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Abstract—Mobile Edge Computing (MEC) stands as an 

indispensable technology in the facilitation of 5G networks, 

enabling the deployment of widely-used services on edge servers 

situated in close proximity to consumer electronics. Within the 

MEC framework, a central role is attributed to edge service 

composition (ESC), pivotal in bolstering functionality and 

ameliorating user experiences. Presently, prevailing methods for 

ESC predominantly center on the prioritization of Quality of 

Service (QoS) optimization, presenting a solitary optimal 

composite service for consumer electronics invocation. 

Regrettably, this approach sidelines the significance of solution 

diversity within composite services, potentially resulting in service 

overload and the suboptimal utilization of edge resources. To 

surmount these challenges, this study integrates digital twin (DT) 

technology and diversified search mechanisms into the MEC 

domain, offering an innovative diversified top-k service 

composition methodology known as DSC-DT. By harnessing the 

capabilities of DT technology, DSC-DT enables the emulation and 

assessment of diverse composite service solutions within a virtual 

space. Specifically, the proposed methodology models the 

procedure of service composition within a DT environment as an 

issue of subgraph isomorphism. This is succeeded by the 

configuration of the diversification process as an independent set 

predicament within an undirected graph, efficiently resolved 

through a greedy algorithmic paradigm. It is noteworthy that 

DSC-DT accommodates a gamut of query types, including normal 

queries, constraint queries, and optimal queries. The efficacy and 

efficiency of the proposed approach are corroborated through 

comprehensive experiments conducted upon authentic datasets. 
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I. INTRODUCTION 

ith the growing intelligence of consumer electronics 

and the progression of mobile edge computing 

(MEC) technology [1, 2], an increasing cadre of 

service providers is disseminating lightweight, 

loosely-interlinked, and self-contained services across edge 

servers [3, 4]. This dissemination empowers mobile users to 

beckon forth these services via consumer electronics such as 

smartphones, laptops, and wearable devices, characterized by 

minimal latency, thus adroitly fulfilling their real-time 

imperatives [5]. In light of the burgeoning assortment and 

intricacy of mobile user requisites, the provision of a solitary 

service to meet a user's needs has become an increasingly 

onerous undertaking [6]. Consequently, Edge Service 

Composition (ESC) mechanisms have been posited, 

orchestrating the automated assemblage of multiple edge 

services to engender a value-added service, thereby satiating 

user queries (i.e., a request for a composite edge service) [7]. 

Employing Quality of Service (QoS) as a quantifiable metric 

for non-functional attributes, composition systems are 

empowered to identify appropriate component services from a 

spectrum of functionally akin services at the edge [8, 9]. The 

preponderance of contemporary ESC techniques are designed 

to embody QoS-consciousness, seeking to proffer mobile users 

with the quintessential composite service [7, 10]. Nonetheless, 

this breed of methodologies presents a conundrum in scenarios 

where any element service within the optimal composite service 

becomes inaccessible due to uncontrollable exogenous factors. 

In such instances, the MEC infrastructure necessitates the 

reconstitution of a novel composite solution, thereby fostering 

an uptick in service latency and system energy consumption. A 

viable stratagem entails the incorporation of a top-k search 

modality, proffering users multiple composite service options-

a paradigm entrenched in traditional cloud service composition. 

To illustrate, Benouaret et al. [11] propound a service 

composition technique tailored to accommodate fuzzy 

preference queries. This approach capitalizes upon fuzzy sets to 

conceptualize user preferences, delivering the top-k solutions 

that duly factor in these preferences. In consideration of QoS, 

Jiang et al. [12] present an innovative top-k service composition 

technique christened KPL, distinguished by its commendable 

scalability, efficiency, and accuracy. However, it is prudent to 

acknowledge that the KPL approach pivots upon centralized 

computation, necessitating a potent and dependable central 

server, alongside considerable bandwidth allotment for 

computation, data warehousing, and communication. These 

requisites constrain the applicability of KPL within the edge 

domain. Deng et al. [13] contrive a service composition strategy 

underpinned by backtracking search and depth-first search 
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tactics, fostering streamlined parallel processing of user appeals. 

This methodology orchestrates top-k service composition 

searches with a decentralized manner, thus mitigating the 

burden on central nodes and uplifting overall system 

availability. Similarly, Li et al. [14] postulate a novel approach 

employing a relational database to automate service 

composition. This schema involves a premeditated generation 

of all conceivable service compositions, archived within a 

relational database. Upon receipt of a user solicitation, this 

relational database approach integrates SQL queries to peruse 

the database, retrieving the top-k valid composite services 

embodying optimal QoS—effectively addressing both the 

functional and non-functional prerequisites of users. 

The advent of top-k service composition methodologies has 

extended users' access to alternative solutions. However, these 

methodologies have predominantly focused on refining or 

devising efficient algorithms for top-k searches, relegating the 

study of result set diversity to the background. This oversight 

can lead to service redundancy, wherein all k composite 

services offered by the system may include identical sets of 

constituent services, i.e., high-QoS edge services. In scenarios 

where these services are rendered inaccessible due to external 

perturbations or unforeseen incidents, multiple composite 

service solutions may concurrently become unattainable, 

rendering the top-k search futile. Additionally, these solutions 

characterized by limited diversity often lead to the repetitive 

invocation of high-QoS services, with low-QoS services being 

underexploited, thus resulting in wastage of precious edge 

resources. Therefore, the top-k service composition paradigm 

strives not merely to identify a cohort of composite services at 

the edge, exhibiting the highest feasible objective score (such 

as QoS), but also mandates the attainment of considerable 

diversity among these solutions. Recent times have witnessed 

the ascent of diversity within the scope of service computing. 

For instance, in countering the quandary of service redundancy 

within traditional QoS-conscious service selection, Gou et al. 

[15] introduce an innovative diversity-infused graph-based QoS 

prediction model—DSSN (Diverse Service Selection Network). 

