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Abstract. Given a presilting object in a triangulated category, we find necessary and
sufficient conditions for the existence of a complement. This is done both for classic
(pre)silting objects and for large (pre)silting objects. The key technique is the study of
associated co-t-structures. As a consequence of our techniques we recover some known
cases of the existence of complements, including for derived categories of some hereditary
abelian categories and for silting-discrete algebras. Moreover, we also show that a finite-
dimensional algebra is silting discrete if and only if every bounded large silting complex
is equivalent to a compact one.

Introduction

The question about the existence of complements is a problem that goes back to the
early days of tilting theory. Bongartz showed in 1981 that a partial tilting module over
a finite-dimensional algebra Λ always admits a finite-dimensional complement [Bo81].
Here a partial tilting module is a finite-dimensional module without self-extensions that
has projective dimension one. Already for projective dimension two, however, there
are counterexamples to the corresponding generalised statement [RS89]. On the other
hand, it was shown in [AC02] that complements do exist for partial tilting modules
of any projective dimension if we relax the requirement that they ought to be finite
dimensional, working with large tilting modules, i.e. possibly infinite-dimensional tilting
modules, instead. This result relies on the theory of cotorsion pairs developed in [ET01],
which is a source of left and right approximations in the categoryMod(Λ) of all Λ-modules,
with good homological behaviour.

The analogous problem in silting theory asks whether a presilting object can be completed
to a silting object. One has to distinguish between two parallel setups: the classic notion
of (pre)silting object from [AI12, KV88] which is mostly used in triangulated categories
satisfying some finiteness conditions, and the more recent definition from [NSZ19, PV18]
designed for ‘large’ triangulated categories with arbitrary coproducts. While in the ref-
erences indicated, these subcategories are simply called (pre)silting, in this paper we will
use the adjectives classic and large to distinguish them.

Bongartz completion extends to silting theory, see [DF15, §5], [W13, Proposition 6.1],
[BY13, Proposition 3.14]. The silting version is ‘basis-free’: the assumption that a partial
1-tilting module has a two-term projective resolution is replaced by the condition that the
presilting object X is ‘two-term’ with respect to a suitable silting object M . Moreover,
in the classic setup, complements are known to exist in certain ambient triangulated
categories, such as the bounded derived category of a hereditary abelian category, or
the category per(Λ) of perfect complexes when Λ is a piecewise hereditary algebra or a
silting-discrete algebra [BY13, DF22, AM17]. On the other hand, recent work in [LZ23,
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JSW23, Ka23] provides examples of finite-dimensional algebras for which per(Λ) contains
classic presilting objects that cannot be completed to a classic silting object.

In analogy to [AC02], we show in the present paper that every classic presilting object
in per(Λ) can be completed to a bounded complex of (possibly large) projectives which
is a large silting object in the unbounded derived category D(Mod(Λ)). This relies on
a development of the theory of cotorsion pairs in [SS11] providing a powerful existence
result for co-t-structures which we state in Lemma 3.5.

In fact, we present general criteria for the existence of complements, both in the context
of large and classic silting theory (Theorems 3.6 and 3.11). Under mild assumptions on
the ambient triangulated category T, we prove that a presilting object X admits a com-
plement if and only if there exists a silting object M satisfying the following conditions:

(i) X is intermediate with respect to M , i.e. the additive closures of M and X in T,
denoted by M and X, satisfy M ⩾ X ⩾ M[n] for some n > 0;

(ii) given the co-t-structures (UX ,VX := (X[< 0])⊥) and (UM ,VM := (M [< 0])⊥)
associated to X andM , respectively, the intersection VX ∩VM is again the coaisle
of a co-t-structure in T.

Condition (i) is natural in the classic case, because the existence of a classic silting
object entails that homomorphisms between two objects vanish after shifting one object
far enough (Lemma 2.4). Condition (ii) is the co-t-structure analogue of averaging of
t-structures studied in [BPP13], and it is always satisfied in the large setup thanks to
Lemma 3.5. In the classic setup, the choice of the silting object M above matters.
Indeed, the averaging condition (ii) may hold for certain objects M and fail for others,
see Example 4.6. We summarise our main theorem as follows.

Theorem A. Let T be a triangulated category and X a classic presilting object in T.
Then the following hold.

(1) (Theorem 3.6) If T is algebraic and compactly generated and if X is a large pre-
silting object in T, then X admits a complement to a large silting if and only if
condition (i) above holds with respect to a large silting object M .

(2) (Theorem 3.11) If add(T ) is precovering in T for every T in T (for example,
if T is k-linear, Krull-Schmidt and Hom-finite over a field k) then X admits a
complement to a classic silting if and only if condition (ii) above holds with respect
to a classic silting object M .

In the last part of the paper we will show how to recover Bongartz completion and the
existence of complements for classic presilting objects over hereditary abelian categories
or silting-discrete algebras. The latter result also requires a characterisation of silting-
discrete algebras that may be of independent interest.

Theorem B (Theorem 5.5). A finite-dimensional algebra Λ is silting-discrete if and only
if every bounded complex of projective modules which is a large silting object in D(Mod(Λ))
is (additively) equivalent to a classic silting object in per(Λ).

This can be regarded as a triangulated version of a result from [AMV19] stating that Λ
is τ -tilting finite if and only if every silting module in Mod(Λ) is equivalent to a support
τ -tilting module in mod(Λ).

The article is organised as follows. In Sections 1 and 2 we collect some preliminaries
and review the notions of silting or presilting objects and subcategories, together with
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their relationship with co-t-structures. Section 3 contains the general existence results for
complements, while Section 4 recovers some known cases as applications of our criteria.
Section 5 is devoted to silting-discrete algebras.

1. Preliminaries

In this section we fix some notation and terminology. Unless stated otherwise, T will
denote an abstract triangulated category with shift functor [1], and all subcategories will
be strict and full. Furthermore, when considering abelian categories, we shall consider
only those whose derived category exists, i.e. we require that morphisms between any two
given objects form a set rather than a proper class.

1.1. Subcategory constructions. For subcategories U, V and X of T, we consider the
following subcategories of T:

U ∗ V the subcategory of T consisting of objects T ∈ T for which there is a triangle
U → T → V → U [1] with U ∈ U and V ∈ V. If U ∗ U = U then U is said to
be closed under extensions or extension-closed.

thick(X) the thick subcategory generated by X, the smallest thick (i.e. triangulated and
closed under direct summands) subcategory of T containing X.

susp(X) the suspended subcategory generated by X, the smallest subcategory of T con-
taining X which is closed under suspensions, extensions and direct summands.

cosusp(X) the cosuspended subcategory generated by X, the smallest subcategory of T
containing X closed under cosuspensions, extensions and direct summands.

Susp(X) the smallest subcategory of T containing X which is closed under suspensions,
extensions and existing coproducts (and thus also under direct summands).

add(X) the additive closure of X in T formed by all summands of finite coproducts of
objects in X (which exist in T since it is an additive category).

Add(X) the large additive closure of X in T given by all summands of existing coprod-
ucts of objects in X.

X⊥ the right orthogonal to X, given by the objects T ∈ T with Hom(X,T ) = 0
for each X ∈ X. For a set of integers I (often expressed by symbols such as
> n, < n, ⩾ n, ⩽ n with the obvious associated meaning), we write X[I]⊥ for
the subcategory formed by the objects T ∈ T with Hom(X[i], T ) = 0 for each
X ∈ X and i ∈ I.

⊥X the left orthogonal to X, given by the objects T ∈ T with Hom(T,X) = 0
for each X ∈ X. The subcategory ⊥(X[I]), I ⊆ Z, is defined analogously as
above.

We will use the following abbreviations:

VX = X[< 0]⊥, WX = X[⩾ 0]⊥, UX = ⊥(VX).

In the notation of [AMV16, AMV19, AMV20, PV18] we have VX = X⊥, WX = X⊥⩽0 , UX =
⊥0(VX). Note that VX is a suspended subcategory, while WX and UX are cosuspended sub-
categories. When X consists of a single object X, we just write thick(X),Add(X),VX ,WX

etc.

