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Abstract

There is a significant relationship between temperature and human health. The

cardiovascular system undergoes a process of coordinated changes when the external

temperature or the amount of heat generated changes. To maintain the internal

temperature of the body at a constant level, a variety of physiological and behavioural

processes must be controlled. These responses in the cardiovascular system have been

shown to manifest themselves in significant changes in cardiac output and regional

blood flow. An increase or decrease in blood flow in the skin is the basic response of

the circulatory system to changes in skin surface temperature.

In this work, we used the optical technique of laser Doppler flowmetry (LDF) to

study the dynamics of blood flow at three different ambient temperatures (20◦C, 26◦C,

and 32◦C). We investigated the changes that may be caused by ambient temperature

in healthy young subjects on blood flow and cardiovascular dynamics, e.g., heart rate,

stroke volume, cardiac output, and blood pressure. Optical methods were used along

with a variety of other sensors to assess these changes. In addition, the instantaneous

frequencies of heartbeat and respiration were extracted from the measured ECG, blood

pressure, and respiration time series. Two additional time series were created from

blood pressure, instantaneous systolic and instantaneous diastolic blood pressure.

The resulting time series were then analysed using algorithms developed for

irregular periodic signals. The wavelet power spectrum was applied to evaluate the

contribution of the oscillatory components within the frequency range from 0.0027 to

2 Hz. The physiological characteristics of the six oscillatory components in this range

and their changes with temperature are evaluated and discussed. Phase coherence

analysis was used to study the interaction between the oscillatory components, and the

effects of temperature are evaluated and discussed. We show that while average values

are highest at lower temperatures, the coherence is highest at higher temperatures.
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4.3 Mean values of (a) heart rate (calculated by marked events) and (b)

HRV (STD of wavelet ridge frequency) at three ambient temperatures.

The purpose of presenting the linear connections between points is
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for specific subjects, with each subject being represented by a unique
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4.5 Violin plots compare the median power content within the bands

investigated for the (a) Endothelial activity, (b) Endothelial metabolic

activity, (c) Neurogenic activity, (d) Myogenic activity, (e) Respiration,

(f) Cardiac activity oscillations, and finally the total power in the HRV

signal. The central circle indicates the median. Wilcoxon signed rank

test which was applied for comparisons in each frequency band between

the three ambient temperatures and statistical significance was set at

p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001. 86
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volume signals at three ambient temperatures. Statistical significance

difference was observed in mean STD of SV and STD by Kruskal-Wallis
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4.9 Spectral power of stroke-volume time-series within frequency bands.

The spectral power of stroke volume investigated for each frequency

band including the total power in the stroke volume power spectrum.

The central circle indicates the median value and dots show the

distribution of individual value. The Wilcoxon signed rank test was

applied for comparisons in each frequency band between the three

ambient temperatures and statistical significance was set at p < 0.05 .

Significance is considered as *p < 0.05,**p <0.01, ***p <0.001 . . . . 90
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4.13 Time-averaged wavelet power of the cardiac output. Power is averaged

over 32 min at three different ambient temperatures: 20◦C, 26◦C, and

32◦C. Oscillations components in the cardiac output are separated by

dashed lines. It was found that there was no statistically significant

difference in the time-averaged wavelet power within any of the

frequency intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.14 The median power of cardiac output within bands. The central

circle indicates the median value. Wilcoxon signed rank test was

applied for comparisons in each frequency band between the three

ambient temperatures and statistical significance was set at p < 0.05 .

Significance is considered as *p < 0.05, **p <0.01, ***p <0.001 . . . . 95

4.15 Example of extracting the instantaneous respiration rate from a res-

piration signal from one subject during heating. A typical respiration

time series is shown in the first row at three different temperature. In

the second row, the respiration signal undergoes a complete wavelet

transformation. The third row shows a clear oscillating pattern around

the expected respiration rate of 0.145 - 0.6 Hz. Time series of

instantaneous respiration frequency produced from a wavelet transform

via ridge extraction are shown in the fourth row. . . . . . . . . . . . . 96
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4.16 Violin plots of the (a) respiration rate and (b) respiration rates

variability at three ambient temperatures. Tests for statistically

significant differences were significance difference was performed for the

respiration rate and RRV by Kruskal-Wallis (Group test) and Wilcoxon

signed rank (pair test) for paired data. p -values for heart rate are

recorded as follows: 20◦C - 26◦C (0.685), 20◦C - 32◦C (0.866), and

26◦C - 32◦C (0.224). While p -values for RRV, 20◦C - 26◦C (0.07),

20◦C - 32◦C (0.585), and 26◦C - 32◦C (0.264). In terms of group tests,

significant differences were not observed in either the respiration rate

(0.685), or the respiration rate variability (0.534). . . . . . . . . . . . 97

4.17 Mean values of (a) respiration rate (calculated by marked events)

and (b) RRV (STD of wavelet ridge frequency) at three ambient

temperatures. The purpose of presenting the linear connections

between points is simply to assist with visually identifying the changes

that have occurred for specific subjects, with each subject being

represented by a unique colour. . . . . . . . . . . . . . . . . . . . . . 98

4.18 Time-averaged wavelet power of raw respiration time series. The

dashed lines indicate the frequency bands of the respiration. No

statistical significant difference in time averaged wavelet power was

observed across the frequency intervals. . . . . . . . . . . . . . . . . . 99

4.19 Time-averaged wavelet powers of instantaneous respiration rate as a

function of frequency. The average spectral power over 32 minutes

for a group at three different temperatures (20◦C, 26◦C, and 32◦C) was

estimated using wavelet transforms of the variability in respiratory rate.

No statistically significant difference was determined by Kruskal-Wallis
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4.20 The median power of instantaneous respiration rate within bands.

Wilcoxon signed rank test was applied for comparisons in each

frequency band between the three ambient temperatures and statistical

significance was set at p < 0.05. Significance is considered as *p < 0.05,

**p <0.01, ***p <0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.21 Time-averaged wavelet power for blood pressure. The spectral power

calculated from the wavelet transforms of blood pressure for 32 minutes
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by red stars in the specified frequency bands. . . . . . . . . . . . . . . 102
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signed rank test was applied for comparisons in each frequency band
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<0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.23 Violin plots of the (a) median systolic blood signals and (b) Interquar-

tile range (IQR) for the same signals at three ambient temperatures.

A statistically significant difference was observed in follows mean of

sBP and interquartile of sBP by the Kruskal-Wallis (Group test) and

Wilcoxon signed rank (pair test) for paired data. p -values for the

medians are recorded as follows: 20◦C - 26◦C (0.000), 20◦C - 32◦C

(0.000), and 26◦C - 32◦C (0.000). The p -values for the interquartile

range were: 20◦C - 26◦C (0.982), 20◦C - 32◦C (0.001), and 26◦C - 32◦C

(0.013). In terms of the group test, significant difference were observed
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4.24 The time-averaged wavelet power for systolic blood pressure as func-

tions of frequency. The spectral power was calculated from the wavelet

transforms of systolic blood pressure for 32 minutes at each ambient

temperature (20◦C, 26◦C, and 32◦C). Statistically significant differences

were observed in the power spectrum as shown by red stars in the
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The Wilcoxon signed rank test was applied for comparisons in each
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significance was set at p < 0.05 . Significance is considered as *p <
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tile range (IQR) for the same signals at three ambient temperatures.
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Wilcoxon signed rank (pair test) for paired data. p -values for median
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4.27 Time-averaged wavelet power for diastolic blood pressure. The spectral

power was calculated from the wavelet transforms of diastolic blood
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4.31 An example of three different blood flow time series measured from a

subject under the effect of heating. The first row represents a typical

blood flow measured on the right index finger. In the second row, blood
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statistical significance was set at p < 0.05 . Significance is considered

as *p < 0.05,**p <0.01, ***p <0.001 . . . . . . . . . . . . . . . . . . 114
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4.35 Median power of left index blood flow investigated for each frequency

band including the total power in the blood flow of the left index
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The Wilcoxon signed rank test was applied for comparisons in each
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4.42 Spectral phase difference of respiration and blood pressure within
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4.45 Spectral phase difference of cardiac output and respiration within
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4.49 Spectral coherence of systolic blood pressure and diastolic blood
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4.60 Group median values of the effective phase coherence between LDF

on the two index fingers and the left forearm. The phase coherence

between the left forearm and the blood flow signals recorded using LDF

on the left arm and on (a) the right and (b) the left index fingers, in

the frequency interval between 0.003 Hz and 2 Hz. For each of the two

cases, the group medians of the phase difference are shown underneath

the coherence plots in (c) and (d). Statistically significant differences

(p < 0.05) were revealed by the Kruskal Wallis test and are indicated

by red asterisks at the defined frequency intervals. . . . . . . . . . . . 141

4.61 Spectral coherence of the right index finger and LDFAL within

frequency bands. Violin plots compare the median coherence content

within each frequency band including the total coherence in the

between LDF blood flow oscillations in the left arm and right index

finger. The Wilcoxon signed rank test was applied for comparisons in

each frequency band for the three ambient temperatures and statistical

significance was set at p < 0.05. Significance is considered as *p <

0.05,**p <0.01, ***p <0.001. . . . . . . . . . . . . . . . . . . . . . . . 142

4.62 Spectral phase difference of between LDF blood flow oscillations in the

left arm and right index finger within frequency bands. Violin plots

compare the median phase difference content within each frequency

band including the total phase difference in two index fingers signal.

The Wilcoxon signed rank test was applied for comparisons in each

frequency band for the three ambient temperatures and statistical

significance was set at p < 0.05 . Significance is considered as *p <

0.05,**p <0.01, ***p <0.001 . . . . . . . . . . . . . . . . . . . . . . . 143

xxxiii
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Glossary & Abbreviations

BP Blood pressure; the force (pressure) exerted by the blood against the walls of the

blood vessels.

sBP sytolic blood pressure; maximum blood pressure during ventricular contraction.

dBP diastolic blood pressure; minimum pressure measured between contractions.

LDF Laser Doppler flowmetry.

LDFAL Laser Doppler flux forearm left.

LDindR Laser Doppler flux right index finger.

LDindL Laser Doppler flux left index finger.

AU Arbitrary unit used in laser Doppler flowmetry.

Rhythms In the context of the human body, a biological rhythm is a naturally

occurring or changing process in the body that follows a periodic pattern.

ECG Electrocardiogram; A non-invasive recording of the heart’s electrical activity

taken from the body’s surface.

HR Heart rate; number of times that heart beats per minute.

SV Stroke volume; refers to the volume of blood that is pumped out of the left

ventricle of the heart during a single contraction.

CO Cardiac output; it represents the amount of blood that is pumped out of the

heart in one minute.

HRV Heart rate variability; variability in heart rate as a function of time.
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IHR Instantaneous heart rate.

IRR Instantaneous respiration rate.

RSA Respiratory sinus arrhythmia. it refers to the modulation of heart rate by the

frequency of respiratory activity.

NO Nitric oxide; It acts as a vasodilator, which means that it causes the muscles in

the blood vessels to relax, which in turn extends the blood vessels and improves

circulation.

ACh Acetylcholine; vasodilator that works by relaxing the smooth muscle cells in

the body indirectly through the endothelial cells.

in vitro Studies employing organisms, cells, or biological molecules that have been

removed from their natural biological environment are called in vitro.

In vivo research conducted on organisms or individual cells.

SBF Skin blood flow; refers to the flow of blood within the skin’s vascular system.

TBF Tissue blood flow; refers to the circulation of blood within the different tissues

of the body, such as the muscles, organs, and other structures.

IAAFT Iterative amplitude adjusted Fourier transform; A technique for creating

surrogate of a signal.

Phase it describes where in time a signal occurs in relation to its overall duration,

or phase of a signal is its position or timing relative to the period of that signal.

Phase coherence In the context of signal processing, it refers to the degree of

correlation or synchronisation between two signals of different frequencies.
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Phase difference or phase shift it refers to the angular difference between the

phases of two signals at the same frequency at a given time. It is determined

by subtracting the phases of the first and second signals.

Thermoregulation is the process by which mammals keep their internal tempera-

tures stable regardless of the ambient temperature.

l



1. Introduction

Temperature has a vital role in the growth and survival of every living being [5].

Environmental temperature fluctuations trigger thermoregulatory mechanisms to

protect homeothermy, such as heat-conserving and heat-producing responses, and

heat-dissipating processes, respectively. Hyperthermia and hypothermia, can be life-

threatening conditions that result when external temperatures are too high or too low,

respectively, for the body’s regular thermoregulatory mechanisms to handle, or when

the normal functioning of the thermoregulatory system is disrupted [6]. Changes

in external temperature or in heat generation cause the cardiovascular system to

go through a series of coordinated adjustments [7]. In order to maintain a stable

body temperature, a wide variety of physiological and behavioural processes must be

tightly controlled [5]. These responses in the cardiovascular system are manifested in

substantial shifts in cardiac output and regional blood flow. The primary circulatory

response to changes in skin temperature is a rise or fall in blood flow to the skin [7].

The impact of temperature on human health and disease is significant. Mainte-

nance of thermal homeostasis is crucial for normal cellular activity and, by extension,

the survival of the human. The temperature of internal organs is the most important

factor to consider when discussing the physiology’s relationship to temperature in

medicine. This temperature of the organs within the body is referred to as the

body core temperature [8]. In this research, body temperature and body core

temperature will not be used. Instead, we will refer to temperature in terms of ambient
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temperature, which is defined as the temperature of the surrounding environment

[9]. However, in this study, and for the purpose research, ambient temperature

was controlled to study the effect of increasing ambient temperature on human

cardiovascular system. Additionally, temperature propagation is closely related to

metabolic demand energy usage, and as we have three different temperatures, we will

be able to reason about energy expenditure.

1.1 Measuring the variability of human skin tem-

perature

Evaluation of microcirculatory variations and assessment of blood microcirculation

(blood flow in capillaries and surrounding micro vessels) are important in the modern

clinical assessment and diagnosis of many diseases [10, 11]. It is crucial to catch

such diseases early, when treatment is still an option. These conditions first show

up in the microcirculatory bed, which is part of the vascular system [12]. The

determining the connections between the micro- and macro-level blood supply systems

and the accompanying metabolic, thermoregulatory, and other processes are still open

questions in fundamental medicine [13].

In relation to the preceding, there is a significant interest in the development

and improvement of tools that are capable of accurate and non-invasive monitoring

of blood flow in various parts of the body under various conditions [14] as well as

in systems that are able to record all vascular components of the blood stream,

specifically arterial, capillary, and venous components [12]. The existing techniques

for recording blood microcirculation can be categorised according to the physical

principles that are used for measurement. These techniques include optical techniques

such as laser Doppler flowmetry (LDF). A key property of microcirculation is its

continuous variability, which is shown to exist in the form of spontaneous variations
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in the blood flow through tissue. A subjective measure of the vital activity in tissues

is provided by the variable microcirculation that exists within those tissues. Changes

and rhythmic oscillations in blood flow can reveal the precise links between the systems

that set the stage for microcirculation. The microcirculation system is characterised

by relatively complex oscillatory processes due to the nature of their oscillatory

activities. It is widely accepted that vasomotions is responsible for the majority

of the spontaneous variation in blood flow that occurs within tissues. However,

this does not mean that vasomotions is the only factor. Surface body temperatures

fluctuate throughout a broad spectrum of amplitudes and frequencies as a result of

the physiological activities. Heartbeat pulsations are linked to this behaviour, and

they are characterised by a tiny amplitude and a maximal frequency of temperature

oscillations. Microcirculation is of tremendous interest to research and consequently

medicine, hence data on temperature oscillations in all frequency ranges is needed

[12].

1.2 Outline of thesis

The main goal of this thesis is to use oscillations in microvascular blood flow and

cardiovascular dynamics to investigate the effect of increasing ambient temperature on

the human cardiovascular system. More specifically, the aim is to test the hypothesis

that blood flow dynamics and other cardiovascular variables are altered by different

ambient temperatures, and to investigate how the metabolic rate responds to these

changes. In addition to this, the data and analysis methods are utilised to determine

whether or not the local or central mechanism regulatory processes are altered as a

result of whole body heating, and to glean as much information as possible regarding

the regulation of human cardiovascular activity at both systemic and peripheral levels.

The oscillations are also studied in terms of their relationship to a variety of ambient
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temperature ranges.

Chapter 2 provides an introduction to the physiology of the cardiovascular system

and oscillations in cardiovascular flow under the effect of whole body heating. It

also provides a literature review on the effect of increasing ambient temperature on

cardiovascular variables. The techniques of measurement that were applied in the

process of data collection are outlined and discussed in chapter 3. In addition to that,

this chapter discusses dynamical systems, highlights the necessity of viewing biological

systems as thermodynamically open and nonautonomous, and explains the nonlinear

time series analysis techniques that were utilised in order to obtain the results. An

analysis of data recorded on subjects during a rise in ambient temperature is presented

in chapter 4. This provides an opportunity to assess physiological parameters during

whole-body heating. The aim of this chapter is to investigate the dynamics of blood

flow and the variability of heart rate, respiration rate, blood pressure, and cardiac

output under the effect of heating.

Finally, chapter 5 discusses the results and summarises their physiological

significance.
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2. Physiological and

thermoregulation background

In the human body, relatively few processes can be said to be in a state of constant

motion. The vast majority shift and change over time as they interact with

one another and with their surroundings. The existence of life depends on these

differences. Studying the dynamics of complete systems like the circulatory and

respiratory systems requires thinking at every level of organisation, from the whole

organ down to the single cell to the organelles. Understanding life requires taking

into account not only one but all possible scales, and hence all possible oscillators.

Continuous perturbations, either deterministic or stochastic, can affect living systems

at all scales. These can originate in adjacent dynamical systems or be the result of

random fluctuations [15]. However, before attempting to research the interactions

that occur between physiological processes, it is crucial to first understand their

fundamental physiology as well as the methods that are employed to observe these

processes.

2.1 The blood vessels: physiological background

The blood vessels provide the primary connections that exist between the heart and

the tissues. The intima, also known as the inner layer, the tunica media, often known
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as the middle layer, and the tunica externa, also known as the outer layer, make up

the vascular wall [16]. The blood vessels are separated into arteries, capillaries, and

veins according to their respective functions, locations, and sizes (see figure 2.1).

The distribution of blood to the organs is the primary role that the arteries play

in the body. Because of the high pulse pressure in the arteries, their wall thickness

is greater than that of the other vessels. Depending on where they are located in the

arterial tree, arteries can be categorised as either conducting arteries, conduit arteries,

or resistance arteries. Conducting arteries are the largest arteries in the body and

have a substantial amount of elastic tissue. This allows the vessel to expand and

recoil to smooth out the oscillatory fluctuations in blood pressure that are caused by

cyclical ventricular contractions. The aorta, the pulmonary artery, and the carotid

artery are all examples of conducting arteries in the body [17]. Conduit arteries, such

as the brachial, radial, and femoral arteries, are branches of conducting arteries; they

carry blood to specific parts of the body [18]. The microcirculation is made up of

the resistance arteries that branch off from the conduit arteries and are responsible

for supplying enough blood to the organ tissue. Arterioles are small blood vessels

that dilate and close in response to sympathetic (de)activation. They are made up

primarily of smooth muscle cells and are densely innervated by sympathetic nerves

[19]. Shear stress, which is defined as the dragging frictional force that is applied on

the arterial wall by laminar blood flow, is an additional stimulus that might trigger

arteriole dilatation [20].

Capillaries, along with arterioles, are a part of the microcirculation and are where

tissue perfusion actually takes place [19]. The primary role that capillaries play in

the body is to facilitate the movement of gases, metabolites, and nutrients from the

blood into the surrounding tissue. This is made possible by the capillary walls, which

are made up of a single layer of endothelial cells.
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Figure 2.1: Structure of blood vessels (artery, vein, and capillary). Arteries and
veins are connected to each other through capillaries [1].

As a result, the channel for diffusion between the blood and the tissue fluid is made

significantly shorter. The slow blood flow serves to increase the time that is available

for diffusion, which helps to further raise the efficiency of the diffusion process [21].

After this process of gaseous exchange, the blood with its metabolites enters the

venules, where additional gaseous exchange may take place.

Superior and inferior vena cavae, which are attached to the heart, receive blood

from the peripheral veins. The closer a vein is to the heart, the larger its diameter will

be. Vein walls are thinner and more flexible than artery walls because of the lower

blood pressure in the venous system. As a result, veins can store a lot of blood at

relatively low pressure. Veins have valves to prevent blood from flowing backwards,

and the presence of smooth muscle cells in the vascular wall causes veins to constrict,

elevating blood pressure and so facilitating greater venous return [22].

The veins carry blood back to the heart from the rest of the body. There are

normally two groups of veins in fingers, which are referred to as the superficial veins
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and the deep veins. The superficial veins are very important for the body’s cooling

system. According to research carried out by Hirata et al. [23], when the body is

subjected to high temperatures, the blood from the periphery travels back to the

heart mostly via the superficial veins. This helps to ensure that the body does not

overheat.

2.1.1 Blood flow of arteriovenous anastomoses

Arterio-venous anastomoses, also known as AVAs, are connections that are found

between small artery and venous plexuses (Figure 2.2). These AVAs are found in

abundance in distal extremities, such as the fingertips and toes [24]. According to

Bergersen et al. [25], one of the potential causes of cold-induced vasodilation (CIVD)

is an abrupt expansion of the AVAs. When the ambient temperature is higher, the

AVAs will open, allowing blood to flow back directly through small veins from the

small arteries that are found in AVA branches. This results in dramatically increased

blood flow and, as a consequence, greater heat loss. As the ambient temperature

drops, the AVAs will close, which will result in a decrease in the amount of blood that

flows through the skin [3]. This will help the body retain its heat.

In response to exposure to low temperatures, blood from the body’s periphery

travels back to the heart via the deep veins in order to minimise the amount of heat

that is lost. This, in turn, causes the blood in the nearby arteries to become cooler

by means of a mechanism that facilitates countercurrent heat exchange. As a direct

consequence of this, the blood in the arteries is pre-chilled before it flows into the

capillaries, whereas the blood in the veins is pre-heated before it flows into the larger

veins. This mechanism ultimately limits the body’s heat dissipation in cold settings,

which helps to keep the core temperature within a particular range, while also creating

lower hand skin temperatures [26, 27, 2].
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Figure 2.2: Illustration of an arteriovenous anastomosis (AVA) in the fingers. AVA
Closed in (a) and Open in (b [2].

2.2 Oscillations in skin Doppler perfusion and the

physiological roots of these oscillations

Only four years after Maiman [28] had successfully demonstrated the first working

laser, Cummins et al. [29] proposed a method by which the velocity of particles in

solution could be estimated by interpretation of the Doppler frequency shift in light

in back-scattered light. After a few years had passed, Riva et al. [30] utilised this

method to measure the velocities of red blood cells while they were flowing through

a glass tube model. However, Stern [31] was the first person to employ the laser-

Doppler technique in order to quantify blood perfusion in a microcirculation that had

not been disturbed. Watkins and Holloway [32] and Nilsson et al. [33] were the first
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to develop the corresponding instruments for measuring blood perfusion, and they

were pioneers in this field. The findings of Fischer et al. [34] showed that there is a

strong association between the readings obtained from the devices and microvascular

blood flow. Despite the fact that clinical trials conducted in a variety of settings had

positive outcomes, applications of the method have not been particularly prevalent.

Clinicians typically cite, as the primary reason, the fact that the absence of absolute

units makes it difficult to compare data from multiple subjects. On the other hand,

there is no comparable method that we are aware of for the noninvasive continuous

recording of peripheral blood flow.

According to data, blood flow is shown to oscillate in a regular pattern around a

stable value [35, 36, 37]. The lack of absolute units does not affect the detection of

oscillatory variations in the flow, and we can calibrate the system by use of a reference

value. Oscillation periods are continually varied (aperiodic) as a result of physiological

perturbations brought on by the open nature of the biological system. Consequently,

a time-frequency analysis of the signal is required. However, issues with time and

frequency resolution arise when oscillations exist on drastically different time scales.

Calculating the Fourier transform of a physical signal (e.g, blood flow) allows one to

evaluate the dynamic qualities of the signal. Within this transform, the original signal

is windowed either to reduce leakage or to achieve time localization (in this case, the

short time Fourier transform is obtained). Both of these goals can be accomplished

by windowing the signal. Throughout the entirety of the investigation, the decision

of window length remains an extremely important factor. Stefanovska et al. [38]

however, presented a method to eliminate the explicit choosing of a window length

by using the wavelet transform on blood flow signals. The time and frequency of the

fluctuations can be observed at the same time.

Stefanovska et al. [38] used the wavelet transform to study the oscillations in the

peripheral blood flow signal. The frequency region that ranged from 0.005 to 2Hz
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was investigated. As there is no known physiological rhythm with a frequency that

is higher than that of the heart beat, the highest frequency limit was set at 2Hz.

The spectrum analysis of cardiovascular functions revealed that frequencies over 2Hz

contain only higher harmonic components.

The selection of a lower frequency limit was determined in relation to a number

of physiological oscillations that were seen across a continuous time variation [39].

In order to explore the lower frequencies and capture the sluggish oscillations, we

needed to make the recordings for a longer period of time. The amount of blood that

is pumped out of the heart (when it is at rest) in one minute is roughly equivalent

to the total amount of blood that is found in the body [38]. When analysing the

dynamics of blood distribution, it is sufficient to set a low frequency limit of 0.005

Hz as a limit on the frequency range. This line of thinking prompted a large number

of studies in which researchers explored the dynamics of microvascular blood flow at

frequency intervals ranging from 0.005 to 2 Hz.

Six distinct frequency intervals were identified by using the wavelet transform of

the blood flow signals averaged over a period of time [4, 38, 40]. This was done in

conjunction with prior physiological knowledge. These frequency intervals make their

presence known in the dynamics of blood flow, which in turn reflects a variety of

physiological processes taking place affecting the microvascular system.

These similar frequency intervals have been used in the analysis of heart rate

variability as well as blood pressure signals [41]. Table 2.1 provides a summary of the

physiological contributions made by oscillatory processes within these intervals, and

we will now analyse these contributions in further detail:
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Band Frequency range (Hz) Physiological origin

I 0.6 – 2 Hz Cardiac activity

II 0.145 – 0.6 Hz Respiration

III 0.052 – 0.145 Hz Myogenic activity

IV 0.021 – 0.052 Hz Neurogenic activity

V 0.0095 – 0.021 Hz NO-dependent endothelium activity

VI 0.005 – 0.0095 Hz NO-independent endothelium activity

Table 2.1: Oscillations in blood flow dynamics and their physiological causes in
various frequency intervals [4].

2.2.1 Frequency interval I: Cardiac

The heart is the most obvious cause of physiological oscillations. Its self-sustained

oscillations allow it to perform its fundamental task of pumping blood through the

circulatory system, although these oscillations are not completely autonomous from

other activities in the body. The heartbeat’s frequency and strength are strongly

controlled by a demand/supply mechanism [42], which maintains the system’s stability

and coordination through inter-oscillatory interactions. Heart activity in healthy

subject can be detected in a signal recorded on the skin using laser-Doppler flowmetry

(LDF), indicating that the heart’s pumping action has spread to the peripheral

capillary level [43].

It is commonly recognised the heart of a healthy, resting human beats at a rate of

roughly 1Hz, while this rate can drop to as low as 0.6Hz in athletes and rise to as high

as 1.6Hz in those with compromised cardiovascular systems. In the same way that

cardiac activity may be detected all over the body, including in the microvascular skin

perfusion signal, it is also reflected in all arterial blood vessels [44, 45]. As a result of

pressure differences generated by the heart and lungs, blood flows through the body’s
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peripheral arteries.

2.2.2 Frequency interval II: Respiration

The expansions and contractions of the lungs during respiration cause an oscillatory

pressure to be generated in the network of vessels [46]: the mechanism of its

propagation in the blood flow is more nuanced than that of cardiac oscillations, and

the shape of a respiratory peak in the power spectra of LDF signals is more sensitive

to the subject and location. In addition, the respiratory activity modulates over the

heart, causing the heart’s rhythm to quicken and slow down with each breath that

is taken thanks to a coupling that is known as respiratory sinus arrhythmia (RSA)

[43, 47].

In 1993, Bolinger et al.[48, 49] discovered that changes in respiration were respon-

sible for inducing high-frequency (HF) waves, which corresponded to oscillations at

a frequency of approximately 0.3 Hz [49]. In contrast to the oscillation of the heart,

the blood flow signal from the microvascular system does not substantially display

the activity of the respiratory system [48].

2.2.3 Frequency interval III: Myogenic

It is believed that the vascular myogenic process is responsible for the establishment

of spontaneous vascular tone as well as the narrowing of blood vessels in response

to an increase in intravascular pressure and their widening when the pressure is

reduced. Theoretically, the myogenic response is physiologically significant for

producing a background vasomotor tone against which vasodilators can function, and

for regulating blood flow and capillary pressure [50]. At a frequency of roughly 0.1

Hz, which is typical of myogenic activity. The cardiovascular and respiratory systems

work together to pump blood via the circulatory system. Myogenic autoregulation is
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a process by which the latter can aid in regulating blood flow. Increased intravascular

pressure causes the vascular smooth muscles to contract, while decreased pressure

causes them to relax [51, 52]. The amplitude of myogenic oscillations has been shown

to rise as a result of exercise [53, 54] and to decrease as a result of local cooling [55]

by the use of wavelet analysis.

2.2.4 Frequency interval IV: Neurogenic

The peripheral circulation is controlled in such a way that it distributes cardiac

output to the body’s many organs and tissues according to their specific metabolic or

functional requirements. This occurs while the arterial blood pressure is maintained

within a relatively narrow range. The innate capacity of vessels to react to a wide

variety of mechanical factors (for example, wall tension and shear stress) in addition

to chemical stimuli allows for the effective regulation of regional blood flows at the

local level (e.g., tissue metabolites and O2). On top of this local control system is

another level of regulation that is governed by changes in central brain activity.

This level of regulation adjusts the function of the cardiovascular system so that it

can meet the requirements of the body as a whole. This type of remote control

is an important means to effect rapid changes in blood pressure, in the amount

and distribution of cardiac output, and in the distribution of blood volume. These

changes are essential to maintain vital perfusion of the heart and brain in the face

of physiological and environmental challenges. Thus, these changes to cardiovascular

function need coordinated activity of central cerebral outflow to the heart and blood

vessels, and cannot be accomplished exclusively by local vascular control systems [56].

The heart, lungs, and all blood vessels, with the exception of capillaries, are all

innervated by the autonomic nervous system. Its constant activity works to maintain

the baseline level of vascular constriction in the body. The nerves are responsible for

the release of substances that have an effect on the actions of smooth muscles, which
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in turn leads to changes in the radii and resistance of the vessels. Because of this,

the nervous system is involved in the process of vasoconstriction [57]. Blood pressure,

blood flow, and HRV signals have all been seen to exhibit a peak at approximately

0.03 Hz. It was postulated that it could have arisen either from metabolic [58] or

neurogenic activity [59].

2.2.4.1 Control of skin blood flow

There are cutaneous circulatory processes that control the amount of blood being

pumped through the skin. This function is directly related to the regulation of

the body’s temperature. Both thermoregulatory reflexes (reflexes that are driven

by the skin’s temperature and by the body’s core temperature) [60] and non-

thermoregulatory reflexes can affect the blood flow to the skin (e.g, baroreflex). Such

reflex control, in nonglabourus skin, is produced by two arms of the sympathetic

nervous system: an adrenergic vasoconstrictor system like that found innervating

practically all the blood vessels and a distinct, nonandrogenic vasodilator system.

Moreover, the cutaneous blood vessels respond to direct cooling or warming of the

tissues with decreases or increases in blood flow, respectively, depending on the

direction of the response [61].

All areas of nonglabrous skin are innervated by sympathetic vasoconstrictor and

vasodilator nerves, whereas glabrous skin (palms, soles, lips) is innervated only

by sympathetic vasoconstrictor nerves. Norepinephrine is released by sympathetic

vasoconstrictor nerves, and it binds to postsynaptic α1- and α2-receptors on cutaneous

arterioles and AVA, where it causes these receptors to contract. In addition,

noradrenergic vasoconstrictor neurons are responsible for the release of one or more

cotransmitters, which are also responsible for vasoconstriction. In thermoneutral

environments, the vasoconstrictor system that is present in human skin remains

tonically active [62]. The vasoconstrictor system is also responsible for the reductions
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in cutaneous blood flow that occur when an individual is exposed to cold temperatures.

During hyperthermia, the activity of these nerves is inhibited, which leads to a 10%

to 20% increase in the cutaneous vasodilation [62].

In humans, hyperthermia can cause the blood flow to the skin to increase to

between 6 and 8 L/min, which is equivalent to around 60% of the cardiac output [63].

