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Abstract—Edge caching is one of the key technologies, which enhances consumer content delivery
and reduces service latency by caching consumer content and services on edge nodes.
Learning-based caching algorithms have been proposed in the literature to achieve high caching
efficiency. However, in the complicated task of edge caching for consumer content in vehicular
networks, it is challenging to achieve a high cache hit rate and low consumer content delivery delay.
This paper proposes AFRL, an Asynchronous Federated Learning with Deep Reinforcement Learning
edge consumer content caching algorithm for vehicular networks. AFRL utilizes federated learning to
collaboratively train a shared DRL agent among Roadside Units(RSUs), and an efficient asynchronous
federated learning algorithm is also introduced to accelerate convergence and improve cache hit rates
in dynamic environments. Simulation results demonstrate the superior performance of AFRL
compared to traditional and state-of-the-art caching algorithms, showcasing its potential in handling
varying traffic densities, achieving higher cache hit rates, and low consumer content delivery delay.

CLOUD COMPUTING provides users with services
by integrating multiple computing entities into a sin-
gle powerful computing system through the network,
thereby reducing the processing burden on user termi-
nals. However, traditional cloud computing struggles to
support low-latency services and faces problems such
as privacy leakage [1]. To address these challenges,
distributed cloud systems enable the deployment of
storage and computation resources closer to the edge.
A distributed cloud at the edge greatly reduces com-
munication complexity and consumer content delivery
latency and enhances privacy by employing localized
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data storage [2]. Furthermore, deploying servers at the
network’s edge reduces communication and computa-
tion load from the core network.

Real-time information transfer is essential for ve-
hicular networks to provide intelligent and effective
modern transportation systems for applications such as
path planning, autonomous driving, and real-time traf-
fic monitoring [3]. However, with the growing popu-
larity and use of various vehicular mobile applications,
low-latency communication between vehicles and road
infrastructure has become crucial to enable real-time
information flow. To support real-time information
flow, computation offloading has become increasingly
important, but traditional cloud computing models
cannot meet the requirements of highly dynamic ve-
hicular networks. Thus, distributed cloud systems are
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introduced to provide more efficient services in vehic-
ular networks. By deploying more Distributed Cloud
Nodes(DCNs) adjacent to the road to provide nearby
edge caching and computation services for vehicles,
distributed cloud systems can support rapidly growing
low-latency onboard mobile applications. Learning-
based approaches have been proposed to achieve ef-
ficient edge caching using RSUs scattered across the
roadside. Qiao et al. [4] used a DDPG framework
on RSUs to build a dual time-scale Markov decision
model, reduce consumer content delivery latency and
system exhaustion, and continuously train the agent to
make better caching decisions.

As a distributed learning framework, federated
learning enables a group of users to collaboratively
train a shared model. In this framework, training is
performed locally by users, and aggregation is car-
ried out at a central server, with only the model
parameters communicated, ensuring user data privacy
[5]. Utilizing federated learning to train models in
DCNs holds great promise for improving edge caching,
consumer content delivery delay. However, traditional
synchronous federated learning approaches are not
efficient for highly dynamic vehicular networks, as
they require vehicle clients to wait for all local up-
dates before performing global aggregation for the
next round of local training. Asynchronous federated
learning frameworks are therefore advantageous, and
combining them with deep reinforcement learning of-
fers even more benefits.

Deep reinforcement learning(DRL) is an effective
method for training an optimal decision network by
having an intelligent agent continuously interact with
the environment, thereby achieving efficient decision-
making in numerous interactive application scenarios.
In this paper, we propose an edge caching algorithm,
named AFRL, that combines Asynchronous Federated
learning and deep Reinforcement Learning. AFRL has
shown high caching performance in simulation exper-
iments, outperforming traditional caching algorithms,
the synchronous benchmark based on FedAvg, and the
compared state-of-the-art edge caching algorithm in
terms of cache hit rate and consumer content delivery
delay.

ARCHITECTURE FOR DISTRIBUTED
CLOUD IN VEHICULAR NETWORKS

Various distributed cloud models have been pro-
posed to address the challenges of conventional cloud

computing. Mohan et al. [6] proposed a distributed
cloud model for the Internet of Things (IoT) named
Edge-Fog cloud. They assign computation tasks to
multiple data center networks for execution, following
the idea of spreading computation across different data
center networks. Generally, distributed cloud systems
are not universal due to different application scenarios.