We say that a subcategory X of T strongly generates T if thick(X) = T, while we say that
X weakly generates T if (X[Z])⊥ = 0. It is clear that if X strongly generates T then it
weakly generates T, while the converse does not hold in general.
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1.2. Precovering and preenveloping subcategories. Let U be a subcategory of T.
Let T be an object of T. A morphism f : UT → T is called a U-precover (or a right
U-approximation) of T if the induced homomorphism

HomT(U, f) : HomT(U,UT )→ HomT(U, T )

is surjective for each object U of U. If each object T of T admits a U-precover then U is
said to be precovering in T. There are dual notions of U-preenvelope and preenveloping
subcategory.

1.3. t-structures and co-t-structures. Two kinds of torsion pairs in triangulated cat-
egories play an important role in silting theory.

Definition 1.1. [IY18] A pair (U,V) of idempotent-complete additive subcategories of a
triangulated category T is said to be a torsion pair in T if

(1) HomT(U, V ) = 0, for each U in U and V in V;
(2) T = U ∗ V.

For each object T of T, the triangle associated with the decomposition T = U ∗ V is
called the truncation triangle for T . The subcategories U and V are the aisle and coaisle,
respectively, of the torsion pair. A torsion pair (U,V) is said to be:

• a t-structure if U[1] ⊆ U (see [BBDG18]);
• a co-t-structure if U[−1] ⊆ U (see [P08], or [Bo10] under the name weight struc-
ture);
• bounded if T =

⋃
n∈Z U[n] =

⋃
n∈Z V[n];

• left nondegenerate if
⋂
n∈Z U[n] = 0;

• right nondegenerate if
⋂
n∈Z V[n] = 0;

• nondegenerate if it is both left and right nondegenerate;
• generated by a set if there is a set of objects X in T such that V = X⊥.

After [Bo10], given torsion pairs (U,V) and (V,W), we say that the former is left adjacent
to the latter or that the latter is right adjacent to the former.

In the case that (U,V) is a t-structure, the subcategory A = U∩V[1] called the heart. In
the case that (U,V) is a co-t-structure, the subcategory C = U[1]∩V is called the coheart
of the co-t-structure. A t-structure (U,V) is called split if each truncation triangle given
in condition (2) above is a split triangle, i.e. T = Add(U,V).

We recall a few useful results about t-structures and co-t-structures:

(1) The aisle of a torsion pair is always a precovering subcategory and the coaisle is
always a preenveloping subcategory.

(2) The heart of a t-structure is an abelian category ([BBDG18]). The coheart of a
co-t-structure is an additive subcategory, but rarely abelian.

(3) The truncation triangles for a t-structure are functorially determined.
(4) A t-structure with heart A is bounded if and only if

T =
⋃
i⩾j

A[i] ∗ A[i− 1] ∗ · · · ∗ A[j].

We end this section with a couple of straightforward but useful observations about co-t-
structures.
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Lemma 1.2. Let (U,V) be a co-t-structure in T. Then any object of T sits in a (possibly
infinite) Postnikov tower, that is, a diagram of the form

· · · T3 T2 T1 T0 = T

C3[−3] C2[−2] C1[−1] VT

where

T1 → T → VT → T1[1] and Ti+1 → Ti → Ci[−i]→ Ti+1[1]

are triangles for all i ⩾ 1, and such that VT lies in V, Ti lies in U[1 − i] and Ci in the
coheart C = U[1]∩V for all i ⩾ 1. Moreover, if T lies in V[−n] for some n > 0, then the
Postnikov tower is finite, i.e. Tn lies in C[−n].

Proof. The existence of the Postnikov tower follows by iteratively taking truncation tri-
angles, starting with T0 = T , and choosing the co-t-structure (U[−i],V[−i]) for each Ti,
i ⩾ 0. It is then easy to observe that the third term in each truncation triangle sits in
the subcategories claimed.

Suppose now that T lies in V[−n] for some n > 0. One can show by induction that
Ti ∈ V[−n] for each 0 ⩽ i ⩽ n. Indeed, suppose that, for i ⩾ 1, Ti−1 lies in V[−n]. One
then reads off that Ti ∈ V[−n] from the truncation triangle

Ci−1[−i]→ Ti → Ti−1 → Ci−1[−i+ 1]

and the fact that Ci−1[−i] ∈ C[−i] ⊆ V[−i] ⊆ V[−n]. Hence, by construction of the
tower, Tn lies in V[−n] ∩ U[−n+ 1] = C[−n]. □

Corollary 1.3. Let (U,V) and (U′,V′) be two co-t-structures in T with cohearts C and
C′, respectively. Assume there is an integer n > 0 such that V′[n] ⊆ V ⊆ V′. Then

C′ ⊆ C[−n] ∗ · · · ∗ C[−1] ∗ C and C ⊆ C′ ∗ · · · ∗ C′[n− 1] ∗ C′[n].

In particular, it follows that thick(C′) = thick(C).

Proof. First of all, notice that the assumption also yields U′[n] ⊇ U ⊇ U′. Take now M
in C′ = U′[1] ∩ V′ and consider a triangle

U →M → V → U [1]

with U in U and V in V. Since M lies in V′ ⊆ V[−n], by Lemma 1.2 there is a finite
Postnikov tower showing that the object U in the triangle lies in C[−n] ∗ · · · ∗ C[−1].
Observe further that M lies in U′[1] ⊆ U[1], hence V lies in C. We conclude that M lies
in C[−n] ∗ · · · ∗ C[−1] ∗ C, as desired.
For the second inclusion, pick T in C = U[1] ∩ V ⊆ U′[n + 1] ∩ V′ and apply Lemma 1.2
on the object T [−(n+ 1)]. □

1.4. Derived categories. Our main examples come from various categories associated
to a coherent ring R. Later in Section 5 we will restrict to the case of a finite-dimensional
algebra over a field k; for emphasis in this case we will denote the algebra by Λ.
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Mod(R) the category of right R-modules;
mod(R) the subcategory of Mod(R) formed by the finitely presented R-modules;
Proj(R) the subcategory of Mod(R) formed by projective modules;
proj(R) the subcategory of Mod(R) formed by finitely generated projective modules;
D(R) the derived category D(Mod(R)) of Mod(R);
Db(R) the bounded derived category Db(mod(R)) of mod(R);
Kb(Proj(R)) the subcategory of D(R) given by bounded complexes of projective modules;
per(R) the subcategory of Db(R) formed by bounded complexes of finitely generated

projective modules, also called perfect complexes.

2. (Pre)silting and co-t-structures

There are two kinds of (pre)silting subcategories/objects in common use, depending on
the context in which one is working. There is the classic definition of (pre)silting sub-
category/object, used in ‘small’ triangulated categories ([AI12, KV88]), and the more
recent definition of a silting object, better adapted to ‘large’ triangulated categories
([AMV20, NSZ19, PV18]). We review these notions below.

2.1. Classic silting subcategories.

Definition 2.1. Let M = add(M) be a subcategory of a triangulated category T. We say
that M is

• classic presilting if HomT(M,M ′[> 0]) = 0 for any objects M and M ′ of M;
• classic silting if it is classic presilting and T = thick(M).

If M = add(M) for some object M , we say that M is a classic (pre)silting object.

A first fundamental fact about classic silting subcategories is their close relationship to
co-t-structures.

Theorem 2.2 ([MSSS13, Corollary 5.8]). Let T be a triangulated category. The assign-
ment

M 7→ (UM,VM)

is a bijection between classic silting subcategories of T and bounded co-t-structures in T.
Moreover, if M is a classic silting subcategory of T, the associated bounded co-t-structure
has coheart M and satisfies VM = susp(M) and UM = cosusp(M[−1]) = ⊥(M[⩾ 0]).

Note that there is a priori no condition imposed on a triangulated category where a classic
silting subcategory lives. Nevertheless, the fact that T = thick(M) imposes that if M is
skeletally small (for example, when M = add(M) for a silting object M), then so is T.

Example 2.3. Let R be a coherent ring. Then R is a classic silting object in Kb(proj(R))
and Proj(R) is a classic silting subcategory of Kb(Proj(R)).

The existence of a silting subcategory does impose a condition on the behaviour of mor-
phisms in the triangulated category.

