semantic communication
in the Internet of Things (IoT) environment. However, this
framework is suitable for the semantic coder model already
updated rather than the coder needs to update. Based on it,
Qin et al. [18] further proposed employing the FL framework
for updating semantic coders. It, however, was totally based on
the FL and mainly discussed the possibility of FL in semantic
coder updating. This framework thus faces the same Q1, Q2
and Q3 challenge as FL. Shi et al. [5] also introduced an
FL framework for semantic communication networks where
clients’ DLJSC encoding and decoding take place at the
EC. However, in this method, the clients need to transmit
the original signal to the EC which does not fundamentally
solve the problem of inefficient communication. Therefore,
the existing framework for semantic communication in general
networks is not applicable in vehicular networks.

Several proposed distributed frameworks with potential ap-
plications to vehicular semantic communication networks as
well. Vepakomma et. al [19] presented split learning (SL).
Nevertheless, this method needs vehicles to upload the training
data to the edge. It is unacceptable due to privacy consider-
ations. Thapa et. al [20] proposed a split-federated learning
framework. Compared with SL, the model on distributed
central nodes added the FL aggregation step. Furthermore,
Romanini et. al [21] introduced a federated learning frame-
work with splitNN. It is similar to [20]. They, however, face
the same problems as SL, i.e., privacy data leakage. Hong
et.al [22] also proposed a split-federated learning framework
for different training domains. It splits a model for different
domains and aggregates split models after training it on the
user’s end. It’s still essentially FL and encounters the same
challenges, i.e., Q1, Q2 and Q3, if employed in vehicular
semantic communication networks. Therefore, there is still the
absence of an effective learning framework that can be applied
to semantic communication updating in vehicular networks.

III. SYSTEM MODEL

In this section, we first introduce the vehicular network
traffic model, and then the vehicle computational and com-
munication workload models are presented.

Fig. 2. Vehicles in the network.

A. Vehicle model

A set of ECs, {1, 2, ...,m, ...,M}, is deployed on roadside
units (RSUs) or base stations (BSs) and a set of vehicles
{1, 2, ..., n, ..., Nm} is in the service range of EC m (Fig. 2).
Further, there are Im vehicles in EC m’s range that participate
in the DLJSC coder model training. Different vehicles transmit
the offloading content via various models of DLJSC encoder to
the EC, where the EC receives it via a DLJSC decoder. When
the vehicle or EC semantic knowledge base is scarce, vehicles
need to be selected for participation in the training based
on the vehicle‘s velocity. We assume the arrival of vehicles
to each edge service range follows the widely used Poisson
distribution and vehicles’ average velocity is related to the
degree of crowdedness on the road [24], [25]. We thus have
the average velocity (km/h) v̄m of Nm vehicles in the service
range of EC m as:

v̄m = max{vmmax(1−
Nm

Nmmax

), vmmin
}, (1)

where vmmax is the maximum vehicle velocity that can be
driven within the service range of EC m. We assume roads
in the EC service range are uniform and have the same
permissible maximum vehicle velocity. Similarly, vmmin

is the
vehicle velocity when the road is congested. Further, Nmmax

is
the maximum allowable number of vehicles in EC m’s service
range on the road. In the case of free-flow traffic conditions,
the velocity of a vehicle n in the service range of EC m, vn,m
is a normally distributed random variable with the probability
density function given by [24]

f(vn,m) =
1√
2πσ

e−
(vn,m−v̄m)

2σ2 , (2)

where σ = kv̄m and vmmin = v̄m − lv̄m. The two-tuple (k, l)
is subject to the traffic activity observed in real-time. We can
also rewrite it as:

f̂(vn,m) =
f(vn,m)∫ vmmax

vmmin
f(vn,m)dvn,m

=
2f(vn,m)

erf(
vmmax−v̄m√

2σ
)− erf(

vmmin
−v̄m√

2σ
)
.

(3)



B. Computational and communication workload

We consider a vehicle computing offloading scenario, where
vehicle n in the service range of EC m has a task with data size
kn,m to offload. Further, we assume the size of training data
to be computed by this vehicle during coder model training is
dn,m. We write the training delay of one epoch as:

Tn,m =
dn,m
fn,m

, (4)

where fn,m is the CPU-cycle frequency of vehicle n with the
unit cycles/s. The energy cost of computing is [26]

En,m = pcn,mTn,m = εf3
n,m

dn,m
fn,m

= εdn,mf2
n,m, (5)

where ε is the energy parameter depending on chip [27] and
pcn,m is computing power.

