
Data Science & Neutrino Physics:
Improving the Pandora

Reconstruction Framework at the
DUNE Far Detector

Ryan Joseph Cross

This thesis is submitted for the degree of
Doctor of Philosophy

Physics Department
Lancaster University

June 5, 2023



Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in
whole or in part, for a degree at this, or any other university. This thesis does not
exceed the maximum permitted word length of 80,000 words including appendices
and footnotes, but excluding the bibliography. A rough estimate of the word count
is: 62,713 words.

Ryan Joseph Cross

ii



Data Science & Neutrino Physics: Improving the Pandora
Reconstruction Framework at the DUNE Far Detector

Ryan Joseph Cross
Physics Department, Lancaster University

A thesis submitted for the degree of Doctor of Philosophy, June 5, 2023.

Abstract

This thesis outlines two new methods to drastically improve the reconstruc-
tion capabilities of neutrino events at Deep Underground Neutrino Experiment
(DUNE), in the Pandora reconstruction framework. The liquid argon time
projection chamber (LArTPC), the detector technology of choice at DUNE,
provides high spatial and calorimetric resolutions, presenting a difficult but
exciting reconstruction problem. One of the main reconstruction frameworks for
event reconstruction in LArTPCs is Pandora, a software development kit using
a multi-algorithm approach to pattern recognition, which is designed to target
the complex pattern recognition problems that occur in particle physics. The
work in this thesis includes an overhaul of the 3D event reconstruction for tracks,
producing 3D hits from combinations of underlying 2D positions. This new method
produces more coherent and truthful 3D representations of tracks, by intelligently
selecting hits from a generated 3D point cloud through stages of fitting. Secondly, a
graph neural network (GNN) is utilised for the complex problem of electromagnetic
shower growing, taking an electron or photon shower that is clustered into hundreds
of small groups and producing larger, more representative clusters per shower,
whilst avoiding contamination from other interactions in the event. Deep learning
is used to give a more global view of the event for growing, and to better use
the topological features of the showers to help the growing process. All this work
is verified on DUNE far detector simulated data, to give an understanding of
what performance gains are made, and the failure modes they fix. Verification of
the deep learning method is performed on real test beam data from ProtoDUNE
Single-Phase (ProtoDUNE-SP) at CERN. This verification helps give confidence
that work performed on simulated data can also be applied to real data, which is
especially interesting for methods that utilise deep learning.
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1
Introduction

“One thing I’ve learned. You can know anything.
It’s all there. You just have to find it.”

John Constantine - The Sandman

N eutrino physics has enjoyed a period of extensive development and
investment in recent history, spurred on by the discovery of neutrino
flavour oscillations. Because of this, the field as a whole has moved on

from first-time measurements to an era of increased precision. Every parameter
that controls neutrino oscillations is either well constrained, or work is in-progress
to improve the current measurement of that parameter. Chasing higher precision
measurements means there is an even greater need for higher and higher resolutions
of detector, larger and larger masses for even more interactions, and maximising
the efficiency of every link in the analysis chain.

This requirement means that computing is needed now more than ever, to
deal with ever-increasing data sets and the increasing complexity of interactions
in each event. Intelligently implemented software is a key requirement of any
neutrino experiment, a core component to unlock the full potential of the detector
hardware. Without it, the carefully designed hardware and all the work that went
into it may be wasted, blurred away behind ineffective code that obscures the true
power of the detector. Effective reconstruction software is required for multiple
stages of the physics pipeline, producing performant selection algorithms to pick
the target neutrino events, and also to reconstruct the target particle energy. Both
of these are a key component to extract the physics parameters like δCP that we
are chasing.
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Deep Underground Neutrino Experiment (DUNE), as a next generation
neutrino experiment, is at the forefront of neutrino experiments and also has
to contend with these issues. The detector hardware chosen, the liquid argon
time projection chamber (LArTPC), offers high spatial and calorimetric resolution,
resulting in a difficult but very exciting reconstruction problem, to help untangle
the detailed neutrino interaction hierarchies. The high resolution, combined with
the rich physics program at DUNE means there is a significant number of different
topologies and interaction types that must be understood and reconstructed well,
to unlock new physics and aide physics analyses.

This thesis presents work to improve the reconstruction of events in the DUNE
horizontal drift far detector. Computing work such as this is an important part
of any experiment, and reconstruction must be in place when the DUNE detector
starts taking initial data, to aid understanding of how the detector is performing,
and remove any potential delay between data taking and using the collected data.
As computing has evolved, so have the techniques used, taking advantage of
increased available computing power, as well as a deeper understanding of efficient
software production. For this reason, a modern neutrino experiment must also
utilise modern data science techniques including deep learning and the wealth of
advancements made there to help improve the reconstruction of events, enabling
physics analyses to proceed with fewer issues.

First, Chapter 2 outlines the history of neutrino physics, alongside a brief
overview of how computing and neutrino physics has evolved together over time.
As software forms a core part of experiments now, it is interesting to look back
on how it has evolved, and how paradigms in computing have changed, especially
with respect to reconstruction and analysis. Due to neutrino physics having a rich
history of experiments over the years, we can track the changes and broad uses
of techniques from the sixties through to today. This chapter also outlines some
common neutrino interaction types, to aid understanding of later chapters.

With an understanding of both neutrino physics and the ties to computing,
Chapter 3 gives an overview of DUNE, including its physics goals, and an overview
of the projects and hardware at the heart of the experiment, including the chosen
detector technology, the LArTPC. Additionally, an outline of ProtoDUNE-SP, the
prototype of one of the DUNE detector designs at CERN is given. ProtoDUNE-SP
is exciting for many reasons, providing a realistic test bed for both hardware
designs and also providing a realistic data input for software production and
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validation.
As software is a key part of this thesis, Chapter 4 outlines the software stack

in use at DUNE, explaining the high-level steps to go from nothing through
to a full realistic simulated neutrino interaction in the chosen DUNE detector
designs. Following from the more general overview of the software steps, an in-
depth explanation is given of Pandora, the reconstruction framework within which
the work from this thesis was implemented. This allows the design behind Pandora
to be explained, as well as a more thorough explanation of the steps that Pandora
takes to reconstruct interactions in LArTPCs.

Deep learning is becoming a larger and larger part of analysis across all of
computing, not just particle physics. Chapter 5 covers the basics of deep learning,
from basic neural networks and how they learn, through to image and graph based
networks. Then, a brief overview of how deep learning is being used in particle
physics experiments, to give an idea of the wide range of use cases it has, across
many problems.

Chapter 6 is dedicated to work on improving the 3D reconstruction of hits
in Pandora. First, an explanation of the basics of producing a 3D hit is given,
as well as some approaches to match hits across views. This is followed by the
limitations and why work is needed in this area. Next, an explanation of each of
the core components that went into upgrading the 3D hit creation in Pandora, as
well as an overview of the performance improvements seen, split into how each of
the individual changes helps improve the production of sensible 3D hits. As part
of this thesis, extended investigation was made into the ordering and impact of the
existing algorithms, as well as development of the new tooling and algorithms to
exploit the existing algorithms more effectively. This includes adding the ability
to run all algorithms, not just one, and then all tooling to utilise this new, extend
output. Additionally, existing infrastructure was extended to add new features
like stronger detector geometry checks and hit interpolation. The existing initial
3D hit creation algorithms were not developed as part of this thesis.

Chapters 7 and 8 are dedicated to the improvement of shower growing
in Pandora with deep learning. Shower growing is the process of building
up electromagnetic showers from many hundreds of small groups of hits, into
large groups that more accurately reflect an individual electromagnetic shower.
Chapter 7 outlines the existing implementation for this growing step, as well as
the work put in to understand its limitations and potential scope for improvement.
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This is followed by extensive work on the building of a graph neural network to
target this problem, including the input graph and considerations around building
it, and the technical implementation of that graph and associated network in
Pandora. This is followed by Chapter 8 which is an in-depth look at all the results
of the new deep learning-powered growing, starting with the training process, and
then details about the performance on both the DUNE far detector simulation
and real ProtoDUNE-SP data. Metrics are given for performance, examples of the
growing itself, and potential further work based on the final metrics to unlock even
more performance, given in context against the existing shower growing. With the
exception of the outlined ‘existing’ growing, all the work outlined in this chapter
was performed as part of this thesis, including the cheating study and development
of a cheating algorithm, and then all subsequent studies into graph structure and
shower growing parameters.

Finally, Chapter 9 contains a summary of all the achieved results.
As part of this thesis, large amounts of technical work was needed to interface

between software tooling, both in creating new interfaces and extending existing
ones. As most of this work has no physics impact, and instead is only used to
unlock the use of new ideas, it is not expanded on much when explaining the
development of this thesis. However, to give an idea of the extent of this technical
work, it is outlined briefly here.

For the 3D reconstruction work outlined in Chapter 6, work was needed to
extend the LArSoft to Pandora interface to include additional 3D simulation
information, which was required for the comparisons performed in that chapter.
This took around a week to implement. A much more substantial amount of work
was needed to extend the existing interface inside Pandora to include the required
libraries needed for graph neural networks (GNNs) for the work in Chapters 7
and 8. The complexity here is mostly due to the relative obscurity in using deep
learning (DL) tools outside of the Python programming language. To build and
subsequently include the newly required libraries took around two weeks, with
an additional week needed to decode and understand the undocumented software
interface required to use the new libraries1. Another week or so was spent ensuring
compliance with the generated model to ensure that it was actually able to be
exported for use outside of Python, requiring slight adjustments to the model
structure and interface to ensure it could be converted to a more portable format.
Finally, a large amount of unseen technical work was needed to ensure the efficient
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training of the developed GNN. This includes the selection of a suitable training
framework, Ray Tune, as outlined in Chapter 7, as well as extensive work on the
efficient creation and storing of graphs for later use in training and testing. This
work took around 6 weeks total, spread across the full development of the DL
shower growing.

1When used via Python, data structures are set up automatically for later use in training or
inference. The layout of these data structures was instead reverse engineered to fit the expected
layout.
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2
Neutrino Physics & Computing

“And therefore, by process of elimination, the
electron must taste like grapeade.”

Futurama - S01E11 “Mars University”

N eutrinos are the most abundant massive known particle in the universe,
however their existence was difficult to discover, due in part to how
elusive they are. In fact, the neutrino was introduced as a “desperate

remedy”, an improbable solution to explain the results seen in the experiments of
the time.

Since then, there has been an explosion of rich physics around neutrinos, with a
suite of experiments designed to probe neutrinos and extend our understanding of
them. Experiments to understand neutrinos have become more and more complex
over time, requiring ever-increasing sensitivity, as well as statistics. Alongside the
growing understanding of neutrinos, physicists have been able to take advantage of
advances in computing power and techniques to be able to use the produced data to
its full potential. Without improvements in computing techniques, improvements
in the experiments we use to probe particle physics theories would be in vain, as
the point where analyses can be performed by hand has long since passed.

This chapter will outline both the history of the neutrino, and the computing
advances that were made during this period that helped utilise the experimental
data to produce a physics understanding. Finally, this chapter ends with a brief
explanation of the common neutrino interactions.
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2.1 History of the Neutrino

In 1914, James Chadwick had shown that the electrons emitted during β decay
had a continuous spectrum of energies [1], rather than the monochromatic energy
distributions seen in the other forms of radiation, α and γ. This directly conflicted
with the nuclear theories of the time, which were based on a two-body model of
beta decay, requiring monochromatic beta spectra. The observed spectra appeared
to violate the law of energy conservation.

It was Wolfgang Pauli who realised that if there was a third invisible particle
that was part of the interaction [2], this particle could take with it a portion of the
interaction’s energy, which would result in the observed distributions in electron
energies. Pauli named this new neutral particle the neutron, with Fermi later
renaming it to the neutrino following Chadwick’s discovery of the neutron in 1932,
with the name neutrino chosen to reference the electrically neutral nature of the
particle, as well as the very small rest mass the particle must have1.

In 1934, Fermi formalised a neutrino-inclusive beta decay theory, which
described the reactions:

(A, Z)→ (A, Z + 1) + e− + ν̄e (2.1.1)

(A, Z)→ (A, Z + 1) + e+ + νe (2.1.2)

where A and Z are the mass number and atomic number, e− and e+ are electrons
and positrons, and νe and ν̄e are the neutrino and antineutrino.

Despite having a formalised theory, it would not be until the 1950s that
evidence for the existence of neutrinos was confirmed experimentally by Reines
and Cowan.

Reines and Cowan were able to find experimental evidence for the “free
neutrino” [3, 4], using an experiment that was initially designed to use the process
of inverse beta decay

ν̄e + p→ n + e+ (2.1.3)

to detect antineutrinos from a nuclear explosion that would take place nearby.
1-ino is a diminutive suffix in Italian, to convey the ideal of the small rest mass of the particle,

i.e. little neutral one.
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This was later changed to use antineutrinos that were emitted from the radioactive
decays of fission products occurring inside a nuclear reactor instead.

Later, it would be determined that the Reines and Cowan had discovered the
electron neutrino, νe, (specifically the electron antineutrino, ν̄e) and it would not
be until 1962 that the muon neutrino, νµ would be discovered by Leon Lederman,
Melvin Schwartz and Jack Steinberger [5]. At Brookhaven National Laboratory,
they created a beam of muon neutrinos from decaying pions, and could then
observe the leptons that were produced in the neutrino interactions. They found
that in the interactions they observed, only muons were produced, and therefore
the neutrinos they had observed were associated with a muon. Additionally,
this also showed that neutrinos are produced with a specific flavour in weak
interactions.

Given that both the muon neutrino and the electron neutrino were associated
with charged leptons (the e and the µ), following the discovery of the tau lepton by
Martin Perl in 1975 [6], it was hypothesised that a third flavour of neutrino, the tau
neutrino, must exist. It would not be until 2000 that the DONUT collaboration
would finally find evidence of the tau neutrino, ντ [7]. The DONUT experiment
produced tau neutrinos from the decay of charmed mesons produced in collisions
between protons and a stationary target, where they would be detected with a
fine-grain emulsion detector.

The ντ was the last lepton of the Standard Model to be found, as well as
being the second most recent particle to be found, with the Higgs Boson being
experimentally discovered in 2012 [8]. Limits on the number of active light
neutrinos were set in 1992 by the Large Electron–Positron Collider (LEP) [9],
which restricted the number to three, based on data from measurements of the
width of the Z boson line shape. An active light neutrino is any neutrino where
mν < mZ

2 , such that it can interact with the Z boson, so the decay Z → νν̄ is
allowed.

Even as neutrinos went from a theoretical particle to ones with direct
experimental evidence, there was mounting evidence that they behaved in odd
ways, creating an unexplained difference between the theories of the time, and
experimental results. One suggestion for this behaviour was suggested in 1957 by
Bruno Pontecorvo [10, 11], who predicted that neutrinos could oscillate, inspired
by a similar process in the neutral kaon system. This would not be confirmed for
many more years, but did provide an explanation for experimental issues seen later,
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most notably, the solar neutrino problem and atmospheric neutrino anomaly. It
would take until 2015 for neutrino oscillations to be confirmed by SNO and Super-
Kamiokande, unravelling the solar and atmospheric contradictions and providing
a deeper insight into the behaviour of neutrinos.

The solar neutrino problem was first identified by the Homestake experi-
ment [12], which was an experiment designed to collect and count neutrinos
emitted by nuclear fusion in the Sun. The Homestake experiment utilised a tank
of perchloroethylene, a dry cleaning fluid, deep underground in the Homestake
Gold Mine. Neutrinos would interact with the chlorine 37Cl atoms and turn into
a radioactive isotope of 37Ar, which could be extracted and counted.

νe + 37Cl→ 37Ar + e− (2.1.4)

After John Bahcall calculated a predicted rate [13] at which the detector should
capture neutrinos, the experiment only turned up a value one third this figure, at
2.56 ± 0.25 SNU2. At the time, this was mostly discounted as an issue with the
experiment, either the low rate of interactions, or missing directional and energy
information, meaning it was difficult to confirm that the interactions were explicitly
due to solar neutrinos, and not another source.

A similar anomaly was identified in atmospheric neutrinos. The atmosphere
is constantly being hit by cosmic rays, mostly composed of protons (95%), alpha
particles (5%) and heavier nuclei and electrons (< 1%). When these rays hit nuclei
in the atmosphere, they shower, setting up a cascade of hadrons. These hadrons in
turn decay and produce atmospheric neutrinos. The dominant part of this chain
is due to charged pions decaying:

π+ → µ+νµ µ+ → e+νeν̄µ

π− → µ−ν̄µ µ− → e−ν̄eνµ (2.1.5)

There is also a contribution from kaon decays at higher energies. This
distribution should peak around 1 GeV and extend out to hundreds of GeV, with
a general ratio of

21 SNU = 10−36 neutrino interactions per target atom per second.
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R = (νµ + ν̄µ)
(νe + ν̄e)

(2.1.6)

should be equal to 2, with computer models indicating this should be equal to 2
with a 5% uncertainty. Experiments, most notably Kamiokande, measured this
ratio, giving their results most commonly in a double ratio of experimental data
vs theoretical methods.

R = (Nµ/Ne)DATA

(Nµ/Ne)SIM
(2.1.7)

with Nµ the number of muon neutrinos in the detector and Ne the number of
electron neutrino events in the detector. If the observed flavour composition
matches expectation, R = 1. However, all measured values of R were significantly
less than 1, indicating either less νµ, more νe or both.

These two problems combined lead to further investigations, culminating in
SNO and Super-Kamiokande receiving Nobel Prizes for the discovery of neutrino
oscillations, explaining the observed problems.

SNO was able to explain the apparently missing neutrinos that Homestake had
seen, as it can detect all neutrinos, regardless of their flavour. Solar neutrinos
have an energy of around 30 MeV, which combined with Homestake only being
able to measure neutrino captures, outlined in Equation 2.1.4, meant Homestake
was only sensitive to νe and effectively blind to any νµ or ντ that arose due to νe

oscillations. SNO, a heavy water-based neutrino detector, detects neutrinos with
three processes, with the most important for the solar neutrino problem being that
SNO can see the neutral-current (NC) channel

ν + d→ n + p + ν (2.1.8)

which can be used to measure the total neutrino flux, ϕ(νe) + ϕ(νµ) + ϕ(ντ ),
assuming that the final state neutron can be currently measured. The final result
for this channel achieved a flux of ϕNC = 5.09± 0.63, which agrees with the Solar
Standard Model estimate. The full flux results, across the three processes, NC,
CC and ES, can be seen in Figure 2.1.

Super-Kamiokande, the next generation of the Kamiokande experiment, aimed
to understand the atmospheric neutrino anomaly, by using a large water Cherenkov
detector, capable of resolving the angular distribution of the atmospheric neutrino
interactions. Like the Kamiokande experiment, it uses the Cherenkov radiation
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Figure 2.1: Solar neutrino flux composition as measured by the SNO experiment. Each
of the coloured bands represents the measured flux of charged-current (CC), neutral-
current (NC) and elastic scattering (ES) events, with a ±1σ spread. The contours are
used to represent the 68%, 95% and 99% probability contours for the joint fit between
ϕe and ϕµτ . Finally, the dashed lines around the ϕNC represent the predicted flux of 8B
neutrinos based on the standard solar model. Figure is from [14].
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produced by the charged leptons in water; however it is much larger in size,
both in terms of target mass and the number of photomultiplier tubes to catch
the Cherenkov light. The light produced can also be used to determine the
charged lepton, with muons leaving clear Cherenkov rings due to their higher
mass, and electrons leaving more diffuse rings, due to the tendency to scatter
and shower. In 1998, Super-Kamiokande published their results, showing the
atmospheric muon neutrino flux as a function of azimuthal angle [15], seen in
Figure 2.2. The observed results can be easily explained under the hypothesis
of neutrino oscillations. The neutrinos arriving from above have travelled around
15 km, which is used to calculate an oscillation probability, alongside measurements
of ∆m2 and an understanding of the average energy of atmospheric neutrinos,
the oscillation probability for neutrinos coming from above is closer to zero.
However, for neutrinos coming up, travelling anywhere up to around 13000 km,
the probability will be much higher. Furthermore, as the νµ are reduced but νe sees
no enhancement, it suggests that the dominant oscillation mode for atmospheric
neutrinos is νµ → ντ . However, Super-Kamiokande was not able to easily detect
ντ at the time, so was unable to check this option itself. More recently, Super-
Kamiokande has been able to exclude no ντ appearance at the 4.6σ level [16].

2.2 Computing And Neutrino Experiments

Physics, especially particle physics, has played a key role in the history of
computing. As experiments in particle physics moved past calculations that were
too complex for a single physicist or a team of physicists to calculate, there
has been a need for further computing power. As experiments get bigger, their
requirements on sensitivity gets higher, and the data they produce gets even
larger, more and more computing power is needed. However, this is not a one-
way street, as many of the advances in computing have also helped unlock new
scientific discoveries and provide a more profound insight into physics data. It
is this influence that computing has had on particle physics, specifically neutrino
experiments, that will be delved into here, giving an overview of the history of
computing and neutrino experiments, to give some context to later work using
modern data science techniques on a next generation neutrino experiment. The
timeline outlined here is meant to outline the broad trends of analysis software,
rather than the exact transition points between computing paradigms, and also
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Figure 2.2: The zenith angle distributions of muon and electron like events at Super-
Kamiokande. Here, upward going particles have cos θ < 0 and downward-going particles
have cos θ > 0. The particle-like and the energy range for each subplot is given in the top
left. The hatched region shows the MC expectation for no oscillations, normalised to the
data live-time with statistical errors. The best-fit expectation for νµ → ντ oscillations
is shown as the bold line, with the overall flux normalisation fitted as a free parameter.
Figure is from [15].

focuses on analysis software only. Particle physics has many other problems that
depend on computing heavily, such as the immense requirements on network and
storage infrastructure that modern neutrino experiments need to deal with super
novae, but that lies outside the scope of this work.

Early neutrino experiments are older than the widespread use of computing,
with experiments of that time relying on manual calculations and technical
drawings to show results. For results such as those in “Observation of High-
Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos” [5], the
amount of data is easily understandable without any help, for example the paper
quotes a number of 113 events passing their geometric cuts. For data rates of
that level, it is understandable that additional help is not required, but also that
experiments of that time had to be designed with those constraints in mind. More
modern experiments can target incredibly high data rates, as it is known that the
computing infrastructure is there to support it.

Following from this, there is the start of a period of transition, moving from
the purely analogue methods used previously, into more and more usage of online,
computing-based analysis. For the results outlined in “High energy neutrino and
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antineutrino interactions in a neon filled bubble chamber” [17], the bubble chamber
camera films are scanned in, and processed with both a PDP-8 minicomputer,
the first commercially successful mini-computer, and the PDP10 mainframe. Data
from experiments is more and more likely to remain in a purely digital form, though
often with some physical redundancy as a physical copy too, when available.

As we move from the 1970s to the 1980s, interactive data analysis is now
becoming a common tool used in particle physics. The personal workstation, rather
than a shared mainframe became more common towards the second half of the
1980s, meaning physicists were able to work on results interactively, with CERN,
DESY, and SLAC each having their own frameworks for interactive data analysis
in the mid-1980s, and then Physics Analysis Workstation [18] being released in
1986 at CERN as a more general framework for multiple experiments. Looking
at Kamiokande-III in 1995, computing forms a key part of the experiment, as
shown in “Measurement of solar neutrinos from 1000 days of data at Kamiokande-
III” [19]. It is used extensively, for online monitoring, simulation of the detector,
as well as manual reconstruction of events, calculating the interaction location and
direction, its energy and more using bespoke handwritten algorithms. This outlines
how key computing had already become in the early 90s, with datasets of 1000
days, containing almost five thousand events, being infeasible to process without
the help of computing, especially if further data from other runs or experiments is
also included.

If we move forward to 1999 and look at SNO, we can get an idea of how
analyses changed due to advances in computing, both in terms of available
computing power, but also techniques. Whilst Kamiokande utilises computing for
infrastructure and simulation and reconstruction, SNO was able to utilise advances
in computing even more. For example, looking at “Search for Neutron Anti-
neutron Oscillation at the Sudbury Neutrino Observatory” [20], we can see some
more basic improvements such as more comprehensive 3D visualisation and plots,
as well as algorithmic improvements both to analysis and the underlying software
used, for example the particle simulation libraries becoming more advanced,
with more advanced techniques for fitting the ring-like structures found in the
detector. It is also interesting to see how experiments evolve, with some early
SNO techniques being similar to those outlined in Kamiokande-III, but later results
starting to use more modern techniques, and the development of these techniques
becoming a larger part of a physicists work, rather than simply a quick tool to
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unlock a certain analysis variable.
This is especially visible at Super-Kamiokande, as it has been in operation since

1996, such that the computing methods used have changed fairly drastically over
its lifetime. For example, early analysis at Super-Kamiokande utilised ring fitting
tools for particle identification [21], calculating variables based on the ring pattern
and angles relative to an interaction vertex to produce a score that can be selected
on, with additional terms added later. If we move forward again, analyses at Super-
Kamiokande [22], MiniBooNE [23] and more are now using advanced techniques,
including early machine learning techniques such as shallow neural networks and
decision trees and support vector machines, used for particle identification and
more, to improve upon the performance achieved using handwritten scores. Again,
this was only made possible by leaps in computing, enabling the fast processing of
many tens of thousands of events to build more capable classifiers.

It is also interesting to look at the generational leaps in technology require-
ments, moving from a trigger rate of around 1 Hz to 12 Hz at Super-Kamiokande.
Here, technology and the experiments grow together, with the bigger experiment
being possible in part due to the advances in computing, netting a result of around
1 million events a day, pre-filtering. More computing power available means that
more data can be safely produced and analysed.

Throughout all this time, papers on computing and analysis techniques at
experiments are becoming more and more common, PhD theses are having a
greater focus on the production and upgrading of software analysis tools, further
highlighting the deep ties between experimental particle physics and computing.

Finally, we can move forward even further, looking at the NOvA experiment,
representing the most recent jump in computing paradigm, with its deep learning-
based classifier for neutrino event selection [24], based on earlier studies at the
LHC [25] and Daya Bay [26]. Here, over 4.7 million events are used for the full
training and testing process, utilising over a week of processing time to train the
network on modern hardware for the time. This sort of deep learning work is only
feasible due to the advancements in computing, with machine learning techniques
themselves dating back much earlier in computing history, but only made widely
and easily achievable by further computing hardware and software advances that
meant the vast processing it requires was feasible in useful time frames. This
is made even clearer comparing the sort of hardware quoted for Kamiokande-
III [19], with the VPX210/10S used for analysis work, with a quoted speed of
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285 Mflops, compared to the Nvidia K40 used for the NOvA CVN which tops out
at 4290000 Mflops, and two of these was used for the training process for a week.
This vast difference helps highlight just how infeasible certain styles of work are
without computing and particle physics keeping pace with each other. A further
example of this can be seen in Figure 2.3, showing how the total core hours used
at the Open Science Grid (OSG) [27, 28] has changed over time since 2006. The
largest users in 2022 use more CPU hours than every user combined earlier in the
OSGs life.

2006 2008 2010 2012 2014 2016 2018 2020 2022
0 Mil

50 Mil

100 Mil

150 Mil

200 Mil

Total Core Hours per Month

Figure 2.3: The total core hours used at the OSG since 2006. Colours are used to
distinguish between different users of the OSG, mostly large particle physics experiments
or labs. A clear trend can be seen, with more and more millions of CPU hours being used
each month, both by existing experiments requirements growing, and new experiments
starting with high computing requirements. Data taken from [29], plotted in Python.

This trend of more and more computing being required will only continue,
with experiments needing higher resolutions, more interactions, faster software
and pushing efficiencies as close to 100% as possible. Deep learning is looking to
form an even larger portion of the required computing power at experiments now,
bringing new complications to writing software that effectively utilises graphics
cards compute power, as well as the logistical constraints of enabling access to
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graphics cards, which drastically speed up machine learning, across many labs and
universities. This issue of distributed computing will also only get more difficult
and more necessary, as it is becoming quickly infeasible to have a single institute
host all the storage and compute required for an experiment or experiments.

2.3 Neutrino Interactions

In the standard model, neutrinos can only interact via the weak force, as they do
not have electric charge or colour charge. Neutrino interactions can proceed in
two ways, via either a charged-current (CC) or neutral-current (NC) interaction,
mediated through the W and Z boson respectively. In CC interactions, a neutrino
interacts with either a quark or a lepton via the exchange of a W boson, producing
a charged lepton the same flavour as the initial neutrino. In contrast, in a NC
interaction, the neutrino scatters off a target via the exchange of a Z boson and
remains intact.

νµ

µ− νµ

W +

µ−

(a) Charged-current scattering.

νµ

e− e−

Z0

νµ

(b) Neutral-current scattering.

Figure 2.4: Charged-current and neutral-current interaction Feynman diagrams.

Charged current interactions are of particular importance to experiments, as
in this type of interaction the flavour of the neutrino can be determined. The
charged current interactions can be broken down further into multiple interaction
types, where three are particularly important.

Quasi-elastic (QE)

Quasi-elastic interactions are the dominant type of interaction for neutrinos below
1 GeV. In a quasi-elastic interaction, a neutrino scatters off an individual nucleon,
and when energies are high enough the nucleon can be liberated from the nucleus.
Most commonly, this produces a final-state hadronic system that contains a single
proton.
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An example of this interaction is shown in Figure 2.6a, which shows a νµ

interacting with a neutron, which changes the flavour of one quark in the neutron
from d to u, resulting in a µ− and a proton in the final state of the interaction.

Resonance (RES)

Resonance interactions are the most common type of interaction in the 1 – 5 GeV
energy range. In a resonance interaction, a neutrino excites the target nucleon into
a resonance that subsequently decay. The final-state particles commonly include
mesons, usually pions, produced by the decays of the resonant state. An example
of a CC RES interaction can be seen in Figure 2.6b, where the resonant state
results in a neutron and a charged pion being produced in the final state. There
are also coherent processes, in which mesons are produced directly by interactions
within the nucleon without the creation of a resonant state.

Deep inelastic scattering (DIS)

Deep inelastic scattering is the most common interaction type for neutrinos that
are above 5 GeV. In a deep inelastic scattering interaction, the neutrino has
sufficient momentum transfer to resolve the individual quarks within the target
nucleon. The subsequent interaction may liberate a quark, which hadronises
inside the nucleus to produce final-state systems containing multiple mesons. This
interaction can be seen in Figure 2.6c, with the hadronic particle shower labelled
as X.

The cross-sections for these different interaction types vary as a function of
energy, with the preferred energy range stated above for each interaction type. An
example of the relevant cross-sections per nucleon for a muon neutrino are shown
in Figure 2.5.
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Figure 2.5: Predicted muon neutrino cross-sections as a function of energy for CC
interactions, split into QE, RES and DIS. Figure taken from [30]. The region of interest
for DUNE is between 1 and 10 GeV.

νµ

n p

W

µ−

(a) νµ CC QE interaction.

νµ

π+

∆+
n

W

µ−

n

(b) νµ CC RES interaction.

νµ

n

W

µ−

X

(c) νµ CC DIS interaction.

Figure 2.6: Feynman diagrams showing examples of νµ CC QE, RES and DIS
interactions.
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3
The Deep Underground Neutrino
Experiment

“Words can be like X-rays if you use them properly - they’ll
go through anything. You read and you’re pierced.”

Helmholtz Watson - Brave New World

D eep Underground Neutrino Experiment (DUNE) is a next generation
long-baseline neutrino oscillation experiment, that is currently in the
construction phase. The primary goal of DUNE is to provide a

definitive measurement of δCP, though there is also a rich physics program
including nucleon decay, supernovae neutrinos and more. DUNE is an international
experiment, hosted by the U.S. Department of Energy at the Fermi National
Accelerator Laboratory (Fermilab), Illinois. It will be composed of three main
components, a far detector (FD) located around 1.5 km underground at the
Sanford Underground Research Facility (SURF) in South Dakota, USA, at a
baseline of 1300 km from Fermilab, and both a near detector (ND) complex and the
facilities for the neutrino beam which will be hosted at Fermilab. DUNE will utilise
multiple large-scale liquid argon time projection chambers (LArTPCs), with a total
mass of over 70 kt of liquid argon (LAr), with at least 40 kt being instrumented,
and the total mass being split over multiple modular detectors.

A key part of DUNE is the accelerator neutrino beam, which will be
manufactured by the Long Baseline Neutrino Facility (LBNF) at Fermilab, which
will also manage the infrastructure and sites for both the ND and FD. The beam
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will be the world’s most intense neutrino beam, passing through a high-precision
near detector suite 574 m away from the primary target. The ND will measure
the energy spectrum and flavour composition of the wide-band neutrino beam.
Accurate comparisons of the ND and FD spectrum and composition will be crucial
to the discovery of new phenomenon. A diagram showing a high-level overview of
these components can be seen in Figure 3.1.

Figure 3.1: The LBNF-DUNE baseline, showing both the near site at Fermilab and
far site at SURF [31].

3.1 Physics Goals

As outlined in Chapter 2, neutrino physics has advanced significantly in recent
years. The discovery that neutrinos oscillate, which clearly showed that the
Standard Model was incomplete, has opened a new window on particle physics,
and raised many new questions that will be addressed by DUNE. DUNE, once
fully built, will attempt to answer some remaining questions around neutrino
oscillations.

The DUNE physics programme is split into a series of primary and secondary
objectives. The primary physics goals for the DUNE FD are [32]:

• World-leading measurements of neutrino oscillation parameters through
precise observations of muon neutrino disappearance and electron neutrino
appearance. In particular, DUNE aims to determine the neutrino mass
hierarchy and observe CP violation in the neutrino sector. Figure 3.2 shows
the predicted impact of δCP on neutrino oscillations at DUNE.

• Evidence of baryon number violation, specifically via proton decay and other
baryon number violating processes.
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• Measurement of the νe flux from a core-collapse supernova within our galaxy,
subject to one occurring during the operational lifetime of DUNE.

DUNE will be able to carry out this comprehensive study using both νµ and
ν̄µ beams from Fermilab. There is also a range of secondary physics goals, as well
as physics goals that are specific to the DUNE ND, due to its increased rate of
neutrino interactions. These goals are:

• Various Beyond Standard Model (BSM) physics searches, including a search
for sterile neutrinos, searches for non-unitarity of the PMNS matrix, and
searches for nonstandard interactions (NSI).

• Neutrino interaction physics at the near detector (ND), including neutrino
interaction cross-sections and nuclear effects.

• Tau neutrino appearance measurements.

• Atmospheric neutrinos as a tool for measuring neutrino oscillation phenom-
ena.
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Figure 3.2: The effect that varying the value of δCP has on the oscillation probability
of νµ → νe and ν̄µ → ν̄e, using the DUNE baseline of 1300 km and assuming the normal
mass ordering [31].

A next generation neutrino oscillation experiment, DUNE is in a position to
measure CP violation to better than three standard deviations (3σ), over more
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Physics Milestone Exposure (staged years, sin2(θ23) = 0.580)
5σ Mass Ordering 1
δCP = -π/2
5σ Mass Ordering 2
100% of δCP values
3σ CP Violation 3
δCP = -π/2
3σ CP Violation 5
50% of δCP values
5σ CP Violation 7
δCP = -π/2
5σ CP Violation 10
50% of δCP values
3σ CP Violation 13
75% of δCP values
δCP Resolution of 10 degrees 8
δCP = 0
δCP Resolution of 20 degrees 12
δCP = -π/2
sin2 2θ13 Resolution of 0.004 15

Table 3.1: The projected DUNE oscillation physics milestones. Exposure is given
in years, assuming the true normal ordering and equal running in both neutrino and
antineutrino mode, which is required to reach selected physics milestones in the nominal
analysis, based on the best-fit oscillation values from NuFit 4.0 [33]. Using a value of
sin2 θ23 = 0.580, with the reasoning for this explained further in Section 5.9.4 of [31], as
well as any assumptions around staging. Exposures rounded to the nearest year. These
milestones are taken from [31].
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than 75% of the range of the possible values for δCP. This goal is outlined in
the U.S. Particle Physics Project Prioritization Panel (P5) report [34], as well as
in the recommendations of the European Strategy for Particle Physics (ESPP)
which were adopted by the CERN Council in 2013, classifying the long-baseline
(LBL) neutrino program as one of the four scientific objectives that required
significant resources, commitment and sizeable collaborations. The search for CPV
is paramount, with it potentially offering a better insight into the origin of matter-
antimatter asymmetry in the universe [35]. Figure 3.3 shows an example of the
significance of the DUNE determination of CPV sensitivity as a function of true
δCP for different experimental run times.

3.2 LBNF

The Long Baseline Neutrino Facility (LBNF) project is the facility that will house
and provide infrastructure for both the DUNE FD modules in SURF, South
Dakota, and the ND at Fermilab in Illinois. The organisation and management of
LBNF is separate to that of DUNE, though both are hosted by Fermilab, with the
design and construction organised by both the US Department of Energy (DOE)
and Fermilab, whilst also including international partners.

LBNF will provide DUNE with the range of facilities that it requires, as well
as the required civil construction needed to excavate the complex cavern systems
outlined in Figure 3.4. Specifically, LBNF will provide

• Both technical and conventional facilities required for the 1.2 MW neutrino
beam that DUNE requires, utilising the PIP-II upgrade [36] to the existing
Fermilab accelerator complex. PIP-II will provide the 1.0 to 1.2 MW beam
of proton power from the Fermilab main injector at the start of DUNE
operations, as well as providing a platform for a later upgrade to greater
than 2 MW in the future. Currently, it is planned to upgrade the beam to
provide 2.4 MW of beam power by 2030.

• All the conventional facilities to house and support the DUNE ND systems
at Fermilab, as outlined in Figure 3.5.

• The required facilities and upgrades to infrastructure to support the DUNE
FD, including the excavation of three underground caverns at SURF, as well
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Figure 3.3: The significance of the DUNE determination of CP-violation as a function
of the true value of δCP for both seven and ten years of exposure, in blue and orange,
respectively. This plot assumes normal ordering, and the width of the bands cover 68%
of fits, using random throws to simulate statistical variance, as well as to select true
values of the oscillation and systematic uncertainty parameters, whilst constrained by
pre-fit uncertainties. The solid lines here show the median sensitivity to CP-violation.
Figure is from [31].
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as surface, shaft, and underground infrastructure to support the installation
of hardware into the two larger caverns. The third cavern will be used to
house both cryogenics and data acquisition facilities, to support the four FD
modules.

Figure 3.4: The cavern design for DUNE at SURF. There will be two caverns to store
detectors, with the red boxes illustrating cryostats. In the middle, there is a central
cavern where support system such as the DAQ and cryogenics systems will live. The
direction of the beam can be seen in the bottom right. Figure from [31].

3.2.1 The LBNF Beamline and Target

The LBNF neutrino beam will be the world’s most intense neutrino beam, and
will deliver an estimated 1.1 × 1021 protons-on-target per year [32], once in
operation [36]. This 1.0 – 1.2 MW proton beam will be directed on to a target,
creating a wide-band on-axis neutrino beam in the direction of the DUNE FD
modules at SURF.

Figure 3.5 shows the proposed LBNF beam site and ND hall. The 60 GeV to
120 GeV proton beam will be extracted from the Fermilab Main Injector, before
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being carried over an embankment and directed towards the target hall and near
detector facilities. The embankment is simply to allow the target hall to remain
above ground, to help with costs, both in initial installation but also ongoing target
maintenance going forwards. At the target hall, the proton beam collides with the
target, producing a beam of secondary charged particles that are directed down a
decay pipe, before finally decaying into the neutrinos that both the ND and FD
modules will measure.

The secondary particle beam will mostly consist of both kaons and pions, which
when they decay mostly produce νµ, but with a small contamination of νe, ν̄µ and
ν̄e, as shown in Figure 3.6. This includes running in both forward horn current
(FHC) and reverse horn current (RHC) modes, which focus either positively or
negatively charged mesons, respectively, resulting in a neutrino-dominated and
antineutrino-enhanced beam.
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Figure 3.6: Neutrino fluxes at the FD for both neutrino mode (left) and antineutrino
mode (right). The dominant component of the beam is νµ (ν̄µ), although there is more
contamination of ν̄µ (νµ) at lower energies. Figure is from [31].

