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Abstract—Radars are widely used to obtain echo information
for effective prediction, such as precipitation nowcasting. In this
paper, recent relevant scientific investigation and practical efforts
using Deep Learning (DL) models for weather radar data analysis
and pattern recognition have been reviewed; particularly, in the
fields of beam blockage correction, radar echo extrapolation,
and precipitation nowcast. Compared to traditional approaches,
present DL methods depict better performance and convenience
but suffer from stability and generalization. In addition to recent
achievements, the latest advancements and existing challenges
are also presented and discussed in this paper, trying to lead to
reasonable potentials and trends in this highly-concerned field.

Index Terms—Precipitation nowcasting, Deep Learning, Beam
Blockage Correction, Radar Echo Extrapolation, short-term
precipitation forecast.

I. INTRODUCTION

NOWADAYS, radars are widely used to conduct environ-
mental (and social) exploration and analysis, including

meteorology, hydrology, traffic monitoring, etc. [1]–[3]. In Par-
ticular, weather radars have been extensively used to observe,
measure and forecast potential severe convective weather, e.g.,
thunderstorms, heavy precipitation, etc. [4]. The interchange
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of significant volumes of radar data in a highly fluctuating
environment is necessary for further applications in the me-
teorological area. For example, Internet of weather Radars
(IoRs) can be employed for the observation and analysis of
high-resolution signals from widespread water particles in the
atmosphere [5].

Following the recent development of cutting-edge technolo-
gies, such as IoT, Artificial Intelligence (AI) and so on, radar
data analytics and relevant services has become highly con-
cerned with interesting outcomes [6]. Recent Deep Learning
(DL)-based efforts have depicted rapid advancement within
various workflow processes of radar echoes, e.g., Blockage
Correction (Quality Control), Echo Extrapolation (Time-series
Prediction), Nowcasting (Final Production), etc. [7]–[35].
However, such achievements above still suffer from radar data
without consistent standards and massive use of computational
resources, considering data analysis and recognition of weather
radars.

In this paper, recent contribution and near-future trend on
beam blockage correction, radar echo extrapolation, as well as
short-term precipitation forecast are discussed. In Section 2, a
brief review of related research on three topics is provided.
After that, latest development on the topics is examined,
followed by a final conclusion on the weather radar data
analysis and recognition.

II. RELATED WORKS

A. Research Progress of Beam Blockage Correction

The main research idea of the classic weather radar beam
blockage correction method is to manually observe the data
rules, design the rules and customize the model, and fill in
the adjacent data based on the context. However, because the
rules of manual observation have certain limitations, and the
deep rules of massive radar data cannot be fully utilized. The
effect is not good. In recent years, researchers have conducted
in-depth research on the optimization of image completion
quality, speed and details with the rapid development of deep
learning technology in the field of image completion. These
researches have achieved good results.

1) Classic Beam Blockage Correction Methods: A classic
weather radar beam blockage correction method is a correction
method that relies on terrain data, which refers to a Digital
Elevation Model (DEM). A dynamic weather radar beam
blocking correction method was proposed by Zhang et al
from the Chongqing Meteorological Bureau, which is realized
by a multiplication factor between the two antenna elevation
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angles [7]. Rainfall radar measurements in mountainous areas
were discussed by Andrieu et al [8]. When checking weather
radar data, special attention should be paid to the influence of
terrain and altitude, and a digital terrain model was used for
correction. The correction efficiency depends on the accuracy
of the radar antenna pointing. The effectiveness of radar
rainfall measurement in mountainous areas were studied by
comparing with rainfall data, and evaluated the correction
of beam blocking and vertical distribution of reflectivity to
improve radar measurement accuracy [9].

Another classic weather radar beam blockage correction
method is a terrain-independent correction method. A new
spatial analysis technique was developed by McRoberts to
objectively identify areas where precipitation estimates are
contaminated by beam blocking [10]. The method requires
only long-term precipitation climatology and does not require
knowledge of the terrain or the prerequisites of known obsta-
cles.