Lemma 2.4 ([AI12, Proposition 2.4]). Suppose T is a triangulated category containing a
classic silting subcategory M = add(M). Then, for any two objects X and Y in T, there
is n > 0 such that HomT(X, Y [> n]) = 0
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2.2. Large silting objects. The existence of precovers and preenvelopes, see §1.2, is
central in silting theory. In the classic setting, the relevant precovers and preenvelopes
exist under suitable finiteness conditions on the category. In large silting theory, the
existence of precovers and preenvelopes is guaranteed provided we work with at most a
set (rather than a proper class) of objects. As such, in the large setting we restrict our
attention to large silting objects rather than subcategories.

In this subsection T will be a triangulated category that admits all set-indexed coproducts.

Definition 2.5. An object M of T is called

• large presilting if HomT(M,M [> 0]) = 0, and VM is coproduct closed;
• large silting if (VM ,WM) is a t-structure in T.

Two (pre)silting objects M and M ′ are said to be equivalent if Add(M) = Add(M ′)

The notion of large presilting is closely related to the notion of partial silting introduced
in [AMV20] and, in a wide range of categories they coincide, see Remark 2.7 below. Note
that the definition of partial silting from [AMV20] has the additional requirement of the
existence of a t-structure. Any large (pre)silting object X gives rise to a classic silting
subcategory Add(X) in thick(Add(X)).

Similar to the classic silting case, for suitable triangulated categories, silting and presilting
objects of T are related to co-t-structures in T. One context in which this relationship is
well understood is that of a compactly generated triangulated category.

Definition 2.6. An object X in a triangulated category T with set-indexed coproducts
is compact if the functor HomT(X,−) commutes with set-indexed coproducts. We say
that T is compactly generated if the subcategory of compact objects Tc is skeletally small
and weakly generates T.

Compactly generated triangulated categories are examples of a larger class of triangulated
categories called well generated. It follows by recent results of Neeman in [N21] that our
large presilting objects coincide with the partial silting objects of [AMV20] in the wider
context of well generated triangulated categories.

Remark 2.7. Neeman’s result in [N21] on the generation of t-structures has the further
easy consequence that in a compactly generated (or even well generated) triangulated
category, an object is large silting if and only if it is a large presilting object which weakly
generates the category. This is observed after [AMV20, Lemma 3.3], as a consequence
of [NSZ19, Theorem 1(2)]. Recently, the same relation between silting and presilting
objects was extended to arbitrary triangulated categories with coproducts in [Br23].

Theorem 2.8 ([AMV20, Proposition 3.8, Theorem 3.9 and Corollary 3.10], [NSZ19,
Theorem 2]). Let T be a compactly generated triangulated category. The assignment

M 7→ (UM ,VM)

gives a bijection between equivalence classes of large (pre)silting objects in T and co-t-
structures (U,V) that are generated by a set and admit a right adjacent t-structure which
is (right) nondegenerate. If M is a large silting object of T, the associated co-t-structure
has coheart Add(M), and VM = Susp(M) is the smallest aisle of T containing M .

Remark 2.9. Let T be a compactly generated triangulated category. An object M ∈ Tc

is classic (pre)silting in Tc if and only if it is large (pre)silting in T. Indeed, every object
M ∈ Tc generates a t-structure (Susp(M),WM) in T (see, for example, [AJS03, Theorem
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A.1]), and if M is classic presilting we have Susp(M) ⊆ VM . If M is furthermore classic
silting in Tc (and, hence, a weak generator in T), a WM -preenvelope of an object X of
VM must lie in M [Z]⊥, thus showing that X must lie in Susp(M) and that Susp(M) =
VM . Conversely, every large silting object M is a weak generator in T, and from [AI12,
Proposition 4.2] it follows that thickTc(M) = Tc.

3. Complements

Our main problem in this paper is that of finding necessary and sufficient conditions for
a given (classic/large) presilting object to be a summand of a silting object. We will
approach this problem by looking at associated co-t-structures.

Definition 3.1. A classic (respectively, large) presilting object X in a triangulated cat-
egory T is said to admit a complement if there is an object V in T such that X ⊕ V is a
classic (respectively, large) silting object.

3.1. Intermediate (pre)silting objects. We recall from [AI12] the following relation
on classic presilting subcategories. When the subcategories are classic silting, this relation
defines a partial order [AI12, Theorem 2.11].

Definition 3.2. For two classic presilting subcategories X and Y in a triangulated cate-
gory T, we set

X ⩾ Y ⇐⇒ HomT(X, Y [> 0]) = 0 for all X ∈ X and Y ∈ Y.

In our notation, we have that X ⩾ Y ⇐⇒ Y ⊆ VX.

It follows that if X is a classic presilting subcategory in T, then X[−1] ⩾ X ⩾ X[1]. We
need the following minor generalisation of [AMY19, Lemma 3.6].

Lemma 3.3. Let T be a triangulated category. Given a classic presilting subcategory X
and a classic silting subcategory Y of T, we have that

(a) X ⩾ Y if and only if VY ⊆ VX;
(b) for any n > 0, Y ≥ X ≥ Y[n] if and only if X ⊆ Y ∗ Y[1] ∗ . . . ∗ Y[n].

The same statements hold when T is a compactly generated triangulated category, X =
Add(X) for a large presilting object X, and Y = Add(Y ) for a large silting object Y in T
with X lying in thick(Y).

If condition (b) holds for X and Y as in the lemma then we say that X is intermediate
with respect to Y.

Proof. (a) VX is closed under suspensions, extensions and direct summands, thus Y ⊆ VX

implies susp(Y) ⊆ VX, and the claim follows because VY = susp(Y); see Theorem 2.2.

(b) The if part is clear. For the converse, observe that

T = thick(Y) =
⋃
k⩾0

Y[−k] ∗ Y[−k + 1] ∗ · · · ∗ Y[k],

where the last equality holds due to [IY18, Lemma 2.6] (see also [AMY19, Lemma 3.5(3)]).
Thus, there is k ⩾ 0 for which X lies in Y[−k] ∗ Y[−k + 1] ∗ . . . ∗ Y[k]. Assuming that
there is n > 0 such that Y ≥ X ≥ Y[n], we obtain the statement using [AMY19, Lemma
3.5(2)].
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Finally, in the context of the last assertion, we can use the same arguments to prove
(a), taking into account that VX is closed under coproducts, and that VY = SuspY by
Theorem 2.8. For item (b) we observe that X = Add(X) is a classic presilting subcategory
in thick(Y) and Y = Add(Y ) is a classic silting subcategory in thick(Y). □

Given a silting object M , a useful recent result of Breaz allows us to identify large silting
objectsN which are intermediate with respect toM in a slightly less cumbersome manner.
We will use this result in the Section 5.

Theorem 3.4 ([Br23, Theorem 3.4]). Let T be a triangulated category with coproducts
and M a large silting object in T. The following are equivalent for an object N in T.

(1) The object N is a large silting object such that Add(M) ⩾ Add(N) ⩾ Add(M [n]);
(2) The object N satisfies:

(i) N lies in VM and there is n > 0 such that VM [n] ⊆ VN ;
(ii) N is a weak generator; and,
(iii) Add(N) lies in VN .

3.2. Complements for large presilting. We are now ready to state the first result
concerning the existence of complements in the context of algebraic, compactly generated
triangulated categories. Recall from [Ke94] that a triangulated category is algebraic if
it is equivalent to the stable category of a Frobenius exact category. We first need the
following observation from [SS11].

Lemma 3.5. Let T be an algebraic, compactly generated triangulated category. Suppose
S is a set of objects such that S[−1] ⊂ S (resp. S[1] ⊂ S). Then, (⊥(S⊥),S⊥) is a
co-t-structure (resp. t-structure) in T.

Proof. By [Ke94, §4.3, Theorem], T is equivalent to the derived category of a small
differential graded category. From [SP16, Remark 2.15] it follows that there T can be
seen as the stable category of an efficient Frobenius exact category in the sense of [SS11,
Definition 2.6]. Finally, by [SS11, Proposition 3.3 and Corollary 3.5], any set S of objects
such that S[−1] ⊂ S (resp. S[1] ⊂ S) gives rise to a co-t-structure (resp. t-structure)
(⊥(S⊥),S⊥). □

Theorem 3.6. Let T be an algebraic compactly generated triangulated category, and
suppose that X is a large presilting object in T. The following statements are equivalent.