According to the Shannon theory, the communication delay
for transmitting a task kn,m should be

tn,m =
kn,m
Rn,m

=
kn,m

Bn,m log2(1 +
pn,mgn,m

σ2
0

)
, (6)

where Rn,m is the transmission rate and pn,m is the transmis-
sion power. Further, Bn,m is the bandwidth and gn,m is the
channel gain. Thus, the transmission energy cost is

en,m = pn,mtn,m. (7)

Semantic communication differs from traditional communi-
cation in spectral efficiency research [28], [29]. Conventional
communications focus on unit bandwidth rates, while seman-
tic communications focus on effective semantic information
delivered per second. We also consider that in practical signal
transmission, the transmission process of semantic communi-
cation is still based on traditional communication theory as
described above.

For easy reference, the main parameters and their descrip-
tion used throughout this paper are presented in Table I.

IV. MSFTL FOR VEHICLE SEMANTIC COMMUNICATION

In this section, the new TL-based approach for the vehicle
network QoS enhancement is presented. We also present
the details of our proposed MSFTL framework. Finally, we
compare the computational and communication cost of the
proposed MSFTL framework with that of the conventional FL
framework.

A. Transfer learning for vehicle semantic communication net-
work

The successful application of Autoencoder, a deep unsuper-
vised learning model, has recently been demonstrated in the
design of semantic communication architectures [10], [30],
[31]. It extracts the input features by downscaling features
via the encoder and subsequently the image is recovered
through the decoder. The autoencoder training process entails
converting inputs, x, into intermediate feature variables y
via the encoder part. Therefore, variables, y, are converted
into x̃ by the decoder part. Finally, inputs x and outputs x̃
are compared to ensure that they are both infinitely close.

TABLE I
NOTATION DEFINITION

Symbol Definition
M Set of ECs
Nm Set of vehicles in the service range of EC m
dn,m Training data size of vehicle n
fn,m CPU-cycle frequency of vehicle n
Tn,m Training delay of one epoch
En,m Energy cost of computing
kn,m Transmission data size of vehicle n
tn,m Communication delay
en,m Transmission energy cost
P1 Pre-training model
P2 Fine-tuning layers
P3 EC private decoder
P4 Last layer of the decoder

xn,m Training samples of vehicle n
x̃n,m
1 Pre-training model output of forward propagation

x̃n,m
2 EC private decoder output of forward propagation

x̃n,m
3 Decoder output of forward propagation
CFL Communication cost of FL

CMSFTL Communication cost of MSFTL
Dn,m Maximum available training data from vehicle n
Ψn,m Training duration of vehicle n
Kn,m Vehicle residence time
Φn,m Energy cost of vehicle n during training
µn,m Utility function of the game at vehicle n
Um Utility function of the game at the EC m

Nevertheless, training from scratch often takes a long time and
a significant number of samples. It fails to meet the demands
of rapid updates to the highly mobile vehicular networks.

To address these challenges, we propose a TL approach.
In this approach, we develop the un-updated DLJSC encoder
model in two parts: the pre-training model, and fine-tuning
layers. Every vehicle allows having various types of the pre-
training model. The pre-training model is a part of the encoder
model which is the vehicle encoder that has been trained over a
long period of time with a large amount of data. However, this
model is not well suited to the required training task of feature
extraction. Hence, in our model, the last layers of the vehicle
semantic encoder are replaced with the same type of untrained
layers. The replaced layers are called fine-tuning layers which
are trained for a specific task. The vehicle does not need to
retrain the pre-trained model again. Only the last few layers of
the encoder need to be trained. Furthermore, to alleviate the
small sample size issues, fine-tuning layers are trained together
at the edges, as specified below. Therefore, vehicles only need
to ensure the last few layers of the encoder have the same
model. The storage resource required and training cost for
different missions is thus reduced.

B. MSFTL design

Considering the pervasive case of semantic coders up-
date, we propose a novel training framework based on split-
federated learning for vehicle semantic communication net-
works. As mentioned previously, existing SL-based frame-
works are not very suitable for training server models as
the calculation of loss values requires private raw data that
is not available at the same place as the loss value calcula-
tion. Further, FL-based frameworks require identical models
for federated aggregation which means FL require the same



Fig. 3. The framework of the proposed MSFTL.

encoder model in our considered vehicular semantic networks.
Therefore, based on the above, neither of these traditional
frameworks can be applied to the vehicle semantic communi-
cation network as they face the Q1-Q3 and privacy challenges.
In our proposed MSFTL (Fig. 3), the advantages of both SL
and FL are sustained, while the mentioned challenges are also
tackled. The coder is split into four parts during training,
including the pre-training model P1, the fine-tuning layers P2,
the EC private decoder (part of the decoder) P3 and the last
layer of the decoder P4. The entire model is split but trained
together.

The semantic communication model update algorithm is
shown in Algorithm 1. Firstly, the trainable vehicles and
training data are identified. These are based on the Stackel-
berg game based resource optimisation mechanism. We will
elaborate on the details in the next section.

