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Abstract

Class activation maps (CAMs) are commonly employed
in weakly supervised semantic segmentation (WSSS) to pro-
duce pseudo-labels. Due to incomplete or excessive class
activation, existing studies often resort to offline CAM re-
finement, introducing additional stages or proposing of-
fline modules. This can cause optimization difficulties for
single-stage methods and limit generalizability. In this
study, we aim to reduce the observed CAM inconsistency
and error to mitigate reliance on refinement processes. We
propose an end-to-end WSSS model incorporating guided
CAMs, wherein our segmentation model is trained while
concurrently optimizing CAMs online. Our method, Co-
training with Swapping Assignments (CoSA), leverages a
dual-stream framework, where one sub-network learns from
the swapped assignments generated by the other. We in-
troduce three techniques: i) soft perplexity-based regu-
larization to penalize uncertain regions; ii) a threshold-
searching approach to dynamically revise the confidence
threshold; and iii) contrastive separation to address the co-
existence problem. CoSA demonstrates exceptional perfor-
mance, achieving mIoU of 76.2% and 51.0% on VOC and
COCO validation datasets, respectively, surpassing exist-
ing baselines by a substantial margin. Notably, CoSA is the
first single-stage approach to outperform all existing multi-
stage methods including those with additional supervision.

1. Introduction
The objective of weakly supervised semantic segmen-

tation (WSSS) is to train a segmentation model without
relying on pixel-level labels but utilizing only weak and
cost-effective annotations, such as image-level classifica-
tion labels [3, 26, 50], object points [4, 45], and bounding
boxes [16, 28, 36, 57]. In particular, image-level classifi-
cation labels have commonly been employed as weak la-
bels due to their minimal or negligible annotation effort
involved [2, 60]. With the absence of precise localization
information, image-level WSSS often necessitates the use

of the coarse localization offered by class activation maps
(CAMs) [72]. CAMs pertain to the intermediate outputs de-
rived from a classification network. They can visually illus-
trate the activation regions corresponding to each individual
class. Thus, they are often used to generate pseudo masks
for training. However, CAMs suffer from i) Inconsistent
Activation: CAMs demonstrate variability and lack robust-
ness in accommodating geometric transformations of input
images [60], resulting in inconsistent activation regions for
the same input. ii) Inaccurate Activation: activation region
accuracy is often compromised, resulting in incomplete or
excessive class activation, only covering the discriminative
object regions [1]. Despite enhanced localization mecha-
nisms in the variants GradCAM [55] and GradCAM++ [7],
they still struggle to generate satisfactory pseudo-labels for
WSSS [60]. Thus, many WSSS works are dedicated to
studying CAM refinement or post-processing [1, 15, 31].

In general, WSSS methods [2, 18, 50, 65] comprise three
stages: CAM generation, refinement, and segmentation
training with pseudo-labels. This multi-stage framework is
known to be time-consuming and complex as several mod-
els must be trained at different stages. In contrast, single-
stage models [3,52,70], which include a unified network of
all stages, are more efficient. They are trained to optimize
the segmentation and classification tasks at the same time;
however, their CAMs are not explicitly trained. As a result,
they need refinement to produce high-quality pseudo-labels,
often leveraging hand-crafted modules, such as CRF in [70],
PAMR in [3], PAR in [52, 53]. As the refinement mod-
ules are predefined and offline, they decouple the CAMs
from the primary optimization. When the refined CAMs
are employed as learning objectives for segmentation, the
optimization of the segmentation branch may deviate from
that of the classification branch. Hence, it is difficult for a
single-stage model to optimize its segmentation task while
yielding satisfactory CAM pseudo-labels. This optimiza-
tion difficulty underlies the inferior performance in single-
stage approaches compared to multi-stage ones. Further,
such hand-crafted refinement modules require heuristic tun-
ing and empirical changes, thereby limiting their adapt-
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ability to novel datasets. Despite the potential benefits of
post-refinement in addressing the aforementioned two is-
sues associated with CAMs, which have been extensively
discussed in WSSS studies, there has been limited explo-
ration in explicit online optimization for CAMs.

The absence of fully optimized CAMs is an important
factor in the existing indispensability of this refinement. In
this paper, we take a different approach, proposing a model
that optimizes CAMs in an end-to-end fashion, resulting in
reliable, consistent and accurate CAMs for WSSS without
the necessity for subsequent refinements in two respects.
First, we note that even though CAM is differentiable, it is
not robust to variation. As the intermediate output of a clas-
sification model, CAMs are not fully optimized for segmen-
tation purpose since the primary objective is to minimize
classification error. This implies that within an optimized
network, numerous weight combinations exist that can yield
accurate classification outcomes, while generating CAMs
of varying qualities. To investigate this, we conduct oracle
experiments, training a classification model while simulta-
neously guiding the CAMs with segmentation ground truth.
A noticeable enhancement in quality is observed in guided
compared to vanilla CAMs, without compromising classi-
fication accuracy. Second, we demonstrate the feasibility
of substituting the oracle with segmentation pseudo-labels
(SPL) in the context of weak supervision. Consequently,
we harness the potential of SPL for WSSS by co-training
both CAMs and segmentation through mutual learning.

We explore an effective way to substitute the CAM re-
finement process, i.e. guiding CAMs in an end-to-end
fashion. Our method optimizes the CAMs and segmen-
tation prediction simultaneously thanks to the differentia-
bility of CAMs. To achieve this, we adopt a dual-stream
framework that includes an online network (ON) and an as-
signment network (AN), inspired by self-supervised frame-
works [5, 22]. The AN is responsible for producing CAM
pseudo-labels (CPL) and segmentation pseudo-labels (SPL)
to train the ON. Since CPL and SPL are swapped for super-
vising segmentation and CAMs, respectively, our method is
named Co-training with Swapping Assignments (CoSA).