The activation of sympathetic vasodilator nerves in the skin is responsible for the

majority (80–90%) of the substantial increases in skin blood flow that occur as a result

of the stimulation [60, 64]. In humans, the sympathetic active vasodilator system is not

tonically active when the body is at its normal temperature of normothermia; rather,

it is only activated when there is an increase in the body’s internal temperature,

such as that which takes place during exercise or when the body is exposed to heat

exposure [60, 65, 66].

2.2.4.2 Control of heart rate

The dynamics of the heartbeat as well as its own spontaneous fluctuations are directly

controlled by the outflow of the autonomic nervous system (ANS) to the heart

[67]. Parasympathetic (vagal) and sympathetic (adrenal) ANS branches interact

in complex manners, illustrating the multipath feedback system for brain control

of the heart [68]. The time-varying, spontaneous variability of HR is regulated via

three key physiological controls: blood pressure management, temperature regulation,

and respiration. Sympathetic and parasympathetic activity interact to affect sinus

node activity and cause this variability. Indeed, the purpose of the cardiovascular

homeostatic regulation is to keep the arterial blood pressure at a constant level in

accordance with the amount of blood that is being demanded from the peripheral

circulation [69].
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2.2.4.3 Control of blood pressure

The arterial baroreflex functions to achieve and sustain a constant blood pressure.

This reflex system adjusts heart rate, peripheral vascular tone, and other autonomic

cardiovascular factors to restore blood pressure to a normal range. Baroreceptors,

also known as stretch receptors, are mostly found on the arterial walls of the carotid

arteries and the aorta. These walls are where information about blood pressure

is detected. These receptors are able to detect a shift in the dilation of artery

walls whenever there is a change in blood pressure. This shift in dilation is then

communicated via afferent neural fibres to the control centres that are situated

in the brain stem. In order to ensure correct control over blood pressure, these

centres receive the inputs from baroreceptors and adjust autonomic outflow, causing

changes in cardiovascular variables (primarily heart rate, cardiac contractility, and

vasoconstriction) [70].

Vasoconstriction and vasodilation work together to maintain a constant blood

pressure throughout the body. (i.e., by adjustment of vascular resistance). The

change in the resistance of the vessel is related to the length (L) of the vessel and

the viscosity (η) of the blood. Inversely proportional to the radius of the vessel

raised to the fourth power (r4). This relationship makes it clearly evident that the

sympathetic nervous system, which is responsible for controlling vessel diameter, may

exert a great influence over the regulation of blood pressure with relatively minor

alterations in artery diameter [71].

R ∝ ηL

r4
(2.1)
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2.2.5 Frequency interval V: NO-dependent endothelial activ-

ity

The vascular endothelium is a single cell layer that forms the inner lining of blood

vessels and performs various tasks that are important to the homeostasis and tone of

the vascular system. Vascular tone is regulated locally by the endothelial, which

releases both vasodilator molecules (such as endothelium-derived relaxing factor

[EDRF] = nitric oxide, NO) and vasoconstrictor compounds (such as endothelin)

[72].

The layer of endothelial cells that lines the inside of blood vessels not only acts

as a barrier between the blood and the tissues of the vessels, but it also controls

the contraction and relaxation of smooth muscle by releasing a variety of different

compounds. It would appear that the activity of endothelial cells is what adjusts

the amounts of various chemicals in order to mediate the metabolic regulation of

blood flow. Nitric oxide, chemical formula NO, is considered to be one of the most

vital vasoactive chemicals. It was observed that the interval V was controlled by

the suppression of NO production of the endothelium [73], which suggests that this

interval is related to NO produced by the endothelium. The dependence on NO of

the oscillations in this frequency interval has been demonstrated by a study that was

conducted on its own [74].

A frequency of around 0.01 Hz, corresponds to NO-related endothelial activity.

While it travels through the network of vessels, the blood delivers nutrients to the

cells and eliminates the waste products that are produced by their metabolism.

Compounds that are involved in metabolism, such as oxygen or carbon dioxide,

have an immediate influence on the degree to which the muscle of the blood vessels

contracts. The term “metabolic regulation” refers to the process of controlling

blood flow based on quantities of metabolites in the body. The oscillations around
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0.01 Hz appear to originate from endothelial activity, as shown by Stefanovska and

Kvernmo and their co-authors through the simultaneous iontophoretic application of

acetylcholine (ACh, an endothelial-dependent vasodilator) and sodium nitroprusside

(SNP, an endothelial independent vasodilator) [38, 73, 75, 76, 77].

2.2.6 Frequency interval VI: NO-independent endothelial

activity

In contrast to frequency interval V, oscillations around 0.005-0.0095 Hz were found to

be significantly higher in response to ACh compared with SNP. It is inferred that the

genesis of these oscillations originated from endothelium-related mechanisms such as

endothelium-derived hyperpolarizing factor (EDHF) [78, 77].

A frequency of around 0.007 Hz, appears to correspond to NO-independent

(possibly prostaglandin-dependent) endothelial activity. This interval was not

discovered in some of the earlier research, most likely due to the fact that 20 minute

recordings did not give sufficient low frequency resolution, and these oscillations were

filtered out during the data pre-processing stage. On the other hand, a significant peak

was found to exist about 0.007 Hz later on [78, 55], and this peak can be seen quite

plainly in the work that has been done. When ACh was introduced iontophoretically,

it was discovered that the wavelet amplitude at the corresponding frequencies varies

between healthy subjects and patients suffering from heart failure [77].

2.3 Temperature and cardiovascular response

2.3.1 Thermoregulation within thermoneutral zone

The thermoneutral zone has been studied since the 1940s and 1950s [79], when

Scholander and his colleagues first proposed the idea. The temperature range in which

19



metabolic heat generation and evaporative heat loss may be controlled independently

of one another, leaving temperature regulation solely to the control of sensible (dry)

heat loss [80]. The regulation of sensible heat loss in this context refers to the processes

of controlling heat loss via conduction, convection, or radiation [81]. This indicates

that vasomotor control is the only method of thermoregulation that can take place in

the thermoneutral zone [82, 83, 84, 85].

Figure 2.3 illustrates the thermoneutral zone (TNZ) idea. When the temperature

drops below the TNZ’s lower critical temperature (LCT), the body can maintain a

steady internal temperature by increasing metabolic heat generation (via shivering

and/or non-shivering thermogenesis). Once temperatures rise over the upper critical

temperature (UCT), heat can be balanced by means of increased evaporation

(sweating). Sweating and its accompanying vasodilation help humans keep their

core temperatures stable by increasing the rate at which heat is transferred from the

internal to the external environment [86]. Above the UCT, there is also an increase

in heat production, which is caused by greater blood circulation, the activity of sweat

glands, and an overall higher body temperature [87].

The relationship between the TNZ and the ambient temperature is defined

differently by various research fields. For instance, in the built environment, operating

temperature is utilised, which is a weighted mixture of air temperature and radiative

temperature [88, 89, 90]. Others use the temperature of the air (dry bulb) or directly

control the temperature of the skin via water immersion or a suit that is perfused with

water. The thermoneutral zone in water is higher (33–35.5 ◦C) than in air (28.5–32

◦C) due to the different thermal characteristics (mostly conduction) [85]. In this

research, the TNZ refers to air temperature (i.e. dry bulb temperature).
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Figure 2.3: A diagram showing how the resting metabolic rate of an unclothed
human varies with the temperature of the surrounding environment [3].

2.3.2 Impact on blood flow of raising the ambient tempera-

ture

Temperature is an essential factor that changes because of several factors in the body

that affect the cardiovascular system’s operations, such as blood flow. Fenton et

al. [91] agree that ambient temperature in humans increases because of pathological

situations like inflammation and fever, which impact the cardiovascular system.

The study reveals that increased core temperature in extreme cases even to 42◦C

will contribute to cardiovascular dysfunction. So, the research offers insight into

how high ambient temperature contributes to issues like increased heartbeat and

high blood circulation rate. Gordon [92] reported that increased body or ambient

temperature affects cardiovascular functions. The study focused on mice’s response

to changes in temperature and concepts of core temperature regulation and variability

to understand how a shift in ambient temperature will affect the cardiovascular
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system. The research outcomes showed that control of skin blood flow, insulation,

and conductance of heat from the body to the surroundings are vitally connected

thermos-regulatory factors directly influenced by ambient temperatures.

Savage and Brengelmann proved [83] that temperature change is influential in

managing skin blood flow. The authors used four men and four women to investigate

how temperature changes affect the control of skin blood flow. The study’s outcomes

reveal that increased body temperature significantly impacts blood flow because of

the reflex response to skin temperature. Another study by Mitchell et al. [93] agreed

that ambient temperature in endotherms including humans has a credible impact on

peripheral blood flow. The focused on systematic reviews of various studies that

offer ideas on the relationship between temperature and cardiovascular functions like

blood flow. The outcomes depict how a shift in the body or ambient temperature

is related effectively to an increase in blood flow rate in the body. For example, if

the existing thermoregulatory drive focuses on protecting body heat, the peripheral

flow is reduced, and the surface temperature reduction may tend towards ambient

temperature. However, if the thermoregulatory purpose is to dispel body heat,

the peripheral blood flow increases, causing a rise in body temperature and arterial

blood temperature. Therefore, the study effectively explains how knowledge about

thermoregulatory factors in the body or surroundings and ambient temperature gives

insight into cardiovascular factors like blood flow.

Ogawa et al. [94] agreed that there is a close connection between ambient or

room temperature and blood flow. The authors studied 16 healthy male volunteers,

including eight elderly individuals aged 68-78 and 8 young people aged 20-25 years

to test how people of different ages respond to changes in temperature. In the

experiment, blood flow was considered a credible indicator in testing how the body

or cardiovascular system responds to ambient temperature changes. The study

outcomes revealed that blood flow is standard at warm temperatures, reduced at
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cool temperatures, and increased at high temperature in young individuals compared

to older adults. However, Natsume et al. [95] revealed that the change in blood flow

with temperature arises because of factors like vasoconstriction and vasodilation. The

analysis proves temperature change interferes with cardiovascular processes like blood

flow.

2.3.3 Impact on respiration of raising the ambient tempera-

ture

Respiration is another activity of the cardiovascular system that is influenced by the

changes in ambient temperature. Collaco et al. [96] agree that ambient temperature

affects respiration. They considered the function of the lung in seeking insight into

how ambient temperature affects respiration rates. Besides, the study describes

temperature as a risk factor for several adverse outcomes in respiratory diseases.

Collaco and the team considered a cohort study that included 14088 men and 14036

females to test the connection between ambient temperature and lung function. The

study outcomes reveal that warm ambient temperature lowers lung functions, and an

increase in ambient temperature will affect the respiration rate in human beings.

Jensen and Brabrand [97] agree that a heightening of respiratory rate always

precedes an increase in body temperature. Their survey focused on the impact

of factors like temperature on respiration and concluded that adjusting blood

temperature contributes to elevated respiration rates. Cho et al. [98] showed

experimentally that an ambient temperature causes increased respiration rates. The

research revealed how respiration rate could be determined effectively by monitoring

the temperature changes around the nostrils. Essentially, the use of a robust

respiration tracking algorithm showed that the cyclical changes in temperature around

the nostrils occurs because of the exhalation and inhalation breathing cycles. Also, in
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high ambient temperature, the lungs and cardiovascular system respond by increasing

the respiration rate to restore the temperature to the normal range.

2.3.4 Impact on blood pressure of raising the ambient tem-

perature

Blood pressure is affected by changes in ambient temperature [99]. The researchers

found that a low temperature causes blood vessels to narrow, elevating blood pressure.

Increasing ambient temperature leads to the dilation of blood vessels, raising blood

pressure. Besides, to understand how raising ambient temperature affects different

measures of blood pressures, Inoue et al. [100], studied how temperature change

shifts the diastolic and systolic blood pressures. Their research tested how the blood

pressures of older and younger men respond to changes in temperature, through

measurements on nine younger men and ten older men. It was found that, older

men experienced a higher rise in both their systolic and diastolic blood pressures

after being exposed to cold temperatures.

Contrary, the reduction in skin temperature results in lessened diastolic and

systolic blood pressure in young men compared to older men. Besides, to prove this

allegation, Lossius et al. [101] investigated how thermoregulatory fluctuations affect

the mean blood pressure in humans because of its connection with heart rate and

blood velocity. Their study used nine healthy volunteers, four males and five females,

without a background of cardiovascular diseases to test the thermoregulatory response

of their bodies. The researchers concluded that the vasoconstrictor impulse resulting

from the increased temperature in the body lowers mean blood pressure. Jansen

et al. [102] studied 20 adult normotensive volunteers to investigate how ambient

temperature impacts systolic and diastolic temperature levels. They concluded

that, raising ambient temperature contributes to reduced diastolic and systolic blood
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pressures.

2.3.5 Impact on cardiac output (heart rate and stroke vol-

ume) of raising the ambient temperature

Heart rate and stroke volume can also be affected by changes in ambient temperature.

The study by Lossius et al. [101] concluded that change in temperature, such as

cooling or heating of the surroundings, contributes to fluctuations in heart rate. They

used nine healthy volunteers to define how a change in temperature affects heart

heart rate and other cardiovascular system. The study showed that thermoregulatory

fluctuations interfere with heart rates. For example, an increased skin temperature

makes the heart beat faster. Shin [103] used pulse rate variability to prove the

assertions that ambient temperature affects heart rate. Pulse rate variability acted

like an alternative to heart rate variability that can be determined using wearable

equipment. The researchers enrolled twenty-eight healthy young participants in

a temperature-controlled room with an electrocardiogram to measure heart rate

variability in different ambient temperatures. It was found that increased ambient

temperature raises the heart rate. Madaniyazi et al. [104] focus on improving

the understanding of the link between ambient temperature and heart rate. They

analysed data from 47591 residents, alternating ambient temperature from 22◦C

to 28◦C while observing blood pressure and heart rate. The results revealed that

increased temperature will always contribute to an elevated heart rate.

Similarly, the rise in ambient temperature interferes with stroke volume in the

cardiovascular system. Wilson and Crandall [105] agree that hot and cold ambient

temperatures impact the control mechanism of stroke volumes like diastolic function,

afterload, preload, and systolic inotropy or function. For example, hot ambient

temperature conditions raise cardiac output, which can also slightly elevate the
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stroke volume. The study focuses on systematic reviews that understand ambient

temperate’s impact on cardiac output, including stroke volume. A survey by

Lafrenz et al. [106] describes how ambient temperatures affect cardiovascular drift,

contributing to a rise in heart rate and a reduction in stroke volume. The research

centered on male subjects to emphasise the consequences of the connection between

ambient temperatures and stroke volume, Lian et al. [107] demonstrated that an

increase in temperature elevates stroke risks. Essentially, the study outcomes revealed

that exposure to ambient temperature by 1°C increased the risk by 1.13 % (0.58–1.68),

while a decrease in 1°C increased the risk by 1.2 % (0.84–1.57).
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3. Physiological measurements and

methods of analysis

Significant advancement in measurement techniques based on a variety of fundamental

principles, from light to electricity, have made it possible to observe and record

spontaneous dynamics in living systems. Methods of data acquisition are described

in this chapter. Methodologies for monitoring and analysing the physiological signals

covered in Chapter 3 are presented in this chapter.

3.1 Participants

The research was conducted on a total of twenty-nine young and healthy human

subjects, fifteen of whom are females and the rest (14) are males. However, due to

lack of data, one subject was excluded from analysis and later on when coherence

analysis was performed another subject was removed due to lack of respiration

signals. Therefore, most of the analysis was performed on 28 subjects (power and

coherence analysis), but when coherence analysis was performed between respiration

or instantaneous respiration rate (IRR) with other physiological variables, 27 subjects

were included. The participants’ ages ranged from 22 to 27 years old, their height was

between 176 and 181 cm, and their weight ranged from 61 to 75 kg. The participants

are non-smokers, and with the exception of contraceptives, they did not use any
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medications. They were instructed to not consume any beverages containing caffeine

and not to engage in physical activity for at least twelve hours before the experiment.

In addition to that, they consumed a dinner consisting primarily of lighter fare two

hours before the beginning of the experiment. Every participants indicated that they

were in good health, and none of them had any signs or symptoms of cardiovascular

illness. A review of the protocol (Letter of exemption (IRB 00001870/XXX))was

conducted by the regional ethics committee, and the procedure was subsequently

accepted by NSD (ref. code 658935).

3.2 Experimental protocol

The experiments were carried out inside a climate chamber. The participants were

wearing shorts and a singlet while lying supine on a bench and being subjected

sequentially to three different ambient temperatures (see figure 3.1). Two protocols

were used, and each participant was randomly assigned to one of them. As shown in

figure figure 3.1, protocol 1 included a temperature rise from 20◦C to 32◦C, with three

distinct plateaus at 20◦C, 26◦C, and 32◦C. Protocol 2 resulted in a cooling effect with

temperature plateaus at 32◦C, 26◦C, and 20◦C, as shown in figure 3.1.
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Figure 3.1: Two different experimental protocols were used for the study: Protocol 1
and Protocol 2. The temperature plateaus that last for forty minutes. The transitions
between the plateaus take between 6 and 10 minutes.

The duration of each temperature plateau was 40 minutes. It took around 6 to

10 minutes for the temperature to go from one phase to the next. During each of the

three temperature plateaus, the speed of the fan that was controlling the temperature

adjustments was slowed down. A relative humidity of 20% was maintained throughout

the chamber. All signals that are investigated in this thesis was obtained from Maja

Elstad and her group, University of Oslo, Norway.

3.2.1 Measurement setup

Laser Doppler (DRT4, Moor Instruments, Devon, UK) was calibrated before each

protocol and simultaneously captured the beat-by-beat blood flux from the pulp of

both index fingers and the volar side of the left forearm. The laser-Doppler sensor

had a wavelength of 820 nm, and the noise-limiting filter had a frequency setting of 21

kHz. A filter with a time constant of 0.1 sec was applied to the flux output signal (ref:

Bergersen/Vangaard). The temperature of the skin (YSI-401, YSI Inc., OH, USA), as

measured by EXACON, was taken from the pulp of the left third finger and from the
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non-acral skin in the forehead using probes that were connected with surgical tape

(3M Benderm, Micropore No). The heart rate (HR) was measured using a three-lead

ECG (SD 100, Vingmed, Horten, Norway), as well as the room temperature (20◦C,

26◦C, and 32◦C), end-tidal CO2 (CAP10), and respiration movement (Respiration

and Body position Amplifier, Scan-Med a/s, Drammen, Norway). Continuous non-

invasive recordings of arterial blood pressure were taken from the right middle finger

using a Finometer manufactured by Finapres Medical System in the Netherlands.

These readings provide an estimate of the beat-to-beat cardiac stroke volume (SV) as

well as mean arterial pressure (MAP). At the beginning of each temperature plateau,

the arterial pressure signal was calibrated in order to ensure accuracy. All of the

measurements were recorded in a manner that was continuous and simultaneous, and

they were sent online to the computer (program for real-time data acquisition, Morten

Eriksen, Norway). The sample rate for arterial blood pressure, electrocardiogram, and

respiration movements was set to 100 Hz. On the other hand, the heart rate, mean

arterial pressure, systolic blood pressure, pulse rate, and laser Doppler flux data were

averaged over one heart beat, leaving the sampling frequency beat-by-beat. The

diagram below (Figure 3.2) illustrates the measuring setup and the output of the

signal that were recorded.
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Figure 3.2: Illustration of measurement set-up and output of the recorded signals.
A) Location and function of probes on human body during measurements. B)
Cardiovascular system with sites of measurement. C) Examples of the recorded
signals with arrows indicating their origins: blood pressure captured from artery;
ECG measured the heart electrical activity; Respiration measured breathing under
the effect of heating or cooling. Finally, blood flow was captured from capillary in the
skin of the forearm.

3.3 Cardiovascular variability

The cardiovascular system is extremely important in complex living beings since

it is responsible for the delivery of nutrients and oxygen to the major organs, as

well as the removal of metabolic products and waste. There are many subsystems

within the cardiovascular system that interact with one other and are influenced
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by internal and external elements, such as central commands, reflex mechanisms

and humoral factors [108]. All of these regulatory mechanisms exhibit a rhythmic

mode of action, which results in continuous changes to the cardiovascular variables

(e.g. heart rate, heart contractility, blood pressure, vascular tone, etc.) that are

observable in recordings made from beat to beat. These fluctuations are referred to

as “cardiovascular variability” and can occur across a wide frequency range, including

very slow rhythms. The dynamic complexity of cardiovascular variables is caused by

the presence of various regulatory mechanisms that are both active at the same time

over different time scales and capable of altering the relationships between variables

over time.

In order to reduce the dimensionality of the cardiovascular system, the presence

of mechanisms favouring synchronisation among the activities of subsystems in

accordance with n:m coupling ratios (i.e. n cycles of activity of one subsystem

correspond to m cycles of activity of the other) is essential (i.e. on their degree of

isolation) [109]. A growing body of research suggests that this variability, which may

have both linear and nonlinear components, provides crucial biological information

that can be used in the diagnosis and prognosis of cardiovascular dysfunctions.

Signal processing techniques and mathematical models are crucial in identifying and

extracting the important characteristics from cardiovascular variability [108].

3.3.1 Electrocardiogram

The human heart is considered to be one of the most essential oscillators in the

body. Recording an electrocardiogram (ECG) constitutes a non-invasive method that

allows for the monitoring of the electrical activity of the heart over time. ECG

signals are graphical representations of the bioelectrical and biomechanical activity of

the cardiac system, and they are used to diagnose heart disease. An ECG provides

essential information regarding the functional features of the heart and circulatory
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system [110].

In the heartbeat signal (Figure 3.3), the P wave, QRS complex, and T wave are

three features that occur during each beat cycle. Each event has its own peak [111]

and they relate to the various actions that take place in the heart during a single

heart beat [112]. This is critical in the diagnosis of cardiac arrhythmias since it allows

us to examine their shape, amplitude, and duration [111]. The QRS complex is the

most recognisable wave set in an ECG signal, and it depicts the depolarization of the

ventricles of the heart [110].

Figure 3.3: ECG waveform for a normal one-cycle recording.

The P wave is produced by the sinoatrial node, which is located high up in the

wall of the right atrium. This node is responsible for initiating atrial depolarization.

Following the P wave, the Q wave has a downward deflection and indicates septal

depolarization. The R-wave is often the easiest wave to detect, and it is regarded to

be useful for measuring the heart rate and heart rate variability. This is because the R

wave indicates early ventricular polarisation and is also the wave that is most likely to

be detected. The S wave indicates the late ventricular depolarization, whereas the T
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wave represents the ventricular repolarization (the recovery of the ventricles), which

is the last event of the cycle. Together, these waves make up the electrocardiogram

(ECG) [113].

3.3.2 Heart rate variability (HRV)

The instantaneous heart rate (IHR) or heart rate variability (HRV) can be calculated

from an ECG signal using a variety of different approaches. The time domain method

is by far the most frequent and widely used method. In these methods, the positions

of the R-peaks are marked, and each interval between subsequent RR peaks is taken

as a whole period of oscillation with phase intervals ranging from 0 to 2π. The

IHR can then be calculated by taking the reciprocal of the distance between each

RR peak. The R-peaks are selected because they are the most conspicuous part of

the heart beat and can be found in every cycle. The resolution of this method is

affected by the period of the oscillation, which means that there is no instantaneous

information accessible between events regarding the frequency or phase. This is

one of the method’s drawbacks. Since the sampling frequency of the HRV signal

is anticipated to vary depending on the period of oscillation, this method necessitates

signal linear interpolation. Nonlinear mode decomposition (NMD) [114] is one way

to extract the instantaneous frequency from a wavelet transform of an ECG signal

while maintaining the same resolution as the original time series. An investigation

into HRV can be carried out by analysing the received signal with techniques that

will characterise the temporal fluctuations, such as the continuous wavelet transform.

The pattern of the heart rate is determined by the spontaneous respiratory

cycle, which causes the heart rate to fluctuate very slightly between inspiration and

expiration. This pattern is determined by the rhythm of the heart rate. The term

“respiratory sinus arrhythmia” (RSA) [115] is used to describe this alteration. The

presence of RSA is a reliable indication that the heart is able to keep up with the
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needs of the body on a continual basis. Heart rate is often used as an indicator of

overall health. For instance, a high resting heart rate or tachycardia (> 100 breaths

per minute) is usually a sign of a heart complication, whereas a low resting heart rate

is usually associated with exercise or sports. However, the heart rate variability is

more informative because it is widely regarded as a quantitative marker of autonomic

activity. Several studies have documented the impact of HRV in various pathological

conditions; specifically, HRV is seen to be dramatically decreased in hypertension,

atherosclerosis, and diabetic neuropathy.

3.3.3 Respiration Rate Variability (RRV)

Measuring respiration can be done mechanically, which involves taking a direct

measurement of chest displacement, or analytically, which involves determining the

amount of carbon dioxide that has been exhaled. Using the marked events method

described earlier, one is able to determine their respiratory rate. It is feasible to

explore cardiorespiratory coupling by employing respiration and heart rate signals

[116].

3.3.4 Blood pressure time series

A pulsatile blood pressure is produced in the arteries as a result of blood being ejected

from the left ventricle of the heart into the aorta. The greatest pulsatile pressure in the

arteries is referred to as systolic blood pressure, and the minimum pulsatile pressure in

the arteries is referred to as diastolic blood pressure. The diastolic pressure minimum

occurs right before the subsequent ventricular contraction [117].

Several intermediate steps, including peak identification, interpolation, resam-

pling, and spectrum analysis, are required to convert raw signals such as ECG,

respiration and blood pressure into heart rate variability, respiration rate variability
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and the systolic or diastolic blood pressure extracted from signals. Systolic peaks

were identified in the blood pressure data, and values of the systolic blood pressure

were obtained by linearly interpolating from the most recently accepted systolic value

to the next one as shown in figure 3.4.

.

Figure 3.4: Example extraction of systolic BP from the BP time series. (a) whole
BP time series with detected systolic blood pressure peaks by linear interpolation
method. (b) sBP signal after being extracted in panel (a). (c) and (d) panels are 5
sec portion of the BP and systolic BP time series shown in (a) and (b), marked by
vertical red dashed lines

Similar analysis steps to those used for systolic blood pressure were also applied to

diastolic blood pressure peaks as shown in figure 3.5.
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Figure 3.5: Example extraction of diastolic BP from the BP time series. (a) whole
BP time series with detected diastolic blood pressure peaks by linear interpolation
method. (b) dBP signal after being extracted in panel (a). (c) and (d) panels are 5
sec portion of the BP and systolic BP time series shown in (a) and (b), marked by
vertical black dashed lines

3.4 Blood flow

3.4.1 Laser Doppler Flowmetry (LDF): A single point mea-

surement

Laser Doppler flowmetry relies on the fact that a laser light beam impinging on tissue

is dispersed by both stationary structures and moving red blood cells. The Doppler

effect shifts the frequency of light scattered from moving red cells, while light scattered

from stationary tissue remain unchanged [33].

When a small area of tissue is illuminated by a beam of laser light, the photons
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of the light will be dispersed by both static and moving particles. Depending on the

scattering angle, the wavelength, and the velocity vector of the scatterer, the moving

red blood cells will impart a Doppler shift to the photon. This shift will depend on

the direction of the velocity vector of the scatterer. When a wave with frequency ω

is scattered by a moving particle with velocity υ, the Doppler shift can be expressed

mathematically as follows:

∆ω =| υ⃗ || k⃗I − k⃗S | cos β, (3.1)

where kI is the incident wave vector, kS is the scattered wave vector, and β is the angle

between the velocity vector and the scattering vector, which is defined as (k⃗I − k⃗S).

By taking into account: the scattering angle α, and wavelength of light in the medium

λ, the Doppler shift can be expressed mathematically as:

∆ω = 2(
2π

λ
) | υ⃗ | sin(α/2) cos β, (3.2)

The photodetector generates a dynamic speckle pattern due to the interference of

Doppler shifted light and non-Doppler shifted light. The detector’s current signal

will fluctuate as a result of these patterns. Homodyne signals in laser Doppler

terminology are those that are created solely by the photodetector using Doppler-

shifted light. Heterodyne occurs when Doppler-shifted light interferes with non-

Doppler shifted light, which is the case when the scattering is from a tissue matrix

with a sufficiently tiny volume of blood (dynamic scatterers) [118]. When multiple

scattering is neglected, the first-order photocurrent spectral moments are proportional

to the product of the mean concentration and speed of moving blood cells (MBCs),

and this is consequently known as the flux of blood perfusion and can be found in

practically every commercial LDF device [119].
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Figure 3.6: Interactions between photons and red blood cells from a physical optics
perspective. A photon with the propagation vector kI being scattered by a red
blood cell travelling at the velocity υ. After being scattered, the photon now has
the propagation vector kS.

Laser Doppler flowmetry (LDF) can be used to measure variations in human

cutaneous blood flow. Oscillations are found in the frequency range (0.0095–2.0Hz)

in the frequency spectrum of LDF signals [78].

3.5 Dynamical systems and analysis methods

3.5.1 Introduction

Understanding the fundamental dynamics of living systems calls for a methodology

distinct from that used to investigate mechanical systems. Analysis of recorded signals

from living systems can be used to derive statistical aspects of the data or to probe

possible oscillatory characteristics by quantifying oscillation amplitude, power, and

phase. Particular attention will be paid to the characterization of time-varying
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oscillatory features, and the resolution of the dynamics will be achieved through

optimal temporal localization and frequency resolution.

A dynamical system is referred to as the mechanism that causes a state to change

over the course of time. The simplest form can be represented by:

dx

dt
= f(x), (3.3)

where the infinitesimal change of the state x in time t has some dependence on the

previous state. This differential equation characterises the dynamical behaviour of the

system over an infinite period of time. Although iterated maps can be useful in discrete

time [120], this thesis focuses exclusively on continuous time and, consequently,

differential equations. Nonautonomous refers to a dynamical system that is explicitly

dependent on time, which is also the case in the majority of biological systems. The

simplest form of this type of system is:

dx

dt
= f(x, t), (3.4)

It is possible to find an exact solution to a linear dynamical system, or one with

a linear output. Most biological systems are nonlinear [121], which makes study

more challenging but also more interesting. In contrast to linear systems, nonlinear

dynamical systems have the potential to display self-sustained oscillations, which,

when they do occur, will lead to the formation of a stable limit cycle in the phase

space of the system. A limit cycle is an isolated closed trajectory, and depending on

the stability of the limit cycle, the surrounding trajectories will either spiral towards

it or away from it [120].

As time approaches infinity, most dynamical systems in nature exhibit a bounded

nature of their states; this bounded region is called an attractor, and it is one of

the most important features of these systems. Without this property, a system

40



subjected to persistent disturbances will always deviate from its initial condition

beyond recovery.

3.5.2 The connection between living systems and dynamical

systems theory

Nonlinearity

If one is provided with all of the details about a linear system at one point in time,

it is simple to determine the state of the system at any other point in time, which

makes it easy to develop analytical solutions to the problem. This signifies, in essence,

that it is possible to understand all of the attributes of the system in the context of

a linear model without observing the dynamics of the system. On the other hand,

nonlinear systems such as living systems are not capable of being examined in this

manner. Even if some of their properties may still be determined analytically, it

is not feasible to know what trajectory a nonlinear system will follow without the

assistance of computer simulations or by studying the dynamics of real systems. It is

also important to note that this is not a question of the complexity of the system; a

linear system can be extremely complicated, while a nonlinear system can be rather

straightforward, but these fundamental rules still apply to the analysis of both of

these types of systems.

Nonlinearity tends to have significant impacts. Mathematical complications aside,

it leads to interesting phenomena like hysteresis. This effect represents the situation

in which the trajectory that a system follows from one state to another is different

from the trajectory that it takes in the opposite direction between the same two

states. Because of this, it is vital to consider the arrow of time when performing an

analysis of nonlinear systems. The analysis of nonlinear oscillations using techniques

developed for linear systems allows for the detection of harmonics, which are modes
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caused by nonlinearity [122].

Openness

The openness and ability to interchange energy and matter with the environment are

two sides of the same coin that can be used to explain the aforementioned attributes

of living systems in the previous section. Dynamical theory often operates under

the assumption that the system is closed. The primary theories of dynamical systems

often begin with the assumption that the system in question is closed, which indicates

that it is independent and can be entirely characterised by its state in space. Living

systems, on the other hand, are non-autonomous and open, which implies that their

states need to be characterised in terms of both space and time. Therefore, it is very

important to incorporate time-dependent factors into the analysis of living systems.

It is important to remember that the dynamics of closed systems can nonetheless

change over time, making the system statistically nonstationary. Chaotic behaviour

is commonly used to describe the complex nonstationary dynamics of closed systems,

in which minor disturbances in the trajectory accumulate exponentially with time

[123]. Instead of using a chaotic method, stochastic systems are commonly used

to represent complex dynamics where the nonstationarity results from the influence

of external random variables. Both of these methods are applicable to autonomous

systems because they exclude time-dependent variables from the analysis. However,

neither of them can reliably be utilised here, because biological systems are not only

nonstationary but also non-autonomous [124].