In the coders’ training process, the pre-training model, P1,
and the last layer of the decoder, P4, are trained on the vehicle
while fine-tuning layers P2 and the EC private decoder P3 are
trained on the EC.

For a trainable vehicle n in EC m’s range, the fuzzy features
x̃n,m
1 are first extracted from training samples xn,m. The fea-

tures x̃n,m
1 are obtained through a freezing pre-training model

Pn,m
1 and transmitted to the EC m. Subsequently, the EC

m treats fuzzy features x̃n,m
1 as inputs and start the training

cycle. In one epoch, the EC uses x̃n,m
1 performing forward

propagation training of the fine-tuning layer Pm
2 and the EC

private decoder Pm
3 . The results of the forward propagation

from Pm
3 , i.e., x̃n,m

3 , are sent to the corresponding vehicle
n. The corresponding vehicle n then trains the last layer of
decoder Pn,m

4 and gets output x̃n,m
4 . Thereafter, the vehicle

gets the loss value Ln,m by comparing the variability between

source message xn,m and forward propagation output x̃n,m
4 .

The backpropagation process is then carried out based on Ln,m

and returning along with the same path until fine-tuning layers
Pm
2 . Finally, since the last layer of the encoder Pn,m

4 has only
been trained for a single vehicle, a federated aggregation is
required to guarantee that the decoders are identical.

The vehicles participating in the training send it to EC
m for aggregation, which then returns the aggregation result
Pm
4 to each sending vehicle. All vehicles involved in the

training complete a training epoch after performing the process
once. After the training, Pn,m

1 and Pm
2 forms the vehicle

n’s DLJSC encoder. Similarly, Pm
3 and Pm

4 forms the EC’s
DLJSC decoder. During the whole process, the user’s private
information Pn,m

1 and xn,m is not leaked, i.e., the client
encoder models can be different, and the privacy of clients is
protected. The vehicle only needs to replace the fine-tuning
layer for different transmission contents, thus reducing the
vehicle’s storage load.

C. Comparison of computing and communication overhead

For vehicles, regardless of the employed collaborative learn-
ing framework, a certain degree of computational and commu-
nication load is expected. Neither FL nor SL is applicable to
the vehicle semantic communication network due to the Q1-Q3
and privacy challenges. However, to enable the employment
of FL, we can assume that the vehicle encoder models are the
same. To further validate the advantages of our MSFTL in the
following, we compare the computational and communication
load of the existing FL framework with the proposed MSFTL
for the same encoder model. Furthermore, the training epochs
of FL and MSFTL are assumed as the same for intuitive



Algorithm 1 MSFTL for vehicular semantic communication

After confirming trainable vehicles
Vehicle Execution:
Batch size: J

1: for each local epoch a = 1, 2, ...A
2: From EC m get Pm

4 weight parameters W a−1
4

3: for each vehicle involved in training n = 1, 2, ...I
4: From EC m get Pm

3 forward propagation output x̃n
3

5: for each local batch bn = 1, 2, ...
6: Forward propagation in Pm

4 and get output x̃i
4

7: Loss y ←− 1
J

∑J
j=1(x

n
j − x̃n

4,j)

8: Get backpropagation output x̃i′

4 and send back x̃i′

4

9: Update W a
4,n

10: end for
11: Transmit W a

4,n to EC m ▷ for federated aggregation
12: end for
13: end for
EC m Execution:

1: From each vehicle n involved in training get Pn,m
1 output

x̃n
1

2: for each epoch a = 1, 2, ..., A
3: Forward propagation in Pm

2 and Pm
3 , and get output

x̃n
3 for each vehicle n

4: After vehicles training ...
5: Get x̃n′

4 from vehicles and perform backpropagation
6: Update W a

2 & W a
3 ▷ weight parameters of Pm

3 and
Pm
4 in epoch a, respectively

7: Get W a
4,n from vehicles

8: Update W a
4,n ▷ federated aggregation

9: end for

comparison, although simulations would show that our training
converges faster.

We assume the total number of training epochs is epoch.
The computational delay of the vehicle n in the service range
of EC m to be consumed by the model update in the FL
framework is expressed as:

TFL
n,m = Dn,m

dP
fn,m

epoch, (8)

where dP is the size of the computation required for the coder
model of one training data in one epoch and Dn,m is the
number of training data from vehicle n. Therefore, the required
energy for computations is

EFL
n,m = ϵDn,mdP f

2
n,mepoch. (9)

In contrast to FL, the imposed computational delay and
energy of the proposed MSFTL can be expressed as:

TMSFTL
n,m = Dn,m(

dPn,m
4

fn,m
epoch+

dPn,m
1

fn,m
), (10)

EMSFTL
n,m = ϵDn,m(dPn,m

4
f2
n,mepoch+ dPn,m

1
f2
n,m), (11)

where dPn,m
1

is the size of the computation needed to derive
the output x̃n,m

1 from the pre-trained model. Furthermore,

dPn,m
4

is the training computation load of the final layer of
the decoder. Hence, for the same coder model,

dP > dPn,m
1

+ dPn,m
4

. (12)

We can also write:

TFL
n,m > TMSFTL

n,m , (13)

EFL
n,m > EMSFTL

n,m . (14)

Therefore, our proposed framework requires a lower com-
putational cost than FL.