This model augments selection diversity to mitigate redundancy 

and exhibits greater aptitude for diversity-aware service 

selection amidst user requirements characterized by ambiguity. 

Concerning service recommendation, Kang et al. [16] proffer 

an original approach tailored for diversified QoS-centric service 

recommendations, with a specific focus on uncertain QoS 

preferences. The effort here seeks to produce a comprehensive 

roster of services that not only satiate stipulated QoS requisites 

but also showcase a melange of diversity in their offerings. To 

aid system engineers in the expedient assembly of service-

oriented software systems based on given keywords, Cheng et 

al. [17] introduce the quandary of top-k diversified service 

composition and propound an innovative diversified keyword 

search method predicated on service connection graphs to 

redress this quandary. Notwithstanding the strides in addressing 

the intricacies of diversified service composition, the 

realization of diverse top-k service composition within MEC 

remains challenging, underscored by the strictures imposed by 

finite edge resources, the heterogeneity of edge devices, and the 

capriciousness of candidate services. 

Considering the exigencies and constraints including edge 

service composition, digital twin (DT) technology emerges as a 

prospective panacea. DT represents an attractive technology 

that charts the mapping of physical systems onto a mirrored 

virtual space [18, 19]. Employing an assemblage of high-

performance sensors and swift communication, DT integrates 

data from multifaceted physical entities, supplemented by data 

analysis and simulation, to present an almost real-time facsimile 

of the actual state of physical entities. This mapping between 

the realms of actuality and virtuality offers stakeholders a 

holistic insight into the subject system, thereby fundamentally 

reshaping the landscape of design and engineering [20]. 

Presently, a plethora of efforts is underway to enable real-time 

and efficacious monitoring of system status information within 

DT-facilitated MEC systems. Prominently featured in these 

efforts is the paradigm of edge service offloading, wherein 

specific computational tasks are transposed from end devices 

onto MEC servers [21-23]. This not only lightens the burden on 

end devices but also amplifies computational efficiency. These 

research initiatives offer substantial sustenance and guidance 

for the integration of DT within MEC, grappling with pivotal 

domains such as the optimization of system resource allocation 

[24, 25], the curbing of energy consumption and latency [18, 

26], and the augmentation of user experiences [27, 28]. 

Diverging from extant works, this paper centers on a DT-

enabled MEC architecture geared toward offering diversified 

alternatives for service composition to consumer electronics. 

We proffer a diversified edge service composition methodology, 

designed to enrich solution diversity, minimize service failure 

rates, and abate computational expenditures. The ultimate aim 

resides in enhancing the user experience of mobile users 

harnessing consumer electronics. In specific terms, we map the 

relationships between MEC and service invocation into a 

virtual construct, generating diverse top-k composite services 

within this virtual space. Subsequently, the fruits of this 

construction are projected back into the real world, proffering 

mobile users with a plethora of alternative solutions marked by 

minimal service overlap when interfacing with consumer 

electronics. The primary contributions of this paper unfold as 

follows. 

 We propound an innovative ESC framework that 

augments edge resource utilization through the integration 

of digital twin technology and enhances the diversity of 

composite services through the instantiation of diversified 

search strategies. 

 We unveil a novel approach, christened DSC-DT, for top-

k service composition that strives to amplify the diversity 

of composite service resolutions accessible to mobile 

users. In essence, we conceptualize the process of service 

composition as a conundrum of independent sets within an 

undirected graph, subsequently addressed through an 

expeditious greedy algorithm. 

 DSC-DT operates on the foundation of an edge service 

data graph and employs a proficient subgraph search 

algorithm to address user-issued inquiries. Currently, 

DSC-DT accommodates three distinct query categories: 

normal queries, constraint queries (i.e., queries with 

quality constraints), and optimal queries (i.e., queries with 

both quality constraints and optimization objectives). 

The subsequent sections of this article are structured as 

follows. The ensuing segment provides an overview of 

pertinent definitions germane to diversified top-k edge service 
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composition, serving to contextualize our proposed approach. 

Subsequently, Section III offers an exhaustive description of the 

DSC-DT algorithm and its practical instantiation. Section IV 

includes the presentation of results derived from diverse 

experimental scenarios aimed at substantiating the efficacy of 

our proposed methodology. Finally, the article culminates with 

concluding remarks and an exploration of prospective 

trajectories for future research in Section V. 

II. SYSTEM MODEL AND PROBLEM DEFINITION 

Fig.1. shows the framework of a digital twin empowered 

MEC system, including three main components: M base 

stations equipped with edge servers, N edge services deployed 

on these servers, and C mobile devices (i.e. consumer 

electronics) capable of invoking the available edge services. 
For each base station, edge service, and mobile device, a digital 

twin is created based on collected information such as position, 

velocity, status, and energy consumption. These digital twins 

serve as accurate simulations of their corresponding physical 

entities, capturing their real-time operational states and 

characteristics. Through data synchronization and interaction 

with the actual system, the digital twins facilitate precise real-

time monitoring, analysis, and optimization, thereby enabling 

effective performance management and decision-making in the 

MEC system[29]. 

Zone B Zone CZone A

Digital Twin

Network

MEC System

Edge server Base station Edge serviceMobile devices Service dependency Service composition  
request

Information 
collection

Information 
collection

Information 
collection

Edge  service
composition

… 

Edge  service
composition

Edge  service
composition

 
Fig. 1. The architecture of a DT-empowered MEC system. 

In our DT-empowered framework, when a mobile user 

submits a request to a local edge server, the MEC system 

generates a top-k solution set for the request. Before the top-k 

method is proposed, we first define the basic concepts used in 

diversified top-k service composition.  

Definition 1 (Mobile Device): The umbrella term "mobile 

devices" includes all consumer electronics vested with the 

capability to summon edge services. Let d = (idd, ld, vs, bs) 

represent a mobile device, where idd represents its unique 

identifier, ld signifies its present location, vs denotes its velocity, 

and bs indicates the associated base station. 