3.5.3 Discerning dynamical systems: Inverse approach

When a living system is considered nonautonomous, a wide range of features can be

described. Despite this, the difficulties in their analysis have led to many fruitless

attempts to adapt approaches more appropriate to autonomous systems. Analyzing a
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phase space attractor is a common first step for deterministic systems. This method

works well for autonomous systems, but it ignores the possibility of time-dependent

attractors. Despite the fact that this strategy is workable for autonomous systems, all

that it does is take into consideration time-dependent attractor patterns [125]. The

problem is that incorporating time dependence into the system would in turn lead

to extra dimensions in the phase space, which would introduce additional complexity

into the system.

Problems involving dynamical systems can be approached in two ways: by

modelling the system using a set of equations or by directly measuring the system.

For time series analysis, the first instance provides the ideal condition, in which the

exact state of the system at any one time is known and all of the parameters may

be changed directly. In the latter approach, just a one-dimensional description of the

system trajectory is often obtained, making it far more difficult to characterise the

phase and inner workings of the system. Both approaches are equally beneficial for

the inverse problem. The only difference is that when modelling the uncertainties is

added by the constraints of the model rather than by data [124]. In this thesis, all

time series were measured directly from the system.

3.5.4 General characteristics of time series

Time series are defined as continuous sequences of data points generated exper-

imentally or numerically. Time series analysis allows one to obtain information

about a system’s dynamical behaviour. In this thesis, time series were extracted

experimentally. It is common practise to take multiple measurements of a system in

order to obtain data/information from an experiment. Information can be obtained

by two methods; the first is to control the conditions of the system and then assess

the response after a time delay. The second method is to start with an arbitrary set

of beginning conditions and make N successive measurements over a time step ∆t to
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create a time series revealing the system’s dynamics (time-dependent attributes).

Both procedures are valid, as they eventually yield the same information when

sufficient measurements are taken. For complex systems, the simplest method to

understand them is to observe the dynamics in a time series. Additionally, time series

are more closely tied to real-world situations, because the initial conditions of a system

are rarely known [124].

3.5.5 Frequency interval

Generally, to recored a time series experimentally, two fundamental characteristics

should be taken into account; the interval L = N∆t during which it is recorded (the

recording length) and the sampling rate fs = 1/∆t at which samples are taken (the

sampling frequency). These characteristics limit the timescales on which the dynamics

can be obtained. According to the Nyquist–Shannon sampling theorem, the highest

detectable frequency in the frequency domain equals half the sampling frequency, or

Nyquist frequency, fs/2. Additionally, 1/L denotes the lowest detectable frequency.

To achieve a continuous frequency distribution that covers the range 0 to ∞, both L

and fs must be indefinitely large, which cannot be achieved using discrete and finite

time series derived from simulations and real-world measurements [124].

3.6 Time series analysis in time domain

Preprocessing

Preprocessing a signal is necessary for effective analysis, but data manipulation should

be kept to a minimum. Time series, particularly those obtained experimentally by

measuring living systems, may contain artefacts. The causes of these artefacts could

be movements or noises made by the equipment utilized in the experiment. These
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artefacts affect the statistical parameters of the recorded time series over the whole

investigation interval, causing a trend. The process of removal a trend from a time

series is called detrending. Detecting, defining, and eliminating trends from time series

are essential for data analysis in nearly every field. For statistical approaches like

computing correlations and spectral analysis, preprocessing has become a necessary

step [126]. Filtering is another consideration in pre-processing. Data should be

detrended if mean values are computed or frequency analysis is applied to remove

trends. This is because the impacts of frequencies lower than the frequencies of

interest in this research may have an influence on the outcome results. The removal

of a trend can be achieved by a variety of methods. It could be either statistically or

mathematically, and is most often performed in the time domain.

Detrending is best applied by use of a smoothing technique called moving average.

This is defined by calculating the statistical mean of the data contained within the

window and using that value as the centre point of the window. After that, the

window is moved by a single data point. The new mean is then computed, and so on.

The effect of this method on the time series can be noticed in the amplitudes. Time

series with high frequency components (rapidly changing fluctuations in amplitude)

are averaged over and minimized, while slow trends represented in low-frequency

components (amplitudes of long-term trends) stay mostly unchanged. It is important

to note that, the window length, l, is the crusial parameter that determines how

much smoother the output time series appears. In addition to the high-frequency

components that are eliminated for smaller windows (i.e. more smoothing), the lower-

frequency components are removed if the window is made larger [124]. Additionally,

for frequency or time-frequency analysis, it is essential to average the signal and

subtract it from the original one.
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Figure 3.7: A blood flow signal (blue) with the detrended version of the signal (red).
In a moving average, a 200s window was utilised to construct the trend (yellow). Low
frequencies below the interest were removed and the mean is also subtracted from the
total.

However, it is necessary to distinguish between smoothing and filtering. In the

frequency domain, filtering contains a direct manipulation or removal of information.

In contrast, the effect caused by time domain methods can be described as

smoothing. Using time domain smoothing instead of filtering has the advantage of

retaining information at each step. However, Fourier components over a specific

frequency range can be removed using simple frequency domain filtering and does not

preserve information and works poorly when the time series contains non-sinusoidal

components (i.e. the harmonics are not affected). Smoothing can be used on

nonstationary time series since it operates in the time domain and maintains all

time-dependent information in the time series [124].
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3.7 Instantaneous phase

Time series of a biological system are subjected to noises of many origins, which

are typically unstable in nature. To better understand the individual behaviour of

elements of biological systems as well as the characteristics of their interactions, it is

required to develop and employ specialised techniques. When it comes to the analysis

of complex signals, there is one significant, although quite rare, subject to consider:

that of the study of instantaneous phases of oscillations [127]. The separation of

’amplitude’ dynamics from ’phase’ dynamics is critical to much of the study. The

notion of phase used in this context is a generalisation of the 1-dimensional phase

that is used in simple harmonic oscillators [124].

x(t) = A cos(2πft+ ϕ0), (3.5)

The term “rotational frequency” which is univalently related to linear frequency

according to the formula: ω = 2πf , is usually used for convenience. It is the

instantaneous phase of the system that is represented by the cos function in equation

(1), and it has the meaning of the number of oscillations the system performs in time

t since it began taking measurements as an argument of this function, equation (2).

ϕ(t) = 2πft+ ϕ0 = ωt+ ϕ0, (3.6)

According to the definition and equation (3.6), the instantaneous phase can never

decrease in time, but it can generally grow at a variable rate. Radians or degrees are

used to quantify the instantaneous phase (which are univalently related). The phase

changes by 360 degrees throughout a whole oscillation cycle, which is 2π radians. In

equation (3.6), ϕ0 is the initial phase of oscillations. Oscillations with basic waveforms

may not require instantaneous phase analysis, but complex signals can benefit greatly
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from the addition of this information, which can be used to describe their features.

The introduction of instantaneous phase, on the other hand, is a difficult challenge

to solve during the study of nonperiodic oscillations, because the fundamental

notions of period and frequency cannot be introduced rigidly. Typically, the

terms instantaneous period and instantaneous frequency are used in this context,

together with their averaged values, which are referred to as characteristic period and

characteristic frequency. For the most part, when dealing with instantaneous phase,

it is impossible to define it precisely; hence, approximate formulas and numerical

approaches are employed [127].

3.8 Instantaneous frequency (IF)

It is common in real-world applications for the spectral characteristics of signals (e.g.

frequencies) to change with time. If one is dealing with time-varying signals, it

is impossible to define the notion of frequency directly; instead, one must employ

a parameter that takes into account this time-varying nature. The concept of

instantaneous frequency (IF) arose as a result of this requirement. The concept of

an instantaneous value for the frequency must first be justified before we can explore

any ways of computing the IF. In the study of any oscillatory motion, frequency is

a critical variable to consider and calculate [128]. Frequency (f) is defined simply in

terms of elementary physics as the inverse of the length of time (T ), that is;

f =
1

T
, (3.7)

Following the equation above, the most straightforward method of determining

frequency should be the measurement of time intervals between consecutive zero-

crossings. This is very obvious for a simple sinusoidal wave with a well-defined period.
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When dealing with real data, measuring the period is no longer straightforward

because there may be multiple extremes between two consecutive zero crossings.

The frequency definitions provided above are only applicable to signals operating

in extremely narrow bands. In practice, data are treated as a real variable. Because

there are likely to be many extrema between consecutive zero-crossings of the variable.

At any given point in time, there will be no frequency value. Instead, we should seek

for the frequency content of a data collection, which is generally characterised using

Fourier transform. In this case, the frequency of the data is considered constant over

the whole time span T of the time series x(t) that we are considering. This definition

requires that, the data set contain multiple frequency values at any given time, and

that those frequency values remain constant during the whole period covered by the

integration. The Fourier definition of frequency shows that the frequency content is

physically relevant only if the data are stationary, and the process is linear throughout

the integrating span, as demonstrated by Fourier analysis [129].

An important reason for using the IF concept is that signal analysts often have

to deal with signals whose spectral features (in particular, the frequency of spectral

peaks) change with time. The term “nonstationary” is often used to describe these

kinds of signals. For these signals, the IF is critical; it is a time-varying parameter

that determines where the signal’s spectral peak will be at any given point in time. It

can be thought of as the sine wave frequency that best fits the signal being analysed at

a given location. In terms of physics, it only applies to signals with a single frequency

or a small range of frequencies that change in relation to time. If a signal has more

than one component, the concept of a single-valued IF is invalid, and a breakdown

into its components is required [130].

As an extension of the classical Fourier transform, the data can be divided by

the number of discrete time spans. In this case, the frequency is supposed to be

constant or at changing at a slow rate, which matches with the integral span of time.
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The uncertainty principle limits the Fourier frequency as a result of this integrating

procedure. A theoretical basis for Fourier transform theory states that this time

interval cannot be too small in relation to the oscillation’s period. In any case, a single

period cannot resolve frequency fluctuation. Fourier spectral analysis can only be

applied to linear and stationary processes because of this seemingly minor restriction.

Frequency changes are frequent, if not dominating in both real-world and theoretical

investigations [129].

There are many different mathematical approaches for performing a time-

frequency transform, and we must explore beyond Fourier analysis in order to discover

a solution to the problem. Indeed, the need for the frequency to be a function of time,

as well as the need that it should have an instantaneous value, can be justified on

both mathematical and physical grounds [131].

In this literature, the definition of IF is derived by assuming the signal is a

sinusoidal oscillation with a phase defined in equation (3.8). After defining the phase

for each cycle, the instantaneous angular frequency can be calculated by taking the

time derivative of the phase value for each cycle [124].

ω =
dϕ

dt
, (3.8)

In biomedical applications, instantaneous frequency is a useful description of a

number of different physical phenomena. Instantaneous frequency was reported to be

an excellent technique for analysing blood flow data. Studying blood flow in an area

with unexpected flow patterns due to complicated geometry requires measuring the

instantaneous frequency [129].
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3.9 Methods for extracting phase from experimen-

tal data

In the study of the ECG signal, one of the most critical steps is the detection of the

R-peak. A more extensive evaluation of the ECG signal including the heart rate,

can be undertaken once the R peak has been detected. The detection of R peaks

in the ECG signal on the other hand, is a difficult process. This refers to time-

varying physiological fluctuations of the patients as well as noise. Consequently, in

the analysis of ECG data, the development of an efficient feature extraction algorithm

is critical [132]. Generally, the oscillations that exist in biological system (e.g, heart

rate) can be characterized by the variables: phase, amplitude, and frequency. Phase

is utilized to evaluate the relative progress of a particular oscillatory cycle at a given

period. Phase analysis can also be used to investigate the relationship between two

correlated signals, which can assist in understanding the integrated activity of the

components in a given system. There are a variety of ways to interpret the phase of

an in vivo signal, and these interpretations are dependent on context [133]. In this

thesis, defining instantaneous phase was done in one of two ways: marked events and

wavelet ridge extraction.

Marked events

The number of events per unit time is used in the method of marked events to

determine the frequency of an oscillation. An “event” can occur at any point in

the phase of a single cycle of the continuous oscillations observed in a time series

[124]. An illustration of the marked events method as applied to an ECG signal is

discussed in figure 3.8 (a), which exhibits the R peaks sampled from an ECG signal.

The marked event can be thought of as the R peak, and the times of succeeding R-

peaks can be represented as tk and tk+1. Therefore, the average instantaneous heart
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frequency (heart rate) can be defined as the reciprocal of the time interval between

successive-R peaks, which is calculated as

fi(tk,k+1) =
1

(tk+1 − tk)
, (3.9)

It is simple to obtain the phase of such a process. Indeed, the time interval between

two R-peaks is equal to the time period between two complete cardio-cycles. As a

result, the phase increases throughout this time interval inversely is 2π.

ϕ(t) = 2π
t− tk

tk+1 − tk
+ 2πk, (3.10)

The marked events method has significant limitations: the sampling frequency of the

generated time series may vary during individual cycles of the oscillation, requiring

that interpolation be performed before analysis.

Figure 3.8: The process of determining the heart rate and phase by marked events
method. (a) Raw ECG signal where the red circles indicate that the marked R-peaks.
(b) Heart rate/instantaneous heart rate defined by calculating the inverse of times at
the R-peaks were detected. (c) Instantaneous phase. Both instantaneous heart rate
and phase were calculated by using definitions in equations (3.9) and (3.10).

52



Due to the fact that the frequency and phase of events cannot be determined

between the marked events, this method is always an estimation. Another drawback

of this method is that, the time resolution cannot be less than the period of the

oscillation [4].

3.10 Time series analysis in frequency domain

Frequency domain

Biological signals are often comprised of waveforms that appear to be complex. We

may desire to break down those waveforms into their component frequencies because

we believe that a specific frequency of activity has biological and/or psychological

“meaning” associated with it. For example, there is an oscillation in the cardiac

period that is synchronised with the breathing frequency (approximately 0.12-0.4

Hz in adult humans). This oscillation in heart period (or heart rate) is caused by

respiratory oscillators in the central nervous system and feedback from the lungs, and

under certain conditions, this oscillation will have a perceptible impact on the heart

period that corresponds to the frequency of breathing [134]. Plotting the frequency

spectrum of a time series is a typical approach to see how it changes over time. This

view displays the frequency distribution of oscillations and fluctuations in a given time

series [124]. Considering Fourier series first helps to better understand the Fourier

transform. With the use of sine and cosine functions, Fourier attempted to represent

a periodic function f(t) mathematically as:

f(t) = a0 +
∞∑
ω=1

[aω cos(ωt) + bω sin(ωt)] , (3.11)

where ω is the angular frequency and a0, aω and bω are Fourier coefficients. Based on

the structure of the function, these coefficients will take on specific values, with the
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largest values corresponding to components of the time series that have stationary

frequencies (also referred to as modes). However, data obtained from biological

systems are based on discrete sampling and as a consequence, the discrete Fourier

transform (DFT) is used. The DFT of time series f(n) is defined as:

F (ω) =
N−1∑
n=0

f(n)e
−2πiωn

N , (3.12)

This equation can be used to convert a time series from the time domain to the

frequency domain, or to convert a time series with a dependence on t to one with a

dependence on ω. This means that periodic terms in the time series will appear as

peaks in the Fourier transform at the frequency corresponding to the periodic terms

in the time series.

When a time series contains frequencies that are outside the observable range (i.e.

1/5L as used in practice), problems arise with the Fourier transform. Low-frequency

components (< 1/L) no longer appear to be periodic, but instead resemble a trend at

these frequencies. The Fourier series of a non-periodic function is an infinite sum of

infinite sines and cosines. It follows from this that most oscillation amplitudes at lower

frequencies are shown at ω = 0, whereas those that occur at higher frequencies are

spread out across the spectrum. As a result, before performing a Fourier transform,

it is critical to eliminate any trends from a time series in order to ensure that the

components that may be detected in the detectable frequency range have accurate

amplitudes.

Even at frequencies that are within the observable range, the Fourier transform

presents challenges when used as a frequency domain representation. Figure 3.9

illustrates how amplitudes of periodic components of various shapes can be separated

into modes distributed over the frequency domain by the transform’s focus on

sinusoidal components. Therefore, it is possible that the higher frequency modes
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of components with high amplitudes may be wrongly classified as independent

components in the time series. In the same way, comparing the height of the major

1 Hz component in (d) and (f) in figure 3.5 shows that determining the amplitude

of an oscillation using the Fourier transform is not straightforward, as can be shown.

Because the nonlinear factors in nonlinear dynamical systems tend to result in non-

sinusoidal oscillations, this issue is particularly difficult to address.

Figure 3.9: Time series of three different periodic functions: (a) A sine wave, (b)
square wave and (c) sawtooth shape, as well as their one-sided Fourier transform
amplitudes, are shown in panels (d), (e), and (f). The sampling frequency was 1000Hz.

Nonstationarity of time series is another issue that arises when using Fourier

transform. The amplitudes and frequencies of the sines and cosines that serve as

the foundation of the transform remain constant across time. The Fourier transform

can only be easily understood when applied to time series in which the qualities of

interest do not change over time as a result of this. An example of a chirp signal is

shown in figure 3.10, which is a sine wave with a frequency that increases linearly

with time.
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Figure 3.10: A chirp signal with a frequency range of 1–10 Hz created over 10 s with
a sampling frequency of 1000 Hz, as seen in the time domain (a), and its representation
in the one-sided Fourier transform (b).

As can be observed, this is represented by a broad range of much smaller peaks

across the frequency interval of the chirp, which, when combined together, would yield

the right amplitude of the chirp when the chirp is played again. Although they are

clearly visible in the time domain, these non-stationary oscillations become extremely

difficult to detect as soon as other components are introduced into a time series.

3.11 Time-frequency Representation (TFR)

Time or frequency domains can be used to represent a physical signal [135]. Although

the methods for time domain decomposition have some benefits that the Fourier

transform does not, it would still be great to have spectral approaches that could be

applied successfully to the time series of complicated systems. Although a Fourier

transform can reveal much information about a time series in the frequency domain,

it is only applicable to series with periodic and stationary components. As non-
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stationary dynamics is simply represented by discrete stationary components, it

cannot provide clear information on how the components evolve over time. As a result,

a method for tracking the phase and frequency of various components over time is

required [124]. It is common for real-world and physiological signals to be irregular in

some aspects [136]. Numerous time-varying amplitudes and/or frequencies are seen

in these oscillatory components. It is difficult to study these fluctuations in the time

domain or using Fourier transforms, but the heartbeat is a good example. Although

cardiac frequency is often centred around 1 Hz, it fluctuates continuously around this

average. Since time and frequency are two dimensions, it is typically more beneficial

to analyse a signal’s properties in both time and frequency at the same time. This can

be done by looking at specific projections of the signal onto a (two-dimensional) time-

frequency plane to create what is known as a time-frequency representation (TFR).

Tracking the frequency content over time is particularly useful for multicomponent

and nonstationary time-series with time-varying spectral features, which can be

analysed using this method. The ability to recover the signal’s oscillatory components

(some of which may have time-varying qualities) is a critical aspect of a TFR

[137]. With aid of the ridge extraction method, the amplitude and frequency-

modulated components (AM/FM components) of a given signal can be separated,

and the instantaneous features (e.g. frequency, amplitude, and phase) of its

spectral content can be traced in time [130]. This method works well with

cardiovascular signals that have a wide range of time and frequency components,

with the high-frequency components often having a shorter duration than the low-

frequency components. Moreover, physiological perturbations cause the characteristic

frequencies of cardiovascular signals to change over time. Consequently, time-

frequency approaches are best suited for capturing these changes [135]. In this

research, we focus on real signals such as ECG, and blood flows, respiration, and

blood pressure that are recorded from healthy subjects. As these signals are non-
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stationary and non-linear, a time-frequency analysis based on wavelet transforms is

highly appropriate for dealing with their complexity. For the purpose of identifying

the characteristic rhythms of these diverse signals, as well as their temporal variability,

a wavelet-based extraction method was used [138].

3.11.1 Short time Fourier transform (STFT)

As an alternative to the Fourier transform, Gabor (1946) developed a windowed

Fourier decomposition to measure the time-frequency content of signals. Using STFT

(also known as the windowed Fourier transform), the signal can be decomposed in

a time–frequency plane whose partition is stratified by rectangular/Gaussian cells of

the same dimension [139]. In living systems, the frequency content of the recorded

signal can slowly change over time. This type of signal requires a window of short

time interval as in short-time Fourier transform, in order to investigate it [140]. This

method divides the signal into windows of finite duration, within which the frequency

content is analysed [135]. Then, in order to achieve time localisation, the window

is moved along the signal and its frequency content is analysed. In this method,

not only are the characteristic frequencies in the signal evaluated, but also the time

changes associated with those frequencies. The results are given in the form of a

time–frequency representation. Using the assumption of weak stationarity, an average

over all windows can be used to provide information on the frequency content of the

signal [140]. The STFT is defined mathematically as:

Gs(ω, t) =

∫ L/2

−L/2

g(u− t)f(u)e
−2πiωu

l du, (3.13)

Wherer f(u) is a signal of length l and g(u) is a rectangular function of length l that is

zero outside -l/2 ≤ u ≤ l/2. ω is a selected analyzing frequency, and t is an arbitrary

time shift. The variable ω has a direct relationship with the frequency fω through
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fω = ω
l∆t

. The complex coefficients of the STFT provide information on the phase of

the components in addition to the frequency spectrum (i.e. the position in the cycle

with respect to time) [124]. It should be noted that if g(u) is a Gaussian function,

the transform is then known as the Gabor transform [141]. The Gaussian window

function is defined as:

g(u) =
1√

2πf0
e−u2/2f2

0 (3.14)

If we consider the resolution parameter f0, Gaussian window spread determines

the trade-off between the time and frequency resolution of a WFT: The smaller f0

resolution parameter is, the faster changes in time are reflected, but the more difficult

it is to discriminate between two components that are very near in frequency [137].

3.11.1.1 Limitation of STFT

The duration of the window used to isolate a segment of the signal at a specific

time is an important parameter of the time-frequency representation [142]. Time

and frequency are fundamentally incompatible since frequency cannot be measured

instantly. For a frequency to be detected, the signal must be observed for at least

one period of this frequency. Consequently, it is impossible to tell precisely when

the signal had this frequency. The time and frequency resolutions are dictated by

the window length. Wide windows are required for good frequency resolution and

identification of low-frequency components, whereas narrow windows provide good

time localization [135]. Since all frequencies have the same frequency resolution, the

time–frequency localization of this strategy can be inefficient. Localization in time

(with higher frequencies) requires a high level of time resolution. Low-frequency

structures, on the other hand, may be resolved with a lower time resolution [139].

This is a consequence of the time-frequency to uncertainly principle. Time-frequency

analysis relies on the uncertainty principle as a foundational result. It restricts the
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ability of a signal to simultaneously be localised in time and frequency [143].

3.11.2 Wavelet transform

The fundamental concept behind wavelets is that they provide optimal time frequency

localization, which means that they can accurately determine the frequency of a

component within a time series at a particular time. A window function known

as the mother wavelet is used as a starting point, and this function is stretched

or compressed so that the frequency response matches the desired frequency range

[124]. Within this transform, it becomes possible to obtain good temporal localisation

for high frequencies and also achieve better frequency resolution for low frequencies

in a single transform. The wavelet transform decomposes a signal into functions

(wavelets) that are narrow when high frequency features are concentrated and large

when low frequency structures are concentrated. This decomposition results in a

favourable trade-off for the time-scale resolution, which is connected to the frequency

resolution. This also allows for good localization in both time and frequency (see

figure. 3.11), which is particularly useful for examinations of the temporal evolution

of aperiodic and transient signals [139]. In the wavelet transform, the shape of the

basic time-domain wavelet function changes with frequency to provide a better match

to nonlinear, irregular biological data. The wavelet analysis enables the separation

and sorting of different structures on various time scales at various moments, providing

both scale and temporal information [144]. The wavelet transform is defined as

WT (s, t) =
1√
|s|

∫ L/2

−L/2

Ψ
(u− t

s

)
f(u)du, (3.15)

where Ψ(u−t
s

) is the mother wavelet. All wavelets are defined by this single wavelet by

its being scaled according to the scale s in order to adjust its frequency distribution

and time-shifted according to the time t [122]. The 1/
√

|s| term ensures that the
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energy of the scaled wavelet remains constant or equal in comparison to the energy

of the original mother wavelet [122]. As s changes, the wavelet’s shape is compressed

or stretched to encompass a wider range of frequencies.

Figure 3.11: The frequency of the nonlinear chirp signal, sin(2 × 0.0001 × time2),
grows as time increases. Since the signal in (a) varies with time, (b) cannot
be accurately represented by the Fourier transform in the frequency domain. (c)
represents the continuous wavelet transform.

The time localization centre can be moved around and wavelets can be translated

through all of the data points. In this approach, the wavelet transform gives

a time-frequency representation of a given signal. In contrast to the windowed

Fourier transform, the wavelet transform is capable to “zoom in” and “zoom out”

to/from structures at various scales [144]. In other words, instead of conducting

a “stand-alone transform” for each time window, the wavelet transform conducts a

separate calculation for each time window based on both time and frequency (or more
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specifically, s).

3.11.2.1 Morlet wavelet

The wavelet window must have a Gaussian shape in order to achieve the highest

possible time–frequency resolution up to the absolute limit defined by the uncertainty

principle. This idea, along with the Fourier transform’s sinusoidal base, results in the

Morlet wavelet [124]. A mother wavelet can be either a real or a complex function,

depending on the application. Although both options will provide the magnitude

of the wavelet coefficient, implementing a complex wavelet will result in a complex

wavelet coefficient. It is more appropriate to capture oscillatory behaviour with a

complex wavelet function since it returns information on both amplitude and phase

information. A real wavelet allows to one isolate peaks or discontinuities because

it returns only one component [145]. The additional phase information (provided by

complex wavelet) appears to be useful in the discussion of wavelet coherence measures

since it allows for more accurate comparisons. The Morlet wavelet is given by

ψ(t) =
1

π1/4
ei2πf0te−t2/2, (3.16)

Here, f0 (ω0 = 2πf0) is the central frequency of the mother wavelet. The term e−t2/2

is the Gaussian envelope which has unit standard deviation and contains the complex

sinusoidal waveform. Figure 3.12 represents the Morlet wavelet’s real and imaginary

components, as well as the constricting Gaussian envelope. Figure 3.12 (c) shows there

is a quarter-period difference in phase between the actual and imaginary sinusoids.

In order to ensure that the wavelet has the same amount of energy, the (1/π1/4) term

is used [146].
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Figure 3.12: Construction of Morlet wavelet. The dot product of (a) complex
sinusoid with (b) A Gaussian function will generate (c) a Morlet wavelet in both
forms (real & imaginary). (d) is in the frequency domain

3.11.2.2 Central frequency of Morlet wavelet

The central frequency f0 (ω0 = 2πf0) is so named because it corresponds to the peak

frequency of a Gaussian distribution of components over a range of frequencies in

the Morlet wavelet, i.e., it is located in the middle of the Gaussian distribution of

components [147]. The ‘effective frequency’ of the sine-cosine pair can be altered

to match harmonic components in the signal via dilations or scaling of the spatially

localised mother wavelet [148]. With the central frequency parameter, the user can

select how many oscillations the wavelet has within its Gaussian envelope, and how

large or small that envelope should be [149].
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Figure 3.13: Commonly used Morlet wavelets showing the effect of increasing
the central frequency. An increase in the central frequency leads to an increase in
the number of oscillations that occurr within a particular window. This results in
improved frequency resolution, which assists in the determination of the instantaneous
frequency.

The number of oscillations or cycles of the Morlet wavelet can be determined by

the value of f0 as shown in figure 3.13. In general, greater values of f0 lead to

better spectral resolution but a lower temporal resolution. For the Morlet to be

admissible as a wavelet, a minimum value of f0 = 6, or f0 ∼ 1 Hz, is necessary. For a

given f0, increasing the Morlet wavelet’s variance improves frequency resolution while

decreasing temporal resolution, and vice versa [150].

3.11.2.3 Relation between scale and frequency

The most obvious difference between the wavelet and Fourier transforms is that

wavelet basis functions are indexed by two parameters (s and t) whereas Fourier

basis functions are indexed by the single parameter ω (2πf). This means that in

64



physical terms, wavelet transforms (or coefficients) are characteristics of the function’s

local behaviour, whereas Fourier transforms (or coefficients) are characteristics of

the function’s global behaviour. A time location is represented by the second

parameter (t), while the first parameter (s) determines the ‘width’ of the wavelet

(s). In the case of Fourier analysis, the parameter ω corresponds to the physical

interpretation of frequency. In other words, the wavelet parameters and the Fourier

frequency parameter have no direct physical connection. However, if the mother

wavelet possesses “oscillatory” properties, we can infer a connection between the two

parameters ω and s. If the mother wavelet (e.g, Morlet function) has “oscillatory”

properties, which means that as s decreases, oscillations become compressed in the

time domain, i.e. they exhibit high frequency’ behaviour, whereas as an increases they

become drawn out (i.e. they exhibit ‘low frequency’ behaviour) [151]. Consequently,

each scale represents a frequency band rather than a single frequency. While large

scales are related with low frequencies (equivalently, long periods), very small scales

are connected with high frequencies [152]. The relationship between scale and

frequency is inversely proportional f = 1/s. However, the exact scaling constants that

characterise the proportionalities differ depending on which wavelet is used. With a

scaling constant, the connection can be expressed as

f =
fc
s
, (3.17)

where fc is a constant that specifies the characteristic frequency of the wavelet.

The characteristic frequency fc of the wavelet employed in the wavelet transform

is reflective of the entire frequency makeup of the wavelet [147]. The spectral

peak frequency (the frequency value with the greatest spectral density), the centre

frequency of the passband, and the centre frequency of the wavelet itself are all possible

options for the value of fc [153]. Figure 3.14 shows how time-scale translations of
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multi-scale wavelets is performed.

Figure 3.14: A demonstration of how wavelets of varying scales can be translated
in time.

3.11.2.4 Cone of influence (COI)

The wavelet is a windowed transform. Therefore, at a given moment in time t0 always

contains information about nearby data points. The number of these points varies

depending on the wavelet used and the scale considered. As a result, if the wavelet

is centred near the beginning or end of the time series, edge effects will arise [152].

One option to solve this issue is to pad the time series with zeroes at the boundaries

in order to increase the total length to the next-higher power of two. As a result,

the edge effects are minimized and the Fourier transform straightforwardly applied.

However, padding with zeroes produces discontinuities at the endpoints and, as one

moves to higher scales, reduces the amplitude around the edges as more zeroes are

introduced into the analysis [145].

The Cone of Influence (COI) is a line drawn on a scalogram that denotes the

parts that are affected by edge effects. Data outside this range may appear distorted.
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The COI is computed by the wavelet’s e-folding time, which is the time at which the

wavelet power has reduced to e−2 of the power at the edge of the signal, as a result

of the discontinuities generated by padding the ends with zeros. In this case of the

Morlet wavelet, the e-folding is τ =
√

2s. The choice of wavelet and the wavelet

parameters have an impact on the COI adjustment. The central frequency is a key

factor in determining a wavelet’s size (Morlet). Changing a parameter will have an

impact on the time–frequency resolution of the system [153].

3.11.2.5 Lognormal wavelet: An extra choice

The Morlet wavelet, like many other wavelets, has a frequency scale that is linear.

Due to the fact that WT has logarithmic frequency resolution, it appears that it

would be more appropriate to design a wavelet with log as its argument. As a

result, the lognormal wavelet would be a more accurate WT analogue for the Gaussian

window than the Morlet. Compared to the Morlet, the wavelet has greater resolution

properties among other advantages, making the lognormal wavelet the preferred

option. Although it is “infinitely admissible” unlike the Morlet wavelet, this wavelet

is “finite” which means that it can be used to reconstruct any order time-derivative

from the component’s WT. In the present research, the lognormal wavelet was used

only in ridge extraction analysis. The lognormal formula is given by:

ψ̂(x) =

 e−
(2πfr log x)2

2 x > 0

0 x ≤ 0
(3.18)

3.11.3 Wavelet spectral power

The power spectrum of data can be examined for significant peaks to see if oscillatory

activity is present. Due to the nonstationary nature of most physiological signals

and the possibility of several time-varying frequency modes, it is advised that power
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spectral computations be performed over time by using any of the computational

methods [154]. For both linear and nonlinear signals, frequency peaks in the power

spectrum indicate oscillatory behaviour [155]. In the frequency domain, the power

spectrum of a time series is defined as the integral of the square of the amplitude. This

is a straightforward operation for the Fourier transform because the frequency scale

is linear, resulting in the square of Fourier transform being precisely proportional to

the power spectrum. In the same way, the wavelet power spectrum can be calculated

by:

PW (ω
′
, t) =

∫ ω
′
+ dω

2

ω′− dω
2

|WT (ω, t)|2dω, (3.19)

However, the wavelet transforms uses a logarithmic frequency scale which means that

higher frequencies correspond to larger frequency intervals. As the Morlet wavelet

transform is continuous, obtaining the power spectrum is not as straightforward. That

is why the integration of squared amplitude is always an approximation when dealing

with finite data, even if it is equivalent to Fourier amplitudes (a continuous curve

cannot be integrated discretely). Time series data can be analysed by taking the

average of wavelet power over time. In this case, it is used to determine the primary

oscillatory components’ frequency range. Once this information is gathered, it will be

possible to track the changes in power over time for each individual component [122].