We express the communication cost during training in
terms of communication rounds for visual representation. FL
requires clients to offload the trained model weights to the EC
and return them after EC aggregation in each training epoch.
FL therefore communication load of vehicle n is [32]

CFL
n,m = 2ωpepoch, (15)

where ωp is the size of coder model weights. Therefore, the
communication cost of federated the last layer of the decoder
is

C1MSFTL
n,m = 2ωpn,m

4
epoch, (16)

where ωpn,m
4

is the size of the last layer of the decoder weights.
As MSFTL requires the client to first send the pre-trained
model output x̃n,m

1 to the EC, the EC and client need to
perform forward and backpropagation of the final layer of the
decoder. The split training communication load is therefore

C2MSFTL
n,m = On,m

1 Dn,m + 2On,m
3 Dn,mepoch, (17)

where On,m
1 and On,m

3 are the number of output layer neurons
of pre-trained model Pn,m

1 and partial decoder model Pm
4 , re-

spectively. Thus, the total communication load of the proposed
MSFTL is

CMSFTL
n,m = C1MSFTL

n,m + C2MSFTL
n,m

= 2epoch(ωpn,m
4

+On,m
3 Dn,m) +On,m

1 Dn,m.

(18)

Since epoch is usually a large number, we have
2epoch(ωpn,m

4
+ On,m

3 Dn,m) >> On,m
1 Dn,m. Therefore, we

ignore On,m
1 Dn,m in the comparison. Hence, the comparison

of the communication cost of the FL and MSFTL can be
expressed as ωp versus ωpn,m

4
+On,m

3 Dn,m. We can conclude
that MSFTL is more communication efficient in case the
amount of the coder model weight is larger, otherwise, FL
performs better. Nevertheless, FL only applies to special cases
where the encoders of all vehicle models are the same. In
contrast, our proposed MSFTL not only adapts to variable
network environments but also performs better in terms of
computational load even in the same training epoch setting. It
demonstrates its viability in the real-world compared to FL.

V. STACKELBERG GAME BASED RESOURCE
OPTIMISATION MECHANISM

In this section, we present a high-mobility training resource
optimisation mechanism for the MSFTL. We found that an
increase in the size of a vehicle’s training dataset increases the
energy consumption of the vehicle during training. Therefore,



vehicles are not always willing to provide sufficient training
data for training and aggregation. However, a decrease in the
size of a certain vehicle’s dataset also reduces the accuracy of
the model when aggregated by edges. An incentive mechanism
to motivate vehicles to provide as much training data as
possible while taking into account vehicle mobility is thus
essential. Considering the fairness, the mechanism is based on
the Stackelberg game, which jointly takes into account vehicle
mobility and minimises training costs. First, we present the
game at vehicles in the mechanism and the selection of training
vehicles considering mobility. We then introduce the design
of the game at the EC and present mechanism optimisation
formulation and its solution.

A. Game design at the vehicles

It is important to ensure that the vehicle has sufficient
training time before training. First, we analyse the available
training time for the vehicle. We assume Dn,m is the number
of training data participants training from vehicle n in the
range of EC m and Dmax

n,m is the maximum available training
data from vehicle n. Further, we assume that the communica-
tion status of vehicle n remains constant during training for
tractability of analysis. The duration of the training can be
expressed as:

Ψn,m =Dn,m(
dPn,m

4

fn,m
e+

dPn,m
1

fn,m
+

zOn,m
1 + 2zOn,m

3 e

Bn,m log2(1 +
pn,mgn,m

σ2
0

)
)

+
∑Im

n Dn,m(
dPm

2,3
+dPm

4

fm
)e,
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where z is the parameter to convert the data number to the size
to be transmitted and fm is the CPU-cycle frequency of EC m.
Further, dPm

2,3
is the training computation size of Pm

2 and Pm
3 ,

and dPm
4

is federated aggregation computation load. Moreover,
Im is the number of trainable vehicles and

∑Im
n Dn,m denotes

the total number of training data submitted from the trainable
vehicles. For simplicity, we set