3.3 Far Detector

The DUNE far detector will consist of four LArTPC modules of varying
technologies, each containing approximately 17.5 kt of liquid argon and installed
1.5 km underground. Each module will have a fiducial mass of at least 10 kt,
giving a total of in excess of 40 kt across the four modules. Each module will be
situated in a cryostat with dimensions of 18.9 m (W) × 17.8 m (H) × 65.8 m (L).
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The use of four modules will allow DUNE to retain flexibility in its construction
and operations, in particular the phasing of its construction and the development
of advanced LArTPC technology for the fourth module.

DUNE is currently planning and prototyping two LArTPC technologies, with
the opportunity for further technologies to be used for the fourth module, which
will be installed last. The two designs currently in prototype at CERN differ in how
the LArTPC is orientated. The first prototype utilises a horizontal orientation,
where ionisation charge is drifted horizontally to wires. The second prototype
instead uses a vertical drift design, which has advantages such as being easier to
construct and maintain, but at the cost of being a less developed technology. These
two designs will be covered in more detail in Sections 3.3.2 and 3.3.3

As there will be multiple detector modules, DUNE has a staging plan for the
installation of its detectors. The current plan is to phase the installation of modules
as follows:

• Start of beam running: Two far detector modules and the 1.2 MW beam,
with one horizontal drift and one vertical drift module.

• After one year: The addition of the third FD module, for a total fiducial
mass of 30 kt. The choice of this module, between vertical or horizontal
drift, is not fully confirmed.

• After three years: The addition of the fourth and final FD module, to reach
the target of a 40 kt fiducial mass far detector. There is scope for the final
module to utilise a different technology, rather than the vertical or horizontal
LArTPC technology, as long as that technology allows DUNE to reach its
physics goals.

• After six years: Upgrade the beam to 2.4 MW.

The rate of neutrino events that DUNE will observe in its far detectors will
vary over time, as the fiducial mass increases to in excess of 40 kt. The expected
event rates, including the staging plan, is outlined in Table 3.2, breaking down the
backgrounds for each mode of running.

Before giving an extended description of the two main detector technologies
in use at DUNE, it is necessary to outline what a LArTPC is, and the principles
behind them. Following this, subsections 3.3.2 and 3.3.3 will give an explanation
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Expected Events
(3.5 years staged)

ν mode
νe Signal NO (IO) 1092 (497)
ν̄e Signal NO (IO) 18 (31)
Total Signal NO (IO) 1110 (528)
Beam νe + ν̄e CC background 190
NC Background 81
ντ + ν̄τ CC background 32
νµ + ν̄µ CC background 14
Total background 317
ν̄ mode
νe Signal NO (IO) 76 (36)
ν̄e Signal NO (IO) 224 (470)
Total Signal NO (IO) 300 (506)
Beam νe + ν̄e CC background 117
NC Background 38
ντ + ν̄τ CC background 20
νµ + ν̄µ CC background 5
Total background 180

Table 3.2: Integrated rate of selected νe CC-like events between 0.5 and 8.0 GeV
assuming a 3.5 year staged exposure in neutrino-beam mode and antineutrino-beam
mode. Signal rates are shown for both normal ordering (NO) and inverted ordering
(IO), whereas all backgrounds assume NO. δCP is assumed as 0. Table taken from [31].
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of the current FD module designs, to give a better understanding of the specific
LArTPC technology they will use, and how the technologies compare between the
two detectors.

3.3.1 Liquid Argon Time Projection Chambers

The time projection chamber (TPC) was first proposed by David Nygren in
1974 [37, 38], where it was initially conceived as a gas-based drift chamber,
combined with a multiwire proportional chamber which was designed to sit around
the beam pipe of particle colliders. This design was then iterated on later by
Carlo Rubbia in 1977, with the suggestion of liquid argon being used as the
medium instead of a gaseous medium, meaning it could function as both target
and detection medium at once [39].

A LArTPC contains a large volume of liquid argon that has an electric field
across it. When a charged particle transverses the liquid argon, it produces two
different types of energy deposition: a trail of ionisation electrons along its path,
liberated from the liquid argon through the process of ionisation; and prompt
ultraviolet scintillation photons. Due to the electric field, the ionisation electrons
drift towards the anode plane of the TPC, where they can induce electrical signals.
These electrical signals can be read out and stored for later analysis if the anode
contains instrumented readout planes. The scintillation photons can propagate
through the argon, as liquid argon is transparent to its own scintillation light.
These prompt photons are collected by a photon detection system (PDS), where
they provide a tagged start time for the event.

Figure 3.7 outlines the LArTPC detection principle. The anode in a modern
LArTPCs will commonly have multiple readout planes, with each plane at differing
relative angles. For this to work, it is necessary to have only a single collection
plane, that is a single readout plane that absorbs the ionisation electrons, receiving
a uni-polar signal. Any other readout planes instead receive an induced bi–polar
signal due to the ionisation electrons passing the induction wires. Having multiple
readout planes allows the reading out of a single event in multiple different
orientations, which can be used to reconstruct the missing coordinates for a full
3D reconstruction of the event. The exact angle between the planes can differ
per experiment, as can the relative resolution of the detector, which is set by
the spacing between each readout channel in the plane. The readout channels
themselves can also vary, with most LArTPCs using closely spaced wires as readout
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channels, but other designs use thin metal strips or even pixel-based readouts. As
an example, in the MicroBooNE experiment [40], the APA consists of 3 readout
planes, with each plane having wires every 3 mm, and the orientation of the planes
relative to the vertical set to +60°,−60°, 0° for the U, V and Y planes respectively,
with the Y plane corresponding to the final collection plane1. To ensure that
the collection plane is reached, and the ionisation electrons drift past the first
two induction planes unimpeded, a bias voltage is applied over the three planes,
ensuring that the ionisation electrons drift past the first two planes before being
collected.

Property Name Alternative Names
Induction Plane U and V Planes
Collection Plane Y, W, X or Z Plane

Real-World Representation
X Coordinate Drift Direction
Y Coordinate Detector Height (Not measured by readout)
Z Coordinate Beam Direction & Readout Plane Number

Table 3.3: A reference for LArTPC naming conventions, covering both alternative wire
plane names, and the most common coordinate system for a horizontal LArTPC.

3.3.2 Horizontal Drift

One of the first modules to be installed at SURF will be a horizontal drift
LArTPC module, due to its more mature design and the prototyping of the HD
technology at CERN being further developed. As the ionisation charge is read
directly from the liquid, very low-noise electronics are required to achieve a high
signal-to-noise (S/N) rate, which ProtoDUNE-SP can verify. This technology was
originally pioneered by the ICARUS experiment, and has since had many years of
international development. It is currently used in MicroBooNE experiment [40] at
Fermilab, as well as the upcoming SBND detector which is part of the Fermilab
Short-Baseline Neutrino (SBN) program [42].

A DUNE horizontal drift LArTPC is situated inside a large cryostat, as shown
in Figure 3.8, with three module-length instrumented anode planes, constructed

1Naming conventions for the planes can differ across experiments, with some using U, V, Y
others U, V, W or U, V, X and U, V, Z.
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Figure 3.7: An illustration that shows the basic workings of a horizontal drift LArTPC.
The dashed line shows an incoming neutrino, which interacts, and the resulting charged
particles liberate ionisation electrons from the argon, which are drifted under an electric
field to a set of wire planes, which can be read out. The photons produced as part of
the neutrino interaction can also be seen. Figure taken from [41].
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from 6 m high by 2.3 m wide anode plane assemblies (APAs), stacked two APAs
high and 25 wide, for a total of 50 APAs per plane and 150 total, to account for the
multiple drift volumes that the HD LArTPC will have. Figure 3.9 shows a DUNE
APA. Each APA will have four total wire planes, two induction, one collection and
a final grid plane. The two induction views are at ±35.7° to the vertical, with the
collection and grid plane being vertically orientated, and the wire spacing on the
layers being around 5 mm. The grid plane is the first of the wire planes, offering
shielding for the remaining active planes, significantly improving the signal shapes
seen on the U induction plane by shielding it from the incoming drift electrons.
This totals 2560 active wires to be read out per APA (with an additional 960 grid
plane wires that are not read out). Alongside the APAs, cathode plane assemblies
(CPAs) are used to complete the electric field. Each CPA will be held at −180 kV,
with the APAs being held near ground, resulting in a uniform 500 V/cm E field
across each of the 3.5 m drift volumes. A field cage (FC) is used to ensure the E
field remains uniform at the open sides of the TPC. Figure 3.8 shows how this all
looks in a completed module, indicating the APAs, CPAs, and part of the FC, as
well as the multiple drift volumes that the HD modules will have. As can be seen
in Figure 3.9, a DUNE APA can receive signal from either side, which is dealt with
by having the wires wrap fully around the structure, which is shown at the top
and bottom of Figure 3.9. There it can be seen there are darker regions of purple
and green, representing wires that physically wrap around the APA, rather than
stopping. This wrapping does lead to additional complexity, both in construction
and reconstruction, though the trade-off is deemed worth it to help simplify the
construction of the APAs compared to having additional sets of wires on each side
of the collection plane.

The produced scintillation photons will be collected in novel photon detector
(PD) modules, based on the light-trap concept, known as ARAPUCA [43–45],
which utilises dichroic filters, wavelength-shifting plates and a silicon photomul-
tiplier (SiPM) read-out. For the HD modules, the PD modules are placed in the
inactive space between the innermost wire planes of the APAs. There will be 10
of these modules per APA, for a total of 1500 per HD module. The PD modules
mounted in the innermost APA must collect light from both directions, whereas
the PD modules mounted in APA frames near the cryostat walls only need to
collect light from one direction.

Table 3.4 indicates the key specifications for the HD module, including its total
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Figure 3.8: The internal layout of a horizontal drift LArTPC with multiple drift
volumes. For DUNE, the anodes (labelled A) are built of two vertically stacked anode
plane assemblies (APAs), whereas the cathode (labelled C) are three cathode plane
assemblies (CPAs) high. Additionally, the field cage can be seen around the edges of the
detector [41].

Figure 3.9: Schematic for a DUNE APA. Here, the collection and grid plane wires can
be seen in blue, whereas purple and green represent the two induction planes. Readout
electronics can be seen on the right-hand edge. Figure is taken from [41].
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Item Quantity
TPC size 12.0 m × 14.0 m × 58.2 m
Nominal fiducial mass 10 kt
APA size 6 m × 2.3 m
CPA size 1.2 m × 4 m
Number of APAs 150
Number of CPAs 300
Number of X-ARAPUCA PD bars 1500
X-ARAPUCA PD bar size 209 cm × 12 cm × 2 cm
Design voltage -180 kV
Design drift field 500 Vcm−1

Drift length 3.5 m
Drift speed 1.6 mm µs−1

Table 3.4: Key parameters for a 10 kt FD HD module. Table taken from [31].

size, mass, and requirements on the electron drift length and speed.

3.3.3 Vertical Drift

Alongside the DUNE HD detector design, the second detector technology to be
deployed at SURF will be the vertical drift (VD) detector. This design evolved
from an earlier DUNE dual-phase (DP) design, which also included a secondary
gaseous phase that could be used to increase the signal by developing avalanches
in the gas phase. However, a DP design also required the cathode to operate
at much higher voltages and high voltages to be present in the gas phase. A
purely vertical drift detector with no secondary phase avoids this issue, but keeps
benefits like simpler detector construction and installation, at reduced costs, whilst
also allowing the drift distance to be shorter compared to a DP design, due to top
and bottom mounted readouts.

The VD detector has a few key differences to the HD design, most obviously
the drift direction of the ionisation electrons, which lengthens the drift distance.
However, both ProtoDUNE detectors have proven that electron lifetimes well
above a few milliseconds are possible, with ProtoDUNE-SP achieving lifetimes
in the tens of milliseconds. The ProtoDUNE-DP design had additional issues that
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meant it was sensitive to detector environmental effects, such as disturbances on
the LAr surface either due to movement in the LAr, or from contaminants.

One key part of the vertical drift design was the need for a different sort of
read out electronics, rather than using a wire-based APA as in the HD module
design. ProtoDUNE-DP instead uses a charge readout plane (CRP), a different
anode design that does not use wires, but rather two double-sided printed circuit
boards (PCBs). These PCBs are attached to a frame to form the CRP, which will
be attached to the roof and floor of the VD cryostat. The innermost face of the
PCB, that is the side that directly faces the cathode, has a guard plane to absorb
unexpected discharges, whereas the reverse side is etched with strips that form the
first of three readout planes, the first induction plane. The second PCB has the
second induction plane on one side and the final collection plane on the reverse.
These three sets of electrode strips are segmented to around a 5 mm pitch, set
at different angles relative to each other to provide charge readout from different
projections, similar to the HD APA design, though with 3200 readout channels
per CRP, rather than the 2560 per APA. Figure 3.10 shows a CRP and the super
structure that holds multiple of them together, whilst Figure 3.11 shows how all
these elements come together to produce a full VD FD module.

Figure 3.10: An exploded view of a CRP and its associated top superstructure. The
multiple anode PCBs can be seen on the left, and how they are tiled together to produce
a full CRP. Figure is internal to DUNE.
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Figure 3.11: The DUNE VD detector design, showing both the anode and cathode
planes, as well as the location of the field cage. Figure is internal to DUNE.

3.4 Near Detector

For a long-baseline neutrino experiment to be successful, the neutrino beam needs
to be understood very well. This is achieved with a near detector (ND), which
for DUNE will be located 574 m downstream from the end of the decay pipe.
The DUNE ND will consist of a suite of three different detectors, each utilising
a different detector technology. This suite of detectors will be arranged linearly
downstream of the neutrino beam, as shown in Figure 3.12.

The most upstream detector in the ND complex is the Liquid Argon Near
Detector (ND-LAr), which compromises a number of LArTPC modules, rather
like the FD, but with a modified design that allows the detector to operate
efficiently in the high-intensity environment close to the source of the neutrino
beam. The chosen technology for ND-LAr, called ArgonCube [46], consists of 35
optically separated LArTPC modules, each allowing for independent identification
of neutrino interactions on argon. Each TPC will have its own FC, cathode, PDS
and a pixel-based charge readout. This allows ND-LAr to cope with the large
number of neutrino interactions, which is expected to be O(50) ν interactions
per spill. It is very important that both the near and far detector share the same
detector technology, in this case the LArTPC, such that there can be a cancellation
of some detector systematics when utilising both the near and far detector data
together in an oscillation measurement.

As ND-LAr uses both the same target (LAr) and the same detector technology,
this will be key in reducing systematic effects in the oscillation analysis, such
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as uncertainties in the neutrino flux, neutrino interaction physics and detector
properties. The size of ND-LAr has been chosen to ensure the detector will be
able to provide high statistics with good hadron containment, though muons with
momenta greater than 0.7 GeV/c will not be contained in the LArTPC volume.

Located directly downstream of ND-LAr is the Gaseous Argon Near Detector
(ND-GAr). The principal component in the ND-GAr detector is a high-pressure
gaseous TPC (HPgTPC) that is surrounded by an electromagnetic calorimeter
(ECAL) all enclosed in a 0.5 T magnetic field. The primary benefit of ND-GAr is
that its lower density and high-pressure system provide benefits to both tracking
resolution and lowering the momentum acceptances, as well as helping to identify
particles that are produced in the interactions of ND-LAr, by measuring the
momentum and sign of charged particles that exit the ND-LAr detector volume.

To improve the constraints on the neutrino energy spectrum and flavour
composition, both ND-LAr and the ND-GAr will be able to move off-axis, through
a system called DUNE Precision Reaction-Independent Spectrum Measurement
(DUNE-PRISM). This allows them both to take off-axis measurements, allowing
the ND to create a neutrino energy distribution that more closely matches that
of the FD, by combining different flux measurements taken at different degrees
off-axis. Figure 3.13 shows how the predicted DUNE muon neutrino flux changes
at the ND as a function of off-axis angle.

The final detector will be the System for on-Axis Neutrino Detection (SAND).
SAND will function as an on-axis, magnetised beam monitor at a fixed position.
This fixed on-axis position should allow it to be more sensitive to variations in the
neutrino beam. SAND will consist of an inner tracker surrounded by an ECAL
inside a large solenoid magnet, with two possible tracker designs currently being
considered. The first option consists of plastic scintillator cubes with TPCs, whilst
the second option is based on straw-tubes. SAND is most important as a dedicated
neutrino spectrum monitor, staying in an on-axis position whilst ND-LAr and
ND-GAr move off-axis. The different mass numbers of the hydrocarbon target at
SAND, relative to the argon at the other two ND modules means that SAND may
also prove useful for developing models of nuclear effects, building confidence in
the interaction models used and the sizes of the numerous systematic uncertainties,
whilst also offering an interesting point of comparison to other experiments such
as Hyper-K and MINERvA [47], which could also prove useful for understanding
systematic effects.
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Figure 3.12: Schematic of the DUNE ND hall, shown in both the on-axis and off-axis
configurations (left and right, respectively). The beam location is shown in each figure
as a yellow arrow. Figure is taken from [48].
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Figure 3.13: The predicted DUNE muon neutrino flux at the ND, as a function of off-
axis angle. The arrows in the figure indicate the peak neutrino energy for three different
off-axis angles, due to DUNE-PRISM. Figure is from [48].
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The primary driver for the design of the DUNE ND complex is the long-baseline
oscillation physics program. Figure 3.14 shows the impact of ND detectors on
the measurement of CP violation at DUNE. However, this does not mean that
the DUNE ND is only capable of producing results for this physics program,
as it can be a powerful tool for investigating both Standard Model (SM) and
Beyond Standard Model (BSM) physics topics. For example, the DUNE ND has
an extensive cross-section physics program, as well as the opportunity to search
for light dark matter, a search for heavy neutral leptons, enhanced background
searched for proton decay and much more. Most of the work around this is at an
early stage, and is subject to change as the experimental and theoretical landscape
changes before the ND is fully operational, but DUNE will look to take advantage
of any competitive and novel measurements in this area.

Figure 3.14: The effect on the sensitivity to CPV at DUNE if an incorrect cross-
section model is used in the reconstruction. This danger can be alleviated by improving
or tuning the model using data from the ND. Figure taken from [48].
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3.5 ProtoDUNE

As DUNE will be the first large-scale neutrino experiment to exploit LArTPC
technology, an extensive programme of research and development is underway
to demonstrate and up-scale the systems that will be deployed in the ND and
FD modules. As part of this research and development programme, a pair of
large-scale prototypes has been constructed and operated at CERN: ProtoDUNE
Single-Phase (ProtoDUNE-SP) and ProtoDUNE Dual-Phase (ProtoDUNE-DP).
Both of these detectors live in the EHN1 building at CERN’s Prevessin site, and
both exist to test and prototype all aspects of the technology that will eventually
be deployed to the DUNE FD. Figure 3.15 shows a photo of both ProtoDUNE-SP
and ProtoDUNE-DP.

Figure 3.15: An image of the EHN1 building at CERN, which houses the two
ProtoDUNEs. In the foreground, ProtoDUNE-SP can be seen, with the secondary
red cryostat in the background housing ProtoDUNE-DP. Between the two is the H4
beamline. Figure from [49].

Full-sized components are used following current FD design specifications,
but in a detector that represents only a small portion of a full FD module.
ProtoDUNE-SP has only two drift volumes, with one cathode wall in the middle of
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the detector, with the anode walls only being one APA tall (rather than two) and
six APAs deep (rather than twenty-five). This allows the full-sized components
to be tested in a setup that is smaller than a full size FD module, as well as
meaning the manufacturing process for many components can be tested, to aid
understanding for later mass fabrication. ProtoDUNE-DP represents a similar
portion of a full-size FD VD module.

Both ProtoDUNE detectors were built between October 2015 and July 2018.
ProtoDUNE-SP was completed, filled with LAr and commissioned in August 2018,
allowing it to receive test beam data between September and November in 2018.
ProtoDUNE-DP completed slightly after ProtoDUNE-SP, meaning it missed the
CERN test beam before the planned long shutdown, but was able to take cosmic
ray interaction data along with ProtoDUNE-SP. An example test beam interaction
is shown in Figure 3.16 for ProtoDUNE-SP, showing a 6 GeV/c electron candidate
event.
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Figure 3.16: An example ProtoDUNE-SP event display, showing a 6 GeV/c electron
candidate. The colour scale is used to show deposited charge in the LAr, and other
charged particles can be seen around the central electron candidate. Figure is from [50].

3.5.1 ProtoDUNE-SP

As ProtoDUNE-SP has test beam data it is a useful test bed for a variety of
DUNE FD work, allowing software to be tested on a large, multi drift-volume
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detector, to see how data and simulation results compare. This includes the ability
to both develop and demonstrate the performance of algorithms for simulation,
calibration, and reconstruction; the measurement and subsequent understanding
of detector properties; and physics studies including pion absorption analyses. The
total amount of data taken for test beam events recorded is outlined in Table 3.5,
split up by momentum.

Momentum (GeV/c) Total Recorded Beam Triggers
0.3 269 000
0.5 340 000
1.0 1 089 000
2.0 728 000
3.0 568 000
6.0 702 000
7.0 477 000

Total 4 173 000

Table 3.5: The number of beam trigger events at ProtoDUNE-SP, split by momentum,
provided by the CERN test beam. Table taken from [51].

Using this test beam data, ProtoDUNE-SP can provide useful insight into how
components and software will perform in the full scale FD, as well as being able to
contribute its own physics results. The first performed analyses at ProtoDUNE-SP
focus on understanding both the TPC and PDS in more detail, and how they
perform in a large scaled LArTPC. These initial studies are outlined below, taken
from [50]:

• Understanding the space charge effect (SCE) in ProtoDUNE-SP.
As ProtoDUNE-SP is a surface-based detector, it experiences a large flux
of cosmic ray interactions, which in turn ionise the LAr, producing both
ionisation electrons and argon ions. The argon ions have drift velocities
slower than that of the ionisation electrons (around 2 – 4 ×105 times slower),
which results in the slow build-up of a considerable amount of positive charge
with a gradient that opposes the applied electric field, as these ions build up
over the scale of ten minutes or so. This positive charge density is also
known as space charge. This effect is also impacted by the flow of the
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argon, and asymmetries in the flow patterns can cause asymmetric space
charge in the detector, necessitating a data-driven study to understand
the effect. Understanding this effect is key, as it must be incorporated
in both the simulation and reconstruction, due to its impact on dE/dx2,
energies and particle trajectories. Sophisticated space charge maps have been
produced, using reconstructed cosmic rays, allowing its effect to be better
understood, and have it be included more accurately in the simulation, as
well as producing “inverted spatial distortion maps” that can be used to
calibrate out spatial distortions in reconstructed or MC data.

• The lifetime of drift electrons, that is, the rate of attenuation of electron
in the liquid argon, in ProtoDUNE-SP is very important and directly relates
to how pure the LAr is kept, with impurities like oxygen or water in the
detector capturing ionisation electrons as they drift, reducing the signal
measured. This then means the charge measured is lowered, biasing the
amount of charge measured. Purity monitors and fits to cosmic ray dQ/dx

are used to measure the drift electron lifetime, to check that the strict
limits in lifetime are met. Measuring electron lifetime also allows it to be
more accurately reflected in the simulation. Electron lifetimes of around
10.4 ± 1.5 ms were measured at the start of data taking, rising to closer to
100 ms near the end of data taking, as the purity of the LAr increased.

• Energy reconstruction was performed for beam muons and pions, beam
protons and beam electrons. This is useful both to understand how the
detector performs, but also provides useful data for the DUNE FD, increasing
datasets for interactions on argon. Reconstructing final state pions and their
produced secondary particles is an important part of energy reconstruction
for neutrinos, and beam pion data can be used to verify this. Particle
identification and calorimetric energy reconstruction has been performed for
each beam particle, allowing the simulation to be verified and reconstruction
algorithms to be tuned. A fit performed on reconstructed beam pions and
stopping muons dE/dx distributions at ProtoDUNE-SP compared to MC
agreed to better than 1%.

• A robust particle identification (PID) is critical to the DUNE FD and
2dE/dx (and dQ/dx) are used to refer to energy and charge deposited per unit track length.

The dx refers not to the detector coordinate x, rather a differential step along the track path.
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ProtoDUNE-SP. A calorimetric-based PID method for LArTPCs has been
tested at ProtoDUNE-SP. It uses the reconstructed energy deposits as a
function of residual range for any stopping particles. This allows for the
identification of minimally ionising particles (MIP) (muons) against non-
MIP particles (protons), which can be difficult otherwise. This is required
to meet the physics goals of DUNE, so verification at ProtoDUNE-SP is key.
Early results at ProtoDUNE-SP show that when the dE/dx of muons and
protons are plotted against their residual range, a high level of separation is
observed.

Further studies have also been performed, as well as upcoming physics analyses
that focus on neutrino cross-section measurements on argon. Each analysis also
allows the full software chain to be checked, verifying how the software chain runs
on data, compared to simulation. This includes verifying the energy reconstruction
as mentioned, as well as the steps that are needed to reach that point, such as
the waveform deconvolution, hit construction and the pattern reconstruction. The
software chain itself is described in detail in Chapter 4.

Whilst ProtoDUNE-DP does not have specific test beam data, software efforts
to properly simulate and reconstruct CRP data is useful, as well as informing design
decisions for the DUNE VD module. The ProtoDUNE detectors are both providing
useful insight into the largest scale LArTPCs yet, allowing both hardware and
software to be tested, which is key in making a full scale, 10 kt DUNE FD a reality.
They prove that a LArTPC can scale up from the pioneering T600 detector built
by the ICARUS collaboration, to 1 kt of LAr and a 3.6 m drift distance, whilst
maintaining a high S/N ratio and the ability to accurately reconstruct charged
particles from interactions in the LAr.
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Software for LArTPCs

“Estás usando este software de traducción de forma
incorrecta. Por favor, consulta el manual.”

Wheatley - Portal 2

S oftware is a key part of any modern physics experiment. Experiments
produce so much data (DUNE is expected to have a data rate to tape
of up to 30 PB/year), that automated processing is a requirement. Fast,

efficient software for taking the fine-grain images of a LArTPC and producing
outputs that can be used for physics, such as clusters of energy deposits, particle
identification and their energy and more, is needed to harness the full power of
DUNE. Equally, sophisticated simulation is required, to ensure that the detector
is fully understood, to develop and benchmark reconstruction software whilst the
detector is being built, and optimise the physics capabilities of the detector,
using the current understanding of how the detector should perform and the
interactions that will take place. Finally, data like that from ProtoDUNE-SP and
ProtoDUNE-DP mean that the simulation and reconstruction chain can be tested,
to ensure it runs as expected on real data, benchmarking the current software
approach, and the underlying physics of the simulations.

This chapter will outline the key software components used by DUNE, and
how each part interacts, starting from the simulation of neutrino interactions on
argon nuclei in the DUNE FD module, and ending with their reconstruction and
the subsequent physics objects that are used for analysis. The first section will
outline the overall software framework used in DUNE. Following this section, a
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description of the neutrino interaction simulation is given for each of the individual
steps that are needed to simulate a neutrino interaction on argon nuclei inside a
DUNE FD module. After simulation, there is a section outlining the various steps
of reconstruction that are applied to data to produce physics outputs. Finally,
the last section outlines Pandora, the reconstruction framework that was used and
further developed as part of this work.

art and LArSoft

The DUNE software is built on the common art [52], and Liquid Argon Software
(LArSoft) [53, 54] framework that is used across the Liquid Argon neutrino
program.

art is an event-processing framework that is used to process particle physics
data in an event-by-event loop. This includes standards for the organisation of data
(into runs, sub-runs and events), as well as defining the format of output data,
containing so-called data products, which are experiment (or user) defined classes.
art was built to avoid previous issues where experiments would produce their own
framework, making the sharing of code between experiments much harder, as well
as duplicating work which could otherwise be shared.

Built on top of art, there is LArSoft, a shared suite of reconstruction and
simulation software, used across multiple LArTPC neutrino experiments. It
provides many of the standard C++ classes that a neutrino experiment will need
to encapsulate the various simulation, reconstruction, and analysis workflows that
are common in LArTPC experiments.

The existence of a shared software framework creates an environment for cross-
experiment collaboration on software. It is common for software enhancements
that are achieved at ProtoDUNE-SP (utilising beam data) to feed back into the
software for the DUNE FD modules, as well as SBND and more. This also means
that many of the collaborations and software groups that work on software for
LArTPC experiments are associated with multiple experiments, rather than just
one. Some are general enough that they are used ubiquitously across most of
particle physics, such as GEANT4 [55], whilst others like Wire-Cell [56, 57] are used
across multiple LArTPC experiments such as MicroBooNE, SBND and DUNE. It
is common for there to be interfaces between LArSoft and other software packages,
allowing more broad packages to be used, making code reuse even easier. Overall,
this means that the entirety of the DUNE FD simulation and reconstruction chain
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can run in a single framework, with a consistent interface, making the creation
and subsequent analysis of events much easier and consistent.

All the sections that follow are embedded into the art / LArSoft framework,
except where explicitly stated otherwise. Many of these packages are also available
in a standalone capacity, but through the use of a LArSoft interface, they can be
embedded into LArSoft, enabling a single framework to simulate and reconstruct
neutrino interactions on argon in a DUNE FD module. This is very useful for
onboarding new users, as understanding LArSoft enables them to produce neutrino
events, rather than requiring them to learn multiple tools.

4.1 Event Simulation

Event simulation covers two broad parts, the generation, and interaction of
particles, and then simulation of how the detector hardware will respond to those
interactions. These steps are usually split into three parts, with the first being the
initial generation of the interaction, which produces the neutrinos that interact at
a given energy (based on simulations of the beam) with argon and the resulting
final-state particles from that interaction. Subsequently, with the particles and
their energies known, as well as an interaction position, there is a simulation
of the particle transport, through the liquid argon of the detector, as well as
simulation of the secondary interactions and any particle decays. Finally, there is
a detector simulation steps, which simulates the detector response to the particles
travelling through the matter of the detector, to produce realistic outputs, adding
in detector noise and other physical effects, as well as simulation of the collection,
amplification, and digitisation of the signal.

A key part of event generation is the use of Monte Carlo (MC) generators,
which use pseudo random numbers to simulate the expected interaction kinematic
distributions and the final state particles, by sampling from the probability
distributions associated with the cross-section, particle transport and detector
response models. This technique plays a part in each stage of the simulation
process, allowing the estimation of the various physical properties that occur
throughout the simulation chain.
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4.1.1 Event Generation

Before any neutrino interaction can be simulated, a simulation of the incident
neutrino flux is required. At DUNE, this is achieved with G4LBNF, a GEANT4-
based simulation of the LBNF neutrino beam, utilising a detailed description of
the LBNF optimised beam design [58]. This provides a prediction of the number
of νµ, νe, ν̄µ, ν̄e per proton on the target per unit area, that will come from the
beam as a function of energy. The neutrinos from the beam flux are consumed
by GENIE [59], which is the primary event generator used by DUNE. GENIE is
used across many neutrino experiments, LArTPC and otherwise, and uses data
from existing experiments to tune its physics models. It can provide modelling of
neutrino-nucleus interactions, but also simulation of many non-neutrino processes
useful for non-beam data simulation, such as nucleon decay, boosted dark matter
interactions, and more. There is also additional tooling built into GENIE to
facilitate the propagation of modelling uncertainties, interfacing with detector
geometries. In addition to GENIE, DUNE employs a number of other specialised
event generators. For example, the CORSIKA [60] generator is used for the flux
of cosmic-ray particles, and a dedicated event generator is used for the simulation
of supernova neutrino bursts [61, 62]. The NuWro generator [63] is also used
throughout DUNE, mostly to offer a point of comparison against GENIE. For
example, a mock study into interaction model deficiencies at the DUNE near
detector used NuWro as a fake data sample with GENIE as the simulation, to test
the sensitivity of a near detector module to model differences [48].

Regardless of the chosen generator, the output of this stage is a list of final-state
particles from the initial neutrino interaction, each described by a particle type
and four-momentum, that provides the input to the next stage of the simulation.
Further decays of these particles are left to the next stage.

4.1.2 Particle Transport and Detector Simulation

In this phase of the simulation chain, the final-state particles are propagated
through the detector, and interact and decay according to a set of detailed physics
models. The simulation must describe all features of the detector geometry, such
as the LAr, the cryostat, or even the experimental hall that contains the detector
module. At DUNE, the transport of particles is simulated using GEANT4 [55], a
general purpose toolkit for the simulation of particles through materials. GEANT4
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is responsible for tracking each particle through the detector and simulating
the interactions of decay products with the detector volumes. As particles are
transported through the detector geometry, energy deposits are simulated and
then converted into ionisation electrons and scintillation photons. The ionisation
electrons drift, due to the applied electric field, towards the anode plane assemblies.
As these electrons drift, they undergo diffusion and recombination effects. The
associated ions move in the opposite direction and generation distortions in the
electric field, which must also be simulated. Additional simulation is needed of
the effects that can reduce the number of ionisation electrons that reach the wire
planes, such as recombination with positive ions in the LAr or impurities in the
LAr.

The final stage of the simulation models the detector readout and response. A
detector simulation step is needed to simulate the waveforms that are produced
when simulated ionisation electrons and scintillation photons reach the active
detector components and induce a signal. The drift electrons induce a signal
on the induction wires in the APA, before being collected onto the collection
plane wires. These signals are amplified and shaped by the detector electronics,
with the resulting waveforms being digitised. At DUNE this is achieved with the
Wire-Cell toolkit software package [56, 57]. This simulation takes the GEANT4-
produced energy depositions from the particle traversing the detector, and outputs
the digitised waveforms that the front-end electronics would produce.

The waveforms should accurately reflect realistic noise rates and electronics
characteristics, giving a useful input to the reconstruction stage. Once built,
the simulation can be tuned and modelled using real data, leading to better
understanding of the detector and data. The tuning of the simulation could reflect
a better understanding of the interaction models of physical processes that form the
basis of the underlying particle transport or detector response, or more mundane
things such as a more realistic simulation of noise using real hardware.

4.2 Event Reconstruction

Event reconstruction, the translation of raw 2D LArTPC outputs into 3D physics
objects for analysis, is a complex, but necessary task. What may be an easy
problem for a human to solve, such as the identification of an interaction vertex,
can be a challenging problem to encode into software. However, physics analyses

51



Chapter 4. Software for LArTPCs

are performed at a much higher level than raw data, requiring selections of particle
types and energies, interaction locations, counts of the number of particles in
an event and much more, rather than raw data from ionisation electrons and
scintillation photons. This means sophisticated reconstruction is required, to allow
analysis to be performed without being obstructed with needing to parse the raw
data first.

Reconstruction can be split into three main stages. There is the initial, early,
reconstruction that reduces and cleans up the images. At this stage, waveforms are
processed to filter out noise and deconvolved to correct for detector response. The
resulting waveforms are formed into discrete peaks called hits. The reconstructed
hits are fed into pattern recognition algorithms, that fit into more traditional
computer vision style problems, such as clustering hits to make a single group
that represents a particle or finding features in the event like interaction vertices.
Finally, high-level reconstruction determines the specific properties of particles,
such as the type of particle or the energy. Particles are also formed into hierarchies,
mapping the cascades of interactions or decays.

4.2.1 Raw data processing

Reconstruction starts with the loading and processing of raw data. LArTPC
raw data is in the form of analog-to-digital converter (ADC) and time-to-digital
converter (TDC) counts, with waveforms encoding ADC vs TDC, with a full
output image consisting of many of these waveforms in parallel. The first step
is to reconstruct the charge distribution detected on each readout wire1. This is
achieved through the use of deconvolution algorithms, alongside noise filters to
reduce noise.

Noise filtering is used to reduce the various sources of electrical and thermal
noise that can occur in the electronics of a LArTPC. Noise sources are usually due
to interactions between various parts of the hardware. For example, one source
of “noise” is the appearance of “sticky codes” in real data, where certain ADC
channels will prefer to stick to certain values, independent of the input voltage.
This can be dealt with in some cases by filtering out the known stuck channels
and replacing the value with one approximated from the neighbouring channels.
Another source of noise is coherent noise, a form of noise which occurs across

1Wire is used interchangeably with the words strip or pixel, to refer to the readout channel
in use, regardless of the actual detector technology.
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multiple connected channels across the detector. For example, ProtoDUNE-SP
observed a source of noise with a peak around 45 kHz [50], which was found to
be shared across channels that utilised the same low-voltage regulator in their
front-end motherboard. The impact of this noise can be reduced by constructing a
correction waveform, based on the calculated median over the groups of wires, and
subtracting it from the initial waveforms, taking care not to inadvertently reduce
the signal too by avoiding areas that include substantial signal from ionisation
electrons.

After the noise-filtering algorithms have been applied to the data, a deconvolu-
tion procedure is used to filter out residual high-frequency noise, and to unfold the
signal from the detector response. Deconvolution was first introduced to LArTPC
signal processing, with analyses performed at ArgoNeuT [64]. Deconvolution aims
to extract the true signal from the measured signal, by removing the impact of
field and electronic responses from the measured signal, such that the number of
ionisation electrons can be reconstructed. This technique is fast and robust, and an
essential part in the reconstruction of LArTPC data. Whilst initially implemented
in 1D (TDC) by ArgoNeuT, the MicroBooNE collaboration improved to a 2D
process (wire number vs TDC), considering the long-range induction effects in the
spatial dimension, such that both time and the wires are considered [65, 66]. At
DUNE this is achieved using Wire-Cell. The combination of both noise removal
and deconvolution can be seen in Figure 4.1, applied to a 7 GeV particle event at
ProtoDUNE-SP.

Following noise removal and deconvolution, there are hit finding algorithms
that allow follow-up algorithms to stop using raw waveforms and instead use
discrete hits, with a hit representing a charge deposition on a certain wire at
a given time. This is achieved through the use of algorithms that scan the input
deconvolved waveforms and fits a Gaussian shape to the peaks, producing hits.
In situations where a peak cannot be fitted with a simple Gaussian shape, for
example where a particle trajectory is close to the current plane, the peak can
bypass the hit-fitting, and instead be divided into a number of evenly spaced hits.
An example of this hit finding at ProtoDUNE-SP can be seen in Figure 4.2.

4.2.2 Pattern Recognition

After the low-level reconstruction is performed, each event has had its raw
waveforms cleaned and converted to hits. The second stage of the reconstruction
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(c) After Deconvolution

Figure 4.1: Example of noise filtering and 2D deconvolution applied to a 7 GeV particle
event at ProtoDUNE-SP. Figure a shows the original raw waveforms, which becomes
Figure b after noise filtering is applied; Figure c shows the ionisation charge in number
of electrons (scaled by 200), which has been extracted by the 2D deconvolution process.
The blue and red components in a and b refer to the positive and negative components
of the bipolar signal, respectively. This signal becomes unipolar after the deconvolution
step is performed. Figures b and c are taken from [50], with a being an internal plot
from DUNE for the same event.
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Figure 4.2: An example of a reconstructed waveform on a single wire, taken from
ProtoDUNE-SP data. The dashed red lines show the fitted Gaussian shapes, highlighting
the three reconstructed hits. Figure is from [50].

is pattern recognition, which clusters together the individual hits that relate back
to the same final-state particles. This problem can be approached many different
ways, but there are some key tasks that are common across all reconstruction
paradigms:

• Clustering: The process of grouping together hits that belong to the same
initial particle. For example, if a muon travels through the detector leaving a
trail of ionisation electrons, clustering would group together the hits, tagging
them as all coming from one particle. Clustering must be careful to not also
include hits from other particles, which would bias energy calculations later,
and makes other reconstruction tasks harder.

• Vertexing: Vertexing refers to the identification of the start location of
interactions or decays in the event. This stage of the pattern recognition is
important, as the knowledge of this key feature in the event helps to drive
the clustering of hits and the reconstruction of particles. Vertexing is usually
split into several steps, starting with the initial neutrino interactions, and
then moving on to secondary interactions or decays.

• 3D Reconstruction: As mentioned briefly in Section 3.3.1, it is necessary
to reconstruct events in 3D by combining the multiple 2D images produced
in modern LArTPCs. This involves matching the hits across multiple views,
and then combining them to determine the full 3D coordinate. A range of
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approaches have been developed for reconstructing 3D events from the 2D
images. A deeper explanation of this is given in Chapter 6.