Figure. 1 depicts the application scenario of dis-
tributed cloud in vehicular networks, where vehicles
maintain connections with RSUs while driving across
RSUs’ coverage areas. An RSU with a limited stor-
age space is deployed with wireless communication
devices, and is connected to the data center in through
cable. Adjacent RSUs communicate through wireless
networks. The coverage of each RSU does not overlap.
It is popular to DRL agents on RSUs. Federated learn-
ing can be performed between the RSUs federation
and the Cloud Data Center(CDC). Through collabora-
tion among vehicles, RSUs, and CDC, many vehicle-
oriented applications can be supported. In this section,
we focus on the proposed distributed cloud architecture
for vehicular networks from the perspective of edge
computing, where RSUs function as DCNs.

In this architecture, A vehicle client establishes a
connection with a DCN server and requests consumer
content. In contrast to traditional cloud computing,
the request is initially received by the local DCN,
which connects with the requesting vehicle client and
provides the desired consumer content if it is available
on the local server. However, because DCNs have
limited storage capacity, we have devised a collabo-
rative caching technique to enhance cache hit rate and
reduce consumer content delivery delay. Specifically,
a request by a vehicle client is handled in one of
three different ways: (i) The local DCN caches the
previously requested consumer content, and when a
newly connected vehicle client requests consumer con-
tent, the DCN delivers the cached consumer content
directly, as shown in Figure. 2 with vehicle client 1 re-
questing consumer content B. (ii) When the connected
DCN does not have the consumer content in the local
cache, but the adjacent DCNs do have the requested
consumer content in the cache, as in the case of vehicle
client 2 requesting consumer content C in Figure.
2, an adjacent DCN sends the requested consumer
content to the local DCN, which then forwards it to the
requesting vehicle client. (iii) When the local DCN and
the adjacent DCNs do not have the requested consumer
content in their local cache, the local DCN requests to
the remote CDC and obtains the requested consumer
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content, and then the local DCN forwards it to the
requesting vehicle client, as illustrated by vehicle client
3 requesting consumer content K in Figure. 2.

PROPOSED ALGORITHM FOR
VEHICULAR EDGE CACHING

Based on the distributed cloud architecture for
vehicular networks, we have designed the AFRL ve-
hicular edge caching algorithm. AFRL combines asyn-
chronous federated learning and deep reinforcement
learning.

DRL Model
We partition time into brief five-minute segments.

Each vehicle’s request is represented as a triplet,
consisting of the request time, the corresponding RSU
number connected to the vehicle client, and the re-
quested content’s number. We deploy an agent on each
RSU. Each time segment corresponds to a step in
DRL, and 144 time segments(12 hours) corresponds
to an episode. At the start of a time segment, the
agent observes the current state, performs an action,
and upon completion of the time segment, the agent
receives a reward. A new state is then observed, and
the sequence of state, action, reward, and new state is
stored in the agent’s experience pool. The elements of
DRL is introduced as follows:

State: The number of all contents that a vehicle
client may request is recorded as Cn. We record the
number of times each consumer content is requested
in each time segment and set an observation length
L. At any time segment, the observation or state of a
DRL agent is a two-dimensional vector composed of
the number of times each content has been requested
in the past L time segments, and the shape of the
state is L × Cn. The state indicates the short-term
request frequency of consumer content, which is the
most significant basis for edge caching.

Action: At the beginning of each time segment, the
agent performs an action based on the current obser-
vation. The action is represented as a one-dimensional
vector of length Cn. Each element of the vector
is a number ranging from 0 to 1, representing the
preferences of caching the corresponding content. The
agent then ranks the content based on these preferences
and selectively caches the highest-preferences content
until the maximum capacity of the RSU storage is
reached.

Reward: At the end of each time segment, the
agent accumulates the total reward based on the action
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Figure 1. Application scenarios of distributed cloud
for vehicular networks.

performed at the beginning of that time segment. The
reward function is designed considering the objectives
of the task. Let’s denote the cache hit rate as hr,
the cache utilization rate as hu, and the content
delivery delay as sd. We introduce three weights:
w1, w2, w3, where w1>0, w2>0, w3<0. The reward
is then calculated as w1× hr+w2× hu+w3× sd.
This reward function encourages the agent to perform
actions that increase the cache hit rate, increase the
cache utilization rate, and decrease the content delivery
delay.