Our end-to-end framework enables us to leverage the
quantified reliability of pseudo-labels for training online, as
opposed to relying on offline hard pseudo-labels as the ex-
isting methodologies [2, 15, 50, 65]. Thus, our model can
incorporate soft regularization driven by uncertainty, where
the CPL perplexity is continually assessed throughout train-
ing. This regularization is designed to adaptively weight the
segmentation loss, considering the varying reliability levels
of different regions. By incorporating the soft CPL, CoSA
enables dynamic learning at different time-steps rather than
the performance being limited by the predefined CPL.

The threshold is a key parameter for generating the CPL
[50,53,60]. It not only requires tuning but also necessitates

dynamic adjustment to align with the model’s learning state
at various time-steps. CoSA integrates threshold searching
to dynamically adapt its learning state, as opposed to the
commonly used hard threshold scheme [13,18,52]. With the
proposed dynamic thresholding, we eliminate the laborious
task of manual parameter tuning and enhance performance.

We further address a common issue in WSSS with
CAMs, known as the coexistence problem, whereby cer-
tain class activations display extensive false positive regions
that inaccurately merge the objects with their surroundings.
In response, we introduce a technique to leverage low-level
CAMs enriched with object-specific details to contrastively
separate the foreground regions from the background.

The proposed CoSA greatly surpasses existing WSSS
methods. Our approach achieves 76.2% and 75.1% mIoU
on the VOC val and test splits, and 51.0% on the COCO
val split, which are +5.1%, +3.9%, and +8.7% ahead of
the previous single-stage SOTA [53].

The contributions of this paper are as follows: 1) We are
the first to propose SPL as a substitute for guiding CAMs
in WSSS. We present compelling evidence showcasing its
potential to produce more reliable, consistent and accurate
CAMs. 2) We introduce a dual-stream framework with
swapped assignments in WSSS, which co-optimizes the
CAMs and segmentation predictions in an end-to-end fash-
ion. 3) We develop a reliability-based adaptive weighting in
accommodating the learning dynamics. 4) We incorporate
threshold searching to automatically adjust the threshold,
ensuring alignment with the learning state at different train-
ing time-steps. 5) We address the CAM coexistence issue
and propose a contrastive separation approach to regular-
ize CAMs. This greatly alleviates the coexistence problem,
significantly enhancing the results of affected classes. 6)
We demonstrate CoSA’s SOTA results on key challenging
WSSS benchmarks, significantly surpassing existing meth-
ods. Our source code and model weights will be available.

2. Related Work
Multi-Stage WSSS. The majority of image-level WSSS
work is multi-stage, typically comprising three stages: clas-
sification training (CAM generation), CAM refinement, and
segmentation training. Some approaches employ heuristic
strategies to address incomplete activation regions. For ex-
ample, adversarial erasing [30, 58, 68, 71], feature map op-
timization [12–14,32], self-supervised learning [11,56,60],
and contrastive learning [15,27,64,73] are employed. Some
methods focus on post-refining the CAMs by propagating
object regions from the seeds to their semantically simi-
lar pixels. AffinityNet [2], for instance, learns pixel-level
affinity to enhance CPL. This has motivated other work
[1,9,20,38] that utilize additional networks to generate more
accurate CPL. Other work is dedicated to studying opti-
mization given the coarse pseudo-labels: [40] explores un-



certainty of noisy labels, [43] adaptively corrects CPL dur-
ing early learning, and [50] enhances boundary prediction
through co-training. Since image-level labels alone do not
yield satisfactory results, several methods incorporate addi-
tional modalities, such as saliency maps [18, 37, 38, 73] and
CLIP models [42, 63, 67]. More recently, vision transform-
ers [17] have emerged as prominent models for various vi-
sion tasks. Several WSSS studies benefit from vision trans-
formers: [21] enhance CAMs by incorporating the attention
map from ViT; [65] introduces class-specific attention for
discriminative object localization; [42] and [67] leverage
multi-modal transformers to enhance performance.

Single-Stage WSSS. In contrast, single-stage methods are
much more efficient. They contain a shared backbone with
heads for classification and segmentation [3,52,53,70]. The
pipeline involves generating and refining the CAMs, lever-
aging an offline module, such as PAMR [3], PAR [52], or
CRF [70]. Subsequently, the refined CPL are used for seg-
mentation. Single-stage methods exhibit faster speed and a
lower memory footprint but are challenging to optimize due
to the obfuscation in offline refinement. As a result, they
often yield inferior performance compared to multi-stage
methods. More recently, with the success of ViT, single-
stage WSSS has been greatly advanced. AFA [52] pro-
poses learning reliable affinity from attention to refine the
CAMs. Similarly, ToCo [53] mitigates the problem of over-
smoothing in vision transformers by contrastively learning
from patch tokens and class tokens.

The existing works depend heavily on offline refinement
of CAMs. In this study, we further explore the potential
of single-stage approaches and showcase the redundancy of
offline refinement. We propose an effective alternative for
generating consistent, and accurate CAMs in WSSS.

