Real Arithmetic in TLAPM *

Ovini V.W. Gunasekera®, Andrew Sogokon®)
Antonios Gouglidis®, and Neeraj Suri

School of Computing and Communications, Lancaster University
{o.gunasekerala.sogokon|a.gouglidis|neeraj.suri}@lancaster.ac.uk

Abstract. TLAT is a formal specification language for modelling sys-
tems and programs. While TLA™ allows writing specifications involving
real numbers, its existing tool support does not currently extend to au-
tomating real arithmetic proofs. This functionality is crucial for proving
properties of hybrid systems, which may exhibit both continuous and dis-
crete behaviours. In this paper, we address this limitation by enabling
support for deciding first-order real arithmetic formulas (involving only
polynomials). Specifically, we update the TLAT Proof System (TLAPS)
to support reals and basic real arithmetic operations and implement
them in the TLA" Proof Manager. The latter generates assertions in
SMT-LIB and directs them to a selected backend (currently the Z3 SMT
solver, which supports the theory of nonlinear real arithmetic). We mo-
tivate this functionality with problems arising in safety verification.

Keywords: formal verification - real arithmetic - hybrid systems - TLA™ .

1 Introduction

TLAT is a general-purpose formal language based on the Zermelo-Fraenkel set
theory for specifying digital systems and is supported by industrial strength
tools. Over the years, TLAT gained considerable attention from both the aca-
demic community and industry [8], where it was used by major companies such
as Amazon, Intel and Microsoft in applications ranging from concurrent to dis-
tributed systems. Indeed, TLA™ is so expressive that it can even be applied
to model hybrid systems 6] (and therefore cyber-physical systems in which the
state may evolve in discrete time steps or continuously). Modelling and reasoning
about continuous state evolution in these systems fundamentally requires real
numbers. TLA' allows one to work with variables ranging over the set of real
numbers (see |7, §18.4]) and was designed anticipating the use of decision pro-
cedures that could work with the structures defined in its standard arithmetic
modules |7, Ch. IS]B Work by Merz et al. |9] created the necessary infrastruc-
ture to handle arithmetic problems involving integers and created an interface to

* Research supported by the UKRI Trustworthy Autonomous Systems (TAS) Node in
Security. EPSRC Grant EP/V026763/1.

L “If you want to prove something about a specification, you can reason about numbers
however you want. Tools like model checkers and theorem provers that care about
these operators will have their own ways of handling them.” — L. Lamport [7, §18.4]

https://orcid.org/0000-0003-3974-5272
https://orcid.org/0000-0002-5849-7991
https://orcid.org/0000-0002-4702-3942
https://orcid.org/0000-0003-1688-1167

2 0O.V.W. Gunasekera et al.

SMT solvers. However, support for real arithmetic has, up to now, been notably
absent, which represents a fundamental limitation that must be addressed before
hybrid system verification in TLAT can become a practical endeavour.

Contributions. We extend TLAPM (the TLAT Proof Manager) to support real
arithmetic, enabling automatic proofs using the Z3 SMT solver. In this work, we
are concerned solely with decidable first-order real arithmetic conjectures.

Related Work. Our work is very close in spirit to that of Denman and Muifioz |2,
who enabled automatic handling of real arithmetic conjectures in PVS [12] using
an external oracle (MetiTarski [13]). Our work builds on an earlier effort by
Merz et al. [11], who developed the TLAT Proof System (TLAPS), i.e., a proof
manager for TLAY (TLAPM) and the infrastructure necessary for interfacing
with SMT solvers (and who indeed commented that support for real numbers
should be facilitated, which we carry through in this work). There exist a number
of purpose-built theorem proving systems for reasoning about cyber-physical
systems, such as KeYmaera X [3| and the HHL Prover [14], which likewise treat
real arithmetic backends (e.g., Mathematica) as trusted external oracles.

