Generic Performance Measurement in CI: The GeoMap Case Study

David Georg Reichelt
d.g.reichelt@lancaster.ac.uk

Lancaster University Leipzig, Leipzig, Germany

Stefan Kiihne
stefan.kuehne@uni-leipzig.de

Universitat Leipzig, Leipzig, Germany

Abstract

Continuously developed industry projects with
medium budget often focus on functional correctness,
but not on optimal performance. This is partially
caused by the lack of easily available approaches and
tooling that check for performance changes. The tool
Peass-CI examines performance changes by measure-
ment and analysis of the duration of unit tests. We
present a case study of establishing a continuous per-
formance engineering process in GeoMap, a Spring-
based tool that allows to analyze the real estate mar-
ket for real estate service and market experts.

In the continuous performance engineering process,
we monitored performance changes that happened
during six months and derived performance improve-
ments by code reviews and load test execution. We
found that (1) continuous performance measurement
gives detailed insights into performance changes and
(2) performance improvements by source code changes
are reproducible using performance measurement of
unit tests in Peass-CI.

1 Introduction

It is possible to detect software performance changes,
including regressions that require fixes, by perfor-
mance measurement of microbenchmarks or existing
unit tests [5, 6, 7]. In addition to those case stud-
ies, that build on application-specific tooling, a more
generic process for performance measurement of unit
tests would allow broader use. In our case study, we
research how a continuous performance engineering
process—including usage of the tool Peass-CI'-affects
the performance of the real estate tool GeoMap.

In modern execution environments like the
JVM, performance measurement is hard since non-
deterministic effects such as just-in-time compilation
and garbage collection influence measured perfor-
mance values. To make substantial claims about per-
formance changes, the repetition of a workload inside
a JVM, the repetition of starts of the JVM and a sta-
tistically rigorous analysis are necessary. This process

Thttps://github.com/jenkinsci/peass-ci-plugin

Hannes Krauf3
hannes.krauss@evermind.de
evermind GmbH, Leipzig, Germany

Wilhelm Hasselbring
hasselbring@email.uni-kiel.de
Universitat Kiel, Kiel, Germany

is time-consuming. Using the tool Peass-CI, the pro-
cess can be sped up using a regression test selection
for performance measurement of unit tests.

We conducted a case study on the tool GeoMap,
were we installed the tool Peass-CI in a Jenkins server
and measured the performance during the develop-
ment. 21 commits out of all 240 commits cause per-
formance changes. Acting on them is rarely useful,
because no commit detoriated the performance in an
unacceptable size. Furthermore, we implemented per-
formance improvements based on code reviews and
load test executions. Thereby, we improved the per-
formance of the load tests significantly.

The remainder of this paper is structured as fol-
lows: First, we introduce the tool GeoMap. After-
wards, we describe the adaptions required to make
Peass-CI usable on GeoMap. In the following sec-
tion, we describe our measurement results on regular
performance measurements and our performance im-
provements. Our measurement results are subsequen-
tially compared to related work. Finally, we give a
summary and an outlook.

2 GeoMap

GeoMap is a tool for real estate data analysis.? It sup-
ports real estate experts with data of offers, statisti-
cal and historical data of prices and sociodemographic
and socioeconomic data that are the fundation of real
estate investment decisions. Since GeoMap analyzes
a big amount of data and experts need to work with
the tool day-to-day, fast responses are necessary.
The tool consists of three components: The fron-
tend, which is used by real estate experts to make
their analysis, the backend, which provides data to the
frontend via a REST interface and an API for external
usage, and the crawler, which crawls various sources
for real estate data. Since the performance visible to
the end user is mostly driven by the backend, we focus
on it. The backend is built using a microservice ar-
chitecture, were each microservice provides individual
functionalities e. g. for data management of real estate
objects. The data is persisted in a NoSQL database.

’https://geomap.immo/


https://github.com/jenkinsci/peass-ci-plugin
https://geomap.immo/

The backend uses three main libraries, which provide
data transfer objects, commonly used functions, e.g.,
for spatial data mangement, and an abstraction layer
for the database access.

GeoMap uses three kinds of test: Regular unit
tests, docker-based tests that use locally started
docker instances and integration tests that use re-
mote services. The docker-based tests are imple-
mented using SpringJUnit4ClassRunner and use an
ad-hoc database instance and mailhog for mocking
email sending and receiving functionality. We only
consider the regular unit tests and the docker-based
tests, since calling external services would increase the
deviation of our measurements heavily.