Definition 2 (Base Station): An entity fitted with an edge 

server is termed a "base station," succinctly represented as a 4-

tuple bs = (idb, lb, r, e), where idb corresponds to the distinctive 

identifier of the base station, lb denotes the geographic 

coordinates of the base station, r signifies the coverage radius, 

and e signifies the presence of an edge server. 

In our DT-empowered MEC system, each base station 

corresponds to an attached edge server which serves a local area 

called a zone, whereas a mobile device is associated with only 

one zone. Multiple edge services, as defined below, are 

deployed on each edge server. 

Definition 3 (Edge Service): An "edge service" is defined as a 

4-tuple s = <ids, f, bs, QoS>, with ids connoting a unique service 

identifier, f representing the functional defining inclusive of 

input, output, preconditions, and result, bs indicating the base 

station housing the edge service, and QoS = {q1, q2, ...} 

denoting the assortment of quality attributes associated with s, 

as collected from service level agreements (SLAs), involving 

factors such as cost, response time, reliability, throughput, and 

more. 

In Definition 3, the input and output parameters of an edge 

service encapsulate its functional traits, while the QoS 

component embraces its non-functional attributes. The 

repository of edge services, accessible on edge servers, is 

encapsulated by S = {s1, s2, ...}. In our context, we conceptualize 

an "edge service data graph" in alignment with the ensuing 

definition, orchestrating the organizational framework for these 

services: 

Definition 4 (Edge Service Data Graph): An "edge service 

data graph" is defined as a directed, vertex-labeled, edge-

labeled graph G = <S, A, LS, FS, LA, FA>. Here, S denotes the 

set of vertices within G, signifying the reservoir of edge 

services; A ⊆ S × S encapsulates a set of directed edges in G, 

symbolizing service composability. The edge a(si, sj)∈A 

signifies that sj can succeed si in the composition sequence of 

si , sj; LS embodies the ensemble of vertex labels, embodying a 

series of tasks; For each vertex s∈S , FS(s)∈LS denotes the 

label of s; LA embodies the cohort of edge labels, designating 

task dependencies. The edge la(si, sj)∈LA denotes that FS(sj) = 

Tj can follow FS(si) = Ti within the business process 

transitioning from Ti , Tj; for each edge a∈A , FA(a)∈LA 

designates the label of a. 

s1

s5

s8

s2

s6

s3

s9

s4

s7

s10

Task1: Flight ticket booking

Task2: Car hire

Task3: Hotel booking

Task4: Insurance quote

 
Fig. 2. Part of the edge service data graph, G 

It should be noted that each a∈A is obtained from the 

historical interactions between edge services utilizing data 

mining methodologies [30, 31]. In this undertaking, we 

leverage the concept of DT to simulate this data graph, enabling 

real-time emulation and reflection of the dynamic states and 

mutations of edge services. Through the deployment of DT 

technology, precision and stability in data graph depiction can 

be upheld. Following the graph's construction, its stability 

remains relatively intact, with updates necessitating minimal 
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overhead, particularly for events (e.g., the integration of novel 

services or the obsolescence services leaving). Fig. 2. proffers 

a partial illustration of an edge service data graph, including 10 

edge services and 4 tasks. This graph predominantly serves the 

sphere of classical tourism. 

Definition 5 (Business Process Request): The business 

process request is formalized as a 4-tuple Q = < LSQ, LAQ, C, 

k >, where LSQ = {T1, T2, …., Tn} designates an assemblage of 

tasks, with each task Ti corresponding to a component 

functionality within the business process; n, an integer, signifies 

the aggregate count of tasks necessary for the query; LAQ = 

{a(Ti, Tj)|Ti∈T, Tj∈T} conveys dependencies among tasks in 

T, where a(Ti, Tj) denotes that the outputs of Tj underpin the 

inputs of Ti (i.e., Tj can be the succeeding task of Ti); A is 

invoked to depict the structural architecture of the query; C={c1, 

c2, …, ci, …} encapsulates the QoS constraints formulated by 

mobile users; k, an integer, embodies the upper limit for the 

count of solution options for the query. 

Task1:
flight ticket 

booking

Task2:
car hire

Task3:
hotel booking 

Task4:
insurance 

quote

 
Fig. 3. Example of business process query 

Fig. 3. is an example of a business process request Q 

containing four tasks sent by a mobile user to the travel booking 

platform. In our DT-empowered MEC system, upon receiving 

a request from a mobile device, the system constructs a set of 

service solutions tailored to fulfill the specific requirements of 

the request. These service solutions are defined as follows: 

Definition 6 (Service Solution): A service solution constitutes 

an edge service composition, explicated as sc = <SR, AR, LSR, 

FSR, OQ>, where SR = {s1, s2, … sn} denotes the compendium 

of edge services composing the service solution; ; AR = {a(si, 

sj)|si∈SR, sj∈SR} conveys dependencies between edge services 

within SR, with a(si, sj) denoting that the inputs of sj are 

contingent on the outputs of si (i.e., sj can be the succeeding 

service of si); and AR endows the structural schema of the 

service solution; LSR involves service labels, each concomitant 

with a task or functionality; for each service s∈SR, FSR(s)∈

LSR designates its label of s; OQ expresses the holistic QoS of 

the service solution. 

As aforementioned, the service solutions aimed at satisfying 

system responses to business requests ought to be marked by 

diversity. To quantify the diversity inherent in these solutions, 

we introduce the concept of "edge service coverage." 

Definition 7 (Edge Service Coverage): Given a solution set R 

= {sc1, ..., sci, ..., sck}, where sci = < Si, Ai, LSi, FSi, OQi >, the 

cover set of R, denoted by C(R), is defined as the union of edge 

service sets: C(R) = S1∪S2∪...∪Sk. The edge service coverage 

of R is given by |C(R)|. 