2 Enabling Real Arithmetic in the TLAT Proof Manager

The TLAT Proof System (TLAPS) includes a proof manager which interfaces
with backend verifiers. This enables the proof system to perform deductive ver-
ification of safety properties of TLAT specifications. The proof manager inter-
prets the proofs, generates a set of proof obligations and directs them to a
solver (trusted external oracle) such as Z3, Yices, etc. Fig. || provides a par-
tial representation of the TLAPS architecture in [11|9, §1], with an emphasis on
the components we updated in this work. The basic operations including pre-
processing, boolification, post-processing, normalisation and optimisation per-
formed by the proof manager are described in detail in [9-11]. The components

TLA™ Proof System

(A
Proof Manager

TLAT spec Interpret module, Generate
expand definitions proof obligations

!

Translation to SMT-LIB

. Post-processing
Pre-processing, Type o ! Syntactic rewriting
boolification [~ >| inference > normalisation & |y " Ty i1 1
optimisation
Result N i <
\ -
_ J

Fig. 1: TLAPS architecture with the Z3 backend

Real Arithmetic in TLAPM 3

with a red outline in Fig. [1] depict the changes to the SMT translation process
that we made in order to support the proving of real arithmetic conjectures
using Z3. TLAPS features a type inference algorithm that assigns types to the
untyped TLAT variables and values; this is updated to interpret reals (see Sect.
. During the syntactic rewriting stage, TLAT expressions are encoded in the
SMT-LIB language, at which point they are ready to be passed to a backend veri-
fier. In the latter stage, an alternative untyped encoding process can be employed
to instead delegate type inference to the SMT-solvers. This process requires new
lifting axioms to assert that TLA™ arithmetic coincides with the SMT arith-
metic over reals (described in Sect. . The implementation of the extended
TLAPM supporting real arithmetic can be found in [5].

2.1 Typed encodings

TLAT is an untyped language. Hence, type encoding is required to assign types
to the untyped variables and values. Assigning types enforces restrictions on ad-
missible formulas that can be directed to the backend verifiers. This operation
is performed by a type inference algorithm consisting of a constraint generation
and solving phase. The result of the constraint generation phase is a set of con-
straints based on the type environment, a TLAT expression and a type variable.
The constraint generation rules are derived from the corresponding typing rules,
and the constraint solving phase solves the equality and subtyping constraints
and proves some residual subtype checking constraints [10].

To enable the interpretation of TLAT expressions containing reals, we extend
the type system and type inference algorithm developed by Merz et al. in [10]
by introducing a new type Real, i.e., 7 ::= Real to the existing grammar that
describes the supported types and introducing a set of additional typing rules. In
TLA™ | the Reals module extends the Integers module and defines the set Real
of real numbers along with the standard arithmetic operations, including the
ordinary division operator (/) |7, §18.4]. In our extension we employ a decimal
representation of real constants, which is consonant with the representation in
TLAT (c1...cmedy...dy & c1...cpdr...d, /10" |7, §16.1.11]). We further de-
fine rules for real variables and expressions involving the usual real arithmetic
operations (some shown in Table (1] following notational conventions in |10, §3]),
which enables the typing of real arithmetic formulas which can then be passed
on to backend verifiers as real arithmetic conjectures.

[T-PLUS-REAL] [T-LESS-REAL]
I'+e;:a; I'Fa;<:Real i€{1,2} I'tei:a; I'ta; <:Real i€ {1,2}
I'tei+ex:{zr:Real|z=e1+e2} I'Fe1 <ez:Bool

Table 1: Examples of added typing rules for Reals

4 0O.V.W. Gunasekera et al.

2.2 Untyped encodings

Untyped encodings for TLAT formulas are an alternative encoding method im-
plemented in TLAPS, where type inference is delegated to the SMT solver. The
reader may find a helpful discussion of some of the advantages afforded by using
this kind of encoding in [9}/10], along with some of the disadvantages which may
carry a performance penalty.