The average power (ξmean) may be calculated over a period of time within any

frequency band of interest. In this thesis, we focus primarily on the frequency interval

0.005 − 2 Hz, which is manifested in the microvascular blood dynamics. In the time

series x(t), the power of each frequency band fi1 to fi2 connected with the time series

is denoted by:

ξi(fi1, fi2) =
1

t

∫ t

0

∫ ω0/2πfi1

ω0/2πfi2

1

s2
|Wx(s, t)|2dsdt, (3.20)

where the scale s is related to frequency f by s = ω0/(2πf) and Wx(s, t) refers to the

wavelet transform of the signal x(t) that being analyzed [135].
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Figure 3.15: Time averaged wavelet transform vs. Fourier transform of blood flow
time series. (a) Fourier representation, while (b) shows the wavelet representation of
the same signal. The wavelet transform offers higher resolution at lower frequencies
for time-varying oscillations, and this is true even when the data are averaged over
time.

3.11.4 Wavelet ridge extraction

With aid of the ridge extraction method, the amplitude and frequency-modulated

components (AM/FM components) of a given signal can be separated, and the

instantaneous features (e.g. frequency, amplitude, and phase) of its spectral content

can be traced in time. As seen in figure 4.1, the components that are present in the

signal are depicted in its TFR as “curves” in reality, temporal sequences of close peaks.

Ridge curves will be the term that will be used to describe these types of curves. In

a general sense, the ridge curve of a component can be described as the sequence of

TFR amplitude peaks onto which the majority of the energy of that component is

projected at each time [130].

This method works well with cardiovascular signals that have a wide range of
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time and frequency components, with the high-frequency components often having

a shorter duration than the low-frequency components. Moreover, physiological

perturbations cause the characteristic frequencies of cardiovascular signals to change

over time. Consequently, time-frequency approaches are best suited for capturing

these changes [135].

3.11.5 Wavelet phase coherence

Waves can be spatially coherent, and oscillations can be temporally coherent.

Coherence in time is a general term to describe all qualities of correlation between

physical quantities that occur during a single oscillation or multiple oscillations.

Specific frequencies are defined for coherence like power and phase [122]. It is possible

to employ phase information to study the correlations between the oscillations of

different signals. An oscillation at the same frequency in two different noisy signals

may not always indicate that they are connected. It is feasible to discover plausible

correlations by comparing the instantaneous phases of two signals using wavelet

phase coherence analysis [156]. Wavelet phase coherence uncovers consistent phase

correlations between signals and can be used to infer causality between them. In

contrast to cross-spectra, it is possible to detect strong phase coherence between

signals even when their common powers are modest. This is particularly relevant

for low-frequency components, which contribute significantly to total power while

not necessarily making huge contributions to total power. We initially calculate the

wavelet transform of the signals in order to assess their wavelet phase coherences. The

use of the complex Morlet wavelet allows for the extraction of instantaneous phase

variations at each point in time and on each scale in the image (inverse of frequency)

[157].

W (sk, tn) = Wk,n = ak,n + ibk,n, (3.21)
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The instantaneous phase can be calculated from here using the angle variable:

ϕk,n = arctan
( bk,n
ak,n

)
, (3.22)

Instantaneous phases are calculated for both signals: ϕ1k,n and ϕ2k,n at each time tn

and frequency fk. The relative phase difference between them is therefore calculated

as ∆ϕk,n = ϕ2k,n − ϕ1k,n. The sine and cosine components of the phase differences are

calculated and averaged in time throughout the whole length of the signal, resulting

in the final phase difference. Finally, the phase coherence function is denoted by the

expression

Cϕ(fk) =

√〈
cos ∆ϕ2k,n

〉2
+
〈

sin ∆ϕ1k,n

〉2
(3.23)

The phase coherence function Cϕ(fk) can take a value between 0 and 1. When the

phase difference between the two signals at a specific frequency remains constant, the

phase coherence value would be close to 1. In contrast, when they are unconnected, the

phase difference between two oscillations varies continuously in time and as a result,

their phase coherence is close to zero [55]. Values of phase coherence must, however,

be treated with caution. In signals of finite length, low-frequency components have

fewer periods than high-frequency components. As a result, there is less variance

in phase difference at low frequencies, leading to an artificially exaggerated phase

coherence. Phase coherence between two unrelated signals rises monotonically at

decreasing frequencies. Surrogate analysis is used to find a frequency-dependent floor

that accurately reflects the degree of coherence [156].

3.12 Surrogate test

Surrogates can be particularly valuable in the search for underlying dynamics in

univariate time series, and they can also be critical when investigating interactions
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between systems when two or more time series are presented. Surrogates can

be used to test for phase synchronisation and coupling between oscillators by

employing a variety of discriminating statistics, including phase coherence, the

phase synchronisation index (PSI), dynamical Bayesian inference, and synchronisation

likelihood, among many other techniques [158].

Complex nonstationary signals originating from biological systems frequently

exhibit random fluctuations in frequency and phase. Even for uncoupled signals,

frequency and phase coincidences can exist and be mistakenly recognised as sections

of phase synchronisation. It is possible that such events will lower the estimated PSI

and thus reduce the accuracy of outcomes. False detections are substantially more

likely to occur in the scenario where the characteristic frequencies of the analysed

signals are near to each other. As a result, when analysing experimental data, it

is critical to consider the possibility that the PSI will take on a particular value as

a result of random fluctuations in the signals rather than just a result of specific

coupling dynamics between the studied systems [127].

It is important to keep in mind that the coherence that is computed (using equation

3.22), in the first instance, does not necessarily reflect a genuine phase relationship

and needs to be carefully evaluated. Although, coherence values can vary anywhere

from 0 to 1, the problem occurs due to the fact that some of the coherence values

that are acquired can be negative. After that, the negative coherence values are

deducted from the total. Following this approach, the very low frequency oscillations

may appear to have a coherence values that are close to 1. This bias is caused by the

use of recordings that are too short to encompass the content at low frequencies.

We used the surrogate method [159, 158] to check the significance of the computed

coherence by setting as a null hypothesis that, for all frequencies, the phases in the

signals are independent, thereby reducing the influence of random effects that can

give rise to apparent (but spurious) coherence. We removed the bias associated with
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the power spectrum of the more often used amplitude adjusted Fourier transform

(AAFT) surrogates by using iterative amplitude-adjusted Fourier transform (IAAFT)

surrogates to estimate the significance level of the apparent coherence. This allowed us

to more accurately determine the level of apparent coherence. To begin, the IAAFT

surrogates are constructed by first shuffling all of the characteristics of the signals

under the examination, with the exception of the phases ϕ1k,n and ϕ2k,n, which are

left unshuffled. After that, this is performed in an iterative manner, simply by utilising

the ideal value and re-scaling the distribution to substitute Fourier amplitudes. This

enables us to obtain likeness between the distributions and power spectra of the

surrogates and the original signals. Afterwards, this is accomplished in an iterative

manner. At each frequency, we determined the coherence threshold to be the 95th

percentile of the greatest value produced by 100 random realisations of IAAFT

surrogates. This was done across all surrogate realisations. The computation of

wavelet phase coherence between two different time series is illustrated in figure 3.22.

Inter-subject surrogate analysis can also be used to validate the results of

significant coherence. These values are computed for n combinations of randomly

selected inter-group subjects, as a substitute for the actual values of the coherence

between the two signals, such as blood flow and respiration. The surrogate is

built using, for example, blood flow from subject A and respiration from subject

B, which makes the surrogate a composition of mutually independent signals. At

each frequency, effective coherence was calculated by taking the original coherence

and subtracting the significance threshold from that value [160].
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Figure 3.16: This is a typical example of the wavelet phase coherence between
two different time series. (a) The time-series of IHR and (b) respiration exhibit
wavelet phase coherence. Significant phase coherence is indicated in figure (c) when
the coherence (black line) is greater than the 95th percentile of 100 pairs of IAAFT
surrogates (red line). The effective significant phase coherence presented in panel (d)
is produced by subtracting the 95th percentile of the surrogate.

3.13 Statistical analysis

Quantitative research employs statistical methods that can be classified as either

parametric or nonparametric, depending on the nature of the data. The parameters

of parametric tests are based on the assumption that the data adhere to a

particular probability distribution, which is commonly the normal distribution.

They also frequently make the assumption that the differences across groups are

homogeneous. In situations where these presumptions are satisfied, parametric testing

is recommended. Compared to parametric tests, nonparametric tests make fewer

assumptions about the distribution of the population being tested. It is not necessary
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for the data to adhere to a particular distribution. Tests that are nonparametric

are more resistant to the violation of assumptions and thus are appropriate for

situations in which the data do not satisfy the assumptions that parametric tests

make [161, 162, 163]. Medical researchers frequently employ nonparametric statistics

due to various factors:

• Accuracy of presumptions based on data: Data from the medical field frequently

diverges from the assumptions that parametric statistics make, such as the

assumption of normality or the assumption of homogeneity of variance. When

it comes to the analysis of medical data, nonparametric methods are safer and

more trustworthy because they do not rely on these assumptions.

• Limitation of small samples:

Due to practical limits, medical investigations sometimes include the use of small

sample numbers. Due to the fact that they do not rely on assumptions about

the distribution of the population, nonparametric tests are ideally suited for the

analysis of small samples.

• Comparing group differences [164]:

In physiological investigations, it is common practice to compare physiological

parameters between groups, such as healthy controls and patients with a specific

disease or treatment. It is common practice to employ nonparametric tests such

as the Kruskal-Wallis test (for more than two independent groups) in situations

where parametric tests do not hold or where the data do not follow a normal

distribution.

• Assessing relationships: Research in the field of physiology may have the ob-

jective of examining patterns of association or correlation between physiological

variables.
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• Comparing paired data: It is common practice in research to measure the same

subjects twice under different circumstances. When the data fails to meet the

criteria of parametric tests, such as normality of differences, nonparametric tests

are employed to compare paired observations. One such test is the Wilcoxon

signed-rank test.

In general, nonparametric statistics are useful for analysing physiological data,

especially when dealing with ranked or ordered data, data that does not follow

a normal distribution, or when the assumptions of parametric tests are not met.

They are flexible, reliable, and can be used to answer many different kinds of

physiological research questions. All of the statistical tests used in this work are

non-parametric, which means that they did not assume that the data followed

any particular underlying distribution. Note that we illustrate the data using

violin plots (introduced in detail in the section 3.13.3) which help visualize

whether data are normally distributed. As can be seen from the violin plots

provided in this chapter, data are mostly not normally distributed. Therefore,

non-parametric test were used and they allowed for more reliable conclusions to

be drawn.

3.13.1 Statistical tests

In order to detect significant powers, coherence, and variations with ambient

temperature, we calculated medians and ranges. Initially, the Kruskal-Wallis (multi-

comparison) test was performed to compare all of the groups. This test was used to

determine if two or more independent samples are from the same distribution, and it

does not assume a normal distribution. If significance was found, the Wilcoxon signed

rank test (pairwise) for paired data was used to examine pairs of groups. The signed
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rank test can be used to determine if two samples with matching counts are drawn

from the same statistical distribution.

The term “paired data” refers to a situation in which the values of the two groups

being compared are inextricably connected. This situation typically occurs when

an individual is measured more than once. For instance, if subject A’s symptoms

were measured both before and after therapy, then the measurement taken before

treatment would make sense to pair with the data taken after treatment. They most

certainly cannot be regarded as being independent from one another due to the fact

that attributes of subject A will influence both measurements. In this research project,

significance tests were taken with variations in heating among the same group. As a

result, the Wilcoxon-signed rank test was used. [165]. In all cases, a p-value of less

than 0.05 was determined to be statistically significant.

3.13.2 Testing for normality of data

Analysing the distribution visually is one method that can be used to determine

whether or not it is normal. Several visual representations can be employed to visually

assess normalcy, such as the histogram, boxplot, stem-and-leaf plot, P-P plot, and Q-

Q plot. Instead of plotting each individual score in the data, a Q-Q plot depicts the

quantiles of the data set, which are numbers that divide a data set into equal sections.

Additionally, when dealing with high sample numbers, the Q-Q plots are better suited

for interpretation.[166, 167].

Visualising the data in relation to its frequency distribution, which shows the

observed values as a bell curve, can help in judging the distribution’s form and

identifying data gaps or outlying numbers [168]. We found no consistent normal

distributions of data among the groups compared using the Lilliefors test (Figure

3.17).
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Figure 3.17: Visual inspection of the distribution of instantaneous heart rate (IHR).
A) shows IHR signals. B) Q-Q plot. C) The frequency distribution (histogram) with
bell curve.

3.13.3 Violin plots

The violin plots represent the distribution of data for particular groups, or particular

parameters. In this work, they are used to compare the power spectra, phase

coherence, and phase shift for entire frequency of interest (0.0095–2 Hz), and for each

for each frequency interval of interest (see table 2.1). The Kruskal-Wallis test was

used to compare data between several groups. If significance is found, a red asterisk

is shown on the relevant figure. Otherwise, there is no significant difference. Similarly,

a pair-wise (Wilcoxon signed rank test) was also carried out for each individual band,

and where significance is found, it is shown on the same violin plots. Figure 3.18

shows the violin plot, which is a combination of the box plot and density traces. To

the left and right of the (vertical) box plot, there is a symmetrical plot of the density
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trace.

Figure 3.18: Common components of a violin plot. Combination of a box-plot and
its distribution values (density trace) forms a violin plot as can be seen.

The only thing that differentiates these density traces from one another is the

direction in which they extend. When two density traces are added together, a

symmetric plot is produced, which means that the magnitude of the density may

be seen more clearly. This combination of the density trace and the box plot makes

it easy to compare many distributions quickly and effectively [169].
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4. Results

4.1 Time series analysis

The amplitude, power, and phase characteristics of oscillations can be measured and

analysed using recorded signals to extract statistical properties from the data. Time-

varying oscillatory features are of particular interest in our study, where we attempt

to resolve the dynamics in terms of time localization and frequency resolution.

Frequencies that are very prominent in the examined signal appear as peaks in

power spectral. In order to track their evolution over time, the wavelet transform

employs a time dimension. The time average of the wavelet transform is used to

determine the spectral amplitudes. What we mean by “total spectral amplitude”

refers to the average amplitude of the wavelet transform over time for the entire

frequency range (0.002 Hz − 2.0 Hz). Wavelet phase coherence is a measure that

discovers consistent phase correlations between signals and gives inferential evidence

for causation resulting from links between the processes giving rise to the links between

signals. Even when the power of the signals being compared are rather weak, it is

still possible to detect significant phase coherence between them. This is particularly

significant for low-frequency components, which contribute significant contributions

to total power even though those contributions are not necessarily very substantial.

In order to quantify wavelet phase coherences between signals, we first estimated

their wavelet transforms. The complex Morlet wavelet is used so that phase differences
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at any given time and frequency can be extracted. Wavelet phase coherences are then

determined from the relative phase differences and their temporal variations. with

values ranging from 0 (no coherence) to 1 (perfect coherence). The phase difference

can also be used to establish which of two coherent oscillators is leading, and is

therefore more likely to be the source of the dynamics.

4.2 Time domain and power spectrum analysis

4.2.1 Heart rate and heart rate variability

Extraction of instantaneous frequency from ECG time series

The instantaneous heart rates (IHR) of each subject were determined by employing

wavelet ridge extraction to isolate the cardiac oscillation included within the ECG

signals that were obtained for that subject. Ridge extraction analysis was performed

on the ECG signal in the frequency range of 0.6–2Hz, which allowed the IHR to be

determined for each individual at each temperature. This resulted in a time series of

the heart rate variability over time of the same duration as the original signal, one for

each subject at each temperature range (i.e. 20◦C, 26◦C, etc.). For each subject, both

the mean and the standard deviation of the IHR time series were computed. Figure

4.1 shows how the ECG data can be used to extract the time-varying heart rate.
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Figure 4.1: An example of extracting the instantaneous heart rate from the ECG
signal from one subject for three different temperatures. The first row represents the
entire ECG time series. In the second row, the ECG signal is subjected to a complete
wavelet transformation. A noticeable oscillating pattern can be noticed around the
predicted heart rate of 1 Hz as can be seen in third row. Instantaneous frequency
time series derived from a wavelet transform via ridge extraction are shown in the
fourth row.

Results obtained using either method were found to be nearly similar. Figure 4.2

(a) displays the heart rate, while (b) heart rate variability. Heart rate variability and

respiration rate variability signals were computed by taking the standard deviation of

heart and respiration rates that were calculated by wavelet transform and comparing

them.

As can be seen in figure 4.2 (a,b) both heart rate variability (HRV) and

instantaneous heart rate (IHR) increased significantly with increasing temperature.

Significant differences in median heart rate were found between 32◦C and 20◦C (p
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= 0.000) as well as between 32◦C, and 26◦C (p = 0.002). Pairwise test also showed

significant changes for the pairs: 20◦C and 32◦C and (p =0.003); 26◦C and 32◦C (p

= 0.000). The pair comparison of 20◦C and 32◦C exhibited significantly higher heart

rates at 32◦C.

Figure 4.2: Violin plots of the average (a) Heart rate variability and (b)
Instantaneous heart rate at three ambient temperatures. Statistical significance
difference was observed in heart rate and HRV by Kruskal-Wallis (multi-comparison
test) and Wilcoxon signed rank (pairwise test) for paired data. p -values for heart
rate are recorded as follows: 20◦C - 26◦C (0.279), 20◦C - 32◦C (0.000), and 26◦C -
32◦C (0.002). While p -values for HRV were 20◦C - 26◦C (0.255), 20◦C - 32◦C (0.003),
and 26◦C - 32◦C (0.000). In terms of group test, significant difference was observed
in HRV (0.043), but not heart rate (0.312).

A single heart rate value for each individual was calculated by averaging the heart

rate signal across all ambient temperatures. These individual figures were then used
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to make comparisons between various ambient temperatures as can be seen in figure

4.3 (a). Similar steps were taken for the heart rate variability as shown in 4.3 (b).

Figure 4.3: Mean values of (a) heart rate (calculated by marked events) and (b)
HRV (STD of wavelet ridge frequency) at three ambient temperatures. The purpose
of presenting the linear connections between points is simply to assist with visually
identifying the changes that have occurred for specific subjects, with each subject
being represented by a unique colour.
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4.2.1.1 Spectral power of the instantaneous heart frequency/heart rate

variability (IHR/HRV)

Figure 4.1 shows an example of the time-frequency representation for continuous

wavelet transforms of ECG signals while they are being affected by heating. These

transforms are performed on the data as they are being analysed. The oscillations

that can be seen in the ECG signal when it is recorded under any circumstance

are depicted quite clearly in the figure. Figure 4.4 displays the time-averaged group

median spectral power of the oscillations found in IHR signals. The 25th and 75th

percentiles respectively.

Figure 4.4: Time-averaged wavelet powers of heart rate variability. Group median
time-averaged spectral power calculated from the wavelet transforms of heart rate
variability for 32 minutes for each ambient temperature (20◦C, 26◦C, and 32◦C).
Dashed lines indicate the frequency intervals of oscillations observed in heart rate
variability (HRV). No statistical significant difference was observed across all the
frequency intervals.

HRV showed significant difference in the myogenic and respiratory spectral bands

components of HRV as shown in figure 4.5. The power spectrum of HRV revealed
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an increase for the low frequency band at low ambient temperature (although not

significant) and an increased power in myogenic band at high ambient temperatures.

These changes were not significant as shown by the Kruskal-Wallis test.

Figure 4.5: Violin plots compare the median power content within the bands
investigated for the (a) Endothelial activity, (b) Endothelial metabolic activity, (c)
Neurogenic activity, (d) Myogenic activity, (e) Respiration, (f) Cardiac activity
oscillations, and finally the total power in the HRV signal. The central circle indicates
the median. Wilcoxon signed rank test which was applied for comparisons in each
frequency band between the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

However, significant differences obtained by pairwise test were revealed by

comparing median powers of 26◦C with 32◦C at myogenic and respiration bands (p =

0.026 and p = 0.003, respectively).
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4.2.2 Stroke volume

Time domain analysis

Figure 4.6 displays the results of calculating the average for each subject across

the three different environmental temperatures (a). While the results of standard

deviation calculations performed on the same signals (b).

Figure 4.6: Violin plots of the average (a) and (b) standard deviation of stroke
volume signals at three ambient temperatures. Statistical significance difference was
observed in mean STD of SV and STD by Kruskal-Wallis (multi-comparison test)
and Wilcoxon signed rank (pairwise test) for paired data. p -values for heart rate
are recorded as follows: 20◦C - 26◦C (0.007), 20◦C - 32◦C (0.000), and 26◦C - 32◦C
(0.043). While p -values for STD, 20◦C - 26◦C (0.072), 20◦C - 32◦C (0.943), and 26◦C
- 32◦C (0.042). In terms of group test, no significant difference was observed in mean
values (0.341), or STD values (0.375).
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A single “stroke-volume” value for each individual was calculated by averaging the

stroke volume signal across all ambient temperatures. These individual figures were

then used to make comparisons between various ambient temperatures as can be seen

in figure 4.7 (a). Similar steps were taken for the standard deviation of stroke volume

as shown in (b).

Figure 4.7: Mean values of (a) stroke volume and (b) STD of stroke volume at three
ambient temperatures. The purpose of presenting the linear connections between
points is simply to assist with visually identifying the changes that have occurred for
specific subjects, with each subject being represented by a unique colour.
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4.2.2.1 Spectral power of the stroke volume

Figure 4.8 depicts the effect of heat on the wavelet power spectra of stroke volume time

series. Time-averaged wavelet powers were calculated for each subject throughout the

three ambient temperature, and a median value was then calculated. In order to allow

the function to calculate frequencies as low as feasible, the minimum frequency was

left unspecified and the maximum frequency was set to 2 Hz. The central frequency

is 1 Hz.

Figure 4.8: Time-averaged wavelet powers of the stroke-volume time-series. Group
median time-averaged spectral power calculated from the wavelet transforms of stroke
volume for 32 minutes for each ambient temperature (20◦C, 26◦C, and 32◦C). No
statistically significant difference in time averaged wavelet power was observed across
all the frequency intervals.

The stroke volume power spectrum contained an intensity peak at the respiratory

frequency (≤ 0.3 Hz) in addition to the cardiac peak and both peaks were reduced by

heating. Nevertheless, no significant differences were found either by multi-comparison
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or pairwise tests for this particular band. Indeed, the changes in power were

not significantly different as shown by multi-comparison test. However, significant

differences determined by pairwise test were observed across all the frequency

bands except the respiration band (where most of the power of the oscillations is

concentrated).

Figure 4.9: Spectral power of stroke-volume time-series within frequency bands.
The spectral power of stroke volume investigated for each frequency band including
the total power in the stroke volume power spectrum. The central circle indicates
the median value and dots show the distribution of individual value. The Wilcoxon
signed rank test was applied for comparisons in each frequency band between the three
ambient temperatures and statistical significance was set at p < 0.05 . Significance is
considered as *p < 0.05,**p <0.01, ***p <0.001 .

In the low frequency intervals (VI, V, and IV), significant differences were found

between 26◦C and 32◦C only (p = 0.031, 0.017, and 0.003, respectively). The myognic

frequency interval shared the same significant difference with the previous band in

addition to the pair of 20◦C and 26◦C (p = 0.024 and 0.010, respectively). In the

cardiac band, significant differences were observed between the lowest and highest

90



ambient temperatures 20◦C and 32◦C (p = 0.043) as illustrated in figure 4.9.

4.2.3 Cardiac Output

Calculation of cardiac output time series

Cardiac output was calculated in the time domain for each subject and before any

further analysis carried out. Cardiac output relies on heart rate and stroke volume

and both of these were measured for each subject.

Figure 4.10: Example of calculating cardiac output. A typical heart rate time series
is shown in the first row at three different temperatures. The second row shows the
stroke volume. The third row shows the result of multiplying the first and second
rows which yields the cardiac output for three different temperatures.

Consequently, cardiac output was calculated by multiplying the heart rate by

the stroke volume. The impact of temperature on cardiac output time series is

shown in figure 4.10. Mean values were calculated for all subjects for the three

ambient temperatures to see the how the mean varies with varying temperature as
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demonstrated in figure 4.11 (a). The standard deviation was calculated also for the

same signals as demonstrated in figure 4.11 (b).

Figure 4.11: Violin plots of the average (a) and (b) standard deviation of cardiac
output signals at three ambient temperatures. A statistically significant difference was
observed in the means of SV and STD of SV by the Kruskal-Wallis (multi-comparison
test) and the Wilcoxon signed rank (pairwise test) for paired data. p -values for heart
rate are as follows: 20◦C - 26◦C (0.031), 20◦C - 32◦C (0.716), and 26◦C - 32◦C (0.045).
The p -values for STD were: 20◦C - 26◦C (0.024), 20◦C - 32◦C (0.682), and 26◦C -
32◦C (0.133). In terms of group test, no significant difference was observed in mean
values (0.616), or STD values (0.283).

A single cardiac output value for each individual was calculated by averaging the

stroke volume signal across all ambient temperatures. These individual figures were

then used to make comparisons between various ambient temperatures as can be seen

in figure 4.12 (a). Similar steps were taken for the standard deviation of cardiac

output as shown in figure 4.12 (b).

92



Figure 4.12: Mean values of (a) cardiac output and (b) STD of cardiac output
at three ambient temperatures. The purpose of presenting the linear connections
between points is simply to assist with visually identifying the changes that have
occurred for specific subjects, with each subject being represented by a unique colour.

4.2.3.1 Spectral power of the cardiac output

Median values of time-averaged wavelet powers were determined for each individual

across the three temperature conditions. The minimum frequency was left unspecified

to allow the function to detect frequencies, as low as possible, and the maximum

frequency was set to 2 Hz to allow the function detecting frequencies as low as possible.

Here, the pre-processing is turned on and the central frequency is set to 1 Hz. Figure
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4.13 reveals that the spectral components of the cardiac output signal extend a wide

frequency range, beginning at 0.003 Hz and ending at the cardiac frequency.

Figure 4.13: Time-averaged wavelet power of the cardiac output. Power is
averaged over 32 min at three different ambient temperatures: 20◦C, 26◦C, and 32◦C.
Oscillations components in the cardiac output are separated by dashed lines. It was
found that there was no statistically significant difference in the time-averaged wavelet
power within any of the frequency intervals.

The time-averaged wavelet power of cardiac output was compared between all three

ambient temperatures, and significant differences were not found by multi-comparison

test in any of the frequency bands. However, significant differences obtained by the

pair-wise test were found between 20◦C-32◦C in the neurogenic (p = 0.006) and

myogenic bands (p = 0.011 and 0.027) between 20◦C−32◦C and 26◦C−32◦C, and

finally in the respiration bands between 20◦C−26◦C and 20◦C−32◦C (p = 0.013 and

0.026, respectively) as shown in figure 4.14.
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Figure 4.14: The median power of cardiac output within bands. The central circle
indicates the median value. Wilcoxon signed rank test was applied for comparisons
in each frequency band between the three ambient temperatures and statistical
significance was set at p < 0.05 . Significance is considered as *p < 0.05, **p <0.01,
***p <0.001 .

4.2.4 Respiration and instantaneous respiration rate

The instantaneous respiration rate was extracted in a similar way to that performed

in IHR, but in the frequency range of 0.145 - 0.6Hz. The mother wavelet used for

ridge extraction is the lognormal wavelet, and the central frequency is 1Hz. Figure

4.15 shows the steps used in the extracting instantaneous respiration rate.
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Figure 4.15: Example of extracting the instantaneous respiration rate from a
respiration signal from one subject during heating. A typical respiration time series
is shown in the first row at three different temperature. In the second row, the
respiration signal undergoes a complete wavelet transformation. The third row shows
a clear oscillating pattern around the expected respiration rate of 0.145 - 0.6 Hz. Time
series of instantaneous respiration frequency produced from a wavelet transform via
ridge extraction are shown in the fourth row.

Figure 4.16 (a) displays the respiration rate, while b) instantaneous respiration rate

(standard deviation of respiration rate). No statistical differences were found in

respiratory rate and respiration rate variability across the three ambient temperatures

(b) as evaluated by a multi-comparison and pairwise test.
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Figure 4.16: Violin plots of the (a) respiration rate and (b) respiration rates
variability at three ambient temperatures. Tests for statistically significant differences
were significance difference was performed for the respiration rate and RRV by
Kruskal-Wallis (Group test) and Wilcoxon signed rank (pair test) for paired data.
p -values for heart rate are recorded as follows: 20◦C - 26◦C (0.685), 20◦C - 32◦C
(0.866), and 26◦C - 32◦C (0.224). While p -values for RRV, 20◦C - 26◦C (0.07),
20◦C - 32◦C (0.585), and 26◦C - 32◦C (0.264). In terms of group tests, significant
differences were not observed in either the respiration rate (0.685), or the respiration
rate variability (0.534).

A single respiration rate value for each individual was calculated by averaging the

respiration rate signal across all ambient temperatures. These individual figures were

then used to make comparisons between various ambient temperatures as shown in

figure 4.17 (a). Similar steps were taken for the standard deviation of respiration rate
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as shown in figure 4.17 (b).

Figure 4.17: Mean values of (a) respiration rate (calculated by marked events)
and (b) RRV (STD of wavelet ridge frequency) at three ambient temperatures. The
purpose of presenting the linear connections between points is simply to assist with
visually identifying the changes that have occurred for specific subjects, with each
subject being represented by a unique colour.

4.2.5 Respiration (raw signals) and instantaneous respiration

rate (IRR)

The influence that heat has on the wavelet power spectra of respiration time series is

illustrated in figure 4.18. Time-averaged wavelet power was obtained for each subject
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at three ambient temperatures, and then a median value was determined for each

of those values. The minimum frequency was left unspecified, while the maximum

frequency was set to 2 Hz in order to provide the function with the ability to calculate

frequencies as low as is practically possible. In this instance, we have decided to turn

preprocessing “on” and have set the central frequency to 1Hz.

Figure 4.18: Time-averaged wavelet power of raw respiration time series. The
dashed lines indicate the frequency bands of the respiration. No statistical significant
difference in time averaged wavelet power was observed across the frequency intervals.

For each of the three ambient temperatures, the multi-comparison test indicated

no statistically significant difference in median power with increasing power (p > 0.05).

Using the paired Wilcoxon pairwise test, we find no statistically significant differences

between any of the groups. Similarly, all of the respiration time series were entered

into the ridge extraction function, and inside that function, we selected a frequency

range of 0.145–0.6 Hz in which to extract the IRR using a lognormal wavelet with

a centre frequency of 1 Hz. This resulted in the production of a time series of the

variability of the respiration rate over time of the same length as the initial signal,
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one for each participant in each temperature (i.e. 20◦C, 26◦C and 32◦C). After that,

each wavelet transform was computed by employing the Morlet wavelet function with

a centre frequency of 1 Hz. The pre-processing was switched to the “on” setting. The

IRR power spectral is shown in figure 4.19.

Figure 4.19: Time-averaged wavelet powers of instantaneous respiration rate as a
function of frequency. The average spectral power over 32 minutes for a group at
three different temperatures (20◦C, 26◦C, and 32◦C) was estimated using wavelet
transforms of the variability in respiratory rate. No statistically significant difference
was determined by Kruskal-Wallis test in any of the frequency bands.

The Kruskal-Wallis tests showed no statistically significant differences across any

of the examined frequency ranges (p < 0.05). In a similar pattern, the pair-wise test

was applied for each power band and a statistically significant difference was revealed

only in the respiration frequency band only (p = 0.0095) as shown in figure 4.20.
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Figure 4.20: The median power of instantaneous respiration rate within bands.
Wilcoxon signed rank test was applied for comparisons in each frequency band between
the three ambient temperatures and statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05, **p <0.01, ***p <0.001 .