Γn,m =
dPn,m

4

fn,m
e+

dPn,m
1

fn,m
+

zOn,m
1 + 2zOn,m

3 e

Bn,m log2(1 +
pn,mgn,m

σ2
0

)
, (20)

and

Ψn,m = Dn,mΓn,m +

Im∑
n

Dn,m(
dPm

2,3
+ dPm

4

fm
)e. (21)

The vehicle residence time can be estimated as:

Kn,m =
hn,m

v̄m
, (22)

where hn,m is the distance that the vehicle n travels out of the
EC m’s service range according to different road. Moreover,
v̄m is the vehicles’ average velocity in EC m’s service range
mentioned in Section II. As hn,m is difficult to estimate, hn,m

is considered the shortest distance at multiple forks in the road.
Therefore, trainable vehicles should satisfy Ψn,m ≤ Kn,m, we
have

Ψn,m(Dmax
n,m ) < Kn,m. (23)

Once suitable trainable vehicles have been identified, se-
mantic coder model training can be initiated. For vehicles,
participation in training results in energy consumption. As the
most important concern for the vehicle, we consider energy
consumption as the training cost Θn,m, the same as in [26].
Training energy consumption is in turn only related to the
number of training data. Thus we have

Θn,m = EMSFTL
n,m +Dn,m

zpn,mOn,m
1 + 2zpn,mOn,m

3 e

Bn,m log2(1 +
pn,mgn,m

σ2
0

)
.

(24)
Nevertheless, the vehicle is not necessarily willing to par-

ticipate in the training due to the different situations faced.
For instance, vehicles already have a semantic encoder of
the training goal. Sufficient data is one of the guarantees of
model accuracy. We therefore designed a game to motivate
vehicles fairly to participate in training. Vehicles providing
more training data could reduce more money they spend on
edge services, i.e., bonuses from ECs. The utility µn,m of
vehicle n’s participation in the training thus can be denoted
by

µn,m = αRn,m − βΘn,m, (25)

where α and β are monetary factors enable αRn,m ≤ 1 and
βΘn,m ≤ 1. Further, Rn,m is the bonus vehicle n received.
To ensure fair allocation of bonuses, we use a weight-sharing
model commonly used in the game bonuses design. We write

Rn,m =
ωn,mDn,m∑Im
n ωn,mDn,m

Rm, (26)

where Rm is the total bonus from the EC and ωn,m is the
coefficient depending on the quality of vehicle communication
as it affects the quality of transmitted data. Here, Rn,m

and Rm have no unit, they are numerical values and they
are judged by comparing the magnitudes. The corresponding
coefficient of vehicle n is ωn,m.

This allows the utility function to be a pure numerical
function and the utility value is a unitless number. We can
further define the vehicles’ game problem as:
Problem 1:

max
Dn,m

αRn,m − βΘn,m, (27a)

s.t. Dmax
n,m > Dn,m ≥ Dmin

n,m . (27b)

where Dmin
n,m is the minimum training data required to guar-

antee accuracy.

B. Game design at the EC

In this subsection, we design the game at the EC and its
utility function. We assume the accuracy of the model is
related to the amount of training data. The objective of the EC
is to minimise the bonus offered while satisfying the minimum
QoS (accuracy) after training. Because receiving more accurate
information improves income. Without loss of generality, the
EC m’s utility is defined as:

Um ≜ γΩ(

Im∑
n

Dn,m)− δRm, (28)



where γ and δ are normalisation factors and Ω is a function
related to the accuracy of the training model. The relationship
between the amount of training data and the accuracy of the
model shows an increasing trend with a gradual decrease in
the rate of growth in our simulation (Fig. 8). In addition,
predictably, the accuracy is 0 with 0 data and bound by the
maximum accuracy Ωmax. We believe that the trend shows a
logarithmic function trend and is bound by Ωmax. We thus
use a logarithmic function to model the Ω as:

Ω(

Im∑
n

Dn,m) ≜ ln(1 + θ

Im∑
n

Dn,m), (29)

where θ is a parameter related to the training model. Further,
it is limited to more than minimum permissible the accuracy
Ωmin and less than the maximum accuracy Ωmax possible for
the model. The game problem at the EC thus can be written
as:
Problem 2:

max
Rm

γ ln(1 + θ

Im∑
n

Dn,m)− δRm, (30a)

s.t. Rm > 0, (30b)

Ωmin < ln(1 + θ

Im∑
n

Dn,m) ≤ Ωmax. (30c)

C. Optimal Solutions and Equilibrium Analysis

Nash Equilibrium Existence: Problem 1 (follower) and
problem 2 (leader) form a Stackelberg game. We assume D∗

n,m

and R∗
m are the optimal solutions for Problem 1, and Problem

2, respectively. Thus, the game needs to satisfy the following
equation to reach Nash Equilibrium (NE) point(s)

µ(D∗
n,m, R∗

m) ≥ µ(Dn,m, R∗
m), (31)

U(D∗
n,m, R∗

m) ≥ U(D∗
n,m, Rm). (32)

It is found from Problem 1 that the strategy set at vehicles is
compact and convex, and the utility function is continuous and
concave in Dn,m. Thus, according to the Debreu-Glicksberg-
Fan theorem, a pure NE exists [33].