According to the above description, in DT-empowered MEC, 

the diversified top-k service composition problem is defined as 

follows: 

Definition 8 (Diversified Top-k Service Composition in DT-

empowered MEC): Considering an edge service data graph G, 

a business process request Q the diversified top-k service 

composition problem (DSCQ) in of DT-empowered MEC 

pertains to the selection of a solution ensemble R, comprising 

no more than Q.k service compositions from G, which 

comprehensively include all tasks and dependencies specified 

in Q, and such that R exhibits the most extensive edge service 

coverage among all possible selections of Q.k or fewer service 

compositions. 

Based on different quality requirements, business process 

requests can be categorized into normal requests, constraint 

requests, and optimal requests. Each type of request yields 

different result sets of diversified top-k service solutions. For 

normal requests, the results focus on identifying k service 

solutions that offer maximum service coverage without 

considering the user's service quality constraints. Constraint 

requests, on the other hand, exclude service solutions that fail 

to meet the user's service quality requirements. From the 

remaining candidate solutions, k service solutions with the 

highest service coverage are selected. Optimal requests share 

similarities with constraint requests, but they differ in that the 

results must include at least one service solution that satisfies 

an optimal QoS requirement. 

III. DIVERSIFIED TOP-K SERVICE COMPOSITION 

This section provides an in-depth exploration of the proposed 

DSC-DT approach, focusing on its application in diversified top-k 

service composition queries within the context of MEC. We 

commence by presenting a foundational framework that outlines 

the key components and interactions of the approach. 

Subsequently, we discuss each phase of the approach, offering 

comprehensive insights into their functionalities and contributions. 

A. Framework of proposed approach 

Our formulated DSC-DT methodology is structured as a five-

step procedure: 

Step 1: Map the business process request formulated by the 

user into the context of the DT-empowered MEC system; 

Step 2: Prune the data graph predicated on the specifics of the 

business process request, leading to the culling of edge services 

and dependencies that are unfeasible within the definitive 

service solutions; 

Step 3: Seek all conceivable candidate solutions within the 

pruned data graph that align with the user's functional and non-

functional requisites. Subsequently, assemble a solution graph 

predicated on the extent of service overlap notable among these 

candidate solutions; 

Step 4: Infuse diversification into the retrieved service 

solutions, premised upon the orchestrated solution graph; 

Step 5: Return k service solutions endowed with diversity back 

to the user, emanating from the DT-empowered MEC system. 

Detailed explanations of the pruning, construction, and 

diversification operations will be proffered in ensuing sections. 

B. Pruning of Data Graph 

The increase in the number of edge services has led to a 

commensurate expansion in the magnitude of the edge service 

data graph instituted within the purview of DT-empowered 

MEC. This increase, while affording mobile users a plethora of 
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alternate resolutions, concomitantly augments the exploration 

space during the process of service composition. To optimize 

the efficiency of edge service composition, this section 

introduces a pruning strategy aimed at sieving out services and 

their interdependencies from the service data graph, which are 

unlikely to appear in the final service solution. 

Firstly, two data index structures, the vertex index and the 

dependency index, are introduced based on the constructed 

edge service data graph G. These indices are defined as follows: 

Definition 9 (Vertex Index): The vertex index represents the 

mapping from tasks to candidate service sets, which can be 

formalized as V-map={T1→S1, T2→S2, …, Ti→Si, …}, where 

1) Ti∈G.LS is the task label contained in the edge service data 

graph G; 

2) Si ⊆G.S is the set of candidate edge services for task Ti in 

the data graph G. For each s∈Si, it satisfies that G.FS(s) = 

Ti. 

Definition 10 (Dependency Index): The dependency index 

represents the mapping from task dependencies to service 

dependency sets and can be formalized as D-map={la(Ti, Tj)→

Aij}, where 

1) la(Ti, Tj)∈G.LA is the task dependency contained in the 

edge service data graph G; 

2) Aij⊆G.A represents the set of dependencies between edge 

services in the data graph G. For each a(si, sj)∈Aij, it 

satisfies that G.FS(si) = Ti and G.FS(sj) = Tj. 

In congruence with the development of the edge service data 

graph, the establishment of the vertex index and dependency 

index can be executed offline. Post-construction, the stability of 

the vertex/dependency index remains relatively undisturbed 

and can be updated with nominal overhead in response to 

specific events. 

For the user-defined business process request Q = <LSQ, LAQ, 

C, k>, the set of candidate services and their correlated service 

dependencies linked to LSQ and LAQ can be expediently 

retrieved through the utilization of the vertex/dependency index. 

Employing the service data graph portrayed in Fig. 2 and the 

request exhibited in Fig. 3, the intermediary result depicted in 

Fig. 4 can be swiftly garnered through recourse to the 

vertex/dependency index. This result can be instantiated sans 

direct access to the physical edge server, thereby expediting the 

construction process. Moreover, this operation effectually 

sieves out an appreciable number of unrelated services, thereby 

curtailing the exploration space in subsequent phases. 

s1

s5

s8

Task1 Task4

s4

s7

s10

Task3

s3

s9

Task2

s2

s6

A12

A13

A24

A34

 
Fig. 4.  Illustration of intermediate results 

However, it is necessary to acknowledge that the derived 

intermediary result still encompasses a considerable number of 

candidate services and service dependencies that are destined to 

be excluded from the ultimate result. For instance, concerning 

s5, while it is positioned as a candidate service for T1, there is 

an absence of any element within D-map [(T1, T2)] that 

designates s5 as its precursor service. In essence, opting for s5 

to execute T1 would lead to the infeasibility of T2 to locate an 

appropriate service for execution, thereby compromising the 

capacity to provide a service solution consistent with the user's 

exigencies. Hence, the necessity emerges to further refine this 

intermediary result through the filtration of services and their 

dependencies that do not factor into the ultimate service 

solution. To counter this conundrum, an innovative forward-

backward pruning strategy is postulated, oriented towards 

refining the intermediate results based on the user's predefined 

requisites. 