(1) X admits a complement V such that X ⊕ V is a large silting object in T.
(2) There is a large silting object M in T such that X lies in thick(Add(M)).
(3) There are a large silting object M in T and an integer n > 0 such that

Add(M) ⩾ Add(X) ⩾ Add(M [n]).

Moreover, for any M satisfying the equivalent conditions (2) and (3) above, there exists
a complement V such that thick(Add(M)) = thick(Add(X ⊕ V )).

Proof. (1) ⇒ (2): If X admits a complement, V say, then M = X ⊕ V is a large silting
object satisfying (2).

(2)⇒ (3): If X lies in thick(Add(M)), it follows from [AMY19, Lemma 3.5(3)] that X lies
in Add(M)[−k]∗Add(M)[−k+1]∗ · · · ∗Add(M)[k] for some k > 0. Choose M ′ :=M [−k]
and it then follows from Lemma 3.3(b) that Add(M ′) ⩾ Add(X) ⩾ Add(M ′[n]).
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(3) ⇒ (1): First note that, as T is compactly generated, by Theorem 2.8 there are co-
t-structures (UX ,VX) and (UM ,VM) with cohearts Add(X) and Add(M), respectively.
Aplying Lemma 3.5 on the set S = {M [k], X[k] | k < 0}, we obtain a co-t-structure

(U,V := VM ∩ VX).

We write C := U[1] ∩ V for its coheart.

Consider now a decomposition of M with respect to this co-t-structure

(1) U M V U [1]Φ Ψ

with U in U and V in V. We claim that V is a complement for X. We proceed in a
sequence of steps.

Step 1: We have C = Add(X ⊕ V ).

We first show that Add(X ⊕ V ) ⊆ C. The object X lies in both VX and VM since it
is large presilting and since Add(M) ⩾ Add(X) by assumption, respectively. Moreover,
since V ⊆ VX , it follows that HomT(X,V[1]) = 0, whence X lies in U[1] and we have that
X lies in C. Similarly, as M belongs to U[1], we observe from the triangle (1) that V lies
in U[1] and, thus, in C. As C is closed under coproducts, we see that Add(X ⊕ V ) ⊆ C.

For the reverse inclusion, consider an object C of C together with an Add(X⊕V )-precover
φ : K → C, which exists since T has set-indexed coproducts. We have a triangle

K C L K[1]
φ ψ θ

and we claim that L lies in V[1]. It is clear that L lies in V since V is a suspended sub-
category of T. Therefore, it remains only to show that HomT(X,L) = 0 = HomT(M,L).
For any map f : X −→ L, we have that θf = 0 since K lies in V. Therefore, there is a
map f : X −→ C such that f = ψf . But φ is an Add(X ⊕ V )-precover and therefore f
must factor through φ, thus showing that f = 0 and, hence, HomT(X,L) = 0. On the
other hand, for any map g : M −→ L, we also have that θg = 0. Thus, there is a map
g : M −→ C such that g = ψg. Since C lies in V, the map g must factor through the
V-preenvelope Ψ from (1), i.e. there is ĝ : V −→ C such that g = ψĝΨ. Again, because
φ is an Add(X ⊕V )-precover, ĝ must factor through φ, showing that g = 0. Hence L lies
in V[1] as claimed, and thus ψ = 0 and φ is a split epimorphism. This proves that C lies
in Add(X ⊕ V ).

Step 2: The object X ⊕ V is a large presilting.

As X⊕V lies in the coheart of a co-t-structure, it satisfies HomT(X⊕V,X⊕V [> 0]) = 0.
Since V is closed under coproducts, it suffices to show VX⊕V = V. As X ⊕ V lies
in C ⊆ U[1], we have that V ⊆ VX⊕V . To see the reverse inclusion, we recall that
by assumption and Lemma 3.3(a) there is n > 0 such that VM [n] ⊆ VX , and since
VM [n] = VM [n] and V = VX ∩ VM , we find that

sVM [n] ⊆ V ⊆ VM .

By Corollary 1.3 we have that M lies in C[−n] ∗ · · · ∗ C[−1] ∗ C. We conclude then that
VC ⊆ VM , and since C = Add(X ⊕ V ) by Step 1, we get the desired inclusion.

Step 3: The object X ⊕ V is a weak generator.

In order to conclude that X ⊕ V is a large silting object, by Remark 2.7 it suffices to
show that X ⊕ V is a weak generator of T. We have seen in Step 2 that M lies in
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thick(Add(X ⊕ V )). Hence, if Y lies in (X ⊕ V )[Z]⊥, it also lies in M [Z]⊥. As M is a
weak generator for T, it follows that Y = 0, as required.

We conclude that X⊕V is a large silting object and that V is a complement for X. This
completes the proof of the equivalence of conditions (1), (2) and (3).

Finally, as shown above, for any large silting M satisfying the equivalent conditions (2)
and (3), we can find a complement V of X such that VM [n] ⊆ VX⊕V ⊆ VM , and it follows
from Corollary 1.3 and Theorem 2.8 that thick(Add(M)) = thick(Add(X ⊕ V )). □

Corollary 3.7. Let R be a coherent ring and let X be a large presilting object in D(R).
If X is a bounded complex of projective R-modules, then it admits a complement which
is also a bounded complex of projective R-modules.

Proof. This follows directly from Theorem 3.6 since R is a large silting object in D(R) and
X is a bounded complex of projectiveR-modules if and only ifX lies in thick(Add(R)). □

Remark 3.8. As a consequence of Corollary 3.7, every classic presilting object in per(R)
admits a complement if we extend the ambient category to D(R). In other words, classic
presilting objects in per(R) admit complements if we regard them as large presilting
objects in D(R), cf. Remark 2.9. Moreover, these complements can always be found in
Kb(Proj(R)).

3.3. Complements to classic presilting. To establish a criterion for the existence of
complements in the classic setting, we will imitate the strategy of Theorem 3.6. For this
purpose, we need to associate co-t-structures to classic presilting objects. Fortunately,
this happens frequently, as shown in the following proposition, which is essentially a
reformulation of [IY18, Proposition 3.2].

Proposition 3.9. Let T be a triangulated category containing a classic silting subcategory.
Let X be an object of T. The following statements hold.

(1) If X = add(X) is precovering in T, then X is a classic presilting subcategory if and
only if (UX,VX) is a co-t-structure in T with coheart X.

(2) If T admits set-indexed self-coproducts, then X = Add(X) is a classic presilting
subcategory if and only if (UX,VX) is a co-t-structure in T with coheart X.

Proof. Let X be a classic presilting subcategory in T. Observe first that assumption (P2)
from [IY18, p. 7870] holds by Lemma 2.4 since we assume that X is additively generated
by a single object. Moreover, by the proof of [IY18, Proposition 3.2], the following
conditions are equivalent:

• the subcategory X is precovering in VX, and assumption (P2) holds,
• (UX,VX) is a co-t-structure in T with UX = cosusp X[−1],

and under these conditions (UX,VX) has coheart X. This yields statement (1).

The proof of statement (2) is analogous once one observes that the existence of self-
coproducts in T guarantees the existence of Add(X)-precovers. Indeed, for any object T
of T an Add(X)-precover is given by taking the universal map φ : X(HomT(X,T )) −→ T . □

Before stating our criterion for the existence of complements for classic presilting objects
we need the following straightforward lemma.

Lemma 3.10. Suppose M is a classic silting object and X is a classic presilting object
of T. Then X lies in add(M) if and only if add(M) ⩾ add(X) and add(X) ⩾ add(M).
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Proof. If X is an object of add(M) then the relations add(M) ⩾ add(X) and add(X) ⩾
add(M) are clear. Conversely, suppose add(M) ⩾ add(X) and add(X) ⩾ add(M). Since
add(M) ⩾ add(X), we have that X lies in VM , and so we can decompose X as

M1 → X → V1[1]→M1[1]

with M1 in add(M) and V1 in VM . As add(X) ⩾ add(M), the morphism X → V1[1] must
be zero. Hence, the triangle splits and X is a direct summand of M1 and thus an object
of add(M). □

Theorem 3.11. Let T be a triangulated category such that add(T ) is precovering for any
object T in T. A classic presilting object X in T admits a complement if and only if there
is a classic silting object M of T such that add(M) ⩾ add(X) and for which the pair

(U := ⊥V,V := VX ∩ VM),

is a co-t-structure. In this case we have that add(X) ⩾ add(M [n]) for some n ⩾ 0.