• Interaction hierarchies: Building on the clustering and interaction
vertices, a full interaction hierarchy can be built. This allows the chain of
interactions to be followed, from the neutrino, to its initial daughter particles
and then their daughter particles and so on. This is useful for later analysis
exercises that wish to target specific interactions.

These results are all achieved using the input hits from the previous hit finding
step. The actual specific programmatic approach taken by each reconstruction
framework can differ, though, as well as the order of the above steps. For example,
a vertexing step could be taken immediately, as the result of knowing where an
interaction took place impacts the process of clustering, as the nearby particles will
start from that vertex. However, it is also a valid approach to this problem to look
for the vertex after the clustering step, and look for a common interaction location
based on properties of the identified clusters, such as calculating a direction vector
from the cluster hits. This difference in approach is even more drastic when looking
at more modern approaches to reconstruction using deep learning. Deep learning
techniques and how they function will be explained in further detail in Chapter 5,
although some explanation of how it can be used for reconstruction will be outlined
here. A deep learning-based approach to vertexing may not use clustering at all,
instead being based on images or graphs generated from the input hits, and using
relationships between the hits and the properties associated with them, as well as
topographical features.

There are three main reconstruction paradigms to talk about in the context of
LArTPC reconstruction, with two of them in use at DUNE.

• Pandora: The first is Pandora, which will be covered in more detail in
Section 4.3, as it is the reconstruction framework that the work of this
thesis was developed inside. Pandora approaches the reconstruction problem
initially from a 2D perspective, using the 2D readouts from each wire
plane to reconstruct events, before moving to a full 3D reconstruction once
there is sufficient reconstructed information to perform the step. This 3D
information is then used to verify the initial 2D reconstruction by heavily
utilising coordinate mappings to project the 3D information back into 2D.
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Pandora is used for both FD modules, ProtoDUNE and has in-progress work
to apply it to the DUNE ND.

• Wire-Cell: Wire-Cell is another reconstruction framework that differs to
the Pandora approach in that it attempts to reconstruct the 3D coordinates
of the event up front, before performing pattern recognition steps, under
the assumption that performing pattern recognition in 3D gives additional
separation power over purely 2D reconstruction. Wire-Cell is currently not
used for the pattern recognition step at DUNE, though it is used for the
signal processing in the previous step, as well filtering and deconvolving the
raw waveforms. It has, however, been used successfully for full reconstruction
at MicroBooNE [67].

• MLReco: The final reconstruction paradigm is one based on deep learn-
ing [68]. MLReco differs most drastically from the other two reconstruction
frameworks in that it uses the raw hits for many more tasks, such as
segmenting the hits of the event, clustering, and vertexing all with just the
hits, rather than building up an image of the event sequentially building
on the previous step. The broad tasks, however, fit with the list given
previously, with targeted networks used for specific tasks such as clustering
or vertexing, with outputs from multiple networks feeding into follow-up
networks that build up higher level information about the event, such as
interaction hierarchies. MLReco is specifically being used at the DUNE ND
at the moment.

One thing to note is that both Pandora and Wire-Cell utilise deep learning
techniques as part of their reconstruction chain, but they are used alongside other
non-deep learning-based algorithms, whereas the deep learning framework does
the majority of its reconstruction using deep learning.

4.2.3 High-level reconstruction

Finally, there is high-level reconstruction. Whilst pattern recognition identifies
the important features of an event, such as clusters, vertices, charged-particle
trajectories, the high-level reconstruction involves the determination of global
event properties for physics analyses. The key high-level reconstruction tasks
include particle identification and energy reconstruction. However, as mentioned
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previously, the line between each stage can be blurred depending on the approach
taken, with the MLReco paradigm in particular blurring the line between pattern
recognition and high-level reconstruction.

The high-level reconstruction for DUNE is under active development, but some
examples of the present algorithms are descried in Section 3.5.1 in the context of
early studies with ProtoDUNE-SP data. Figure 4.3 shows the result of dE/dx

versus residual range for stopping protons and muons, as an example of how a PID
could operate to distinguish between protons and muons, a task that is not usually
performed at the pattern recognition stage. A similar study has been performed
at ProtoDUNE-SP utilising deep learning to reconstruct the energy of particles.
Studies are also performed on simulated data of the full DUNE detectors, rather
than the real ProtoDUNE-SP data, to get software tooling in place, as well as
give more realistic bounds on the physics potential of the experiment using actual
software, as compared to earlier estimates that may make assumptions about how
well events can be reconstructed or similar. The convolutional visual network
(CVN) is an example of this that runs on the DUNE FD MC to tag the neutrino
interaction flavour [69], allowing for a more accurate understanding of the physics
potential of DUNE. This software can be tested on both the DUNE FD MC,
as well as real data from ProtoDUNE-SP. The process of comparing simulated
data to real data is an important exercise, as it allows limitations of the current
simulation to be explored, as well as highlighting detector effects that are currently
not well understood or known about.

The outputs of the high-level reconstruction are event-level objects, that allow
physics analyses to be performed at a high level, without the need to consider low-
level details in the data. For example, a common first step in a physics analysis is
a cut on the neutrino interaction vertex, to ensure interactions are fully contained
within the detector. Similarly, it is common to have requirements on the particles
in an interaction or the event type. Additionally, a combination of the pattern
recognition stage and PID can be used to target specific interaction hierarchies
more generally, such as “one track and one shower”, then, getting more specific,
for example that the track should be a muon, not a proton, or the interaction
should have particles that have an energy that is more than a given amount.
This allows analyses to be started much quicker, as well as meaning that every
analysis benefits from improvements made to the reconstruction chain, thanks to
the vast reuse of reconstruction code, both across analysis groups, detectors, and
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Figure 4.3: The dE/dx versus residual range for both stopping protons (the upper
band) and muons (the lower band) at ProtoDUNE-SP. This is after space charge
corrections have been applied. Figure is taken from [50].

4.3 Pandora

Pandora is a software development kit [70], designed to provide a solution to
the complex pattern recognition problems that occur in particle physics, by
utilising a multi-algorithm approach, that slowly builds up a full representation of
the input event. This approach allows the complex problem of reconstructing
a full event to be approached iteratively, with problems being broken down
until they are more easily achieved with small targeted algorithms, as well as
allowing tasks that benefit from a more complete event model to wait until
the event has been sufficiently reconstructed. Initially, Pandora was developed
in the context of the International Linear Collider (ILC), before moving to be
focused on the reconstruction of the fine grain images produced in a LArTPC,
whilst also showcasing how the framework is flexible enough to swap detector
technologies. Pandora is currently in use at MicroBooNE [71], ProtoDUNE-SP [72]
and ProtoDUNE-DP, ICARUS, SBND, the ILC [73], CLIC [74], and the DUNE
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FD and DUNE ND. This covers a vast range of detection technologies and detector
environments. Within the LArTPC neutrino programme alone, Pandora is able
to reconstruct events for surface-based LArTPCs with many cosmic rays, or with
multiple drift volumes, differing APA layouts, test beam interactions rather than
neutrino interactions and much more, by utilising its multi-algorithm approach.

4.3.1 Multi-algorithm approach

The multi-algorithm approach to pattern recognition that Pandora employs is
designed such that each of the over 100 algorithms tackles one small problem, by
taking a larger problem and breaking it down into simpler and simpler steps, before
finally the problems are small and well-defined enough that it is simple to complete
without introducing mistakes, which in turn means that follow-up algorithms do
not need to correct mistakes from the early stages. One high-level concept such as
clustering may be split into many algorithms, with each algorithm in turn being
powered by many tools to target the specific issue that the algorithm was designed
to address. The algorithms can then be chained together, building up the full
pattern recognition pipeline. A secondary advantage of this approach is the ease in
which the chain can be altered or adapted, by inserting new algorithms between the
existing, and allowing parts to be removed or added if a specific experiment requires
a different approach to pattern recognition. Similarly, algorithm settings can be
defined in the algorithm chain configuration, allowing the tools and algorithms to
be optimised per experiment or use case. A simple example of this may be to
tune an algorithm to deal with the varying sizes of detector that it may run on,
such that it can work for both the full scale of a DUNE FD module, and a smaller
detector like MicroBooNE.

Another benefit of the multi-algorithm approach is the ease with which
algorithm chains can be modified to handle different event types and topologies.
There are three main chains in use at DUNE and its prototypes: Pandora Neutrino,
Pandora Cosmic and Pandora Test Beam. These each refer to specific chains
of algorithms that are optimised for different event topologies. The differences
between these chains varies algorithm to algorithm, with some parts being
identical, but in others there will be specific targeted algorithms or assumptions
that are changed. For example, the beam neutrino and test beam chains can make
assumptions that the primary interaction vertex is more likely to be closer to the
beam entry, whereas for cosmic or atmospheric neutrino interactions this is not
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true. Similarly, different algorithms may be better suited at dealing with downward
facing muons versus the muons produced in test beam or neutrino interactions,
which will travel forward through the detector. An example of this approach is
shown in Figure 4.4, showing the decision-making between Pandora Cosmic and
Pandora Test Beam / Pandora Neutrino at surface-based detectors. Here it can
be seen that multiple chains can be run simultaneously, allowing a particle to be
reconstructed under multiple hypotheses and the best result used.

Figure 4.4: Schema showing the Pandora consolidated outputs and reconstruction
strategy for surface-based LArTPCs such as ProtoDUNE and MicroBooNE. This shows
the broad chains that are used at different points and where decisions are made to pick
between them dynamically. Figure is taken from [31].

The multi-algorithm approach employed by Pandora enables dedicated algo-
rithm chains to be developed for specific event topologies. In liquid argon, particles
can broadly be split into two categories: track-like and shower-like particles.
Track-like particles, such as muons, pions, and protons, travel in mostly straight,
continuous lines through the detector, losing their energy primarily via ionisation.
Shower-like particles on the other hand, such as the electron and photons have
much less well-defined paths through the detector, due to losing energy via
radiative emissions, creating electromagnetic cascades. These electromagnetic
showers are much wider, with hits being created in a much less defined way than
the straight lines of track-like particles. Figure 4.5 shows some examples of track-
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(a) A muon track. (b) Electron shower.

(c) Michel electron. (d) Photon showers.

Figure 4.5: Particle signatures in ProtoDUNE-SP data for candidate particles from
different particle species. These figures show some of the complexity / ambiguity in a
strict track-like and shower-like distinction. The Michel electron candidate in Figure 4.5c
(the decay electron starting around channel 324, at a time of 5020), is defined as an
electron which is a shower-like particle, but at this low energy it exhibits track-like
behaviour. Similarly, in Figure 4.5d there are track-like components at the start of each
shower. All the figures shows raw detector readout from the collection plane, before any
noise filtering or deconvolution is applied. Figure is taken from [75].
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like and shower-like particles, as well as examples of cases where the distinction
is far less clear. A consequence of these contrasting particle topologies means
that different algorithms work best for different particle types. Whilst a straight
line-based fit may accurately reflect a track-like particle, a better fit for a shower
would be a cone-based fit, to reflect the spread of the shower not just the direction.
Additional complexity arises due to the imperfect nature of this distinction, as
shower-like particles also exhibit track-like properties before they begin showering.
All of this means that Pandora treats tracks and showers differently for much
of its reconstruction, using algorithms optimised to tackle their specific topology,
rather than general algorithms that attempt to do both. In practice, this concept
is combined with the algorithm chains to provide very specific algorithms that
can target specific event topologies. For example, the cosmic ray algorithm chain
utilises this concept to more heavily focus on the prominent tracks, with shower-
like reconstruction only needed for the delta rays from the muons.

A complete example of a neutrino event being reconstructed in Pandora is
shown in Figure 4.6, followed by an extended explanation of some of the steps that
Pandora uses to reconstruct a beam neutrino event without cosmic ray interactions.

4.3.2 Initial Hit Clustering

The earliest stage in Pandora does the basic clustering that will be used to make up
the full event eventually, creating initial ‘proto-clusters’ that are used to represent
continuous lines of 2D hits. It is crucial that these initial clusters are of high
purity, that is, contain only hits from a single MC particle, even at the cost of
low completeness, where low completeness refers to containing a low percentage
of the total MC hits for a given true particle. This approach works well for the
tracks, since they are mostly continuous sections of hits, such that a single cluster
can cover a large portion of the true track. However, for showers and their more
segmented appearance in the detector, this results in hundreds or thousands of high
purity, low completeness clusters that will be later examined and merged, using
topological and more developed event information to merge them more intelligently
than would be possible initially. This is because the more developed the event
model is, the larger the amount of usable information. For example, a topological
feature such as the shape and size of the hits produced by a particle, alongside
a direction vector calculated from its hits, makes the selection of a vertex much
easier than just raw hits. Figures 4.6.1 and 4.6.2 show the input hits and then

63



Chapter 4. Software for LArTPCs

x, drift position

w, wire position

G
ap

 b
et

w
ee

n 
vo

lu
m

es1)

x, drift position

w, wire position

Initial 
clusters

Refined 
clusters

Topological 
association 
algorithms

Ga
p b

etw
ee

n v
ol

um
es

Ga
p b

etw
ee

n v
ol

um
es2)

x, drift position

w, wire position Candidate vertex 
positions

G
ap

 b
et

w
ee

n 
vo

lu
m

es3)

x, drift position

w

v

u

u:v:w
1:1:1

u, v → w predictions 
superimposed on w cluster

v cluster

u cluster

4)

Candidate 
shower branches

Protected track 
clusters

Candidate 
shower seeds

x, drift position

w, wire position

Ga
p b

etw
ee

n v
ol

um
es5)

x, drift position

w, wire position

Particle 
merging 

algorithms

Initial 
particles

Output 
particles

Parent 𝜈𝜇 
interaction vertex

Primary 
track

Primary 
shower

Primary 
shower

Primary 
track

Daughter 
shower 
particle

+ Two small 
primary tracks 
near 𝜈𝜇 vertex

G
ap

 b
et

w
ee

n 
vo

lu
m

es

G
ap

 b
et

w
ee

n 
vo

lu
m

es6)

Figure 4.6: Illustration of the main stages of the Pandora pattern recognition chain:
(1) Input hits; (2) 2D track-like cluster creation and association; (3) 3D vertex
reconstruction; (4) 3D track reconstruction; (5) Track vs Shower separation; (6) 2D
and 3D particle refinement and event building. Each of the figures includes an indicator
for its coordinate system, as well as any defining features. Figures all taken from [31].
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the initial clustering for an example event, showing how once clusters are created,
topological features can start to be used to join together clusters that are close
together with consistent directions.

4.3.3 3D Vertex Reconstruction

Once the initial clustering has been performed, sufficient topological information
is available to enable the reconstruction of the neutrino interaction position. This
is a key part of the reconstruction, such that additional care needs to be taken
around the vertex to ensure that primary particles that emerge from the vertex are
protected and that complex events with many final state particles are reconstructed
correctly, with each particle being reconstructed fully back to the initial vertex.
In Pandora, vertexing is achieved by utilising pairs of 2D clusters from multiple
views, creating a list of potential 3D vertex positions. These candidate vertexes
can then be scored, and the best performing vertex is picked. This scoring of the
vertex utilises a boosted decision tree (BDT) [76] to score each candidate and picks
the best of the total list, using a combination of calorimetric features, topological
features such as the shape and size of the event, and simple counts of features in
the event such as the number of hits and clusters. There has also been work to
improve this BDT further to aid the vertexing step with deep learning. Figure 4.6.3
shows a number of the candidate vertices that have been found for the example
event, before a single best vertex is picked.

4.3.4 3D Track Reconstruction

With well-defined 2D tracks in each of the three views, Pandora can begin to
reconstruct 3D tracks. The same track cluster needs to be identified across each
view, which can then be combined to calculate the final 3D track particle. This
step can also be used to refine the existing 2D clusters by solving ambiguities in
one view by using information from a different view. Pandora has developed an
iterative approach to this problem that considers all the possible combinations of
the 2D track-like clusters and builds up a comprehensive set of cluster-consistency
information. This set can then be queried to help understand any ambiguities in
one view that are not present in other views. Similarly, features in 2D that correlate
in 3D can be used to make an even stronger association between distinct 2D
clusters. This step first targets the most clear combinations of 2D clusters, before
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performing the cluster-matched ambiguity corrections iteratively to enable full 3D
particle creation. If required, the 2D clustering can be refined to help improve the
level of agreement in 3D. Figure 4.6.4 shows an example of a comparison being
made between the views, by projecting from the u and v view onto the w view to
calculate their correlation.

4.3.5 2D & 3D Shower Reconstruction

As mentioned previously, tracks and showers are treated differently throughout
the reconstruction chain, due to their differing appearance in the detector. For
showers, the largest shower-like clusters are used as “seed” clusters for both 2D
and 3D shower reconstruction. These central, long clusters are recursively built up
with shower branches, before the branches are extended with additional branches
and so on. Once this is complete, a similar process to the 3D track reconstruction is
applied to the 2D shower clusters in each view to build up the 3D shower particles.
Figure 4.6.5 shows the improvements made to the initial shower-like clusters, as
well as the tagging of the clusters and branches, which can then be used to refine
the showers further.

4.3.6 2D & 3D Particle Refinement

The final stage of the Pandora algorithm chain refines the 2D and 3D clustering.
The refinement tools aim to improve the completeness of the reconstructed
particles by merging nearby particles that look to be fragments of a single larger
particle. This problem is approached with both 2D and 3D algorithms, with the
most powerful algorithms using a combination of both. Features in the 2D views
can be combined to look for features in 3D, or 3D features can be projected back
to the individual 2D views, taking advantage of the coordinate transformation
system in Pandora. This stage finishes with the final creation of 3D space points
for every 2D input hit, before using this full 3D representation of the event to
build up an interaction hierarchy, going from the initial neutrino, to each daughter
particle and then any subsequent daughter particles they may have. This allows
analysers to not only target specific particles in an event, but specific interaction
hierarchies, such as a pion but only if it is associated with the primary interaction,
rather than any secondary interaction. Figure 4.6.6 shows the input and output of
this stage, with additional hits from the original input being included now, as well
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as the two primary showers being fully merged with the shower branches nearby.

4.3.7 Performance Metrics

As mentioned briefly in the previous sections, a few key metrics are used to assess
reconstruction performance, which are useful to discuss, to outline their impact
and quirks.

These metrics broadly are as followed for simulated data:

• Efficiency: Efficiency here refers to a measure of how well the entire event
has been reconstructed. It is defined as the number of MC particles that
were matched to at least one reconstructed particle, over the total number
of reconstructed particles. A match from a reconstructed particle to a
MC particle is determined by the particle whose hits contribute most to
the reconstructed particle, whilst also requiring a purity over 50% and a
completeness above 10%. This gives a more global, event level reconstruction
metric, versus completeness and purity which are particle level.

Efficiency = Number of MC matched to at least 1 reco particle
Total number of MC particles (4.3.1)

• Completeness: Completeness in this context refers to how “complete” the
current reconstructed particle is, that is, how many hits does it have out of
the total hits associated with the main MC particle for that reconstructed
particles. For example, if a reconstructed particle has 100 hits, with 95 of
them coming from a muon and 5 hits from a nearby electron, the main MC
particle for that reconstructed particle would be the muon. The completeness
of that particle would then be 95 over the number of true hits associated with
the muon in the MC. Completeness can also be given in terms of energy, to
calculate how complete the energy of the particle is out of its total energy.
This is achieved in the same way, with the truth matched energy over the
total MC energy. Completeness is a useful metric to tell if the clustering and
particle refinement has created sufficiently large particles. Low completeness
refers to a reconstructed particle that is missing a large number of its hits,
which in turn will impact energy reconstruction and more.
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Completeness = Number of hits shared between MC and reco particle
Total number of MC Hits for main MC

(4.3.2)

• Purity: Purity is complementary to completeness. Where completeness
tells you how much of the particle was put together, purity tells you how
much contamination there is from other particles. Using the same example
as for completeness, that is a particle built with 95 hits from a muon and 5
hits from an electron, the purity is the number of truth matched hits (95)
over the total number of reconstructed hits for that particle (100). Similar
to completeness, this can also be performed with the reconstructed energy,
rather than the hits. Purity is useful to give the complementary information
about the clustering to completeness, such that it can be seen if the clustering
is too aggressive and is leading to merging multiple particles that result in
low purities.

Purity = Number of hits shared between MC and reco particle
Total number of reco hits (4.3.3)

These metrics, especially completeness and purity, are most useful when taken
together. Achieving high completeness in an event is easy if you combine the whole
event into one particle, but that would then achieve a low purity. Similarly, having
clusters of size one achieves a high purity, but is of no actual use. Instead, particles
with high completeness and high purity are desired. Efficiency as a metric is useful
to understand how changes have impacted the event as a whole, but is only useful
if the actual purity and completeness are expected to change drastically, so its
use is more limited. Pandora by default favours using the hit-based version of
these metrics, rather than energy-based ones, as the primary input to Pandora is
hits, making hit-based metrics more intuitive. These metrics can then be split up
further if desired, such as by energy, number of hits or particle type to understand
how performance varies depending on the size of the event or the interaction type.

One key choice for performance metrics is the initial object used to build them.
Metric generation can start from either a reconstructed object, or a truth level
object. Starting from a reconstructed object, a ‘reco-first’ approach, tells you
what the reconstructed objects look like, such as how complete or pure they are.
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However, what it does not tell you is the result for any MC particle that was
not reconstructed, as there is no object to start from. Starting from the MC
particle, a ‘MC-first‘ approach, and then analysing the completeness and purity of
the reconstructed objects that make up that particle is a second way of building
up metrics. Each way provides different information, with ‘reco-first’ outlining
how the reconstructed objects look and perform, but the ‘MC-first’ metrics give
a more complete overall event understanding. For this reason, the reconstruction
first metrics are broadly used first, but with an eye on MC-based metrics such that
more objects are not being lost in an event.

Examples of Pandora’s achieved reconstruction performance at ProtoDUNE-SP
can be seen in Figure 4.7, showing the accuracy of reconstructing the particle’s
end point. Reconstructing the end point of the test-beam particles is of particular
interest to cross-section analyses, where it is critical to know if a particle interacted
or stopped. Figure 4.7 shows that for 68% of beam particles, Pandora can
reconstruct the end point within 2 cm of the true value. We can also see
the different reconstruction efficiencies for each of the coordinates, with the X

coordinate being the best, due to that being common across all views of the
detector, whereas the Y and Z are more difficult to reconstruct. The performance
numbers shown represent a snapshot of Pandora’s performance, as continual
development and tuning to Pandora mean that its performance is improving over
time.
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Figure 4.7: Pandora’s reconstruction performance on ProtoDUNE-SP simulation,
showing the difference between the reconstructed and true position of the particle end.
The left shows this split into the x, y and z components, whereas the right shows the
combined three-dimensional distance. Both plots are for 1 GeV/c primary proton and
charged pion test-beam particles. Plots taken from [72].
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4.3.8 Deep Learning

One of the more recent developments in Pandora is a more thorough integration
of deep learning to steer the direction of the Pandora algorithm chains. Pandora
already extensively uses machine learning techniques such as BDTs and other
multivariate analysis (MVA) based techniques to aid decisions in certain cases,
such as assessing vertex options or particle classification. This is illustrative of how
machine learning is mostly used in Pandora, to aid decision-making and enhance
the power of existing algorithms in Pandora. Deep learning allows this to be
extended, with more powerful algorithms that target specific problems, as well as
making better use of existing algorithm outputs.

In the past few years, Pandora has added an optional integration with
PyTorch [77], to allow the development of deep learning powered algorithms, to
either replace or work alongside the existing algorithm chains. PyTorch is an
open-source machine learning framework, based on the earlier torch library [78]
and used across a wide range of machine learning tasks, currently maintained
and written by Facebook’s AI research lab. Deep learning-based algorithms are
an interesting extension of the Pandora multi-algorithm approach, and as Pandora
does not specify how an algorithm is implemented, there is no difference technically
between a deep learning or non-deep learning-based algorithm, outside including
additional PyTorch headers. Both deep learning-based and non-deep learning-
based algorithms can be run at the same time, allowing the most useful algorithm
to be used depending on the current problem.

Deep learning-based algorithms are currently being tested in a variety of forms,
to both augment existing algorithms, and provide new ways to approach problems.
A key example of this is the use of deep learning early in the reconstruction chain
to classify every hit in the event as having come from either a shower-like or
track-like particle. This algorithm takes the raw hits of the event as input, and
outputs an identical sized output, with a score for every hit indicating how track
or shower-like it is [79]. An example of how the algorithm performs is shown in
Figure 4.8. This score can then be used for a variety of algorithms, with the
most powerful being the ability to split the reconstruction chain. Pandora already
targets track and shower-like topologies differently, but the presence of an accurate
track or shower score for every hit means that algorithms designed for one topology
can be run only on hits or clusters that have a very high track or shower score,
excluding those which would not benefit from the current algorithm. This process,
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called streaming, referring to the two different algorithm streams that the track
and shower-like clusters now follow, allows impressive performance improvements
using existing algorithm chains.

(a) Raw Input Hits (b) Tagged Output Hits

Figure 4.8: An example DUNE FD event with the results of the Pandora hit tagging
algorithm. The raw hits are used as input to the deep learning-based algorithm, with the
output being seen on the left. The output shows track tagged hits in blue, and shower
tagged hits in red. The actual score is a scale with how track or shower-like the hits are,
but the visualisation here only shows which classification fits better, not the strength
of the classification. This is for a simulated electron neutrino event. Further details on
this network can be found in [79].

Going forward, the streaming work allows for the introduction of new
algorithms, both deep learning-based and otherwise, that target the two particle
topologies more directly, with a much higher confidence that the input hits are
compatible. There is also the potential for other similar early classifications, such
as a CVN-like network [69], outlined in Section 4.2.3, to classify the neutrino
flavour in beam events, such that νµ and νe events could be treated differently
to target their more track-like or shower-like topologies more directly, or allow
for cosmic rays or atmospheric neutrinos to be targeted more directly in a
dynamic way, with specific tagging of the hits belonging to certain interaction
types. Similarly, extension or replacement of existing algorithms for complex
problems such as vertexing with deep learning-powered algorithms could yield
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either significant improvements, or extensions of these algorithms to provide
extra information, such as secondary interaction vertices. Deep learning-powered
algorithms will become a key part of the Pandora algorithm chain going forward,
with an extensive suite of handwritten algorithms for simple problems, or problems
where physics restrictions that are not easily encoded in a network make a deep
learning approach unfeasible. This approach allows Pandora to maintain the
advantages of deep learning-powered algorithms where they are most powerful,
but also use simpler algorithms in the cases where it is unnecessary to use deep
learning.
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5
Deep Learning

“Say from whence you owe this strange
intelligence?”

Macbeth - Macbeth

M achine learning (ML), and more recently deep learning (DL), are
rapidly growing fields of research that study algorithms and their
associated tooling that can make predictions from data, using

relationships learnt from initial training data. Recent advances in both available
computing power, and new algorithmic advances, have enabled the stacking of
more and more of these methods, each of the layers in this stack with large
numbers of parameters, leading to the viability of deeper models, and the rise
of deep learning rather than machine learning1.

There are many ways of categorising deep learning methods. Two important
categories are supervised and unsupervised algorithms. In a supervised algorithm,
the outputs are well-defined, and a set of labelled data is available to direct the
algorithm’s training. That is, by knowing the predicted result and the real result,
the algorithm can be updated directly to nudge it towards the correct answer,
with the full process for this outlined later. In the unsupervised case, the goal is
to infer the patterns in the underlying data, without having labels for the input
data. Deep learning algorithms can also be distinguished by the different outputs
that are required, either discrete or continuous, or a single output or multiple

1The distinction between ML and DL can change depending on who is asked. Here, deep
learning will refer to techniques that utilise larger networks with many layers, not simpler
techniques such as BDTs or other MVA techniques.

73



Chapter 5. Deep Learning

outputs. In each case, the desired output informs decisions about what sort of
techniques or features to use, either to gain the most amount of decision-making
power out of the input data, or to simply get an output of the form required.
This leads to different architectures that aim to exploit the input structure to gain
additional information out of the input data, rather than having to learn some
structure from a one dimensional input.

This chapter will review the essential techniques of DL and provide an in-depth
discussion of the types of network that will be applied in Chapter 7, with some
additional context of how deep learning is currently used in particle physics at
DUNE and other experiments.

5.1 Neural Networks

Artificial neural network (ANN) are a class of ML algorithm that take inspiration
from the biological neurons that are present in the brain. An ANN has two main
components; nodes and connections between those nodes. These nodes usually
take the form of artificial neurons, where a neuron takes N inputs and passes them
through an activation function f to give a single output, as shown in Figure 5.1.
The input x is combined with some weights, w, and summed, before being passed
through f to create the output of that neuron. The weights here are the tunable
parameter of this neuron, allowing its value to be changed and react to the problem
the neuron is made to solve. There is an additional term, the bias b, which is used
to adjust the baseline calculated before the activation function is applied. This
bias term can be considered like the intercept value for a straight line, with the
weights enabling the gradient to be adjusted, but the bias applying a constant
shift to the line to enable a better fit to the data. These artificial neurons can
be stacked, with multiple artificial neurons comprising a single layer in a larger
network. In this format, the output of one neuron either makes up the output of a
single layer, feeding into a secondary layer of neurons, or if the neuron lies in the
final layer of the network of neurons, it forms the output prediction.

Figure 5.2 is an example of the most common form of ANN, the multi-layer
perceptron (MLP). The MLP is an example of a network formed of layers of
artificial neurons. A MLP commonly has a minimum of 3 layers, one for input, one
for output, and at least one “hidden” layer. Each layer is usually fully connected
to the next layer, such that every neuron in one layer is connected to every neuron
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in the next layer.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 5.1: A graphical representation of an artificial neuron, which make up the
individual nodes in an artificial neural network. x1, x2, x3 represent the inputs to the
neuron, with w1, w2, w3 being the associated weights. Once the inputs and weights are
combined by summing b + xiwi, the result is passed through some activation function f
to produce the final output y. Here, b refers to the bias, which is a value used to adjust
the sum of the weights and inputs to the neuron.

In a MLP, the nodes in each layer receive input from each preceding layer,
which are then used to calculate their output value, which forms part of the input
for the next layer. Given an arbitrary node i in layer j, the output oi,j is given by,

oi,j = f
(
wi,j · xj−1 + bi,j

)
where oi,j is the output for the node, f is the chosen activation function, wi,j is
the weights vector, xj−1 is the input to the node from the previous layer, and bij

is the bias.
The choice of activation function somewhat depends on the required output,

with some activation functions giving continuous outputs, and others rounding to
zero or one. Common choices include the sigmoid function, hyperbolic tangent,
rectified linear unit (ReLU) and its modified versions, and the softmax function,
with Figure 5.3 shows how some of these functions vary visually, and their
definitions are as follows:
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Input Layer Output LayerHidden Layer

Figure 5.2: A diagram of the basic architecture of a feed-forward neural network. There
are three layers of neurons. The input arrives in the first layer, before being passed to
the middle hidden layer. Here, linear combinations of the input values are produced by
combining the learned weights with the input values, before being passed to the final
output neuron which produces the final inferred output. Figure generated using [80].

Sigmoid : f(x) = 1
1 + e−x

Tanh : f(x) = ex − e−x

ex + e−x

ReLU : f(x) = Max(0, x)

Softmax : f(xi) = exi∑
l

exl

Here, xi indicates the current node and l refers to summing over all nodes in
the current layer. This allows outputs from a layer that uses softmax to sum to
one, which makes it a common choice for the final layer in categorisation tasks
to get a value for each category whilst adding up to one. It is common for a
combination of these activation functions to be used, for example using a ReLU
based activation function for each layer, with a softmax or sigmoid function as the
activation function for the final output layer.

Alongside picking an activation function to use for each layer, the number of
layers and their sizes must be picked. Usually, the input and output layer have
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Figure 5.3: The shapes of four different activation functions. The equation for the
sigmoid, tanh and ReLU functions are given in Section 5.1. The leaky ReLU refers to a
variant of ReLU that has a slight negative slope for negative values, rather than being
clamped to zero. In this case, the negative slope is given by 0.2 ∗ x, but the coefficient
can be altered.
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a well-defined size based on the input to the network, and the desired output.
This output could be a single node for a task with a single continuous output,
or something with binary classification, or multiple nodes for a categorisation
task. The hidden layer size and how many hidden layers is where there is more
ambiguity. According to the universal approximation theorem for ANNs, it is
possible to approximate any function to an arbitrary precision with only a single
layer with enough hidden nodes [81]. However, in reality, it makes more sense
to use a lower number of nodes, split into multiple hidden layers versus a single
hidden layer with many hidden nodes, as many fewer nodes are required when
using multiple layers of neurons. There is a balance between how many hidden
layers and their size, that must be found, as going too large gives diminishing
returns but increases the computation cost of the network with each additional
layer.

5.1.1 Gradient-based optimisation

A given network does not start out being able to complete a target task, being
initialised with random weights that will produce an equally random, nonsensical
output. In a supervised network, these weights can be gently pushed towards a
solution with gradient-based optimisation, taking the initially random weights of
the network and updating them over time to produce weights that give a sensible
answer, assuming the network is of sufficient size and capacity to learn from the
input data. A similar approach can be used in unsupervised networks, but with
a lack of labelled training data, it is necessary to use scores or metrics to rate a
given output.

When using a neural network normally, we give it some input x and have
it produce some final output y, with information flowing forward through
the network, starting from the initial information from the input and then
propagating via each of the nodes of the network until the output is produced.
This whole process is called forward propagation, and a similar method called
backpropagation [82] is used to enable the network to learn. Backpropagation
allows the information of the network to flow backwards from the output, and a loss
is calculated, which is the difference between the training data and the predicted
output. From this loss L, a gradient can be calculated, which can then be used to
update the network’s weights in a way that improves the calculated loss. This is
typically calculated by quantifying the difference between the network’s predicted
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answer and the true output, at least in the supervised learning case. A common
example of this would be the mean squared error of the training set. This allows
the weights of the network that produced a wrong error to be nudged closer to a
value that would produce the desired output.

This optimisation is a core part of machine learning-based algorithms, defined
by minimising some form of cost function J(θ)2 by changing parameters θ (which
relates to both the weight and bias in this example). J typically refers to the
average of the loss function L over the entire training data set. The partial
derivatives of J can be computed, which in turn shows how J would react to
changes to θ (w and b). Minimising this loss function J(θ) is usually achieved
through the use of gradient-based optimisation, which uses the partial derivatives,
also known as gradients, of ∇J(θ) to find the optimal θ so J is minimal. Suppose
that this loss function at a given time step t is J(θt). Given the first-order Taylor
series of J about θt,

J(θt + ∆θ) ≈ J(θt) +∇J |θt∆θT ,

we know that for small changes to the parameters, as given by ∆θ, J can be
reduced by moving along the negative gradient, moving us closer to a more optimal
answer. This technique is called gradient descent, and it chooses values of ∆θ such
that it is parallel to −∇J |θt . Then for the next time step, t + 1, the parameters
are now given by

θt+1 = θt − α∇J |θt ,

where α is the learning rate, a tunable hyperparameter of the network. The
first-order Taylor approximation only holds for small values of ∆θ, so choosing
a suitable learning rate is important. It should in general be small, as using a
learning rate that is too large can lead to repeated jumping over a minima in J .
Conversely, if α is to small, that means the network will take longer to learn and
train, or get stuck in an undesirable local minima. There is a balance in picking a
suitable value for the learning rate.

2This can also be called an objective function, error function or a cost function.
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Name Description
Learning Rate Controls how quickly a networks weights are updated.
Activation Function What specific function to use for a given node.
Layer Size The number of nodes that go into a given layer.
Layer Number The number of layers in the network total.
Dropout Percentage of nodes to be randomly ignored whilst

training.
Epochs The number of training iterations to perform.
Batch Size How to split the data into batches, which are then

trained upon.
Optimisation Algorithm The algorithm used to control the training process.
Kernel Size The size of the kernel applied to the input image.
Pooling Size How much to reduce the image size by.
Padding If padding should be applied to keep the image size

consistent.
Aggregator The aggregation function to use for message passing.
Message Passing The rounds of message passing to perform.

Table 5.1: An overview of common hyperparameters used in training neural networks,
and what they are for. Examples of some specific hyperparameters used in more complex
networks are given in later sections.

5.1.2 Training a Network

Outside the mathematical process of gradient-based optimisation and how a
network learns, there is an additional set of technical challenges involving training
a network, related to both hardware constraints and software engineering issues.
Training a neural network to be effective requires a large amount of labelled
training data, at least in the supervised case. There are considerations around
this data that need to be accounted for in the training process, such as its format,
how the data is split between training and testing, and the amount of available data
for training. Additionally, a broad explanation of the training process is useful for
later reference. Finally, most networks have a large number of hyperparameters,
that is, values that control the learning process in some capacity, that need to
be determined. These hyperparameters, ranging from the size and shape of the
neural network, to the value of the learning rate, need to be optimised to enable the
network to efficiently learn the required problem. An overview of some common
hyperparameters is given in Table 5.1.

Creating a suitable training dataset is an important first step for most deep
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learning algorithms. In non-supervised cases, it is possible that a dataset is not
needed, and instead some form of figure-of-merit score can be used to guide the
network (for example, using the score in a video game). However, in a supervised
case, a comprehensive and labelled dataset is needed, to compare the predictions
against and make adjustments accordingly. The size of the dataset is dependent
on the complexity of the problem, so like most of the training parameters, there is
no simple way of knowing if more data are needed prior to training. For particle
physics specifically, the sophisticated MC simulations we have for understanding
and benchmarking the detector make this problem much easier, as we have a simple
way of producing large amounts of data to train on3. Once data has been acquired
in the correct input format for the chosen network, the data is usually split into
three sets: a large training set, a smaller validation set and a final test set, though
it is possible to set up the various datasets in different ways depending on the
data in use and the aim of the training process. The training set is used to update
the weights of the network, whilst the validation set is used as a benchmark of
training performance whilst training is underway. The validation set is useful to
ensure that the training process is not learning features too specific to the input
training set, quickly, whilst training. Finally, the test set is used to assess the
performance of the network on unseen data.

As most datasets for deep learning are in the tens of thousands of examples,
accommodations need to be made in the training to deal with the amount of data,
as it is not possible to load and training on all the examples at once. The most
common way of dealing with this is the use of mini-batches, small samples of the
training dataset that are trained upon and then have backpropagation applied to
simultaneously. The size of this mini-batch is a hyperparameter of the network,
with the size of the mini-batch impacting the convergence of the network. The
use of many mini-batches usually leads to quicker convergence of the network, due
to more frequent updates to the network, as well as alleviating restraints on the
dataset size due to memory. One full pass through the dataset over every mini-
batch is called an epoch, such that the network has seen every training example
exactly once. This is then repeated until satisfactory performance is achieved,
usually with some amount of shuffling of the dataset each time to ensure robustness
of the learning process. During this time, the validation set can also be used to

3Access to sophisticated MC data is also a problem however, increasing the risk of learning
features from a specific physics model, rather than the problem generally.
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ensure the network is learning sufficiently and not overfitting, that is, not learning
features that are specific to the training set alone that will not generalise to unseen
data.

Like reconstruction metrics, there are common deep learning metrics to assess
the performance of a trained model. As deep learning is applied to a variety of
problems, the specific metrics depend on the problem. For example, classification
problems traditionally use accuracy, precision, recall and more. Like completeness
and purity in the context of reconstruction performance, these numbers need to
be taken in context with each other. For classification-based tasks, accuracy is the
simplest metric: how many correct predictions were made out of all predictions,
whereas precision refers to the proportion of positive identifications that were
actually correct, and is calculated with the number of correct predictions over
every positive prediction. These two numbers tell two different things: accuracy
says how often the network is correct overall, whereas precision indicates how good
the network is at predicting a specific category. The distinction between these two
metrics can be very useful, for example it is usually easy to achieve high accuracy in
a dataset that is not balanced by always predicting the dominant category. There
are further metrics that are useful to view together, but a more useful metric in the
context of training is understanding how loss changes during the training process.
As mentioned previously, we can calculate a loss value for the network, and this
value should improve as the network learns. Similarly, we can look at the loss on
the validation dataset, which is not trained on. This means the loss can be used
to check that the network is actually learning, and to help tune the learning rate
chosen, but also enables overfitting to be caught, as the training and validation set
losses will diverge, as the model starts to learn features specific to the training set
rather than the general dataset. However, it must be noted that loss itself is not
usually directly comparable across different networks, unlike most other metrics.
Instead, it is only useful to check the training process, and potentially compare
different tunings of the same model. Figure 5.4 shows an example of how the
training and validation loss can change over the duration of training, as well as
how accuracy on the test dataset improves as the network learns.