This strategy consists of two distinct stages. The first stage is 

Forward-Pruning, involving a breadth-first traversal (BFS) of 

the business process requests, leading to the elimination of 

candidate services that fall short of fulfilling their dependencies 

and corresponding cascading dependencies. The BFS algorithm, 

noted for its simplicity, serves as the bedrock for myriad 

significant graph algorithms. Algorithm 1 offers a detailed 

description of this algorithm. 

Algorithm 1: Forward-Pruning 

 
 

 
 
1: 

2: 
3: 
4: 

5: 
6: 
7: 

8: 
9: 
10: 

11: 
12: 
13: 

14: 
15: 
16: 

17: 

Input: Business process request Q,  
Vertex index V-map, 
Dependency index D-map. 
Output: V-map, D-map. 
QT  ← Ø  
For each Task T∈Q.LSQ 

Do Staus[T] = 0 
Staus[Tstart] = 1 
ENQUEUE(QT, Tstart) 
while QT ≠ Ø 

Do T ← ENQUEUE(QT) 
For each Tsucc∈Succeed(T) 
  If Staus[Tsucc] = = 0 
    Then 

      Staus[Tsucc] = 1 
              ENQUEUE(QT, Tsucc) 
              Spre= Precursor(D-map[(T, Tsucc)]) 
              Sde= V-map[T] - Spre 

                     V-map[T]= V-map[T] & Spre 
      Update(D-map, Sde) 

Return V-map, D-map 

The Forward-Pruning stage is underpinned by the input of 

the business process request Q, the vertex index, and the 

dependency index, resulting in the revised vertex/dependency 

index as output. The initialization operations for Forward-

Pruning are enacted in lines 1-4, with the Status variable 

denoting the visitation status of a task. A value of 0 denotes 

unvisited status, while 1 signifies visited status. Line 5 

enqueues the initiating task of Q into the QT queue. The while 

loop in lines 6-16 is iteratively executed until the QT queue is 

depleted. In each iteration, the leading task T of QT is dequeued 

(line 7), followed by the marking of all successor tasks in Q as 

visited through the changes of their visitation status (lines 8-12). 

The candidate services for task T are extracted from the D-map, 
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premised on the prevailing task dependency (T, Tsucc) in line 13. 

Line 14 identifies the disqualified candidate services for task T, 

while the valid candidate services for T are obtained in line 15. 
Finally, line 16 revises the edge index of the D-map by 

discarding all dependencies affiliated with the invalidated 

candidate services. 

In summary, the Forward-Pruning algorithm efficaciously 

obviates candidate services and their associated service 

dependencies that suffer from incompleteness concerning 

subsequent task/service dependencies, ensuing in the V-map 

and D-map. While invalid services and dependencies are 

excised, a measure of redundancy such as s7 still persists. This 

can be attributed to the Forward-Pruning's exclusive emphasis 

on successor task/service dependencies, thereby inadvertently 

neglecting constraints arising from precursor tasks/services. To 

surmount this lacuna, an inverse exploration approach known 

as Back-Pruning becomes indispensable to refine the results 

stemming from Forward-Pruning. Back-Pruning essentially 

inverts the search process, harnessing the output of Forward-

Pruning in conjunction with the business process request as 

input. Importantly, the D-map necessitates reverse processing, 

including the inversion of the order of predecessor and 

successor task/service. The output of Back-Pruning is a more 

refined refined vertex/dependency index. The pruning 

methodologies of Back-Pruning and Forward-Pruning 

synergistically ensure that the remaining G exclusively involves 

service solutions aligned with Q. Relative to the original G, this 

substantively truncates the exploration space for edge service 

composition. 

C. Construction of Solution Graph 

In light of a business process request Q and the refined vertex 

index V-map and dependency index D-map, the process of edge 

service composition can be streamlined by seeking subgraphs 

within V-map and D-map that include all the stipulated tasks 

and dependencies of Q. This problem aligns with the contours 

of isomorphic subgraph problem. In this research, we leverage 

the VF2 algorithm [32], a well-recognized isomorphic subgraph 

algorithm, to manage varying query types of queries. Within the 

context of a user request, there might exist numerous candidate 

service solutions within the domain of DT-enabled MEC, 

designated as R. The primary objective is to offer the user with 

an array of service solutions, thereby maximizing edge service 

coverage.  
To capture the interrelationships among diverse service 

solutions, we introduce a structural entity termed the solution 

graph, which orchestrates the array of solutions. 

Definition 11 (Solution Graph): The solution graph is 

essentially an undirected weighted graph, which can be 

formalized as the tuple SG = <R, OP>, where 

1) R = {r1, r2, ..., ri, ...} represents the set of candidate service 

solutions; 

2) OP ⊆ R×R denotes the overlap relationship between 

solutions. For each element op = <ri, rj, n> ∈OP, ri and rj 

are the i-th and j-th service solutions in R, and n (n > 0) 

signifies the weight between ri and rj, indicating the service 

coverage between the two composite services. 

1

1 1

1

1 11

22 2

2 2

r2 r3 r4

r6 r9 r8

r1 r7 r5

 

Fig. 5.  An example of solution graph 

Illustrated in Fig. 5, a sample solution graph integrates 9 

distinct service solutions and 12 overlay relationships. The 

weight assigned to each overlay relationship signifies the extent 

of service overlap between two solutions. As exemplified by the 

relationship between r6 and r7, which shares 2 overlapping 

services, the preference is for returning r1 and r6 over r6 and r7 

while offering k = 2 solutions to the user. The rationale behind 

this choice lies in the fact that the number of overlapping 

services (|C(R)| = 0) between r1 and r6 is lesser than that (|C(R)| 

= 2) between r6 and r7. Nevertheless, as k marginally augments, 

the task of intuitively selecting k diverse service solutions from 

the solution graph becomes intricate. For instance, in the pursuit 

of the top-3 diverse solutions among a solution graph 

accommodating 15 service solutions, evaluating the diversity of 

455 result sets ensues, entailing considerable temporal 

overhead for successive searches. Therefore, users necessitate a 

more efficient modus operandi to secure the top-k diverse 

service solutions during the progression of edge service 

composition. The subsequent section will proffer an exhaustive 

explanation of diversity management hinged on the solution 

graph. 