3 Continuous Performance Measure-
ment in GeoMap

Regular unit tests can be measured directly by repeat-
ing the workload inside of one JVM and repeating the
JVM start several times [9]. For the docker-based
tests, the measurement is done using Kieker and the
docker startup is configured.

Performance Measurement With Kieker The
measurement of plain JUnit tests can be done by re-
peating a JUnit Statement. @Before, @After and
their class-level equivalents can be included or ex-
cluded by configuration, which enables skipping the
setup for workload repetition or not measuring it as
part of the workload duration. For custom test run-
ners, this is impossible, since JUnit wraps the test
runners workload inside the tested Statement. To
still achieve fine control over what workload is mea-
sured, we use Kieker source instrumentation® directly
in the test method.

Configuration of Docker Start Since the start
of docker containers is time-consuming, we decided
to start the containers once per execution and mea-
sure only the tests that were compatible with this ap-
proach, i.e. tests that did clean up the database.

4 Results

In this section, we first give an overview over the reg-
ular commits that occured during our case study pe-
riod and afterwards discuss how performance improve-
ments could be reproduced using continuous perfor-
mance measurement of unit tests.

4.1 Regular Commits

During our examination period of 6 month, 185 com-
mits were analyzed in the backend and 55 commits
were analyzed in the libraries. From the backend
commits, 138 build successfully* and contain changed

Shttps://github.com/kieker-monitoring/
kieker-source-instrumentation

4Between releases, the backend relies on Snapshot versions
of the libraries, which led to incompatilities on our build server.
We compared the last commit were the backend was compilable
to the first commit were the backend was compilable again.

source code, and 89 of them contained unit tests
that covered changed source code. From the library
commits, 43 were analyzable and contained changed
source code, 13 contained unit tests that covered the
changed source code. The code in the libraries that
is not tested in their unit tests is partially tested in-
directly in the backend. Since we only measured the
master branch, some of the commits were merge com-
mits and therefore change huge parts of the source
code. Of the overall 240 analyzed measured test cases,
21 contained performance changes. The root causes
of these performance changes were grouped by manual
analysis in three categories:

Functional Changes — Changed functional re-
quirements cause added, removed or changed opera-
tions at method level. These cause both performance
regressions and improvements. In our analyzed time-
frame, 21 testcases (in 11 commits) had changed per-
formance due to functional changes. Since the func-
tional changes were necessary and were not causing
huge slowdowns, no action was taken on them.

Testcase Changes — To improve test coverage
or to fix flaky tests, the testcases themselves were
changed. This usually causes performance changes,
e.g. because added assertions consume time. This
partially hides other performance changes in the same
commit. This happened in 9 testcases (in 6 commits).

Optimizations — Due to reasoning on the code,
developers detect performance optimization options,
e.g. using PoolingHttpClientConnectionManager
instead BasicHttpClientConnectionManager im-
proved the performance. These improvements could
be confirmed by the measurement in Peass-CI. It af-
fected to 9 testcases (in 3 commits).

Version Updates — Updates of versions of third-
party libraries like the database client both improved
and detoriated the performance. Since checking the
root causes in third party libraries would be very time-
consuming, we accepted these performance changes.
This affected 6 testcases in one commit.

Since the measured commits did not contain per-
formance regressions caused by inefficient API usages
or algorithms, no action was taken based directly on
the measurements. Out of the 21 commits changing
the performance, four performance changes were also
measurable by GeoMaps load tests. One additional
performance change was detected by the load tests.
Therefore, while unit test measurement cannot re-
place load tests, it can be a proxy for performance
changes. Accordingly, the developers conceived the
overview of performance changes as an improvement
for their insights into the performance evolution of Ge-
oMap and continue to check for performance changes
with Peass-CI.

4.2 Performance Improvements

By (partially automated) code review and manual ex-
perimentation, we found four performance improve-


https://github.com/kieker-monitoring/kieker-source-instrumentation
https://github.com/kieker-monitoring/kieker-source-instrumentation

ment options. In the following, we describe the per-
formance improvements.

Code Review — By code review together with the
developers, we detected three types of performance
improvements: (1) Inefficient StringBuilder usage:
Instead of using StringBuilder, StringBuffer was
used and the append calls were distributed over differ-
ent statements® (2) Inefficient Pattern usage: Pattern
were recreated on every method call with constant
parameters. (3) Unnecessary call: It was checked
whether a database entry exists and this information
was never checked again. Based on this input, the de-
velopers created performance improvement commits.
The improvements could be measured by Peass-CI.