82



Chapter 5. Deep Learning

Figure 5.4: An example of how loss changes over the duration of training, from the
NOvA CVN. The average training and test loss can be seen declining over the duration
of the training, where the test loss is the average loss over 256,000 test examples and the
training loss is the average over 128,000 training examples, averaged across iterations
using a sliding window average. The accuracy on the test dataset can also be seen
increasing over time. Figure taken from [24].
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5.2 Network Types

There is a range of different architectures for deep learning networks, each with
specific features of their structure that enable them to more easily learn from their
supplied data. Certain problems are either more easily represented in a certain
form, or can be more easily reasoned when given in a more natural form. For
example, learning from an image directly is an easier task than flattening that
image into a 1D vector and hoping the network can learn the associations between
the pixel inputs. There is also the possibility of being able to encode additional
information into an input more easily when given in a different form. Thus, having
networks that natively understand their supplied input and can learn from that
directly are useful. This has led to the rise of specific networks that are optimised
for certain inputs, as well as networks whose structure is optimised for a certain
task.

Some of these networks are specific to a certain style of data or problem.
Examples of this include convolutional neural networks (CNNs), graph neural
networks (GNNs) and recurrent neural networks (RNNs), each which are optimised
for a specific input or problem definition. CNNs and their derivatives are designed
to deal with multidimensional inputs on a fixed grid, which can be a more intuitive
way of learning for some inputs, utilising the natural shape of the data, rather than
requiring it to be flattened to a single dimension, which can make context of each
data point harder to understand. This has lead to them becoming the standard
network type to use to reason on images, from medical use to recognise features in
tissue samples, to automated recognition of the contents of a photo for metadata
tagging. Similarly, RNNs are optimised for dealing with sequences of data, which
makes them ideal for dealing with data that depends on previous inputs in the
sequence such as speech recognition [83], or other language-based applications,
where the data’s sequential nature is an important feature to predict the next word.
Finally, GNNs are incredibly useful for leveraging the structure and properties of
graphs, which can be used to show the relationships between things, making a
GNN an ideal fit for problems based around relationships between objects. They
have been applied to biological problems very frequently, representing molecules
and their relationships, or the structure of a protein.

Other types of techniques exist within deep learning that are broadly useful,
without prescribing the problem space or the input format. Examples include the
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skip connections, where inputs are passed not only through a layer, but over a layer
too, such that the activation of an input and the input itself can be utilised for
follow-up layers. Likewise, the generative adversarial network (GAN) [84] can be
used for a variety of tasks, and just refers to a class of machine learning algorithm
that utilise two networks in contest with each other. This can be used to generate
new outputs that should be hard to distinguish from their initial inputs, but do
not prescribe the actual task at hand.

Finally, there are techniques that are used to improve the learning potential
of any network, such as dropout, a technique of dropping out units of a neural
network. Simply put, dropout refers to ignoring a random number of neurons
during each training iteration. This should improve the robustness of the network,
as the data it learns from is randomly zeroed, which in turn can help prevent
over-fitting of the network.

5.2.1 Convolutional Neural Networks

Figure 5.5: An example CNN architecture diagram, showing the LeNet-5, one of the
original examples of a CNN [85]. The input image, and then layers of convolutions
and pooling can be seen, ending in a final MLP. The size of the input getting smaller
and smaller in each layer can be seen, with the size dropping most drastically after the
pooling layers. As this network was created to classify handwritten digits, it has an
output layer of size ten. Figure is from [85].

Convolutional neural networks (CNNs) are a class of ANN which are most
commonly applied to images, whose input data lie on a fixed grid. The architecture
of a CNN allows it to deal with higher dimensional data that a MLP may struggle
with. This is because a MLP requires many nodes, both in layers and nodes
per layer, to deal with data in higher dimensions, which in-turn impacts the
computational cost and speed of the network. Similarly, the one dimensional
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input to a MLP means losing a lot of the spatially correlated information that is
present in the input image, either losing that data permanently or having to learn
the relationships between the input pixels. The CNN architecture addresses these
issues by incorporating the spatial proximity of the pixels that make up each image,
making it easier for the network to learn spatial patterns within sets of images.
An example architecture for one of the first CNNs can be seen in Figure 5.5.

The CNN, like the artificial neuron, was inspired by biological processes in the
brain. This time, it is the connectivity patterns of the artificial neurons resembling
the visual cortex in animals. Similarly, cortical neurons in the visual cortex only
respond to stimuli from a set region of the visual field, known as the receptive
field. This receptive field then overlaps across different neurons, building up a full
image of the entire visual field. It was Kunihiko Fukushima who first used these
concepts [86], building on earlier work from Hubel and Wiesel [87], to introduce
many of the common layers still seen in CNNs.
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Figure 5.6: An example of a CNN filter being applied to an input image. The first
matrix represents the image with its per-pixel values. The second matrix represents the
filter that is being applied to the input image. Finally, the output is the result of the
filter being applied to every location in the input, and then summing the elementwise
products for each position. As the filter must fit exactly on the input, the size of the
output is smaller. This is sometimes avoided by using padding (adding additional empty
pixels around the input) to ensure the output size matches the input size.

In CNNs, the flat one-dimensional neurons that the MLP uses for its input and
hidden layers are replaced with convolutional kernels. These are small matrices
that contain a set of learned weights. They are applied to the image pixel-wise,
by sliding the kernel over the pixels of the image and applying the convolution
operator at each position. This operator is defined by
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(x× y)i =
∞∑

j=−∞
xjyi−j,

where x and y are discrete sequences that represent the convolutional kernel and
image, respectively. As these are both finite, the actual bounds of the sum are
from zero to N , with N representing the number of pixels in the kernel. The kernel
is applied to all pixels in the image, producing an output that can then be used
as an input for follow-up layers. This repeats, with many convolutional kernels
per layer of the network, each producing output images that are passed to the
next layer. One consequence of the kernel being applied to just the input image
pixels is the reduction in size with each step, as the filter cannot cleanly fit on the
outermost pixels without having empty pixels. In some cases, this is not desirable,
such that the image is padded with zero values to ensure the input and output
image are of the same size. An example of a kernel being applied to an input is
shown in Figure 5.6, showing the input image and current kernel, as well as the
produced output.

These kernels are essentially feature detectors, learning a specific feature in the
input data, based on the value of its learnt weights that form the kernel matrix.
In traditional image processing tasks, bespoke, human specified, kernels are used
for many tasks, such as edge detection, sharpening and more. The outputs of
these kernels are called a feature map, as they represent the spatial distribution
of the feature that kernel has learnt. These output feature maps form the input
for secondary layers of the network, which may be padding layers or follow up
convolutional layers. The layering of the network determines the extent of the
network’s receptive field, which is the area of the input that a certain layer can
see, due to the layering of the network. The receptive field is built up as the first
feature map uses information from a small region of the input, but as convolutions
are applied to that feature map they pull in information from a larger region of
the initial input. The deeper and deeper the convolutional layers get, the larger
the receptive field, the larger portion that a pixel in a feature map represents in
the original input image.

Even when not using padding in a CNN, such that the image size decreases each
step, CNNs have drastically larger number of parameters than a traditional MLP.
This, combined with the additional cost of computing the many convolutional
kernels for each layer, can lead to an increased computational cost. To combat
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this, the use of pooling is common. Pooling [88] is a downsampling technique that
helps reduce the number of parameters in the network, which in turn reduces the
computational cost of the network. In pooling, data from an m × n region is
downsampled to a single value, with the most common approaches being to take
the maximum value from the downsampling region, or taking the average value,
called max pooling and average pooling respectively. When pooling is combined
with multiple convolutional layers, it can help increase the receptive field of layers
deeper in the network dramatically. There is also the opposite operation, that
allows the input to grow, rather than shrink. This is often used after downsampling
has been applied, alongside the use of skip connections. This allows an image to
be brought back up in size, usually back to the original size of the initial input,
by reversing the pooling step alongside information from before the pooling was
applied.

The output of a CNN is usually a prediction, classification or similar.
Convolutional kernels are not especially suited for this task, so it is therefore
common to flatten the data down and use a MLP for the final layers of the
network. As there are usually many layers of convolutions followed by pooling,
which drastically reduces the size of the input, the number of parameters at the
MLP stage is usually much more reasonable, meaning a result can be achieved
quickly. At a high-level, this can be seen as building up layers of feature maps,
with later layers being feature maps built on feature maps to find higher level
features, with the final dense layers being used to perform decision-making on
these high-level features to produce a final prediction. However, there are certain
cases where the feature maps of the CNN do not need flattening, and instead
predictions can be made of the multidimensional data.

5.2.2 Graph Neural Networks

Graphs are a data structure, used to describe systems of relationships or
interactions between objects. Taking a general view, a graph is simply a collection
of nodes and edges4, objects and interactions between those objects. A simple
example of a graph is a social network, with nodes representing individuals,
and edges representing friendship between two individuals. Information can be
associated with both the nodes and edges, such as an individual’s name, or the
length of time two individuals have been friends. An example graph showing a
social network is shown in Figure 5.7. A graph more generally can be used to
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describe the relationships between nodes via their interactions, rather than just
storing the properties of nodes, all whilst maintaining the same general structure.
This enables a graph to represent a social network, the routing table for a computer
network, interactions between drugs and proteins, and the interactions of particles
in a detector medium.
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Figure 5.7: An example graph showing a social network from the Zachary Karate
Club Network, which represents friendships between members of a karate club studied
by Wayne W. Zachary between 1970 and 1972 [89]. Nodes represent each individual,
and edges connect two individuals if they socialised outside the club. During the study,
the club split into two factions, and Zachary was able to predict which nodes would fall
into each faction based on the graph structure. Colours are used here to show the two
factions. In the original study, and in this reproduction, node 9 is incorrectly predicted,
but the rest of the members are correctly grouped with nodes 0 or 33, which represent
the leaders of the two factions. Data is from [89], community detection and plotting
performed in Python via NetworkX [90].

5.2.2.1 Neural Message Passing

First, the formal definition for a graph needs to be given, to give a better
explanation of how deep learning techniques are applied to graphs. This formalism
draws mainly from Graph Representation Learning by W. Hamilton [91]. A graph
G = (V , E) is defined by a set of nodes V and edges E . We can denote an edge
going from node u ∈ V to node v ∈ V as (u, v) ∈ E . In the case of an undirected
graph, (u, v) is equivalent to (v, u). It is convenient to represent graphs via an
adjacency matrix A ∈ R|V|×|V|. In an adjacency matrix, the nodes of the graph

4There are many words for nodes and edges, including vertices and points for nodes, and links
or lines for edges.
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can be ordered such that every node indexes a particular row, column pair in the
matrix. Edges can be represented as entries in this matrix: A[u, v] = 1 if an
edge is present, 0 otherwise. For undirected graphs, this adjacency matrix will be
symmetric. As directed graphs are not used for the work in Chapter 7, they will
not be covered in detail here, however it is useful for some uses of graphs that
edges are directional such that a connection is only present one way.

One important property of graphs, especially in the context of deep learning,
is the ability to have attributes or feature information associated with the graph.
Usually, this is node-level attributes using a real-valued matrix X ∈ R|V|×m, where
it is assumed that the ordering of the nodes in this matrix match the ordering of
the adjacency matrix, and m relates to the number of features. It is also possible
to have edge-level features, which encode the interactions between nodes, and
in some cases graph-level features. These features can then be used to generate
node-based embeddings. These embeddings encode the nodes as low-dimensional
vectors that summarise their position, structure and features, which is useful for
later learning. That is, we want to project nodes into a latent space where their
geometric relations in this latent space correspond to relationships (i.e. edges) in
the original graph. This is then easier to learn from, rather than the nodes and
edges directly.

The defining feature of a GNN is the use of neural message passing, in
which vector messages are exchanged between nodes and updated using neural
networks [92], shown visually in Figure 5.8. This allows us to go from some graph
G = (V , E), along with node features, X ∈ R|V|×m and use this to produce node-
based embeddings zu,∀u ∈ V . This requires that each of our nodes have some
features associated with them. For most datasets, this is not an issue, as there
is a rich set of node-level features that can be applied. If this is not the case,
there is the potential of using calculated features, such as node-based statistics, or
a unique per-node identifier. Message-passing is applied to the GNN iteratively,
and during each iteration k, a hidden embedding h(k)

u corresponding to each node
u in the graph is updated according to the aggregated information from u’s graph
neighbourhood N (u), where u’s neighbourhood is defined as the subgraph of G

induced by all vertices adjacent to u. This can be expressed as follows:
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h(k+1)
u = UPDATE(k)

(
h(k)

u , AGGREGATE(k)({h(k)
v ,∀v ∈ N (u)})

)
(5.2.1)

= UPDATE(k)
(
h(k)

u , m(k)
N (u)

)
, (5.2.2)

where UPDATE and AGGREGATE are arbitrary differential functions (i.e. they
are neural networks themselves), and mN (u) is the “message” that is aggregated
from u’s graph neighbourhood N (u). The superscripts here are used to distinguish
the embeddings and functions at different iterations of message passing.
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Figure 5.8: Overview of how a node aggregates information in a GNN from its
nodes in its local neighbourhood. Here, information from 0’s local neighbours (1, 2, 3)
is aggregated, then from their neighbours and so on. This figure is illustrative of
a 2-iteration version of a message-passing model. It is of note that the aggregation
computation graph makes a tree structure. Figure is from [93].

At each iteration k of the GNN, the AGGREGATE function is used to take
as input the set of embeddings in u’s neighbourhood and generate a message
m(k)

N (u) based on this aggregated information. This is combined with the previous
embedding of node u by the update function UPDATE to produce the new
embedding h(k)

u . After the full K iterations of the message passing, we can use the
output of the final layer to define our embeddings for each node, i.e.

zu = h(K)
u ,∀u ∈ V . (5.2.3)

This message-passing process, in its most basic form, allows nodes to aggregate
data from their immediate neighbours, and further iterations of the message
passing increase this aggregation, pulling in information from further and further
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nodes in the graph. This can be seen as analogous to the concept of receptive
field in a CNN. Every iteration of message-passing encodes information about the
nodes k-hop neighbourhood, where the k-hop neighbourhood is the set of nodes
at a distance of less than or equal to k from u. These node embeddings mostly
encode two sorts of information: structural information about the graph itself, and
feature-based embeddings about the features of all the nodes in the nodes k-hop
embedding.

The actual functions and structure used differ depending on the task at hand,
but in the most basic GNN framework, a simplification of the original GNN models
proposed by Merkwirth and Lengauer in [94], and Scarselli et al. in [95], the
AGGREGATE and UPDATE functions are given as follows:

h(k)
u = σ

W(k)
selfh(k−1)

u + W(k)
neigh

∑
v∈N (u)

h(k−1)
u + b(k)

 , (5.2.4)

where W(k)
self, W(k)

neigh ∈ Rd(k)×d(k−1) are trainable parameter matrices and σ denotes
an elementwise non-linearity, such as tanh or ReLU, and b(k) ∈ Rd(k) is the bias
term. This form of message passing is analogous to a standard MLP, as it relies
on linear operations followed by a single applied elementwise non-linearity. First,
the messages incoming from the neighbours are summed, then they are combined
with the neighbourhood information from the previous embedding using a linear
combination, and finally an elementwise non-linearity is applied. We can use this
to define the basic GNN UPDATE and AGGREGATE functions:

mN (u) =
∑

v∈N (u)
hv

UPDATE(hu, mN (u)) = σ
(
W(k)

selfhu + W(k)
neighmN (u)

)
,

(5.2.5)

with

mN (u) = AGGREGATE(k)({h(k)
v ,∀v ∈ N (u)}) (5.2.6)

to denote the message that has been aggregated from u’s graph neighbourhood.
The aggregation functions used are usually much more simple, utilising functions
that are used in other forms of deep learning, such as the use of pooling functions,
mean [96], max [97], sum [98] and more. The impact of the aggregation function
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can depend on the task. For example, it has been shown that mean and sum are
suitable choices for tasks such as node classification, whereas max is favourable
for data that is composed of many 3D points, however this is not always the case.
There is no mechanism to identify the most suitable aggregation function currently,
outside of empirical analysis.

After this, the learned node embeddings can be used to classify the nodes or
similar, depending on the problem scope. For classification, a simple approach
would be to use this learned node embedding as the input to a final MLP layer,
to use the embedding per node to produce a classification per node.

5.2.2.2 Usage of GNNs

With an understanding of graphs and how a graph neural network functions,
there are two important questions in the context of deep learning: What sorts
of problems can be solved with a graph-based neural network, and when would a
graph-based approach be used over something like a CNN.

There are several common approaches to deep learning applied to graph
datasets. The first task that can be performed on graphs is node classification, the
act of assigning a category to each node in a graph. In the case of the previously
shown social network example (Figure 5.7), this would be predicting the faction
that they fit into. Here we are predicting some label for each node, with the
graph enabling the exploitation of information from nearby nodes to enable a
more intelligent classification that includes information from a node’s neighbours
and more. A related task is the prediction of relations, edge inference. This would
be the prediction of a friendship-based on node attributes in the context of a social
network. This task can be more complicated than node classification and is highly
dependent on the input dataset, ranging from simple heuristics giving useful results
to requiring encoding of many hundreds of rules and interaction limits when being
used on complex data such as biomedical knowledge graphs [99].

Both node and edge classification are lower level predictions, relating to
individual components in the graph, and aim to infer missing information from
the graph. Community detection, on the other hand, is a higher level task that
aims to identify communities, that is clusters of nodes that are grouped by some
property, in the graph. Finally, at the highest level, there are operations over
the entire graph such as graph-level classification, such as identifying malicious
software using a graph-based representation of its syntax and data [100], or the
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prediction of a molecule’s properties based on its structure [92].
The GNN can be seen as a more generalised CNN, operating over data that is

less rigidly structured into a grid, but instead a graph with nodes at any position.
The main remaining question is: When does utilising a GNN over other alternatives
such as a CNN make sense? The most obvious initial answer is that the choice
of network depends on both the input data structure and the required output for
the current problem. However, in a lot of use cases, such as most applications
in Physics, the data is not in any intrinsic form to begin with, such that the
construction of a graph or an image may make sense. A graph may be a more
efficient input for more sparse inputs where much of an image would be left empty,
though there are also multiple variants of CNNs that are designed to operate over
sparse inputs, such as the submanifold sparse CNN [101]. Similarly, graph-based
networks can deal with variable sized inputs easily, whereas most forms of CNN
and other ANN are not able to, which can result in the need for tiling images,
which in turn can cause loss of performance from missing context in each tile.
Combined, this makes the use of a graph-based network much easier, as it has
additional flexibility in its input formation, not requiring the strict grid structure
of an image, and enabling arbitrary scaling of the graph size depending on the
example. Conversely, some problems may not require these features and the target
problem is more intuitive when formulated based on input images and CNNs.

5.3 Deep Learning in Particle Physics

Machine learning has been in use in particle physics for decades now, but recent
advances in computing, plus the use of graphics cards to accelerate deep learning5,
has led to widespread use of deep learning across the whole of the simulation,
reconstruction, and analysis chain. With this increase in computation, the usage
has moved from MVA based methods to deeper and deeper networks. The usage
of these techniques is now widespread across most experiments, and a few of the
use cases are highlighted here. However, it is important to note that particle
physics must also overcome infrastructure and physics challenges with increased
usage of deep learning. Deep learning in a lot of cases can be slow to process with
a graphics card, meaning that computing infrastructure needs to be extended to
include this additional hardware, or software improvements to aid access to shared
compute infrastructure. There are also plenty of legitimate concerns around the
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usage of deep learning and ensuring that the final models do not utilise features
from a specific theoretical interaction model, which in turn bias physics analyses
unknowingly.

• Event Generation: There is a desire to generate events even faster, as
parts of the GENIE and GEANT4 steps can be extremely computationally
expensive, which can slow down the generation of large statistics datasets.
There have been investigations into if GANs could be used to generate physics
events in a cheaper, faster way than conventional methods. An example of
this would be CaloGAN [102], in use at ATLAS. It utilises a GAN that
is trained to provide fast simulations of realistic particle showers in the
calorimeters at ATLAS. A GAN has two components, a generator that
attempts to produce realistic outputs to fool the second component, the
discriminator. The discriminator tries to distinguish generated outputs from
real outputs, in this case GEANT4 generated showers. The score generated
from the discriminator is then used to improve the generator and further
improve the generated outputs. Initial studies have shown that a speed-up
of factor 105 could be achieved, compared to GEANT4 [102]. Similar studies
have been performed at DUNE through the use of a model-assisted GAN
(MAGAN) [103], in the context of the DUNE PDS. Here, the generated
output is a proposed alternative to the memory-intensive lookup libraries
used, which also take large amounts of time to produce. The MAGAN can
produce 1 million samples in less than 1 minute, compared to the multiple
days the simulation software takes [104]. Figure 5.9 shows an example of
how the MAGAN can learn to reproduce the look-up library, and how its
performance improves as it learns.

• Signal Processing: Deep learning has also been used in various ways for the
task of signal processing. Wire-Cell has used deep learning to augment their
signal processing through the use of a CNN [105]. Here, convolutions and
pooling is applied to the input raw waveforms, before eventually scaling the
input back through the use of up sampling steps to tag regions of interest
in the original input image. Wire-Cell was able to show that inclusion of
multi-plane information, combined with a deep learning-based algorithm,

5The architecture of GPUs means they can process the sort of maths used in neural networks
many hundreds of times faster than even a fast, modern CPU. This has enabled networks to
become even bigger.
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(a) (b) (c) (d) (e)

Figure 5.9: Example of MAGAN being used to mimic the PD look-up library. This
shows arbitrary training examples from various points in the training process. 5.9a
shows an emulated image after one iteration, 5.9b after 1,000 iterations, 5.9c after
10,000, and finally 5.9d after 17,000 iterations. 5.9e shows the truth from the light
map photon library. Figures taken from [104].

can offer significant improvements over traditional methods. A different
usage of deep learning for signal processing is the use to fill in gaps in the
detector. Due to age, hardware failures or manufacturing defects, parts of a
particle detector can fail over time. In a LArTPC, this could result in dead
channels in an APA, which in turn leads to gaps in the raw waveforms of
the detector where no signal is found. Deep learning is being tested to help
fill in this missing data, which in turn makes reconstruction easier as well as
downstream analysis. This has been tested at MicroBooNE [106], as well as
initial testing at DUNE.

• Event Reconstruction: As mentioned in Chapter 4, event reconstruction
can benefit greatly from the use of deep learning. Here, deep learning is
used to perform the critical tasks in reconstruction, such as clustering or
vertexing. This has been used across multiple experiments, for example the
Exa.TrkX group have applied graph neural networks to track particles in a
LHC-like detector, as a step towards using it on ATLAS or CMS data [107].
On the other side of things, MicroBooNE has used a CNN to perform pixel
level particle identification of its LArTPC data. This approach classifies
the individual pixels in an event as instances of individual particle types.
Finally, as mentioned previously, there is deep learning-based approaches
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to the full reconstruction problem in use at the DUNE ND, which uses a
variety of network types, including both CNNs and GNNs to build up a full
understanding of the event, with outputs from one network becoming the
inputs or part of the input for subsequent networks.

• Event Classification: One of the most common problems that deep
learning is applied to is classifying events. This involves using the output
of the detector as the input for a deep learning algorithm, to identify a
given class of events. This may be a simple binary classification of signal
versus background, or go into further detail such as sub-categories of signal
to include particle flavours or more. There is a rich history of using machine
learning for event classification, both D0 and CDF utilised NNs and BDTs
to classify events [108, 109]. More recently, NOvA used deep learning to
classify neutrino events [24], with the CVN also being applied at DUNE,
as mentioned previously [69]. In the CVN, a CNN is used to identify
interactions in the DUNE FD, to select electron or muon neutrino charged-
current interactions. This was able to achieve both high-efficiency and high
purity, achieving 95% and 90% efficiency for electron and muon neutrinos
respectively, when the reconstructed neutrino energy was between 2 GeV
and 5 GeV for νe and above 2 GeV for νµ. This does not rely on any
reconstruction, instead taking the hits after noise filtering and deconvolution.
The three views of the LArTPC are processed independently at first, before
being combined once sufficiently processed through convolutional layers, to
be convolved again before predicting the class of the input event.

A more comprehensive review of deep learning in use in particle physics is
outlined in [110]. It is a rapidly growing technique used in particle physics, and
new applications are found frequently.
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6
3D Track Reconstruction in
Pandora

Professor Farnsworth: Pandora.
Leela: That dangerous, 3D planet? Can’t we just send our avatars?
Professor Farnsworth: No! It’s cheaper to just have you die.

Futurama - S06E08 “Law And Order”

R econstructing LArTPC events in 3D is a crucial part of the recon-
struction workflow. The 3D representation of an event contains the
information necessary to reconstruct particle trajectories and interpret

calorimetric data, enabling measurement of high-level quantities such as the
particle type and momentum. As the native output of most LArTPCs is 2D,
the hits across the multiple views of the detector need to be matched together,
such that a 3D hit can be created. DUNE will have 3 wire planes, resulting in 3 2D
outputs to match hits across, with the 3 outputs meaning there is an amount of
redundancy at this step. An example muon neutrino event is shown in Figure 6.1,
showing the common coordinate system, and how the same event can vary across
each of the different planes of the detector.

In Pandora, the 3D hit creation comes after the initial 2D clustering, with
matches being made between these clusters. With these matches made, the
next challenge and the problem addressed in this chapter is matching the 2D
hits, to finally produce corresponding 3D hits. This is a crucial part of the
reconstruction chain, with 3D hits forming the basis of both track fitting and
shower characterisation, used extensively in the final analyses.
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This chapter will outline the workflow that Pandora uses to match hits across
multiple LArTPC views, including the issues encountered with the previous
implementation, as well as the improvements to this workflow that were imple-
mented as part of this thesis. This will be followed by an explanation of the
performance improvements, including event displays. This work was specifically
targeted at track-like topologies, but the broad approach outlined and subsequent
improvements can be extended to showering particles.

6.1 3D Hit Creation Workflow

The creation of 3D hits in Pandora occurs approximately halfway through the
reconstruction workflow, after there is already a 3D vertex and a 2D reconstruction
of the event in each view is fairly sophisticated. The main concern of the 3D hit
creation is to match the individual 2D hits in each view with their corresponding
positions in the other two views to create a set of 3D coordinates. The 2D
clustering in each view provides detailed information that can be used to match
up trajectories and feature points between the views, enabling 3D reconstruction
to take place. It is important that the 3D hit creation accounts for those cases
where a hit is obscured or missing in the other views. Missing hits can happen
due to detector defects, such as dead or unresponsive readout channels, or due
to the varying orientations of the readout planes making a hit difficult to see if
obscured by another feature of the event. Once a hit has been matched with its
corresponding position or positions in the other views, the hit creation process
uses the information to create a candidate 3D space point. A chi-squared metric
is also calculated for each 3D position that can be used to resolve ambiguities and
enforce quality standards.

Geometric 2D-3D Matching

First, an understanding of the coordinate system in use at a LArTPC is useful. The
2D hits, those that sit on a single plane of the detector readout, are encoded with
an X coordinate, and a U, V, W coordinate, depending on the view. However, the
critical feature of the LArTPC readout is that the X coordinate, which encodes
time, is consistent across all three views, whereas the UV W coordinate, which
encodes the wire coordinate, is not. That means that for a given event being
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X

Z

(a) U View (b) V View (c) W View

Figure 6.1: An example νµ event, showing each of the three detector views. It can be
seen from the axis ranges that the X axis is common across each of the three figures,
whilst the Z axis is not. It is also interesting to see the specific features that are visible
due to the orientation differences of each of the views. For example, the short track
coming out of the interaction point in the U view is going backwards and disjoint, unlike
the other two views. Similarly, the muon track path varies between the views, and
contains some gaps in the W view.
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looked at in three views, the X coordinate will be consistent, assuming a valid T0
is known, which is the event start time. These 2D coordinates relate back to the
true Y Z coordinates with use of the wire angles θU , θV . For example, to calculate
the Z position from UV positions,

Z = ((U ∗ sin(θV )− V ∗ sin(θU))/ sin(θV − θU)) (6.1.1)

This feature of the X coordinate plays a key role in 3D matching, as it can be
relied upon across each of the views, unlike the second coordinate. However, this
reliance also means that events with certain topologies that make the X coordinate
less reliable are more difficult to reconstruct. For example, in an electromagnetic
shower, with its large tree-like structure that leaves deposits across many wires, it is
not effective to use the X coordinate. Similarly, “isochronous” tracks, tracks that
contain sections that arrive at the same time, are more difficult to reconstruct
as they have large sections with the same X coordinate, making it much more
ambiguous to match those parts.

There are a few general techniques used throughout the 3D hit creation
process, which help match hits across the detector views. An explanation of these
techniques follows, such that the algorithms and tools1 which build upon these
techniques can be described more easily later.

The first technique is the process of projecting hits, which is a critical part of
Pandora that allows it to exploit the detector knowledge that Pandora has to take
a hit in one view, and estimate where that hit would be in a different view. This
process can also be extended to take a 3D hit and project it back into 2D, which
is a useful for comparing a reconstructed 3D hit to its underlying 2D hits that
were used to build it. This hit projection technique uses the geometry information
that Pandora has from its loaded geometry files to allow accurate mapping of one
position to another. The actual process for this is as follows, for projecting a 3D
position into a specific 2D view:

• The X coordinate can be treated as the same as the input 3D position, such
that the final output 2D hit has the same X coordinate as the input 3D hit.
This is because the X coordinate is the same across all three views and is the
single consistent coordinate, which is a very useful feature for the position

1Algorithm and tools have specific meaning in Pandora. A tool is a subcomponent of an
algorithm, with one algorithm potentially utilising multiple tools to complete its task.
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matching tools later on. Therefore, there exists a class of 2D-3D matching
tools that consider slices in X, and match the U, V, W coordinates in each
slice.

• The Z coordinate is where an understanding of the detector is required.
Pandora utilises a transformation plugin that loads various properties about
the detector, such as the wire angles used for each of the three views and, then
commonly used calculations with those angles, such as sin, cos. This detector
information can be combined with the 3D positions Y and Z coordinate to
produce a final new 2D Z position. A similar approach is used for various
other transformations between 2D and 3D hits, as well as taking multiple
hits and combining them consistently.

• In the 2D-3D matching case, when projecting matching 2D hits into 3D, two
broad approaches are used, split by how they match features of the track.
First, there are “transverse” tools, those which match up tracks with an
overlap in X, checking if some or all of their trajectories align in all three
views. Secondly, there are “longitudinal” tools, which matches features of
the tracks such as their start and end, using them to produce a common 3D
position. We can then extrapolate between these known 3D positions to find
additional matches.

A similar process can be used to estimate a position in a different 2D view
for a given 2D hit. The ability to move quickly between views is useful for two
main techniques. The first is that it allows a secondary view to be used, which
means that the hits and any other related data such as fits built on those hits
can now be used with a hit from a different view. This process is used to power
most of the 3D hit creation tools, to find a matching position in a different view
for later use. Following that, another useful technique involving projecting hits
between views is that it allows stronger constraints to be applied to potential hits.
A created 3D hit should lie near its base 2D hit and matched positions, such that
projecting the 3D hit back into 2D should result in a small distance between the
two. If a projected hit ends up far away from a 2D hit, that can imply the 3D hit
is not a suitable match. Finally, projecting hits between views can help in cases
where there are ambiguities in one view that a different view could resolve, due to
the difference in readout plane angle between the three views. It should be noted
that the problem here is over constrained, only two views are needed to actually
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produce a final 3D hit. However, the presence of a third view means we have both
some additional redundancy and an extra consistency check. Considered in terms
of the underlying wires, it is always possible to find the associated wire crossing
with only 2 views, but without a third view, there are no additional constraints or
consistency, which makes the matching less reliable.

One impact of having views at differing angles to each other is that a single hit
in one view, may match to many hits in a second view, if the track that produces
those hits is at a large angle relative to one set of wires, but a small angle relative
to the other set. This leads to the second key technique, the concept of a sliding
fit. A sliding fit is a general concept, used throughout statistics and many forms of
pattern recognition tasks, being particularly useful here to allow a decoupling from
the discrete hits of the input, to a single continuous set which we can interpolate,
extrapolate or project as needed. This means the potential discrepancy in the
number of hits between views can be mostly ignored.

For tracks, the most appropriate form of this fit is a sliding linear fit. Here,
a sliding linear fit refers to a fit over some input 2D hits, with the resulting fit
unlocking a number of techniques. The ‘sliding’ part of a sliding linear fit refers
to a sliding ‘window’ that moves across the input, averaging out the values that
lie inside it. This allows a sliding fit to average out values, with the strength of
this averaging effect controlled by the size of the window. This window can also
be extended outside the fit, that is, move it entirely to one end of the fit, such that
hits that lie outside the fit can be evaluated for how consistent they are with the
fit itself. The fit itself in this case is a linear fit, containing two axis directions,
built based on the axes of a principle component analysis (PCA) fit, as well as
additional parameters corresponding to axis properties, such as the direction and
intercept. With these general axes calculated, a sliding fit over the input hits can
be performed, to calculate individual layers of the fit that are the same width as
the sliding fit window, with these layers further combined into segments. This sub-
structure in the sliding linear fit is put to use when comparing other hits that lie
outside the fit, as well as finding the surrounding layers around an input position.

A sliding linear fit is also useful for 3D hit matching for a variety of reasons.
The most obvious reason is that it allows a slight smoothing of the hits in a
given view, which is useful to avoid the small local features in an event, if they
have been caused by reconstruction issues, or similar. However, with a sufficiently
small window size, local features can be followed if desired. An example of the
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impact of the sliding window size on a 3D trajectory is shown in Figure 6.2. For
most of the uses of a sliding linear fit, the first step is to move the current input
hit into the coordinate system of the fit, which requires projecting the hit onto the
axes of the fit, such that comparisons against the fit can then be performed. Once
this is performed, a matching position in the fit can be located and used for the
current tool.

A similar process can be used to extend the concept of a 2D sliding linear fit
into 3D, including running independent 2D fits on the various 2D planes for the
3D hits. This then unlocks similar benefits to the 2D fits, for further work in
Pandora that utilises the 3D hits made during this process, as well as incremental
improvements to the hits created during this step as a refinement procedure after
the main hit creation has run.

Matching Tools

A suite of 2D-3D matching tools have been developed for the 3D hit cre-
ation workflow, exploiting geometric matching techniques, both “longitudinal”
and“transverse”, described above. Each tool takes as its input the list of 2D
hits that do not yet have a 3D coordinate, and then searches for matches across
the views to create a 3D hit. Each tool takes a different approach to account for
the range of different track topologies and orientations that are found in neutrino
events. This suite of tools is run sequentially, in a well-defined order, with hits
that fail to find a match with one tool being passed to the next tool in the chain,
until a hit is found, or every tool has been used. The 3D hits are all produced in
isolation, with the resulting 3D representation of the event not being used to steer
or fine-tune any of the matching tools.

The tools can access common information about the event, including the 2D
clustering in each image. Before any tool runs, a 2D sliding linear fit is created
for each 2D cluster, using the same sliding window size for each cluster and view.
The complete list of these 2D sliding linear fits is made available for any of the
tools that require it. Additionally, some tools utilise 3D start and end positions
in their algorithms, which are calculated from the sets of 2D sliding linear fits
by taking their start and end positions and matching these positions across the
different views.

The current tools are outlined here, where each has a specific track topology
they target, as well as a method of performing the matching.
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(a) Window Size 10 (b) Window Size 1000

Z

Y

(c) Window Size 100

Figure 6.2: The impact of the sliding fit window size on a 3D νµ event. Figure 6.2a
shows the impact of a very small window size, with some shaking and inclusion of
individual hit level deviations, whereas Figure 6.2b shows the opposite case where the
sliding fit window size is so large, it removes the important features from the event.
Finally, Figure 6.2c shows a more sensible window size, that smooths, whilst maintaining
the large features of the track.
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• LArClearTransverseTrackHits: In this context, a transverse track is a
track whose hits are primarily across the detector, that is, the hits mostly lie
in the X plane. The clear transverse track hits tool is optimised to find hits
that lie in this X plane. It does this by matching up the spatial coordinates
at common X positions in each of the other views. This is achieved with the
following calculation:

R = V⃗ (α) + D⃗(α) ∗ x− V⃗x(α)
D⃗x(α)

,

where V⃗ and D⃗ refer to the fit vertex and fit direction respectively, R is the
extrapolated position, and the α term is used to pick the most suitable vertex
and direction from the fit. That is, depending on where the input point lies,
it may be closer to one end of the fit or the other, so the most suitable end of
the fit is chosen. If this step works as expected, then an extrapolated position
in each of the other two views can be used later. Failures can occur here,
mostly if the original fits in the other views are inconsistent with the input
calorimetric position, such that the input X coordinate cannot be found, or it
lies outside the fits in the other views. Both of these cases could be caused by
earlier reconstruction errors, such as clustering hits into the wrong particle.
In the successful cases, a match position is found in the other detector views,
which can then be passed to the next stage of the process. Due to the design
of the extrapolation process, this tool only runs on 2D clusters that are
predominantly single-valued in X, such that a slice can be made on the
X coordinate to then match across the views. If there are ambiguities in
the X coordinate, instead, the later LArMultiValuedTransverseTrackHits
is a more optimal choice to use. The 2D hits that are not reconstructed
unambiguously by this tool then fall-through to the following tool.

• LArClearLongitudinalTrackHits: Conversely, a longitudinal track is a
track whose hits primarily lie lengthwise down the detector, that is the
Z plane. Unlike the LArClearTransverseTrackHits tool, this tool is
optimised for clusters that have multiple hits at the same X position. To
achieve this, this tool uses the reconstructed 3D start and end points of the
track as the basis of the 3D hit creation. By interpolating between these two
3D points, a 3D hit can be made. To start this process, first each of the 2D
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hits must be mapped onto the line between the 3D start and end points, by
calculating fraction and projection3D values.

fraction = (E⃗2D − V⃗2D) · (C⃗ − V⃗2D)
|E⃗2D − V⃗2D |2

projection3D = (V⃗3D + (E⃗3D − V⃗3D) ∗ fraction),

where E⃗, V⃗ and C⃗ are the end point of the track, the reconstructed vertex and
original calorimetric hit respectively and, 3D and 2D is used to differentiate
the original 3D vertex and end point and the 2D projections of them. The
original calorimetric hit has no 3D representation, as that is what we are
using this projection to find.

The calculated projection3D represents the position on the line between the
3D start and end points that is closest to the original 2D hit. This position
can then be tuned by projecting this line-based position back into each of
the 2D views, obtaining 3 2D positions. These 3 positions can finally be
combined to obtain an improved 3D position for the input 2D hit.

• LArMultiValuedLongitudinalTrackHits: The multivalued longitudinal
tool is heavily based on the clear longitudinal track tool, with additional
relaxation on the initial matching process. This means that a match can be
found more easily, at the expense of some accuracy. The initial 3D projection
of the 2D calorimetric hit is identical to that mentioned previously, but
the usage of that projected 3D hit in the fit is achieved using a projection
into the fit’s coordinate space, rather than through the use of the layer-
wise interpolation function. This means that there are fewer constraints on
the final calculated position, as it is missing the interpolation of the clear
longitudinal track tool.