4.2.6 Blood pressure analysis

4.2.6.1 Spectral power of blood pressure

The influence that heating has on the wavelet power spectra of blood pressure time

series is illustrated in figure 4.21. At each of the three temperatures, the median of

the time-averaged wavelet powers was determined for each individual. The frequency

range of 0.0027 - 2Hz was determined and the central frequency was 1Hz. The pre-

processing was set to ‘on’.
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Figure 4.21: Time-averaged wavelet power for blood pressure. The spectral power
calculated from the wavelet transforms of blood pressure for 32 minutes at each
ambient temperature (20◦C, 26◦C, and 32◦C). Statistically significant differences were
observed in the power spectrum as shown by red stars in the specified frequency bands.

Significant differences were reveled at cardiac and respiration bands by both multi-

comparison (p = 0.026, and 0.025, respectively) as well as pairwise test across all

pairs of ambient temperature 20◦C−26◦C (p = 0.006) and 20◦C−32◦C (p = 0.000)

and 26◦C−32◦C (p = 0.000). Significant differences were also observed by pair-wise

test across all pairs of ambient temperature 20◦C−26◦C (p = 0.012) and 20◦C−32◦C

(p = 0.000) and 26◦C−32◦C (p = 0.005) for the mentioned bands. Although the

distribution of power was very low at other frequency bands, a significant difference

was still observed in the myogenic band (p = 0.045). Significant differences were

observed also in the total power between ambient temperatures as shown in figure

4.22.
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Figure 4.22: Violin plots show the median power content investigated for each
frequency band including the total power in the blood pressure power spectrum. The
central circle indicates the median value. The Wilcoxon signed rank test was applied
for comparisons in each frequency band between the three ambient temperatures and
statistical significance was set at p < 0.05 . Significance is considered as *p < 0.05,**p
<0.01, ***p <0.001 .

4.2.6.2 Systolic blood pressure analysis

Time domain analysis

Figure 4.23 is an illustration of violin plots that reflect the (a) median and (b) inter-

quartile (25th and 75th percentiles) of systolic blood pressure signals at three different

ambient temperatures. As can be seen, an increase in temperature is associated

with a reduction in the median of the systolic blood pressure signals. On the other

hand, the median of the interquartile range demonstrates an increase in accordance

with the rising temperature. Both multi-comparison and pairwise tests were used

to estimate the statistical difference between the three ambient temperatures whilst

setting significance at (p < 0.05).
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Figure 4.23: Violin plots of the (a) median systolic blood signals and (b)
Interquartile range (IQR) for the same signals at three ambient temperatures.
A statistically significant difference was observed in follows mean of sBP and
interquartile of sBP by the Kruskal-Wallis (Group test) and Wilcoxon signed rank
(pair test) for paired data. p -values for the medians are recorded as follows: 20◦C
- 26◦C (0.000), 20◦C - 32◦C (0.000), and 26◦C - 32◦C (0.000). The p -values for the
interquartile range were: 20◦C - 26◦C (0.982), 20◦C - 32◦C (0.001), and 26◦C - 32◦C
(0.013). In terms of the group test, significant difference were observed in median
values (0.000), and interquartile values (0.013).

4.2.6.3 Spectral power of the systolic blood pressure

Heat increases the wavelet power spectra of systolic blood pressure time series, as

shown in figure 4.24 For each of the three ambient temperatures, the systolic blood

pressure time series was analysed using the wavelet transforms for all subjects. With

Morlet wavelet function, the default centre frequency of 1Hz was used. The frequency
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range of the calculation were determined to be in between 0.0027Hz and 2Hz. An

“on” setting for preprocessing was identified and each wavelet power signal was then

averaged. After that, the median value was calculated for each frequency across all

powers.

Figure 4.24: The time-averaged wavelet power for systolic blood pressure as
functions of frequency. The spectral power was calculated from the wavelet transforms
of systolic blood pressure for 32 minutes at each ambient temperature (20◦C, 26◦C,
and 32◦C). Statistically significant differences were observed in the power spectrum
as shown by red stars in the specified frequency bands.

In terms of power, figure 4.24 shows that in the low frequency bands, the power of

systolic blood pressure increased significantly with increasing ambient temperature.

For all low frequency bands, the power is widely separated between high and low

ambient temperatures.
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Figure 4.25: Violin plots show the median power content investigated for each
frequency band including the total power in the systolic blood pressure power
spectrum. The central circle indicates the median value. The Wilcoxon signed rank
test was applied for comparisons in each frequency band between the three ambient
temperatures and statistical significance was set at p < 0.05 . Significance is considered
as *p < 0.05, **p <0.01, ***p <0.001.

However, in the high frequency bands, gaps between curves reduced widely until

dissipated. Nevertheless, significant difference observed through the Kruskal-Wallis

test were found at all frequency bands except respiration and cardiac (p = 0.032,

0.000, 0.000, and 0.000). Similar significant differences were observed with the paired

signed rank test for the pairs 20◦C and 32◦C and 26◦C and 32◦C, but in addition to

the respiration band for the pair 20◦C and 26◦C, as shown in figure 4.25.
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4.2.6.4 Diastolic blood pressure analysis in time domain

Figure 4.26: Violin plots of (a) the median diastolic blood signals and (b)
Interquartile range (IQR) for the same signals at three ambient temperatures. A
statistically significant difference was observed in the means of dBP and interquartile
of dBP by the Kruskal-Wallis (Group test) and the Wilcoxon signed rank (pair test)
for paired data. p -values for median are recorded as following: 20◦C −26◦C (0.003),
20◦C - 32◦C (0.000), and 26◦C − 32◦C (0.012). The p -values for the interquartile
range, 20◦C - 26◦C (0.003), 20◦C − 32◦C (0.058), and 26◦C − 32◦C (0.116). In terms
of the group test, significant difference were observed in median values (0.002), and
interquartile values (0.085).

Figure 4.26 provides violin plots that depict (a) the median and (b) the interquartile

range (25th and 75th percentiles) of diastolic blood pressure signals across three

different ambient temperatures. As can be observed, the median diastolic blood

pressure signals tends to drop as body temperature rises. However, as the temperature

107



increases, there is a consistent stability in the interquartile range’s median, with a

slight decrease in the range’s median at 26◦C.

4.2.6.5 Spectral power of the diastolic blood pressure

Similarly, a visual representation of the impact that heating has on the wavelet power

spectra of the diastolic blood pressure time series can be seen in figure 4.27. Wavelet

analysis was performed on each of the participant’s diastolic blood pressure time series

while they were exposed to each of the three different ambient temperatures.

Figure 4.27: Time-averaged wavelet power for diastolic blood pressure. The spectral
power was calculated from the wavelet transforms of diastolic blood pressure signals
measured for 32 min at each ambient temperature (20◦C, 26◦C, and 32◦C). No
statistically significant differences were observed in the power spectrum in any of
the frequency bands.

The Morlet mother wavelet was used, and its central frequency of the wavelet function

was set to the default value of 1Hz. The frequency range was calculated to be from

0.0027 to 2Hz. The pre-processing was switched to the “on” position. Following that,
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the time-averaged wavelet powers of every individual were calculated. Finally, the

median value was determined for each frequency over all powers.

Figure 4.28: Violin plots show the median power content investigated for each
frequency band investigated, including the total power in the diastolic blood pressure
power spectrum. The central circle indicates the median value. The Wilcoxon signed
rank test was applied for comparisons in each frequency band between the three
ambient temperatures and the statistical significance was set at p < 0.05 . Significance
is considered as *p < 0.05,**p <0.01, ***p <0.001 .

Figure 4.27 shows the total median power of diastolic blood pressure spectrum

increased with increasing temperature. Nevertheless, no significant differences were

found by Kruskall-Wallis in any of the band. However, calculating Kruskal-wallis

test across median showed a signficant (p =0.000). Similarly, significant differences

calculated by signed rank test were only observed in the myogenic band between 20◦C

and 32◦C as well as 26◦C and 32◦C (p = 0.006 and 0.031, respectively). Significant

difference were observed within the pairs 20◦C and 26◦C as well as 20◦C and 32◦C (p

= 0.000 and 0.000, respectively) as shown in figure 4.28.
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4.2.7 Extracting instantaneous heart rate from blood pres-

sure time series

For coherence analysis, instantaneous heart rate was extracted from blood pressure

time series. Figure 4.29 shows an example of extracting IHR from blood pressure time

series. The same parameters as used for ECG time series were also used for blood

pressure signals. The entire blood pressure time series was entered into the ridge

extraction function, and for the extraction of the IHR, a frequency range of 0.6–2Hz

was used.

Figure 4.29: Examples of extracting instantaneous heart rate from a blood pressure
signal for one subject at three different temperatures. Typical blood pressure time
series are shown in the first row at three different temperatures. In the second row,
the BP signals are wavelet transformed. The third row shows a clear oscillating
pattern around the expected heart rate of 0.6 - 1.4Hz. Time series of instantaneous
heart frequency after being extracted from wavelet transforms via ridge extraction,
are shown in the fourth row.
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This gave an output of time series of the variability of the heart rate over time of

the same length as the original signal, one for each subject at each in each ambient

temperature.

Mean values of instantaneous heart rate extracted from blood pressure were

compared with instantaneous heart rate extracted from ECG signals at three ambient

temperatures to see how they differed. Figure 4.30 shows that both means are almost

identical.

Figure 4.30: Violin plots of the mean for (a) instantaneous heart rate values
extracted from blood pressure signals and (b) the instantaneous heart rate values
extracted from ECG signals for the three ambient temperatures. The extracted values
in both figures are almost the same.
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4.3 Blood flow time series

Typical recordings of LDF blood flow time series, which were simultaneously obtained

from the left, right index finger, and left forearm of the subjects at each of the three

temperatures shown in figure 4.31, respectively.

Figure 4.31: An example of three different blood flow time series measured from
a subject under the effect of heating. The first row represents a typical blood flow
measured on the right index finger. In the second row, blood flow measured from a
left finger. The third row plots the blood flow signal measured on the left forearm.

4.3.1 Spectral power of the laser-Doppler flux right index

finger (LDindR)

Figure 4.32 presents an illustration of the effect that heating has on the wavelet power

spectra of the right index finger blood flow time series. All of the blood flow time series

for each participant in each ambient temperature were wavelet processed for each of

the three temperatures. The default central frequency of the wavelet function was
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used, which is 1Hz, and a Morlet wavelet function was used. It was determined that

the frequency range was between 0.002 and 1.6Hz. The pre-processing was setting to

the “on” position. After that, time-averaged wavelet powers were calculated for each

person. Lastly, at each frequency, the median value was taken across all powers.

Figure 4.32: Time-averaged wavelet power of blood flow in the right index finger.
Group median time-averaged spectral power calculated from the wavelet transforms
of blood flow of right index finger for 32 minutes for each ambient temperature (20◦C,
26◦C, and 32◦C). Significant differences were observed in power spectrum across all
of the frequency intervals.

Statistical differences were observed in all frequency bands (p < 0.05) determined

by multi-comparison is as shown with red asterisks in figure 4.32 and by the pair-wise

test in figure 4.33. The distribution of power increases significantly at low frequency

bands and decreased at high frequency bands. For all low frequencies, powers are

widely separated. However, in the respiration band, the variation of the powers

reduced markedly and disappearing at cardiac band. Stronger power is contained
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in the neuroganic band.

Figure 4.33: Violin plots show the median power content investigated for each
frequency band including the total power in the blood flow of the right index finger
power spectrum. The central circle indicates the median value. The Wilcoxon signed
rank test was applied for comparisons in each frequency band between the three
ambient temperatures and statistical significance was set at p < 0.05 . Significance is
considered as *p < 0.05,**p <0.01, ***p <0.001 .

In a similar pattern, Wilcoxon signed-rank test was tested for each power band and

revealed statistical significant differences (p < 0.05) in all frequency intervals including

the total power as shown in figure 4.35.

4.3.1.1 Spectral power of the laser-Doppler flux left index finger (LDindL)

Figure 4.34 depicts the effect that heating has on the wavelet power spectra of the

blood flow time series in the left index finger. All of the blood flow time series for

each participant in each ambient temperature were wavelet transformed. The default

central frequency was 1Hz, and a Morlet wavelet function was used. The frequency

114



range was between 0.002 and 2 Hz, and the central frequency was found to be 1Hz.

The pre-processing was setting to the “on” position. After that, the time-averaged

wavelet powers for each person were calculated. Finally, at each frequency, median

value was taken across all powers.

Figure 4.34: Time-averaged wavelet power of blood flow in the left index finger.
The group median time-averaged spectral power was determined from the wavelet
transforms of blood flow in the left index finger for a period of 32 minutes at each of
three different ambient temperatures: 20◦C, 26◦C, and 32◦C. Significant differences
were observed in the power spectra across all of the frequency intervals.

Multi-comparison showed statistical differences at all frequency bands (p < 0.05) as

illustrated with red asterisks in figure 4.34 and paired test in figure 4.35. The power

distribution increases greatly at low frequencies and decreases at high frequencies.

All low frequency bands have widely separated powers except respiration and cardiac

bands.
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Figure 4.35: Median power of left index blood flow investigated for each frequency
band including the total power in the blood flow of the left index finger power
spectrum. The central circle indicates the median value. The Wilcoxon signed rank
test was applied for comparisons in each frequency band between the three ambient
temperatures and the statistical significance was set at p < 0.05 . Significance is
considered as *p < 0.05,**p <0.01, ***p <0.001.

4.3.2 Spectral power of the laser-Doppler flux in the left

forearm

Figure 4.36 shows the effect of heat on the wavelet power spectra of the left forearm

blood flow time series. All blood flow time series were wavelet converted at each of the

three temperatures, with a Morlet wavelet function and a central frequency of 1Hz (the

default). The minimum frequency was left undefined to allow the wavelet function to

calculate the minimum possible value, while the maximum frequency was set to be 2

Hz. The time-averaged wavelet powers of each individual were then determined after

that step was completed. In the end, the median value was determined over all the

powers at each frequency.
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Figure 4.36: Time-averaged wavelet power of blood flow in the left forearm. The
spectral power was determined from the wavelet transforms of blood flow in the left
index finger for a period of 32 minutes at each of three different ambient temperatures:
20◦C, 26◦C, and 32◦C. No statistical significant difference was found in the time-
averaged wavelet power across all of the frequency intervals.

The distribution of power shows that myogenic band contains more power across the

whole frequency range. In terms of significance, the multi-comparison test reveled no

statistical significant difference (p < 0.05) in all frequency bands. However, significant

differences determined by the pair-wise test revealed statistically significant between

the lowest 20◦C and highest 32◦C ambient temperatures in all frequency bands (p =

0.034, 0.005, and 0.008, respectively) except the respiratory and cardiac bands (figure

4.37). Another significant difference was observed in neurogenic band (p = 0.024)

between 26◦C and 32◦C.
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Figure 4.37: Violin plots show the median power content investigated for each
frequency band including the total power in the blood flow of forearm blood flow
power spectra. The pair-wise test was applied for comparisons in each frequency
band between the three ambient temperatures and statistical significance was set at
p < 0.05 . Significant differences within the intervals are indicated by red asterisks.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001 .

4.4 Wavelet phase coherence and phase shift anal-

ysis

4.4.1 Coherence between IHR and respiration

We employed wavelet phase coherence to identify the frequency bands where

respiration and IHR interact with one another. Figure 4.38 (a) shows group median

values of wavelet phase coherence between respiration and IHR (extracted from the
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ECG) recordings at the three ambient temperatures. Although there was an increase

in coherence at myogenic and respiration bands, however, this increase did not show

any statistically significant differences as determined by the Kruskal Wallis test (multi-

comparison test).

Figure 4.38: Group median values of a) Effective wavelet phase coherence between
respiration and IHR for three ambient temperatures. b) Phase shift for the coherence
shown in figure a). Shading indicates the range between the 25th and 75th percentiles
in both figures. Dashed lines indicate the frequency intervals of oscillations observed
in both figures. No significant difference was revealed (p > 0.05) by Kruskal-Wallis
at the defined frequency intervals.
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No significant difference was found in the phase shift in the IHR- respiration

coherence across all frequency bands (Figure 4.38 (b)). The phase shift for of all

ambient temperatures proved to be coherent within the myogenic and respiration

frequency bands. The negative value of the shift indicates that the oscillations in the

respiration are leading those in the IHR. However, significant differences determined

by the pair-wise test (p > 0.05) were found in the cardiac (p = 0.0025) and respiration

(p = 0.0366) bands and the total coherence (p = 0.028) as shown in figure 4.39.

Figure 4.39: Spectral coherence of respiration-IHR within frequency bands. Violins
compare the median coherence content within each frequency band including the
total coherence in the respiration-IHR signal. The Wilcoxon signed rank test was
applied for comparisons in each frequency band for the three ambient temperatures
and statistical significance was set at p < 0.05 . Significance is considered as *p <
0.05,**p <0.01, ***p <0.001.
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4.4.2 Coherence between respiration and blood pressure

(Amplitude - Amplitude interaction)

The group median values of wavelet phase coherence was calculated between the

respiration and blood pressure signals at three different ambient temperatures and

the results are shown in figure 4.40 (a).

Figure 4.40: Group median values of a) Effective wavelet phase coherence between
respiration and blood pressure for three ambient temperatures. b) Phase shift for
the coherence shown in panel a). Shading indicates the range between the 25th and
75th percentiles in both figures. No significant difference was revealed (p > 0.05) by
Kruskal-Wallis test in at the defined frequency intervals
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All group temperatures showed clearly two broad peaks; a high peak in the respiration

interval (∼ 0.3Hz) and a low peak in the high frequency cardiac interval (∼ 1Hz).

The multi-comparison test showed that no significant differences were observed in

respiration-blood pressure coherence and the phase difference (figure fig40 (b)).

Significant differences determined by the pair-wise test were found in respiration-

blood pressure coherence in the frequency intervals: V (p = 0.0487), III (p = 0.0071),

II (p = 0.0211), (p = 0.0325) and in the total coherence (p = 0.0239) as shown in

4.41.

Figure 4.41: Spectral coherence of respiration and blood pressure within frequency
bands. Violin plots compare the median coherence content within each frequency
band including the total coherence in the respiration-BP signal. The Wilcoxon signed
rank test was applied for comparisons in each frequency band for the three ambient
temperatures and statistical significance was set at p < 0.05. Significance is considered
as *p < 0.05,**p <0.01, ***p <0.001 .

Significant differences in the phase shift were found in the respiration-blood

pressure coherence in the frequency intervals: VI (p = 0.0325), V (p = 0.0016), I

(p = 0.0345), and in the total phase difference (p = 0.0306) as shown in figure 4.42.
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The positive value of the shift indicates that the oscillations in the blood pressure

lead those in the respiration.

Figure 4.42: Spectral phase difference of respiration and blood pressure within
frequency bands. Violin plots compare the median phase difference content within
each frequency band including the total coherence in the respiration-BP signal. The
unit of the phase is radian. The Wilcoxon signed rank test was applied for comparisons
in each frequency band for the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001 .

4.4.3 Coherence of cardiac output with respiration

The group median values of wavelet phase coherence between cardiac output and

respiration was calculated and the group median coherence is shown in figure 4.43

(a). High phase coherence was revealed at the frequency of respiration (∼ 0.3 Hz)
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for all subjects at each of the three ambient temperatures. Multi-comparison tests

revelled low significant difference in the neurogenic band (p = 0.0177) only.

Figure 4.43: Group median values of a) Effective wavelet phase coherence between
respiration and cardiac output for three ambient temperatures. b) Phase shift for
the coherence shown in panel a). Shading indicates the range between the 25th and
75th percentiles in both figures. Significant difference were revealed (p > 0.05) by the
Kruskal-Wallis test at the defined frequency intervals in panel (a) only as indicated
by red asterisk.

While the pair-wise test showed significant differences in the neurogenic frequency

intervals in the neurogenic between 20◦C-32◦C (p = 0.0039) and 26◦C-32◦C (p =
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0.088), and myogenic between interval 26◦C-32◦C (p = 0.0062) as shown in figure

4.44. However, no significant difference in the phase shift was found in the cardiac

output-respiration coherence across all frequency intervals (Figure 4.43 (b)).

Figure 4.44: Spectral coherence of cardiac output and respiration within frequency
bands. Violin plots compare the median coherence content within each frequency
band including the total coherence in the cardiac output-respiration signal. The
Wilcoxon signed rank test was applied for comparisons in each frequency band for
the three ambient temperatures and the statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

The phase shift is more pronounced at higher frequencies, indicating that there is, in

fact, a common time-lag throughout all frequency ranges. The positive value of the

shift in the respiration interval indicates that the oscillations in the cardiac output

are leading those in the respiration. The pair-wise test showed a small but significant

difference in the frequency interval of respiration between 20◦C-32◦C (p = 0.0225) as

shown in figure 4.45.
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Figure 4.45: Spectral phase difference of cardiac output and respiration within
frequency bands. Violin plots compare the median phase difference content within
each frequency band including the total coherence in the cardiac output-respiration
signal. The Wilcoxon signed rank test was applied for comparisons in each frequency
band for the three ambient temperatures and the statistical significance was set at p
< 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

4.4.4 Coherence between IHR and IRR

The group median values of wavelet phase coherence between the IHR and IRR

recordings at three different ambient room temperatures and the group median

coherence is shown figure 4.46 (a).
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Figure 4.46: Group median values of a) Effective wavelet phase coherence between
IRR and IHR for three ambient temperatures. b) Phase shift for the coherence shown
in panel a). Shading indicates the range between the 25th and 75th percentiles in both
figures. No significant difference was revealed (p > 0.05) by the Kruskal-Wallis test
in the defined frequency intervals.

High phase coherence was revealed at the frequency of respiration (∼ 0.3 Hz) for

all subjects for each of the three ambient temperatures. No significant differences

were found in the coherence of IHR and IRR either by multi-comparison or pairwise

tests. However, no significant difference in the phase shift was found in the IHR-IRR

coherence across all frequency intervals (Figure 4.46 (b)) by the multi-comparison
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test.

Figure 4.47: Spectral phase difference of IRR-IHR within frequency bands. Violin
plots compare the median phase difference content within each frequency band
including the total phase difference in the IRR-IHR signal. The Wilcoxon signed
rank test was applied for comparisons in each frequency band for the three ambient
temperatures and statistical significance was set at p < 0.05 . Significance is considered
as *p < 0.05,**p <0.01, ***p <0.001 .

The pair-wise test showed significant difference in the myogenic frequency interval

of myogenic between 20◦C-32◦C (p = 0.0461) and 26◦C-32◦C (p = 0.0211) as shown in

figure 4.47. The phase shift is more pronounced at higher frequencies. The negative

value of the phase shift indicates that the oscillations in the IRR are leading those in

the IHR.

4.4.5 Systolic and diastolic blood pressure coherence

The group median values of wavelet phase coherence between systolic and diastolic

blood pressure signals was computed for the three different ambient temperatures as
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shown in figure 4.48 (a).

Figure 4.48: Group median values of a) Effective wavelet phase coherence between
systolic blood pressure and diastolic blood pressure for three ambient temperatures.
b) Phase shift for the coherence shown in figure a).

High phase coherence was revealed in the frequency intervals of myogenic (∼ 0.1 Hz),

respiratory (∼ 0.3 Hz), and cardiac (∼ 1 Hz) frequency intervals for all subjects at

each of the three ambient temperatures. No significant differences was observed in

systolic-diastolic blood pressure coherence.
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Figure 4.49: Spectral coherence of systolic blood pressure and diastolic blood
pressure within frequency bands. Violin plots compare the median coherence content
within each frequency band including the total coherence in the sBP-dBP signal. The
Wilcoxon signed rank test was applied for comparisons in each frequency band for
the three ambient temperatures and the statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

However, significant differences in the phase shift were found in the systolic-diastolic

pressure coherence in the frequency intervals: V (p = 0.0035) and IV (p = 0.0000).

The pair-wise test showed significant difference in systolic-diastolic blood pressure

coherence in the frequency intervals: IV (p = 0.0404), III (p = 0.0404), II (p = 0.0215),

and I (p = 0.0036) as shown in figure 4.49. Significant differences in the phase shift

were found in the cardiac output-respiration coherence across the following frequency

intervals: V (p = 0.0004), (p = 0.0228), IV (p = 0.0000), (p = 0.0002), and III (p

= 0.0063) as shown in figure 4.50. The positive value of the shift indicates that the

oscillations in the systolic blood pressure are leading those in the diastolic.
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Figure 4.50: Spectral phase difference of systolic blood pressure and diastolic blood
pressure within frequency bands. Violin plots compare the median phase difference
content within each frequency band including the total phase shift in the sBP-dBP
signal. The unit of the phase is radian. The Wilcoxon signed rank test was applied
for comparisons in each frequency band for the three ambient temperatures and the
statistical significance was set at p < 0.05. Significance is considered as *p < 0.05,**p
<0.01, ***p <0.001.

4.4.6 Coherence between the IHR of ECG and blood pres-

sure

Group median values of wavelet phase coherence between the IHR derived from ECG

signals and from the blood pressure signals was computed as shown in figure 4.51 (a).
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Figure 4.51: Group median values of a) Effective wavelet phase coherence between
blood pressure and IHR (ECG) for three ambient temperature. b) Phase shift for the
coherence shown in figure a). No significant difference was revealed (p > 0.05) by
Kruskal-Wallis at the defined frequency intervals.

A broad peak is seen in the Myogenic of myogenic frequency (∼ 0.1Hz), and

respiratory (∼ 0.3Hz) frequency intervals. No significant differences were revealed

in IHR-blood pressure coherence as shown by a multi-comparison test. Similarly, no

significant difference in the phase shift was found in the IHR-blood pressure coherence

across all frequency intervals (Figure 4.51 (b)). The pair-wise test showed significant

differences in the myogenic (p = 0.0305) and (p = 0.0288) frequency intervals as shown
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in figure 4.52.

Figure 4.52: Spectral coherence of IHR (ECG) and blood pressure within frequency
bands. Violin plots compare the median coherence content within each frequency band
including the total coherence in the IHR-BP signal. The Wilcoxon signed rank test was
applied for comparisons in each frequency band for the three ambient temperatures
and statistical significance was set at p < 0.05. Significance is considered as *p <
0.05,**p <0.01, ***p <0.001 .

Significant differences in the phase shift were found in the IHR-IHR coherence in the

frequency intervals: IV (p = 0.0256), (p = 0.0215), III (p = 0.0101), II (p = 0.0051),

(p = 0.0404), and in the total coherence (p = 0.0242), (p = 0.0202) as shown in

figure 4.53. The positive value of the shift were cardiac interval indicates that the

oscillations in the IHR of ECG signals are leading those in the blood pressure.
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Figure 4.53: Spectral phase difference of IHR (ECG) and blood pressure within
frequency bands. Violin plots compare the median phase difference content within
each frequency band including the total coherence in the IHR-BP signal. The unit of
the phase is radian. The Wilcoxon signed rank test was applied for comparisons in
each frequency band for the three ambient temperatures and the statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001 .

4.4.7 Coherence between IHR and systolic or diastolic blood

pressure

The group median values of wavelet phase coherence between oscillations in both

systolic and diastolic with IHR were calculated as shown in figure 4.54 (a),(b). High

phase coherence was revealed for both signal pairs at the frequency of myogenic (∼ 0.1

Hz) and respiratory (∼ 0.3 Hz) frequencies.
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Figure 4.54: Group median values of the effective phase coherence between
instantaneous heart rate and systolic and diastolic blood pressure. The phase
coherence is computed between the instantaneous heart rate and (a) systolic blood
pressure and (b) diastolic blood pressure, in the frequency interval between 0.003 Hz
and 2 Hz. For each of the two cases, the group medians of the phase difference are
shown underneath the coherence plots in (c) and (d). Where a statistically significant
difference (p < 0.05) was revealed by the Kruskal Wallis test it is indicated by red
asterisks at the defined frequency intervals.

No significant differences were exhibited in the coherence of systolic and diastolic

BP with IHR by the multi-comparison test. However, a significant difference in the

phase shift was found in the systolic pressure with IHR coherence in the neurogenic

frequency interval (p = 0.029) as shown in figure 4.54 (c). The Pair-wise test revealed

more significant differences in the phase-shifted coherenc sBP-IHR coherence at the

frequency intervals: V (p = 0.0404), IV (p = 0.0038), (p = 0.0272), III (p = 0.0305),

(p = 0.0158), as shown in figure 4.55. The positive value of the shift indicates that

the oscillations in the IHR are leading those in the sBP.
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Figure 4.55: Spectral coherence of the systolic BP and IHR within frequency
bands. Violin plots compare the median coherence content within each frequency band
including the total coherence in the IHR-systolic signal. Wilcoxon signed rank test was
applied for comparisons in each frequency band for the three ambient temperatures
and statistical significance was set at p < 0.05. Significance is considered as *p <
0.05,**p <0.01, ***p <0.001.

The pair-wise test revealed more significant differences in the phase shift dBP-IHR

coherence at the frequency intervals: IV (p = 0.0202), (p = 0.0451) as shown in figure

4.56. The positive value of the shift indicates that the oscillations in the IHR are

leading those in the dBP.
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Figure 4.56: Spectral coherence of the diastolic BP and IHR within frequency
bands. Violin plots compare the median coherence content within each frequency
band including the total coherence in the IHR-diastolic BP signal. The Wilcoxon
signed rank test was applied for comparisons in each frequency band for the three
ambient temperatures and the statistical significance was set at p < 0.05. Significance
is considered as *p < 0.05,**p <0.01, ***p <0.001.

4.5 Coherence of peripheral variables

4.5.1 Coherence between blood flows (left and right index

finger)

The results of the calculation of wavelet phase coherence between two LDF blood

flow recordings (left and right index fingers) made at three different ambient room

temperatures are displayed in figure 4.57 (a).
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Figure 4.57: Group median values of a) Effective wavelet phase coherence between
blood flow in the left and right index fingers blood flow for the three ambient
temperature. b) Median phase shift for the coherence shown in figure a). The Kruskal
Wallis test was used to reveal significant differences (p < 0.05) at the defined frequency
intervals (indicated by asterisks).

High phase coherence was revealed in the frequency of neurogenic (∼ 0.03 Hz) and

myogenic (∼ 0.06 Hz) frequency intervals, and low phase coherence in the cardiac

(∼ 1 Hz) interval for all subjects at the three ambient temperatures.
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Figure 4.58: Spectral coherence of LDF at two index fingers within frequency
bands. Violin plots compare the median coherence content within each frequency
band including the total coherence in two index fingers signal. The Wilcoxon signed
rank test was applied for comparisons in each frequency band for the three ambient
temperatures and statistical significance was set at p < 0.05. Significance is considered
as *p < 0.05,**p <0.01, ***p <0.001.

The multi-comparison test revealed significant differences in the frequency inter-

vals V (p = 0.0447), IV (p = 0.0357), III (p = 0.0474), II (p = 0.0000), and I (p

= 0.0007). Significant difference in the phase shift were found in right-left index

coherence in the frequency intervals of V (p = 0.0548), IV (p = 0.0185), III (p =

0.0348) (Figure 4.57 (b)) as revelled by the multi-comparisons test. Similarly, the

pair-wise test showed significant differences in the same frequency intervals of the

right-left index finger coherence: V (p = 0.019), (p = 0.019), IV (p = 0.0215), (p =

0.0148), III (p = 0.0158), II (p = 0.0006), (p = 0.00008), I (p = 0.0342), (p = 0.0002),

(p = 0.011) and in the total coherence (p = 0.0041), (p = 0.0131) as shown in figure

4.58.
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Figure 4.59: Spectral phase difference of LDF at two index fingers within frequency
bands. Violin plots compare the median phase difference content within each
frequency band including the total phase difference two index fingers signal. The
Wilcoxon signed rank test was applied for comparisons in each frequency band for
the three ambient temperatures and the statistical significance was set at p < 0.05 .
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001 .

A significant difference in the phase shift was found in the right-left index fingers,

with coherence in the frequency intervals V (p = 0.0451), (p = 0.0256), IV (p =

0.0088), (p = 0.0077), III (p = 0.0242),(p = 0.0018), and (p = 0.0651) (Figure 4.59).

For all three ambient temperatures, oscillations at these frequencies are not perfectly

coherent. The negative value of the phase shift demonstrates that the oscillations in

the left finger blood flow are leading those in the right.
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4.5.2 Coherence between the LDF blood flow in the left

forearm and the LDF blood flow in the right or left

index finger

The group median values of wavelet phase coherence between oscillations in finger

blood flow (both right and left index fingers) with forearm blood flow were calculated

, with the results shown in figure 4.60 (a), (b). Phase coherence was revealed for both

signal pairs in the myogenic (∼ 0.1 Hz) frequency intervals, respiration (∼ 0.3 Hz)

and cardiac (∼ 1 Hz) frequency intervals.

Figure 4.60: Group median values of the effective phase coherence between LDF
on the two index fingers and the left forearm. The phase coherence between the left
forearm and the blood flow signals recorded using LDF on the left arm and on (a) the
right and (b) the left index fingers, in the frequency interval between 0.003 Hz and 2
Hz. For each of the two cases, the group medians of the phase difference are shown
underneath the coherence plots in (c) and (d). Statistically significant differences (p
< 0.05) were revealed by the Kruskal Wallis test and are indicated by red asterisks at
the defined frequency intervals.
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Significant differences were exhibited in the coherence of forearm with right II (p

= 0.0003), I (p = 0.004) and left II (p = 0.013), I (p = 0.025) index as shown in the

multi-comparison test.