3. Method
3.1. Guiding Class Activation Maps

Class activation maps are determined by the feature map
F and the weights Wfc for the last FC layer [72]. Let us
consider a C classes classification problem:

Lcls(Z, Y )=
−1

C

C∑
c=1

[
Y c log σc

Z+(1−Y c) log (1− σc
Z)
]
, (1)

where σc
Z ≜ σ(Zc) represents Sigmoid activation, Y ≜

Ygt denotes the one-hot multi-class label, and Z ≜ GW⊤
fc ∈

RC represents the prediction logits, derived from the final
FC layer, where G=Pooling(F )∈RD is a spatial pooled
feature from F ∈RHW×D. During training, Eq. (1) is op-
timized with respect to the learnable parameters θ in the
backbone. When gradients flow backwards from G to F ,
only a fraction of elements in F get optimized, implying
that a perturbation in F does not guarantee corresponding
response in G due to the spatial pooling, resulting in non-
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Figure 1. Oracle Experiments on VOC. CAMs are guided by the
ground truth (GT), proposed segmentation pseudo-labels (SPL),
no guidance (NO) and random noise (NS). (a): classification per-
formance; (b): CAM quality; (c) CAMs visualization. All experi-
ments employ 2k-iters warm-up before guidance is introduced.

determinism in the feature map F . This indeterminate na-
ture can lead to stochasticity of the generated CAMs.

To demonstrate this, we conduct oracle experiments in
which we supervise the output CAMs from a classifier di-
rectly with the ground truth segmentation (GT). This en-
ables all elements in F to be optimized. For comparison, we
conduct experiments wherein the CAMs are (i) not guided
(NO), (ii) guided with masks of random noise (NS).

Results, shown in Fig. 1, demonstrate that different guid-
ance for M does not affect classification even for the NS
group, as all experiment groups achieved over 97% classi-
fication precision. However, drastic differences can be ob-
served w.r.t. the quality of the CAMs. The GT group results
in a notable quality improvement over the NO group, as
shown in Fig. 1(b)(c). In contrast, the NS group sabotages
the CAMs. This suggests the stochasticity of CAMs and ex-
plains their variability and lack robustness, something also
observed in [2,13,60]. Since relying on GT segmentation is
not feasible in WSSS, we propose an alternative for guid-
ing CAMs, employing mask predictions as segmentation
pseudo-labels (SPL). As shown in Fig. 1, an SPL-guided
classifier yields CAMs that significantly outperform vanilla
CAMs (NO group), performing close to the oracle trained
with the GT. Motivated by this, we introduce a co-training
mechanism in which CAMs and mask predictions are opti-
mized mutually without any additional CAM refinement.

3.2. Co-training with Swapping Assignments

Overall Framework. As shown in Fig. 2, CoSA contains
two networks: an online network (ON) and an assignment
network (AN). ON, parameterized by Θ, comprises three
parts: a backbone encoder, FC layers, and a segmentation
head. AN has the same architecture as ON but uses dif-
ferent weights, denoted Θ′. ON is trained with the pseudo
assignments generated by AN, while AN is updated by the
exponential moving average of ON: Θ′ ← mΘ′+(1−m)Θ,
where m ∈ [0, 1] denotes a momentum coefficient. Conse-
quently, the weights of AN represent a delayed and more
stable version of the weights of ON, which helps to yield a
consistent and stabilized learning target [22].

An image and class label pair (x, Ygt) is randomly sam-
pled from a WSSS datasetD. CoSA utilizes two augmented
views Ts(x) and Tw(x) as input for ON and AN, respec-
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Figure 2. Co-training with Swapping Assignments (CoSA). We propose an end-to-end dual-stream weakly-supervised segmentation
framework, capable of co-optimizing the segmentation prediction and CAMs by leveraging the swapped assignments, namely CAM
pseudo-labels (CPL) and segmentation pseudo-labels (SPL). Our framework comprises two networks: an assignment network (AN) and an
online network (ON), where the AN is responsible for generating pseudo-labels for training the ON. While the AN has identical architecture
to the ON, it is updated through exponential moving average (EMA) of the ON. The diagram on the right provides an illustration of the ar-
chitecture. Given weak-augmented images as input, the AN produces CPL to supervise segmentation in the ON (Lc2s). During training, the
CPL is softened by reliability-based adaptive weighting (RAW), formed based on CAM perplexity estimation and dynamic thresholding.
The AN also generates SPL which is utilized to supervise the CAMs (Ls2c). Further, the CAMs are regularized to contrastively separate the
foreground from the background regions (Lcsc). Note that the ON is also trained for classification using the image-level class labels (Lcls).

tively, representing strong and weak image transformations.
During training, AN produces CAMsM′ and segmentation
predictions S ′. The CAM pseudo-labels (CPL) and seg-
mentation pseudo-labels (SPL) are generated byM′ and S ′
after filtering with respect to Ygt. CPL and SPL are subse-
quently used as learning targets for supervising the segmen-
tation predictions S and CAMsM from ON, respectively.

Swapping Assignments. Our objective is to co-optimize S
andM. A naive approach could enforce the learning objec-
tives S ≜ S ′ andM ≜M′ as a knowledge distillation pro-
cess [25], where AN and ON play the roles of teacher and
student. However, this assumes availability of a pretrained
teacher which is not possible in WSSS settings. Instead, we
setup a swapped self-distillation with the objective:

Lswap = Lc2s(S,M′) + Ls2c(M,S ′) , (2)

where Lc2s optimizes the segmentation performance given
the CPL, and Ls2c considers the CAM quality with respect
to SPL. Building on self-distillation [6, 48], we present this
swapped self-distillation framework tailored to facilitate in-
formation exchange between the CAMs and segmentation.