• LArMultiValuedTransverseTrackHits: Similar to the multivalued longitu-
dinal tool, this tool is a less restrained version of the initial clear transverse
track tool. Unlike the clear version of this tool, this uses a method
much closer to the multivalued longitudinal tool, where matching layers
are found in the fits in the other views. Here, the ambiguous sections of
the track, where the X value is not single-valued, are split up, such that
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each segment should now be single-valued in X again. Once this split has
been made in all three views, the process can proceed similarly as in the
LArClearTransverseTrackHits tool on each segment. The biggest failure
mode here is when the wrong segments are matched across views, such that
disjoint segments across views, but with matching values in X are combined,
resulting in 3D hits that are inconsistent, as they were produced with hits
that do not match.

These 4 tools can run in two modes, one that requires a match be found in
both the other views, in the 3 view case at DUNE, or a 2 view mode where only
a single matching hit position needs to be found. Crucially, this is just an option,
not a requirement, so in cases where a matching position can be found in both
views, that is used. However, in the few cases where a matching position can
only be found in one view, then the tools must be running in the 2 view mode,
as otherwise the matches are thrown out. Running with only two views, whilst
functional, is not optimal as there is a lack of a consistency check, such that the
chance of a hit being made wrong is much higher.

As there is a difference in the performance of the matching between the tools,
Pandora runs the tools in a fixed order, to allow the best tools with the strongest
constraints to run first:

1. LArClearTransverseTrackHits.

2. LArClearLongitudinalTrackHits.

3. LArMultiValuedLongitudinalTrackHits.

4. LArMultiValuedTransverseTrackHits.

5. LArClearTransverseTrackHits, with 2 views.

6. LArClearLongitudinalTrackHits, with 2 views.

7. LArMultiValuedLongitudinalTrackHits, with 2 views.

By running in this order, we produce 3D hits with the most performant
algorithm first, before less and less constrained tools run to fill in potentially
difficult points in the tracks where hit matching is more difficult. Each tool in the
chain ‘consumes’ hits, such that the follow-up tools do not have to consider those
hits when they run. It is for this reason that the 2 view versions of the tool run
last, as they are only a fallback if the 3 view versions failed.
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Creating a 3D Hit

Each of the tools outlined returns a list of matched 2D hits, containing the input
2D hit and one or two matched positions from the other two views. The next
step is to actually merge this information to create a 3D space point that can
then be associated with the input 2D hit. The actual hit creation itself can now
be performed. This can proceed in one of two ways, using either two or three
positions, depending on if a hit was matched in just one view, or two.

• When a matching position has only been found in a single view, a simple
merge can be performed between the input calorimetric hit, and the
calculated position from a different view. This merge takes into consideration
the views the initial hit and the chosen position are found on, and then
calculates an average X position based on these two input values, as well
as an average Z component which is used alongside the two input Z

coordinates. These average positions can then be used alongside the existing
view projection tools to project into the missing Y coordinate, using a
mixture of the averaged and input Z coordinates. This gives an output
3D coordinate, which has an associated score, internally referred to as a
pseudo-chi-squared value, that is set to:

(Input Calorimetric Hitx − Averaged Hitx)2

σ2
x

(6.1.2)

where x refers to the X component of the 3D position, and σ2
x is a scaling

term that is set to 1 cm by default, but can vary when required. This mode
has fewer constraints on it, due to the lack of a second matching position.

• When instead a position has been found in both views, a similar process
is performed as the single match case, but with additional constraints due
to the additional position being used. Here, rather than simply merging
the two positions, a minimisation of the calculated Y Z chi-squared needs
to occur. This is achieved by taking the expression for the chi-squared and
differentiating it with relation to both Y and Z. These two results can be
set equal to zero and solved simultaneously. This step was performed in
Mathematica [111], with the result copied into the Pandora source. This
results in a properly minimised Y Z, and a chi-squared value that can be

109



Chapter 6. 3D Track Reconstruction in Pandora

used in the follow-up steps, as well as the best values for both Y and Z to
use in the 3D hit, which can be combined with the X term calculated in the
same way as the two match case. Like the single match case, this chi-squared
term can be combined with a score of how close each of the input calorimetric
and fit-based hits are, to give a final overall chi-squared for the hit.

This whole process is run over every position for each view, if there are multiple
matching positions in the other views. In reality, the only tool that outputs
multiple matches is the LArClearTransverseTrackHits tool, as the rest of the
tools only produce a single match candidate.

Chi-squared checks on 3D hits

The produced chi-squared values are used for a few different comparisons. Firstly,
if there are multiple possible matches in the other views for a given calorimetric
hit, then the chi-squared value is used to compare between the options, with the
created 3D hit with the lowest chi-squared value being chosen. Secondly, there is
a higher level cut that is used after picking each hit, to ensure that each hit is of
a certain quality by not allowing hits over a certain chi-squared value, defaulting
to 1.0. This ensures that hits that are too far from their input 2D hits can be
removed, even if they are better than the other options.

6.2 Limitations

The current implementation of the 3D hit creation algorithm has several limita-
tions, that will be outlined in this section. These limitations, from missing elements
that are simple to add, to flaws in the overall procedure which require in-depth
changes to the 3D reconstruction workflow. It should be noted that in general the
limitations do not impact the majority of tracks, rather they occur in the more
difficult event topologies, where 2D-3D hit-matching is difficult, or involves a large
amount of ambiguity between different 3D candidates. For example, isochronous
tracks are a common problem in 2D-3D matching, as the wire readout is much
more ambiguous, leading to errors occurring during matching much more readily.
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No Containment Constraints

A simple issue arises due to the original form of the chi-squared used in the hit
creation. The original form did not consider the containment of the proposed 3D
hit, such that it was possible for hits to fall outside the instrumented detector
volume, but still be considered. In drastic cases, this could result in hits being
meters outside the detector if an isochronous track or particularly difficult shower
was encountered. Having a proposed hit fall on or just outside the detector’s
instrumented volume is acceptable, such that they should not be out right
dismissed, but missing an entire component from the chi-squared means that
unfeasible proposed hits could be chosen, rather than later removed with cuts
or by picking a hit with a lower chi-squared value. An example of an event which
has hits that lie outside the detector volume can be seen in Figure 6.3.

Rigid Algorithm Chain

A more fundamental limitation with the existing 3D hit creation workflow is the
strict pipeline the hit creation follows. The various tools designed to match hits
are designed around specific topologies of tracks, but the hit creation workflow
does not consider this whilst producing hits. Instead, the workflow runs the tools
in a fixed order, irrespective of the actual topology of the track. This means that
the transverse track hits tool is run first every single time, even if the longitudinal
track tool may make more sense for the current track. As each algorithm consumes
hits that it uses, this means that a follow-up algorithm can never produce its full
interpretation of the 3D reconstruction, instead only able to run over the remaining
hits from the step or steps before it. This means that it is possible for hits to be
reconstructed by a less effective tool, and never get the opportunity to instead
be reconstructed by a more appropriate tool. This is all because the tools were
ordered based on their estimated performance, rather than allowing for variance
depending on the current particle topology.

Reconstruction Failures

There is one advantage of having a strict pipeline for the production of 3D hits
however, where less constrained tools can be ordered to run as the final tools,
essentially running them only when they are required. This means that the tools
that have the least number of constraints can be set to run only on the remaining
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Figure 6.3: An example of a 3D containment issue in the DUNE FD. Here, an
interaction has occurred close to the bottom of the detector, and a particle has been
reconstructed outside the detector, with a broken particle trajectory. The yellow dots
show interaction vertices, whilst the colours of the particles are used to represent different
particles.
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hits after all the other tools have run. In the majority of cases, this is a good thing,
such that the less constrained tools are running only on small numbers of hits, and
filling in the tiny gaps that are left for the most awkward hits. This is desirable,
so the tools are not running over the full set which could cause unphysical results
to occur due to the lower constraints on the hit matching, rather just helping the
small cases where every other tool failed. However, the issue with these tools arises
when the previous tools all failed. Running with fewer restrictions over the full set
of input 2D hits means that the tools are likely to produce very unphysical results,
leading to very broken outputs. A few examples of this are shown in Figures 6.4
and 6.5. These mostly show isochronous tracks that have failed many of the initial
3D hit matching tools, instead of falling back to more suitable tools, leading to
poorly matched 3D hits. This results in an inconsistent and unphysical 3D hit
reconstruction. If only part of the tracks are difficult to match, small regions can
be reconstructed with less constrained and less effective algorithms, leading to
wavy / bumpy tracks, due to the smoothing between multiple tools. If the whole
track is difficult to match, the entire 3D reconstruction can be incorrect. It should
be noted that if viewed from the right orientation, the events do look sensible, due
to the constraints on the X coordinate from the original input hits.

Under-utilisation of 3D Event Information

Finally, a minor issue is how marginal areas of missing hits are dealt with. The 2D-
3D hit matching is performed for each hit independently, such that the emerging
3D representation of the event is not used to guide the further reconstruction. It
is possible for all the algorithms to run, but to still leave gaps in the 3D hits,
that could instead be filled if the rest of the newly produced 3D hits were used.
These gaps should be simple to interpolate over, but no such step is performed,
commonly resulting in tracks with a small gap in 3D which does not exist in 2D.
If instead a 3D interpolation step or similar was performed, to allow the newly
generated 3D hits to inform the 3D hit creation step, these small gaps could be
avoided. Special care does need to be taken as it is possible to have legitimate gaps
in the particle trajectories, either due to gaps in the LArTPC geometry, or in some
cases due to detector defects (for example MicroBooNE has regions of dead wires
due to detector age and other impacts). Interpolation over these areas would need
to be avoided, whilst detecting and interpolating over legitimate missing regions,
using the new 3D hits and existing 2D hits to anchor and guide the interpolation.
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(a)

(b)

Figure 6.4: An example of 3D smoothing issues in the DUNE FD due to the 3D
reconstruction algorithm pipeline. Figure 6.4a shows an event where a long muon track
has been reconstructed with two different algorithms that did not produce consistent
outputs. The result is bumps produced where the two outputs are smoothed between.
Here, the reconstruction failures are likely due to the isochronous nature of the track at
points, as well as small delta rays making any matching harder. Figure 6.4b shows the
same event looking down on the detector, where it can be seen the 3D reconstruction is
consistent in this view, due to restraints in the production algorithms.
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(a)

(b)

Figure 6.5: An example of a 3D reconstruction failure in the DUNE FD due to failures
in all the 3D reconstruction algorithms. Figure 6.5a shows an event where a track-like
particle has been reconstructed with multiple issues, including unphysical tracks and
hits outside the detector. This specific issue is due to earlier issues in the reconstruction
chain leading to merges between multiple particles, causing matching issues at the 3D
reconstruction stage. Similar to Figure 6.4, Figure 6.5b shows the same event from a top-
down view, showing the event is consistent when looking from above, due to constraints
built into the 3D reconstruction algorithms.
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The strength of the interpolation must also be carefully considered, to avoid cases
where an entire track is interpolated from a small number of input hits.

6.3 An Improved Approach to 3D Hit Creation

As part of this thesis, a suite of targeted improvements were implemented, to
improve and extend the 3D hit creation algorithm, with the aim of addressing
the limitations described above. The goal was to develop a modified workflow
that would return more consistent 3D tracks, and consider the boundaries of the
detector. Parts of this work target 3D tracks specifically, as shown previously they
can have very unphysical representations in the 3D reconstruction, but extensions
are outlined that would be required to allow this to work for shower-like tagged
particles as well. The reasoning for specifically targeting 3D tracks to start with,
is to provide a firm basis for particle tracking and trajectory-fitting in DUNE,
which relies critically on a precision reconstruction of 3D hits. In contrast, the use
of 3D hit information for shower characterisation, Michel electron tagging, energy
reconstruction and more, is not as prevalent currently, although this will become
more important for DUNE physics goals in the future.

6.3.1 Inclusion of Containment Constraint

The simplest change was one to update the existing chi-squared score, associated
with every 3D hit, to include a penalty term that depends on the 3D containment,
rather than just the X coordinate of the input 2D hits. Updating this to include
a term based on the maximum distance outside the detector makes 3D hits that
fall outside the detector both less likely to be chosen compared to other 3D hits
that are reconstructed inside the detector volume, but also means hits that are
produced outside the detector volume by a large amount are not allowed, as they
will fail the cut on the chi-squared quality that is applied to every candidate hit.
This is a small change that ends up improving events significantly, stopping the
most obvious issues in an event. This improvement was implemented in the base
class for the 3D hit generation, and as such applies to all 3D hits created, rather
than just track-like or shower-like hits.

The actual change to the chi-squared terms listed previously is the inclusion of
a new term, χ2

YZ, which alongside the χ2
X term means that the displacement of the
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hits outside the detector is considered, not just the displacement of the created 3D
hit X coordinate compared to the input hits. The resulting penalty term in full is

Penalty Term = χ2
Fit + χ2

X + χ2
YZ (6.3.1)

with χ2
Fit being the original term calculated when running the minimisation, from

Mathematica, to produce the best Y and Z values, as outlined previously in
Section 6.1. This χ2

YZ term is calculated by considering the detector geometry,
and storing the maximum displacement out of the detector. This maximum
displacement is then squared and scaled by a scaling factor, σYZ. For the DUNE
FD this scaling factor is set to 10 cm, which should allow hits up to around 3 cm
outside the detector, with the cut-off being closer to 5 cm2. The actual code change
is outlined in Algorithm 1, where the four distance calculation functions use the
detector geometry that Pandora loads to calculate a displacement from each of the
Y Z detector faces.

Algorithm 1: Get distance to detector edge.
Input : V , the full detector volume, and p⃗, a 3D position.
Output: d, the maximum perpendicular distance outside the detector

volume.
distToEdge← 0;
bestY ← pY ;
bestZ ← pZ ;
foreach tpc ∈ V do

distToEdge← Max(distToEdge, GetDistFromTop(tpc, p));
distToEdge← Max(distToEdge, GetDistFromBottom(tpc, p));
distToEdge← Max(distToEdge, GetDistFromFront(tpc, p));
distToEdge← Max(distToEdge, GetDistFromRear(tpc, p));

Figure 6.7 shows a before and after of this change, cutting off hits that
previously would fall outside the detector volume. Crucially, this change does not
disallow hits that fall outside the detector volume, as this is technically possible by
a small margin. Instead, it prefers hits that are reconstructed inside the volume,
but removing any hits that are reconstructed too far outside the volume.

The value of σYZ can be varied, increasing it to relax the strength of the 3D
containment term of the total chi-squared value associated with each hit. Varying

2The design of a LArTPC means that it is possible for charge to arrive from either side of the
APA. This means that hits can be produced ‘outside’ the detector, whilst still being sensible.

117



Chapter 6. 3D Track Reconstruction in Pandora

this value shows how much the addition of this term impacts the hit creation, as
at very high values of σYZ where the cut is doing nothing, hits can be constructed
upwards of 7 m outside the detector. Figure 6.6 shows the impact of varying σ2

YZ,
by showing the displacement outside the detector for all hits that fall outside the
detector. It can be seen that increasing the strength of this term not only applies
a limit on the maximum displacement outside the detector, but also reduces the
number of hits that fall outside the detector as a whole, rather than just moving
the hits at high displacement to slightly lower values. The exact values for this
can be seen in Table 6.1. The performance of these hits is analysed as part of the
later improvements, as strictly cutting the hits that fall outside the detector does
not improve the 3D reconstruction overall, unless those hits are now placed in the
correct place after the cut is applied.
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Figure 6.6: The impact of varying σ2
YZ on the maximum displacement out of the

detector volume. The maximum displacement is calculated as outlined in Equation 1,
squared, then scaled by the σ2

YZ term. If this term is varied, from no cut at all, down
to 10 cm, the maximum displacement out of the detector drop from around 7 m down
to around 5 cm. The total number of hits outside the detector also changes drastically,
as better hits are chosen, and worse hits are disallowed with the increased chi-squared
failing the cut. Values lower than 10 cm were tested and impacted the maximum distance
further, but 10 cm was chosen as it allows the small amount of displacement allowed in
a LArTPC detector.
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σ2
YZ Value Average Displacement Number of Hits

No Cut 156.31± 1.00 30469
100000 85.04± 0.58 22028
10000 31.74± 0.27 11126
1000 10.04± 0.13 6014
100 3.07± 0.06 3203
10 1.30± 0.03 835

Table 6.1: The average value for the maximum displacement outside the detector, for
various values of σ2

YZ. Varying this value alters the strength of this term, which in turn
means that hits are viewed more or less favourably compared to other hits later on, or
in more extreme cases will fail to pass the cut on the total chi-squared term that each
potential 3D hit must pass. Number of hits refers to the total number of hits that fall
outside the detector. Here, at the lowest sigma value of 10, only 835 hits lie outside of
the detector, which is 0.01% of the total 3D hits produced.

Figure 6.7: A before and after comparison of including a 3D containment term to
the 3D hit chi-squared term. This shows an event that has interacted very close to
the bottom of the detector, and has been reconstructed outside the detector. In the
after, the hits that were reconstructed outside the detector are now either removed, or
moved inside the detector depending on where the original 2D hits lie. This change in
reconstruction also changed one of the vertex positions to inside the detector. Other
changes to the after reconstruction are explained further in Sections 6.3.2 and 6.3.3.
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6.3.2 Hit Interpolation

A second self-contained improvement is the addition of hit interpolation for missing
3D hits. This aim of this method was to help in the small cases where a
suitable result is found, but there is a small part of the track that is difficult
to match between views. Filling in these gaps with other algorithms can lead to
inconsistencies, so instead a different approach was used to interpolate the hits
there, using the 3D information that has already been reconstructed.

The process for hit interpolation is done using 2D based constraints, rather
than 2D hit matching, and is performed as follows:

1. Remove any 2D hits that have already been used to create a 3D hit, as
interpolation is not required for these hits. Store the currently created 3D
hits.

2. Build a 3D sliding linear fit over the current 3D hits. This is like the 2D
sliding linear fit, with some additional features. There is an additional axis
calculated from two PCA steps, as the 3D fit is built upon multiple 2D-
based fits. When built, the usage is broadly the same as in 2D, with the
ability to smooth hits, reduce a dependence on the number of hits, and
check consistency with the existing hits.

3. The created 3D sliding linear fit forms the core of the hit interpolation. For
every 2D hit that does not have a corresponding 3D hit, project it into the
coordinate space of the created 3D fit and calculate an rL value, which is the
longitudinal displacement of the current 2D hit from the 3D fit axis in the 3D
hit’s coordinate space. With this rL value, the 2D hit can be projected onto
the 3D fit to get a fit-based position. This is achieved by projecting the hit
onto both of the underlying 2D fits that comprise the 3D fit, and combining
the result. The result of this is a 3D hit that has been created from an
underlying 2D hit with no hit matching, rather just using the existing 3D
hits to estimate the position of the missing hit.

4. Finally, some constraints are applied to each of the interpolated hits. First,
the 3D hit is projected back into 2D, such that it may be compared against
the initial 2D hit it was based on. This distance is used as a pseudo chi-
squared value for this interpolated hit, to compare the various interpolated
hits. A final potential 3D hit is then made, combing the calculated 3D
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position, the input 2D hit and the pseudo chi-squared value, as well as a flag
that indicates this hit is interpolated, such that follow-up 3D hit algorithms
can interact with them differently.

This sliding fit-based interpolation is repeated for every 2D hit that is missing
a 3D hit, with limits on the total number of interpolated hits allowed. This
limit ensures that the final reconstructed 3D hits are mostly based on the hit-
based matching, which should be more accurate than the single hit interpolation
method. If too many hits (i.e. the number of hits is over some configurable
percentage threshold) are interpolated, the interpolation is cancelled early, as it is
unlikely a realistic or useful result has been obtained.

Additional modifications were considered, but not implemented, as they were
deemed unnecessary currently. For example, it is possible stronger constraints on
the hit interpolation could be achieved by attempting some form of hit matching
after the interpolation, either by comparing the interpolated hits to find 2D hits
that produce similar 3D hits, or by projecting 3D hits into a view other than
the input 2D hits. This could be used to further constrain the interpolated hits,
which in turn could improve their positioning. A second change would be using
the interpolated hits to improve the initial 3D sliding fit, such that larger gaps
could be interpolated over, as there would be more hits in the fit to improve its
interpolation performance. This approach was not used in the end due to concerns
that without sufficient constraints, having a repeating process of producing and
using 3D hits in a fit could lead to significant divergence from the true 3D positions,
as each additional cycle would be using an even greater number of interpolated,
and less constrained hits. This approach could be useful if additional constraints
were added, but would need strict tuning to ensure that large majorities of hits
are not interpolated.

6.3.3 Decoupling Tool Ordering

A key limitation of the existing implementation is the rigid, waterfall-like structure
of the 3D reconstruction tools. Due to their fixed ordering, it is not possible for
the most suitable tool to be run per track, nor is it possible to backtrack and use
the output of one tool in cases where two different outputs are not consistent.

The improvement here is to decouple the tools from each other, allowing all
six implementations to run independently of each other, to produce a full 3D
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reconstruction. This means that every tool is given the complete set of 2D hits,
rather than only the remaining hits from the previous step. This unlocks a lot
more potential from the 3D reconstruction tools, but also introduces a number of
follow-up issues. Now, rather than a single 3D hit for every 2D hit, there is at most
six 3D hits per 2D hit, and a decision is needed to pick the best hit from this set of
all hits. This introduces a lot more available information to the 3D reconstruction,
which allows it to be more powerful, at the expense of needing additional tooling
to select between all these hits.

To explore this decoupled approach, firstly, an assessment of this superset of
hits was performed. This allowed an understanding of how these hits would look
in events that previously had issues. Events that had no issues previously will have
each of the six tools all produce the same reconstructed 3D hits, and are not of
much concern, but the badly performing events could contain some correct total
path made up of a chosen set of hits from the full superset of 3D hits. Figure 6.8
shows an example neutrino event in DUNE, overlaying all the candidate 3D hits
outputted by the six matching tools.

This assessment showed that the tools that were currently implemented were
able to offer sensible reconstructed 3D hits, even in the events with unphysical
final 3D reconstructions. Overall, every tool is able to produce plenty of correct
hits, though almost every tool also outputs some number of invalid hits. This
means that overall, there is a mix of both correct hits and incorrect hits. With the
previously rigid structuring of the tools, it is possible that one of the early tools
produces an incorrect hit, where a correct hit would have been produced by a later
tool, which a decoupled strategy could avoid by allowing both tools to produce their
full track representation. Similarly, mixing hits between different tools leads to
bumps and offsets in the 3D reconstruct, due to each tool reconstructing a slightly
different 3D trajectory. Instead, if a method could be developed for selecting a
single coherent and consistent path through the 3D cloud of all candidate outputs,
this could result in an overall improved 3D track reconstruction.

Several approaches were considered to pull out a single consistent path from the
many overlapping tools, but the simplest and most effective approach was through
the use of random sample consensus (RANSAC) [112]. RANSAC is an iterative
method for estimating the parameters of a model from an observed dataset, whilst
ignoring outliers in the dataset. The most basic example would be fitting a straight
line to a set of 2D data:
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Figure 6.8: Example event display of an event with multiple 3D matching tools running
simultaneously. Here, all the tools outlined in Section 6.1 are run over the full set of
input 2D hits, to produce a 3D hit superset, with multiple options for each 2D hit. The
different colours are only used to indicate different tools, but are not consistent across
particles. It can be seen that there is both sensible and unphysical options available for
each particle, with the main muon having the most obvious issues, including a straight
line fit that does not align with the muon trajectory.
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• First, take two random points from the dataset, and create a line using
them. The randomness here is set up to be reproducible across runs and
compiler versions, to ensure the 3D reconstruction is repeatable, by seeding
the random number generation with properties of the current event. This
should ensure that multiple runs of Pandora produce the same results,
without using a fully fixed sequence of sampling.

• Next, evaluate this new model, by counting how much of the initial dataset
is consistent with the generated line. For a line, this could be achieved
by counting the number of points that lie on the line, or lie within some
threshold of the line.

• Repeat this process N times, generating N lines and evaluating their
performance. The best line is the line that has the largest number of points
that lie on or near the line.

Through this approach, with a suitably large value of N (found through later
tuning using the metrics outlined in Section 6.3.4), a model can be found for the
data that is outlier resistant. If outliers are chosen to generate a line, then the
number of points that lie on that line will be much lower than a line generated
with two non-outlier points. This approach fits the problem at hand well: Most
3D reconstruction tools will output 3D hits that lie near each other, such that
RANSAC should be able to find a sensible model that fits those hits, whilst ignoring
any hits from the less constrained tools in the tool chain. Crucially though, in the
cases where only a less constrained tool can produce a 3D hit due to the track
shape being harder to reconstruct, a RANSAC fit that is able to fit those sections
of the track will perform better than other models. Overall, the use of RANSAC
ensures the path agreed upon by most of the tools will be chosen, which is the
desired result so that less constrained tools do not throw off the results.

The model chosen for the 3D track fitting was a 3D plane, as this was deemed
to be the simplest approach that reflects the vast majority of 3D tracks. That is,
with three randomly chosen points, produce a flat plane between all three that
extends out infinitely. Scoring for this model is simply achieved using a distance
threshold, counting the number of hits that lie within some threshold of the 3D
plane. What this means is that the full set of outputs from the previous step can
be passed through many iterations of RANSAC, with a best model chosen based
on the score outlined previously. Once a best model is found, all the hits that are
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consistent with the best model may be selected as final 3D hits, subject to clean
up to ensure uniqueness.

This model does however mean that the features of tracks such as kinks or
curves cannot be accurately modelled by RANSAC, complicating the problem.
The two potential solutions are to either consider a follow-up step to the model
fitting, to add additional consistent hits to the generated model, or to extend the
model used to track features of the event more closely. The first option was chosen,
as it was deemed the simplest of the two approaches. Additionally, this approach
made sense as a clean-up procedure was required already, to pull out a single final
3D hit, rather than the RANSAC generated list of inlying, consistent hits which
could contain duplicate potential hits for a single input 2D hit.

Using the RANSAC model as the starting point, an iterative fitting procedure
was added, utilising the 3D sliding linear fits as the core of the fitting. Con-
ceptually, the linear fit is used to move along the RANSAC selected hits, before
extending out to query nearby hits and check if they are consistent with the current
fit. If they are, they can be added and the fit updated, which when used with a
small enough sliding fit window, ensures that small local features in 3D can be
followed, whilst also allowing a large enough window to be chosen that unphysical
features are ignored. This process can be run twice, once from one end of the track
over the selected hits and out the other end, and then repeated in the opposite
direction. This allows the fitter to work with no forward or backward bias, which
is useful for running on cosmic rays, or if the primary direction is reconstructed
backwards. An example of this is shown in Figure 6.9, where a curving muon track
has the first 60% of it fit with RANSAC, before the iterative fitting procedure fits
the rest of the track.

This fitting procedure would allow the fixed straight line models that RANSAC
fits to model a more realistic track with its kinks and curves, but also highlighted
some issues with the RANSAC fitting procedure for very curved tracks. It is
possible for some tracks to curve a large amount over the full distance of a DUNE
FD detector, such that a straight line is only able to model a small portion of the
real track positions. Worse, in a very curved case it is possible for some tools to
fail for large portions of the track, resulting in a straight line fit from the track
start to end. This is an issue, as RANSAC may prefer hits on a broken, straight
line fit over a shorter but more realistic ft that only models part of a curve. Based
on this, two additional features were added: Firstly, a weighting was associated
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Figure 6.9: An example of the fit growing process on a νµ event. Here, the different
colours used indicate different iterations of the fitting process, with the large red portion
being the initial RANSAC fit. On the right of the track, it can be seen that the fitting
process has extended the short RANSAC model to follow the full curve of the track over
many iterations of the fitting procedure.

126



Chapter 6. 3D Track Reconstruction in Pandora

with each of the tools. This weighting allows the tools to be distinguished between
in RANSAC or the fitting procedure, such that the less constrained tools are used
less. This weighting is used similarly to how RANSAC is used, avoiding tools in
cases where there are better alternatives, but to fall back on them in cases where
the other tools fail.

Secondly, rather than just taking the single best model from RANSAC, which
stores every sampled model, instead take the best and second best, with the
second-best being defined as the best scoring model with the most distinct hits
compared to the best model. This scoring again uses the count of how many hits
lie within some threshold of the 3D plane, but also with an additional constraint
on distinctness. A requirement on distinctness helps ensure that the second-best
model is not just the same model shifted over by a few centimetres. This second
model is treated the same as the best model, being passed through the same fitting
procedure. With both these features added, two final results are built, which helps
avoid cases where poorly reconstructed candidate outputs from tools can take over
RANSAC.

After this full process has run over the two models, there are two sets of
consistent hits, built from a combination of a RANSAC model and iterative fitting.
From this set of consistent hits, a single match is required for each 2D hit. This
is achieved by selecting the hit that is the most consistent with the rest of the
other hits, by comparing the displacement of the hit from the fit. Once this
stage is complete, there is a singular 3D hit position for each 2D hit, rather than
potentially many.

Finally, the two options are chosen between by calculating a score, by summing
the number of hits in the fitted output, the number of hits in the original RANSAC
result, and the number of favourable hits. This gives a good balance between 3D
completeness and the quality of the hits, by picking the largest result with the most
favoured results in. An example comparison of the initial output of RANSAC,
compared with the final fitted result can be seen in Figure 6.10.

6.3.4 Performance Improvements

The performance improvements that both RANSAC and hit interpolation bring
to the 3D reconstruction will be evaluated together, as the implementation for
each is linked, such that each 3D hit matching tool is run, interpolated, and then
RANSAC is used to model and fit this superset of 3D hits. It is possible for the
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(a) Initial RANSAC output (b) Final RANSAC output

Figure 6.10: A RANSAC based approach, applied to all outputs for an event. Taking
the full set of hits from Figure 6.8 as input, RANSAC can produce the shown fit initially.
Figure 6.10a has not had any cleaning or further hit selection applied, which means
there are duplicated 3D hits (hits that came from the same parent 2D hit) in the
selected output, as well as gaps as no interpolation or further fitting has been applied.
Figure 6.10b then shows the final chosen hits after the full RANSAC based procedure is
run, including hit selection and further refinements to the RANSAC output.

interpolation to run stand-alone, however this method of operation was not tuned
for.

One nuance of the reconstruction improvements reported here is that, luckily,
the pathologies that are addressed here occur in a small subset of events,
with most of the 3D track reconstruction working without issue and achieving
reconstructed hits that reflect the underlying truth well. This means that most
of the improvements made here are targeted at improving the tails of distribution
whilst not causing issues with events that were reconstructed well. As a result, in
some case it is useful to handscan some of the events that do change, as the result
can be very drastic, with large changes being made in the 3D reconstructed hits
to reflect the truth information in a more realistic way. Performing this detection
automatically to plot only the tracks that change more than a set threshold is
difficult, as there is no easy way to compare the reconstructed particles once the
results are saved, as there is no unique identifier per-track, that would allow direct
comparisons. For this reason, the metrics shown below instead show every track.
The ideal result is to observe a reduction in the tail whilst the main peak of the
plot remains consistent, indicating that the most broken events have been fixed,
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and migrated towards a better result.
The most obvious comparison to make would be a comparison between the 3D

hits and the true 3D positions in the MC. However, this is technically difficult due
to the data reduction routines implemented within the DUNE simulation, which
down-sample the truth information. This means that the 3D MC positions are
sampled, reducing them to only the required hits to save space and to simplify
the simulation output. This can be mitigated, as the positions where the direction
changes should be kept such that the gaps can be interpolated over using the
detector resolution to fill in the gaps. However, a large complication is the
matching of these interpolated hits back to 2D hits, such that a relationship
between 2D hit and 3D hit can be made, to compare reconstructed and simulated
3D positions is very difficult. These two factors combined mean that a direct
measurement of the error in 3D position is hard to calculate. Luckily, an approach
similar to the 3D matching tools can be used, instead of building a 3D sliding linear
fit over the MC hits, which removes the requirement of a hit-to-hit based metric.
Instead, the reconstructed hit can be projected onto two fits, one MC based and
one reconstruction based. When these two agree, the reconstruction and MC are
aligned, such that the 3D reconstruction has been performed well. This can be seen
in Figures 6.11 and 6.12, where Figure 6.11 shows the average squared distance
of a hit from a fit built on truth information. This allows a comparison against
the MC information, but without the complications of the down-sampled truth
information. The 3D hits that are close to their true position will be close to the
MC fit, so will overall have a lower squared distance. Figure 6.12 on the other hand,
shows the average displacement from a sliding linear fit built on the reconstructed
hits. This then shows the average deviation from the fit, with a high average
deviation indicating reconstructed hits that are inconsistent with each other. A
low average displacement shows that hits are, on average, closer to each other
hit-to-hit. It can be seen that the addition of RANSAC drastically reduces the
tail in both the MC and reconstruction-based fits, corresponding to hits that lie
very far away from the MC fit, and a reduction in hit-to-hit jitter. This means
that RANSAC is choosing hits that are more consistent with the reconstructed
hits around them, as well as being generally closer to the underlying truth.

One of the most drastic issues with the 3D reconstruction for tracks is the
cases where multiple disjoint results end up being brought together, resulting in
large unphysical deviations in the tracks, such that ‘bumpy’ tracks are output from
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Figure 6.11: The average squared distance of a hit from a MC based fit, with and
without RANSAC. Here, the 3D MC is used as the basis for a 3D sliding linear fit.
Each of the reconstructed 3D hits for a track can then be projected on to the fit, and
the squared magnitude of the difference between the reconstructed position and the MC
based fit position can be stored. This plot then shows the average value of displacement
per hit. This average has its tail drastically reduced with the inclusion of RANSAC and
associated improvements. The most drastic changes can be seen with the removal of
very high values of displacement, due to severe issues with the reconstruction, resulting
in hits meters away from their true position.
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Figure 6.12: The average distance of a hit from a reconstructed based fit, with and
without RANSAC. Unlike Figure 6.11, this uses the non-squared displacement, and the
fit is built over the reconstructed hits. This allows an understanding of the consistency
of the reconstructed hits, as a higher value indicates a higher average displacement from
the fit, which in turn is only possible when the position from hit to hit varies drastically,
as seen in failure cases such as Figure 6.5a. RANSAC can enforce consistency to the
hits, which is lacking when RANSAC is removed.
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Metric Name Without RANSAC With RANSAC
3D Completeness 87.5± 0.00 87.4± 0.00
Number of 3D Hits 514± 8 509± 8
Track Length 115.7± 1.65 113.2± 1.60
Hit Creation Failures 0.81± 0.00 0.81± 0.00

Table 6.2: The impact of RANSAC on various 3D hit creation metrics. The average
value is given for each metric, and the addition of RANSAC does not negatively impact
any of the metrics in a large way, whilst also unlocking the performance improvements
shown in Figures 6.11, 6.12 and 6.13. A loss of some hits is expected in cases where
RANSAC is not able to improve the 3D reconstruction, as shown in Figure 6.16.
Additionally, this helps show that RANSAC is not simply ignoring hits to improve the
previous metrics, rather selecting better hits.

Pandora. One way to quantify this is to measure the deviations in angle from a
sliding linear fit. This is achieved by calculating the direction of a sliding linear fit
on average, and then taking the dot product between this average direction and
a direction calculated at a specific reconstructed position. That is, the jitter in a
hit’s direction relative to the average fit direction is calculated by,

Hit Jitter = arccos (D⃗Fit · D⃗Hit) (6.3.2)

with D⃗Fit as the average direction of the fit, and D⃗Hit as the direction of the hit,
calculated by projecting the given hit onto the sliding linear fit and using the
two underlying 2D fits to produce a direction in 3D. Evaluating this distribution,
should allow some measure of how ‘straight’ a track is, with the desire being that a
track is broadly more straight over its full length, with higher values relating to lots
of deviations from a mostly straight line. This can be seen in Figure 6.13, where
the addition of RANSAC results in a sharp drop-off for high values of angular
displacement.

To complement these distributions, Table 6.2 shows a few of the additional
variables that were tracked, including the 3D completeness and the various sizes
of the output. These numbers provide useful additional context that RANSAC
can choose the most appropriate hits, which in turn improves the metrics above,
rather than RANSAC just ignoring hits and improving the metrics through the
removal of hits.

Finally, as a more subjective measure of the impact of RANSAC on the 3D
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Figure 6.13: The angular displacement from a reconstruction-based fit with and
without RANSAC. Values greater than 1 are clamped to 1. Lower overall angular
displacement indicates that the tracks produced by RANSAC are straighter, with less
jitter in the hits direction relative to the fit over the full length of each track. This is
a desirable property, as without RANSAC, large deviations in the angular displacement
can be seen when inconsistent results are merged, such as in Figure 6.4a.
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reconstruction, and to understand where and how failures occur even with these
further updates, a handscan of some events was undertaken. This allows a better
understanding of how the input 3D hits to RANSAC are being used, as well as
the fitting procedure that follows. It also means that cases that still fail can be
investigated.

(a) Without RANSAC (b) Including RANSAC

Figure 6.14: A working νµ event that RANSAC does not change. RANSAC is able to
select the most appropriate hits from all the produced hits, which enables it to improve
events with unphysical topologies. In working events, however, where all tools produce
the same or similar outputs, its impact is minimal. However, this is a good thing
when the majority of events do not require RANSAC. This means that RANSAC can
be enabled for all events, but only impacts those which need it. Differing hit colours
represent distinct particles, and yellow circles show reconstructed 3D vertices.

For most events, such as Figure 6.14, the addition of RANSAC does not change
the 3D reconstruction meaningfully, by design. For short tracks, RANSAC is set to
short-circuit and avoid much of the fitting procedure for performance reasons, and
for longer tracks with no ambiguities, every input tool produces the same output,
such that there are few wrong choices to be made. The final output is the same
with and without RANSAC picking between the output hits.

However, in cases where there were significant issues, RANSAC can either fix
or drastically reduce the issues seen in an event. For example, Figure 6.15 shows
an event that has a very unphysical track that has two main issues. Firstly, there
are large deviations in the track where two tool outputs were smoothed between,
resulting in a largely ‘bumpy’ track that is very unphysical and does not accurately
reflect the real particle trajectory through the detector. This is mostly caused
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(a) Without RANSAC (b) Including RANSAC

Figure 6.15: A νµ event fixed by the inclusion of RANSAC that previously had
an unphysical trajectory. Here, an earlier reconstruction failure results in the long
muon track being split near the start of the track. This, along with the isochronous
nature of the track at points, results in a track that is difficult to reconstruct with a
single algorithm, resulting in disjoint trajectories being combined and smoothed between
producing bumps throughout the track. RANSAC is instead able to smooth this track
out by picking the consistent hits, resulting in a 3D reconstruction that represents the
truth, as well as being consistent with the delta rays present on the track.

in this case due to the track being incorrectly split earlier in the reconstruction
chain due to a secondary particle crossing the track, resulting in a split. This
reconstruction issue cannot be fixed here, but the impact of it has been drastically
reduced due to the addition of RANSAC meaning that the most sensible hits can
be utilised, rather than merging two disjoint outputs.

In some cases, the addition of RANSAC and interpolation is not enough to
fix the 3D reconstruction. As shown in Figure 6.16, if none of the six tools used
are able to create sensible hits for a track, then it is not possible to intelligently
find the best hits from the total set of hits. This is the major limitation of this
improvement that its power is unlocking the full performance of the previously
outlined tools, but does not offer additional options outside of interpolation in
cases where these tools do not create useful results. Further work could extend the
existing tool list such that RANSAC has additional options to use. However, even
in the cases where the addition of RANSAC cannot produce a 3D reconstruction
that accurately reflects the underlying truth, it does enforce stricter constraints
on the 3D hits, which can help prevent some events having drastic failures.

Overall, the addition of RANSAC drastically improves the most unphysical
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(a) Without RANSAC (b) Including RANSAC

Figure 6.16: A broken νµ event that the addition of RANSAC and interpolation does
not fix. The addition of RANSAC does drastically constrain the output, resulting in
less spurious hits as well as very unphysical results. The output does however still have
multiple issues, including missing hits and tracks that have been locked to straight lines.
This outlines the main limitation of RANSAC, where it can only produce a sensible
output, if there are realistic hits in the input point cloud.

tracks, enforcing that the used 3D hits are consistent with each other. For smaller
issues, RANSAC results in a more consistent track, with fewer deviations in the
track, whilst also not breaking the reconstruction for tracks that worked without
the inclusion of RANSAC. Combined with interpolation and an improved chi-
squared, with the chi-squared changes also enabled for shower-like topologies,
Pandora produces more consistent and sensible 3D output for use in later analyses.
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7
Pandora Deep Learning Shower
Growing

“Will it serve for any model to build mischief on?”