We then employ classic backward induction to find SE
points. The optimal strategies for vehicles are obtained first,
followed by the optimal strategy for the EC. If the vehicle
residence time is less than the minimum trainable time, i.e.,
Kn,m < Ψn,m(Dmin

n,m ). Then Dn,m∗ = 0. If Kn,m ≥
Ψn,m(Dmin

n,m ), by deriving the first order partial derivative of
(26a) with respect to Dn,m, we have

∂µn,m

∂Dn,m
= α

ωn

∑Im
j,j ̸=n ωj,mDj,m

(
∑Im

n ωn,mDn,m)2
Rm −

βΘn,m

Dn,m
. (33)

For simplicity of presentation, we set Hn,m =
βΘn,m

Dn,m
. In

case that (32) equals 0, the optimal training data obtained as

fn,m(D∗
n,mRm) =

√
αR

∑Im
j,j ̸=n ωj,mDj,m

ωn,mHn,m
−

∑Im
j,j ̸=n ωj,mDj,m

ωn,m

and the EC’s utility function can be written as:

Um = γln(1 + θ

Im∑
n

fn,m(D∗
n,m, Rm))− δRm. (34)

Algorithm 2 Stackelberg game-based resource optimisation
mechanism

1: Set the maximum number of iterations K, and learning
rate θ

2: Set initial positive numbers for R and Di

3: while k < K

4: Di(k)←−
√

αR
∑Im

j,j ̸=n ωjDj

ωiHi
−

∑Im
j,j ̸=n ωjDj

ωi
▷ optimal

Di(k) without constraints
5: D∗

i (k)←− constraints and Di ▷ optimal Di(k)
6: U(k)←− R(k) and D∗

i (k) ▷ based on Eq. (33)
7: R(k + 1) = R(k) + θ
8: end while
9: while k < K

10: Find the maximum U(k) and corresponding R(k) and
D∗

i (k)
11: end while
12: return R(k) and D∗

i (k)

Due to the high complexity and multiple constraints, sub-
games NE cannot be derived in a closed form. Therefore, we
solve the game in two segments through numerical search. In
the first step, we employ the simplicial method [34] to achieve
each Dn,m‘s optimal decision by solving a piecewise linear
approximation of the problem while holding Rm fixed. Subse-
quently, fn,m(Dn,m, Rm) is substituted in (33), Rm is updated
using the two-dimension grid search, and Rm is substituted
back into the first step. Dn,m and Rm thus iteratively tighten
until convergence. The algorithm complexity can be thought
of as O(K2) and thus can be solved in polynomial time in
real-world applications. The solution algorithm is shown in
Algorithm 2.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
MSFTL and optimisation mechanism. First, we investigate the
efficiency of the proposed MSFTL framework in terms of
convergence speed, and accuracy. Since SL-based frameworks
[20]–[22] cannot be implemented in a vehicular environment.
Because they have to share vehicles’ private training data to the
edge. It’s unacceptable. we thus compare the proposed MSFTL
framework with the existing FL-based framework for semantic
communications [5], [18]. We also compare MSFTL with
centralised learning (CL) for more comprehensive evaluation.
Then, the advantage of the presented optimisation mechanism
based on the Stackelberg game is assessed in a variety of
different scenarios.

A. MSFTL

We first elaborate on the simulation settings in evaluating
the performance of our proposed framework and ignore the
communication noise when training. All simulation settings
are the same as the previous semantic communication study,
i.e., [9]. First, the adopted semantic communication model is



TABLE II
THE SETTING OF THE CAE IN THE PROPOSED SEMANTIC NETWORK

FRAMEWORK.

LayerName Number of neurons
Conv+ReLU 128

Pre-training model Conv+Pool+ReLU 64
Conv+Pool+ReLU 32

Fine-tuning layer Conv+Sigmoid 10
transConv+ ReLU 10

EC private decoder transConv+ ReLU 32
transConv+ ReLU 64

Final layer of decoder transConv+ Sigmoid 128

based on convolutional autoencoder (CAE) for image trans-
mission as shown in Table II. Further, training and pre-training
datasets employed are CIFAR 10 and CIFAR 100 [35] image
data sets, respectively. They are both composed of a 50,000
32x32 colour image training set and a 10,000-image test set.
The difference is that CIFAR 10 has 10 classes, while CIFAR
100 has 100 classes. The batch size of the training is 64 and
the learning rate is set as 0.1.