3.3. Segmentation Optimization.

CAM2Seg Learning. As the CAMs in CoSA are inherently
guided, extra refinement [2,29,52] is not required, and they
can be directly employed as learning targets. Nonetheless,
CAMs primarily concentrate on the activated regions of the
foreground while disregarding the background. As per the
established convention [15, 53, 60], a threshold value ξ is
employed for splitting the foreground and the background.
Formally, the CAM pseudo-label (CPL) is given by:

ŶCPL
x,y =

{
argmax(M′

x,y) + 1, if ν ≥ ξ,

0, if ν < ξ,
, (3)

where ν ≜ max(M′
x,y) denotes the the maximum activa-

tion, 0 denotes the background index. Then, the CAM2seg
learning objective Lc2s is cross entropy between YCPL and
S, as with the general supervised segmentation loss [10].

Reliability based Adaptive Weighting. Segmentation per-
formance depends heavily on the pseudo-labels. Despite the
high-quality CPL generated by our guided CAMs, their re-
liability must be assessed, particularly in the initial training
phases. Existing methods use post-refinement to increase
reliability [3, 70]. As CoSA can generate online pseudo-
labels, we propose to leverage confidence information to
compensate the CAM2Seg loss during training.

Specifically, we propose to assess the perplexity scores
for each pixel in ŶCPL and leverage these scores to re-weight
Lc2s for penalizing unreliable regions. However, estimat-
ing per-pixel perplexity is non-trivial. Through empirical
analysis, we observe a noteworthy association between the
confidence values of CAMs and their accuracy at each time-
step. This correlation suggests that regions with extremely
low or high confidence exhibit higher accuracy throughout
training, as shown in Fig. 3(a)(b). To quantitatively model
perplexity, we make two assumptions: i) the reliability of
pseudo-labels is positively correlated with their accuracy,
and ii) the perplexity score is negatively correlated with the
reliability. Then, per-pixel perplexity of ŶCPL

x,y is defined as:

Px,y =

{
[− log (λα(ν − ξ)/(1− ξ))]λβ if ν ≥ ξ,

[− log (λα(ξ − ν)/ξ)]λβ if ν < ξ,
(4)

where the term within the logarithm denotes the normalized
distance to ξ in [0, 1]. The logarithm ensures Px,y→+∞ as
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Figure 3. CPL Analysis on val splits of VOC (a, c, e) and COCO (b, d, f). (a) and (b): heatmap of CPL accuracy vs. confident ranges
(x-axis) for different time-steps (y-axis). (c) and (d): correlation between perplexity and accuracy of CPL for different time-steps. (e) and
(f): distribution of CAMs’ confidence categorized by the proposed dynamic threshold. (best viewed under zoom)

distance→0, and Px,y→0 as distance→1. λα ∈ R+ con-
trols the perplexity score’s minimum value and λβ ∈ R+

determines the sharpness or smoothness of the distribution.
Higher Px,y indicates confidence of ŶCPL

x,y closer to thresh-
old ξ. This observation is substantiated by Fig. 3 (a)(b),
where confidence values near ξ = 0.5 exhibit lower relia-
bility. Furthermore, the correlation between perplexity and
accuracy remains significant across various training time-
steps and datasets, as depicted in Fig. 3(c)(d).

Since we hypothesize negative reliability-perplexity cor-
relation, the reliability score can be defined as the re-
ciprocal of perplexity. To accommodate reliability vari-
ation for different input, we use the normalized relia-
bility as the per-pixel weights for Lc2s. Thus, Relia-
bility based Adaptive Weighting (RAW) is defined as:
W raw

x,y = |R|/∑i,j∈R (Pi,jPx,y)
−1, where |R| represents

total number of pixels in a batch. Then, the re-weighted
CAM2seg loss for each position (x, y) can be defined as

Lc2s(x, y)=−W raw
x,y

C∑
c=0

[
1
[
ŶCPL

x,y =c
]
log

(
expSc

x,y∑C
k=0 expSk

x,y

)]
. (5)

Dynamic Threshold. Existing WSSS work [52, 53] pre-
scribes a fixed threshold to separate foreground and back-
ground, which neglects inherent variability due to pre-
diction confidence fluctuation during training. Obviously,
applying a fixed threshold in Fig. 3(a)(b) is sub-optimal.
To alleviate this, we introduce dynamic thresholding. As
shown in Fig. 3(e)(f), the confidence distribution reveals
discernible clusters. We assume the foreground and back-
ground pixels satisfy a bimodal Gaussian Mixture distribu-
tion. Then, the optimal dynamic threshold ξ⋆ is determined
by maximizing the Gaussian Mixture likelihood:

ξ⋆ = argmax
ξ

∏
x∈{M′≥ξ}

π̃fgN
(
x | µ̃fg, Σ̃fg

)
+

∏
x∈{M′<ξ}

π̃bgN
(
x | µ̃bg, Σ̃bg

)
,

(6)

where N (x | µ,Σ) denotes the Gaussian function and π,
µ, Σ represent the weight, mean and covariance. To avoid
mini-batch bias, we maintain a queue to fit GMM, with the

currentM′ batch enqueued and the oldest dequeued. This
practice facilitates the establishment of a gradually evolving
threshold, contributing to learning stabilization.

3.4. CAM Optimization.

Seg2CAM Learning. To generate SPL, segmentation pre-
dictions S ′ are filtered by the weak labels Ygt and trans-
formed into probabilities:

S ′ c
x,y =

{
−∞, if Y c

gt = 0,

S ′ c
x,y, if Y c

gt ̸= 0,
ŶSPL

x,y = Softmax(
S ′
x,y

τ
) , (7)

where τ represents the softmax temperature to sharpen the
ŶSPL. Then, we arrive Seg2CAM learning objective:

Ls2c = − 1

C|R|

C∑
c=1

∑
x,y∈R

[
ŶSPL

x,y [c] log(σ(Mc
x,y))

+(1− ŶSPL
x,y [c]) log(1− σ(Mc

x,y))

]
,

(8)

whereR represents all the positions in SPL.