Note that the condition that add(T ) is precovering for any object T is automatically
satisfied whenever T is a k-linear, Hom-finite triangulated category over a field k.

Proof. If X admits a complement, V say, then it is clear that M = X ⊕ V is a classic
silting object satisfying the required conditions.

Before proving the converse implication, observe that assuming the existence of a classic
silting object in T is equivalent to the existence of a classic silting object M for which
add(M) ⩾ add(X). Indeed, for any chosen silting object, there is a shift of it satisfying
the latter condition by Lemma 2.4. This means that the substantive assumption is the
existence of a classic silting objectM , which, without loss of generality, we assume satisfies
add(M) ⩾ add(X), that yields a co-t-structure in T of the form (U,V := VX ∩ VM). We
will prove that under this assumption X admits a complement.

If add(X) ⩾ add(M) then X ∈ add(M) by Lemma 3.10 and M is, itself, a complement.
Therefore, we assume that add(X) ≱ add(M), in which case M does not lie in V. As in
the proof of Theorem 3.6, we find a complement by truncating M with respect to (U,V)

(2) U M V U [1].Φ Ψ

Arguing as in Step 1 of the proof of Theorem 3.6, thanks to the assumption that the
subcategory add(X ⊕ V ) is precovering, we conclude that add(X ⊕ V ) is the coheart of
(U,V). In particular, X ⊕ V is a classic presilting object.

To see that X ⊕ V is a classic silting object, it is enough to check that thick(M) =
thick(X ⊕ V ). By Lemma 2.4 there is n > 0 such that HomT(X,M [> n]) = 0, and
we obtain add(M) ⩾ add(X) ⩾ add(M [n]). We can now proceed as in Step 2 of the
proof of Theorem 3.6 to conclude that VM [n] ⊆ V ⊆ VM , and Corollary 1.3 yields
thick(M) = thick(X ⊕ V ), as desired. □

The following corollary applies to categories such as Kb(Proj(R)) or Db(Mod(R)) which
have the property that every object in them admits any set-indexed self-coproduct.

Corollary 3.12. Let T be a triangulated category admitting set-indexed self-coproducts.
If X is an object such that Add(X) is a classic presilting subcategory, then there is a silting
subcategory N containing Add(X) if and only if there is a classic silting subcategory M of
T such that M ⩾ Add(X) and there is a co-t-structure of the form (U,V := VX ∩ VM).
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Proof. The existence of arbitrary self-coproducts in T implies that Add(Z) is precovering
for any object Z in T. One can now apply the argument of the proof of Theorem 3.11
noting that as M is a classic silting subcategory, the silting subcategory N is constructed
as Add(X⊕VM |M ∈ M), where VM is constructed via the truncation triangles (2) as a V-
preenvelope of M ∈ M. Furthermore, the co-t-structure associated to M by Theorem 2.2
is bounded, so that there exists n > 0 with HomT(X,M[> n]) = 0 despite M being a
silting subcategory rather than a silting object. □

4. Applications

In this section we provide two immediate applications of our results in Section 3, namely,
new proofs of the existence of complements for classic presilting objects in hereditary
categories and of the classic Bongartz completion lemma for ‘two-term’ presilting subcat-
egories.

Let A be an abelian category. Recall that A is hereditary if Ext2A(−,−) = 0. We recall the
following well-known characterisation of hereditary abelian categories in terms of hearts
of t-structures, see [CR18, Lemma 2.1 & Theorem 2.3]; cf. [Ke05, Proposition 1]. We
include the argument for the convenience of the reader.

Proposition 4.1. Let T be a triangulated category and let (V,W) be a bounded t-structure
in T with heart A and associated cohomological functor H : T → A. Write H i(X) =
H(X[i]) for any X in T. The following conditions are equivalent.

(1) For all objects A1 and A2 of A, we have HomT(A1, A2[2]) = 0.
(2) For each object T of T, we have T ∼=

⊕
i∈ZH

i(T )[−i].
(3) The t-structure (V,W) is split.

Proof. (1) =⇒ (2). Observe that A[1] ∗ A = add(A[1],A). The inclusion A[1] ∗ A ⊇
add(A[1],A) is clear, while the inclusion A[1] ∗ A ⊆ add(A[1],A) follows immediately
from the hereditary condition HomT(A,A[2]) = 0. Finally, the characterisation of the
boundedness of (V,W) via

T =
⋃
i⩾j

A[i] ∗ A[i− 1] ∗ · · · ∗ A[j],

and induction shows that

T =
⋃
i⩾j

add(A[i],A[i− 1], . . . ,A[j]),

from which we see that each object of T decomposes into a direct sum of its cohomology
with respect to (V,W).

(2) =⇒ (3). Write T ∼=
⊕

i∈ZH
i(T )[−i], the split triangle

⊕
i<0H

i(T )[−i] → T →⊕
i⩾0H

i(T )[−i]→
(⊕

i≤0H
i(T )[−i]

)
gives the truncation triangle for T .

(3) =⇒ (1). Take objects A1, A2 of A and extend a morphism A1 → A2[2] to the
triangle A2[1] → C → A1 → A2[2]. As A2[1] ∈ A[1] ⊂ V and A1 ∈ A ⊂ W, this triangle
is the truncation triangle of C with respect to the split t-structure (V,W), in which case
the third map is zero. □

We will be considering abelian categories A containing a projective object P such that
every object of A is a quotient of an object in add(P ). In such categories, it is well
known that if A has finite global dimension, then the bounded derived category Db(A)
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is equivalent to the bounded homotopy category Kb(proj(A)) of the additive category
proj(A) = add(P ) of projective objects in A. This means, in particular, that P is a classic
silting object in A.

The following result intersects non-trivially [DF22, Theorem 1.2], which was proved using
other methods.

Proposition 4.2 (Hereditary silting completion). Let A be a hereditary abelian category
with a projective object P such that every object in A is a quotient of an object in add(P ).
Suppose in addition that X is a classic presilting object and that add(T ) is precovering
for every object T in Db(A). Then X admits a complement to a classic silting object in
Db(A).

Proof. Suppose that X is classic presilting, Db(A) = thick(P ), and add(T ) is precovering
for every object T in Db(A). It is clear that under these assumptions, P is a classic silting
object in Db(A), and it is well known that the associated torsion pairs (VP ,WP ) and
(UP ,VP ) in Db(A) = thick(P ) = Kb(add(P )) are, respectively, the standard t-structure
and its left adjacent co-t-structure. Note that the corresponding truncation triangles are
given by the so-called smart and stupid truncations. Consider now the co-t-structure
(UX ,VX) associated to the classic presilting object X (see Proposition 3.9(1)). We will
show that (UP ∗ UX ,VP ∩ VX) is a co-t-structure in Db(A). Closure under shifts and
Hom-orthogonality are clear. To obtain the decomposition triangle, let D be an object
of Db(A), consider the truncation triangle with respect to (UP ,VP ),

UP −→ D
f−→ VP −→ UP [1].

Now we truncate VP with respect to (UX ,VX):

UX −→ VP
g−→ VX −→ UX [1].

Finally, we truncate VX with respect to the standard t-structure (VP ,WP ):

ṼP
h−→ VX −→ WP

0−→ ṼP [1],

where ṼP lies in VP , WP lies in WP and the third morphism is 0 by Proposition 4.1 since

A is hereditary. In particular, ṼP is a direct summand of VX and therefore lies in VX
and hence lies in VP ∩ VX . As (VP ,WP ) is a t-structure, h : ṼP → VX is a VP -precover.

Thus, there exists g̃ : VP → ṼP such that g = hg̃. Applying the octahedral axiom to the
composition g = hg̃ gives the following commutative diagram.