Asynchronous Federated Learning
Clients: The clients of federated learning are

RSUs. We regard all RSUs in a region as an RSU fed-
eration. The motivation of each RSU is the same, that
is, to enable the agent to obtain the maximum reward
in the local environment. Therefore, it is reasonable
for RSUs to cooperate in training a global model.

Asynchronous model aggregation and distribution:
To the edge caching of consumer content in vehic-
ular networks, policy of the agents deployed on the
RSUs updates after processing a certain amount of
requests. Different RSUs are in different environments
and receive requests at different frequencies, resulting
in different frequencies of local updates, and tradi-
tional federated learning performs model aggregation
synchronously. Therefore, using synchronous federated
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Figure 2. Framework of edge consumer content
caching in vehicular networks.

learning in the edge caching of consumer content in
vehicular networks will cause a waiting interval. Part
of RSUs will wait for other RSUs to upload their
local models, and every time model aggregation is
performed, there is a high possibility that some RSUs
will be waiting, which reduces the learning efficiency
of the agents. Therefore, we propose to use an asyn-
chronous federated learning algorithm for the edge
caching of vehicular consumer content. Specifically,
we adopt asynchronous model update and distribution
strategies. The specific aggregation method is shown
in the next subsection.

AFRL for Vehicular Edge Caching
In this subsection, we provide a detailed descrip-

tion of the proposed AFRL algorithm. The DRL agent
deployed on the RSU is trained using the DDPG algo-
rithm. Each agent consists of four networks: main actor
network, target actor network, main critic network, and
target critic network. The following are the steps of the
AFRL algorithm.

• (i) Initialization: CDC is designated as the aggre-
gation server. Four networks, namely global main
actor network, global target actor network, global
main critic network, and global target critic net-
work, are initialized. These four networks are dis-
tributed to each agent. The set of agents is denoted
as {agenti|i = 1, 2, · · · , num1}, where num1

represents the number of agents.
• (ii) Local Concurrent Execution by each agenti:

– 1. agenti receives a state, performs an action,
receives a reward, and obtains a new state. The

tuple (state, action, reward, new state) is stored
in the local experience pool.

– 2. Whenever agenti processes num2 requests,
it randomly samples a batch of experiences from
the local experience pool and updates its two
main networks. The two target networks are
periodically updated by copying from the main
networks.

– 3. Asynchronous aggregation is performed every
num3 updates.

• (iii) Asynchronous Update Strategy: The global
model in federated learning is denoted as wg , and
the local model parameters of agenti are denoted
as wi. The number of requests received by agenti
is represented as requesti. The contribution of
agenti to the model contributioni is defined as
requesti/

∑num1

k=1 requestk. Based on the contri-
bution of agenti, the global model wg is updated
as contributioni×wi+(1−contributioni)×wg .

EXPERIMENT SETTINGS AND
PERFORMANCE EVALUATION

We generated a dataset simulating vehicles on a
highway with speeds ranging from 80 km/h to 120
km/h. The coverage radius of RSUs is 5 km. Five
RSUs are continuously deployed to handle vehicle
requests. The number of contents requested by vehicles
is 1000, with each content’s size ranging from 0
to 10 MB. Each vehicle has a preference for each
content and requests content from RSUs based on
its preference with a certain level of activity. The
generated dataset contains 8669971 requests in a year.
The storage capacity of each RSU is 1024 MB. In
the DDPG algorithm, the discount factor used for soft
updates is 0.99, and the experience replay buffer has a
capacity of 50000. Both the actor and critic networks
have a hidden layer with 128 neurons. To demonstrate
the advantages of the AFRL algorithm, we compare it
with the following baselines:

• RC: Random Cache, where the RSUs update their
cached content randomly.

• PFC: Popular First Cache, where the RSUs cache
contents based on the popularity ranking among the
observed window of the request of each content.

• RL: each agent learns independently and locally
without collaboration using DDPG.

• FRL: Federated Reinforcement Learning with RSUs
performing synchronous aggregation. The aggre-
gation function used is the classical synchronous
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federated averaging algorithm[7].
• CODR: state-of-the-art edge caching algorithm[8],

where the RSUs make caching decisions based on
predicted popularity using the simplex algorithm.