Coexistence Problem in CAMs. Certain class activa-
tions often exhibit large false positive regions, where ob-
jects are incorrectly merged with surroundings, as shown in
Fig. 8 (1st row). For instance, the classes ’bird’ and ’tree
branches’, ’train’ and ’railways’, etc. frequently appear to-
gether in VOC. We refer to this issue as the coexistence
problem. We hypothesize that the coexistence problem is
attributed to three factors: i) Objects that coexist in im-
ages, such as ’tree branches’, are not annotated w.r.t. weak
labels, which makes it challenging for a model to seman-
tically distinguish coexistence. ii) Training datasets lack
sufficient samples for such classes. iii) High-level feature
maps, though rich in abstract representations and semantic
information, lack essential low-level features such as edges,
textures, and colors [24]. Thus, CAMs generated from the
last layer are poor in low-level information for segmenting
objects. Conversely, segmenting objects with high-level se-
mantics is hindered due to factors i) and ii).

Contrastive Separation in CAMs. We posit that the effec-
tive usage of low-level information can alleviate the coexis-
tence problem. Since shallower-layer feature maps contain
more low-level information, we propose to extract CAMs



4K 8K 12K 16K 20KIters
20

30

40

50

60

70

80

90

m
Io

U 
(%

)

Filtered CAMs
{Mx,y | Px,y ≤ ∞}
{M†x,y | Px,y ≤ ∞}
Network
Online
Assignment

4K 8K 12K 16K 20K

Filtered CAMs
{Mx,y | Px,y ≤ 1}
{M†x,y | Px,y ≤ 1}
Network
Online
Assignment

M M†

(a) (b) (c)

Figure 4. M and M† Comparisons. (a): mIoU vs. time-steps
for M and M† on VOC val. (b): same as (a) but filtered by
perplexity. (c): cases of coexistence issue in M but not in M†.

from earlier in the backbone, denoted M†, and present a
comparison withM in Fig. 4, showing that substitutingM
withM† is not feasible due to the lower mIoU upperbound
ofM†. If we consider the confident regions inM andM†,
i.e. filter by a low-pass perplexity P , {M†

x,y | Px,y ≤ ϵ}
are better than {Mx,y | Px,y ≤ ϵ}, as shown in Fig. 4(b),
where ϵ represents a low-pass coefficient. Fig. 4(c) illus-
trates the presence of coexistence issues inM but absence
in M†. Those findings suggest that M† is worse than M
in general, but better for those regions with low perplexity.

In CoSA, we propose to regularize M by M†′ (from
AN). We define positiveR+

i,j and negativeR−
i,j regions as

R+
i,j =

{
(x, y) | Px,y ≤ ϵ, ŷCPL

x,y = ŷCPL
i,j , (x, y) ̸= (i, j)

}
R−

i,j =
{
(x, y) | Px,y ≤ ϵ, ŷCPL

x,y ̸= ŷCPL
i,j

}
,

(9)

where (i, j) ∈Ω, Ω= {(x, y) | Px,y ≤ ϵ} is low-perplexity
region inM†′, and ŷCPL represents the CPL ofM†′. Then,
we arrive the contrastive separation loss forM:

Lcsc = − 1

|Ω|
∑
i,j∈Ω

1

|R+
i,j |

∑
x,y∈R+

i,j

log
Li,j

x,y

Li,j
x,y +Ki,j

n,m

, (10)

where Li,j
x,y = exp(ld(Mi,j ,Mx,y)/τ), ld(a, b) measures

the (a,b) distance, τ denotes the InfoNCE loss [47] temper-
ature, and Ki,j

n,m=
∑

n,m∈R−
i,j

Li,j
n,m.

Overall Objectives. The objectives encompass the afore-
mentioned losses and a furtherLM†

c2s to stabilize training and
accelerate convergence, resulting in the CoSA objective:

LCoSA=Lcls+LM†

cls +λc2s
(
Lc2s+LM†

c2s
)
+λs2cLs2c+λcscLcsc. (11)

4. Experiments
4.1. Experiment Details and Results

Datasets. We evaluate on two benchmarks: PASCAL VOC
2012 [19] and MS-COCO 2014 [41]. VOC encompasses
20 categories with train, val, and test splits of 1464,
1449, and 1456 images. Following WSSS practice [2,3,65],
SBD [23] is used to augment the train split to 10,582.
COCO contains 80 categories with train and val splits
of approx. 82K and 40K images. Our model is trained and
evaluated using only the image-level classification labels1,
and employing mIoU as evaluation metrics.

1Not available for VOC test split and so not used in evaluation.

Method Backbone train val

RRM [70] AAAI’2020 WR38 – 65.4
1Stage [3] CVPR’2020 WR38 66.9 65.3
AFA [52] CVPR’2022 MiT-B1 68.7 66.5
MCT [65] CVPR’2022 MCT 69.1 –
ViT-PCM [51] ECCV’2022 ViT-B 71.4 69.3
Xu et al. [66] CVPR’2023 ViT-B 66.3 –
ACR-ViT [31] CVPR’2023 ViT-B 70.9 –
CLIP-ES [42] CVPR’2023 ViT-B 75.0 –
ToCo [53] CVPR’2023 ViT-B 73.6 72.3
CoSA ViT-B 78.5 76.4
CoSA• ViT-B 78.9 77.2

Table 1. Comparisons of CPL. CAM pseudo-labels evaulation on
VOC dataset. Backbone denotes the encoder used for generating
the CAMs. • represents the ensemble of M′ and M†′ in CoSA.