Don John - Much Ado About Nothing

E lectromagnetic showers form a key part in neutrino oscillation physics
measurements, used to tag the key νe appearance channel. Accurately
reconstructed showers are needed not only to tag an electron neutrino

interaction, but to get an accurate estimation of the neutrino’s energy. However,
they have a complex event topology, making them challenging to reconstruct, as
shown in Figure 7.1; whilst a track can broadly be characterised as a straight line
with a few kinks, showers have a complex tree-like structure. As an electromagnetic
cascade develops within an event, the edges take on a diffuse and fuzzy structure
that is complicated to reconstruct algorithmically, with the problem becoming even
more difficult when you have multiple interactions in a single event. Defining the
edge of a shower that has interacted next to a second shower or a track can be a
complicated problem, even for the human eye, especially around the vertex region.

To address the challenges of shower reconstruction, Pandora builds up its
showers in several stages across the entirety of its reconstruction pipeline. There
are four key steps in the construction of showers: the initial hits are targeted
by a series of 2D clustering algorithms, producing a collection of proto-clusters.
This is followed by two streams of bespoke 2D clustering algorithms, to target
tracks and showers independently. The 2D clustering algorithms that run in the
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shower stream are collectively known as the ‘shower growing’ algorithm chain.
With grown 2D showers, a 2D/3D matching procedure is run for both the track
and shower clusters. Finally, there is a suite of final ‘mop-up’ algorithms, which
use the additional information available in 3D to merge additional shower-like
clusters, resulting in an overall, more complete shower with less orphaned shower
fragments in the event. An example of these stages for a neutrino event is shown
in Figure 7.1.

These issues make shower growing one of the hardest pattern recognition
problems in LArTPC neutrino physics. An effective shower growing algorithm
needs to be designed to deal with the complex environment of an electromagnetic
shower, able to merge together many shower-like clusters whilst avoiding both
under-clustering (producing a low completeness shower) and over-clustering
(producing a low purity shower). For this reason, any algorithm must understand
the underlying topology of an electromagnetic shower, or be able to learn it.
This means the problem lends itself nicely to multi-algorithm reconstruction,
with targeted algorithms chained together to tackle different aspects of shower
reconstruction. However, it is also a perfect development ground for deep learning,
with a network trained to understand the detailed topologies of an electromagnetic
cascade, such that it can accurately reconstruct showers.

In this chapter, a deep learning-based approach to shower growing will be
outlined, exploiting graph neural networks (GNNs) to intelligently merge proto-
clusters into larger shower-like clusters. First, this chapter will outline the existing
workflow that Pandora uses to perform this crucial shower growing step, before
exploring the process that was used to understand and later improve this step.
This starts with understanding potential improvements to the shower growing via
cheating, outlining the issues with the current growing, and then explaining the
deep learning-based approach that was taken to improve it. Finally, there is an
outline of the training process, to tune the various hyperparameters associated
with this method. Performance metrics are left to Chapter 8, with analysis to
compare the improvements on both MC and real data from ProtoDUNE-SP.

7.1 Existing Shower Growing in Pandora

Pandora currently uses a topological method to grow 2D showers, based on
algorithms that harness both event information such as the vertex, and positional
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information like how close and aligned clusters are, to steer an algorithm that
then makes decisions on how to merge shower-like clusters. Broadly, the approach
taken by Pandora is to target underlying structure in the initial clusters, first by
building a shower ‘spine’, a set of clusters that forms the centre of the shower,
then attaching ‘branches’ on to this spine to build up a complete 2D shower. This
growing happens in stages, first attaching the clearest branches, then followed
up by attaching branches that are more weakly associated, but have the greatest
overall association with the current shower, compared to other showers.

7.1.1 Shower Growing Algorithm

The existing, topological growing in Pandora starts by splitting the shower growing
step into two steps: showers that start at the reconstructed vertex, and then non-
vertex showers. The algorithms and process used are the same for both, but the
addition of a vertex as a hook to constrain and aide the shower growing means
that vertex-associated shower growing is performed first. Additionally, the vertex
is usually the start of the shower spine, which makes it useful to start there to
avoid issues where a small, secondary shower is lost as a spine was not formed
early enough.
The full process consists of six steps:

1. First, the current reconstructed vertex is loaded, and is used to populate
the list of candidate clusters, for later use. This list is composed of clusters
that are tagged as shower-like by the DL hit tagging algorithm (as outlined
in Section 4.3.8), with the required number of hits (which is five for the
DUNE FD), along with an association check between the 2D cluster and a 2D
projection of the current 3D vertex. For this, each 2D cluster is augmented
with additional pointing data, based on a 2D sliding linear fit1. This includes
finding the most upstream and downstream hit in the cluster, to perform
later checks against these known positions.

These augmented clusters are then compared to the vertex, to check if either
end of the cluster is close to the vertex, or if the cluster is a valid emission
from the vertex, based on the cluster direction and angular projections from
the vertex. If a cluster is deemed to be either adjacent or emitted from the
vertex, it is vertex associated and is stored as a vertex-associated cluster,
also known as a shower spine.
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(a) Input Hits (b) Initial Clusters

X

Z

(c) After Growing (d) Final Clusters

Figure 7.1: The four main stages of the shower growing process, on an example νe

event. Here, colour is used to show different clusters, although the limited number of
available colours means colours are used many times. Starting from the raw, independent
hits of the event, initial clustering takes place, which produces many small clusters shown
in Figure 7.1b. The first round of shower growing, showing in Figure 7.1c shows that
the main part of the shower is clustered, but there are parts missing from the shower.
The final output in Figure 7.1d shows the complete shower, with the additional clusters
being added in follow-up mop-up algorithms.
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2. Using the list of spines, the remainder of the clusters that were not associated
with the vertex are stored as potential merge candidates.

3. These two lists, of merge candidates and spines can then be combined, to find
the merge candidates associated with each of the vertex-associated clusters.
This is achieved by iterating over every merge candidate and finding any
unused candidates that are associated with the shower spine. This works
similarly to the vertex association, but with additional constraints. Using
positional information, such as the width of both the spine and the merge
candidate, as well as their direction relative to the beam, a cluster-to-spine
map is generated which encodes the strength of the topological associations
between the merge candidate cluster and spine.

4. A strong association is returned for clusters where one cluster encloses
another, or if the two clusters overlap. A medium association is returned
for branching clusters, clusters that have either end of the cluster within
some threshold of each other. Finally, a weak association is for clusters that
are nearby, based on a set threshold. If none of these limits are reached, no
association is returned. These associations allow the strength of the merge
potential to be stored, such that multiple clusters can be compared against
a single spine, with only the strongest association being kept. This process
is repeated for the full combinatorics of every spine against every candidate,
until a full map is built, storing the strength of the association for each pair.

5. The penultimate step is to identify the actual cluster merges, based on the
association map that was built previously. Here, every candidate cluster is
iterated over, finding the strongest association from the full map. Weak cases
can be ignored in some circumstances, as well as removal of clusters in cases
where a candidate is equally associated with multiple spines, to avoid an
ambiguous merge. Once every candidate has been checked, the final merge
step can begin.

6. Finally, the association list that was built in the previous step is used to
merge each spine and its associated merge candidates into a single cluster,
with Pandora internal functions taking care of the managing of Pandora’s
internal understanding of the cluster list and more, such that it can be shared
between algorithms. Clusters that are merged, both spine and candidate
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clusters, are stored in a used cluster list, so the remaining growing algorithms
can ignore them.

Once this procedure has finished, the showers that are topologically connected
should be grown, and the only remaining step is to deal with the remaining showers
that are not associated with the vertex.

This procedure works the same as the vertex-based growing, but instead of
building up a list of spines, a single merge candidate is chosen and then used
through the same association finding code and then growing code. This single
merge candidate is chosen by iterating over every valid shower-like cluster, that is
over the hit threshold and was not used in the vertex growing step. This ensures
that every remaining shower-like cluster can be the basis for growing, such that
showers that are far from the vertex can be grown.

The result is a fully grown event, with showers being grown based on topological
information, based on comparison between clusters. This process is first performed
on clusters that align with the vertex, but then more broadly to pick up any
remaining clusters.

7.1.2 Topological Shower Growing Evaluation

To evaluate the performance of the shower growing reconstruction, the recon-
structed showers can be compared with the output of a so-called ‘cheated’
reconstruction chain. Cheating here refers to using MC information in algorithms,
such that a perfect algorithm can be created. This is a useful tool, as it allows the
question “What if algorithm X was perfect?”, to be analysed, such that the impact
of improving a single part of Pandora can be assessed. The results of cheating
studies can then feed back into development work, with cheated algorithms that
unlock large overall performance gains being the target of the next iteration of
development work, whereas cheated algorithms that do not unlock large gains
indicating that the performance is being limited elsewhere. The cheating tools
implemented in Pandora enable multiple parts of the algorithm chain to be cheated,
meaning we can find out which areas need the most work to unlock some certain
physics analysis [113].

In the context of shower growing, this allows us to disentangle two things: Can
the output of the Pandora reconstruction be improved by more performant shower

1Both the sliding fit, and the 3D to 2D projection utilises the same underlying code as outlined
in Section 6.1.
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growing, and is the current performance limited by the initial 2D clustering that
is used to seed the shower growing algorithm chain. A large improvement when
cheating the shower growing would indicate that work on improving the shower
cluster growing is a worthwhile target for development work. However, if the
cheated growing does not unlock much additional performance, it is likely that
the initial clustering that Pandora performs to group shower-like hits together
into small clusters, is introducing too many reconstruction issues, such that even
a perfect shower growing step is not able to improve the final result in terms of
completeness or purity.

Luckily, cheating the shower growing is a simple task, and relies on a simple
algorithm outlined in pseudocode in Algorithm 2 on page 144. Put simply, the
cheated shower growing only needs to look up the main truth particle for each
cluster, based on the hits that it contributed to the current cluster, and if two
clusters share the same MC particle, merge them2. The only restrictions applied
to the cheating are that the clusters must be made up of at least five calorimetric
hits, and must be shower-like tagged. These requirements have been carried over
from the existing shower growing, to make comparisons between cheating and the
existing growing more fair.

Due to Pandora’s modular nature, the configuration file for the standard
reconstruction chain can be altered, such that the single line that defines the shower
growing step now uses this cheated module, rather than the regular module. This
allows an understanding of the cheated shower growing, whilst maintaining the
rest of the real reconstruction chain. This is important, as it means a realistic
reconstruction chain is used, with only a single cheating step.

This cheating study was performed against 1,000 MC νe events in the DUNE
FD, with the only change in the reconstruction chain being the single change
from regular to cheated shower growing. To evaluate the performance of the
shower reconstruction, the hit-based purity and completeness of the reconstructed
2D showers is calculated before and after the existing Pandora shower growing
algorithm chain. The shower growing algorithms are then replaced with a cheated
version of the chain, and the performance metrics are re-calculated. To study the
importance of shower growing within the complete particle-flow reconstruction, the
full reconstruction chain is then run through to the end of Pandora, and the final

2The MC generators used here treat an entire shower as a single particle, rather that the
more realistic simulation of individual photons and electrons in something like pair production,
simplifying this process.
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Algorithm 2: How cheated shower growing is performed, run once per
view.
isValid checks if a cluster is valid for growing, based on its shower-like
tag, size, and if the cluster has been merged already.
getMCForCluster is an internal Pandora function, that returns the MC
information for a cluster, based on the particle that contributed the most
hits to the cluster.
MarkClustersToMerge marks the clusters as used, and stores them to
merge after the full process is complete.

Input : C⃗, a list of clusters, specific to one view.
Output: A list of merged clusters, specific to one view.
foreach cluster ∈ C⃗ do

if !IsValid(cluster) then
continue;

mc1 ← GetMCForCluster(cluster);
foreach otherCluster ∈ C⃗, cluster ̸= otherCluster do

if !IsValid(otherCluster) then
continue;

mc2 ← GetMCForCluster(otherCluster);
if mc1 ≡ mc2 then

MarkClustersToMerge(cluster, otherCluster);
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Completeness Purity
All Showers Largest All Showers Largest

Before & After Shower Growing
Before Growing 07.8% 30.3% 95.3% 93.6%
Existing Growing 17.2% 53.1% 94.2% 90.5%
Cheated Growing 68.8% 69.1% 86.5% 95.9%

End Of Pandora
Existing Growing 71.6% 88.1% 85.8% 87.7%
Cheated Growing 87.1% 92.8% 86.7% 89.3%

Table 7.1: Comparison between the cheated and existing shower growing for 1000 νe

events. The first section of the table shows the completeness and purity for before and
after shower growing, comparing the existing shower growing and the cheated shower
growing. The second section of the table shows the final shower completeness and purity
at the end of the Pandora reconstruction chain. In both cases, all showers are given, as
well as a second value that only shows the single largest shower in the event. Statistical
errors are omitted as they are below 0.01%.

completeness and purity metrics are calculated, for both the topological shower
growing and the cheated shower growing. This distinction between the metrics
was chosen to give the deepest insight into the exact changes the shower growing
is making, as well as giving the overall final performance that Pandora ends with.
In both cases, the metrics are reconstructed-object first, as the interest here is how
the reconstruction performs and can be improved.

Table 7.1 shows the resulting metrics, averaged over 1,000 events for every
reconstructed 2D shower, and for the largest shower in the event. Looking at the
largest shower in the event is useful, not only because it is the crucial feature of a
neutrino selection and energy reconstruction, but also to help normalise the plots
somewhat, to a single shower per event, rather than many entries per event. In
Table 7.1, it can be seen that there is significant room for improvement, with a
16% performance delta in completeness for the largest shower. This then leads
to overall large improvements for the full particle-flow reconstruction, of order 4%
for the largest shower and up to 15% for every shower in an event. All of this is
achieved whilst maintaining high purity.

First, it is worth explaining why the cheated shower growing is still not able to
achieve 100% completeness and purity. As the hit clustering and hit-tagging is not
cheated, the missing performance is due to earlier reconstruction issues. If the hit-
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Figure 7.2: A study of the cheated shower growing performance, before and after the
shower growing step. Here, the before growing stage is common to both the existing
and cheated results. In the first plot, the reduction in showers at 100% completeness
for the existing shower growing is due to merges made that remove small showers (5-15
hits total). In the largest shower case, this is due to the largest shower changing from a
small, 100% complete shower, to a more useful large (100s of hits) shower.
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Figure 7.3: Comparison of the cheated shower growing performance, at the end of
Pandora. This shows that the performance delta that is shown in Figure 7.2 is narrowed
considerably after the shower growing step finishes, due to further mop-up algorithms
which also improve the shower clustering. However, in both the largest per shower and
largest shower in the event plots, there is still a clear performance difference, of more
complete showers and fewer showers with low completeness.
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Figure 7.4: Comparison of the cheated shower growing purity, both around the shower
growing step, and at the end of Pandora. Both plots here show the largest cluster per
shower, rather than all showers or only the single largest shower in the event. In both
cases, the purity does not change dramatically, indicating that it should be possible to
gain improvements to the completeness, without altering the overall purity drastically.
The lower count at 100% purity in the end of Pandora plot is likely due to the presence
of highly pure, but low completeness showers, which are instead merged in the cheated
case.
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tagging algorithm does not correctly tag a hit, then the resulting cluster may be
incorrectly tagged as track-like, which in turn means that cluster cannot be used in
shower merging. Similarly, if the hit clustering merges hits from multiple particles,
either tracks or showers, then the completeness and purity of the cheated shower
growing cannot hit 100%, as the input clusters are made from multiple particles.

Figure 7.2 shows the distributions of completeness obtained before the shower
growing, after the shower growing and on cheating the shower growing. These
distributions demonstrate the potential gains that are possible if the reconstruction
is perfect. There is a clear reduction in the number of low completeness showers,
and a sharper peak at higher completeness values for the largest shower plot.

Whilst Figure 7.2 is encouraging, the final shower completeness and purity of
Pandora is much higher than directly after the shower growing. Due to the suite
of mop-up algorithms that also merge in clusters based on other information and
improve the shower clustering further, an important check is to ensure that the
improvements to the shower growing can make it through to the end of Pandora,
as it is possible that the improvements the cheating makes to the clustering,
are the same changes that the existing mop-up algorithms would perform, which
would make improvements to the shower growing less important. Figure 7.3 shows
that whilst the mop-up algorithms can drastically improve the performance of the
existing clustering, the changes that the cheating makes are distinct and do overall
improve the shower clustering.

Throughout this process and the upcoming new developments, shower com-
pleteness was the targeted reconstruction metric to improve, as it was decided
that the shower clustering was already very pure, so making improvements to the
completeness was the most sensible target. Figure 7.4 shows an example of how the
purity is changing for both the before and after steps, as well as at the end of the
reconstruction. Whilst high purity is obviously an important metric, high purity
at the expense of low completeness is less useful than improving the completeness
with marginal changes to the purity. If that was not the case, then instead a metric
that combines both completeness and purity would make a more sensible target,
and may be a more effective goal for certain physics goals.

Combined, these figures show us that changing the shower growing step could
improve the performance of Pandora, with a performance gap of over 10% for all
showers. Whilst it is unrealistic to be able to match cheating perfectly with a
reconstruction algorithm, it is a useful indicator that shower growing is a useful
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and worthwhile place to spend development time.

7.1.3 Existing Limitations

To create a useful improved shower growing, it is first necessary to understand
the limitations with the existing shower growing algorithm, which leads to
performance issues. There are three main issues with the current shower growing
implementation, which the cheating is improving.

Firstly, it is difficult for the existing algorithms to separate overlapping showers,
or showers that are adjacent to each other. The features that are in use mean
that it can be difficult to distinguish close but distinct showers from each other,
especially once the showers have begun to spread. This is because showers that
are close by to each other can be difficult to disentangle when only considering
the topological features of the clusters, especially when only using a single cluster
pair, rather than a whole shower view. If instead the whole shower was considered,
such that an association is built up within the full context of an entire potential
shower, different strengths of associations may be possible, instead of the limited
cluster against cluster approach.

Secondly, the existing algorithm does not utilise the full amount of topological
information available to it. After a spine is grown, it along with the candidates
merged into it are removed from consideration. This means that the larger, more
easily grown clusters are not used as an input, even when they could provide
additional constraints to follow-up growing steps.

The final issue is that the shower growing in its current form is very
conservative, and only makes merges when it is very confident, therefore missing
many potential merges. This is because, initially, the shower growing was made
to form a solid base for the rest of the shower algorithms, the shower ‘trunk’, with
the remaining shower-like clusters being attached to the most appropriate shower
trunk as the reconstruction continues. This is demonstrated in its strict vertex-
based approach to start the growing. This means that the resulting completeness
after the shower growing is still somewhat low. This was intended to be propped
up and improved by the remaining algorithms, but the cheating results show that
there is a noticeable performance improvement at the end of the reconstruction
chain if the shower growing step can produce a more complete representation of
each shower. This can also feed into other algorithms, as a better reconstruction
of a shower earlier means that other algorithms can perform better, as well as
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avoiding potential issues where small shower-like or track-like clusters are merged
incorrectly into other particles.

To address these limitations, a more intelligent growing is needed, which takes
a more global event view into consideration could provide additional performance,
without drastically impacting the performance of the growing step.

7.2 GNN Based Growing

Shower growing is a step that is very visual, with orientations of clusters, the
distances between them and the shapes of the clusters all feeding into the decision-
making process, along with more global event information such as any other
particles that are nearby and if the cluster is more compatible with another
particle. For this reason, and to exploit the recent integration of DL in Pandora, as
outlined in Section 4.3.8, a deep learning-based approach was undertaken. A deep
learning model of some form could take as input the full set of every shower-like
cluster, giving it a more global event view, using this additional information to
more intelligently distinguish between multiple showers in an interaction.

Two approaches make the most sense for the data of a LArTPC: a sparse
CNN or a GNN. The format of LArTPC data is naturally very sparse, with large
amounts of the data being zero, but with locally dense areas of 2D hits, which
makes it an ideal candidate for use with sparse CNNs and GNNs due to their ability
to ignore the unused parts of the data, rather than waste computing resources
computing over empty parts of the data such as in a more traditional CNN.
However, from a more technical point-of-view, the GNN is a more sensible choice
due to its more mature integration with libtorch, the C++ interface for PyTorch,
whereas sparse CNNs have less support in C++, at least at the time of development.
This is important for deep integration in the Pandora codebase, rather than the
more common deployment of deep learning in a Python environment. Therefore, it
was decided to develop a new shower growing algorithm based on a GNN approach.

The addition of graph-based deep learning required the inclusion of an
additional deep learning library, PyTorch Geometric [114], which includes headers
for inclusion in the Pandora C++ codebase. This library provides tooling and
additional models to aid development of graph-based deep learning methods.

The actual issue of shower growing can be approached from a few different
ways whilst utilising a GNN3. The simplest approach is to formulate growing as
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a classification problem, selecting an input cluster and then classifying nodes as a
merge candidate or not. Secondly, this problem could be formulated as an edge
prediction network, such that the network predicts the existence of edges between
nodes, which in turn could be used to power merge decisions. Thirdly, a more
event-wide approach would be a clustering-based approach, that clusters the whole
event in a single pass, such that nodes from a single shower are clustered together.
Of these approaches, the first was used here as it seemed the simplest approach
to use, whereas an event-wide clustering approach is a more cutting-edge use of
GNNs, which means that the techniques for it are much less mature compared
to node or edge classification. This decision was also shaped by the technological
limitations that exist around available computing hardware, as outlined later.

7.2.1 Graph Structure

The chosen graph structure is a crucial component in graph-based deep learning.
As the graph is the singular input to the network, and the operations used in
graph-based deep learning exploit the structure of the graph, using a flawed graph
structure can severely impact the performance of the network. Multiple approaches
were considered, with the main decisions outlined here.

Nodes

The nodes of the input graph can represent the clusters of the showers in the graph.
However, as there is a large amount of useful information in the underlying 2D
hits that make up a 2D cluster, utilising the underlying hits directly is desirable.
The compromise with using hits directly, with a node-based feature (and associated
edges) to link back to the initial 2D cluster, is the drastic increase in the number of
nodes. For that reason, some amount of per-cluster rounding may be useful. That
is, the coordinates of the 2D hits that make up each cluster could be rounded to
the nearest whole factor, effectively rounding the hits to a fixed grid. For example
a hit at 53.1, 109.8 cm could be rounded to 53, 110 cm if rounded to the nearest
whole cm, or 55, 110 cm if rounded to the nearest five cm. Applying this rounding
whilst still only grouping hits from a single cluster to avoid ambiguities between
clusters would drastically reduce the number of calorimetric hits, which in turn

3A more general introduction to graphs and graph neural networks (GNNs) is given in
Section 5.2.2.
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means there are fewer nodes in the graph. This speeds up the processing to create
the graph, and the model training and inference, or allows a larger model to be run
due to the smaller input size. However, rounding does also reduce information,
such that clear connections between clusters may now be less clear due to the
impact of rounding. Rounding was implemented as a tunable parameter, with
lower values leading to more nodes and more information, but also complicating
the graphs. The impact of rounding for an example can be seen in Figure 7.5. In
all cases, when grouping hits to produce nodes, grouping is only performed with
hits that belong to the same cluster, to ensure that one node represents either a
single hit, or part of a single cluster. This means that with no rounding at all,
a single cluster will have a number of nodes equal to the number of 2D hits that
make up that cluster. With rounding, this number may be reduced with extreme
values reducing a cluster to a single node.

X

Z

No Rounding One Two Five

Figure 7.5: Various strengths of node-based rounding on an example νe event. 7.5a
shows the original input event, and then Figures 7.5b, 7.5c, and 7.5d show various
strengths of rounding, with the input hit positions rounded to the nearest integer, nearest
even number and nearest multiple of five respectively. It can be seen that large details
of the event remain throughout, but smaller details are quickly lost.

Another early decision was if the shower growing should include both track-
like and shower-like clusters. Including track-like clusters would add a lot of
information to the graph, but would also increase the complexity of the graph
considerably. Both the nodes and edges would need to include some form of
encoding to indicate the type of cluster, and the network would need to learn the
difference and not to use track-like clusters for growing. It was decided to not
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include track-like clusters, to reduce the complexity of the graph. This does mean
that some of the more global event level information is missing, which could help
distinguish between some showers, so the inclusion of track-like clusters may be a
sensible extension when it is feasible to offload some computation of the network
to a GPU. This does, however, make the network more similar to the existing
shower growing, as that also does not consider the track-like clusters. The track
and shower tagging is included as part of the input selection, however.

Edges

Edges are used to represent connections, relationships, between nodes. Here, the
edges are used to connect up nodes, with the edges encoding information about
the relationship between clusters, including topological information. Alongside
reducing the number of nodes, reducing the number of edges is also an important
decision. This means that edges should only be made in some cases, rather than
producing a fully connected graph, so an intelligent way of deciding which nodes
to connect and which to avoid is needed.

The simplest way to choose edges in the dataset is a simple distance-based
metric, such that all nodes within some distance are connected. This is simple,
and means that there are many connections that can be useful in the message
passing step of a GNN. However, it can result in excessive numbers of edges
for certain parts of the graph, or even produce a fully connected graph in cases
where the event itself is small. As such, a K-nearest neighbour (KNN) approach
was considered that is used in other graph-based approaches. Here, each node is
connected to its K-nearest neighbours, that is, the K nodes that are nearest to
the node. This avoids the issue of excessive numbers of nodes in dense events, but
can have the opposite impact: in some events, the nearest node may end up many
centimetres or even metres away, which is unlikely to be useful information. An
example of how varying K for a νe event can be seen in Figure 7.6, demonstrating
the balance in choosing a suitable value.

The final design of the network utilises both a KNN and a distance-based cut,
such that nodes that are a significant distance away are not connected. This
helps avoid the issues outlined previously, though tuning was required to pick the
optimal balance of distance and how many neighbours to connect to.

A second relationship that needs to be encoded in the graph’s edges, outside of
cluster-to-cluster relationships, is the fact that a single cluster may be represented
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by many nodes. That is, a single cluster of N hits may be split into M nodes, and
edges are needed to outline the relationship between these M nodes, such that the
network can learn and exploit the fact that some nodes are already related. These
edges are used to encode an already well-defined relationship, so the main issue
was not about what to connect, but instead how dense the connections should be.
Every node in a cluster could be connected to every other node, or there could
be a connection only to the previous and next node. Testing showed this decision
did not make any difference to inference performance, so producing edges between
only the next and previous node was chosen to keep the number of edges low.

The final feature around edges was an optional feature, designed to protect
nodes around the vertex. The feature allows a vertex radius to be defined, and the
nodes in that radius have a strict cut-off on the angle between the two nodes. This
allows edges that are close to the vertex between clusters that have well aligned
pointing information, but forbids them in cases where the underlying clusters are
not consistent to some threshold.

X

Z

K = 1 K = 2 K = 4 K = 8

Figure 7.6: Impact of varying K in K-nearest neighbour for a νe event. There are two
key impacts from varying the value of K. Firstly, there is a trade-off around the graph
being more connected, such as connections to the nodes near the top of the shower, and
too connected, such that connections are being made to nodes that are physically meters
away in the detector. Secondly, as K increases, the density in the trunk of the shower
increases, and can reach a point where there are a lot of short edges in areas of high node
density, which can in turn slow the network down. Implementing a distance-based cut-off
means the first issue can be avoided somewhat, but tuning the value of K is difficult, as
it directly impacts the message-passing stage of the GNN. There is a balance between
processing time, and having enough edges such that each node has many neighbours to
share information with.
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Features

Outside the actual structure of the graph, the features associated with each of the
nodes and edges is critical. Each node should contain some cluster level features,
that outlines features of the actual cluster the node is based on. Similarly, the
edges should have cluster-to-cluster based information, calculated between the
two clusters the nodes represent. These features, alongside the structure of the
graph, then power the GNN to allow it to make decisions.

The features chosen here are based on the original shower growing code, as
well as some additional features, chosen to exploit the graph-based structure of
the data.

The node features are,

• An input flag to indicate the input to the shower growing network. This
flag allows the network to understand which set of nodes correspond to the
input cluster, for which merge candidates should be generated.

• The number of hits in the current cluster. This is useful as a single cluster
can be split into many nodes due to both rounding and just converting a
set of hits into a node. This allows the network to understand that a single
node is part of a much bigger cluster.

• The mean position of the current cluster, split into X and Z components.
These values are scaled closer to a zero to one scale, to bring the values
into a range that is more easily learnt from, rather than the hundreds or
thousands of the original coordinates, which can potentially cause issues for
the learning process of the network.

• An orientation indicator, encoding the same values as outlined for the
pointing clusters in Section 7.1.1, to outline how the original cluster is
oriented in the detector.

• Finally, the mean vertex displacement, which is a displacement value for
how far the mean position of the cluster is from the reconstructed vertex
of the event. This value can be used to protect nodes that lie close to the
vertex, by applying stricter restrictions on the edges within some distance of
the vertex.
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Similarly, there are edge specific features, to encode features calculated between
two different clusters. For internal edges, those that link up nodes from the same
original cluster, these values are set to zero.

• An internal edge flag, to indicate an edge that is used to connect two
nodes from the same original cluster. The rest of the features will be set to
zero.

• The mean distance between the two nodes, calculated as the difference
between the mean position of the two clusters.

• The distance of closest approach, which is the shortest distance between
any of the nodes that make up the two clusters. This feature is useful for
nodes that have a central position that may be further apart, but with hits
at the cluster edge that are close together.

• Finally, a measure of the angle between the two clusters. This is calculated
by first running a PCA over the cluster hits, and then taking the difference
between both the X and Z axes components of the two current clusters, to
calculate the total angle between the two clusters in radians.

These features, combined with the outlined structure of the graph, produce a
final input graph. This graph structure was chosen based on the style of network
chosen, whereas a different style of network, such as an edge prediction network,
may have a significantly different structure. This graph then forms the basis of a
graph-based neural network. An example of an event looks as a graph is shown in
Figure 7.7.

7.2.2 Network Structure

The GNN first takes as its input the graph representation of the showers in the
interaction, with features and structure as described previously. This includes a
cluster tagged as the input cluster. The network will then perform inference on
this graph, resulting in an output per node which is a percentage for merging or
not merging with the initial input cluster.

The chosen network architecture was built using existing network modules
built into PyTorch Geometric, partially to keep complexity down, but also to
ensure easier compatibility with the libtorch interface when exporting the trained
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Z

(a) Raw Event (b) Internal Edges (c) All Edges

Figure 7.7: An example νe event and corresponding graph. Figure 7.7a shows the raw
hits from the event, in the W view. Figures 7.7b and 7.7c show an example graph for the
same event, with 7.7b showing only internal edges for clarity. Black denotes calorimetric
hits in 7.7a and nodes of the graph in the remainder, with the grey lines representing
edges of the graph. Clusters that are present in 7.7a, but are missing from the graph
are either track-like tagged, or did not pass the 1 hit threshold in the shower growing
graph building. This graph was created with a rounding value of 1 and KNN set to 9.
For examples of varying the rounding value, see Figure 7.5.
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model out in a C++-compatible way for later use. The exact modules used were the
GENConv, the GENeralized Graph Convolution, as well as the DeepGCNLayer [115].
The GENConv layer takes care of the actual graph convolution, whereas the
DeepGCNLayer encapsulates the graph convolution, the layer-wise normalisation
and the chosen activation function, and runs them in the desired order whilst
offering skip connections to previous layers as well. The use of these modules as
well as the base Torch building blocks such as MLPs, various activation functions
and more means that producing a C++ compliant version of the network is not
difficult.

Three components comprise the full GNN; There are two encoders for the
inputs, and then layers of graph convolutions, before a final output layer:

• Input Encoders: First, there are two linear layers, which apply a linear
transformation to the incoming data of the form y = xW T + b, with y

being the output of the layer, x the input, b the bias term, and W T is the
transpose of the weight matrix for the layer. These two linear transformers
act as encoders, one for the node features and one for the edge features.
This allows the features of the graph, especially the categorical ones, to be
transformed into a mode that is more easily learnt from.

• Graph Convolutions: After the node and edge level features have been
passed through the encoder layer, there is the actual graph convolution
layers. These are DeepGCNLayer blocks, built containing a GENConv layer,
the ReLU activation function and an elementwise layer normalisation block.
These three components are combined into a single DeepGCNLayer, that
encompasses the correct running order of these layers, as well as applying
dropout. There are a number of hyperparameters for both the graph
convolution and the encapsulating layer, which are outlined later. Whilst
there is only a single set of encoders, there are many layers of graph
convolutions, to build up event level information.

• Output layer: The final component is a final linear layer. This takes
the output of the N th DeepGCNLayer, and compresses the result down to
the output number of classes, which in this case is two, to align with the
‘should merge’ and ‘should not merge’ classes. For this reason, a logarithmic
softmax4 is applied on the output of this layer to produce a final percentage
that sums to 100% for the two merge options.
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Each of the encoders and the graph convolution layers utilise a number of
hidden nodes. For the encoders, this simply means that the input goes from the
N input features to some number of nodes. There are then an equal number of
nodes throughout each layer, until the final linear layer that reduces the output to
the required two output classes. For the GENConv, it constructs the messages that
are passed during the message passing stage as follows:

x⃗ ′
i = MLP (x⃗i + AGG (ReLU(x⃗j + e⃗ji) + ϵ : j ∈ N (i))) (7.2.1)

with MLP referring to a MLP of a chosen size, here 64. The AGG function is
also user defined, and in this case, the message aggregation scheme used was the
softmax function. x⃗ ′

i refers to the result node i, and x⃗ is the current value of the
nodes for node i or j, with eji referring to the edge between the two nodes. Finally,
ϵ is a small positive constant, which is 10−7 by default, and is used to ensure the
messages sent are always positive, even when the original result may be very close
to zero. Ensuring a positive result is needed for some of the aggregation schemes,
such as softmax. ReLU is as outlined previously. Overall, this means that for a
given node, its features are updated based on this GENConv layer, taking as initial
input the 64 inputs from the encoder for the node features and edge features, and
then propagating this through until the end of the graph convolutions, building
up information from the neighbours of the node per layer.

Supporting this layer is the encapsulating DeepGCNLayer, that takes care of
running the layer normalisation, then the activation function, dropout and then
the graph convolution, in that order. There is an optional skip connection that
can then be applied after the convolution, if desired. The addition of this residual
connection has been shown to help training of deeper GNN architectures [116],
and similarly the ordering of the components can also have a drastic impact on
the training of deep networks [117]. Because of this, the DeepGCNLayer takes the
approach of applying the residual connection at the end, as it has been shown
that activation functions such as ReLU can impede the representative power of
deep models. Early on, this was tested, and the results achieved on other datasets
seems to hold here for LArTPC data.

The final overall network architecture is outlined in Table 7.2, with the exact
hyperparameters used.

4Logarithmic softmax is used over regular softmax due to increased numerical performance
and better gradient optimisation, which are important for deeper models.
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Name Description
Input Graph Round to nearest integer

K = 8 for KNN

Input Encoders Node Input Size = 6
Edge Input Size = 4

Output Size = 64

GENConv Operator Number of Layers = 24
Input Size = 64

Output Size = 64
Softmax aggregator

Layer-wise normalisation
2 MLP Layers

Normalisation Layer Input Size = 24
Elementwise-affine

Activation Layer ReLU activation
DeepGCNLayer Combines the 3 layers

Applies 10% Dropout
res+ Skip Connections

Output Encoder Input Size = 64
Output Size = 2

Log-softmax output

Table 7.2: The chosen graph and network parameters for the DL shower growing, split
into the input graph and then the various network layers.
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7.2.3 Implementation in Pandora

With both the input graph structure and network implementation decided, there
is a final step of how to most effectively use them both to implement a shower
growing algorithm. The most important decisions are selecting the input cluster,
which is required to generate the input graph, and how to most effectively use
the classification score outputted by the network, to implement a form of shower
growing.

Input Cluster Selection

An important part of the selected network structure is picking a suitable input
to grow. The network is designed to answer the question “What clusters should
I merge with the input cluster?”, but this requires a sensible choice for the input
cluster. Picking a cluster that is representative of the shower, such that its position
and shape inside the shower aids the growing process, is a crucial step. If, instead,
a small cluster on the far edge of a shower is picked, the network will need to work
harder to find the shower it is part of. A secondary consideration is that Pandora
already has a suite of tools and algorithms that are set up to build upon the early
showers, as shown in Section 7.1.2, so building up the main core, the so-called
‘trunk’ of the shower, is important, as it enables the existing algorithms to keep
working.

This process could be built in, with a simpler network being used to pick the
most optimal starting node, before running the main network. However, for now,
this employs a similar approach to the rest of Pandora, and instead each cluster
has a score calculated for it, which is then used to select the best input cluster.

This score is designed to get the largest cluster that covers a large area, such
that it should cover a large part of the shower. Additionally, the track-like and
shower-like scores associated with each hit are also included. This gives a balance
of selecting not just the biggest cluster, but the most representative one. The final
score is calculated to balance these three values:

Cluster Score =
(

Shower-like Total
Cluster Size − Track-like Total

Cluster Size

)
∗ Cluster Area, (7.2.2)

where the track and shower-like totals are the sums of the track-like and shower-
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like percentages from each of the hits that makes the cluster, and the size and area
are based on the number of hits and a bounding box area calculated using those
hits.

This score is calculated for every cluster, then stored. The highest scoring
cluster is used as the current input, as it should be the largest, most shower-like
cluster that covers a large portion of the event. Figure 7.8 shows the variance in
score for an example event, as well as how the selected cluster can change based
on this score.

X

Z

Best: 1609.6 2nd: 85.0279 10th: 4.94766 20th: 0.891717

Figure 7.8: A comparison between the different potential inputs to the shower growing,
for an example νe event. From left to right, shows the cluster with the best score, the
second-best score, tenth-best score, and the twentieth best input. The best cluster is
large and covers the full shower, in this example forming the ‘spine’ of the shower. The
lower the score, the smaller and less shower-like the cluster is. Edges have been excluded
from this graph to aid visualisation, and the nodes in red make up the selected cluster.
The score for each cluster is given under the example, with a higher score being better.

Implementing Shower Growing

With each of the previous bits of work in place, the final step is to produce
an actual Pandora algorithm, to complete the process of merging clusters and
producing grown showers in an event. The core of this is based on the steps
outlined previously, but there are still some additional questions that need to be
addressed once the GNN is being used.

The first steps, after loading the shower-like clusters and running the scoring
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method to select an input, is to build the graph itself. This proceeds as outlined
earlier, producing a graph with hits averaged to nodes, and the desired node
and edge-based features. This comes together to produce an input graph, with
the selected best cluster tagged as the input. This graph is passed through the
trained GNN, producing two percentages for each node that sum to 100%. These
percentages relate to the strength of performing a merge, or not. Using these
percentages is the first of the additional questions that a full implementation of
shower growing must answer; How should the network output be used to merge
together shower-like clusters? The outputs are given in a node-based way, rather
than a cluster-based way, which means the node-based results must be summed per
cluster before any decision is made. This decision can be as simple as a count of
how many nodes think a merge is required versus how many do not, or can involve
additional thresholds on the strength of the decision. Setting thresholds here is
one simple way of tuning the aggressiveness of the cluster merging, as requiring the
‘should merge’ percentage is over 70%, 80% or 90% will impact how many merges
are made overall. The shape of this distribution can be examined to guide this
tuning process, with Figure 7.11 giving an example distribution for the scoring,
though the distribution can change drastically if other parameters of the network
are altered. The end result of this step is a per-cluster decision to merge or not
with the input cluster, based on some tunable threshold.

