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Summary: In this discussion response we consider some practical implications of the authors’ consideration of the

no highest order interaction model for multiple systems estimation which permits the authors to derive the explicit

(albeit untestable) identifying assumption related to the unobserved (or missing) individuals. In particular, we discuss

several aspects, from the standard process of model selection to potential poor predictive performance due to over-

fitting and the implications of data reduction. We discuss these aspects in relation to the case study presented by

the authors relating to the number of civilian casualties within the Kosovo war, and conduct further preliminary

simulations to investigate these issues further. The results suggest that the no highest order interaction models

considered, despite having a potentially useful theoretical result in relation to the underlying identifying assumption,

may perform poorly in practice.
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1. Introduction

We would like to thank the authors for this interesting paper that challenges the readers,

and more particularly the practitioners of multiple systems estimation, to consider further

the underlying identifying assumption of the models. Common modelling techniques for

multiple systems estimation require an untestable identifying assumption to be made to

estimate the unobserved population size, with the assumption relating to the unobserved,

(and hence missing sector) of the population. However this issue is typically overlooked

and no identifying assumption explicitly stated. The paper asserts that if no identifying

assumption can be justified for a given dataset, then no estimate of the population size

should be provided.

The paper shows that for the no highest-order interaction (NHOI) log-linear model (i.e. for

a dataset with K lists, the log-linear model with all interactions present, up to and including

(K − 1)-way interactions), the associated identifying assumption can be expressed in the

form of a log odds ratio equivalence. Consequently a level of sensitivity of the identifying

assumption can be investigated by varying this defined log odds ratio. However, it is noted

that this ratio is difficult to interpret when there are more than K = 3 lists; and thus when

the number of lists isK > 3, the paper suggests reducing to the consideration of the marginal

K ′ (< K) NHOI if there is suitable domain knowledge to permit this list reduction. This

approach is applied to the case study relating to the number of civilian casualties in the

Kosovo war where there are K = 4 lists, but using domain knowledge this is reduced to

K ′ = 2 (where the domain knowledge is that the 2 lists are likely to be independent).

We strongly agree with the authors that the sensitivity of the estimates should be assessed

to deviations from the statistical assumptions made. Consequently, our discussion focuses

on the implications of this paper to the practice of multiple systems estimation, focusing on

the use of the Kosovo example presented as a practical case study. In particular in relation
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to the consideration of using the NHOI model we discuss further issues relating to (i) model

selection and the bias-variance trade-off; (ii) the robustness of the estimate due to potential

over-fitting; and (iii) data reduction.

2. Model selection

The mainstream approach in multiple systems estimation (e.g. Silverman, 2020) involves

considering the set of hierarchical log-linear models. The estimate of the total population size

can vary substantially dependent on the log-linear model in terms of the presence/absence

of interactions within the model being fitted to the data (e.g. Hook and Regal, 1995).

Model selection uses a data-driven approach adopting the principal of parsimony, balancing

the trade-off between bias and variance within the estimation process. To investigate the

sensitivity of the estimated population size for the Kosovo data in relation to the NHOI

model, we conducted a model selection process. In particular, we considered Akaike’s In-

formation Criterion (AIC) to compare competing hierarchical log-linear models, using a

step-wise search algorithm adding/removing interaction terms until no improvement in AIC

statistic was found. Applying this approach, the model determined to be optimal contained

all interactions except those that involved an interaction between the sources ABA and

HRW . The corresponding maximum likelihood estimate for the total population size under

this model is 12740, which is indeed somewhat different from the estimate of 16940 under

the NHOI model. The MLEs of the estimated model parameters for the NHOI and model

deemed optimal via the AIC are provided in Appendix A. In practice, we would strongly

advocate that the sensitivity of the population estimate is investigated with respect to

different competing (plausible) models. Further, model-averaging techniques may be applied

to obtain an estimate of the total population size that takes into account both the parameter

and additional model uncertainty, (e.g. Buckland et al., 1997; Hoeting et al., 1999; King and

Brooks, 2001).
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3. Over-fitting

In general, applying a more complex model than necessary may lead to both over over-

fitting and associated poor precision for the model parameters. This, in turn, can lead to

poor predictive performance. We investigate these issues for the NHOI models fitted to the

Kosovo data.