WP [−1] WP [−1]

VP ṼP C[1] VP [1]

VP VX UX [1] VP [1]

WP WP

0 0

g̃

h

g

The split triangle forming the third column shows that C is a direct summand of UX
and thus lies in UX . Now applying the octahedral axiom to the composition g̃f gives the

14



following commutative diagram.

C C

D VP UP [1] D[1]

D ṼP U [1] D[1]

C[1] C[1]

f

g̃

g̃f

Observe that U ∈ UP ∗ UX , and hence

U −→ D
g̃f−→ ṼP −→ U [1]

is a truncation triangle showing that (UP ∗UX ,VP ∩VX) is a co-t-structure in Db(A) and
the result follows by Theorem 3.11. □

Remark 4.3. Note that if A is a cocomplete hereditary abelian category with a projective
generator P , then P is a silting object in D(A) and Db(A) ∼= Kb(Proj(A)) (see, for example,
[PV18, §4]). Thus, if D(A) is a compactly generated triangulated category, then a large
presilting complex X in Db(A) admits a complement to a large silting object in D(A)
following Theorem 3.6 (just as argued in Corollary 3.7). Note, furthermore, that the
complement found using Theorem 3.6 is an object in Db(A).

Next, we recover the classic Bongartz completion lemma for two-term classic presilting
objects, see [DF15, §5], [W13, Proposition 6.1], [BY13, Proposition 3.14].

Proposition 4.4 (Bongartz completion). Let T be a triangulated category such that
add(T ) is precovering for any object T in T (for example, a k-linear, Hom-finite triangu-
lated category over a field k). Let M be a classic silting object and X a classic presilting
object in T which is two-term with respect to M , i.e.

add(M) ≥ add(X) ≥ add(M [1]).

Then VM ∩ VX is the coaisle of a co-t-structure. In particular, there is V in T such that
X ⊕ V is a silting object with VX⊕V = VM ∩ VX .

Proof. We show that (UM ∗ UX ,VM ∩ VX) is a co-t-structure in T. Closure under shifts
and Hom-orthogonality are clear, and it remains to obtain a decomposition triangle for
each object T in T. We truncate first with respect to (UM ,VM) and then with respect to
(UX ,VX), which is a co-t-structure with coheart add(X) by Proposition 3.9. We obtain
triangles

UM −→ T
f−→ VM −→ UM [1] and UX −→ VM

g−→ VX −→ UX [1],

with UM in UM , VM in VM , UX in UX and VX in VX . By assumption and Lemma 3.3(1)(a),
we see that VM [1] lies in VX , and so does UX [1]. Thus UX [1] lies in CX = add(X) ⊆ VM .
Hence, VX lies in VM ∩ VX . Using the octahedral axiom, we get a triangle

U −→ T
gf−→ VX −→ U [1],

with U lying in UM ∗ UX , and we conclude that (UM ∗ UX ,VM ∩ VX) is a co-t-structure.
The existence of a complement now follows from Theorem 3.11. □
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Remark 4.5. In each of Propositions 4.2 and 4.4, we obtain a truncation triangle for
the co-t-structure (UM ∗ UX ,VM ∩ VX) by first truncating an object of T with respect
to (UM ,VM) and then truncating the resulting object of VM with respect to (UX ,VX).
One then observes, using two different arguments, that the object of VX resulting from
the second truncation is also an object of VM . This is an example in which the naive
truncation algorithm of [BPP13, §2] terminates after two steps; see also [Bo13]. It would
be interesting to find conditions under which the naive or refined truncation algorithm
([BPP13, §3]) terminates after finitely many steps, e.g. [BPP13, Theorem 6.1].

The following example, based on the method in [BPP13], shows that the (complete)
silting object with respect to which the complement is taken matters.

Example 4.6. Let Q be the Ã2 quiver below and let kQ be its path algebra.

2

1 3

The object P1 ⊕ P3 ⊕ τS2 is a tilting object in Db(kQ), from which we deduce that
M := P1 ⊕ P3 ⊕ τS2[1] is a classic silting object in Db(kQ). Let X := S2[2]. Since S2 is
rigid, X is a classic presilting object in Db(kQ) which lies in suspM = (M [< 0])⊥ and
M [2] ∈ (X[< 0])⊥. By Propositon 3.9, (cosuspX[−1], (X[< 0])⊥) is a co-t-structure in
Db(kQ). Consider

V := VX ∩ VM = VX⊕M .

The suspended subcategory V is not covariantly finite in Db(kQ) and therefore it is not
the co-aisle of a co-t-structure, see Figure 1 on page 25 for an illustration. Hence, X
cannot be completed with respect to M . However, X can be completed with respect to
N := (P1 ⊕ P2 ⊕ P3)[1] because X is two-term with respect to N (see Proposition 4.4).

5. Silting-discrete finite-dimensional algebras

In this section, Λ will be a finite-dimensional algebra over a field k.

5.1. Classic silting objects versus large silting objects. We have seen in Remark 2.9
that an object M in per(Λ) is a classic silting object in per(Λ) if and only if it is a large
silting object in D(Λ). Consider the following pairs

(VM ,WM) =
(
(M [< 0])⊥, (M [⩾ 0])⊥

)
and (vM ,wM) :=

(
VM ∩ Db(Λ),WM ∩ Db(Λ)

)
,

where the orthogonals are taken inside D(Λ).

Proposition 5.1 ([HKM02, Theorem 1.3], [NSZ19, Corollary 2], [PV18, Proposition 4.3],
[KY14, Proposition 5.4]). Let M ∈ per(Λ) be a classic silting object.

(1) The pair of subcategories (VM ,WM) is a t-structure in D(Λ);
(2) The cohomological functor H0

M : D(Λ)→ HM associated to the t-structure (VM ,WM)
induces an equivalence

H0
M |Add(M) : Add(M)→ Proj(HM).

In particular, H0(M) is a small projective generator of HM , and the heart HM is
equivalent to Mod(End(H0(M))).

(3) The pair (vM ,wM) is a t-structure in Db(Λ) whose heart hM is equivalent to
mod(End(M)).
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We denote the class of large silting objects in D(Λ), up to equivalence, by Silt(Λ). Simi-
larly, the class of classic silting objects in per(Λ), up to equivalence, is denoted by silt(Λ).
As discussed in Remark 2.9, there is an embedding of silt(Λ) into Silt(Λ) and, by abuse
of notation, we shall write silt(Λ) ⊆ Silt(Λ). For a classic silting object M in per(Λ) and
n ≥ 1, the partial order in Definition 3.2 defines the following subclasses of Silt(Λ):

Siltn+1
M (Λ) := {N ∈ Silt(Λ) | Add(M) ⩾ Add(N) ⩾ Add(M [n])};

siltn+1
M (Λ) := Siltn+1

M (Λ) ∩ silt(Λ) = {N ∈ silt(Λ) | add(M) ⩾ add(N) ⩾ add(M [n])}.

5.2. Silting modules, τ-tilting finiteness and silting-discreteness. Silting mod-
ules were introduced in [AMV16] as infinite-dimensional analogues of support τ -tilting
modules. For the original definition of support τ -tilting module we refer to [AIR14].

Definition 5.2 ([AMV16, Definition 3.7]). A Λ-module M is a silting module if there is
an exact sequence

P Q M 0σ

with P and Q projective Λ-modules such that the class

Dσ := {X ∈ Mod(Λ) | HomR(σ,X) is an epimorphism}

coincides with the class Gen(M) of modules which are epimorphic images of coproducts
of M . Two silting modules M and N are said to be equivalent if Add(M) = Add(N).

Over a finite-dimensional algebra, a module is support τ -tilting if and only if it a finite-
dimensional silting module [AMV16, Proposition 3.15]. A finite-dimensional algebra is
τ -tilting-finite if it has only finitely many support τ -tilting modules up to equivalence
[DIJ19]. It turns out that these are precisely the algebras whose silting modules coincide,
up to equivalence, with the support τ -tilting modules.

Theorem 5.3 ([AMV19, Theorem 4.8]). The following are equivalent for a finite-dimensional
k-algebra Λ.

(1) Λ is τ -tilting-finite.
(2) Every silting Λ-module is finite dimensional up to equivalence.
(3) Every torsion pair in Mod(Λ) is of the form Gen(T ) for a finite-dimensional silting

module T .