Implementation Details. Following [53], we use ImageNet
pretrained ViT-base (ViT-B) [17] as the encoder. For clas-
sification, we use global max pooling (GMP) [51] and the
CAM approach [72]. For the segmentation decoder, we use
LargeFOV [10], as with [53]. ON is trained with AdamW
[46]. The learning rate is set to 6E-5 in tandem with poly-
nomial decay. AN is updated with a momentum of 0.9994.
For preprocessing, the images are cropped to 4482, then
weak/strong augmentations are applied (see Supp. Mate-
rials). The perplexity constants (λα, λβ) are set to (0.8, 1),
GMM-fitting queue length is 100, and softmax temperature
τ is 0.01. The low perplexity threshold ϵ is set to 1 and the
loss weight factors (λc2s, λs2c, λcsc) to (0.1, 0.05, 0.1).

CAM Quality Comparison. Tab. 1 shows CoSA CPL re-
sults on VOC compared with existing WSSS methods, us-
ing our ŶCPL (ξ=0.5). Our method yields 78.5% and 76.4%
mIoU on train and val. Notably, an ensemble of M′

andM†′ improves performance to 78.9% and 77.2%, sug-
gesting the activation ofM′ is orthogonal to that ofM†′.

Semantic Segmentation Comparison. We compare our
method with existing SOTA WSSS methods on VOC
and COCO for semantic segmentation in Tab. 2. CoSA
achieves 76.2% and 75.1% on VOC12 val and test, re-
spectively, surpassing the highest-performing single-stage
model (ToCo) by 5.1% and 2.9%, as well as all multi-stage
methods, including those with additional supervision. In
the COCO evaluation, CoSA consistently outperforms other
approaches, demonstrating a significant increase of 8.7%
over the top-performing single-stage methods. Further,
there is a also 2.7% improvement over the leading multi-
stage method [12]. While our primary goal is to provide
an end-to-end WSSS solution, we also offer a multi-stage
version of CoSA, denoted as CoSA-MS in Tab. 2, where
various standalone segmentation networks are trained using
our CPL. Our CoSA-MS models can also attains SOTA per-
formance in multi-stage scenarios.

Qualitative Comparison. Fig. 5 presents CAMs and seg-



Methods Sup. Net. VOC COCO

val test val

Supervised Upperbounds.
Deeplab [10] TPAMI’2017 F R101 77.6 79.7 –
WideRes38 [61] PR’2019 F WR38 80.8 82.5 –
ViT-Base [17] ICLR’2021 F ViT-B 80.5 81.0 –
UperNet-Swin [44] ICCV’2021 F SWIN 83.4 83.7 –

Multi-stage Methods.
L2G [26] CVPR’2022 I + S R101 72.1 71.7 44.2
Du et al. [18] CVPR’2022 I + S R101 72.6 73.6 –
CLIP-ES [42] CVPR’2023 I + L R101 73.8 73.9 45.4
ESOL [39] NeurIPS’2022 I R101 69.9 69.3 42.6
BECO [50] CVPR’2023 I R101 72.1 71.8 45.1
Mat-Label [59] ICCV’2023 I R101 73.0 72.7 45.6
CoSA-MS I R101 76.5 75.3[1] 50.9
Xu et al. [66] CVPR’2023 I + L WR38 72.2 72.2 45.9
W-OoD [35] CVPR’2022 I WR38 70.7 70.1 –
MCT [65] CVPR’2022 I WR38 71.9 71.6 42.0
ex-ViT [69] PR’2023 I WR38 71.2 71.1 42.9
ACR-ViT [31] CVPR’2023 I WR38 72.4 72.4 –
MCT+OCR [15] CVPR’2023 I WR38 72.7 72.0 42.0
CoSA-MS I WR38 76.6 74.9[2] 50.1
ReCAM [14] CVPR’2022 I SWIN 70.4 71.7 47.9
LPCAM [12] CVPR’2023 I SWIN 73.1 73.4 48.3
CoSA-MS I SWIN 81.4 78.4[3] 53.7

Single-stage (End-to-end) Methods.
1Stage [3] CVPR’2020 I WR38 62.7 64.3 –
RRM [70] AAAI’2020 I WR38 62.6 62.9 –
AFA [52] CVPR’2022 I MiT-B1 66.0 66.3 38.9
RRM [70]† AAAI’2020 I ViT-B 63.1 62.4 –
ViT-PCM [51] ECCV’2022 I ViT-B 69.3 – 45.0
ToCo [53] CVPR’2023 I ViT-B 71.1 72.2 42.3
CoSA I ViT-B 76.2 75.1[4] 51.0
CoSA∗ I ViT-B 76.4 75.2[5] 51.1

Table 2. Weakly Supervised Semantic Segmentation Results.
Sup.: supervision type. Net.: segmentation backbone. F : Fully
supervised, I: Image-level labels, S: Saliency maps, L: language
models. ∗ represents CRF [10] postprocessing results.

mentation visualizations, comparing with recent methods:
MCT, BECO, and ToCo. As shown, our method can gen-
erate improved CAMs and produce well-aligned segmenta-
tion, exhibiting superior results in challenging segmentation
problems with intra-class variation and occlusions. In addi-
tion, CoSA performs well w.r.t. the coexistence cases (Fig. 5
R1, R2), while existing methods struggle. Moreover, CoSA
reveals limitations in the GT segmentation (Fig. 5 R4).

4.2. Ablation Studies

CoSA Module Analysis. We begin by employing CAMs
directly as the supervision signal for segmentation, akin to
[70], albeit without refinement, and gradually apply CoSA
modules to this baseline. As shown in Tab. 3(a), the mIoUs
progressively improve with addition of our components.