D. Top-k Diversification Processing 

In a solution graph SG, the effort to obtain a set of diverse 

service solutions translates into the acquisition of a cluster of 

non-adjacent nodes, commonly identified as an independent set 

of SG. The notion of an independent set is defined as follows: 

Definition 12 (Independent Set): Considering SG, a vertex 

subset I is deemed an independent set if there exists no edge 

linking any two vertices within I. Should the addition of a new 

vertex to I result in the loss of its independence, the set I is then 

classified as a maximum independent set. The quantity denoting 

the maximum independent set's size is commonly referred to as 

the independence number. 

Correspondingly, an independent set denotes a constellation 

of vertices within graph SG, where no pair of vertices shares an 

edge. While pursuing the maximum independent set of SG 

guarantees maximal service coverage within the service 

solution set, the identification of a maximum independent set 

within a graph is acknowledged to be an NP-hard undertaking. 

Moreover, in this study, it is conceivable that a maximum 

independent set, comprising k service solutions, might prove 

elusive within a given solution graph SG. This limitation arises 

upon k exceeding the independence number of SG. For instance, 

the discernment of an independent set of k = 6 vertices (service 

solutions) within the solution graph depicted in Fig. 5 is 

unfeasible, given the independence number of SG being 5. 

In order to secure a repertoire of service solutions within SG 
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featuring the utmost |C(R)|, a diverse search algorithm 

(DiverseSearch) is propounded herein. This approach leverages 

a greedy mechanism during each iteration, incorporating a 

service solution with the minimal degree of association to the 

result set R, until no additional service solutions remain. To 

effectuate this, we employ | |

1 ( ( , ))
R

i i
weight a r v  to measure the 

degree of association, with |R| denoting the count of service 

solutions in the prevailing result set R, ri representing the i-th 

service solution, v signifying the service solution to be included, 

and a(ri, v) designating the edge between ri and v. The weight 

function serves to determine the weight of a specific edge 

within SG. 

Algorithm 2 offers the pseudocode encapsulating the 

mechanism for securing diverse service solutions, executed 

within the framework of the solution graph. 

Algorithm 2: DiverseSearch 

 
 
 

 
1: 
2: 

3: 
4: 
5: 

6: 
7: 
8: 

9: 
10: 

Input: Solution Graph SG, 
Diversified Result Set R= Ø, 
Maximum solution counts k (k<|SG|). 
Output: Diversified Result Set R 
Do: 

G = Hierarchy (SG, R); 
While |G| > 0: 

v = minAd(G, R); 
R.add(v) 
if |R| == k: 
    Return R 
else: 

    deleted(G, v) 
diverseSearch (SG, R) 

Line 2 generates a subgraph G grounded in SG and R, aimed 

at precluding the redundant selection of service solutions. Lines 

4-7 are committed to identifying the node v within G, 

characterized by the least degree of association to R. The 

underlying objective is to ensure that the freshly incorporated 

service solution v curtails service overlap with extant R, thereby 

heightening the aggregate |C(R)|. Line 9 undertakes an update 

to G, guaranteeing that the service solutions generated within 

the same iteration layer are non-overlapping, resulting in an 

independent set. Effectively, lines 3-9 encapsulate the 

procedure of deploying a greedy mechanism for the exploration 

of an independent set within G. Line 10 triggers a new iteration. 

Crucially, the initialization of R as an empty set precludes the 

estimation of nodes' association degrees in SG solely through R, 

rendering the selection of the first service solution unfeasible. 

Therefore, for normal and constraint queries, the first service 

solution is determined as the node possessing the minimum 

association degree. However, when confronted with an optimal 

query, the service solution characterized by the most optimal 

overall QoS assumes the role of the initial service solution. This 

deliberate stratagem ensures the inclusion of highly optimized 

composite services within the ultimate result set. 

The computational complexity of Algorithm 2 hinges on the 

magnitude of SG. In a worst-case scenario, each layer 

necessitates the calculation of association degrees among all |G| 

nodes, yielding an independent set of size merely 1. As such, 

the time complexity of Algorithm 2 can be succinctly expressed 

as O(|SG|2). Nonetheless, it is pertinent to note that the 

abundance of nodes in SG tends to be relatively restrained. This 

observation holds true, particularly in scenarios involving 

constraint queries and optimal queries, wherein the node count 

remains notably limited. Therefore, the efficacy of the 

DiverseSearch algorithm is abundantly evident in DT-

empowered MEC systems. 

V. EXPERIMENTAL EVALUATION 

This section evaluates the effectiveness (measured by edge 

service coverage), and efficiency (measured by computational 

overhead) of DSC-DT in response to three types of queries in 

MEC. 

A. Experiment setup  

All experiments conducted in this study were underpinned by 

the QWS dataset. The QWS dataset includes over 2500 real-

world services, complete with functional attributes and 

corresponding nine-dimensional service quality information , 

sourced from public registries, search engines, and service 

portal websites [33, 34]. In recent years, this dataset has been 

fervently adopted by researchers in service-oriented software 

engineering, attesting to its prominence and relevance in the 

discipline [35]. 