With untyped encoding, a single SMT sort U is used to represent TLAT val-
ues and its operators are represented as uninterpreted functions having sort
U as their arguments [9]. In order to encode real arithmetic formulas, we de-
clare uninterpreted functions that embed SMT reals into the sort U repre-
senting TLA™T values, i.e., real2u : Real — U and u2real : U — Real. Real
represents SMT reals, real2u embeds SMT reals into a sort U representing
TLAT values and u2real performs the reverse. This is supported by the axiom
Vm € Real : u2real(real2u(m)) = m to ensure the consistency and soundness of
translating SMT reals into the sort U. Real arithmetic operations over TLA™T val-
ues are homomorphically defined over the image of real2u using axioms. In the
axiom VYm, n € Real : plus(real2u(m), real2u(n)) = real2u(m + n), the + oper-
ation on the right-hand side denotes the built-in addition operation over SMT
reals, while plus has function type U x U — U. Similar axioms are defined for
other real arithmetic operations and utilise the existing uninterpreted functions
for operators that are introduced by Merz et al. in [9,/10].

Remark 1. At present, Z3 is the default real arithmetic backend; however, other
tools exist which likewise accept SMT-LIB input and could serve as alternatives.
It must be noted that some of these tools (e.g., MetiTarski [13]) can only work
with SMT-LIB inputs of a particular form and would not be able to handle
problems in the untyped SMT encoding as described above.

3 Safety Verification of Cyber-Physical Systems

As an illustrative example of safety verification that involves real-valued vari-
ables, we will use a model of an oscillator. The motion of a simple harmonic
oscillator, such as a mass m suspended from a spring (with spring constant k)
can be described by a second-order differential equation & + w?x = 0, where
w = \/% is the frequency of oscillation, the state variable x measures the dis-
placement of the mass from the point of equilibrium and & represents the second
derivative of x with respect to time, i.e., the acceleration :%f. The dynamics
of this system can be written down as a system of linear differential equations
& =y, y = —w?z. For simplicity, let m = 1 and k = 1, so that the system
becomes & = y, y = —x. The system can be geometrically represented as a
vector field (y,—x) defined on the real plane (as shown in Fig. . To reduce
the amplitude of oscillations, a damping term D(y) can be introduced into the
system to yield a damped oscillator & =y, y = —z — D(y) in which oscillations
die down over time.

Real Arithmetic in TLAPM 5

Let us consider a hybrid automaton (illustrated in Fig. with two modes
evolving according the undamped (mode ¢;) and damped oscillator dynamics
(mode g2). In this model, the system switches on damping when the displace-
ment z falls below —2 (this could be done e.g., to prevent damage to the spring).
Let us suppose that the initial displacement xg of the oscillator is only known

TTFTF>>> 3w wwwwA (960,240),91

AT TF>>339maa NN
AX T3

(a) Vector field (mode q1) (b) Hybrid automaton

Fig. 2: Hybrid system model of an oscillator

to be within the bounds —% <z < % and the initial velocity yg is in the range
1<y < % From this set of initial conditions we wish to prove that damping
need never be applied (i.e., the hybrid automaton in Fig. never transitions into
mode g2). There are a number of ways in which one can prove the safety specifi-
cation described above. A common approach (which does not involve computing
solutions to the differential equation) is to exhibit an appropriate inductive in-
variant, i.e., a set of states I C R? such that all trajectories starting inside the
invariant remain within the invariant. A standard proof of safety using an induc-
tive invariant involves showing three things: (1.) that the proposed invariant is
indeed inductive (i.e., that the system cannot transition outside the invariant),
(2.) that all possible initial states of the system lie within the invariant, and
(3.) that the invariant contains no unsafe states that are deemed undesirable.
In order to prove our property of interest, we can employ an inductive invariant
given by formula 22 +12 < 4Ax%+y% > 1, which corresponds an annular region
illustrated in Fig. where it is seen to include all the initial states (represented
by the grey box) and none of the unsafe states (shown in red) from which the
system may transition into mode g where damping is applied.