Image MCT ToCo CoSA BECO ToCo CoSA GT

Figure 5. Qualitative Comparison. The results are reported on
the val splits of VOC (in R1 - R3) and COCO (in R4 - R6).
The official codebases and provided weights for MCT [65], BECO
[50], and ToCo [53] are used for this comparison. (best viewed un-
der zoom; see Supp. Materials for more high-res Comparisons).

Further, we examine the efficacy of each CoSA component.
As shown in Tab. 3(b), the elimination of each component
results in deteriorated performance, most notably for CSC.

Impact of Guided CAMs. We evaluate the impact of in-
cluding guided CAMs w.r.t. CAM quality, comparing a
baseline using vanilla CAMs [72] as CPL following [52,70]
with the proposed guided CAMs. As shown in Tab. 4(a),
our guided CAMs notably enhance CPL quality by 6.26%
and 4.99% for train and val splits. Further, we conduct
experiments to ascertain the extent to which the two CAM
components, feature map F and classification weights Wfc,
exert greater impact on guiding CAMs. As shown, discon-
nection of F from the gradient chains results in 74.19% and
73.36%, while the detachment of Wfc decrease the results
slightly to 78.05% and 76.37%. This suggests that guiding
CAMs primarily optimizes the feature maps, verifying our
initial hypothesis of the inherent non-deterministic feature
map contributing to the stochasticity of CAMs in Sec. 3.1.

Impact of Swapping Assignments (SA). Tab. 3(b) sug-
gests that eliminating SA results in significant mIoU de-
creases, highlighting the importance of this training strat-
egy. Further examination of the ON and AN w.r.t. SPL and
CPL indicates that, in later training stages, AN consistently
outperforms ON for both SPL and CPL, as shown in Fig. 6,
due to AN performing a form of model ensembling similar
to Polyak-Ruppert averaging [49,54]. We observe a notice-
able disparity of mIoUs between two ONs (solid orange line
vs. solid blue line in Fig. 6), which may be attributed to the
superior quality of CPL and SPL from the AN facilitating
a more robust ON for CoSA. The momentum framework,
originally introduced to mitigate noise and fluctuations of
the online learning target [6, 22], is used for information
exchange across CAMs and segmentation in CoSA. To the

http://host.robots.ox.ac.uk:8080/anonymous/UEMZQP.html
http://host.robots.ox.ac.uk:8080/anonymous/BWWBSW.html
http://host.robots.ox.ac.uk:8080/anonymous/LGFR47.html
http://host.robots.ox.ac.uk:8080/anonymous/GOZOHI.html
http://host.robots.ox.ac.uk:8080/anonymous/4SW3UJ.html


(a)
mIoU (inc.)

Base. GC SA RAW CSC DT VOC COCO

✓ 55.96 37.32
✓ ✓ 63.09 (+7.13) 42.55 (+5.23)

✓ ✓ ✓ 64.41 (+8.45) 43.92 (+6.60)

✓ ✓ ✓ ✓ 68.22 (+12.26) 45.39 (+8.07)

✓ ✓ ✓ ✓ 71.66 (+15.70) 47.10 (+9.78)

✓ ✓ ✓ ✓ ✓ 75.54 (+19.58) 49.67 (+12.35)

✓ ✓ ✓ ✓ ✓ ✓ 76.19 (+20.23) 51.00 (+13.68)

(b)
mIoU (dec.)

CoSA GC SA RAW CSC DT VOC COCO

✓ 76.19 51.00
✓ ✗ 75.54 (-0.65) 49.67 (-1.33)

✓ ✗ 69.89 (-6.30) 45.95 (-5.05)

✓ ✗ 72.45 (-3.74) 47.83 (-3.17)

✓ ✗ 72.10 (-4.09) 49.04 (-1.96)

✓ ✗ 74.12 (-2.07) 49.67 (-1.33)

Table 3. Ablation Study on Contribution of Each Component. (a): gradually add proposed components to baseline. (b): systematically
exclude components from CoSA. GC: Guided CAMs, SA: Swapping Assignments, RAW: Reliability based Adaptive Weighting, CSC:
Contrastive Separation in CAMs, and DT: Dynamic Threshold. mIoU is reported on PASCAL VOC12 and COCO val splits.
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Figure 6. Ablative Study of SA. The per-
formance of SPL (left) and CPL (right) w.r.t.
iterations on VOC val set are shown for
CoSA with or without SA.
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Figure 7. Ablation Study of RAW. (left)
boxplot of mIoU, perplexity and MAE to
(1,0) for individual CPLs on VOC val.
(right) perplexity reduction over times.

After CSC

Figure 8. Coexistence Problems & Effect
of CSC. The class activation for bird, train,
airplane, and boat are presented from left to
right. (best viewed under zoom)

(a)
Source Detach train val

GT None 83.99 80.16

NO – 72.28 71.38
SPL F 74.19 73.36
SPL Wfc 78.05 76.15
SPL None 78.54 76.37

(b)
Method C-mIoU mIoU

FPR [8] 53.09 53.34
MCT [65] 58.46 61.24
ToCo [53] 63.62 72.33

w/o CSC 62.61 67.82
w/ CSC 82.34 76.37

Table 4. Ablation Study of GC & CSC. (a): CPL performance
comparison on VOC for CAMs. Detach: stop gradient in GC for
feature map F or FC weights Wfc. Source: guidance sources.
(b): CPL performance comparison on VOC. FPR, MCT and ToCo
results are based on provided code and weights. C-mIoU: mIoU
for classes with coexistence issues.

best of our knowledge, we are the first to apply and demon-
strate the efficacy of this type of training scheme in WSSS.