Figure 4.61: Spectral coherence of the right index finger and LDFAL within
frequency bands. Violin plots compare the median coherence content within each
frequency band including the total coherence in the between LDF blood flow
oscillations in the left arm and right index finger. The Wilcoxon signed rank test was
applied for comparisons in each frequency band for the three ambient temperatures
and statistical significance was set at p < 0.05. Significance is considered as *p <
0.05,**p <0.01, ***p <0.001.

The coherence nearly disappears in the respiratory and cardiac frequency intervals in

the group of ambient temperature 20◦C at right-index finger blood flow. Moreover,

both coherence signals showed significant differences in the phase shift of the right III

(p = 0.0345) and left IV (p = 0.04), III (p = 0.009) index fingers with LDF coherence

as shown in figure 4.60 (c), (d). A significant difference in the blood flow right-forearm

coherence in the frequency intervals: IV (p = 0.0119), (p = 0.049), II (p = 0.0008),

(p = 0.0000), (p = 0.0044), I (p = 0.0000) as shown in figure 4.61.
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Figure 4.62: Spectral phase difference of between LDF blood flow oscillations in
the left arm and right index finger within frequency bands. Violin plots compare the
median phase difference content within each frequency band including the total phase
difference in two index fingers signal. The Wilcoxon signed rank test was applied for
comparisons in each frequency band for the three ambient temperatures and statistical
significance was set at p < 0.05 . Significance is considered as *p < 0.05,**p <0.01,
***p <0.001 .

The pair-wise test revelled more significant differences in the phase shift right-forearm

coherence in the frequency intervals: IV (p = 0.0256), III (p = 0.0025), (p = 0.0055)

as shown in figure 4.62. The positive value of the shift indicates that the oscillations

in the forearm are leading those in the right index finger. The pair-wise test revealed

significant differences in forearm-left index finger coherence in the frequency intervals:

V (p = 0.0264), II (p = 0.0082), (p = 0.0001), I (p = 0.0124), (p = 0.0031) as shown

in figure 4.63.
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Figure 4.63: Spectral coherence of the left index finger and LDFAL within frequency
bands. Violin plots compare the median coherence content within each frequency band
including the total coherence in the between LDF blood flow oscillations in the left
arm and left index finger. The Wilcoxon signed rank test was applied for comparisons
in each frequency band for the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

Significant differences in the blood flow right-sBP coherence in the frequency intervals:

IV (p = 0.0031), (p = 0.0158), III (p = 0.0067), (p = 0.0055), II (p = 0.0131), I (p =

0.0168) and the total phase difference (p = 0.0427), (p = 0.019) are shown in figure

4.64.
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Figure 4.64: Spectral phase difference of the left index finger and LDFAL within
frequency bands. Violin plots compare the median phase difference content within
each frequency band including the total coherence between LDF blood flow oscillations
in the left arm and left index finger. The Wilcoxon signed rank test was applied for
comparisons in each frequency band for the three ambient temperatures and statistical
significance was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01,
***p <0.001.

4.6 Systemic and peripheral interactions

4.6.1 Coherence between IHR and the LDF blood flow in the

right or left index finger

The group median values of wavelet phase coherence between oscillations in both right

and left index fingers with IHR was calculated as shown in figure 4.65 (a), (b). High

phase coherence was revealed for both signal pairs at the frequency of myogenic (∼ 0.1

Hz) and respiratory (∼ 0.3 Hz) frequencies. Significant differences were exhibited in

the coherence of right (p = 0.0315) and left (p = 0.0259) blood flow with IHR as
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shown in the multi-comparison test.

Figure 4.65: Group median values of the effective phase coherence between
instantaneous heart rate and LDF at the two index fingers. Phase coherence between
the instantaneous heart rate and the blood flow signal recorded using LDF in (a) the
right and (b) the left index fingers, in the frequency interval between 0.003 Hz and 2
Hz. For each of the two cases, the group medians of the phase difference are shown
underneath the coherence plots in (c) and (d). Statistically significant differences (p
< 0.05) were revealed by the Kruskal Wallis test and indicated by red asterisks at the
defined frequency intervals.

Significant differences in the phase shift were found in the right index finger with

IHR coherence in the frequency intervals: of neurogenic (p = 0.0174) and myogenic

(p = 0.0000) as shown in figure 4.65 (c). Phase shift in the left index finger was only

exabitied significant in the myogenic interval (p = 0.0000) as shown in figure 4.65 (d).
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Figure 4.66: Spectral coherence between LDF at the right index finger and IHR
within frequency bands. Violin plots compare the median coherence content within
each frequency band including the total coherence between the right index finger
and the IHR signal. Wilcoxon signed rank test was applied for comparisons in each
frequency band for the three ambient temperatures and statistical significance was
set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001 .

The pair-wise test revealed more significant differences in the right index finger-

IHR coherence at the frequency intervals: VI (p = 0.0211), II (p = 0.0033), (p =

0.0003), (p = 0.0288), (p = 0.0259), I (p = 0.0653) and the total coherence (p = 0.0323)

as shown in figure 4.66. The pairwise test revealed more significant differences in the

phase shift right index-IHR coherence at the frequency intervals: V (p = 0.0131), IV

(p = 0.0148), (p = 0.0041), III (p = 0.0000), (p = 0.0002), II (p = 0.0047) as shown in

figure 4.67. The positive value of the shift indicates that the oscillations in the IHR

are leading the ones in the right index.
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Figure 4.67: Spectral phase difference between LDF at the right index finger and
IHR within frequency bands. Violin plots compare the median coherence content
within each frequency band including the total phase difference between the right
index finger and the IHR signal. The unit of the phase is radian. The Wilcoxon
signed rank test was applied for comparisons in each frequency band for the three
ambient temperatures and statistical significance was set at p < 0.05. Significance is
considered as *p < 0.05,**p <0.01, ***p <0.001 .

The pairwise test revealed more significant differences in the left index finger-IHR

coherence at the frequency intervals: VI (p = 0.0476), II (p = 0.0009), (p = 0.002) as

shown in figure 4.68.
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Figure 4.68: Spectral coherence between LDF at left index finger and IHR within
frequency bands. Violin plots compare the median coherence content within each
frequency band including the total coherence between the left index finger and IHR
signals. The Wilcoxon signed rank test was applied for comparisons in each frequency
band for the three ambient temperatures and statistical significance was set at p <
0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

Similarly, the pairwise test revealed more significant differences in the phase shift

left index-IHR coherence in the frequency intervals: VI (p = 0.0272), III (p = 0.0000),

(p = 0.0008) as shown in figure 4.69. The positive value of the shift indicates that

the oscillations in the IHR are leading those in the left index finger.
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Figure 4.69: Spectral phase difference between LDF in the left index finger and IHR
within frequency bands. Violin plots compare the median phase difference content
within each frequency band including the total phase difference between the left index
finger and IHR signal. Wilcoxon signed rank test was applied for comparisons in each
frequency band for the three ambient temperatures and statistical significance was
set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

4.6.2 Coherence between the blood pressure and the LDF

blood flow in the right and left index finger

The group median values of wavelet phase coherence between oscillations in both

blood pressure and with blood flow (right and left index fingers) were calculated as

shown in figure 4.70 (a),(b). High phase coherence was revealed for both signal pairs

at the frequency intervals of neurogenic, myogenic (∼ 0.1 Hz) and respiration (∼ 0.3

Hz). Significant differences were exhibited in the coherence of BP-right index finger:

II (p = 0.0325) as shown in multi-comparison test. Significant differences in the

phase shift were found in the right index finger coherence in the frequency interval of

neurogenic (p = 0.0001), myogenic (p = 0.0000) as shown in figure 4.70 (c). Similar
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significant differences were observed in the phase shift of the left index finger coherence

in the frequency intervals: neurogenic (p = 0.0331), myogenic (p = 0.0000) as shown

in figure 4.70 (d).

Figure 4.70: Group median values of the effective phase coherence between blood
pressure and LDF at the two index fingers. Phase coherence between blood pressure
and the blood flow signal recorded using LDF in (a) the right and (b) the left index
fingers, in the frequency interval between 0.003 Hz and 2 Hz. For each of the two
cases, the group medians of the phase difference are shown underneath the coherence
plots in (c) and (d). A statistically significant difference (p < 0.05) was revealed by the
Kruskal Wallis test and indicated by red asterisks at the defined frequency intervals.

A significant difference was observed in the blood flow right-BP coherence in the

frequency intervals: II (p = 0.0012), (p = 0.0002), (p = 0.0451) and in the total

coherence (p = 0.0148), (p = 0.0044) as shown in figure 4.71.
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Figure 4.71: Spectral coherence between blood flow recorded on the right index
finger and blood pressure within frequency bands. Violin plots compare the median
coherence content within each frequency band including the total coherence in
the right index finger-BP signal. The Wilcoxon signed rank test was applied for
comparisons in each frequency band for the three ambient temperatures and statistical
significance was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01,
***p <0.001.

The pairwise test revealed more significant differences in the phase shift BP-right

index coherence in the frequency intervals: IV (p = 0.0000), (p = 0.0059), III (p =

0.0000), (p = 0.0000), (p = 0.0242) and the total phase shift (p = 0.0108) as shown in

figure 4.72. The positive value of the shift indicates that the oscillations in the right

index finger are leading those in the BP.
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Figure 4.72: Spectral phase difference between blood flow recorded on the right
index finger and blood pressure within frequency bands. Violin plots compare the
median phase difference content within each frequency band including the total
coherence in the right index finger-BP signal. The unit of the phase is radian.
The Wilcoxon signed rank test was applied for comparisons in each frequency band
for the three ambient temperatures and statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

Significant differences were found in the blood flow left-BP coherence in the

frequency intervals: II (p = 0.0215), (p = 0.0063), I (p = 0.0083), (p = 0.0323)

as shown in figure 4.73.
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Figure 4.73: Spectral coherence between blood flow recorded on the left index
finger and blood pressure within frequency bands. Violin plots compare the median
coherence content within each frequency band including the total coherence in the left
index finger-BP signal. The Wilcoxon signed rank test was applied for comparisons
in each frequency band for the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

The pairwise test revealed significant differences in the phase shift of BP-left index

finger coherence at the frequency intervals: IV (p = 0.0041), III (p = 0.0000), (p =

0.0002), II (p = 0.0476) and the total phase difference (p = 0.0000) as and the total

phase difference shown (p = 0.0067) in figure 4.74. The positive value of the shift

indicates that the oscillations in the left index finger are leading those in the BP.
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Figure 4.74: Spectral phase difference of recording blood flow at left index finger
and blood pressure within frequency bands. Violin plots compare the median phase
difference content within each frequency band including the total coherence in the left
index finger-BP signal. The unit of the phase is radian. Wilcoxon signed rank test was
applied for comparisons in each frequency band for the three ambient temperatures
and statistical significance was set at p < 0.05. Significance is considered as *p <
0.05,**p <0.01, ***p <0.001.

4.6.3 Coherence between the systolic blood pressure and the

LDF blood flow in the right and left index finger

Group median values of wavelet phase coherence between oscillations in both blood

flow (right and left index fingers) and systolic blood pressure were calculated as shown

in figure 4.75 (a),(b). High phase coherence was revealed for both signal pairs at the

frequency intervals of neurogenic (∼ 0.03 Hz), myogenic (∼ 0.1 Hz), respiratory (∼ 0.3

Hz) and cardiac (∼ 1 Hz) oscillations. Significant differences were exhibited in the

coherence of systolic with the right II (p = 0.0315) and left II (p = 0.0174) indices

as shown in the multi-comparison test. Moreover, both coherence signals showed
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significant differences in the phase shift between the right V (p = 0.0466), IV (p =

0.0012), III (p = 0.0000) and left IV (p = 0.04), III (p = 0.0007) index fingers and

sBP coherence as shown in figure 4.75 (c),(d).

Figure 4.75: Group median values of the effective phase coherence between systolic
blood pressure and LDF at the two index fingers. Phase coherence between systolic
blood pressure and the blood flow signal recorded using LDF in (a) the right and (b)
the left index fingers, in the frequency interval between 0.003 Hz and 2 Hz. For each
of the two cases, the group medians of the phase difference are shown underneath the
coherence plots in (c) and (d). A statistically significant difference (p < 0.05) was
revealed by the Kruskal is Wallis test and indicated by red asterisks in the defined
frequency intervals.

Significant differences in the blood flow right-sBP coherence were observed in the

frequency intervals V (p = 0.0272), IV (p = 0.0382), II (p = 0.0029), (p = 0.0003),

I (p = 0.0228),(p = 0.0003), and the total coherence (p = 0.0029), (p = 0.0002) as

shown in figure 4.76.
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Figure 4.76: Spectral coherence between blood flow in the right index finger and sBP
within frequency bands. Violin plots compare the median coherence content within
each frequency band including the total coherence in the sBP-right index finger signal.
The Wilcoxon signed rank test was applied for comparisons in each frequency band
for the three ambient temperatures and statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

The pairwise test revealed more significant differences in the phase shift sBP-right

index coherence in the frequency intervals V (p = 0.0427), (p = 0.0342), IV (p =

0.0002), III (p = 0.0000), (p = 0.0000) as shown in figure 4.77. The positive value of

the shift indicates that the oscillations in the right index finger are leading those in

the sBP.
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Figure 4.77: Spectral phase difference between blood flow recorded on the right
index finger and sBP within frequency bands. Violin plots compare the median phase
difference content within each frequency band including the total coherence in the left
index finger-sBP signal. The Wilcoxon signed rank test was applied for comparisons
in each frequency band for the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

Significant differences were found between the blood flow left-sBP coherence in

the frequency intervals: II (p = 0.0044), (p = 0.0051), I (p = 0.0108), (p = 0.0067),

and the total coherence (p = 0.019), (p = 0.0083) as shown in figure 4.78.
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Figure 4.78: Spectral coherence between blood flow on the left index finger and sBP
within frequency bands. Violin plots compare the median coherence content within
each frequency band including the total coherence in the sBP-left index finger signal.
The Wilcoxon signed rank test was applied for comparisons in each frequency band
for the three ambient temperatures and statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

The pairwise test revealed significant differences in the phase shift sBP-left index

finger coherence at the frequency intervals: V (p = 0.0115), IV (p = 0.0088) and the

total phase difference III (p = 0.0000), (p = 0.0228) as and the total phase difference

shown (p = 0.0018) in figure 4.79. The positive value of the shift indicates that blood

flow oscillations in the left index finger are leading those in the sBP.
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Figure 4.79: Spectral phase difference between blood flow recorded on the left
index finger and sBP within frequency bands. Violin plots compare the median phase
difference content within each frequency band including the total coherence in the left
index finger-sBP signal. The Wilcoxon signed rank test was applied for comparisons
in each frequency band for the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001 .

4.6.4 Coherence between the diastolic blood pressure and the

LDF blood flow in the right and left index finger

Group median values of wavelet phase coherence between blood flow oscillations in

the right and left index fingers and diastolic blood pressure were calculated as shown

in figure 4.80 (a), (b). High phase coherence was revealed for both signal pairs in the

frequency intervals of neurogenic (∼ 0.03 Hz), myogenic (∼ 0.1 Hz), and respiratory

frequency intervals, (∼ 0.3 Hz) and low coherence in the cardiac (∼ 1 Hz) interval.

Significant differences were exhibited in the coherence of diastolic with right II (p =

0.0299) and left I (p = 0.0255) index as shown in multi-comparison test. Moreover,

there were significant differences in the phase shift s between blood flow oscillations in
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the right IV (p = 0.0006), III (p = 0.0000) and left IV (p = 0.0184), III (p = 0.0002)

index fingers and the dBP coherence as shown in figure 4.80 (c), (d).

Figure 4.80: Group median values of the effective phase coherence between diastolic
blood pressure and LDF at the two index fingers. Phase coherence between diastolic
blood pressure and the blood flow signal recorded using LDF in (a) the right and (b)
the left index fingers, in the frequency interval between 0.003 Hz and 2 Hz. For each
of the two cases, the group medians of the phase difference are shown underneath
the coherence plots in (c) and (d). Statistically significant differences (p < 0.05)
were revealed by the Kruskal Wallis test and indicated by red asterisks at the defined
frequency intervals.

Significant differences in the blood flow right-dBP coherence in the frequency

intervals: II (p = 0.0036), II (p = 0.0036), (p = 0.0008), I (p = 0.0256), (p = 0.002),

(p = 0.0404) are shown in figure 4.81.
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Figure 4.81: Spectral coherence of between blood flow oscillations on the right index
finger and dBP within frequency bands. Violin plots compare the median coherence
content within each frequency band including the total coherence in the dBP-right
index finger signal. The Wilcoxon signed rank test was applied for comparisons in
each frequency band for the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

The pairwise test revealed more significant differences in the phase shift dBP-left

index finger coherence at the frequency intervals: IV (p = 0.0000), (p = 0.0000), III

(p = 0.0000), (p = 0.0000) as shown in figure 4.82. The positive value of the shift

indicates that the oscillations in the right finger flow are leading those in the dBP.
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Figure 4.82: Spectral phase difference between blood flow recorded on the right
index finger and dBP within frequency bands. Violin plots compare the median
phase difference content within each frequency band including the total coherence in
the right index finger-dBP signal. The unit of the phase is radian. The Wilcoxon
signed rank test was applied for comparisons in each frequency band for the three
ambient temperatures and statistical significance was set at p < 0.05. Significance is
considered as *p < 0.05,**p <0.01, ***p <0.001.

A significant difference was observed in the blood flow right-sBP coherence in the

frequency intervals: II (p = 0.0202), I (p = 0.0038),(p = 0.0072) as shown in figure

4.83.
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Figure 4.83: Spectral coherence between blood flow oscillations on the left index
finger and dBP within frequency bands. Violin plots compare the median coherence
content within each frequency band including the total coherence in the dBP-left
index finger signal. The Wilcoxon signed rank test was applied for comparisons in
each frequency band for the three ambient temperatures and statistical significance
was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

The pairwise test revealed significant differences in the phase shift dBP-left index

finger coherence at the frequency intervals: IV (p = 0.0017), III (p = 0.0000), (p =

0.0004) as shown in figure 4.84. The positive value of the shift indicates that the

oscillations in the left index finger are leading those in the dBP.
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Figure 4.84: Spectral phase difference between blood flow oscillations recorded
on the at left index finger and dBP within frequency bands. Violin plots compare
the median phase difference content within each frequency band including the total
coherence in the left index finger-dBP signal. The Wilcoxon signed rank test was
applied for comparisons in each frequency band for the three ambient temperatures
and statistical significance was set at p < 0.05. Significance is considered as *p <
0.05,**p <0.01, ***p <0.001.

4.6.5 Coherence between the cardiac output and the LDF

blood flow in the right or the left index finger

Group median values of Wavelet phase coherence between oscillations in both index

fingers and cardiac output were calculated and the group median coherences are shown

in figure 4.85 (a), (b). High phase coherence was revealed for both signal pairs at the

frequency of myogenic (∼ 0.1 Hz) and respiration (∼ 0.3 Hz) frequencies. The multi-

comparison test showed that coherence between blood flow oscillations on both index

fingers and cardiac output exhibited significant differences in the frequency intervals

related to endothelial metabolic activity and neurogenic (right index: V (p = 0.0023),
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IV (p = 0.0015) while left index: V (p = 0.044) and IV (p = 0.0018)).

Figure 4.85: Group median values of the effective phase coherence between LDF
blood flow oscillations on the two index fingers and cardiac output. Phase coherence
between the cardiac output and the blood flow signal recorded using LDF in (a) the
right and (b) the left index fingers, in the frequency interval between 0.003 Hz and 2
Hz. For each of the two cases, the group medians of the phase difference are shown
underneath the coherence plots in (c) and (d). Statistically significant differences (p
< 0.05) were revealed by the Kruskal Wallis test and are indicated by red asterisks in
the defined frequency intervals.

The pairwise test revelled more significant differences in right index finger at the

same frequency intervals in addition to respiration and cardiac for 20◦C-26◦C and

26◦C-32◦C (right index V (p = 0.0009), (p = 0.016), IV (p = 0.001), IV (p = 0.008),

II (p = 0.009), (p = 0.008), and I (p = 0.024), (p = 0.014)) and the total coherence

(p = 0.0108), (p = 0.0115) as shown in figure 4.86.
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Figure 4.86: Spectral coherence between the right index finger blood flow and
cardiac output within frequency bands. Violin plots compare the median coherence
content within each frequency band including the total coherence in the cardiac
output-right index finger signal. The Wilcoxon signed rank test was applied for
comparisons in each frequency band for the three ambient temperatures and statistical
significance was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01,
***p <0.001.

Significant differences in the phase shift were found in the cardiac output-blood

flow of right index finger coherence across all frequency intervals (figure 4.85). The

positive values of the shifts indicate that the oscillations in the cardiac output are

leading the ones in the right index blood flow. The multi-comparison test between

phase shifts at the three ambient temperatures revealed significance at the frequency

intervals of respiration and myogenic III (p = 0.0002) and II (p = 0.027) frequency

intervals. High significant differences were revealed in the same frequency intervals by

the pairwise test (III (p = 0.0003), (p =0.0000) and II (p = 0.0067) and (p = 0.0007)

as shown in figure 4.87.
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Figure 4.87: Spectral phase difference between blood flow oscillations on the right
index finger and cardiac output within frequency bands. Violin plots compare the
median phase difference content within each frequency band including the total
coherence in the cardiac output-right index finger signal. The Wilcoxon signed
rank test was applied for comparisons in each frequency band for the three ambient
temperatures and statistical significance was set at p < 0.05. Significance is considered
as *p < 0.05,**p <0.01, ***p <0.001.

The pairwise test exhibited significant differences in left index finger-cardiac

output coherence for the frequency interval V (p = 0.0225), IV (p = 0.007), (p =

0.001), III (p = 0.013), and I (p = 0.027) as shown in figure 4.88.
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Figure 4.88: Spectral coherence between blood flow oscillations on the left index
finger and cardiac output within frequency bands. Violin plots compare the median
coherence content within each frequency band including the total coherence in the
cardiac output-left index finger signal. The Wilcoxon signed rank test was applied for
comparisons in each frequency band for the three ambient temperatures and statistical
significance was set at p < 0.05. Significance is considered as *p < 0.05,**p <0.01,
***p <0.001.

No significant difference in the phase shift was found in the cardiac output-blood

flow of left index finger coherence across all frequency intervals (figure 4.85 (d). The

fact that the shift at the frequency intervals has positive values suggests that the

oscillations in the cardiac output are occurring (leading) before those in the left index

blood flow.
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5. Discussion and summary

5.1 Introduction

In the present study, we evaluated the effects of whole body heating and cooling

on the cardiovascular system relevant to thermoregulatory responses by means of

a spectral analysis of the variables; HRV, systolic BP, diastolic BP, stroke volume,

cardiac output, and finally blood flow (in two different vascular structures). The study

focused on differences in the contributions of endothelial, sympathetic, myogenic, and

cardiac activities in response to heating. Time-averaged power of the time-frequency

representations analysed how the distribution of the power among the frequency bands

studied changes.

The transformation of energy, or fuel, into the forms that living systems require

is a necessary process. However, the elements that are required locally to generate

this energy are continually transferred by the circulatory system through the blood

circulation. On the other hand, this is carried out in an oscillating manner. Oscillating

the flow of energy across the body is considerably more effective than a constant

one. Blood flow is able to exchange nutrients and oxygen with tissues and remove

waste products because the circulatory system works in an oscillating fashion, with

blood flow being stepped-up to much larger arteries and then stepped-down to small

microscopic blood vessels. From a physical perspective, life is quite similar to a

thermodynamically open system, in which energy and matter are constantly flowing

170



from and into the environment. It follows that the underlying physiological oscillatory

processes of living systems have their own inherent frequencies and amplitudes, which

are continuously altered and modified by external disturbances (influences). In

experiments, such characteristics can be examined visually by noninvasively tracking

changes in skin microcirculation using LDF. The ability of LDF to detect oscillations

in microvascular blood flow and analyse cardiovascular dynamics offers a valuable

tool for evaluating human health. Because of this, LDF was used as the method of

investigation for the research discussed here. In addition, oscillators of this kind are

non-autonomous from a mathematical perspective, and as a result, they have to be

dealt with in the same manner as other non-autonomous systems.

The methods for time-frequency analysis of biomedical signals have been sys-

tematically reviewed in this thesis. The continuous wavelet transform has been a

mainstay for the analysis of such oscillatory signals because it employs a wavelet

that can be shifted and stretched along the time series to ensure it tracks the time-

varying characteristics of the oscillatory processes in, for example, blood flow [170],

instantaneous heart rate frequency [171, 140]. The multiresolution wavelet transform

was reportedly able to differentiate between healthy subjects and those with cardiac

pathology [172]. The continuous wavelet transform, in conjunction with the Morlet

mother wavelet, was able to extract characteristic frequencies in blood flow [40], and

it was able to determine the physiological origin of these frequencies [173]. In addition

to its use as a filter for de-noising individual events [174], the wavelet transform has

been applied to the diagnosis of endothelial dysfunction in diabetes [175], post-acute

myocardial infarction [176], congestive heart failure [77], and ageing [4]. The ability

to resolve frequencies on a logarithmic scale is of great importance since it allows for

the enclosing of a very wide frequency range, which is typically required for the study

of physiological time series. The synchrosqueezed wavelet transform [177] has also

been implemented, allowing for the detection of phase [160].
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Time series that are generated from systems with time-varying frequencies and

amplitudes present a number of separate, frequently conflicting obstacles that must

be overcome: i) locating the essential oscillatory components, regardless of the time-

variabilities of those components; ii) separating oscillatory components that are likely

to have close characteristic frequencies, which can be very challenging in the presence

of noise and time-variation; iii) in addition to the nearby frequencies, there may be a

mixture of harmonics and fundamental components to be identified and distinguished

from each other. When there are multiple oscillatory components, in particular in

diverse physiological processes (of varied frequency), the question naturally arises

as to whether or not the oscillations of those distinct components are related to one

another. The question that needs to be answered is how to investigate the interactions

that take place between the underlying physiological processes. This can be done by

calculating measures of phase relationships (phase coherence), which are a form of

synchronisation, between the oscillatory processes that take place at similar angular

frequencies in different physiological parameters. This was the issue that needed to be

addressed. These methods were discussed in detail in Chapter 3. Given the foregoing,

it is clear that time-frequency approaches are required for any serious investigation of

biomedical time series.

The goal of this study was to use cardiovascular variables to assess how a healthy

young subject’s cardiovascular system responded to exposure to three different ambi-

ent temperatures. During whole-body heating, we performed simultaneous recordings

of blood flow (at two different skin structures), blood pressure, electrocardiogram,

and respiration in young, healthy volunteers who were lying supine. We examined the

results by calculating power and wavelet phase coherence. We analysed the regulation

of the cardiovascular system at three different ambient temperatures (20◦C, 26◦C,

and 32◦C) using the variables that were described. These variables oscillate in a

coordinated manner throughout a wide range of frequencies (0.0095-2Hz).

172



5.2 Median values of cardiovascular variables in

time domain

When analysing a signal, an oscillatory component can be identified by its instan-

taneous frequency as well as its corresponding amplitude or power. In our analysis,

we calculated the mean/median of each signal individually, and as a summary, we

calculated the total median/mean of time series, power, and coherence. In the

context of physiological analysis, what happens to the average value of a group

of physiological measurements or parameters over time or in various conditions is

referred to as the “dynamic of the total mean” in physiological analysis. Typically,

numerous physiological parameters, such as heart rate, blood pressure, temperature,

oxygen saturation are examined. A physiological parameter’s total mean represents

its average value across all observations in the data collection.

The total median values of all subjects in each of the the physiological parameters

measured at the three ambient temperatures are shown in table 5.1. The overall result

show that most of cardiovascular variables are relatively high at low temperature

(20◦C) with exception of IHR and IRR. IHR was only high at high temperature

(32◦C) while IRR was slightly higher at middle temperature (26◦C) than at other

ambient temperatures.
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Figure 5.1: Total median values of cardiovascular variables in the time domain. The
median value of each individual signal was calculated across all ambient temperatures,
and then the overall median value was obtained in each ambient temperature.

5.2.1 Heart rate variability (HRV) and instantaneous heart

rate (IHR)

We found that heart rate increased significantly from low to high ambient temperature.

It was approximately 57.6 beats/mins in low ambient temperature and 57 beats/mins

at the middle temperature. At high ambient tempreture, heart rate increased by a

median of 3 beats/min (60.6 beats/mins). Significant differences were found in heart

rate between the low and high, and middle and high ambient temperatures (Figure

4.2 a)). Our result agree with those of Hideki et al.[178] who studied the effects

of skin surface cooling and heating on the variability of heart rate (HRV), blood

pressure (BPV), and baroreflex sensitivity (BRS) in 11 healthy individuals who were

supine. In a styrene foam chamber, the studies were carried out at air temperatures of

18◦C (mild), 24◦C (moderate), 48◦C (hot), and 60◦C (very hot). The authors found
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that heating induces an increase in the activity of the cardiac sympathetic nervous

system, which might result in an increased heart rate. This is the result of the body’s

”fight or flight” reaction being triggered by the activation of the sympathetic nervous

system. Jian et al. [179] investigated the effects of whole body heating and cooling on

skin sympathetic nerve activity (SSNA), as well as the differences in SSNA that occur

under heat stress as compared to normothermia or cooling. 17 healthy adults (10 men

and 7 females) between the ages of 22 and 39 participated in the study. Both whole-

body heating and cooling were applied to the subjects in a temperature-controlled

(25◦C) environment. The subjects’ lower bodies were immersed in water at 42◦C for

30 minutes during the heating protocol, and water at 18◦C for 20 minutes during the

cooling phase. The finding suggest that the response in to heating is mediated by the

sympathetic nervous system.

Similarly, our results shows that instantaneous heart rate (extracted by ridge ex-

traction method) is higher at high and middle temperatures than at low temperature.

This variation demonstrated significant changes just like the case of heart rate (Figure

4.2 b). The influence that heat exposure has on HRV has only been detected in a

limited number of studies. Twenty healthy people were tested by Sollerst et al. [180]

at two different air temperatures: at 22◦C, and 35◦C, respectively. Both conditions

were tested for 30 minutes. The individuals’ heart rates were greater in the hot room

condition compared to the baseline condition (the heart rate increased significantly

by an average of roughly 4.5 beats/min in the hot room condition). According to the

results, the parasympathetic system’s withdrawal likely contributed to the elevated

heart rate reported in the heated conditions.

5.2.2 Stroke volume

Our result demonstrate that, the mean of the stroke volume is high at low ambient

temperature and decreased significantly from low to high temperatures (Figure 4.6
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a). The median stroke volume decreased significantly from 98.26 mL/min under cool

cooling conditions to 90 mL/min in a high ambient temperature. Median stroke

volume at thermoneutral temperature (26◦C) was slightly higher and significant than

high ambient temperature (92.6 mL/min). Mean of stroke volume values showed to be

high at cooling temperature (20◦C) and low at high ambient temperature, as shown

in figure 4.6 a).

Our result agree with those of Erik et al. [181] who used a rat model to evaluate

the effects of reducing the temperature from 37◦C to 15◦C, experiencing hypothermia

for 3 to 4 hours at 15◦C, and then rewarming to 37◦C. Stroke volume was observed

to increase during cooling, decrease during stable hypothermia, and to fail to return

to normal following rewarming. According to the findings of the study, an increase in

stroke volume can be attributed to elevated preload during cooling, which was made

possible by bradycardia through extended filling and the Frank-Starling relationship

[182].

The decrease in stroke volume at high temperature is also observed by Joel et

al. [183] who compared the effects of hyperthermia and heart rate on stroke volume

during prolonged exercise in both hyperthermic and normothermic conditions. To

induce hyperthermia, volunteers wore a vinyl rain jacket and nylon/spandex leg covers

while being heated from both the front and rear by parabolic electric heaters. Under

normothermic condition, a comfortable 23◦C and 35% relative humidity were attained

without the need of any cooling fans. According to the study, people who become

hyperthermic during exercise show significant increases in heart rate and decreases in

stroke volume. The increased heart rate due to hyperthermia may be responsible for

the reduced ventricular filling time, which in turn reduces stroke volume. According

to the study, heat decreased stroke volume during exercise, and this effect increased

at higher heart rates.

176



5.2.3 Cardiac output

The mean of cardiac output values was high at low temperature (20◦C) and low

with high ambient temperature as shown in figure 4.11 a). Our finding shows that

median cardiac output decreased significantly from 6.01L/min at cooling condition

to 5.7L/min in high ambient temperature. Median cardiac output at the middle

temperature (26◦C) is similar to the value obtained in high ambient temperature

(5.6L/min).