To investigate the effectiveness and efficiency of the 

proposed approach across diverse circumstances, a series of 

experiments were performed in this paper. The key factors 

considered include the number of tasks in business process 

requests, the number of quality constraints, the size of the edge 

service data graph, the density of the data graph (the ratio of 

edges to nodes), the constraint intensity, and the value of k. By 

systematically varying these factors (as outlined in TABLE I), 

an exhaustive evaluation of DSC-DT's performance was 

effectuated. For each trial, multiple services were extracted 

from the QWS dataset via the classical Erdős-Rényi model [36] , 

thereby generating a stochastic edge service data graph. The 

adoption of the Erdős-Rényi model ensured the random linkage 

of service composability within the data graph. Subsequently, 

1000 business process requests were randomly generated from 

the synthesized data graph, following the random surfer 

methodology [37]. 

 

In order to respond to normal queries, constraint queries, and 

optimal queries, three versions of the DSC-DT algorithm were 

customarily designed based on the elucidation furnished in 

Section III: DSC-DT-N, DSC-DT-C, and DSC-DT-O. 

 DSC-DT-N: Serving as a reference baseline, DSC-DT-N 

solely considers only functional attributes without any 

constraints pertainingto QoS. It returns k diverse service 

solutions, operating within the solution graph of 

candidate service solutions. 

 DSC-DT-C: This variant simultaneously considers 

functional attributes and constraints on QoS. It returns k 

diverse service solutions that fulfill system quality 

constraints. DSC-DT-C operates on the solution graph 

consisting of candidate service solutions compliant with 

the specified constraints. 
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 DSC-DT-O: Akin to DSC-DT-C, DSC-DT-O takes into 

cognizance both functional attributes and QoS constraints. 

Operating on a solution graph featuring candidate service 

solutions that adhere to the designated constraints, DSC-

DT-O diverges in returning a set of k diverse service 

solutions, one among which excels in QoS performance. 

 

TABLE I 

EXPERIMENT CONFIGURATION 

Factor 
Experiment Set 

#1 #2 #3 #4 #5 #6 

Query Size 2-10 5 5 5 5 5 

Number of Quality Constraints 2 1-9 2 2 2 2 

Graph Size (Number of Nodes) 2000 2000 2000-10000 2000 2000 2000 

Graph Density (Edges/Nodes) 6 6 6 1-10 6 6 

Stringency of Quality Constraints 50 50 50 50 10-100 50 

Value of k 10 10 10 10 10 5-50 

 

In this study, for constraint queries and optimal queries, QoS 

constraints were spontaneously generated with the application 

of a predetermined constraint intensity. The efficacy of the 

DSC-DT methodology was quantitatively assessed through 

edge service coverage (ESC), while the computational 

efficiency was appraised by the runtime (expressed in 

milliseconds). Each experimental results represent the average 

value obtained from 1000 queries. 

All algorithms were implemented using Python 2.7 and 

executed on an Ubuntu 18.04 LTS system housing an Intel i5-

7300HQ CPU, clocked at 2.50 GHz, and equipped with 8 GB 

of RAM, thereby offering apt suitability for deployment as an 

edge server. 

B. Effectiveness evaluation 

Fig. 6. illustrates the diversity of the proposed DSC-DT 

method in returning the top-k service solutions under various 

factors. The term "ESC" denotes Edge Service Coverage, 

abbreviated to underscore the quantification of result set 

diversity, as per the definition in Definition 7. Elevated ESC 

values denote an augmented diversity within the array of 

solutions. 

Fig. 6(a) illustrates the experimental results pertaining to 

scenario #1, where the influence of request size on the DSC-DT 

algorithm is investigated. The findings highlight that both the 

DSC-DT-C and DSC-DT-O approaches exhibit comparable 

ESC metrics. As the tally of tasks gradually expands, a slight 

initial increment followed by a modest decrement and eventual 

stabilization characterizes their ESC values. Moreover, Fig. 6(a) 

reveals that the ESC exhibited by DSC-DT-N surpasses those 

of the DSC-DT-C and DSC-DT-O variants. This divergence is 

attributable to the extensive scope of diversified exploration 

that DSC-DT-N embarks upon, traversing a broader solution 

graph including the entirety of candidate service solutions, thus 

yielding a more diverse ensemble of top-k service solutions for 

end users. 

Fig. 6(b) presents the ESC within experimental scenario #2. 

Notably, as the number of quality constraints mounts, the ESC 

of both DSC-DT-C and DSC-DT-O experiences a gradual 

attenuation. In contrast, the ESC for the DSC-DT-N method 

remains impervious to fluctuations in the number of quality 

constraints, considering its exemption from the integration of 

system quality constraints. Moreover, as displayed from Fig. 

6(b), the DSC-DT-N method exhibits an ESC value of 50, 

indicative of the absence of service overlap amid any two 

service solutions in the result set. This compellingly 

underscores the pronounced diversity characterizing the search 

results achieved through the DSC-DT-N methodology within 

experimental scenario #2. 

 
      (a) Query Size (b) Number of Quality Constraints 

 
(c) Graph Size (d) Graph Density 

 
(e) Stringency of Quality Constraints (f) Value of k 

Fig. 6. Impact of factors on ESC 

Fig. 6(c) showcases the results for scenario #3, which delves 

into the impacts of the count of nodes (i.e., edge services) within 

the data graph upon the DSC-DT algorithm. The findings unveil 

a linear increase in ESC metrics for all three methods, 

concomitant with the amplification of node numbers. For 
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instance, when confronted with 10,000 nodes, the DSC-DT-O 

returns a result set with an ESC of 33 for a business process 

request comprising two quality constraints and five tasks. This 

figure alludes to the fact that over 60% of the service solutions 

within the ultimate result sets are characterized by overlapping 

attributes, thereby accentuating the performance of the DSC-

DT algorithm in orchestrating diversified exploration. 

Fig. 6(d) unveils the findings pertinent to scenario #4, which 

studies the repercussions of density within the edge service data 

graph upon the DSC-DT algorithm. Akin to the observations in 

Fig. 6(c), the ESC values for all three methodologies exhibit an 

upswing as the data graph density increments.  