These results then steer the cluster merging itself, with the input cluster and
any merged clusters removed from any further consideration. However, this leads
to the second issue: the shower growing in its current form is only capable of
growing a single shower, where a typical LArTPC event may contain many showers.
Instead, a decision must be made at this point: is the process complete? If there
are only a few, small clusters left, or the previous shower growing step was unable
to significantly grow the chosen input cluster, the process stops. However, if there
are still many shower clusters and candidate input clusters, this whole process can
be run again, with a modified graph that accounts for the clusters removed. These
stopping criteria are based on the following checks:

• The number of hits added in the previous step.

• The number of remaining hits in the event.

• If the last shower growing step performed any merges.
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• How many clusters were merged in the last step.

These four checks ensure that the shower growing is repeated only if there is
a suitable number of hits remaining in the event, as well as the previous shower
growing step was useful. If there is either a low number of hits left, or the previous
growing resulted in a small change, it is unlikely the deep learning shower growing
will be able to improve the event further.

Once every required iteration of the deep learning shower growing has been
performed, the algorithm is complete. The existing shower growing is then run, as
it can still be useful to merge small clusters that otherwise would be ignored
by the strict checks for ending the DL shower growing. Additionally, as the
current implementation of the DL shower growing drops merged clusters from any
subsequent runs, it is possible for large showers to become split, if an inappropriate
input cluster is chosen. Running the existing shower growing, which is designed to
merge clusters conservatively, can help this issue by merging the grown individual
clusters of the shower. This full process is shown for an example νe event in
Figure 7.9, comparing the existing and new growing against each other.

7.2.3.1 Deployment within Pandora and LArSoft

The entirety of this process is built into Pandora stand-alone, utilising libtorch.
In general, this can then be called from LArSoft, as part of any existing
reconstruction chain, transparently such that any user of Pandora is not aware
that a DL algorithm is being used. However, one complication with this is that
the default build of LArSoft utilises a fairly old version of libtorch, that is not
supported by PyTorch Geometric. This necessitates using a stand-alone build of
libtorch, as well as PyTorch Geometric, with which the stand-alone Pandora is
then built against. In the future, once support for a newer build of libtorch
exists inside of LArSoft, this work can be called more transparently.

As this work exists in C++, rather than Python, which is the more common
deployment for deep learning models, work was needed to export the Python model
to torchscript, which is a way of serialising a PyTorch model, such that it can be
used in a process with no Python dependency. This required small adjustments to
the modules built into PyTorch Geometric, to ensure that only methods supported
by torchscript were in use. Similarly, additional work was needed inside of Pandora,
to link against the new library modules, and to effectively use the tensor layout
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(a) Before Growing (b) Existing Growing
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(c) DL Growing

Figure 7.9: The DL shower growing applied to an example νe event. 7.9a shows the
initial clusters for the event, with different colours representing the different clusters.
The existing shower growing, 7.9b, is able to group many of these clusters, but struggles
around the edges and contains many small clusters inside it due to the five hit threshold.
The DL clustering, 7.9c, shows more clusters brought together, resulting in an overall
more complete shower.
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of the graphs and graph network output, such as building a graph in the form
expected by PyTorch Geometric, and parsing the results generated from running
the loaded GNN.

As LArSoft is run across a wide array of computer architectures, as well as on
various University computing clusters when used for large-scale productions, such
as producing high statistics event samples, Pandora is not able to assume there
is a GPU available. This restriction means that the network must be sufficiently
constrained to have a reasonable execution time, which in turn impacts decisions
such as the network and graph size, as well as the usage of the network. However,
future work to enable GPU-as-a-Service (GPUaaS) inside LArSoft [118] could
mean that larger networks are possible in the future, without sacrificing runtime
on machines that do not have local access to a GPU. For example, running the
DL shower growing with a graph that also accounts for the track-like clusters in
the event, or the removal of rounding in the event could be possible with GPUaaS,
as well as similar changes in other parts of Pandora.

Together, the deep learning-based shower growing should be able to improve
the initial shower growing in Pandora. The DL shower growing can address most
of the concerns with the existing shower growing, by giving a broader overview
of the whole event, with an aim of clustering the majority of the shower, rather
than just the core. The next step is then to train the network for this task of
shower growing, and start to tune the various hyperparameters of the network to
find their optimal value.

7.3 Network Training

Chapter 8 contains an in-depth look at the performance on simulated and real
data, but before that, the network itself must be trained. The training process is
important to understand how the network is learning, to verify that the training
results in a more useful network that is able to accurately infer outputs, whilst
also not exhibiting features of overfitting and learning specific features from the
training dataset that will not generalise to unseen data. Additionally, the various
parameters of the network need tuning, to find the most suitable for configuration
for performing shower growing.

The dataset for the training process consists of around 48,000 νe events, which
are then turned into actual training, validation and test samples. These are then
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used to train the network, validate the network training process during training,
and validate the network performance in full respectively. To start, the events
are transformed into input graphs. That means not only producing a graph, but
selecting an input cluster and the desired output for that input graph. That means
a single event with one shower in, may make up tens of input graphs, with each
graph consisting of a different selected input cluster. This obviously differs to the
actual use case of the network, but allows a single event to be used for multiple
training inputs, increasing the variety of input clusters the network is trained on.
For the training set, a small number of random clusters are chosen as input from
each event, so for an event with hundreds of clusters, only a small subset will
produce input graphs. These graphs will be almost identical to each other, only
changing the single node feature that indicates which is the current chosen input
cluster. The random selection ensures that each event is only seen a few times,
as training on every possible combination of input cluster could lead to overfitting
much more easily. For the test and validation sets, every input cluster is tested,
for an understanding of how the network performs when given any form of input.
The only pre-selection used at this stage is size, where every cluster with more
than five hits can be used as an input, which mirrors the same cut made in the
existing shower growing. Additionally, only the collection plane results were used,
as this provides the clearest input to train from, and there should be no physics
difference between a shower in one plane to the next.

Overall, this results in around 100,000 training samples, 8,000 validation
samples and 80,000 test samples. Whilst this may seem like an odd split between
test and training sets, the actual number of underlying νe events in the training
set is 44,000 whereas there is only 4,500 events in the test set. This is because
every single input cluster in each event is tested for the test set, rather than a
10% sampling and a cut of at most 35 input clusters in the training set case. This
means that despite the close number of samples, the training set contains a much
wider range of electron neutrino events, which is more useful to learn from.

With this dataset in place, the actual training can take place. The training
took place on either an Nvidia V100 GPU at The High End Computing facility at
Lancaster University, or an Nvidia Tesla T4 GPU available via The University of
Manchester. In both cases, the network was trained using a batch size of 16, the
Adam optimiser [119] and a PyTorch scheduler. The Adam optimiser is used to
update the network itself, in place of something like the classical stochastic gradient
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descent. Adam is broadly better than most other optimisation algorithms, able to
converge faster and requiring less parameter turning, such that it is usually the
recommended default. A scheduler in this context is an optimisation option that
allows the adjustment of the learning rate hyperparameter whilst the network is
running. Specifically, the ReduceLROnPlateau scheduler was used, which reduces
the learning rate by a factor of ten once the learning has stalled. This can allow
for a larger learning rate early on, but quickly dropping it once needed, or help in
cases where the network gets stuck.

Once the dataset is loaded, the actual training process can begin. The training
set is split into mini-batches and passed through the network, losses are calculated
and then propagated backwards, and the Adam optimiser takes a step. The loss
for training was the negative log likelihood loss, which is a common loss function
to use in classification problems. This was chosen as it is commonly used here,
but also because it allows slight weighting of the loss calculated through the use
of an optional weight tensor. This weighting allows a manual rescaling weight to
be applied to each class, meaning that the network loss can be tuned somewhat.
In this case, as ultimately completeness is the goal, the loss function was weighted
to make getting the classification of the current shower wrong impact the loss
more, compared to getting the classification of a node unrelated to the shower
wrong. Once this is complete for the training set, the validation and test sets
are evaluated without any updates to the network, to get an understanding of
the current performance. The training and validation loss are stored, as well as
the performance from the test set, before the process repeats. This process is
continued until no more meaningful progress is achieved, by observing changes
to the loss function. The result is a trained network, with some basic metrics
calculated such as the correctness, completeness, and purity for each shower in the
test set, as well as the training and validation loss. These values can be plotted
per epoch to understand how the network learnt and which epoch should be taken
and used. An example of these values can be seen in Figure 7.10, which shows the
training and validation loss trending downwards over time, indicating the network
is learning. However, it can be seen that there is also a point where only the
training loss drops, indicating that in this training process it is possible that a
feature specific to the training set has been learnt, which does not generalise to
a similar performance drop in the validation set, which is undesirable. It should
be noted that these training metrics are not directly comparable to the cheated
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or later reconstruction metrics, as they lack the follow-up mop-up algorithms and
similar, as they are not available to run outside of Pandora.
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Figure 7.10: The training and validation loss against the epoch number, with
associated test set performance numbers. The training and validation loss can be
seen trending downwards over time, with a jump at around epoch 145. Similarly, the
completeness and purity, as well as the overall correctness of the output (that is, the
number of nodes that were predicted correctly), trends upwards and gets smoother over
time. For this model, the epoch before the drop around 145 were chosen, as the drop
at 145 is not accompanied by a similar drop in the validation loss, indicating that a
training set only feature may be behind the drop. The validation loss being lower than
the training loss is a somewhat common phenomenon, that can be potentially attributed
to many different things, including the presence of dropout, the differences in the training
and validation data, learning rate scheduler impact and more.

7.3.1 Hyperparameter Tuning

The selected network and graph architecture has many tunable parameters,
including the various layer sizes, graph rounding figures, distance and angle
thresholds, the chosen network order and activation functions and more. Each of
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these parameters needed to be optimised, to achieve the best overall performance
for neutrino events.

Performing this optimisation is made somewhat harder as the usage of the
network and the training process do not align perfectly. That is, the training
process uses a randomised input rather than a score-based selection, and the
training process stops after a single iteration of growing, which means that the full
event performance is not available. As a consequence, the network performance
was analysed using per-shower results for completeness and purity calculated
during training, and then networks that performed similarly in training were tested
against each other inside Pandora. This provides a better understanding of their
full performance in a more realistic setting, with multiple iterations of shower
growing and an intelligent input cluster selection, rather than a randomised input.

This process was completed using a variety of tools, first using manual tests to
get an understanding of the impact of the parameter changes, before swapping to
Ray Tune [120] for more in-depth hyperparameter tuning. Ray Tune is a Python
library that allows for intelligent hyperparameter tuning to be performed, allowing
for parallelised tuning that also utilises intelligent early stopping and more, to
speed up the tuning process compared to a more basic tuning algorithm such as
trying every combination of values in full. Ray Tune was selected after a brief
exploration into optimisation libraries, and was chosen for being the simplest to
use, as well as having good compatibility with the various other packages and
hardware in use for the training process. Additionally, features that were added
to the graphs early on proved detrimental when running on full neutrino events,
such that the final parameter tuning decision was to disable them. All the values
listed here are listed together in Table 7.2.

Many of the tunable parameters are correlated, such that they were tuned
together. For example, changing the graph rounding figure has an obvious impact
on the number of nodes in the graph, reducing the information available to learn
from. However, a perhaps less obvious change is that the lower number of nodes
means that a cluster may be connected to more unique clusters now, as there
are fewer nodes per cluster, so less rounding with the same number of edges per
node means more connections to unique clusters. These additional connections
can actually alter the performance, due to the flow of information in the message
passing layer. Similarly, as there are fewer nodes the final “should merge” versus
“should not merge” count is different, and is impacted. As there are fewer nodes
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per cluster, the decision is made based on fewer network outputs. A similar effect
happens with changing the value of K in KNN, the distance thresholds for edges
or around vertices and more. This means many of the values have a suitable
middle ground, both for performance against speed, but also enabling or inhibiting
information flow.

Tuning the graph rounding figure showed that most values of rounding were
viable, most likely due to the new edges offsetting the information loss from less
structure in the graph. Tests were performed using different values of rounding,
including no rounding, and the rounding set to one, two, five, and ten centimetres.
The final tested models used a rounding value of one cm, which offers a small
amount of event simplification, equal to rounding the decimal values to the nearest
integer. This ended up giving the best performance, though even with aggressive
rounding, the performance was still competitive. A rounding of one was chosen as
it overall gave the best result, at least in terms of overall event completeness.

The edge KNN with distance cut-off were tuned simultaneously. Reducing
K meant that less information was passed around the network, but also that
connections would only be made to the most immediate neighbours, which are
likely the most useful. Similarly, the distance cut-off is a balance between allowing
sensible clusters to be joined, bridging small gaps in showers, whilst not allowing
edges to be made across many meters of the detector. The final chosen values for
this was K = 8, and no distance cut off. It was found that whilst the distance cut
off helped in some artificial test cases, such as single-particle events, in neutrino
events overall it led to fewer merges being made, which is not desirable. An
artificial limit also means the network is not able to learn this cut off on its own,
though this may only be possible with sufficient training.

As well as the edge-based parameters, there are further tunable parameters that
enforce strict limits on the angular agreement between clusters near the vertex.
The distance of this strict angular cut needs to be balanced to fit for larger events,
without overwhelming small events by enforcing the limit everywhere. Similarly,
the angular agreement needs to be set to a reasonable value, where clusters over
the angle threshold are legitimately unlikely to be related to other clusters, whilst
accounting for the wide range of angles that clusters can be relative to each other
whilst all coming from the same parent particle. This was eventually set to a
strict 0.2 radians agreement, but only for a small region around the vertex, of 0.1,
which once scaled accounts to about 50 cm at a maximum. This allows strict rules
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around the track-like region that high-energy showers have, but then relaxes it
quickly after the shower starts to branch.

The final major tunable parameters were those of the network itself, not the
input graph. This includes the learning rate, which was chosen to be low (0.0003)
and then lowered further when learning stalled. The number of layers was initially
tuned much lower, but eventually runtime performance testing showed that even
when set to 24 layers with 64 hidden nodes in the MLP in each GNN layer, the
overall network inference time was of order a few hundred milliseconds total per
plane, which is acceptable compared to the existing growing and if compared to the
full run time for the reconstruction chain as a whole, especially in ProtoDUNE-SP
which has a much longer overall runtime.

Throughout this process, alongside the training-based metrics of completeness,
purity, accuracy and more, an eye was kept on the underlying score distributions
output by each different network. These help form part of the decision-making
process for picking a model, as a well-trained model should produce a score
landscape that covers a wide-range of values, with a badly trained model mostly
returning values close to 50%, indicating that it is not confident in the decisions it
is making. Figure 7.11 gives an example of how the “should merge” distribution
can look like for an example network, with the “should not merge” result being
the inverse.

As mentioned, the better performing of these tests were run inside of Pandora,
as running inside of Pandora’s full reconstruction chain gives a more accurate
understanding of how the shower growing performs, as there can be multiple
iterations of shower growing, as well as the follow-up mop-up algorithms. An
example of some of the tested models are outlined in Table 7.3. Throughout
this process, the reconstructed completeness and purity was used as the main
indicator of model performance, as this metric is easily understood as part of the
development process. As such, those models that achieved a balanced of high
completeness and performance in the training process were chosen to be tested
further inside of Pandora. However, as outlined previously using reconstruction-
based metrics can potentially obscure deficiencies in a model if showers are missing
from the event, so it is not always the most appropriate metric to use. Instead,
using event efficiency as a second metric produces a different optimisation target
compared to only using shower completeness and purity. For this reason, the final
reconstruction metrics in Chapter 8 show the results for two models, one tuned
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Figure 7.11: An example distribution of the output scores from the network, showing
the “Should merge” score, with the “Should not merge” score being the inverse. Plots
like this help understand how a certain training of the network is learning when to
perform merges, as well as being a useful tool of where to put merge thresholds to have
the largest impact.

for particle quality and a second for event efficiency.
The final models were chosen after tuning these hyperparameters and compar-

ing the metrics that are discussed next. Using these two trained models, a full
performance analysis can be performed, to get a deeper understanding of how the
shower growing works in practice. When training the network, the results only
consider a single pass of the network, and include no additional mop-up steps,
which also have a large impact on the shower’s completeness and purity. Getting
an understanding of how these additional steps alter the observed results, as well
as the final results that an analyser would see is important, and the next task.
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Completeness Purity
Existing Growing 87.4% 87.1%
DL Growing 91.9% 81.0%

Simple model, 75% merge threshold 87.9% 81.4%
Simple model, 85% merge threshold 87.1% 84.2%
Simple model, drop small clusters 87.0% 84.5%
Increased vertex protection radius 86.9% 83.2%
Even rounding, low distance cut-off 86.9% 85.2%
Even rounding, high distance cut 86.9% 84.0%
Drop small clusters (<= 5) 86.9% 85.5%
Drop small and distance cut off 87.1% 86.3%

Table 7.3: Examples of different tested final model performance at the far detector.
First, the baselines are given with the existing growing and the chosen DL growing
configuration. Next, various tunes are given to give an idea of how the performance can
change with different tuning. The numbers for the chosen models are explained in more
detail later in the chapter.
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8
Deep Learning Shower Growing
Performance

C3PO: “R2D2, you know better than to trust a strange
computer!”

Star Wars: Episode V – The Empire Strikes Back

W ith an optimal graph and network architecture found, the network
needs to be tested against the existing shower growing, to under-
stand if it can improve events, and if so, what impact it has. This

can be achieved by looking at high statistics metrics, to get an understanding of
how the shower’s completeness, purity change with and without the new shower
growing, as well as the overall event efficiency and if what topologies are most
impacted by this new approach.

After optimising and training the network, the reconstruction performance
was assessed using a higher-statistics and independent set of simulated electron
neutrino data from the HD FD. Here we can get an understanding of how the new
and existing shower growing algorithms compare, directly at the shower growing
step, and as well later on at the end of the algorithm chain. Following this, there
will be a first look at how the network performs on real data using ProtoDUNE-SP
e+ test beam data, comparing MC against real data. This gives an idea of how a
network built and trained on DUNE far detector data can be applied to a different
detector still using LArTPC technology, as well as a look at the agreement between
simulated and real data, which is crucial as methods are developed for the far
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detector using simulated data.

8.1 DUNE FD Performance

The cheated study performed on νe far detector events showed that there is a
clear performance gap between the current growing and a perfect growing. The
deep learning-based growing is built to help close this gap, but the actual achieved
performance needs to be benchmarked to get an understanding of what gap exists
after the changes to the growing, and if the new growing is actually beneficial when
applied to full neutrino events. This performance study was performed on around
18,000 νe events in the full simulation of the DUNE horizontal drift far detector,
with this chain outlined in full in Chapter 4.

As before, there are two useful areas to assess the shower reconstruction
performance: directly around the shower growing itself and the final reconstruction
performance at the end of the full Pandora algorithm chain. Benchmarking
both before and after the growing gives the most direct comparison of what
the new shower growing is doing to the shower tagged clusters, which is useful
for understanding what overall impact it is having, as well as being a useful
development aide. However, improving the mid-chain performance is not useful in
of itself1, if that improvement does not persist until the end of the reconstruction
chain and make real improvements to the final reconstructed particles. This is
where an assessment of the full reconstruction chain is useful instead, giving a
more realistic impression of the shower growing and the follow-up algorithms which
improve the clustering further. In both cases, the performance is evaluated for all
reconstructed showers, and the performance metrics are also calculated separately
for both the largest cluster per shower, and the overall largest shower in the event,
with the size here measured based on the number of hits in the cluster or particle.
The largest shower in the event is an important part of any neutrino selection,
which is why it is an interesting shower to target, whilst also giving a clearer
view of the impact of the shower growing in the before and after plots, which are
otherwise clouded by the vast number of showers. The largest cluster per shower
is used, rather than simply looking at every shower for a similar reason, as well as
applying a small amount of normalisation to the results.

1Performance here meaning reconstruction performance such as completeness, purity or
efficiency. Increasing the mid-chain runtime performance is always useful.
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As well as including plots from around the shower growing itself and the end
of the reconstruction chain, both reconstruction and Monte Carlo first plots are
needed as each provide different information. The reconstruction first plots are a
useful tool, informing how the reconstructed objects look, their completeness and
purity. However, a reconstruction first approach does not include those particles
that are completely missing from an event, if the particle has been swallowed by
a larger shower in the event. Looking at both sets of plots gives an understanding
of how the particles that are reconstructed look, whilst giving context of any
missing particles. This can be useful when an algorithm is able to improve its
reconstruction performance at the cost of removing other particles from the event.
The impact of this depends on the analysis undertaken, and the number of hits in
any missing particles in the event.

Two models are shown for the final reconstruction quality part of these results,
a baseline model that prioritises the completeness of the clusters, and then a
follow-up tuned model that utilises the same trained network, but with a greater
emphasis on event efficiency2. The efficiency tuned models only difference is an
increase in the required percentage to perform a merge from 75% to 85%. That is,
when the network outputs two percentages that sum to 100% for “should merge”
and “should not merge”, the minimum required percentage for performing a merge
can be tuned higher, meaning fewer merges are made overall. An example of how
this can impact a real event is shown in Figure 8.1, where enforcing a higher
confidence on the decision means that a photon is not lost. This value can be
tuned further, alongside similar values for the cluster-based merge decision built
from summing each node result, but these two tunings were chosen to show the
difference in results when optimising for particle completeness or event efficiency.

8.1.1 Performance of 2D Shower Growing

An initial assessment of the DL-based shower growing algorithm shows the direct
impact that the shower growing had on the initial clusters of the event, going
from hundreds of very small, very pure clusters to fewer, larger clusters without
introducing too much contamination from unrelated clusters. These plots show
the direct impact of the shower growing, before the follow-up mop-up algorithms
improve the clusters further. However, these numbers and plots do not give a

2Completeness, purity and efficiency are outlined in Section 4.3.7.
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(a) Existing Growing (b) Growing tuned for Particle Complete-
ness

X

Z

(c) Growing tuned for Event Efficiency

Figure 8.1: Example νe event containing two photons, with the two different growing
tunes. The existing growing and completeness tuned DL growing produce merged
photons, where the two distinct photons in the event are merged, either fully or partially.
The existing growing also fails to pull in a fragment of the shower, instead producing a
third shower. In the efficiency tuned DL growing, fewer merges are made, resulting in
an overall more accurate reconstruction. Shared colours between the two showers and
the tracks in the event are only due to the automated colour selection, no showers and
tracks were merged in any of the configurations.
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Completeness Purity
All Showers Largest All Showers Largest

Before Growing 07.7% 28.5% 94.0% 93.2%
Existing Growing 17.1% 52.4% 93.1% 90.0%

DL Growing
Efficiency Tuned 19.0% 61.2% 92.3% 81.1%
Completeness Tuned 31.9% 73.2% 87.7% 76.5%

Table 8.1: Comparison between the existing growing and the DL growing, for before
and after the shower growing step. The equivalent numbers for the smaller cheated test
νe dataset can be seen in Table 7.1. The new shower growing when tuned for particle
quality is able to achieve a higher overall completeness for the largest shower in the event
when compared to the cheated growing, which most likely indicates that smaller showers
from a different parent MC particle are being merged in the DL shower growing case,
which are instead ignored in the perfect, cheated algorithm. This is not the case when
the model is instead tuned for event efficiency, which helps protect some of these smaller
showers, at the expense of having lower gains compared to the existing growing.

realistic view of the full reconstruction, such that they need to be taken in context
with the final reconstruction performance plots too.

Figure 8.2 shows that the performance of the shower growing on simulated
far detector data can approximate the improvements made by the cheating in
Section 7.1.2. In fact, the completeness of the cheated growing shown in Table 7.1 is
slightly lower than the completeness tuned deep learning-based growing, indicating
that when tuned for particle completeness, the deep learning growing is perhaps
growing too aggressively and merging with some clusters that may not be optimal.

This can be seen by comparing the achieved purity, as listed in Table 8.1. In
the largest cluster per shower case, the existing performance has a higher number
of showers at 100% completeness, further indicating that some smaller showers
may be missing in the newer growing. This can be investigated more directly at
the end of the reconstruction chain by evaluating the reconstruction efficiency. It
is, however, encouraging to see that the deep learning-based shower growing is able
to achieve a performance improvement of around 15% to all showers and over 20%
when looking at only the largest shower in the event, when compared to the existing
reconstruction at the same point in the reconstruction chain. The efficiency tuned
model performs as expected, lying between the two results, incorporating some
of the improvements of the shower growing, whilst also being careful to avoid
performing too many merges.
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Figure 8.2: A comparison between the existing and both tunes of the DL-based shower
growing, showing the difference in the initial cluster growing. The before growing stage
is the same for every algorithm, as the initial starting state is identical for them. When
tuned for particle completeness, the shower growing shows reductions in low completeness
showers and increases at higher completeness. This is also true for the efficiency tuned
result just will a less extreme impact, as it is more cautious when merging small showers,
resulting in less overall merges. In both plots, the reduction in showers at 100%
completeness is due to the largest shower changing from very small showers (around
5-15 hits total), to a much larger one.
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8.1.2 Performance after Full Reconstruction

Whilst looking at plots before and after shower growing is a useful tool for
development, it does not give an accurate representation of the final reconstruction
performance. For that, the performance at the very end of Pandora is needed, after
growing and every other mop-up algorithm that improves the 2D clustering. This
will reflect the particles that will be used in analyses. Due to the distance between
the shower growing and the end of the reconstruction (shower growing is performed
very early), it is not as useful as a development tool, as it is difficult to parse how
changes to the shower growing have impacted the final cluster metrics, except for
relative comparisons against the existing shower growing.

Table 8.2 shows the final reconstruction performance achieved with both tunes
of the deep learning shower growing, as compared to the existing shower growing.
In both cases, both tunes of the DL shower growing are able to translate into
real, end of reconstruction performance. The completeness tune is able to achieve
an increase of over 16% for particle completeness when looking at all showers,
whilst maintaining a high particle purity. This gap is reduced when looking at
the largest shower in the event, but still pushes performance up by 4%. When
instead tuned for event efficiency instead of particle completeness, it can be seen
that the expected result is achieved, with a higher merge threshold reducing the
number of merges, which in turn results in overall lower completeness. This results
in a smaller increase of 7% in completeness for all showers, and just over 1% when
looking at the largest shower. This is expected, and the performance of this tune
should be reflected more in the event efficiency results.

Figure 8.3 shows the final completeness for the largest cluster per shower
and the largest shower in the event at the very end of Pandora, to get an idea
of how the completeness distributions change between each of the three results.
As expected, the particle completeness tuned deep learning growing achieves the
highest completeness in both cases, with the efficiency tuned result sitting between
the completeness tune and the existing growing, offering a more restrained middle
ground.

It should be noted, that like in the before and after plots, there is a larger
number of showers in the existing distribution of the largest cluster per shower
plot, indicating that fewer showers have been reconstructed using the DL-based
shower growing, with this being a larger concern for the model tuned for particle
completeness. This is shown in more detail in Figure 8.4 that shows the
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Completeness Purity
All Showers Largest All Showers Largest

Existing Growing 71.2% 87.4% 85.2% 87.1%

DL Growing
Efficiency Tuned 79.0% 88.5% 82.4% 81.9%
Completeness Tuned 87.5% 91.9% 81.2% 81.0%

Table 8.2: Final reconstruction performance for the existing growing and the DL
growing. The equivalent numbers for the smaller cheated test νe dataset can be seen
in Table 7.1. The DL shower growing is able to make distinct changes to the shower
clusters, that are not made up by the later mop-up algorithms, resulting in overall
higher completeness and comparable purity, when tuned for event efficiency and particle
completeness.

Efficiency
All Showers Electrons Photons

Existing Growing 90.4% 95.8% 85.3%

DL Growing
Efficiency Tuned 83.3% 91.0% 67.0%
Completeness Tuned 79.6% 89.1% 54.7%

Table 8.3: Final reconstruction efficiencies for the existing growing and the DL growing.
Here it is more obvious where issues are occurring with the new growing approach, with
photons being lost much more in the new algorithm. This loss of photons likely aides the
improvements in the completeness, as small hard to reconstruct particles are absorbed
into the larger showers of the event. It can be seen here that when tuning for event
efficiency, a notable improvement is made across all three channels when compared to
the shower completeness tune.
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Figure 8.3: Final reconstruction performance for the existing and DL-based shower
growing. In both cases, the deep learning-based growing improves the shower
completeness, resulting in an overall more complete shower. As expected, when tuned
for particle completeness, there is a greater emphasis applied to completeness such that
an overall higher completeness is achieved, at the cost of event efficiency, as shown in
Figure 8.4.
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reconstruction efficiency. As defined in Section 4.3.7, reconstruction efficiency
is the number of MC particles matched to at least one reconstructed particle over
the total number of MC particles, with some quality cuts on the reconstructed
particle match to ensure the matched particle is at least 15 hits, purity greater than
50% and completeness greater than 10%. This gives an overall event efficiency of
79.6% and 83.3% when looking at every shower for the completeness and efficiency
tunes, respectively, compared with 90.4% for the existing growing. Focusing on
the efficiency tuned growing, this can be split into 91.0% efficiency for electrons
and 67.0% for photons, as compared to 95.8% and 85.3% for the existing growing.
This shows that the main cause of the loss of efficiency is related to loss of photons
in the event, which is the case for both tunes of the network. It does also show that
tuning the model after training can impact the final results considerably, with a
small threshold change resulting in a model with reasonably higher event efficiency
across all ranges of hits.

However, the metrics do show that for the showers that are reconstructed,
the completeness is notably higher, for all reconstructed showers, including the
largest showers in the event, whilst maintaining a high purity. This implies that
any showers that are being merged, reducing the number of showers in the events,
must be small as they do not have a large overall impact on the reconstructed
purity. This trade-off, between completeness and efficiency, is a difficult parameter
to tune, with individual physics analyses preferring different balances depending
on their physics goals.

8.1.3 Potential Improvements

There are many further adjustments, improvements, and extensions that could
be made to this new shower growing. It has been shown with the previous sets
of results how much impact the final level of tuning can make. Some of the
more interesting or important tuning or network improvements are outlined here.
Making these decisions also requires a deeper connection to the underlying physics,
rather than only using reconstruction-based metrics. Ideally, the changes outlined
here could be tested against a full physics analysis change, to better understand
the final impact of any change to the physics, which would help inform the network
and graph architecture based on physics results, rather than reconstruction results.

One easy change would be the addition of an extended training set, with specific
neutrino interaction types in. For example, as Figure 8.4 shows the largest drop
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Figure 8.4: A comparison of the reconstruction efficiency between the existing and new
shower growing. First, the total efficiency is shown, against the number of reconstructed
hits. Then, split into electron and photon showers individually, to help show where
the inefficiency is mostly coming from. In both cases, the efficiency of reconstructing
mid-sized photons is lower overall, implying that they are being lost to merging or
other issues. A low efficiency for photons with more hits can be seen in both the new
and existing growing, though there is an even lower efficiency with this new algorithm.
However, when tuned for event efficiency, there is an overall efficiency increase across
the range of shower sizes, compared to the particle completeness tune.
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in efficiency for photons, specific training data focused around photons could be
used to augment the electron neutrino training data. This would help ensure the
network is trained on a significant set of events containing photons, rather than
only picking electron neutrino events with no further selection based on how the
neutrino interacts in the detector. It is also possible that specific considerations
need to be made for photon showers, which is a common balancing problem in
neutrino event reconstruction; the growing process for a large, many hundred of
hits primary electron shower may be very different compared to two small photon
showers produced with a small opening angle from a π0 decay. This is an area
where the somewhat strict distinction into track-like and shower-like may benefit
from further augmentation, as there is further distinction inside the shower-like
category.

Alongside tuning the existing model, there is a whole suite of potential
improvements, most of which require a greater availability of graphics cards to
speed up the network inference, as otherwise the network’s runtime would begin
to become a significant percentage of the Pandora runtime. Some of these changes
are simple extensions of the existing network, such as relaxing the rounding used
or the value of K in the KNN edge algorithm. A larger change would be the
inclusion of track-like clusters in the shower growing graph, which provides a lot of
useful event-level information. For example, two showers with some angle between
them may be ambiguous, but the inclusion of a track between them may make
the problem much easier by providing a natural splitting point between the two
showers. Similarly, leaving in the clusters that were grown in previous runs of the
network provides additional context to the event, which could make subsequent
growing steps much easier.

8.2 ProtoDUNE-SP Performance

Running on ProtoDUNE-SP data is an interesting test case, allowing an under-
standing with real LArTPC data. We can use the positron test-beam data that
ProtoDUNE-SP has collected to validate how the DL shower growing performs,
both in how it generalises to a new detector, but more importantly how work on
simulated data can be applied to real data, utilising a source of real electromagnetic
showers. For these tests, only a single tune of the deep learning shower growing
was used, as initial testing showed essentially no difference between the models at
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ProtoDUNE. The tune used was the model focused on shower completeness, to
highlight the differences seen between the existing and new growing in a model
that showed the largest differences on far detector simulated data.

However, it does introduce a number of differences compared to the target far
detector data. These differences mean that running the same network may not
be optimal, due to the differences between a surface-based test beam LArTPC
and an underground neutrino beam LArTPC, but the broad approach should still
work as the electromagnetic showers should look similar in the two detectors, as
ProtoDUNE-SP does use the same components as the horizontal drift far detector
will. This means that the broad approach, can be verified to work as expected
at ProtoDUNE-SP even if a specific network and tuning may be required for real
usage there. It should be noted that as the shower growing was built around
growing electromagnetic showers resulting from neutrino interactions, the DL-
based growing will only be applied to showers resulting from the test beam, rather
than cosmic ray showers, as these showers would most likely require different
features and graph structure. An example ProtoDUNE-SP event is shown in
Figure 8.5, giving an example of how different the events look to far detector
data.

X

Z

Figure 8.5: An example 1 GeV positron event at ProtoDUNE-SP, reconstructed with
Pandora. The various blue horizontal lines relate to wires in the detector that have issues,
so are excluded from the reconstruction. A number of cosmic rays can be seen throughout
the detector, resulting in lots of overlap in 2D, complicating the reconstruction process.
This is especially true at the bottom middle of the event display, where a shower can be
seen intersected with many tracks.
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The data used consists of around 18,000 MC 1 GeV e+ simulated test beam
particle events, and 1,000 1 GeV e+ real test beam events. For the MC events, a
pre-selection is applied that selects only events with a positron as the test beam
particle based on the underlying simulation truth information. For the real data
run 5809 was used, an electron-enhanced 1 GeV run from November 2018, with a
pre-selection to select positrons. In the real data case, beamline instrumentation
data is used to tag beam particles, based on time-of-flight measurements and
reconstructed momenta taken from trigger profiles and profile monitors that sit
in the beamline. This information can be used as a LArSoft filter to restrict the
dataset to only positron events. By using data only from runs that have been
validated and tagged by the collaboration as a ‘good run’, we know the detector
was operating in a sensible and stable manner3. This ensures that overall, there
is a high purity sample of test beam particles to test the new shower growing on.
These datasets were sufficient to show some indication of the new shower growing
performance, whilst also being quick enough to iterate on, rather than trying to be
representative across the entire spread of beam energies that ProtoDUNE-SP used.
The 1 GeV sample was used as it is the sample with the largest available statistics,
as well as being well-understood and processed by the collaboration already.

To assess the real data, plots of reconstructed properties such as the shapes
and sizes of the showers provides an interesting data point to compare the real test
beam data against the simulated data, to get an understanding of how it compares
and if the results from applying the new shower growing to real data are similar
to those achieved on MC data.

First, an understanding of both the ProtoDUNE-SP physical and software
differences is explored, to provide some additional context for why and how the
two experiments differ.

8.2.1 ProtoDUNE-SP Differences

The ProtoDUNE-SP detector is a very different detector to the final far detector
modules. However, first it is easiest to talk about the things that are the same. To
test the construction methods, as well as benchmark them, the APAs are the same
and are prototypes for the real APAs that will be used in the far detector. Similarly,
the DAQ which is responsible for the actual reading out of the detector is also based

3For example, this means data is not used from periods of known low LAr purity or from
dates where there were issues with the detector instrumentation, beam line or more.
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on prototypes of the far detector designs. The biggest physics difference here
is that both ProtoDUNE experiments are surface-based test beam experiments.
This has a few overall impacts, at least in the context of reconstruction. Being
in a test beam, rather than a neutrino beam, means that the interactions being
reconstructed are very different: We have broadly simpler interactions, with a
much smaller range of energies, coming from a much more well-defined point, the
beam plug. Because the sample used contains only interactions of 1 GeV, the
events are simpler and much more similar, compared to the far detector which can
have events varying by tens of GeV. There is also additional complications from the
‘beam-halo’ particles. These beam halo particles include particles from interactions
in the beam line, other particles that were not focused by the beam line magnets,
and additional particle decays and out of time particles. This is another form
of additional complexity, causing additional interactions in the detector, which
reconstruction algorithms must deal with. An even bigger difference is the fact
that the detectors are surface-based, meaning they are continually being hit by
cosmic ray interactions. These cosmic ray interactions are read out the same as any
beam interactions, and provide a complicated background that must be removed
or ignored by any reconstruction code, such that the target beam interaction can
be identified4. Finally, there is the smaller differences that come about due to
having a real detector. For example, rather than simulated noise models based on
previous LArTPC experiments, you have real noise, as well as detector defects if
readouts are malfunctioning in some way.

All these differences add up to produce a reconstruction problem that is very
different to a far detector module. For this reason, a different approach is needed
to target ProtoDUNE-SP events.

8.2.2 ProtoDUNE-SP Consolidated Reconstruction

As ProtoDUNE has cosmic ray interactions, Pandora runs in a mode where it first
reconstructs the clear cosmic ray interactions in the event, and then reconstructs
the rest under both a test beam and cosmic ray hypothesis, to find the most
suitable reconstruction for each of the remaining particles. To achieve this, after
the most obvious cosmic rays have been removed, the remaining particles are split

4Cosmic ray interactions do form a very useful part of the reconstruction, and can be used for
countless calibration tasks and more, so accurate reconstruction is useful and required for them
too, even when most physics analysis target only the beam particles.
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up into ‘slices’, regions of wire number and time that should ideally contain only
a single particle. We can then reconstruct each of these slices independently,
testing them as both a test beam interaction and cosmic ray interactions. Each
slice goes through a cosmic ray optimised reconstruction chain, and a test beam
optimised reconstruction chain, before a final selection is performed to pick the
most appropriate reconstruction hypothesis at the end.

For this analysis, the shower growing is being evaluated before, after and at
the end of each slice reconstruction in the test beam hypothesis only, rather than
the full event reconstruction, as this shows most clearly the impact of the shower
growing. This does mean that potential cosmic rays can be reconstructed with the
DL shower growing under a test beam hypothesis, then thrown out in favour of the
better cosmic ray hypothesis. As there is no way to know the result of the selection
in the middle of the reconstruction chain, these cosmic ray interactions end up
forming a background of difficult to reconstruct interactions that the network was
not trained on. As the before and after data is not easily accessible once the slice
hypothesis has been chosen, it was deemed easier to include this small background,
as it is realistic that any shower growing algorithm will need to work for both true
test beam interactions, and any ambiguous cosmic ray interactions.

As a combination of this different running mode, and the aforementioned
simpler interactions with a much tighter spread in energy, the actual shower
cluster completeness and purity pre-growing is very different to that seen in
the far detector. Shower-like clusters in ProtoDUNE-SP are created with much
higher overall completeness and purity, most likely due to the lower overall energy
compared to the far detector.

These compromises aside, the true value of having ProtoDUNE-SP data is that
ideas can be tested on real data, so having an understanding that the algorithm
performs the same, even if the running mode is not ideal, for data versus MC is
still useful. Ensuring that the algorithm performs the same on simulation and
data at ProtoDUNE-SP can start to give us confidence that the same will be true
when running on DUNE far detector data in the future.