The triangulated category analogue of τ -tilting finiteness is silting-discreteness [AM17].
We recall the following characterisation of a silting-discrete finite-dimensional algebra.

Theorem 5.4. The following statements are equivalent for Λ.

(1) For any M in silt(Λ) and any n > 1, the set siltnM(Λ) is finite.
(2) For any M in silt(Λ), the set silt2M(Λ) is finite.
(3) For any M in silt(Λ), the finite-dimensional algebra End(M) is τ -tilting finite.

If these equivalent conditions hold then Λ is called silting-discrete.

Proof. The assertion (1) ⇔ (2) is [AM17, Theorem 2.4], and the assertion (2) ⇔ (3) is
[IJY14, Theorem 4.6]. □
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5.3. Another characterisation of silting-discreteness. In this section, we add a
further characterisation to the list in Theorem 5.4 by proving that silting-discrete finite-
dimensional algebras are those whose large, bounded silting theory in D(Λ) coincides
with the classic silting theory in per(Λ). This can be regarded as a triangulated version
of Theorem 5.3.

Theorem 5.5. A finite-dimensional algebra Λ is silting discrete if and only if every large
silting object in D(Λ) which lies in Kb(Proj(Λ)) is perfect up to equivalence. In other
words, Λ is silting-discrete if and only if SiltnΛ(Λ) = siltnΛ(Λ) for each n > 1.

We recover the following result of Aihara and Mizuno immediately from Theorem 5.5.

Corollary 5.6 ([AM17, Theorem 2.15]). Let Λ be a silting-discrete finite-dimensional
algebra. Then every classic presilting object X in per(Λ) admits a complement in per(Λ).

Proof. It follows from Remark 3.8 that X admits a complement to a large silting object
in D(Λ), i.e. there is V such that X ⊕ V is large silting in D(Λ), and moreover, V can
be chosen in Kb(Proj(Λ)). Therefore X ⊕ V is a large silting object that is a bounded
complex of projective Λ-modules, and by Theorem 5.5, it is equivalent to a classic silting
object in per(Λ). □

The rest of this section is devoted to the proof of Theorem 5.5. For the reverse implication,
we will need the following generalisation of [AIR14, Theorem 3.2] and [AMV16, Theorem
4.9] which follows the spirit of [IJY14] in making a ‘basis-free’ statement.

Proposition 5.7. Let M a classic silting object in per(Λ). Write Γ = End(M) and let
H0 := H0

M : D(Λ) → Mod(Γ) be the cohomological functor associated to the t-structure
(VM ,WM) according to Proposition 5.1. There is a bijection

Silt2M(Λ)
1−1←→ {silting Γ-modules up to equivalence}

T 7→ H0
M(T )

which restricts to a bijection

silt2M(Λ)
1−1←→ {support τ -tilting Γ-modules up to equivalence}.

Proof. We fix the notation UT := ⊥VT and UM := ⊥VM for the left orthogonal subcate-
gories of VT and VM in D(Λ), as in previous sections.

We begin by showing the assignment is well defined. Suppose T is an object in D(Λ) that
lies in Silt2M(Λ). By Lemma 3.3(2) there is a triangle of the form

M1 M0 T M1[1],
Σ

with M0 and M1 in Add(M). By Proposition 5.1(2), applying the cohomological functor
H0 to this triangle we obtain a projective presentation of H0(T ):

H0(M1) H0(M0) H0(T ) 0.
σ:=H0(Σ)

We claim that H0(T ) is a silting Γ-module with respect to the projective presentation σ.

Step 1: A Γ-module X, regarded as an object of HM , lies in Dσ if and only if it lies in
VT , or equivalently, HomD(Λ)(T,X[1]) = 0.
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The canonical maps h1 : M1 → H0(M1) and h2 : M0 → H0(M0) induce the following
commutative diagram.

HomD(Λ)(H
0(M0), X) HomD(Λ)(H

0(M1), X)

HomD(Λ)(M0, X) HomD(Λ)(M1, X)

HomD(Λ)(σ,X)

∼HomD(Λ)(h0,X) HomD(Λ)(h1,X)∼

HomD(Λ)(Σ,X)

From this, we conclude that X lies in Dσ if and only if HomD(Λ)(Σ, X) is surjective. This
occurs if and only if HomD(Λ)(T,X[1]) = 0 as HomD(Λ)(M0, X[1]) = 0. Moreover, this
happens if and only ifX lies in VT . Indeed, X already lies in VT [−1] as HomD(Λ)(T,X[i]) =
0 for all i > 1 because T lies in UT [1] ⊆ UM [2]. This latter claim follows from the
assumption VM [1] ⊆ VT , which gives UT ⊆ UM [1].

Step 2: We have Gen(H0(T )) ⊆ Dσ.
It suffices to show that H0(T )(I) lies in Dσ for any set I, because Dσ is closed under
quotients. Note that H0(T )(I) ∼= H0(T (I)) because M is compact. As T and T (I) lie in
VM , truncating with respect to (VM [1],WM [1]) gives a triangle

V [1] T (I) W [1] = H0(T (I)) V [2].

As VM [1] ⊆ VT it follows that H0(T (I)) lies in VT , and thus in Dσ by Step 1.

Step 3: We have Dσ ⊆ Gen(H0(T )).

Let X be an object in Dσ and take the universal map u : H0(T )(I) → X, where I is a
basis for the k-vector space HomΓ(H

0(T ), X). In order to prove that u is an epimorphism
in HM , we use the fact that H0(T )(I) ∼= H0(T (I)) again and consider the triangle

H0(T (I)) X K H0(T (I))[1].u

We show that H0(K) = 0. Since H0(M) is a projective generator of HM by Propo-
sition 5.1(2), this amounts to showing that HomD(Λ)(M,K) = 0. Now, by assump-
tion Add(T )[−1] ≥ Add(M) ≥ Add(T ), so we know from Lemma 3.3(2) that M lies in
Add(T [−1]) ∗ Add(T ). Thus, it suffices to check that

HomD(Λ)(T,K) = 0 = HomD(Λ)(T,K[1]).

SinceX is an object of HM , any morphism T → X factors through the canonical map T →
H0(T ). This shows that HomT(T, u) is an epimorphism. It follows that HomD(Λ)(T,K) =

0 since HomD(Λ)(T,H
0(T )(I)[1]) = 0 from Step 2. Moreover, as X lies in Dσ, we have from

Step 1 that HomD(Λ)(T,X[1]) = 0, and we conclude that HomD(Λ)(T,K[1]) = 0. Hence
we have that X lies in Gen(H0(T )) as claimed.

We have thus shown that the assignment T 7→ H0(T ) is well defined. In order to prove
the bijectivity of this map, we observe the following.

Step 4: We have VT = VM [1] ∗ Gen(H0(T )).

Indeed, we have that VM [1]∗Gen(H0(T )) ⊆ VT by assumption and Step 1. For the reverse
inclusion, truncate an object X in VT with respect to the t-structure (VM [1],WM [1])

V [1] X W [1] V [2],
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where, again, W [1] = H0(X) lies in HM because VT is contained in VM . Now, H0(X)
lies in VT since VM [1] ⊆ VT , whence H

0(X) lies in Dσ = Gen(H0(T )) by Step 1.

Step 5: The assignment T 7→ H0(T ) is injective.

Suppose T1 and T2 are objects of Silt2M(Λ) such that Add(H0(T1)) = Add(H0(T2)). Then
Gen(H0(T1)) = Gen(H0(T2)), and by Step 4 we have VT1 = VT2 . Now we use Theorem 2.8
asserting that a silting object is determined by the co-t-structure up to equivalence.

Step 6: The assignment T 7→ H0(T ) is surjective.

Suppose Y is a silting Γ-module with respect to a map σ : H0(M1) → H0(M0). By
Proposition 5.1(2), H0|Add(M) : Add(M) → Proj(HM) = Add(H0(M)) is an equivalence,
and so, there is a unique map Σ: M1 →M0 such that H0(Σ) = σ. Thus, we set T to be
the cone of Σ, i.e. we consider the triangle

M1 M0 T M1[1],
Σ

from which we observe that H0(T ) = Y and that T lies in Add(M) ∗ Add(M [1]). We
check that T is a large silting object using Theorem 3.4. By the construction of T it is
clear that T lies in VM and that VM [1] ⊆ VT . It remains to see that Add(T ) is contained
in VT and that T is a weak generator.