Firstly, we consider the precision of the population size estimates. For the NHOI model,

we obtain an MLE of the total population size of 16941 with 95% (non-parametric boot-

strap) confidence interval (CI) of (8980, 36100). (For consistency throughout we calculate

non-parametric confidence intervals which avoids the need for any asymptotic normality

assumptions, and so these CIs differ to those of the authors). For comparison, the model

deemed optimal via the AIC statistic has an MLE of the total population size of 12741

with 95% CI of (9740, 18100). The CI for the more complex NHOI model is, as expected,

significantly wider with the upper limit essentially twice that of the optimal AIC model

(despite only having 3 additional parameters).

Secondly, to investigate the issue of the potential over-fitting of the model to the data,

we conducted a simulation study. In particular, we simulated new datasets by randomly

perturbing each observed cell entry uniformly between ± 10% (and 5% and 1%) of the

observed cell entry and refitted the NHOI model and model deemed optimal via the AIC

statistic for the original data. For completeness, we also fit the reduced K ′ = 2 NHOI

model to the perturbed data. A summary of the results obtained is presented in Table 1.

We note that the sensitivity of the estimates of the unobserved population is substantially

more marked for the NHOI model. For example, at the 5% perturbation level, > 50% of the

perturbed datasets led to an estimate of the number of unobserved individuals that differed to

the associated estimate for the (unperturbed) observed data by at least 10%; whereas for both

the model deemed optimal and the reduced K ′ = 2 NHOI model, > 50% of the perturbed
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datasets led to an estimate that differed by at most 5% to the corresponding estimate

obtained for the observed data. Thus these preliminary results suggest that the estimates

obtained from the NHOI model may not be robust to even relatively small perturbations of

sampling variability we would reasonably expect within the observed data.

[Table 1 about here.]

4. Discarding data

The model deemed optimal via the AIC statistic corresponds to all interactions (up to

order 3) present except those between ABA and HRW , suggesting that the independence

assumption between ABA and HRW appears valid, given the observed data. It would

seem a useful exercise (and good practice) that, in general, any such assumed domain

knowledge is tested with the observed data, and we discuss this further in Section 5. However,

reducing the dataset to K ′ lists, and in the paper the authors consider K ′ = 2 lists (ABA

and HRW ), discards a substantial amount of information (including 2295 individuals not

identified by either of these sources). There is no discussion or investigation in the paper of

the impact of discarding such data on population estimates, including, for example, whether

interactions present with other lists may lead to biases in the associated estimates when the

lists are marginalised and reduced in this way. This would seem to be of primary importance

before marginalising the data and considering only a subset of the available data based on

domain knowledge. See Sharifi Far et al. (2021) for further discussion regarding investigating

the sensitivity of multiple systems estimation via list inclusion/exclusion. We discuss this

particular issue next via a simulation study.

To investigate the issue of reducing the data to K ′ lists, we simulated 50,000 data sets

from the fitted NHOI model to the Kosovo data (for the associated parameter values see

Table 1) and applied the reduced K ′ = 2 model, considering only the data observed by ABA
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and HRW . In all cases the estimated MLE of the K ′ = 2 NHOI model was lower than

the simulated true value. Further, in all cases, the 95% (non-parametric bootstrap) CI for

the total population size did not contain the true value from the model, and in particular

the MLE was 64-70% below the true value 95% of the time. This suggests that, for at least

data similar to the observed Kosovo data, the estimated population size is not robust to

reducing the data to considering the absence/presence of individuals on only the 2 data lists,

(associated with ABA and HRW ) when considering the NHOI model. We repeated the

process using the fitted model deemed optimal via the AIC statistic, where the lists ABA

and HRW were independent in the model, leading to 89% of the corresponding 95% CIs

containing the true value for the total population size. The associated difference of the MLE

to the true value of the total population size was (-13%, 20%) in 95% of cases.