Fig. 6(e) presents the findings stemming from scenario #5, 

where the influence of the quality constraints' intensity on 

diversified results is explored. In aggregate, the DSC-DT-N 

method demonstrates the most robust ESC, trailed by DSC-DT-

C. A notable observation unfolds as the intensity value ascends: 

initially, the results procured by DSC-DT-C closely mirror 

those of DSC-DT-N. However, with the continued elevation of 

intensity value, DSC-DT-C's performance gradually aligns with 

that of DSC-DT-O. This evolution is attributed to the 

intersection of low-intensity scenarios, wherein user-bound 

QoS constraints are lenient or, in certain instances, devoid of 

system QoS constraints. Under such circumstances, the solution 

graphs fashioned by DSC-DT-C and DSC-DT-N exhibit 

striking resemblance. Yet, as intensity value increases, the 

roster of candidate service solutions satisfying QoS 

prerequisites reduces considerably, potentially plummeting 

below the threshold of k. 

Fig. 6(f) imparts the ESC results including scenario #6. In 

broad strokes, an augmented k corresponds to an increased ESC, 

corroborating the disclosures in Fig. 6(f). In tandem with 

incrementing k, the ESC for DSC-DT-N registers pronounced 

amplification. Remarkably, DSC-DT-C and DSC-DT-O exhibit 

nearly identical ESC values, barring an exception when k = 5. 

This divergence emerges owing to the potential excess of k in 

relation to the number of service solutions conforming to user-

defined QoS prerequisites within the data graph, i.e., k > |SG|.  

C. Efficiency evaluation 

Fig. 7 illustrates the comprehensive efficiency of the 

proposed DSC-DT method in returning diversified service 

solutions to users across diverse factors. Notably, an intriguing 

observation is produced: the runtime of the DSC-DT-N 

methodology, which abstains from QoS constraints, generally 

surpasses that of the DSC-DT-C and DSC-DT-O methods, 

which factor in QoS constraints. This discrepancy emanates 

from the markedly augmented size of the solution graph caused 

by DSC-DT-N relative to the solution graphs fashioned by 

DSC-DT-C and DSC-DT-O. Elaborate detailed results is 

expounded below. 

Fig. 7(a) outlines the runtime of the three variant 

methodologies across diverse counts of tasks in scenario #1. 

The runtime of the DSC-DT-N approach de-escalates in tandem 

with augmenting task counts, owing to the precipitous reduction 

in candidate service solutions capable of fulfilling user 

requisites. Conversely, the other two methodologies experience 

an upswing in runtime when confronted with relatively modest 

task counts, as they confront the task of selecting QoS-

constrained service solutions from a profuse assortment of 

candidates. As task counts burgeon, parallel to DSC-DT-N, the 

contingent of candidate service solutions satisfying user 

prerequisites undergoes drastic diminution, prompting a decline 

in runtime. The results in Fig. 7(b) once again corroborate that 

DSC-DT-N incurs the most extended runtime. Fig. 7(c) 

illustrates the efficiency of the three variant methodologies 

across varying node counts. The results indicate that the 

runtime of DSC-DT increases concomitantly with the 

proliferation of nodes. Notwithstanding, even under extreme 

scenarios, such as those characterized by 10,000 nodes, both the 

DSC-DT-C and DSC-DT-O methodologies manage to provide 

users with top-k diversified service solutions within the 

confines of 400ms. Similar to Fig. 7(c), the results showcased 

in Fig. 7(d) expound the increased runtime of DSC-DT in 

response to increased data graph densities. The results in Fig. 

7(e) indicate that the DSC-DT-N method, unburdened by 

quality constraints, exhibits negligible changes in runtime with 

fluctuations in intensity values. Generally, a higher k value 

corresponds to lengthier runtimes. Surprisingly, the empirical 

results from Fig. 7(f) reveal a contrary trend: the runtime of the 

DSC-DT-C and DSC-DT-O methodologies ebbs as k increases. 

This counterintuitive behavior can be attributed to the 

phenomenon where k surpasses the cardinality of the solution 

graph (|SG|) in these methodologies.  

 
      (a) Query Size (b) Number of Quality Constraints 

 
(c) Graph Size (d) Graph Density 

 
(e) Stringency of Quality Constraints (f) Value of k 

Fig. 7. Impact of factors on computation time in milliseconds 

Predicated on the comprehensive analysis of the experimental 

results, it is deduced that the proposed DSC-DT method excels 
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in efficaciously generating diversified service solutions. Its 

runtime remains relatively unperturbed by amplifications in task 

counts, variations in constraint metrics, or elevated k values. 

Hence, the efficiency exhibited by the DSC-DT method is 

judiciously suited for a myriad of practical applications. 

V. CONCLUSION 

In this study, we introduced an innovative edge service 

composition methodology termed DSC-DT, which harnesses 

digital twin technology and diverse search strategies to 

surmount the challenges entrenched within the MEC landscape. 

By simulating and evaluating an array of composite service 

solutions within a virtual space, DSC-DT proffers diversified 

options for consumer electronics. The empirical results 

corroborate the efficacy of DSC-DT in producing diverse 

composite service solutions, concurrently enhancing edge 

resource utilization and augmenting user experiences. 

To summarize, this research contributes to the innovative 

exploration of edge service composition through DSC-DT, 

offering an effective solution to meet the diverse service 

requirements in MEC. However, there are still areas for 

improvement. In the field of edge computing, deep learning and 

reinforcement learning currently stand out as advanced 

technical solutions[38-40]. Future research directions include 

incorporating edge resource constraints and designing robust AI 

algorithms for scalability. Additionally, there exists potential 

for probing the pragmatic implementation and optimization of 

DSC-DT, delving into its deployment nuances and performance 

refinement. Additionally, the exploration of domain-specific 

applications such as industrial automation remains promising, 

inviting the prospect of interdisciplinary collaboration. 
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