We first show that Add(T ) is contained in VT . For a module X, applying HomD(Λ)(−, X)
to the triangle above tells us that HomD(Λ)(T,X[1]) = 0 if and only if HomD(Λ)(Σ, X) is
surjective. Consider the commutative diagram:

(∗)

HomD(Λ)(H
0(M0), Y

(I)) HomD(Λ)(H
0(M1), Y

(I))

HomD(Λ)(M0, Y
(I)) HomD(Λ)(M1, Y

(I))

HomD(Λ)(M0, T
(I)) HomD(Λ)(M1, T

(I))

HomD(Λ)(σ,Y
(I))

∼HomD(Λ)(h0,Y
(I)) HomD(Λ)(h1,Y

(I))∼

HomD(Λ)(Σ,Y
(I))

HomD(Λ)(Σ,T
(I))

HomD(Λ)(M0,hT (I) ) ∼ ∼ HomD(Λ)(M1,hT (I) )

where hT (I) : T (I) → H0(T (I)) ∼= H0(T )(I) = Y (I), h1 : M1 → H0(M1) and h0 : M0 →
H0(M0) are the canonical maps coming from the fact that M1, M0 and T (I) lie in VM .
The top vertical maps are isomorphisms as in Step 1, and the bottom vertical maps are
isomorphisms because M is silting and T lies in VM . Since, by assumption, Y is a silting
module with respect to σ it follows that HomD(Λ)(Σ, T

(I)) is surjective, as required.

Next, we argue that T is a weak generator exactly as in the proof of (4)⇒(1) in [AMV16,
Theorem 4.9]; we transcribe the proof to our setting and notation for the convenience
of the reader. Let Z be an object in T for which HomD(Λ)(T, Z[j]) = 0 for all j in Z.
For i in Z, let vi denote the right adjoint of the inclusion of VM [i] into T (i.e., vi is the
truncation with respect to VM [i]). Since T lies in VM , it follows that HomD(Λ)(T,−) ∼=
HomD(Λ)(T, v0(−)) and, as VM [1] ⊆ VT , there is a natural epimorphism

HomD(Λ)(T, v0(−)) HomD(Λ)(T,H
0(−)) ∼= HomD(Λ)(Y,H

0(−)).

Hence, Hj(Z) lies in the torsionfree class Y ⊥ in HM for all j in Z. From the triangle

H0(Z[j + 1])[−1] −→ v1(Z[j + 1]) −→ v0(Z[j + 1]) −→ H0(Z[j + 1])
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we deduce that HomD(Λ)(T, v1(Z[j+1])) = 0. Notice that v1(Z[j+1]) ∼= v0(Z[j])[1], and
thus v0(Z[j]) lies in VT for all j in Z. This implies that HomD(Λ)(Σ, v0(Z[j])) is surjective
and, using a diagram as in (∗) above, that HomD(Λ)(σ,H

0(Z[j])) is surjective. This shows
that Hj(Z) lies in Dσ for all j in Z. Since (Dσ, Y ⊥) is a torsion pair in HM , we conclude
that Hj(Z) = 0 for all j and, since (VM ,WM) is nondegenerate, we conclude that Z = 0.
This concludes the proof that T is indeed a large silting object in D(Λ).

Thus, T 7→ H0(T ) is a bijection between silting Γ-modules and Silt2M(Λ).

Step 7: The assignment T 7→ H0(T ) restricts to bijection silt2M(Λ) and support τ -tilting
Γ-modules.

This bijection is well known, see [IJY14, Theorem 4.6]. However, for completeness, we
explain how the statement can be recovered as a restriction of the assignment in the
cocomplete case above.

If T is compact, then T is an object in add(M) ∗ add(M [1]) and, therefore, H0(T ) is a
finite-dimensional Γ-module. Conversely, suppose H0(T ) is a finite-dimensional silting
Γ-module witnessed by a projective presentation σ in proj(HM) = add(H0(M)). As in
Step 6, we can lift σ to a map Σ in add(M). We then observe that the cone of Σ is a
compact silting object lying in silt2M(Λ) and whose zeroth cohomology is H0(T ). □

We now turn to the forward implication in Theorem 5.5, which is implicitly contained in
[PSZ18, Lemma 3.5]. We provide details for the convenience of the reader.

Lemma 5.8. Let Λ be a silting-discrete, finite-dimensional k-algebra. Suppose M and S
are large silting objects such that S in per(Λ) and M in SiltnS(Λ) for some natural number
n ⩾ 1. Then there exists a large silting object T in per(Λ) such that M lies in Silt2T (Λ).
In particular, SiltnΛ(Λ) = siltnΛ(Λ) for all n > 0.

Proof. Suppose M and S are large silting objects such that S lies in per(Λ) and M
lies in SiltnS(Λ). Since M lies in SiltnS(Λ), we have VS[n] ⊆ VM ⊆ VS, or equivalently,
WS[n] ⊇ WM ⊇ WS. By Proposition 5.1(3), the pair (vS,wS) = (VS ∩Db(Λ),WS ∩Db(Λ))
is a t-structure in Db(Λ) with heart hS ≃ mod(Γ), where Γ := EndD(Λ)(S). Applying
Lemma 3.5 on the set {S[k + 1],M [k] | k ≥ 0}, we obtain a t-structure

(V,W := WS[1] ∩WM

)
in D(Λ).

One can check that

(3) W[n− 1] ⊇ WM ⊇ W,

(4) WS[1] ⊇ W ⊇ WS.

It suffices to find a large silting object N ∈ per(Λ) such that (V,W) = (VN ,WN). Indeed,
M then lies in Siltn−1

N (Λ) by (3), and the result follows by induction.

The inclusions (4) show that the t-structure (V,W) is a Happel–Reiten–Smalø tilt of
(VS,WS) (see [HRS96, Proposition 2.1]), i.e. there is a torsion pair (T ,F) in HS such
that (V,W) = (VS[1] ∗ T ,F ∗WS), see for example [W10, Proposition 2.1]. Since Λ is
silting-discrete, it follows from Theorem 5.4 that Γ is τ -tilting finite and, therefore, by
Theorem 5.3, we have that T = Gen(Y ), for a finite-dimensional silting Γ-module. By
Proposition 5.7, Y = H0(N) for some silting object N in silt2S(Λ) and, by Step 4 of proof
of Proposition 5.7, it follows that VN = VS[1] ∗ T = V, as wanted.
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For the last statement, pick an object T in SiltnΛ(Λ). It lies in Silt2M(Λ) for some classic
silting object in per(Λ) and corresponds to some silting End(M)-module under the bijec-
tion in Proposition 5.7. By assumption End(M) is τ -tilting finite, and by Theorem 5.3
we obtain that T lies in silt2M(Λ). So T is a perfect complex and lies in siltnΛ(Λ). □

Proof of Theorem 5.5. One implication has just been proven in Lemma 5.8. For the other
implication, suppose SiltnΛ(Λ) = siltnΛ(Λ) for all n > 1. Given a classic silting object M
in per(Λ), it follows that Silt2M(Λ) = silt2M(Λ). By virtue of Proposition 5.7, this can
be rephrased as a property of the algebra Γ = End(M), namely, all silting Γ-modules
are finite dimensional up to equivalence. But this means that Γ is τ -tilting finite by
Theorem 5.3. By Theorem 5.4 we conclude that Λ is silting-discrete. □
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Figure 1. Each figure shows a region of the Auslander–Reiten quiver of Db(kQ). Top: the coaisle (M [< 0])⊥ associated
to the silting objectM is marked in red, with the silting objectM marked in deeper red. Middle: the (unbounded) coaisle
[X[< 0])⊥ associated with the presilting object X = S2[2] ∈ (M [< 0])⊥ is marked in blue. Bottom: the intersection

V := (X[< 0])⊥ ∩ (M [< 0])⊥ =
(
(X ⊕M)[< 0]

)⊥
. One can see that no object in the transjective component containing

the shifted projective objects admits a left V-approximation. V is not the coaisle of a co-t-structure.
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