Fig. 4. Convergence speed comparison of different frameworks.

In order to more realistically verify the performance of the
proposed framework in the case of vehicle task offloading, the
experimental environment is set to object/image recognition
after computing offloading. The validation of the transmitted
images uses a fully trained VGG16 [36] network to clas-
sify, and its accuracy comparison with the images before
transmission visualizes the performance of frameworks. We
also assume the similarity of the recognition accuracy of the
object/image after transmission in VGG16 compared to before
transmission as the semantic communication model training
accuracy. In addition, the number of users involved in the
training of our network is 10 and the sample set is divided
randomly and equally into 10 copies, if not stated in particular.
Since the baseline frameworks for semantic communication
networks are limited and all based on FL, to enable the FL
to operate in a vehicle semantic communication network, we
ignore Q1 for FL and assume all users have the same encoder
model and the same degree of pre-training. In addition, we
include CL as a comparison, in which the vehicle transmits all
training data to the edge for centralised training. Even though
it significantly compromises the privacy of the vehicle, it has
the fastest convergence speed and highest accuracy and can
be used as a distributed training benchmark. However, it also

requires the same encoder model of vehicles. It is worth noting
that our framework can be performed in any circumstance.

Fig. 4 illustrates the performance of the proposed MSFTL
in terms of convergence speed. We set the batch size as 64
and compared the proposed MSFTL with the FL framework
and the MSFTL without the TL model. To smooth out the
results, we averaged the results for every 5 losses. The quicker
stabilization of loss values indicates earlier convergence of
training, enabling the prompt utilization of rapidly trained
semantic coders in vehicular networks. We can observe that
as the number of training times increases, the loss values of
each approach gradually decrease and eventually plateau. The
decrease curve of the MSFTL without TL almost coincides
with FL, proving that both sides can achieve almost simi-
lar performance in terms of convergence. Nevertheless, our
proposed MSFTL convergence rate and the final loss values
achieve a very significant outperformance and achieve almost
similar convergence speed as CL. This is because the pre-
training model accelerates the training and a well improves
the model feature extraction capability.

Fig. 5. Accuracy of different frameworks.

Fig. 5 presents the image offloading accuracy of CAEs
trained by different training frameworks for different numbers
of participating vehicles. It can be seen that the accuracy
of all the training frameworks increases as the number of
participating vehicles increases. This is because the increase
in the number of participating vehicles leads to an increase in
the total training sample. Furthermore, as varying numbers
of vehicles are involved in the training, our proposed MSFTL
consistently achieves the optimal transmission/offloading ac-
curacy that is second only to CL. The MSFTL achieving a high
accuracy percentage not only signifies more accurate transmit-
ted content but also highlights how trained semantic coders can
enhance the accuracy of vehicle computing offloading, thereby
improving the network quality of service. Moreover, although
the accuracy is not smoothly increasing as the number of
vehicles (samples) increases due to the stochastic property of
machine learning, it is still noticeable that the trend is similar
to the log function. It validates Eq. (28) in our game design.

Fig. 6 shows the computing cost of the vehicle under differ-
ent distributed training frameworks. For comparison purposes,
we define the computing cost as the number of neurons that
need to be computed in the forward and backpropagation of



the vehicle in one Epoch. Therefore, in our assessment, the
cost (neuron number) has no unit but serves as an indicator
of training delay and energy consumption. Lower costs imply
that vehicles can complete training with reduced latency and
energy consumption, enabling faster deployment of trained
semantic coders. Vehicles are not limited to aggregating only
the last layer of the encoder. Furthermore, FL is set to a
constant value due to its aggregation of all weights. It can
be observed that the vehicle computing cost increases as the
number of layers to be aggregated increases. When all the last
five layers need to be aggregated, it has the same computing
cost as FL. This is because all the network models are trained
on the vehicles at that moment. Our proposed MSFTL reduces
the backpropagation overhead of the pre-training model due
to the presence of TL so that the vehicle computing cost
is always kept at the lowest of all frameworks. Further, the
aggregation of the last layer decreases the computing cost for
the vehicle and simultaneously mitigates the risk of model
privacy leakage.

Fig. 6. Computing cost of different frameworks.

Fig. 7. Communication cost of different frameworks.