2) Relevant Image Completion Methods: In recent years,
the emergence of deep neural network technology has ef-
fectively promoted the development of the field of image
completion. According to the type of network architecture,
the methods are divided into five categories: Context-Encoder,
U-Net, CGAN, DCGAN, and StackGAN.

Although there have been many achievements in the field
of image completion in recent years, there are few relevant
researches on this kind of technology in the field of weather
radar correction. Judging from the research results in the field
of image completion, it has great potential to apply this kind
of technology to weather radar block correction, and it is
expected to achieve better correction effects.

B. Research Progress of Radar Echo Extrapolation
At present, numerous deep learning methods are applied to

radar echo extrapolation, and these methods can be broadly
classified into CNN-based methods, RNN-based methods, and
hybrid neural network methods.

1) CNN-based Methods: A U-Net model was proposed for
precipitation forecasting based on CNN, which is a well-
known encoder-decoder architecture for precipitation now-
casting based on radar data [13]. The SmaAt-UNet model
was defined. This model is an efficient convolutional neural
networks-based on the U-Net architecture equipped with at-
tention modules and depth wise-separable convolutions, which
improves the model’s ability to make short-term forecasts with
the latest captured information from input data [14]. The TRU-
NET (Temporal Recurrent U-Net) was brought, which is a
model with a novel 2D cross attention mechanism between
contiguous convolutional-recurrent layers that improves the
modeling of processes defined at multiple spatiotemporal
scales [15]. A novel architecture based on the core U-Net
model named Broad-UNet was adapted, which is able to
capture multi-scale information efficiently [16].

The above CNN-based methods possess different advan-
tages, mainly in the ability to capture short-term motion
and multidimensional scale information. However, the CNN
structure-based approaches lead to spatial location concentra-
tion due to the recurrence of each prediction frame, which

makes the CNN-based methods relatively weak in capturing
long-term motion.

2) RNN-based Methods: Recurrent neural networks are
widely used in spatiotemporal sequence prediction to capture
features. The ConvLSTM model was proposed and got better
extrapolation results than traditional methods [17]. The Tra-
jectory GRU (TrajGRU) model was defined, which actively
learns the position change of the recursive connections using
the subnet output state-to-state connection structure before the
state transition [18]. A predictive recurrent neural network
(PredRNN) was adapted to model spatial representations and
temporal changes, extracting both memory space and temporal
representations in a stacked RNN structure [19]. Subsequently,
a novel recursive structure called Causal LSTM was proposed,
which is constructed with cascaded dual memory to enhance
the ability of PredRNN++ to model short-term dynamics [20].
The Memory-In-Memory (MIM) network was presented to
optimize original forget gate in original LSTM unit. The
network replaces forget gate with two cascaded LSTMs, mak-
ing learning features captured from spatiotemporal sequences
smoother [21].

Compared with traditional neural networks, the RNN-based
approaches have the advantage of handling data with arbitrary
input and output lengths, while the images predicted by the
RNN structure-based model become blurred due to the loss of
fine-grained visual appearances. This poses a challenge to our
processing of visual representations of radar images.

3) Hybrid Neural Network Methods: In many innovative
models, more than just a neural network is used. A Multi-Level
Correlation Long Short-Term Memory (MLC-LSTM) model
was proposed. The model uses an RNN-structured encoder-
predictor and a CNN-structured discriminator to solve the echo
evolution problem and the echo prediction ambiguity problem
[22]. Respectively, the residual convolution LSTM (rcLSTM)
and the Generative Adversarial Networks-rcLSTM (GAN-
rcLSTM) were presented. The former introduces a residual
module to overcome the degeneracy phenomenon of LSTM
networks. The latter introduces discriminators to solve the
ambiguity problem in long sequence prediction [23]. A two-
stage extrapolation model based on 3D Convolutional Neural
Network (3D-CNN) and Conditional Generative Adversarial
Network (CGAN) named ExtGAN was defined. This model
can more accurately forecast convective cells that usually lead
to severe hazards [24]. A new ConvRNN model of energy-
based GAN named EBGAN-Forecaster was built. This model
effectively alleviates the problems of ambiguity and unrealism
and is more stable [25].