To investigate the performance of the reducedK ′ model, we considered a further simulation

study, considering K = 4 lists and the model with all two-way interactions present, except

between two lists, which we label S3 and S4. We then reduced the data to simply consider the

K ′ = 2 independent lists, S3 and S4. See Appendix B for further description of the model

and associated parameter values. We again simulated 50,000 datasets, given the specified

model, before reducing the model to simply the two independent lists and estimate the

associated total population size. From the simulations, we first note that the MLE of the

total population size using the K ′ = 2 lists was less than the number of observed individuals

from the K = 4 lists (which is a lower bound of the total population size) for 37% of the

simulated datasets; and again none of the 95% CI contained the true value of the population

size. These results are despite the model used to simulate the data assuming that the two

K ′ = 2 lists are independent.

The results obtained from these limited simulation studies suggest that additional inves-
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tigation is warranted to determine the appropriateness of considering reduced K ′ NHOI

models.

5. Concluding remarks

The authors highlight the untestable identifying assumptions in their paper relating to

multiple systems estimation. However, to date, an explicit identifying assumption has only

been specified for NHOI models; yet a number of practical issues can arise when considering

the saturated NHOI model as discussed above and demonstrated for the given case study. In

particular, within this discussion we have focused on potential issues which can arise when

considering NHOI models without due care, and explicitly highlight the potential risks of

over-fitting and discarding data, thus losing potentially valuable information, and leading to

poor population size estimates.

The set of hierarchical log-linear models are commonly fitted within multiple systems

estimation, which are simply nested sub-models of the NHOI model. These nested models

are specified such that given interaction terms are simply set to the value zero. Following

this intuitive line of thought (of simply setting interaction terms to be equal to zero),

readers of the paper may wonder why the identifying assumptions do not follow in the

analogous manner; and also whether the subsequent interpretation of the previous log-odds

ratio changes.

Considering datasets beyond the Kosovo case study presented, many such multiple systems

estimation datasets are sparse in nature, with (multiple) cell entries equal to 0. The sparsity

of the data typically increase as K increases. The presence of 0 cell entries can lead to

parameters that are non-estimable (e.g. Fienberg and Rinaldo, 2012; Sharifi Far et al., 2021)

or are estimated to be infinite (e.g. Chan et al., 2021). This issue will be most acute for the

NHOI model, but can also affect many nested sub-models. Do the authors have any thoughts

or insights in to the implications of such 0 cell entries for their results? For example, how
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infinite (or non-estimable) estimates affect either the interpretation and/or sensitivity of the

identifying assumption.

Finally, we hypothesise that consideration of ideas associated with the (related) field of

ecological capture-recapture modelling may provide some additional insight into the general

thorny problem regarding the validity of underlying assumptions (though it is unavoidable

that assumptions relating to the unobserved individuals are unverifiable). For example,

within the ecological models, the validity of some assumptions can be considered through a

series of diagnostic goodness-of-fit tests derived through the factorisation of the likelihood

function: one component of which is used to estimate parameters, whilst the other can be used

to assesses model adequacy (Pollock et al., 1985). Similar ideas can be applied to investigate

the case of suspected independence between two lists, where we may wish to consider the

K ′ = 2 case. For example, list independence can be examined within the observed data,

conditional on being observed by each other list in turn (or combination of lists).