The reduction in cardiac output during hypothermia was observed by Joel et al.

[183] who compared the effects of hyperthermia and heart rate on stroke volume during

prolonged exercise in both hyperthermic and normothermic conditions. A decrease in

stroke volume was noted in patients with stable hypothermia; this decrease in volume

could be made greater by hypovolemia.

5.3 Respiration analysis

5.3.1 Respiration rate variability and instantaneous respira-

tion rate

Our result demonstrate that respiration rate decreased slightly and insignificantly low

from (0.275Hz) to high ambient temperature (Figure 4.16 a). Both middle and high

temperature maintained the same median respiratory rates (0.266Hz). Similarly, the

mean of respiration rate variability (standard deviations of respiratory rates) increased

slightly and not significantly from low to high ambient temperatures. Interestingly,

but insignificantly, the median of respiration rate variability at the middle temperature

(26◦C) is lower than at low and high ambient temperatures (Figure 4.16 b).
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5.4 Blood pressure analysis

5.4.1 Systolic blood pressure

The distributions of median systolic blood pressure showed a decrease in median

pressure as temperature increases. We find that, systolic blood pressure was roughly

132.9 mmHg at low ambient temperature, 118.45 mmHg in the middle, and 109.6

mmHg at high ambient temperature (Figure 4.23a). Kingma et al. [184] studied the

effects of mild-cold (20.7±0.2◦C) exposure on blood pressure and thermoregulation in

young adults and older people. When exposed to mild cold, only young individuals

demonstrated considerable non-shivering thermogenesis (NST). Vasoconstriction may

be a contributor to the blood pressure response to mild cold exposure by raising

peripheral resistance, which then leads to an increase in blood pressure. The decrease

in systolic blood pressure between low and middle ambient temperature in our study

was also observed by Parsons et al. [185] who examined the relationships between

environmental temperature (17◦C or 27◦C) and posture on HRV during forced sinus

arrhythmia (deep breathing), as well as the influences of environmental temperature

and HRV and BP during standing and the cold pressor test. The study was performed

on non-diabetic young adults (age 23±5 years) and elderly diabetic patients (age

54±15 years). The authors conclude that it is likely that cutaneous vasodilation,

which results in a decrease in total peripheral resistance, is the reason for the reduction

in systolic blood pressure that occurs in a warm room.

5.4.2 Diastolic blood pressure

Our result shows that, median diastolic blood pressure was 54.22 mmHg at low

ambient temperature, 49.68 mmHg in the middle, and 47.05 mmHg at high ambient

temperature (Figure 4.26 a)). Our result agree with those of Jody et al. [186] who

examined the changes in sympathetic function that occur during whole-body cooling
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in normotensive and hypertensive adults. The researchers in this study did not use

a fixed temperature for the purpose of full body cooling. Instead, they used a water-

perfused suit that covered the subject’s complete body with the exception of the head,

hands, feet, and lower left leg in order to control the mean temperature of the almost

the whole of the subject’s skin. The study found that systolic and diastolic blood

pressure increased from baseline in both normotensive and hypertensive adults after

whole-body cooling, but the pressor response to cooling became more pronounced in

hypertension adults. Both normotensive and hypertension adults showed an increase

in their muscle sympathetic nerve activity in response to cooling; however, the rise

in those with hypertension was significantly greater. The study also found that the

function of the sympathetic baroreflex was altered in hypertensive adults while they

were being cooled down.

Fagius et al. [187] examined how a low ambient temperature affects the baroreflex,

which controls sympathetic outflow to muscle arteries in humans. Thy found that

muscular nerve sympathetic activity, despite the fact that it is not thought to play

a role in the regulation of body temperature, is subject to the influence of ambient

temperature and leads to an increase in blood pressure when the skin is exposed to

low temperatures. It may therefore be concluded low is due to an increase in the

activity of the sympathetic nerves in the muscles.

5.5 Oscillations and their power

The power spectra of signals with the same mean value can seem very different if they

have different frequency contents or different distributions of power across frequencies.

The power spectrum illustrates the power spectrum of each frequency component of a

signal. The power spectra of two signals with the same mean value can be somewhat

different if the signals have different frequency contents, amplitude changes, or noise
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characteristics. Here are three signals that differ in their amplitude variations but we

assume they have the same mean value (figure 5.2):

Figure 5.2: Signals with different amplitude but with the same mean value.

In signal B: the variations in this signal’s amplitude around its mean value is small.

As the values of the signal tend to remain near to the mean, the range of values that

can be observed is narrower. Because of this, the amplitude variations have become

smaller, which has led to a reduction in power. In signal A: this signal demonstrates

greater amplitude variation around its mean value as compared to signal B. As the

values of the signal deviate more considerably from the mean, the range of values that

can be found in the signal is broadened. The amplitude of the fluctuations is higher,

which results in an increase in the power. Both signals have the same mean value, but

more power is associated with signal A due to its larger oscillations. Because power

is calculated using squared amplitude values, larger variations will have a greater

power.

In conclusion, two signals with the same mean values but different amplitudes
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will have different powers. Even if two signals have the same mean values, the one

with large amplitude variations will have more power. In context of physiological

signals, the complex and dynamic human body’s reactivity to varied stimuli explains

physiological signal amplitude changes. Individual variances, regulatory systems,

dynamic fluctuations, noise, measuring methodologies, and structural complexity of

physiological interactions might cause observed variations.

Figure 5.3: Total median power values for power signals of the physiological
oscillations. Following the calculation of the median power for each signal at each
ambient temperature, the total median power was determined by taking the median
power of all the median values into consideration.

5.5.1 Heart rate variability

Earlier analyses of the influence that heat exposure has on HRV are limited in number.

Sollerst et al. [180] used two different air temperature conditions: one with a baseline

temperature of 22◦C, and another with a heated temperature of 35◦C. Both conditions

were tested for 30 minutes. The individuals’ heart rates were greater in the hot room
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condition compared to the baseline condition (the heart rate increased significantly

by an average of roughly 4.5 beats/min in the hot room condition), and the FFT

analysis showed that the high-frequency component fell while the low-frequency

component increased. Based on these data, one can deduce that the withdrawal

of parasympathetic activity was the primary cause of the increase in heart rate that

was observed in the hot situation. Another study carried out by Carandall, et al. [188]

elevated the skin temperature of fourteen healthy subjects by perfusing a tube-lined

suit with warm water (46◦C). The outcome of the study showed that high-frequency

(0.2−0.3 Hz) fluctuations in heart rate were greatly reduced by whole-body heating,

which was indicative of decreased vagal modulation of heart rate. Increased cardiac

sympathetic regulation of heart rate was observed as well, with a greater ratio of

spectral power between the low-frequency (0.03−0.15 Hz) and high-frequency ranges

after heat stress. Finally, spectral power of heart rate in both low- and high-frequency

areas was dramatically lowered due to whole-body heating.

Our time–frequency analyses, which have a frequency resolution that is logarith-

mic, have provided us with new insights into the range of heart rate variability spectra:

fluctuations in the HRV power spectra in the frequency interval associated with

myogenic activity (0.052 – 0.145 Hz), which corresponds to the LF interval, increased

significantly in the whole body heating and decreased significantly in the frequency

interval associated with respiration (0.145 – 0.6 Hz), which corresponds to HF interval

(Figure 4.4). Vascular smooth muscle cells, found in blood vessels, can independently

constrict and dilate (known as vasomotion) the arteries to regulate blood flow locally.

The myogenic component of the HRV signal may also be indicative of the strength of

cardiac smooth muscle contraction. In the study conducted by Raffaello et al. [189],

it was proven that after a single bout of exercise, there was an enhanced amplitude of

the periodic oscillations with a frequency of 0.1 Hz of the heart rate signal in humans.
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5.5.2 Stroke volume

The spectral power of the stroke volume signal has a strong respiration component at

all three ambient temperatures. Nevertheless, no significant difference is observed in

this particular band. Our finding shows that stroke volume recorded at high ambient

temperature has significantly more power within the low frequency intervals compared

to other ambient temperatures (Figure 4.8). To the best of our knowledge, the wavelet

power of stroke volume has not reported before.

5.5.3 Cardiac output

Wavelet analyses of cardiac output measured from all subjects show closely similar

results. Our finding indicates that the cardiac output signal is made up of a variety

of spectral components. The NO-dependent endothelium, myogenic and respiration

activities are clearly observed for each ambient temperature. Evaluating significant

thermal differences throughout the full 0.0027−2 Hz frequency range revealed at

the frequencies associated with the neurogenic, myogenic, and respiration intervals

(Figure 4.13), suggesting that cardiac output is governed by a complex of mechanisms:

NO-dependent mediated changes in vascular tone play a function in controlling

systemic vascular resistance and cardiac output, resulting in vasodilation. Myogenic

reactions: autoregulatory changes of blood vessel tone influences systemic vascular

resistance, which in turn affects cardiac output. Changes in intrathoracic pressure

caused by breathing have an effect on venous return, preload, and cardiac output.

Neurogenic activity, especially sympathetic activity, affects cardiac output. For

example, vasoconstriction and a change in heart rate and vascular resistance can

have an effect on cardiac output when sympathetic activity is elevated.

To the best of my knowledge, the wavelet power of cardiac output has not been

reported before.
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5.5.4 Respiration, respiration rate and respiration rate vari-

ability

The following findings emerged from an examination of the amplitude-frequency

spectra of oscillations produced by the respiratory system in response to local heating.

After testing for statistical significance, it was found that the median values of the

amplitudes of oscillations of respiration did not differ from one another in any of the

frequency intervals (Figure 4.18). Whole-body heating led to a slight but insignificant

increase in the peak frequency of respiration. It is worth mentioning that analysis

of the amplitude-frequency spectra of oscillations of respiration at the three ambient

temperatures showed that low frequency ranges were not anticipated to be significantly

affected by breathing because they are below actual breathing frequencies. Breathing

rate changes are unlikely to influence other parameters, such as thermoregulatory

[190, 191, 4] or endothelial [73] mechanisms, that are known to contribute to very low

frequency hemodynamic oscillations. In contrast, respiratory power for all ambient

temperatures were shown to be high and matched at low frequency bands (Figure

4.19).

Studies on humans have shown that the waveform of respiration-triggered

sympathetic [192, 193] and vagal [194] outflows is roughly sinusoidal and symmetrical

(increases of outflows equal decreases) at typical breathing frequency. More

information is provided in [195]. The significant difference between 20◦C and 26◦C was

observed by a pair-wise test at the frequency interval associated with the respiration

band. This significant difference could to the fact that respiration influences resting

heart rate (HR). During inspiration, heart rate rises, and during exhalation, it

falls. This phenomenon is known as respiratory sinus arrhythmia (RSA) [196]. The

parasympathetic nervous system is responsible for rapid changes in HR and facilitates

the efferent control of RSA via the vagus nerve [197].
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5.5.5 Microvascular blood flow

The following findings were found by an examination of the time averaged power

spectra of oscillations in the blood flow of the right and left index fingers when the

whole body was responding to heating. When carrying out the statistical significance

tests, highly significant differences were detected between the median power in all

frequency intervals for both right and left index fingers (Figure 4.32 and 4.34). Whole-

body heating increased power significantly in the frequency bands corresponding to

endothelial nitric oxide-independent and neurogenic processes.

When compared to blood flow recorded from the right index finger, left index

finger blood flow had much greater power across the whole frequency range (Figure

4.34). Comparison of the time-averaged power spectra reveals that the distribution of

power is quite similar in both instances. Note that a Kruskal–Wallis test was used to

obtain the significant difference across all frequency bands represented by the asterisk.

In contrast, the blood spectra of the index fingers and the left forearm are strikingly

dissimilar. Spectra of the index finger show most of the power is at the neurogenic

frequency, while on the other hand, the local heating of the skin on the left forearm

generated an increase in the amplitudes of oscillations of the blood flow in the skin

within the range of myogenic activity frequencies of 0.052−0.145 Hz (Figure 4.36).

The increase in power in neurogenic band in both fingers is due to the sympathetic

nervous system respond with increased activity in the muscles, which likely results in

increased blood flow to the the skin [198].

The microvasculature of the skin varies greatly according to geographical region.

Narrow, low-flow capillaries supply most of the skin’s nutrients. High shunt blood

flow is only possible in the extremities, particularly the face and the tips of the fingers

and toes, due to the greater density of arteriovenous anastomoses in these areas. This

suggests that LDF recordings might exhibit spatial variations due to differences in

skin structure between study areas and the little area of skin in contact with the
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optical fibre [199]. It is important to note that the vascular architecture of the fingers

and those of the forearm skin are distinct. The finger is a common site for AVAs

(arteriovenous anastoinoses) while AVAs do not exist in the skin of the forearm. We

believe that AVAs are responsible for this heat-induced vasoconstriction of the finger,

which may explain the differential in response in the skin blood flow to local heating

between these two skin locations [200]. When comparing ambient temperatures of

20◦C and 32◦C, the difference in the temperatures of fingers is significant. When

the temperature in the environment falls below the lower range of the thermoneutral

zone, all AVAs are shut down. They are most likely accessible above the upper

limit of the thermoneutral zone, where the temperature is relatively stable. Hence,

the frequency and amplitude of the flow peaks increase from the lower end to the

middle of the thermoneutral zone, but they begin to diminish again as the ambient

temperature rises further towards the upper end of the thermoneutral zone, which

is the temperature at which all AVAs are open. This pattern repeats itself from the

lower end to the middle of the thermoneutral zone [3].

5.5.6 Blood flow in the forearm

Unlike index fingers (glabrous skin), time averaged power spectra indicates that

the distribution of power is greatest at myogenic frequency across all three ambient

temperatures. Vascular smooth muscle cells, found in blood vessels, can independently

constrict and dilate the arteries to regulate blood flow locally. The range of frequencies

between 0.052 and 0.145 Hz is associated with this myogenic activity. Therefore, the

increase in power or amplitude in this band could be due to an increased volume of

blood entering the arterioles as a result of smooth muscle relaxation (vasodilatation)

in response to whole-body heating of the body. This would also increase the activity

of pre-capillary sphincters, which control the amount of blood entering the capillary

bed [201]. Our findings 4.36 are in agreement with what was discovered by other
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researchers. For instance, a number of researchers have demonstrated that local

heating leads to an increase in the spectral power of oscillations in skin blood flow

throughout the whole frequency range [202, 203, 38, 204].

5.5.7 Blood pressure

Clear cardiac oscillation at 1Hz are present across all signals 4.21, and very low

oscillations can be seen at respiration frequency (0.3Hz). The cardiac cycle has a

significant impact on blood pressure, which explains why the cardiac band contains

most of the power in blood pressure signals. The waveform of blood pressure is

influenced by pulsatile pressure pulses generated by the heart’s cyclic contraction and

relaxation during the cardiac cycle. These pulsating pressure waves They create the

cardiac band and have a dominant frequency that is proportional to the heart rate.

Therefore, the cardiac band predominates the power spectrum of blood pressure data,

which reflects the impact of the cardiac cycle on blood pressure variation. Similar

wavelet amplitude spectral of blood pressure with a broad peak are observed in [205,

206] at the cardiac frequency.

5.5.7.1 Systolic blood pressure

The earliest frequency-domain analysis of the influence that heat exposure has on

systolic blood pressure was that by Carandall et al. [188]. Their study concluded that

the spectral power of systolic blood pressure was dramatically decreased in both the

low- and high-frequency bands by whole-body heating. The changes in the cutaneous

vasculature may effectively buffer the size of the variations in systolic blood pressure,

allowing for a reduction in low-frequency fluctuations in systolic blood pressure under

heat stress despite increased sympathetic activity.

Our time-frequency analysis showed a similar decrease in the low and high

187



frequency bands (associated with myogenic and respiration frequency bands, respec-

tively) in the power spectra of systolic pressure. Assessing their statistical significance

showed that whole body heating increases the power of systolic blood pressure

significantly in all frequency intervals except those associated with respiration and

heart beat (Figure 4.24). Our result agrees with that of with Stankovski Tomislav et

al. [195] who obtained significant differences in the neurogenic and myogenic bands.

5.5.7.2 Diastolic blood pressure

In comparison to systolic blood pressure, diastolic blood pressure has receive much

less attention from researchers and limited study discussed diastolic blood pressure

under the effect of heating. We find that the power diastolic blood pressure spectra

increased with increasing ambient temperature. A significant difference was observed

only in the myogenic band (Figure 4.27). Other researchers [195] obtained significant

difference in both neurogenic and myogenic bands.

The possible explanation for the significant observed in myogenic band is the

ability of blood vessels to adapt to pressure changes which is reflected in myogenic

activity, therefore an increase in power could be indicative of more active myogenic

responses. As the body tries to maintain thermal homeostasis, the increased blood

flow caused by vasodilation may result in greater diastolic blood pressure variability

during heating. To the best of my knowledge, examination of heating on diastolic

blood pressure has not reported before.

5.6 Phase coherence and phase difference analysis

The human body is an interconnected network, consisting of multicomponent

organ systems that constantly communicate with one another through a variety

of feedback mechanisms and at a variety of spatial and temporal scales. This
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interaction is intended to optimise and coordinate the function of these organ systems

[207, 208, 209, 210]. The cardiovascular system can be thought of as a network of

connected oscillators that involve the cardiac, respiratory, and vascular systems [211].

Phase coherence was hypothesised to be a useful tool for identifying the presence

of functional relationships between various physiological processes and revealing how

they affect peripheral blood flow regulation [211, 212, 213, 214, 215, 216, 217, 218].

We conducted a comprehensive study of IHR, respiration, IRR, skin blood flow (with

different sites) and tissue blood volume oscillations in healthy volunteers at rest to

analyze phase interactions between these physiological processes.

5.6.1 Median phase coherence of peripheral variables

Table 5.4 displays the total effective phase coherence between index finger and forearm

skin blood flows. The total phase coherence is obtained as an integral of the effective

phase coherence (showed in chapter 4) by taking the logarithmic scale into account.

It is clear that total phase coherence values are high at high ambient temperature.

The evaluation of each pair will now be discussed.
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Figure 5.4: Total median effective phase coherence values for peripheral variables.
First row represents total median phase coherence values between right and left
index fingers at each ambient temperature. Second row represents total median
phase coherence values between right index finger and left forearm at each ambient
temperature. Third row represents total median phase coherence values between left
index finger and left forearm at each ambient temperature.

We obtained high significant phase coherence for right−left index fingers across

all frequency intervals for most subjects at the three ambient temperatures (Figure

4.57). These findings make sense considering that low-frequency oscillations in skin

blood flow are initiated by a number of physiological processes, including the activity

of smooth muscle cells in the artery walls, neurogenic regulation, and vasomotor

activity of the endothelium [38]. The arteriovenular anastomoses in the acral

regions are highly innervated by the sympathetic nervous system; hence sympathetic

activity is necessary for normal peripheral blood flow [219]. Numerous arterio-venous

anastomoses connect the palmar finger skin to the underlying blood vessels, and their

tone is controlled only by sympathetic innervation baroreceptors have no effect on this

system [220, 221]. Myogenic response, the response of the muscle layer of the vascular
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wall to a change in pressure, is another potential mechanism for synchronisation of

blood flow oscillations. As a result of the reaction from the vascular muscle layer, or

the so-called Bayliss effect [222], lowering arterial blood pressure causes a temporary

dilatation of the arteries, while raising it causes a constriction. Given that myogenic

activity is characterised as a response to a pressure wave, it is possible that the

pressure wave is effective in propagating to the periphery. In addition to perhaps being

involved in the synchronisation of cardiovascular oscillations, the myogenic response

may also be involved in the process of respiratory sinus arrhythmia (RSA). RSA

refers to the variability of one’s heart rate in synchronisation with one’s respiration.

This variability is connected with an increase in one’s heart rate during inspiration

and a reduction in one’s heart rate during expiration [223, 224, 225]. Similar phase

coherence between left and right fingers was obtained by Arina et al. [225] who looked

at how deep, regulated breathing affects the degree of correlation between the phases

of respiratory-related cutaneous blood flow oscillations of the left and right fingers

in healthy young females. The study showed that as breathing depth was increased,

phase coherence increased across all the frequencies examined.

It is obvious that oscillations within the frequency intervals associated with myo-

genic, respiratory and cardiac activities are common for skin blood flow oscillations of

index fingers and left forearm. We found that phase interactions between signals from

the right index finger and forearm showed a similar pattern with phase interactions

between skin blood flow signals of left index finger and left forearm (Figures 4.60 (a),

(b)). Our finding showed that phase coherence increases significantly with heating

at respiration and cardiac frequency intervals for blood flow in both cases. Although

the peripheral blood flow is regulated by local mechanisms generating oscillations

at the frequency associated with the myogenic band, the significant phase coherence

obtained in both the respiration and cardiac intervals reveals the role played by the

central mechanism that synchronizes myogenic oscillations of myogenci throughout

191



the cardiovascular system [226, 35, 227, 228]. The result obtained is in agreement

with those of Irina et al.[218] who investigated the phase interaction between resting

heart rate, respiration, and micro-hemodynamic oscillations of the upper and lower

limbs in healthy subjects. The study was carried out at room temperature of 20–24◦C

after a 20-minute adaptation period. They found that oscillations in tissue blood

volume (TBV) and skin blood flow (SBF) shared frequency intervals associated with

respiratory and cardiac activity. They also discovered that phase interactions between

TBV signals at the finger and toe were analogous to those between SBF signals at the

forearm and the foot. Skin blood perfusion and tissue blood volume regulation may

both be causes. It is believed that the intrinsic myogenic activity of smooth muscle

cells in resistance arteries is the local origin of these oscillations.

The results obtained were compared with those we had previously obtained as well

as with the findings of other authors. Highly significant phase coherence was found

between SBF on the left and right forearms in the cardiac and myogenic instances in

young healthy persons while they were at rest [212] with a constant room temperature

of 23 ± 1◦C. Other researchers found a significant level of coherence between the

oscillations of cardiac SBF and SBF in the ankles [217] with a controlled ambient

temperature of 20◦C–21◦C and constant low illumination.

Differences in coherence between the forearm and index finger may have to do

with the anatomy of the vascular bed in the fingers and toes, as well as the skin on

the forearm and foot. Arteriovenous anastomoses abound in finger and toe tissue. In

contrast, the dorsal forearm/foot surface skin has fewer anastomoses and is primarily

defined by nutrient-rich blood flow [229].
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5.6.2 Median phase coherence of systemic variables

Table 5.5 displays the systemic coherence values. The total phase coherence is

obtained as an integral of the effective phase coherence (showed in chapter 4) by taking

the logarithmic scale into account. Total median of effective phase coherence values

for systemic variables were found to be high at middle and high ambient temperatures

but not the at low temperature. Evaluation of each pair will be discussed.

Figure 5.5: Total median of effective phase coherence values for systemic variables
at the three ambient temperatures. Phase coherence for each pair was computed in
chapter 4, and each row in this table represents the total median value of that phase
coherence at each ambient temperature.

5.6.2.1 Phase coherence between IHR and respiration

Although the curves of IHR-respiration match perfectly between middle and high

temperatures, coherence at low temperature is showed to be lower at both the

fundamental and harmonic peaks (figure 4.38 a)). These observations revealed

significant differences in the frequencies associated with respiration and heart rate.
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Modulation of heart rate by respiratory frequency is affected by variations in

ambient temperature, and coherence gives further insight into these changes. Given

that the high frequency component in IHR reflects the influence of breathing on

the heart rate [230, 231, 115], the significant reduction in cardiac interval coherence

between IHR (derived from the ECG) and breathing for all ambient temperatures

implies an impairment in RSA. It is well known that, the interaction of the

sympathetic and parasympathetic branches of the autonomic nervous system is what

causes respiratory sinus arrhythmia (RSA). Within the context of this interaction, the

vagus nerve, which is an essential component of the parasympathetic nervous system,

plays a crucial function. Its activity slows down during inspiration, which enables an

increase in the rate at which the heart beats. On the other hand, vagal activity will

rise during expiration, which will result in a slower heart rate. However, our findings

show a breakdown of the sympathetic and parasympathetic regulation that controls

heart rate variability.

5.6.2.2 Phase coherence between respiration and blood pressure

Heating significantly increased the phase coherence between blood pressure and

respiration at the myogenic and respiratory frequencies (Figure 4.40). To my

knowledge, phase coherence between respiration and blood pressure has not previously

been reported.

It is mentioned that although there have been relatively few research on the affect

that respiration has on blood pressure, it has been generally accepted that increasing

the depth and rate of respiration increases the ‘aspiratory’ action of the thorax and,

as a result, the flow of blood to the right heart. This is something that is discussed in

the article. Because of the rapid regulation of the R-R interval by the systolic pressure

(baroreflex) and the Windkessel approximation of the systemic arterial system, the

respiratory variations in diastolic blood pressure are typically small when compared
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to variations in systolic blood pressure. The amplitude of blood pressure respiratory

oscillations is dependent on the respiratory pattern [196].

The study by Vera et al. [232] investigateddiscussed the effect of respiration on

the blood pressure by analysing the effects of slow breathing on fluctuations in the

heart rate and blood pressure of healthy subjects. The authors found that respiration

has the ability to counteract changes in both the time and frequency domains of

hemodynamic activity. The peaks at nonrespiratory frequencies (0.01−0.05Hz) during

synchronised respiration were identical to those observed during rest; however, the

diastolic blood pressure was significantly lower during synchronised respiration. This

lends credence to the idea that respiration can play a role in the oscillations of blood

pressure, particularly during the diastolic phase. However, the long-term effects of

respiration on blood pressure were not investigated in this study; hence, additional

research is required to achieve a comprehensive understanding of the link between

respiration and blood pressure.

5.6.2.3 Phase coherence between cardiac output and respiration

We obtained highly significant phase coherence between cardiac output and respira-

tion oscillations at the frequency associated with neurogenic and myogenic processes,

for most subjects (Figure 4.34). To the best of my knowledge, coherence between

respiration and cardiac output has not been reported before. A possible explanation

for the significance in myogenic frequency is that vasodilation occurs in the skin and

other peripheral tissues as a result of heat. By relaxing blood vessels, the body’s

internal temperature is lowered and more blood is pumped to the surface, where

the heat it carries can be dispersed through perspiration. Vascular dilation causes

a greater outflow of blood, which may reduce blood’s return to the heart (venous

return). With less blood coming back from the veins, preload drops and that has an

effect on stroke volume and consequently cardiac output.
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5.6.2.4 Phase coherence between IHR (derived from ECG) and IRR

(derived from respiration)

Although not significant, median phase coherence for IRR-IHR appears to be high in

the respiration band for all ambient temperatures (Figure 4.46). Significant changes

in phase coherence were obtained in myogenic band between high and other ambient

temperatures (Figure 4.47).

5.6.2.5 Phase coherence between systolic and diastolic blood pressure

Our finding shows that heating increased phase coherence significantly between

systolic and diastolic blood pressure at the frequency intervals associated with

neurogenic, myogenic, respiration, and cardiac (Figure 4.48). Coherence between

systolic and diastolic blood pressure in the microcirculation has not previously

reported.

5.6.2.6 Phase coherence between the IHR of ECG and blood pressure

We observed significant phase coherence between IHR and blood pressure oscillations

in the myogenic frequency band but no significant changes s the result of altering the

ambient temperatures (Figure 4.51).

5.6.2.7 Phase coherence between IHR (derived from ECG) and systolic

or diastolic blood pressure

The pattern of spectral phase coherence between blood pressure and IHR was shown

to be the same when systolic and diastolic signals were analysed figure 4.54 a) and

b). In both comparisons, there was no significant difference as a result of increasing

ambient temperature. To the best of my knowledge, coherence between systolic and

diastolic blood pressure has not been reported before.

196



5.6.3 Median phase coherence of systematic−peripheral vari-

ables

Table 5.6 displays the total coherence between index finger and forearm skin blood

flow. The total phase coherence is obtained as an integral of the effective phase

coherence (showed in chapter 4) by taking the logarithmic scale into account. It is

clear that total median coherence showed to be high at high ambient temperature for

all pairs except IHR−dL. Evaluation of each pair will be discussed.

Figure 5.6: Total median of effective phase coherence values for systemic−peripheral
variables at three ambient temperatures. Each row represents a pair of phase
coherence computed in chapter 4 between two variables and each row in this table
represents the total median value of that phase coherence at each ambient temperature

5.6.3.1 Phase coherence between IHR (derived from ECG) and the LDF

blood flow in the right or left index finger

We obtained highly significant median values for the wavelet phase coherence of LDF

blood flow (left and right index fingers) with IHR oscillations in most participants
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at the frequency of 0.3 Hz associated with the respiratory band (Figure 4.65 a) and

b)). During heating, the phase coherence was found to increase significantly in the

respiratory band.

Our results agree with those of Sheppard et al.[191] who examined the oscillatory

dynamics of vasoconstriction and vasodilation in connection to blood flow, skin

temperature, and instantaneous heart rate (IHR). In the latter investigation, the

temperature of the plate was gradually increased in two stages: first to 24◦C, then to

42◦C. The temperature at which the basal recordings were made was around 32 degrees

Celsius. It was found that there is a considerable rise in phase coherence between

blood flow and IHR in all intervals, and that distinct peaks in phase coherence occur

at the respiratory and myogenic frequencies.It was concluded that the mechanisms of

vasodilation and vasoconstriction, which occur in response to changes in temperature,

play an important part in the process of altering the relationship between blood flow

and IHR.

5.6.3.2 Phase coherence between blood pressure and the LDF blood flow

in the right or left index finger

We observed a significant increase in phase coherence between skin blood flow

oscillations in the right index finger and blood pressure with increasing ambient

temperature at the respiratory frequency (Figure 4.70). To the best of my knowledge,

coherence between skin blood flow and blood pressure has not reported before. A

possible explanation for our observation is that during RSA, the autonomic nervous

system and the cardiovascular system work together to regulate the relationship

between cutaneous blood flow and blood pressure oscillations at the respiratory

frequency. Under the effect of heating, vasodilation causes changes in cutaneous

blood flow, which can affect the resistance in peripheral blood arteries and cause

blood pressure fluctuations. In other word, heating elevates the cyclic fluctuations
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in skin blood flow due to RSA, contributing to blood pressure oscillations at the

respiratory frequency.

5.6.3.3 Phase coherence between systolic blood pressure and the LDF

blood flow in the right or left index finger

Wavelet phase coherence increased significantly with increasing ambient temperature

at respiratory and cardiac frequencies between blood flow of right index finger and

systolic blood pressure (Figure 4.75a)). However, a significant increase in phase

coherence was observed only in the cardiac frequency band between blood flow left

index finger and systolic blood pressure (Figure 4.75b)). To the best of our knowledge,

coherence between skin blood flow and systolic blood pressure has not previously been

reported.

We infer that the significant increase in cardiac frequency occurs on account

of increased cutaneous blood flow when the blood vessels of the skin widen as a

result of autonomic influences (such as the withdrawal of sympathetic activity). This

vasodilation can occur at the same time as the systolic maxima in the cardiac cycle,

which can result in increased synchronisation between the oscillations of skin blood

flow and sBP at the frequency of the cardiac cycle.

5.6.3.4 Phase coherence between diastolic blood pressure and the LDF

blood flow in the right or left index finger

Heating increased the wavelet phase coherence significantly at the respiratory

frequency between blood flow of the right index finger and diastolic blood pressure

(Figure 4.80 a)). However, a significant increase in phase coherence was observed only

in the cardiac frequency band between blood flow in the left index finger and diastolic

blood pressure (Figure 4.80 b)). To the best of my knowledge, coherence between

diastolic blood pressure and blood flow in the index fingers has not been reported
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before.

5.6.3.5 Phase coherence between the cardiac output and the LDF blood

flow in the right or left index finger) with cardiac output

Significant phase coherence was obtained between cardiac output and blood flow of

left and right index fingers in the endothelial metabolic and neurogenic bands (Figure

4.85 a) and b)). To best of my knowledge, phase coherence between cardiac output

and skin blood flow in the index fingers has not previously been reported.

A possible explanation for the differences observed in these two specific bands

is that multiple regulatory mechanisms interact in a dynamic process to keep skin

blood flow oscillations synchronised with cardiac output oscillations at endothelial and

neurogenic frequencies. Under the effect of any external influence such as temperature,

skin blood vessels are able to dilate or constrict to control blood flow. Both local and

systemic factors control the rate at which the diameters of these vessels change. In

terms of local effect, the endothelium is crucial for controlling blood flow and vascular

tone, involving the release of vasodilators like nitric oxide (NO). Such a substance

affects the vessel diameter and consequently skin blood flow.
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6. Concluding remarks

6.1 Summary

To summarise, the following constitute the primary components of this thesis:

• The physiological and thermoregulation background of cardiovascular dynamics

and its associated oscillations in the healthy state is reviewed.