Although the models of hybrid neural networks are able to
deal with the ambiguity of radar image prediction, the prob-
lems of each neural network are reflected in their respective
existence. The model based on GAN structure will be unstable
when performing training because it is difficult to reach Nash
equilibrium.

C. Research Progress of Short-term Precipitation Forecast

1) Traditional Methods: In a variety of application situa-
tions, quantitative precipitation nowcasting (QPN) has become
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a crucial approach. The motion of precipitation features is
tracked from a series of weather radar images, and the pre-
cipitation field is then displaced to the near future (minutes to
hours) based on that motion, assuming that the strength of the
features remains constant.

As an alternative to the trivial case of Eulerian persistence,
a series of benchmark processes for quantitative precipitation
nowcasting was devised [31]. The Pyramid Lucas-Kanade
Optical Flow (PLKOF) approach was introduced [32]. The
capacity to identify big and minor displacement motions
utilizing a multi-resolution data structure is a benefit of the
PLKOF approach.

Due to excessive prediction smoothing, deep learning now-
casting models suffer from conditional bias, exhibiting worse
skill on severe rain rates than Lagrangian persistence models.
The concept of model stacking for improving deep learning
prediction skills was introduced [36], specifically for intense
precipitation regimes. When merging the aggregate with atmo-
spheric circulation features, the suggested strategy doubles the
forecasting performance of a deep learning model on severe
precipitation.

2) Machine Learning Methods: Deep learning derives low-
level picture features on the lowest layers of a hierarchical
network and increasingly abstract features on the higher net-
work layers as part of the solution of an optimization problem
based on training data, rather than depending on engineering
features.

Precipitation nowcasting was defined as a spatiotemporal
sequence forecasting problem, ConvLSTM introduced which
was a new LSTM extension that outperformed earlier models
in a time-series assignment for pictures. Using this as a
foundation, a new recurrent structure called Causal LSTM and
a Gradient Highway Unit to solve the gradient propagation
problem was developed [20].

Convcast, a new precipitation nowcasting architecture that
uses satellite data to anticipate diverse short-term precipitation
occurrences was proposed [34]. Satellite-based precipitation
nowcasting is quite important as radar data has limitations of
not being available in all regions.

SmaAt-UNet model was proposed [14], which is a convolu-
tional neural network with attention modules and depthwise-
separable convolutions based on the well-known UNet archi-
tecture. The benefit of the SmaAt-UNet model is that the
model parameter size is reduced to a fourth of the original
UNet implementation while keeping equivalent performance to
the original UNet architecture, allowing precipitation models
to be used on small processing units like smartphones.

RainNet, a deep convoutional neural network for radar-
based precipitation nowcasting, was presented [33]. RainNet
had discovered the best level of smoothing for producing a
nowcast with a 5-minute lead time. The decrease of spectral
power at tiny sizes is also instructive in this regard, since it
shows the limits of prediction as a function of geographic
scale.

Using mathematical, financial, and neurological metrics, a
deep generative model for probabilistic nowcasting of precip-
itation from radar was described [6]. The result shows that
generative nowcasting can produce probabilistic forecasts that

increase forecast value and operational usability at resolutions
and lead periods where other approaches fail.

A radar-based precipitation nowcasting model using an
advanced machine learning technique was developed [35],
conditional generative adversarial network (cGAN), named
Rad-cGAN. This study reveals that Rad-cGAN can be con-
sistently used to precipitation nowcasting with longer lead
periods, and that it performs well in areas outside than the
originally trained region when employing the transfer learning
technique.

As climate change alters weather patterns and the frequency
of extreme weather occurrences rises, providing actionable
predictions at high geographical and temporal resolutions
becomes increasingly crucial. Such forecasts aid in better
planning, crisis management, and the minimization of human
and material losses. A DL-based infrastructure can deliver
forecasts minutes after fresh data is received, allowing them
to be completely integrated into a highly responsive prediction
service that may better serve the objectives of nowcasting than
traditional numerical approaches.

Fig. 1. Schematic diagram of RC-FCN encoding and decoding network.

Fig. 2. Schematic diagram of Dense-FCN encoding and decoding network.