In Figure. 3, the AFRL algorithm demonstrates its
advantages. When RSUs are trained locally and do
not cooperate with each other, the limited amount of
local experience results in the agents acquiring less
experience during the learning process. In the complex
environment of vehicular edge caching of consumer
content, this makes it difficult for a single agent to
make satisfactory caching decisions. In Figure. 3, the
reward curve of the RL algorithm quickly declines
after a brief increase because the individual agent lacks
sufficient data and the learning process is incomplete.
In the later stages of training, the agent’s exploratory
behavior decreases, and performing caching decisions
using suboptimal strategies becomes challenging to
achieve high rewards, leading to a gradual decrease
in rewards. In contrast, the AFRL algorithm allows
RSUs to cooperate by enabling global model updates
and distribution. This enables RSUs to share their ex-
periences and knowledge, and achieve more thorough
learning, resulting in higher rewards and better caching
decisions. However, traditional federated learning is
not perfectly suited for vehicular edge caching of
consumer content. In the case of global updates by the
agents, there are situations where part of agents have to
wait. AFRL overcomes this limitation by allowing the
agents to perform global model updates immediately
after completing a batch of local training and obtaining
the updated global model. This enables the agents to
learn more thoroughly and achieve higher rewards. In
Figure. 3, both training runs of AFRL converge slightly
earlier than FRL and achieve higher rewards.

Figure. 4 illustrates the cache hit rates under dif-
ferent traffic densities. Traffic density refers to the
number of vehicle clients within the coverage area
of all RSUs. The cache hit rate of the learning-based
caching algorithms represent the average cache hit rate
of its converged episodes including AFRL, FRL, RL,
and CODR. At traffic densities of 30 and 60, AFRL
exhibits higher cache hit rates compared to all other
caching algorithms. Particularly, at a higher traffic
density of 60, AFRL achieves a 6.02% improvement in
cache hit rate over RC, a 5.2% improvement over PFC,
a 2.22% improvement over RL, a 0.5% improvement
over FRL, and a 3.2% improvement over CODR.
Among these, all the caching algorithms utilizing DRL

agents outperform the popularity-based caching algo-
rithm CODR in terms of hit rate. CODR caches con-
tent based on predicted content popularity and RSUs’
demands, while each RL-based approaches assigns a
time window of past content requests to the agent. The
difference lies in the fact that the RL-based approaches
directly observe the environment instead of relying
on human-made popularity and demands for caching
decisions. This allows the RL-based approaches to
directly respond to the environment, resulting in higher
cache hit rates.
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In Figure. 5, we varied the storage space per RSU
and compared the consumer content delivery delay
brought by different caching algorithms. Starting from
1GB, we incrementally increased and decreased the
storage of RSUs by 128MB. In these different storage
settings, AFRL consistently achieved the lowest delay.
Consistent with the previous discussion, delay of RL
and FRL were lower than that of CODR, indicating the
effectiveness of AFRL’s use of agents for consumer
content caching. Furthermore, we observed that as the
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Figure 5. Comparison on average service delay un-
der different RSU storage.

RSU storage increases, the delay differences between
AFRL and CODR, RL, and FRL gradually decreased.
Under a smaller storage space of 640MB, AFRL had
delays 0.151s, 0.119s, and 0.06s shorter than CODR,
RL, and FRL, respectively. Under a larger storage
space of 1408MB, AFRL had delays 0.126s, 0.101s,
and 0.042s shorter than CODR, RL, and FRL, respec-
tively. This indicates that AFRL can provide shorter
delays for consumer content delivery in verhicular
networks, particularly when the RSU storage space is
smaller.

CONCLUSION
In this paper, we propose a collaborative edge

caching algorithm that combines asynchronous feder-
ated learning with deep reinforcement learning named
AFRL. The AFRL algorithm achieves significant im-
provements in consumer content delivery delay, cache
hit rate. Notably, we employ a federated learning
framework that enables RSUs to collaboratively train a
shared DRL model. Additionally, we utilize an efficient
asynchronous federated learning algorithm to expedite
the convergence of models. Through simulation ex-
periments, we demonstrate that the proposed AFRL
approach achieves faster convergence compared to the
synchronous approach. Furthermore, it outperforms
classical and state-of-the-art caching algorithms in
terms of cache hit rate and consumer content delivery
delay, and it is robust under different RSU storage and
different traffic densities.
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