Several methods exist to check whether a proposed invariant is inductive
(i.e., to solve (1.)); while these fall outside the scope of the present paper, these

6 0O.V.W. Gunasekera et al.

methods essentially reduce the problem to one of real arithmetic. In this example,
the fact that 22 4 32 is a conserved quantity can be established by checking that
its time derivative 2z + 2yy is everywhere zero (i.e., 2zy —2yxz = 0). For solving
(2.) and (3.), the first-order theory of real arithmetic provides us with a formal
language that is expressive enough to state properties such as inclusion or non-
intersection of sets, provided that these are described using formulas that only
involve polynomials. Establishing the inclusion of the initial states within the
invariant and its non-intersection with the unsafe states in this example reduces
to proving the following sentences:

VeyeR —05<zAz<05Al<yAy<1bi—oa?+y?<dnz?+y?>>1,

Initial states Invariant

Vao,yeR - |z < 2A22+9y2 <dnz?+9°>1
N——

Unsafe Invariant

Figure [3| shows how these conjectures are represented in the TLAT syntax
and solved using our implementation with Z3 as a real arithmetic backend.

EXTENDS TLAPS, Reals

(*
* All possible initial states of the systems lie within the
* proposed invariant Init => Inv. The conjecture is proven true.
*)
THEOREM \A x,y \in Real: ((-0.5 <=x /\ x <= 0.5 /\ 1.0 <=y /\ y <= 1.5)
=> ((xxx)+(y*y) < 4.0 /\ (xxx)+(yxy) >= 1.0))
BY 73

(*

* The invariant does not contain unsafe states.

* a(Unsafe /\ Inv) The conjecture is proven true.

*)

THEOREM \A x,y \in Real: ~((x <= - 2.0) /\ ((x*x) + (y*y) < 4.0 /\
(x*x) + (y*y) >= 1.0)) BY Z3

Fig. 3: Hybrid system safety verification: real arithmetic conjectures (2.) and (3.)

Unlike hybrid automata, discrete-time dynamical systems can be modelled
in TLAT in a straightforward way. Let us consider the following discrete-time
system in which the state variables x and y take values in the real numbers:
2x(t t

) | ¥

x(t+1) =

Real Arithmetic in TLAPM 7

Let us suppose that the system may be initialised from any state satisfying
the formula 22 + y? < 1 (i.e., (0)® + y(0)? < 1) and that we wish to show that
the absolute value of x can never exceed 1 as the system evolves. To prove this,
let us take x2 + y2 < 1 as our candidate inductive invariant. The inclusion of
all initial states within the invariant is trivial in this case, so it remains to show
that (1.) no unsafe state satisfies 22 +y2 < 1, and (2.) 22 +y? < 1 is an inductive
invariant. To show (1.) , one needs to prove that the invariant implies the safety
of the system, i.e., that for all z,y € Rone has 22 + 9?2 <1 =z <1Az > —1.
To prove (2.) one needs to show that the set of states satisfying 2 + y? < 1 is
closed under the dynamics of the system. In TLAT one may model the dynamics
of such a system as follows:

x> =(2.0/3.0)*x + 0.5%y
y’ =0.5%x - (1.0/3.0)*y

where the primed symbols x’ and y’ stand for the value of the variables x and
y in the next state. Showing that the invariant is inductive ultimately reduces
to proving that the following implication holds for all z,y,z’,y’ € R:

2 1 1 1
Py <Ind =S4+ —yny = -x—-y) = (@) +)<,
3 2 2 3
Proving safety specifications for discrete-time systems such as the one above
in TLAT can now be done conveniently with the help of the extended proof
manager.

4 Conclusion

We have developed support in the TLA' Proof Manager for handling first-order
real arithmetic sentences. Real arithmetic problems arise naturally in the ver-
ification of hybrid and cyber-physical systems and our work represents a step
towards facilitating their formal verification using TLAY. Currently, our imple-
mentation employs only Z3 as a real arithmetic backend; however, we note the
potential for supporting additional backends in the future. In particular, tools
such as MetiTarski [13] and dReal [4] can — in addition to serving as alterna-
tive real arithmetic backends — enable reasoning about special functions (such
as sin, cos, In, e, etc., the presence of which makes real arithmetic undecidable).
The TLA' Proof Manager currently does not offer support for working with
these kinds of functions and further extensions to the system could be pursued
to enable this functionality.