This analysis was performed outside LArSoft, due to the version of libtorch
it bundles being too old to support the GNN library used for this work. Instead,
the data was exported via LArSoft to a form suitable for Pandora to read in. This
exporting of hit-level data does somewhat constrain the types of analysis possible,
as the rest of the ProtoDUNE-SP analysis work is implemented inside LArSoft,
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Completeness Purity
All Showers Largest All Showers Largest

Before & After Shower Growing
Before Growing 61.5% 68.9% 71.5% 75.5%
Existing Growing 70.5% 72.0% 71.2% 71.2%
DL Growing 73.4% 73.7% 69.0% 62.8%

End Of Pandora
Existing Growing 69.3% 74.0% 69.4% 56.8%
DL Growing 70.0% 75.8% 69.0% 49.8%

Table 8.4: Completeness and purity of the DL and existing shower growing at
ProtoDUNE, split into the before and after stages, then the final reconstruction
performance. The most interesting part of this is in comparison with Tables 8.1 and 8.2,
where it can be seen that the pre-growing completeness is much higher, indicating that a
different method of shower growing may be needed at ProtoDUNE, if it is deemed that
improving the shower growing at ProtoDUNE-SP is worth it through cheating studies.
The mop-up algorithms also perform differently due to the presence of slicing in the
ProtoDUNE configuration, which may explain the drops seen moving from the growing
stage to the end of the reconstruction.

meaning an extended analysis of how the new shower growing impacts physics
results is not easily possible. For a similar reason, it is not possible to easily study
systematic uncertainties in this analysis outside LArSoft.

8.2.3 Performance of 2D Shower Growing at ProtoDUNE

Table 8.4 shows the overall performance of the new deep learning-based shower
growing at ProtoDUNE-SP, on the 18,000 simulated νe events. If we first look at
the before and after performance, when looking at all showers, there is a moderate
3% increase in completeness over all showers, and a minor increase of 1% when
looking at the largest shower in the event. In the all shower case, this is at a
similar level of purity, but there is a more significant drop in purity of around
8% when looking at the largest shower. As mentioned previously, it is important
to note how different these numbers are compared to Table 8.1, with the before
growing completeness being much higher, whilst also having much lower purity.
This means that on average at ProtoDUNE-SP, showers are much more complete
and overall should require less growing compared to events at the far detector.

These results can also be seen in Figure 8.6, comparing the existing growing
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and the DL growing, with the before growing step as reference.
Figure 8.6 highlights a difference in the two detector configurations: whilst

the far detector has very low completeness showers pre-growing, ProtoDUNE-SP
has fairly higher completeness showers, even before growing. This may be a
consequence of the different interactions, or because of the configuration the shower
growing is running, both outlined in Section 8.2.5.

Moving to the final reconstruction performance, there is a much more minor
increase overall, with around 1% for all showers, and focusing on the largest shower.
Similarly to the before and after results, the purity when looking at all showers is
comparable to the existing growing, but there is a similar level of purity loss when
looking at the largest shower, around 7%.

Figure 8.7 shows more definitively that improving the shower growing is not
a priority at ProtoDUNE, compared to the impact it has at the far detector.
However, this is perhaps not surprising based on the larger differences between the
two detectors, despite sharing the same technology and ProtoDUNE-SP operating
as a test bed for the far detector. Subtle improvements are made to the largest
shower in an event, but when looking at the largest cluster per shower, the
difference is minimal, and gets even smaller when looking at every shower. This is
also the case when looking at the overall event efficiency, where there is essentially
no changes.

8.2.4 Reconstructed Shower Property Comparison

The main benefit of having data from a prototype experiment for reconstruction
tasks, is being able to use real data, and perform MC versus data comparisons. For
the shower growing, this means we can check how the shower growing performs on
real and simulated data, checking that it is consistent between the two. This helps
give confidence that algorithms produced on far detector simulation, but tested
on ProtoDUNE data should work once real far detector data becomes available,
though with some inevitable tuning.

This study is performed only on the very final results, rather than before and
after shower growing, partially as the reconstructed properties for a partial shower
is not intuitive, but also to ensure that we are only comparing true tagged test
beam particles, rather than potential particles that are reconstructed under both
a test beam and cosmic hypothesis. This ensures that the comparisons made
here are only using fully built showers, with a decided test beam versus cosmic
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Figure 8.6: A comparison between the existing and DL-based shower growing at
ProtoDUNE, before and after growing. Unlike Figure 8.2, the before growing contains a
large number of high completeness showers, indicating that there may be larger clusters
in this sample, pre-growing compared to the far detector. The new shower growing can
improve the performance, but at the cost of introducing more low completeness showers.
When looking at the largest cluster per shower, a smaller difference is seen.
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Figure 8.7: A comparison of the final reconstruction performance at ProtoDUNE. Here
it can be seen more obviously that the inclusion of improved shower growing is not a big
driver of performance at ProtoDUNE-SP, compared to the impact that it has at the HD
FD. There is a small improvement for the largest shower in the event, but this reduces
significantly when moving to the largest cluster per shower, and then closer again when
looking at every shower-like cluster in the event.
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hypothesis, with intuitive shower properties. Without this, looking at plots of
calculated shower widths and shower primary directions would be muddied by
non-obvious results for any non-shower cosmic rays that are being tested through
the neutrino hypothesis. If instead, we wait until the end of Pandora, we are
only looking at fully reconstructed and tagged test beam particles, which should
produce metrics with more sensible shapes.

To assess the real test-beam data, we can compare reconstructed shower
properties between the two datasets. The shower properties being analysed are
the shower’s size, based on the average cluster size, as well as features built using
the final shower cluster. The size, shape, and direction of the fully reconstructed
3D shower is assessed by applying a PCA fit to their reconstructed 3D hits. This
yields primary, secondary and tertiary axes for the shower. The shower properties
are then calculated from these axes as followed:

• Shower Length: The shower length is simply calculated using the length
of the PCA primary axis.

• Opening Angle: The opening angle is a ratio of the primary axis length to
the secondary and tertiary axes:

θ = arctan

√
∥PCA2∥2 + ∥PCA3∥2

∥PCA1∥

with PCA1, PCA2, PCA3 referring to the primary, secondary or tertiary axes.
When performed in 2D, the tertiary axis is set to zero.

This process is performed on both the simulated and real ProtoDUNE-SP data,
and we can then compare the results. This is repeated for both the new, DL shower
growing and the existing growing where interesting, to highlight cases where the
shower growing is failing, or there may be more underlying issues in the simulation.

First, we compare the 2D shower growing on ProtoDUNE-SP MC against
real data for the collection view, as shown in Figures 8.8 and 8.10, with the
collection view chosen as it should be the view most free of noise. The results
show a reassuring agreement between the two data sets. Here, we can see that
broadly, there is reasonable agreement between the simulated and real data, such
that the DL growing is performing similarly on both sets of data. The shower
length and opening angle looks as expected, with most showers in both data and
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simulation having an opening angle around 10 degrees and a length of around
160 cm. Similarly, the bias in the reconstructed X direction fits the expected
distribution based on the entry point of the test beam at ProtoDUNE, and most
showers go in the direction of the beam in the Z direction. The backwards going
showers, with a Z direction closer to -1 are usually small showers that have a low
number of hits, which causes the direction correction factor to be wrong, pointing
the shower the wrong way. Similarly, the spread in length and angle can depend
on when the shower begins to shower, as well as contamination from cosmic rays
and background test beam interactions.

Figures 8.9 and 8.11 show the same properties but for the existing shower
growing. It can be seen that there is good agreement across the board for the
existing shower growing. If we compare the 2D shower length plots for the
new and existing shower growing, we also see good agreement across all four
distributions. However, when looking at the 2D opening angle, the new shower
growing algorithm is producing a much larger range of opening angles, with a much
less sharp peak around 10 degrees, as compared to the existing shower growing. It
is also interesting to note that in both cases, with and without the new growing,
the data sees a systematically larger opening angle compared to the simulation,
perhaps indicating a deficiency in the simulated data. Finally, it can be noted
that the reconstructed 2D X direction plots for both the new and existing growing
show some small disagreement for values just below zero, perhaps indicating a
small issue with the simulation, rather than a failure of the new growing causing
differing results.

Following from this, we can also check that the final showers made in 3D
have comparable reconstructed properties, by performing the same steps as in
the 2D case, but on 3D clusters. Figures 8.12 and 8.14 show similar agreement
as in 2D, even after the 3D reconstruction steps and further processing of the
clusters. The remaining shape differences may be explainable due to missing effects
in the simulation, with Appendix C giving some additional figures that show the
agreement for the existing shower growing, rather than the new DL growing, which
may explain further limitations.

Finally, figures 8.13 and 8.15 again show the same distributions, but when
utilising the existing growing. These allow for some interesting comparisons, as
there is certain features, seen in both 2D and 3D as well as in both versions
of the growing. For example, the agreement between data and simulation for
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Figure 8.8: Comparison of the reconstructed 2D shower length and opening angle on
ProtoDUNE simulation and data, using the new shower growing. We can see reasonable
agreement between the two. Here, the length is the length of the PCA primary axis, and
the opening angle is calculated using the inverse tan of the ratio between the secondary
and primary axis. The DL growing is able to perform the same on both simulated and
real data, even with new detector effects not encountered in training.
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Figure 8.9: Comparison of the reconstructed 2D shower length and opening angle on
ProtoDUNE simulation and data, using the existing shower growing. We can see good
agreement between the two. Like the DL case, the length is the length of the PCA
primary axis, and the opening angle is calculated using the inverse tan of the ratio
between the secondary and primary axis. We see similar agreement between these two
shapes, as we do in the DL case.
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Figure 8.10: Data and simulation comparison of the reconstructed 2D shower direction
at ProtoDUNE-SP after the GNN growing. There is also good agreement between both
results here. The showers reconstructed going the wrong way in Z are usually due to the
correction factor applied to the shower direction being incorrect, pointing the primary
axis the wrong way, rather than the shower truly being reconstructed going the wrong
way.
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Figure 8.11: Data and simulation comparison of the reconstructed 2D shower direction
at ProtoDUNE-SP after the existing growing. There is also good agreement between
the two here for the existing growing. It is notable that there is a similar level of
disagreement between the bins just below zero, as compared to Figure 8.10.
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showers reconstructed with X directions below zero is poor in both plots. This
could indicate an issue in the MC simulation, such that the simulated showers
and the showers seen in data do not agree. What is perhaps more interesting is
looking at how the reconstructed shower length changes when moving from 2D
to 3D. In Figures 8.9 and 8.9, there is broadly an agreement between each of the
four distributions, with both the old and new method producing a peak around
150. However, once moved into 3D, the DL method produces a peak around 160,
compared to 120 in the existing method, with the peak shape also differing much
more. In both cases, there is a reasonable agreement between the simulation and
data, so it seems that the new shower growing is producing showers of slightly
different length, compared to the old method.

Further comparisons of the reconstructed shower properties can be seen in
Appendix C, including some plots showing the same comparisons with the new
growing, but with cuts applied to show only ‘small’ and ‘large’ showers, based on
some number of hits.

8.2.5 Summary of ProtoDUNE-SP Performance Study

The DL-based shower growing is able to achieve a very similar level of performance
on both data and simulation at ProtoDUNE-SP, which is very encouraging. How-
ever, compared to the far detector performance, the difference in reconstruction
quality when utilising the DL shower growing is minimal. This is likely due to the
outlined differences in the shower-like clusters, where they already have a much
higher completeness, rendering an improved shower growing much less useful, at
least at the energy tested. Perhaps more importantly, then, is that it also validates
that work that is performed on simulated data using deep learning is able to
generalise to real data, as very good data and simulation agreement is seen for
reconstructed shower properties when using the deep learning-based growing. This
is a useful study to perform generally, to better understand how development on
simulation can work and what considerations need to be made to then generalise
to real data, once available.

As outlined previously, there are many distinct differences between ProtoDUNE
and far detector data. Combined, these differences may mean that a different
shower growing architecture is more optimal, or additional features should be
included for use at ProtoDUNE. It is also important to look at the values quoted
in Table 8.4, as the shower growing here is doing much less work than in the far
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Figure 8.12: Comparison of the reconstructed 3D shower length and opening angle
at ProtoDUNE-SP with the deep learning-based growing. This shows similar levels of
agreement to Figure 8.8, with some variance in the actual distribution shape. This is
likely because the calculation in 3D considers both the second and tertiary axis of the
PCA fit to calculate the opening angle, rather than just the secondary. Rather than
taking the ratio between the primary and secondary axis, the ratio between the primary
and combined squared secondary and tertiary axes.
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Figure 8.13: Comparison of the reconstructed 3D shower length and opening angle at
ProtoDUNE-SP with the existing growing. It is interesting to note that whilst Figures 8.8
and 8.9 mostly agree on the length distributions, there is a disagreement once passed
through the further 3D reconstruction algorithms. Similarly, the angular distribution in
3D disagrees even more than in 2D, with the peak moving from just under 30° to 20°
when swapping between the existing and new growing techniques.
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Figure 8.14: A comparison of the reconstructed 3D shower direction at ProtoDUNE,
using the new growing. A similar shape in the Z distribution can as seen in Figure 8.10,
where some showers have a correction applied to their primary axis that end up pointing
it the wrong direction. The bias in the X direction here is due to the angle that the
beam enters the detector, which is 30 cm away from the central cathode on the negative
X side, pointing down 11° from the horizontal and 10° to the right of the Z direction.
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Figure 8.15: A comparison of the reconstructed 3D shower direction at ProtoDUNE,
using the existing growing. Like in 2D, the X distribution in both the new and existing
growing, shown in Figure 8.14, disagree more for values below zero, with there being
both under and over-represented values in the X direction. However, when looking at
the Z direction, it seems there is worse agreement in the new growing, when compared
to the existing growing.

206



Chapter 8. Deep Learning Shower Growing Performance

detector, as the difference before and after growing utilising the existing growing
is only 3%, compared to a difference of over 23% at the far detector for the
largest shower. The initial completeness before any growing is also very different
at ProtoDUNE, with the completeness starting at 62% rather than only 7% at the
far detector. In fact, the before growing completeness at ProtoDUNE is almost as
high as the after growing completeness achieved with the DL growing at the far
detector. This implies that changes to the shower growing are less impactful at
ProtoDUNE-SP than the far detector, at least for this 1 GeV positron sample.

The beam positrons measured by ProtoDUNE-SP are different in energy,
topology and complexity to the charged-current electron neutrino interactions that
will be reconstructed in the DUNE FD. In ProtoDUNE-SP, the beam particles
have a single energy, compared to the wide-band LBNF spectrum at the far
detector. The final-state multiplicities are also significantly greater at the far
detector. This is shown more clearly in Figure 8.16, comparing both the size
and number of the clusters at ProtoDUNE-SP compared to the FD, where it is
obvious that the shower growing has overall less work to do, such that a change
in architecture may be required. Across every shower, at ProtoDUNE the average
number of clusters before growing is 107 compared to 584 at the far detector.
For ProtoDUNE, this number drops by only 17.6% after growing is complete,
compared to a change of 29.2% at the far detector, with even more significant
differences when looking at the largest cluster per shower, and the largest overall
shower in the event. Similarly, the growing step at ProtoDUNE takes the largest
cluster for a given shower from an average of 43 hits to 47 hits, whereas at the far
detector the difference is instead from 57 hits to 197 hits. This drastic difference in
the size and number of clusters may explain part of the reason the shower growing
performs differently at ProtoDUNE-SP.

It is possible that improvements to the shower growing network to target test
beam events in a surface-based detector may help improve the performance in
the future. For example, as the beam particle enters the detector from a known
position, the beam plug, the shower growing process could benefit from topological
features that utilise this position. As well as the beam plug, being a test beam
event means that there is the presence of additional beam halo particles. This
is another form of additional complexity, causing additional interactions in the
detector, which the current shower growing is not built to deal with.

Similarly, cosmic ray interactions at ProtoDUNE-SP introduce additional
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Figure 8.16: A comparison of the existing shower growing at the DUNE FD and
ProtoDUNE-SP. First, the number of clusters in a given event is drastically different
between the two detectors, both before and after growing, as well as the difference
between them. Secondly, the size of the shower-like clusters in the event is much lower
at ProtoDUNE, with a minimal change after growing. This may explain why the growing
is performing differently on this event sample at ProtoDUNE.
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complexity that the network may need improving to tackle. They introduce a
large source of noise in the data, resulting in the need for slicing. Because of
the cosmic rays, Pandora runs in a different mode, first removing obvious cosmic
rays in a number of passes, then working through the remainder of the event using
both a cosmic ray and beam reconstruction hypothesis, and choosing the result that
makes the most sense. This mode of running, if there are errors, can mean that the
final test-beam reconstruction that runs the shower growing for the identified test
beam hits, may have either additional hits from cosmic rays, or missing hits lost
to other slices. This style of sparse hits is not something the network was trained
for, which makes it difficult for the network to perform inference on it, whilst also
potentially being non-optimal for the graph structure; Another use of cosmic ray
information would be using the identified cosmic ray vertices, such that clusters
that are nearer to interaction vertices of the cosmic rays can be treated differently
based on their position and direction relative to the other known vertices.

Alongside the potential for additional features to deal with the test beam and
surface-based detector of ProtoDUNE-SP, there is usually per-detector tuning.
The thresholds or training done for one detector may not be most optimal
for another detector, with differences mostly being due to differences in energy
spectrum, detector geometry (the size, the wire plane angles), or the presence
of additional interactions. All of these small differences mean that it is usually
optimal to re-tune, or in the case of deep learning-based approaches, re-train a
network using new, detector-specific data. This step was not performed for the
DL track/shower tagging network (outlined in Section 4.3.8), such that it can not
achieve the same level of performance in ProtoDUNE, as the far detector. This
can introduce a background of track-like clusters that make the shower growing
more difficult, by either merging tracks into showers, or providing high scoring
input clusters that are not suitable. Retraining the network could help alleviate
this issue, but was not easily feasible. The track shower tagging network will suffer
from the same issues as the shower growing as well, with a lack of understanding
of the cosmic rays, the differences in noise and interaction differences.

Regardless, the performance differences aside, the reconstruction-based quan-
tities show that the method is functional at ProtoDUNE-SP, and performs the
same on both simulation and real data, even if the configuration of the detector
means that an improvement to the growing is less impactful at ProtoDUNE-SP
than the FD. This is encouraging, as it helps validate the use of deep learning
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more generally in Pandora, for further work on other parts of the reconstruction
chain. The performance achieved at the far detector indicates that the method as
a whole is able to achieve encouraging performance on electromagnetic showers,
with additional work required to ensure that the growing performance is consistent
for both electrons and photons, as well as across a range of energies. However,
as deep learning becomes more ubiquitous across DUNE and particle physics as a
whole, with greater access to GPUs for accelerating deep learning workflows, this
network and others like it in Pandora can grow in complexity and scope, to take
advantage of the increase in available computing power, which should allow the
technique to become even more sophisticated.
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9
Conclusion

“Take what you have learned, and move on.”

The Fox of Dreams - The Sandman

D eep Underground Neutrino Experiment (DUNE) is a next generation
long-baseline neutrino oscillation experiment in the construction phase,
with aims to make precision measurements of the neutrino oscillation

parameters, in search of CP violation. To achieve these goals, accurate recon-
struction of the DUNEs detector technology of choice, the liquid argon time
projection chamber (LArTPC), is required. LArTPCs provide high resolution
spatial and calorimetric outputs, which results in a complex particle topology to
be reconstructed. To efficiently tackle this problem, DUNE will need a variety
of reconstruction approaches to accurately reconstruct particle interactions and
provide analysers with useful outputs. This thesis presents the results for two
new techniques, implemented inside the Pandora multi-algorithm reconstruction
framework, with verification of these techniques on both simulated and real data,
utilising data from the sophisticated DUNE simulation chain, and test beam data
from ProtoDUNE-SP at CERN.

In this thesis, the development of an improved 3D hit reconstruction for tracks
was outlined in Chapter 6. This work can efficiently utilise the full power of the 3D
hit reconstruction in Pandora, and fix a number of outlined issues in the process.
First, simple constraints are enforced on the 3D hit creation, to ensure the detector
geometry is considered as part of the hit creation process, to remove errors where
a hit falls outside the detector. Next, and most powerfully, the algorithm chain is
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split and parallelised, providing a comprehensive set of 3D hits to chose between,
rather than a single fixed result. This superset of 3D hits containing many potential
final hits is then sampled, first using random sample consensus (RANSAC) to find
a consistent starting point, and then with a further fitting step to produce a single
coherent result for the given track. This result in final 3D tracks that are more
consistent, match their truth more accurately, and lack the reconstruction artefacts
previously seen such as deviations in the 3D hits that looked like the track was
bending. The 3D track creation was also extended further to include the addition
of hit interpolation in a detector aware way.

Next, the shower growing step in Pandora was worked on in Chapter 7. This is a
step early in the Pandora reconstruction chain that takes the tiny clusters (grouped
together hits) that have been tagged as most likely coming from electromagnetic
showers and merges them together to produce larger and larger clusters that more
accurately reflect a single shower. Before the work started properly, a cheating
study was performed. This study involved the use of truth level information to
perform the shower growing, to get a better understanding of how improving the
shower growing could impact the overall performance of Pandora. The cheating
study showed that in a perfect shower growing case, there could be as much as 15%
performance gain for the shower completeness, which is a significant improvement
that provides scope for development. Looking at this, and with an understanding
of the issues that the existing shower growing faces, a graph neural network (GNN)
based approach was developed as part of this thesis. The GNN and its input graph
were developed to take an input shower-like cluster and output merge candidates
that could be used to grow the initial input cluster. This approach and the
development of both the graph and network are also outlined in this chapter,
including the decisions made around the graph and network features, and other
technical details such as the input cluster selection and the implementation of a
GNN inside of Pandora.

Chapter 8 then outlines all the results achieved with the newly developed GNN
shower growing. After an explanation of how the network was trained on DUNE
electron neutrino events, the performance on simulated data is analysed, both
before and after shower growing to show the direct impact of the improved shower
growing, as well as the final performance once Pandora has completed the full
reconstruction chain. These two result types help show both the direct impact,
and the actual usable impact once the full reconstruction chain has used the result
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from the deep learning-based growing. Comparing the old growing against this
work for the shower growing step only, an improvement of 15.0% is seen in the
average completeness across all showers, at the cost of a 5.9% drop in purity. If
instead the final reconstruction numbers are used, which includes the impact of
other Pandora algorithms continuing to improve the shower growing output, a final
improvement of 16.3% is seen, at a cost of 4.0% purity. However, these numbers
and the model used were chosen to optimise the highest available completeness,
rather than an overall result that optimises completeness, purity and takes shower
losses into account. Chapter 8 also outlines some potential changes to the shower
growing network developed as part of this work, if an alternative variable was
optimised instead, offering a look at the potential tuning or additional features to
improve the performance further.

Alongside simulation only results at the DUNE far detector, there is also
an overview of results at ProtoDUNE-SP. ProtoDUNE-SP offers a unique
opportunity to verify the results seen on DUNE simulation on real data, which
is always a concern for deep learning-based approaches, to avoid learning features
that are specific to the simulation, rather than real life features. First, a
repeat of the simulation-based studies performed at the far detector is applied
to ProtoDUNE-SP simulation data. Much smaller improvements are seen here,
of the scale 1% or so, and some differences are outlined that potentially explains
why the shower growing is much less important at ProtoDUNE-SP, at least for the
dataset tested. This is followed by comparisons of the GNN shower growing on
real and simulated data, comparing the size and shapes of reconstructed showers,
giving a first look at the performance of the new shower growing on real data. Good
agreement can be seen between the real and simulated data, giving confidence that
deep learning approaches applied to simulated data can successfully be applied to
real data without significant issue.

This thesis has presented the results of two major improvements to Pandora,
a reconstruction framework in use at both DUNE and ProtoDUNE, including
improvements to the 3D reconstruction and utilising deep learning to improve
electromagnetic shower reconstruction, both of which are key steps in the
reconstruction chain. Work is underway to validate this work at ProtoDUNE
and other LArTPC experiments, as well as further improvements to Pandora to
ensure DUNE will have an effective reconstruction framework ready when data
taking starts.
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A
Neutrino Oscillations

Neutrino oscillations arise due to the quantum mechanical mixing of the 3 different
neutrino mass eigenstates. We can express the 3 flavour states, electron, muon and
tau, νe, νµ, ντ respectively, as a superposition of the mass eigenstates

|να⟩ =
∑

k

U∗
αk |νk⟩ (A.0.1)

where νk are the neutrino mass eigenstates, and U is a unitary mixing matrix. The
mixing matrix is analogous to the Cabibbo-Kobayashi-Maskawa (CKM) mixing
matrix of the quark sector, but for neutrinos it is the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix. This is a 3×3 unitary matrix, but it can be parameterised
using three weak mixing angles, θ12, θ13, θ23 and one phase δCP. The UP MNS matrix
can be written as [121]:


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13




c12 s12 0
−s12 c12 0

0 0 1




1 0 0
0 eiβ 0
0 0 eiγ


(A.0.2)

where cij = cos θij and sij = sin θij. In this parametrisation, each sub-matrix
contains a different mixing angle and is primarily associated with a different mode
of oscillation. As discussed in Section B, the θ23 mixing angle drives the long-
baseline oscillations that are observed in atmospheric and accelerator neutrinos;
θ13 describes the short-baseline oscillations that occur in reactor neutrinos; and θ12

manifests itself in solar neutrinos and long-baseline reactor neutrino experiments.
If the phase δCP is not a multiple of π, then UP MNS will have complex components
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in non-diagonal elements, leading to CP violation. The forth sub-matrix includes
the two so-called Majorana phases, eiβ and eiγ. This matrix plays no part in the
description of neutrino flavour oscillations, so will not be considered further here,
but does play a key role in neutrinoless double beta decay.

A.1 Oscillation Formalism

This formalism draws mostly from Neutrino Physics Second Edition by K.
Zuber [121].

First, assuming a plane wave solution to the time independent Schrödinger
equation, the mass eigenstates of the neutrino |νi⟩ have a time dependence

|νi(x⃗, t)⟩ = e−iϕi |νi(⃗0, 0)⟩ (A.1.1)

where ϕi = Eit− p⃗ · x⃗. Now, since we know that at some given time and place, the
neutrinos flavour state |νβ(x⃗, t)⟩ will be measured, we can write it as

|νβ(x⃗, t)⟩ =
∑

i

Uβi |νi(x⃗, t)⟩ (A.1.2)

which arises from Equation A.0.1. When this is combined with Equation A.1.1
gives

|νβ(x⃗, t)⟩ =
∑

i

Uβie
−iϕi |νi(⃗0, 0)⟩ (A.1.3)

If we assume that the initial neutrino state is purely |να⟩, then the transition
amplitude να → νβ is given by

A(α→ β)(t) = ⟨νβ(x⃗, t)|να(x⃗, t)⟩ =
∑

i

∑
j

U∗
βie

iϕiUαj ⟨νi(⃗0, 0)|νj (⃗0, 0)⟩ (A.1.4)

Now, because the mass eigenstates are orthogonal, we can reduce Equation A.1.4
to:

A(α→ β)(t) =
∑

i

U∗
βie

iϕiUαi (A.1.5)

If we make the further assumption that the neutrino travels in the x-direction, ϕi

becomes
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ϕi = Eit− p⃗ · x⃗ = Eit− pix (A.1.6)

and under the assumption that each mass state has the same momenta, and the
neutrinos are ultra-relativistic (i.e. m << p):

p ≈ E − m2

2E
(A.1.7)

which when put back into Equation A.1.6 and used with the relativistic assumption
that L = x = t, can be simplified to

ϕ ≈ m2L

2E
(A.1.8)

This can be combined with Equation A.1.5 to obtain

A(α→ β)(t) =
∑

i

U∗
βie

i
m2

i
L

2E Uαi (A.1.9)

The transition probability P (α→ β)(t) can then be obtained from the transition
amplitude A

P (α→ β)(t) = |A(α→ β)(t)|2 =
∑

i

∑
j

U∗
βiUβje

i
(m2

i
−m2

j
)L

2E UαiU
∗
αj (A.1.10)

which can be expanded further, to split it into the real and imaginary compo-
nents, which helps emphasise the charge-parity violation possibilities in neutrino
oscillations

P (α→ β)(t) =
∑

i

UαiU
∗
βi

∑
j

U∗
αjUβj

+ 2 Re
∑
i>j

U∗
βiUβjUαiU

∗
αj

[
ei

(m2
i

−m2
j

)L

2E − 1
] (A.1.11)

Finally, we can split the exponential into components, to separate the real
observables (energy, length, and mass) from the complex parts
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Re
(

ei
∆m2

ij
L

2E − 1
)

= −2 sin2
[

∆m2
ijL

4E

]
(A.1.12)

Im
(

ei
∆m2

ij
L

2E

)
= sin

[
∆m2

ijL

2E

]
(A.1.13)

where ∆m2
ij = m2

i − m2
j . Now, because U is unitary, the first term in Equa-

tion A.1.11 becomes δαβ. So, if we insert Equation A.1.13 and Equation A.1.11,
we can obtain a final oscillation probability of

P (α→ β)(t) = δαβ

− 4 Re
∑
i>j

U∗
βiUβjUαiU

∗
αj sin2

[
∆m2

ijL

4E

]

+ 2 Im
∑
i>j

U∗
βiUβjUαiU

∗
αj sin

[
∆m2

ijL

2E

] (A.1.14)

A.2 Mass Ordering

A complication in measuring neutrino oscillation parameters in a real experiment is
that the neutrinos that are detected have travelled through matter, for example the
Earth’s crust. Neutrino oscillation experiments are only sensitive to the square of
the neutrino mass, as seen in Equation A.1.14. This means that with an oscillation
experiment, it is not possible to make a direct mass measurement. It is, however,
possible to make measurement of the mass-squared differences: ∆m2

ij ≡ m2
i −m2

j .
The smallest mass-squared difference, ∆m2

21 has been determined to greater
than 0 [122] by considering the oscillations of neutrinos in the sun, with a
magnitude of order 10−4 eV2. The remaining mass-squared difference, ∆m2

32 is
unknown. This gives two possibilities for the neutrino mass ordering. The normal
ordering (NO), where m3 > m2 > m1, or the inverted ordering (IO), where
m2 > m1 > m3. These two possibilities are shown in Figure A.1.
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Figure A.1: The two possible neutrino mass orderings. The left is the normal ordering,
and on the right the inverted ordering. Each mass eigenstate is split into its fractional
flavour content, as shown by the colour. Figure from [123].

A.3 CP Violation

When considering most models of the Big Bang, it is predicted that the universe
was created with equal parts of both matter and anti-matter. However, as
evidenced by our existence, the universe appears to actually be dominated by
matter. From this, we can assume that it is possible for some asymmetry to have
occurred, resulting in this matter / anti-matter imbalance.

We believe that part of this asymmetry lies in the breaking of the charge-parity
(CP) symmetry. Here, the charge operator is the conjugation of a particle for it’s
anti-particle, or vice versa. The parity operator, on the other hand, flips the sign
of all spatial coordinates for a particle. Combined, they form the CP operator.

If Equation A.1.14 is expanded to the three-flavour paradigm and considered
alongside all parts of the PMNS mixing matrix, we can parametrise the CP
violating behaviour in terms of a single CP violating phase, δCP. We can see
this if we look at an example oscillation probability between two flavour states,
such as the first order approximation for νµ → νe oscillations [124]:
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P (νµ → νe) ≃ sin2 θ23 sin2 2θ13
sin2 (∆31 − aL)

(∆31 − aL)2 ∆2
31 (A.3.1)

+
[

sin 2θ23 sin 2θ13 sin 2θ12

sin (∆31 − aL)
(∆31 − aL) ∆31

sin(aL)
(aL) ∆21 cos (∆31 + δCP)

]

+ cos2 θ23 sin2 2θ12
sin2(aL)

(aL)2 ∆2
21

where ∆ij = ∆m2
ijL/4Eν , a = GF Ne/

√
2, GF is the Fermi constant, Ne is the

number density of electrons in the Earth, L is the baseline of the experiment in
km, and Eν is the energy of the neutrino in GeV.
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B
Current Knowledge

Neutrino physics is a rich section of experimental particle physics, with many
neutrino oscillation measurements now, made across solar, atmospheric, reactor,
and accelerator neutrino experiments. These results can be combined, to give the
best estimate of the neutrino oscillation parameters. The latest results from the
Nu-Fit global neutrino oscillation analysis [33] are summarised below, giving the
values for both the normal and inverted hierarchy, and highlighting the major
contributing experiment or experiments.

θ12

The measurement and constraints on θ12, the solar mixing angle, are predominantly
set by solar neutrino experiments, such as SNO [125], Super Kamiokande [15] and
additional data from the KamLAND experiment [126]. The current combined
measurement for θ12 is,

sin2(θ12) = 0.304 +0.013
−0.012 (NO)

= 0.304 +0.013
−0.012 (IO)

∆m2
21

The best measurement of ∆m2
21 is also predominantly set by the KamLAND

experiment. The current measured value is,
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∆m2
21 = 7.42 +0.21

−0.20 × 10−5eV2 (NO)
= 7.42 +0.21

−0.20 × 10−5eV2 (IO)

θ13

The measurement of θ13, primarily comes from reactor neutrino experiments
such as Daya Bay [127], Double Chooz [128] and RENO [129], though there are
additional contributions from some long baseline oscillation experiments, such as
T2K [130] and NOvA [131]. The Nu-Fit global fit gives,

sin2(θ13) = 0.02246 +0.00062
−0.00062 (NO)

= 0.02241 +0.00074
−0.00062 (IO)

θ23 and ∆m2
32

θ23 and ∆m2
23 are strongly correlated, so it is common for their measurements to be

presented together, as a two-dimensional contour. Figure B.1 shows a comparison
between the contours from a variety of neutrino experiments, with the best results
coming from T2K, MINOS [132] and NOvA. The current best combined three
oscillation fit gives a constraint of,

∆m2
32 = (+2.510 +0.027

−0.027)× 10−3eV2 (NO)
= (−2.490 +0.026

−0.028)× 10−3eV2 (IO)

and

sin2(θ23) = 0.450 +0.019
−0.016 (NO)

= 0.570 +0.016
−0.022 (IO)
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Figure B.1: The 90% confidence region contours for sin2(θ23)-∆m2
23 from some of the

leading neutrino oscillation experiments [130–132]. Figure is from [133] where the black
point shows the best fit for the NOvA experiment.

Mass Ordering

Both NOvA and T2K and shown a preference for normal mass ordering [130, 131],
and the combined result from the combined Nu-Fit oscillation analysis puts the
inverted ordering disfavoured with a ∆χ2 of 7.0.

δCP

There are hints from the long baseline neutrino experiments T2K and NOvA
towards the value of δCP being non-zero. The limits are set based on joint fits
over four distinct data samples: νe appearance, ν̄e appearance, νµ disappearance
and ν̄µ disappearance.

The NOvA experiment has completed joined fits to its neutrino and anti-
neutrino oscillation data, with the results shown in Figure B.2 [133]. The normal
mass ordering is preferred and the full range of possible values for δCP is allowed
at 3σ.

Similarly, the result of the T2K experiments joint fit can be seen in Fig-
ure B.3 [134]. T2K sees an excess of electron neutrino events and a deficit of
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anti-electron neutrino events, when compared to a baseline of δCP = 0. This results
in a preference for a negative value at a 3σ confidence interval of [−3.41,−0.03],
again in the case of normal mass ordering.

Both of these results show that there is a need for further study into CP-
violation in neutrino oscillations, and this is what the next generation of long
baseline accelerator neutrino experiments should be able to probe more thoroughly.
The effects that different values of δCP have on the oscillation probability at both
T2K and NOvA can be seen in Figure B.4.

There is a suggestion that δCP = 0 and δCP = π are ruled out, thus hinting
towards CP being violated in the lepton sector [134]. However, the 3σ confidence
level does not currently exclude the two CP conserving points. So whilst there are
strong hints towards CP violation (CPV), a definitive result will require the next
generation oscillation experiments, such as DUNE or Hyper-Kamiokande [135].
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Figure B.2: Latest results from the NOvA collaboration. Figure from [133].
Figure a shows the confidence interval for δCP vs sin2(θ23) under the assumption of
normal ordering. The best fit points for both NOvA and T2K are show, along with their
confidence level contours.
Figure b shows the confidence interval for δCP vs sin2(θ23) under the assumption of the
inverted ordering.

237



Appendix B. Current Knowledge

CPδ
3− 2− 1− 0 1 2 3

)
13θ(2

si
n

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034a
T2K Run 1-9

T2K + Reactors
T2K Only
Reactor

CPδ
3− 2− 1− 0 1 2 3

)
23θ(2

si
n

0.4

0.45

0.5

0.55

0.6

0.65b

2

4

6

8

10
68.27% CL

99.73% CL

CPδ
3− 2− 1− 0 1 2 3

NO

IO

c

Figure B.3: The latest results from the T2K Collaboration. Figure from [134].
Figure a shows the 68.27% confidence level contours for δCP vs sin2(θ13) as measured
by T2K, under the assumption of normal ordering. The star shows the best fit point for
T2K plus reactor data.
Figure b shows the 68.27% and 99.73% confidence level for δCP vs sin2(θ23), under the
assumption of normal ordering.
Figure c shows the confidence intervals for δCP from a fit to both T2K and reactor data,
for both normal and inverted ordering. The line shows the best fit point for the value
of δCP, where the shaded box and error bars show the 67.27% and 99.73% confidence
intervals, respectively.
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Figure B.4: Bi-probability plots of oscillation probabilities for neutrinos vs anti-
neutrinos, for the L and E values of both NOvA (left panel) and T2K (right panel),
whilst varying δCP. The ellipses correspond to best-fit points according to both NOvA
and T2K in blue and red respectively. Normal ordering is shown as a solid line, whereas
the inverted ordering is the dashed lines. The labelled points show a value of δCP = 0
and arrows to indicate increasing the value of δCP. Figure is from [136].
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C
Shower Growing Simulation-Data
Comparison

C.1 DL growing

This shows the few remaining plots from the ProtoDUNE-SP reconstructed shower
simulation and data comparison.

Additionally, some plots are included that show the results when focusing on
showers with less than and greater than 450 hits, to show the difference between
the two distributions. This threshold was chosen to show the differences between
the two peaks seen in the following 2D and 3D number of hits plots, splitting the
‘large’ and ‘small’ showers up.
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Figure C.1: Comparison of the reconstructed number of 2D hits in a shower at
ProtoDUNE-SP, for the DL growing.
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Figure C.2: Comparison of the number of 3D hits and the reconstructed 3D direction
with deep learning-based growing.
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Figure C.3: Comparison between simulation and data for the reconstructed shower
opening angle at ProtoDUNE-SP with the deep learning shower growing, split into small
and large showers. Small here is showers with less than 450 3D hits, with large being
anything above that. This threshold was chosen based on the peaks seen in Figures C.2
and C.1.
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Figure C.4: Comparison between simulation and data for the reconstructed shower
length at ProtoDUNE-SP with the deep learning shower growing, split into small and
large showers. Small here is showers with less than 450 3D hits, with large being anything
above that. This threshold was chosen based on the peaks seen in Figures C.2 and C.1.
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Figure C.5: A data versus simulation comparison between the small and large showers
reconstructed shower direction. The first plot shows showers with less than 450 3D hits,
whereas the second plot shows showers with more than 450 hits. It can be seen that the
small showers contribute the most to the incorrect reconstructed shower direction.
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C.2 Existing Growing

This just shows the same remaining plots as Section C.1, but for the existing
shower growing, rather than the DL based shower growing. These are included to
help show any differences that are down to the simulation itself, rather than any
algorithm performing differently on simulation versus real data.
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Figure C.6: Comparison of the reconstructed number of 2D hits in a shower at
ProtoDUNE-SP, for the existing growing.
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Figure C.7: Comparison of the number of 3D hits and the reconstructed 3D direction
with the existing growing.
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C.3 Vertex Position

A comparison of the vertex position for both the existing and new shower growing.
This step should only be minimally impacted by the shower growing, so no larger
change is expected.
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Figure C.8: Data and simulation comparison of the reconstructed 2D vertex position
at ProtoDUNE-SP for the DL growing.
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Figure C.9: Data and simulation comparison of the reconstructed 2D vertex position
at ProtoDUNE-SP for the existing growing.
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Figure C.10: Data and simulation comparison of the reconstructed XZ 3D vertex
position at ProtoDUNE-SP for the DL growing.
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Figure C.11: Data and simulation comparison of the reconstructed XZ 3D vertex
position at ProtoDUNE-SP for the existing growing.
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Figure C.12: Data and simulation comparison of the reconstructed Y 3D vertex
position at ProtoDUNE-SP for both shower growing algorithms.
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