• The methods by which the physiological variables under consideration can be

evaluated are discussed.

• An introduction to non-linear dynamical systems and the tools for investigating

them using time series data is provided.

• At each of the three ambient temperatures for which data were available, the

applicability of laser Doppler flowmetry for analysing the dynamics of microvas-

cular blood flow in healthy subjects was investigated. The electrocardiogram

(ECG), blood pressure, stroke volume, and heart rate were all measured.

The primary purpose of this thesis has been to examine the dynamics of the

cardiovascular system as it relates to rising environmental temperatures. Blood flow,

cardiac output, electrocardiogram, blood pressure, and respiratory rate had all been

measured and the aim was to analyse the data and understand them.

Time series analysis techniques were applied to the corresponding signals in order
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to better understand their origins and characteristics as time series from oscillatory,

thermodynamically open, nonstationary, nonlinear, and nonautonomous systems.

These findings provided a new knowledge of the vasculature under the influence

of heating, which was characterised by changes in cardiovascular oscillations as

measured in cold, mild, and high ambient temperature conditions. The myogenic,

neurogenic, and endothelial frequency intervals all exhibit different oscillations, and

these oscillations provide a means of correlating the observed variances in spectrum

and coherence with the oscillations associated with vasomotion.

We used the wavelet transform and wavelet phase coherence techniques to analyse

cardiovascular signals acquired from young volunteers who were being exposed to the

three different ambient temperatures.

6.2 Original contributions

The following original contributions of this work can be summarised as:

• Time-averaged power was calculating for most of the cardiovascular variables

and some of them were for the first time, such as cardiac output and stroke

volume.

• The instantaneous heart rate frequencies (derived from ECG signals) for

three different ambient temperature were compared in the frequency interval

0.0027−2.0 Hz. The time-averaged power mostly differed significantly between

between the three ambient temperatures in intervals II and III.

• Both systolic and diastolic blood pressure signals were derived by a linear

interpolation method for the three ambient temperatures and their medians were

compared. The time-averaged power was calculated for each variable and it was

found that systolic blood pressure differs significantly with increasing ambient
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temperature in the intervals III, IV, V, and VI while the time-averaged power

for the three ambient temperatures differs significantly in frequency interval III.

• Time-averaged power was calculated for two different skin sites (index finger

and forearm). Power increased significantly with increasing temperature across

all frequency intervals: I, II, III, IV, V, and VI for index fingers. Time-averaged

power in the forearm increased significantly at frequency intervals associated

with III, IV, V, and VI.

• Differences in wavelet phase coherence was obtained between blood flow in the

left and right index fingers in the frequency intervals associated with I, II, III,

IV, and V, at the three ambient temperatures, and wavelet phase coherence

between blood flow in the forearm and both index fingers in the cardiac and

respiration frequency intervals at the three ambient temperatures.

• The findings for peripheral blood flow are sensitive to the particulars of

sympathetic innervations of the skin zones. Forearm skin blood flow relies

heavily on respiratory wave transmission passive mechanisms because of its

comparatively poor sympathetic innervations. Apart from passive mechanisms,

a neurogenic component clearly dependent on breathing rate will play a

significant role in the blood flow of finger skin.

• Differences in wavelet phase coherence was found between instantaneous heart

frequency and blood flow in the right index finger at the three temperatures.

Similarly, differences in wavelet phase coherence between instantaneous heart

frequency and blood flow in the left index finger at the three ambient

temperatures.

• Differences in wavelet phase coherence was found between respiration and blood

pressure at temperatures 32◦C and other ambient temperatures, and wavelet
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phase coherence between respiration and cardiac output across all ambient

temperatures at neurogenic band.

• Differences in wavelet phase coherence was found between systolic and diastolic

blood pressure at temperatures 32◦C and low temperatures (20◦C).

• Differences in wavelet phase coherence was found between instantaneous heart

frequency and blood pressure at temperatures 32◦C and 20◦C, and middle

(26◦C) with low (20◦C). No differences in wavelet phase coherence between

instantaneous heart frequency and systolic blood pressure. Similarly, no

differences in wavelet phase coherence between instantaneous heart frequency

and diastolic blood pressure.

• Differences in wavelet phase coherence was found between instantaneous heart

frequency and blood flow in the left index finger at all temperatures, and wavelet

phase coherence between instantaneous heart frequency and blood flow in the

left index finger at all temperatures.

• Differences in wavelet phase coherence was found between blood pressure and

blood flow in the right index finger at all ambient temperatures, and wavelet

phase coherence between blood pressure and blood flow in the left index finger

at temperature 32◦C and other ambient temperatures. In addition, middle

temperature and low temperature.

• Differences in wavelet phase coherence was obtained between systolic blood

pressure and blood flow in the right index finger at all ambient temperatures.

Similarly, differences wavelet phase coherence was obtained between systolic

blood pressure and blood flow in the left index finger at all ambient tempera-

tures.
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• Differences in wavelet phase coherence was found between diastolic blood

pressure and blood flow in the right index finger at all ambient temperatures.

Similarly, differences wavelet phase coherence was found between diastolic blood

pressure and blood flow in the left index finger at all ambient temperatures.

• Differences in wavelet phase coherence between cardiac output and blood flow in

the right index finger at all temperatures, and wavelet phase coherence between

cardiac output and blood flow in the left index finger at all temperatures.

6.3 Future work

The following projects would follow on naturally from the research reported in this

thesis, and would offer promising opportunities for the future:

• Investigating the cardiovascular response on males and females separately. The

current study was performed on both male and female, but the number of

subjects was too small for analyses of data from the two sub-groups to be

useful. It will obviously be important to understand the ways in which males

and females circulatory systems react differently to being exposed to heat by

using the same analysis methods as in this study.

• Investigating how age influences responses to whole-body heating using the same

analysis methods as used in the present study, which was restricted to young

people.

• Investigating how non-healthy (e.g. diabetic) people respond to whole-body

heating using the same analysis methods used here. The current study was

performed on healthy people.
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Appendices
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Appendices

The following sections provide additional result that are not included in the main text.

In section A.1, the coherence between IRR and the LDF blood flow in the right and

the left index finger is shown. In section B2, we present the coherence between IHR

extracted from blood pressure and IHR of ECG. In section C, additional coherence

analysis between IRR and blood pressure is presented. In section D, we show the

coherence between IRR and systolic or diastolic blood pressure. In section E, a

single calculation of maximum coherence and its corresponding frequency peak for

the coherence of IHR and respiration. Tables of physiological parameters are listed in

F.6 G.7, H.8 and J.10 summarize the average values. while the summary of all values

across all parameters is provided in section I.9. Finally, section K.11 provides data

arrangements and approvals for the study protocol.

A.1 Coherence between IRR and the LDF blood

flow in the right and left index finger

Group median values of wavelet phase coherence was calculated between blood flow

(right and left index fingers) and IRR signals for all subjects at three ambient

temperatures are shown in figure 6.1 (a) and (b). Median phase coherence reveals

a single, broad peaks at the respiratory frequency range. The coherence disappears in
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the respiratory frequency interval in the group of 20◦C for the right index finger, while

coherence in the left index finger is low for all ambient temperatures. No significant

difference were observed in all coherence and phase shift figures by multi-comparison

and pair-wise tests.

Figure 6.1: Group medians of the effective phase coherence between instantaneous
respiration rate and LDF at the two index fingers. Phase coherence between the
instantaneous respiration rate and the blood flow signal recorded using LDF in (a)
the right and (b) the left index fingers, in the frequency interval between 0.003 Hz
and 2 Hz. For each of the two cases, the group medians of the phase difference are
shown underneath the coherence plots in (c) and (d). Statistical significant difference
(p < 0.05) was reveled by Kruskal Wallis test and indicated by red asterisks at the
defined frequency intervals in figure (c).

B.2 Blood pressure coherence analysis

B.2.1 Coherence between IHR of BP and IHR of ECG

Group median values of Wavelet phase coherence between IHR of ECG signals with

IHR of blood pressure was calculated and the group median coherence is shown in
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figure 6.2 (a). High phase coherence was revealed at the frequency of myogenic (∼ 0.1

Hz) for all subjects at the three ambient temperatures. No significant difference was

revelled by multi-comparison test for IHR-IHR coherence.

Figure 6.2: Median a) Effect wavelet phase coherence between IHR (ECG) and IHR
(BP) for three ambient temperature. b) Phase shift for the coherence shown in figure
a). No significant difference was reveled (p > 0.05) by Kruskal-Wallis at the defined
frequency intervals.

While pairwise test showed significant difference in the frequency intervals neurogenic

(p = 0.0083) as shown in figure 6.3.
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Figure 6.3: Spectral coherence of IHR signals extracted from BP and ECG within
frequency bands. Violin plots compare the median coherence content within each
frequency band including the total coherence in IHR-IHR signal. Wilcoxon signed
rank test was applied for comparisons in each frequency band for the three ambient
temperatures and statistical significance was set at p < 0.05. Significance is considered
as *p < 0.05,**p <0.01, ***p <0.001 .

No significant difference in the phase shift was found in the IHR-IHR coherence

across all frequency intervals (Figure 6.2 (b)) either by multiple-comparison and

pairwise tests. The phase shift is showed to be coherent at all frequency intervals.

The positive value of the shift at cardiac interval indicates that the oscillations in the

IHR of ECG signals are leading the ones in the IHR of blood pressure.
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C.3 Coherence between IRR and blood pressure

(Amplitude - Frequency interaction)

Group median values of wavelet phase coherence between the IRR extracted from

respiration signals and blood pressure signals was computed for all subjects at three

ambient temperature and shown in figure 6.4 (a).

Figure 6.4: Median a) Effect wavelet phase coherence between Respiration and IHR
for three ambient temperature. b) Phase shift for the coherence shown in figure a).
Significant difference was reveled (p > 0.05) by Kruskal-Wallis at the defined frequency
intervals in phase shift only (indicated by asterisk).
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All group temperatures had a single, broad peak in median phase coherence at

respiration band. No significant difference were observed in IRR-blood pressure

coherence between all ambient temperatures by multi-comparison and pairwise. A

significant difference in the phase shift was found in the IRR-blood pressure coherence

in the frequency interval of myogenic (p = 0.0032) as shown in figure 6.4 (b). Pairwise

test showed significant difference in the frequency interval neurogenic between (p =

0.0366) and (p = 0.0009) as shown in figure 6.5. The positive value of the shift

indicates that the oscillations in the blood pressure are leading the ones in the IRR.

Figure 6.5: Spectral phase difference of IRR and blood pressure within frequency
bands. Violin plots compare the median phase difference content within each
frequency band including the total coherence in the IRR-BP signal. Wilcoxon signed
rank test was applied for comparisons in each frequency band for the three ambient
temperatures and statistical significance was set at p < 0.05. Significance is considered
as *p < 0.05,**p <0.01, ***p <0.001 .
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D.4 Coherence between IRR and systolic or dias-

tolic blood pressure

Group median values of wavelet phase coherence between oscillations in both systolic

and diastolic with IRR at three ambient temperatures were calculated as shown

in figure 6.6 (a),(b). High phase coherence was revealed for both signal pairs at

the frequency of respiration (∼ 0.3 Hz). No significant differences exhibited in the

coherence of systolic and diastolic BP with IRR as shown in multi-comparison test.

However, significant difference in the phase shift were found in both systolic (p =

0.0032) and diastolic (p = 0.0128) pressure with IRR coherence in the frequency

interval of neurogenic as shown in figure 6.6 (c),(d).

Figure 6.6: Group medians of the effective phase coherence between instantaneous
heart rate with systolic and diastolic blood pressure. Phase coherence between the
instantaneous heart rate and (a) systolic blood pressure and (b) diastolic blood
pressure, in the frequency interval between 0.003 Hz and 2 Hz. For each of the two
cases, the group medians of the phase difference are shown underneath the coherence
plots in (c) and (d). Statistical significant difference (p < 0.05) was reveled by Kruskal
Wallis test and indicated by red asterisks at the defined frequency intervals in figure
(c).
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Pairwise test revelled more significant differences in the phase shift sBP-IRR

coherence at the frequency intervals IV (p = 0.0009) as shown in figure 6.7. The

positive value of the shift indicates that the oscillations in the IRR are leading the

ones in the sBP.

Figure 6.7: Spectral coherence of the left index finger and cardiac output within
frequency bands. Violins compare the median coherence content within each
frequency band including the total coherence in the cardiac output-left index finger
signal. Wilcoxon signed rank test was applied for comparisons in each frequency band
for the three ambient temperatures and statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

Similarly, pairwise test revelled more significant differences in the phase shift dBP-

IRR coherence at the frequency intervals IV (p = 0.0116) as shown in figure 6.8. The

positive value of the shift indicates that the oscillations in the IRR are leading the

ones in the dBP.
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Figure 6.8: Spectral coherence of the left index finger and cardiac output within
frequency bands. Violins compare the median coherence content within each
frequency band including the total coherence in the cardiac output-left index finger
signal. Wilcoxon signed rank test was applied for comparisons in each frequency band
for the three ambient temperatures and statistical significance was set at p < 0.05.
Significance is considered as *p < 0.05,**p <0.01, ***p <0.001.

E.5 Maximum coherence and corresponding fre-

quency peaks

Maximum coherence was calculated for each subject across all the ambient tem-

peratures and demonstrated in violin plot (Figure 6.9 (a)). The median values of

the maximum values varies slightly at the coherence value of 0.6, and the highest

median was observed at 26◦C (0.633). However, the figure shows clearly that, the

lowest value was for temperature 20◦C (0.58). The corresponding frequency peak

was also calculated and represented in figure 6.9 (b). The median value for each

temperature is nearly the same (0.3Hz), median frequency peaks at temperature 26◦C
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had a slight decrease compared to other (0.29Hz). While, frequency peaks at ambient

temperatures 20◦C and 32◦C had exactly the same value (0.30Hz).

Figure 6.9: Violin plot represents the distribution of the values of the maximum
coherence and corresponding peak frequency. Statistical significance difference was
observed in mean of maximum coherence and responding frequency peak of IHR-
Respiration coherence by Kruskal-Wallis (Group test) and Wilcoxon signed rank (pair
test) for paired data. p -values for median are recorded as following: 20◦C - 26◦C
(0.061), 20◦C - 32◦C (0.414), and 26◦C - 32◦C& (0.118). While p -values for frequency
peak, 20◦C - 26◦C (0.518), 20◦C- 32◦C (0.081), and 26◦C - 32◦C (0.004). In terms
of group test, no significant difference were observed in mean values (0.535), and
frequency peaks values (0.485).
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F.6 Average values of stroke volume and cardiac

output

No
Stroke volume Cardiac output

20◦C 26◦C 32◦C 20◦C 26◦C 32◦C

1 79.79± 6.06 82.78± 6.17 77.38± 3.76 4.88 ± 0.40 5.77± 0.61 6.30± 0.45

2 94.10 ± 4.54 95.08± 7.57 90.74± 9.07 6.10± 0.46 5.66 ± 0.63 6.01± 0.59

3 112.71± 7.34 80.72± 5.71 78.49±5.93 7.85± 0.69 5.48 ± 0.43 5.48± 0.38

4 92.98± 9.35 81.75± 5.47 79.76±5.74 6.68± 0.77 5.95± 0.48 6.19± 0.64

5 105.74± 5.99 108.36± 5.52 108.58± 5.27 6.55± 0.63 6.53± 0.44 6.75± 0.43

6 62.81± 12.15 84.13± 5.05 65.05± 5.88 4.09 ± 0.78 5.63 ± 0.41 4.73 ± 0.35

7 142.71 ± 9.55 136.91± 9.19 136.07± 9.28 6.90± 0.78 6.79 ± 0.83 7.43± 0.84

8 127.49± 10.56 116.51± 7.08 117.51± 6.69 6.00± 0.47 5.72± 0.45 6.04± 0.49

9 106.20±5.46 98.20± 5.02 102.91± 5.29 6.32± 0.63 5.76± 0.55 6.17± 0.58

10 94.56± 5.62 84.47± 5.93 80.80± 7.15 6.45± 0.56 5.13± 0.46 5.00± 0.52

11 75.90±3.52 75.13± 3.32 73.76± 3.71 5.34±0.30 5.35± 0.33 4.90± 0.34

12 82.32± 5.48 80.50±5.47 92.11± 6.89 3.97±0.33 4.07± 0.32 5.10± 0.52

13 120.42± 5.78 115.87 ± 4.45 121.11± 3.92 6.81± 0.63 6.71 ± 0.46 7.80± 0.48

14 88.19± 7.14 79.72± 6.61 73.33±5.74 4.54± 0.42 4.36± 0.49 4.34± 0.42

15 108.97± 4.21 109.14± 5.05 105.83± 5.46 6.04± 0.21 5.86± 0.35 5.72± 0.28

16 96.07± 9.08 93.32± 7.26 92.71± 6.04 4.73± 0.41 4.89± 0.36 5.10± 0.44

17 81.60± 6.48 76.56± 5.09 74.19± 6.86 4.69± 0.68 4.45± 0.51 4.03±0.41

18 86.02± 6.15 79.32± 5.05 73.71± 5.66 5.04±0.50 4.59±0.39 4.62±0.43

19 70.96± 7.52 87.14± 6.56 77.19± 6.20 3.85± 1.02 4.26 ± 0.39 4.12± 0.46

20 111.89± 7.33 108.48± 6.21 109.97±7.24 5.04± 0.43 5.30± 0.54 5.82± 0.52

21 103.33± 6.79 96.48± 7.13 88.26± 11.41 6.66± 0.48 6.36 ±0.46 5.59± 0.60

22 143.92± 7.52 141.50± 9.62 135.98±5.81 8.89± 0.47 8.34 ± 0.52 8.58± 0.46

23 118.03± 7.06 118.15± 7.44 119.15± 8.17 6.11± 0.79 6.13 ± 0.71 6.67± 1.00

24 84.78± 4.26 88.03± 4.33 82.64± 5.90 5.67±0.25 5.95±0.27 5.81± 0.39

25 89.11± 5.47 85.59± 5.53 79.47±5.32 5.95± 0.41 5.66 ± 0.35 5.67± 0.32

26 127.02± 10.57 106.33± 6.57 117.94±9.28 7.19± 0.92 6.68 ± 0.55 7.22± 0.81

27 100.45± 5.94 92.23± 5.27 90.11±8.34 6.78± 0.72 5.36± 0.52 6.20± 1.02

28 105.13± 5.78 92.94± 5.12 95.16±5.65 5.72± 0.57 5.31± 0.47 5.46± 0.62

Table 6.1: Mean and standard deviation values of stroke volume and cardiac output
for each subject at the three ambient temperatures.
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G.7 Average values of systolic and diastolic blood

pressure

No
Diastolic BP Systolic BP

20◦C 26◦C 32◦C 20◦C 26◦C 32◦C

1 64.69± 4.65 83.64± 6.26 75.35±4.70 127.72± 5.16 183.34±11.91 143.19± 7.72

2 63.30± 4.46 44.13± 6.03 47.31± 5.11 130.05± 6.21 97.25± 10.70 94.02± 10.28

3 62.08± 4.08 51.78± 4.38 47.05± 3.31 133.42± 9.81 92.97 ± 9.28 81.58± 6.90

4 59.16±6.08 58.44±4.43 56.13± 4.88 143.02± 7.75 155.50± 4.93 131.92± 10.22

5 53.72± 3.17 42.92± 3.04 56.46±4.34 123.05± 4.70 115.58 ± 3.40 120.37±7.31

6 65.20± 3.36 49.38± 2.42 37.73±2.27 138.79±14.46 117.97 ± 7.07 84.73± 9.23

7 53.59± 4.91 49.74±5.46 47.98± 4.50 140.82± 10.11 118.19 ± 11.32 111.16± 9.60

8 51.11± 7.81 58.10± 5.76 49.48±5.17 145.54 ± 11.40 144.75± 7.50 129.14± 8.47

9 63.08± 4.57 48.47± 4.11 42.06± 3.95 143.17±5.69 122.98 ±3.64 109.32± 7.06

10 52.96± 3.12 52.42± 2.94 40.36± 3.47 108.68± 4.79 108.04 ± 4.76 83.09± 5.29

11 74.75±3.28 68.92± 3.46 63.21±5.22 150.23± 4.27 131.06 ± 5.85 111.20± 9.06

12 58.90±3.41 54.63± 2.33 53.59±2.45 111.90± 4.73 108.55 ± 4.06 111.20± 5.16

13 57.68±3.30 56.06± 2.09 51.70±2.25 139.04± 4.07 128.47 ±4.03 125.21± 5.63

14 50.77± 3.51 49.08± 4.59 46.41±3.69 136.68± 4.24 110.76 ± 5.93 94.10± 5.40

15 69.74± 3.10 59.97± 2.68 62.79±3.08 157.06±6.14 132.75 ± 7.47 128.13± 6.91

16 44.55± 3.77 44.33± 2.68 41.72±3.68 116.17± 4.36 118.12 ± 3.71 113.63± 4.83

17 39.00± 5.84 37.44±3.89 39.45±3.98 112.86± 8.23 105.97 ± 7.03 107.32±8.77

18 50.37± 4.49 43.40±2.95 35.52±3.92 122.60± 5.21 107.48 ± 5.05 93.53± 8.08

19 67.27± 3.65 58.33± 3.60 43.40±3.77 130.15± 5.76 131.60±5.76 100.71± 6.28

20 51.19± 3.30 48.17± 2.77 53.44± 2.93 128.17± 4.28 121.76 ± 7.52 122.52± 8.93

21 57.36± 3.89 47.77± 3.73 44.82±3.48 137.20± 4.94 117.97 ± 4.70 105.97± 11.36

22 57.81±4.29 55.98± 4.75 53.35±3.68 142.72± 8.89 128.00± 9.07 122.17± 7.88

23 47.19± 6.13 50.59± 5.37 56.03±6.31 139.63± 9.32 127.62 ± 8.19 134.92± 11.01

24 50.42± 2.01 48.14± 2.28 44.31±2.45 122.88± 4.60 117.48 ± 3.49 102.08± 6.59

25 50.16±2.22 39.64± 2.70 38.11±1.78 112.72±3.18 98.89 ± 4.19 85.80± 4.00

26 53.19± 6.27 59.75± 3.63 55.83±5.40 140.49± 7.18 137.49 ± 3.19 127.59±6.40

27 54.46± 4.65 48.66± 3.55 47.97±5.89 131.54± 5.82 114.87 ± 5.82 103.55± 9.07

28 53.66± 3.98 46.73±3.11 46.69±3.40 132.13±5.69 117.54± 6.13 107.21± 8.05

Table 6.2: Mean and standard deviation values of systolic and diastolic blood
pressure for each subject at the three ambient temperatures.
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H.8 Average values of heart and respiration rates

No
Heart rate Respiration rate

20◦C 26◦C 32◦C 20◦C 26◦C 32◦C
1 0.99±0.12 1.14± 0.12 1.34± 0.11 0.24± 0.06 0.26 ±0.05 0.26±0.06
2 1.05± 0.08 0.93±0.09 1.05±0.11 0.32±0.04 0.27±0.04 0.29±0.04
3 1.13± 0.11 1.11± 0.09 1.14±0.08 0.25±0.06 0.30±0.04 0.29±0.05
4 1.17± 0.09 1.19±0.10 1.27±0.15 0.28±0.04 0.28 ±0.04 0.27±0.04
5 1.00±0.10 0.98±0.08 1.01±0.08 0.25±0.04 0.25 ±0.03 0.24±0.03
6 1.07± 0.08 1.10±0.07 1.19±0.07 ×× ×× ××
7 0.78±0.09 0.81 ±0.10 0.89±0.10 0.24±0.07 0.24 ±0.07 0.24±0.06
8 0.76±0.06 0.79±0.07 0.83±0.07 0.25±0.04 0.26±0.04 0.24±0.05
9 0.96± 0.09 0.95±0.09 0.97 ±0.07 0.29±0.06 0.28 ±0.05 0.28±0.04
10 1.11±0.11 1.11±0.10 1.01±0.08 0.24±0.05 0.24±0.05 0.27±0.06
11 1.15±0.06 1.16±0.07 1.08±0.07 0.27±0.05 0.26 ±0.05 0.25±0.04
12 0.78±0.06 0.82±0.06 0.90±0.07 0.29±0.04 0.29±0.04 0.26±0.05
13 0.92±0.08 0.94±0.06 1.05±0.07 0.29± 0.04 0.31 ±0.04 0.31±0.04
14 0.83±0.07 0.87±0.09 0.95±0.08 0.31±0.05 0.28 ±0.05 0.29±0.04
15 0.90±0.05 0.87±0.05 0.88±0.05 0.28±0.04 0.27 ±0.04 0.25±0.05
16 0.79±0.06 0.84±0.06 0.88±0.07 0.27±0.04 0.31 ± 0.05 0.31±0.05
17 0.93±0.14 0.94±0.10 0.88±0.09 0.30±0.05 0.32 ±0.04 0.27±0.04
18 0.94±0.08 0.93±0.07 1.01±0.10 0.31 ±0.04 0.34±0.04 0.32±0.04
19 0.84±0.07 0.79±0.07 0.85±0.08 0.31±0.05 0.28 ±0.05 0.30±0.06
20 0.72±0.05 0.78±0.07 0.85±0.07 0.31±0.04 0.30 ±0.04 0.29±0.04
21 1.05±0.07 1.08± 0.09 1.04± 0.09 0.33±0.04 0.32 ±0.04 0.29±0.04
22 1.01±0.06 0.96±0.06 1.03±0.06 0.29±0.04 0.27 ±0.04 0.29±0.04
23 0.82±0.10 0.83±0.09 0.90±0.13 0.29±0.04 0.29 ±0.04 0.29±0.04
24 1.09±0.05 1.11±0.05 1.15±0.05 0.28±0.04 0.29 ±0.04 0.30±0.03
25 1.09±0.07 1.08±0.06 1.17±0.05 0.30±0.05 0.33 ±0.04 0.30±0.03
26 0.90± 0.12 1.02±0.10 0.99±0.13 0.26±0.05 0.26 ±0.04 0.25±0.05
27 1.10±0.14 0.94±0.09 1.12±0.16 0.27± 0.05 0.28 ±0.05 0.27±0.05
28 0.87±0.08 0.92 ±0.08 0.93±0.09 0.33±0.04 0.31±0.04 0.31 ±0.04

Table 6.3: Mean and standard deviation values of heart rate and respiration rate
variability for each subject at the three ambient temperatures.
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I.9 Total average values of physiological time series

After obtaining mean and standard deviation values for each subject at three ambient

temperatures, we calculated the total mean values across all subjects at three ambient

temperatures to check how close the values are with median values obtained in

summary and discussion chapter. We found that the difference between mean and

median values are minor and is in the account of the data are normally distributed.

Figure 6.10: Total average values of cardiovascular variables in the time domain.
The mean value of each individual signal was calculated across all ambient
temperatures to see how close the values will be compared to the median values,
and then the overall mean value was obtained in each ambient temperature.
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J.10 Average values of blood flow signals

No
Left index finger Right index finger Left forearm

20◦C 26◦C 32◦C 20◦C 26◦C 32◦C 20◦C 26◦C 32◦C
1 33.4±8.7 142.4±45.6 875.2±86.1 9.9±3.2 11.6± 5.7 96.8±24.3 16.3± 6.1 26.1± 8.9 212.4± 39.7
2 125.2±116.7 379.4±137.1 480.5±102.9 15.2± 11.6 93.1± 30.3 103.3±28 36.4± 7.4 66.7± 13.1 76.4± 9.6
3 71.5± 38.6 287.3± 71.5 355.8±54.3 15.7± 7.5 92.9± 25.9 86.7± 15.6 30.2± 7.6 86.9± 23.6 126.8± 20.1
4 22.3± 13.5 56.6± 28.8 268.4± 49.3 7.7 ± 3.7 19.6± 14.0 83.5±28.3 27.1± 10.9 28.4± 7.1 38.5± 10.9
5 13.0± 7.1 29.0± 10.4 520.6± 54.7 6.1± 2.3 15.8± 4.6 153.1±35.9 3.2±0.3 4.0± 0.9 21.5± 5.8
6 12.1± 3.4 91.0±61.0 394.3± 49.2 6.3± 2.1 78.5± 43.8 144.0±21.5 20.0±6.0 26.6± 6.5 41.8± 10.6
7 323.8± 47.4 269.0±65.9 194.4±33.8 48.4± 18.2 117.7± 19.5 124.1±18.0 3.8±0.7 4.1± 1.0 4.3± 0.9
8 84.1± 88.9 66.5± 54.8 278.0±107.3 18.5±12.6 21.3± 10.1 76.4±31.4 8.6± 2.9 9.4± 3.1 25.7± 7.5
9 16.6± 11.7 84.6± 49.3 117.2±41.0 7.0±4.0 21.7± 12.0 50.4±15.0 21.0± 5.8 6.9±1.0 10.4± 1.6
10 43.0± 13.4 42.7±13.4 225.9±44.7 21.3± 5.9 75.8± 15.8 105.5±16.9 5.9±1.2 6.2± 1.3 19.3± 4.3
11 96.3± 26.4 232.6± 39.2 98.9±27.8 16.0± 5.8 55.5±9.5 38.0±7.3 7.3±1.2 28.5±7.8 35.9± 7.0
12 84.1± 81.2 198.0± 111.7 341.0± 125.1 7.0± 3.4 18.3 ±9.8 61.4±24.7 3.6± 0.6 5.0±3.4 8.6±1.9
13 23.8± 15.7 47.1± 21.4 76.8±28.2 8.7±3.0 14.7± 4.7 27.5 ±8.2 3.3±0.3 3.3±0.3 4.7± 0.5
14 63.2± 27.2 316.9± 92.2 463.2±63.6 8.2± 2.9 42.6 ± 11.9 65.5±9.9 4.2±0.9 8.3± 2.3 8.0± 2.1
15 106.5±89.0 222.2 ± 100.0 230.3± 88.3 27.4±23.3 55.7± 24.9 63.9± 23.5 20.0± 5.3 15.4± 8.0 14.0±1.9
16 11.7± 6.0 21.2± 10.7 63.0±38.2 5.5± 1.2 10.7± 4.6 31.3±13.5 3.3± 0.2 10.9± 8.7 3.4±0.6
17 228.9± 73.9 406.9± 41.4 326.0± 38.1 56.8± 28.9 184.6± 36.7 115.5±22.0 12.4±9.4 18.3± 8.6 19.6±8.0
18 96.8± 50.6 220.9± 50.7 233.0±58.9 15.3± 12.9 50.4±21.1 56.3±21.0 7.3± 1.8 15.0± 6.5 25.3±7.3
19 18.5±9.2 68.0± 39.7 230.3±68.2 6.8±2.5 25.1±12.5 55.5±13.8 3.3± 0.3 3.2± 0.2 9.4±7.9
20 82.1± 58.1 526.9± 146.6 537.2±142.6 9.6±4.5 99.4 ± 32.3 84.7±22.4 10.0 ±3.5 23.9± 9.4 19.2±7.7
21 20.9± 12.8 87.5±52.5 251.1±89.4 8.4± 2.2 20.3 ±8.7 35.9±10.6 15.9 ±10.6 15.7±3.0 37.5±9.0
22 230.8± 148.0 309.7±129.4 431.4± 127.4 36.1± 23.4 57.1± 27.6 82.6±26.0 10.6± 8.9 3.3± 0.3 5.6±1.7
23 201.3±65.0 281.8± 80.1 349.8 ± 90.3 101.5±38.7 141.3±44.0 179.5±45.6 3.3±0.3 3.2 ±0.2 3.9±0.7
24 57.6± 63.3 54.5± 46.5 256.3±87.1 12.0±13.5 13.7 ±7.8 118.3±27.7 12.9±9.9 9.8±8.9 5.1±1.3
25 31.1±12.3 172.7±41.4 269.2± 45.1 9.8±2.7 78.2 ± 15.0 100.7±17.8 4.1± 4.0 4.1±0.7 10.0±2.0
26 22.0± 10.8 40.2±14.1 242.2± 74.4 16.4±8.9 26.8 ±7.6 161.4±30.3 5.5±2.1 6.9±1.8 12.0±3.4
27 43.9±32.9 154.9±50.7 208.7±70.5 18.0±14.3 74.4±20.2 84.0±23.9 7.4±1.7 9.0±1.4 18.6±6.9
28 16.1±8.1 142.0±58.3 195.0±42.2 10.2±3.8 56.3±25.1 104.1±21.9 7.8±2.2 19.5 ± 2.9 20.3±3.4

Table 6.4: Mean and standard deviation values of left forearm, left index finger and
right index finger for each subject at the three ambient temperatures.
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K.11 Data arrangements and approvals

In the following agreement to use the data as well as ethics approval is provided as

background of this work.

Figure 6.11: Exemption ethics approval.
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