III. DISCUSSION

A. Beam blockage correction

The classic weather radar beam blocking correction methods
mainly interpolate and fill through manual observation. These
methods cannot take advantage of the deep laws of massive
radar data and has limitations. With the continuous devel-
opment of DL technology in the field of image completion,
researchers regard the weather radar beam blockage correction
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Fig. 3. The architecture of the radar echo extrapolation network built by
stacked four-layer TA-ConvLSTM recurrent cells.

problem as an image completion problem. The introduction of
DL technology into the field of weather radar beam blocking
correction can make use of the powerful computing power of
computers, make full use of the deep laws of massive radar
data, and mine the laws that cannot be observed manually for
more effective beam correction. An encoder-decoder network
(RC-FCN) that combines residual convolution blocks and
fully convolutional networks was proposed [11]. The specific
topology is shown in Figure 1. The left side of the network
is the encoder network , and the right side is the decoder
network. In this experiment, images with missing data and
real images were generated manually, and the accuracy of
missing region correction was very similar to the real value. To
allow DL models to learn more feature maps, some researchers
have introduced the idea of dense connection based on FCN
[12]. The model contains three dense blocks, and the specific
network architecture and process are shown in Figure 2. The
model harvested more image information and achieved better
restoration results. This research also demonstrates the great
application prospects and development potential of DL tech-
niques in the field of weather radar beam blockage correction.

Fig. 4. The structure of proposed CEMA-LSTM unit.

B. Radar Echo Extrapolation

Classical radar echo extrapolation methods mainly use con-
volution or gated structure in LSTM to capture and store
features, thus failing to fully utilize the information in the
maps. In recent years, the techniques of DL neural networks
in computing have developed rapidly, and more and more
researchers are invoking these techniques for radar echo ex-
trapolation. Radar echo extrapolation is considered as a typical
spatiotemporal sequence problem, so researchers introduce the
concept of spatiotemporal and introduce the stacked structure
and multilevel structure into DL. Combined with the current
research trends, our group has some results in the field of radar
echo extrapolation. The proposed stacked structure models are
TA-ConvLSTM [26], CEMA-LSTM [27], SAST-LSTM [29],
and their specific network structures are shown in Figure 3,
Figure 4, and Figure 5, respectively. The multilevel structure
models are PC-Net [28], ISS (An Input Sampling Scheme
For RNN-Based Models) [30], and their specific network
structures are shown in Figure 6, Figure 7, respectively. All
the above five models can better utilize the information in the
radar maps and can mitigate the problem of high intensity echo
dissipation with higher prediction accuracy. These five models
also face a number of challenges in their future development,
such as model instability, edge clarity cannot be guaranteed
and the blurring of radar maps. As the technology continues
to evolve, the authors will further optimize the models and
experimentally propose high-quality models such as GAN-
based methods to perform long-term inference tasks.

Fig. 5. General Architecture of PC-Net.

C. Short-term precipitation forecast

While classical short-term precipitation forecasting methods
are unable to provide actionable predictions at high geo-
graphical and temporal resolutions, DL-based methods are
able to derive low-level picture features at the bottom layer
of hierarchical networks, which can provide predictions in
a short time. Short-term precipitation forecasting is defined
as a spatiotemporal sequence forecasting problem. On the
basis of [31], [33], a new structure called SRUNet was
proposed. The model introduces a self-focus mechanism and
its overall structure is shown in Figure 8. The model has a great
advantage in terms of prediction accuracy. This study shows
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Fig. 6. The structure of a recurrent unit in the proposed SAST-Net.

that DL techniques can serve better for short-term precipitation
forecasting compared to traditional numerical methods.

IV. CONCLUSION AND FUTURE WORK

This paper looks at three specific topics in the field of
weather radar, i.e., beam blockage correction, radar echo
extrapolation, and short-term precipitation forecast. The classic
research methods in these three specific research directions and
the existing research results combined with DL models have
been summarized correspondingly. The latest achievements of
DL solutions in these three directions in recent years have
been reviewed and discussed.

With the development of cutting-edge DL methods as well
as other advancement in the discipline of computer science
and atmospheric science, related research effort will certainly
meet next improvement and development potentials.
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