References
1. Chaudhuri, K., Cousineau, D., Doligez, D., Lamport, L., Libal, T., Merz, S., Tris-

tan, J.B., Vanzetto, H.: GitHub: The TLAT Proof Manager. https://github.com/
tlaplus/tlapm, [Online; accessed December 2023]

https://github.com/tlaplus/tlapm
https://github.com/tlaplus/tlapm

10.

11.

12.

13.

14.

0O.V.W. Gunasekera et al.

. Denman, W., Munoz, C.A.: Automated real proving in PVS via MetiTarski. In:

FM 2014. LNCS, vol. 8442, pp. 194-199. Springer (2014). https://doi.org/10.
1007/978-3-319-06410-9_14

Fulton, N., Mitsch, S., Quesel, J., Volp, M., Platzer, A.: KeYmaera X: an axiomatic
tactical theorem prover for hybrid systems. In: CADE 2015. LNCS, vol. 9195, pp.
527-538. Springer (2015). https://doi.org/10.1007/978-3-319-21401-6_36
Gao, S., Kong, S., Clarke, E.M.: dreal: An SMT solver for nonlinear theories over
the reals. In: CADE 2013. LNCS, vol. 7898, pp. 208-214. Springer (2013). https:
//doi.org/10.1007/978-3-642-38574-2_14

Gunasekera, O.V.W.: GitHub: TLAT proof system with real arithmetic support.
https://github.com/0vini99/TLAPS_Real, [Online; accessed December 2023]
Lamport, L.: Hybrid systems in TLAT. In: Hybrid Systems. LNCS, vol. 736, pp.
77-102. Springer (1992). https://doi.org/10.1007/3-540-57318-6_25
Lamport, L.: Specifying Systems: The TLA™T Language and Tools for Hardware
and Software Engineers. Addison-Wesley (June 2002)

Lamport, L.: Industrial Use of TLAT. https://lamport.azurewebsites.net/
tla/industrial-use.html| (2019), [Online; accessed March 2023]

Merz, S., Vanzetto, H.: Harnessing SMT solvers for TLAT proofs. Electron. Com-
mun. EASST 53 (2012). https://doi.org/10.14279/TUJ.ECEASST.53.766
Merz, S., Vanzetto, H.: Refinement types for TLAT. In: NFM 2014.
LNCS, vol. 8430, pp. 143-157. Springer (2014). https://doi.org/10.1007/
978-3-319-06200-6_11

Merz, S., Vanzetto, H.: Encoding TLAT into many-sorted first-order logic. In:
ABZ 2016. LNCS, vol. 9675, pp. 54-69. Springer (2016). https://doi.org/10.
1007/978-3-319-33600-8_3

Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
CADE 1992, Proceedings. LNCS, vol. 607, pp. 748-752. Springer (1992). https:
//doi.org/10.1007/3-540-55602-8_217

Paulson, L.C.: MetiTarski: Past and future. In: ITP 2012. LNCS, vol. 7406, pp.
1-10. Springer (2012). https://doi.org/10.1007/978-3-642-32347-8_1

Wang, S., Zhan, N., Zou, L.: An improved HHL prover: An interactive theorem
prover for hybrid systems. In: ICFEM 2015. LNCS, vol. 9407, pp. 382—-399. Springer
(2015). https://doi.org/10.1007/978-3-319-25423-4_25

https://doi.org/10.1007/978-3-319-06410-9_14
https://doi.org/10.1007/978-3-319-06410-9_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://github.com/Ovini99/TLAPS_Real
https://doi.org/10.1007/3-540-57318-6_25
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/book-02-08-08.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/05/book-02-08-08.pdf
https://lamport.azurewebsites.net/tla/industrial-use.html
https://lamport.azurewebsites.net/tla/industrial-use.html
https://doi.org/10.14279/TUJ.ECEASST.53.766
https://doi.org/10.1007/978-3-319-06200-6_11
https://doi.org/10.1007/978-3-319-06200-6_11
https://doi.org/10.1007/978-3-319-33600-8_3
https://doi.org/10.1007/978-3-319-33600-8_3
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-642-32347-8_1
https://doi.org/10.1007/978-3-319-25423-4_25

	Real Arithmetic in TLAPM