Manual Experimentation — Since reviewing ev-
ery class is time-consuming, the developers decided
which part of the software is most relevant in terms
of performance and implemented load tests for them.
By review of the load test results, we detected an im-
plementation error: A blacklist for data insertion was
read in every call and appended to a not-resetted list.
This caused increasing overhead during the operation
of the system. The problem was measurable by a load
test. Using Kieker source instrumentation and anal-
ysis of the measured data, the root cause could be
determined. After fixing it, the performance improve-
ment was directly measurable by a unit test.

5 Related Work

Different tooling exists to include performance bench-
marking into CI, e.g., Stochastic Performance Logic
[2] and JMHC. Only ~0.4 % of open source projects use
such tools [8]. There exist case studies of performance
benchmarking in CI and of application of performance
engineering methods on repository histories.

Benchmarking in CI — Waller et al. [5] describe
how regression benchmarking was introduced to the
Kieker CI process. Heger et al. [3] applied a root cause
analysis approach at SAP and detected an unknown
performance regression. In contrast to our work, these
works use benchmarks written for performance mea-
surement instead of unit tests.

Performance Engineering on Repository
Histories — By a retrospective analysis of which
changes or problems performance engineering meth-
ods would have identified, differents works prove the
effectiveness of their approach. Chen et al. [7] show
that performance changes can be detected by mea-
surement of existing unit tests and microbenchmarks
in Hadoop and RxJava. Pradel et al. [4] show that
their performance testing of concurrent classes can
identify performance problems on existing reposito-
ries. Foo et al. [1] show that by applying their re-
gression testing measurement data analysis methods,

Sappend calls should be written in one statement as de-
scribed by https://pmd.github.io/latest/pmd_rules_java_
performance.html.

Shttps://github.com/openjdk/jmh

performance problems can be detected that analysts
overlooked before. In contrast to our work, these
works do a restrospective analysis and identify per-
formance problems, while we examined performance
changes during the software development process.

6 Summary and Outlook

We examined the performance of the real-estate tool
GeoMap using Peass-CI during the development. We
were able to spot 21 performance differences and im-
plemented four performance improvements. We plan
to examine the usage of Peass-CI on other projects to
get a more detailed view of how performance changes
over time and how continuous performance measure-
ment influences the software development process.
Acknowledgments This work is funded by the
German Federal Ministry of Education and Research
within the project “Performance Uberwachung Ef-
fizient Integriert” (PermanEnt, BMBF 011520032D).

References

[1] K. C.Foo et al. “Mining Performance Regression
Testing Repositories for Automated Performance
Analysis”. In: ICQS ’10. IEEE. 2010.

[2] L. Bulej et al. “Capturing Performance Assump-
tions Using Stochastic Performance Logic”. In:
ICPE ’12. Boston, Massachusetts, USA: ACM,
2012, pp. 311-322.

[3] C. Heger, J. Happe, and R. Farahbod. “Au-
tomated Root Cause Isolation of Performance
Regressions During Software Development”. In:
ICPE 13. Prague, Czech Republic: ACM, 2013.

[4] M. Pradel, M. Huggler, and T. R. Gross. “Perfor-
mance regression testing of concurrent classes”.

In: ISSTA ’14. ACM. 2014, pp. 13-25.

[5] J. Waller, N. C. Ehmke, and W. Hasselbring.
“Including Performance Benchmarks into Con-
tinuous Integration to Enable DevOps”. In:
ACM SIGSOFT Software Engineering Notes
40.2 (Mar. 2015), pp. 1-4.

[6] J.P.Sandoval Alcocer, A. Bergel, and M. T. Va-
lente. “Learning from Source Code History to
Identify Performance Failures”. In: ICPE ’16.
Delft, The Netherlands: ACM, 2016, pp. 37—48.

[7] J. Chen and W. Shang. “An Exploratory Study
of Performance Regression Introducing Code
Changes”. In: Proceedings of the 2017 IEEE I1C-
SME. IEEE. 2017, pp. 341-352.

[8] P. Stefan et al. “Unit Testing Performance in
Java Projects: Are We There Yet?” In: ICPE ’17.
ACM. 2017, pp. 401412

[9] D. G. Reichelt and S. Kiithne. “How to Detect
Performance Changes in Software History: Per-
formance Analysis of Software System Versions”.
In: Companion of the ICPE ’18. Berlin, Ger-
many: ACM, 2018, pp. 183-188.


https://pmd.github.io/latest/pmd_rules_java_performance.html
https://pmd.github.io/latest/pmd_rules_java_performance.html
https://github.com/openjdk/jmh

	Introduction
	GeoMap
	Continuous Performance Measurement in GeoMap
	Results
	Regular Commits
	Performance Improvements

	Related Work
	Summary and Outlook