The need to be able to provide robust estimates of population size is of key importance

across many different fields. Consequently it is critical that limitations of multiple systems

estimation are fully understood and explored. This paper has articulated explicit identifying

assumptions relating to the unobserved individuals that can be applied to the NHOI models

(and challenges readers to derive these for alternative models), although the interpretation

is challenging for K > 3 lists. Practical issues also arise when applying the specified NHOI

model to data, with some of these briefly investigated above. In general, the particular

approach taken, will be dictated by the specific question(s) of interest. However, due to

the many practical issues that arise for the NHOI model, we suspect that practitioners will

continue to focus on using model selection techniques and/or model-averaged results within

multiple systems estimation, rather than the saturated model which has a nice theoretical

result relating to an explicit untestable assumption for the unobserved individuals. However
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a better understanding of these issues within multiple systems estimation, and additional

theoretical results, are likely to be ongoing areas of future research.

Received XXXXX 20XX. Revised XXXXX 20XX. Accepted XXXXX 20XX.

Appendix A

The estimates of the model parameters for the Kosovo data for the NHOI model and model

deemed optimal via AIC statistic are provided in Table 2.

[Table 2 about here.]

Appendix B

For the additional data that are simulated in Section 4 we consider four sources labelled S1,

S2, S3 and S4. The data are generated from the model with all two-way interactions, excluding

the interaction between lists S3 and S4, i.e. model {S1×S2, S1×S3, S2×S3, S1×S4, S2×S4}.

The parameters specified for the log-linear parameters are given in Table 3. Within the

specification of the model, we use corner point constraints for all parameters, such that

the parameter values given above relate to the “upper” level of the associated log-linear

parameter.

[Table 3 about here.]
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Table 1: The minimum, lower 2.5% quantile, lower 25% quantile; upper 25% quantile; upper
2.5% quantile and maximum MLE of the total population size when perturbing the observed
data cell entries by (i) 10%; (ii) 5%; and (iii) 1% for the NHOI model; model deemed optimal
for the Kosovo data via the AIC criterion; and reduced 2 list model using 10,000 simulated
datasets. The MLE for the observed data was 16941 for model NHOI; 12741 for the model
deemed optimal; and 9691 for the reduced 2 list model.

NHOI model Optimal model 2-list NHOI model

Perturbation level Perturbation level Perturbation level
10% 5% 1% 10% 5% 1% 10% 5% 1%

Minimum 7986 10658 14046 10268 11389 12261 8052 8730 9283
2.5% 11910 13843 15278 10970 11766 12346 8702 9140 9448
25% 14799 15705 16304 12028 12356 12547 9317 9487 9601
75% 19393 18269 17599 13491 13129 12945 10063 9896 9780
97.5% 25486 21175 18915 14945 13836 13162 10802 10280 9945

Maximum 35338 25537 20172 16113 14322 13261 11911 10886 10137
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Table 2: The MLEs (standard errors) for the model parameters for the NHOI model and
model deemed optimal via the AIC statistics for the Kosovo data.

NHOI Optimal
Parameter model model

Intercept 9.437 (0.473) 9.029 (0.192)
ABA -2.695 (0.472) -2.290 (0.189)
EXH -2.406 (0.472) -1.999 (0.194)
HRW -3.713 (0.470) -3.305 (0.182)
OSCE -2.595 (0.472) -2.190 (0.194)

ABA× EXH 0.843 (0.465) 0.443 (0.204)
ABA×HRW 0.408 (0.433) –
ABA×OSCE 1.234 (0.466) 0.842 (0.201)
EXH ×HRE 1.346 (0.459) 0.949 (0.206)

EXH ×OSCE 0.994 (0.467) 0.603 (0.207)
HRW ×OSCE 1.684 (0.460) 1.299 (0.202)

ABA× EXH ×HRW -0.326 (0.340) –
ABA× EXH ×OSCE 0.388 (0.448) 0.745 (0.234)
ABA×HRW ×OSCE -0.293 (0.377) –
EXH ×HRW ×OSCE -1.008 (0.416) -0.722 (0.258)
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Table 3: Parameters specified for the log-linear model in Section 4.

Parameter Intercept S1 S2 S3 S4 S1 × S2 S1 × S3 S2 × S3 S1 × S4 S2 × S4

Value 6.0 -2.3 -2.8 -2.4 -1.9 1.5 1.9 1.8 1.2 2.7