Fig. 7 evaluates the communication cost of the different
distributed frameworks in one Epoch. As the analysis in
Session III-C, our proposed framework communication cost
involves the federated aggregation communication cost C1
versus the split training communication cost. For simplicity
in examining communication overhead trends, we still assume

that the federated aggregation communication cost is related
to the number of neurons. The unit of cost is thus the same as
computing cost. In addition, we set χ as a weighting parameter
indicating the split training communication overhead versus
the number of neurons for different amounts of training data.
Thus, C2 ≜ χ×number of neurons. The increase of χ im-
plies an increase in the amount of training data. Similar to Fig.
6, the FL communication cost is independent of the amount
of training data and thus remains fixed to a constant value.
It can be seen that as χ increases, the communication cost
of proposed MSFTL and MSFTL without TL also increases.
Moreover, in case of χ is small, our proposed MSFTL achieves
less communication cost, otherwise, FL achieves less. This is
because as the amount of training data increases, the number
of samples transmitted by the vehicle to the edge for training
increases. Therefore, the communication cost incurred during
forward propagation versus backpropagation communication
is increasing. Furthermore, our proposed MSFTL always has
less communication cost than without TL due to the reduced
times of backpropagation.

Fig. 8. Accuracy of different frameworks with sparse samples.

Fig. 8 evaluates the performance of the novel TL approach
for the proposed learning framework in the presence of sparse
training samples. The proposed MSFTL is comparable to
the MSFTL without TL in the case of only one vehicle.
It can be viewed from the figure that as the number of
samples increases, all the frameworks’ accuracy increases.
However, compared to the MSFTL without TL, the MSFTL
achieves a performance that far exceeds MSFTL without TL
accuracy. This demonstrates the significant contribution of the
proposed TL-based learning approach to improving the system
performance in the case of sparse training samples.

B. Game-based Resource Optimisation Mechanism

We show the simulation results in evaluating the perfor-
mance of our optimisation mechanism in this subsection. To
demonstrate the effectiveness of our game theoretical mech-
anism more intuitively, we assume all vehicles involved in
the training have the same conditions (such as CPU cycles,



velocity etc. Thus, in case Eq. (32) equals 0, Eq. (33) can be
written as:

Um = γln(1 + θ
αRm(I − 1)

ImHn,m
)− δRm. (35)

We set γ = 0.13, α = 10, δ = 0.08 and θ = 8.5 to
approximate the simulation results in Fig. 5. The maximum
accuracy is set as 98% and the training epoch is set as 100
simulation results above. Similarly, the data set is divided into
100 parts, Dmin

n,m = 1 and Dmax
n,m = 2.5. In addition, we use

Hn,m to denote the data unit training cost and Γ(n,m) = 20 s.
The computation capability fm allocated to each vehicle is 3
Gcycles/s [37] and computational size required dPm

2,3
+ dPm

4

of EC m is 30 MB.
In Fig. 9, we investigate the influence of bonuses on the

number of training data in different unit costs. We assume that
the residence time of all vehicles is sufficient. It is seen that
vehicles are less likely to participate in training at low bonus
values. Because a low bonus results in low motivation. As
the bonus value increases, the vehicles perform more training
data, with higher-cost vehicles willing to train fewer data.
Eventually, the same amount of data is trained and remains the
same for vehicles with different unit costs. This is because, at a
high bonus value, the EC is limited by the maximum accuracy,
so the amount of training data no longer changes.

Fig. 9. Bonus impact on training data number.

Fig. 10 illustrates the variation in training unit cost for
different residence times and mechanisms. It is seen that the
vehicle does not have enough time to train the most appropriate
amount of data at a short residence time and therefore vehicles
with different costs provide the same training data. The
amount of data increases as the residence time increases, but
the proposed mechanism in different costs reaches stability
successively at different residence times. This is because the
optimal number of data for vehicle participation in training has
been reached. The method without the game continues to grow
and results in more energy costs. Moreover, our mechanism is
less than or equal to the non-game theoretical mechanism in all
cases. This demonstrates the effectiveness of our mechanism
in reducing energy costs.

Fig. 10. Total training time versus various residence time.

VII. CONCLUSIONS

In this paper, we designed a new vehicle semantic com-
munication framework, named MSFTL. It divides the trained
DLJSC coder into four parts and utilises the proposed split
federated learning for training. Different from existing frame-
works for semantic communications, MSFTL can adapt to
complex and various vehicle offloading scenarios. Further,
in the proposed framework, we presented a novel approach
based on TL to speed up training as well as increase its
accuracy. In particular, this approach performs excellently in
a low training sample environment and reduces computing
costs. Moreover, an efficient high-mobility resource optimi-
sation mechanism for MSFTL was proposed. It was designed
based on the Stackelberg game theoretic by jointly taking into
account vehicle mobility and semantic model accuracy. We
have also conducted simulation experiments to evaluate our
proposed framework and resource optimisation mechanism.
The simulation results demonstrated the effectiveness of our
learning framework and mechanism. However, in the case of
an extremely large number of training data sizes, MSFTL
might confront heavy communication loads. We will try to
address it in the future work.
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