Impact of RAW. Tab. 3(b) shows notable mIoU reduction
without RAW. We conduct further studies to investigate its
effect on perplexity reduction. The boxplot in Fig. 7 sug-
gests that RAW leads to higher mIoU but lower perplexity.
Fig. 7(right) illustrates a faster decrease in perplexity when
RAW is used, affirming its impact on perplexity reduction.

Impact of CSC. Our CSC is introduced to address the co-
existence issue. We establish C-mIoU to measure the CAM
quality for those coexistence-affected classes. As shown in
Tab. 4(b), applying CSC sees a boost in C-mIoU and mIoU,
which surpass the existing methods. Some visual examples
demonstrating these enhancements are given in Fig. 8.

Impact of Dynamic Threshold. We evaluate CoSA us-
ing some predetermined thresholds, comparing them with
one employing dynamic threshold on VOC val split (see
Supp. Materials for results). The performance is sensi-
tive to the threshold, but dynamic thresholding achieves
0.65% increased performance over the best manual finetun-
ing while saving 80% of hyper-parameter searching time.

5. Conclusion
This paper presents an end-to-end WSSS method: Co-

training with Swapping Assignments (CoSA), which elimi-
nates the need for CAM refinement and enables concurrent
CAM and segmentation optimization. Our empirical study
reveals the non-deterministic behaviors of CAMs and that
proper guidance can mitigate such stochasticity, leading to
substantial quality enhancement. We propose explicit CAM
optimization leveraging segmentation pseudo-labels in our
approach, where a dual-stream model comprising an online
network for predicting CAMs and segmentation masks, and
an ancillary assignment network providing swapped assign-
ments (SPL and CPL) for training, is introduced. We fur-
ther propose three techniques within this framework: RAW,
designed to mitigate the issue of unreliable pseudo-labels;
contrastive separation, aimed at resolving coexistence prob-
lems; and a dynamic threshold search algorithm. Incorpo-
rating these techniques, CoSA outperforms all SOTA meth-
ods on both VOC and COCO WSSS benchmarks while
achieving exceptional speed-accuracy trade-off.
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A. Additional Results
A.1. Hyper-parameter Finetuning

Here, we examine the impact of hyper-parameter variation
with CoSA resulting from our finetuning. The fine-tuning
of each hyper-parameter is demonstrate with the remaining
parameters fixed at their determined optimal values.

Loss Weights. We demonstrate the finetuning of the
Seg2CAM and CAM2Seg loss weights in Tab. 5(a)(b). A
significant mIoU decrease is observed as λc2s reduces the
influence of the segmentation branch, as expected. The
mIoU reaches its peak when λs2c=0.05 and λc2s=0.1.

Low-perplexity Filter. We finetune the coefficient for the
low-pass perplexity filter ϵ, described in eq. (9) of the
main paper. The corresponding findings are illustrated in
Tab. 5(c). Optimum performance is obtained when ϵ is set
to 1, either decreasing or increasing this value can impair
the performance of our model.

EMA Momentum. Here, the momentum used for updating
the assignment network is finetuned. Results presented in
Tab. 5(d) indicate that the optimal performance is achieved
when m = 0.9994. Additionally, we find that setting m =
1 freezes the assignment network, breaking the training of
online network and leading to framework collapse.

Fixed Threshold vs. Dynamic Threshold. In this study,
we evaluate CoSA with predetermined thresholds. The re-
sults are presented in Fig. 9. As shown, the performance
peaks when this threshold is set to 0.45, with an mIoU
of 75.54%. However, our dynamic threshold can outper-
form the best manual finetuning by 0.65%. Despite the in-
curred additional 10% computation overhead, our threshold
searching algorithm obviates time-consuming finetuning ef-
forts, resulting in nearly 80% reduction in hyper-parameter
searching time in this case and (1 − 1.1n−1)% in general
where n thresholds are considered. In addition, the adoption
of dynamic thresholding can enhance the generalizability to
novel datasets.
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Figure 9. Threshold finetuning. (left) determined dynamic
threshold during training. (right) mIoU comparison of fixed
threshold vs. the purposed dynamic threshold on VOC val.

(a) Seg2CAM weight λs2c

λs2c mIoU

0.2 73.79
0.1 74.67
0.05 76.19
0.025 75.25
0.0125 74.33

(b) CAM2Seg weight λc2s

λc2s mIoU

0.4 74.67
0.2 75.56
0.1 76.19
0.05 73.95
0.025 61.55

(c) Perplexity filter ϵ

ϵ mIoU

∞ 73.66
2 75.52
1 76.19
0.5 74.30
0.1 70.63

(d) Momentum m

m mIoU

0.9990 73.79
0.9992 75.40
0.9994 76.19
0.9996 75.58
0.9999 71.42
1.0000 15.99

Table 5. Hyper-parameters Finetuning Results. Parameter
searching for (a) Loss weight for CAM2Seg λc2s; (b) Loss weight
for Seg2CAM λs2c; (c) Low-pass perplexity filter coefficient ϵ; (e)
EMA Momentum m for updating assignment network. mIoU rep-
resents semantic segmentation result on PASCAL VOC val split.

A.2. Per-class Segmentation Comparisons

We show the per-class semantic segmentation results on
VOC val and test splits as well as COCO val split.

Comparisons on VOC. Tab. 11 illustrates the CoSA per-
class mIoU results compared with recent works: AdvCAM
[33], MCT [65], ToCo [53], Xu et al. [66], BECO [50].
To be fair in comparison, we include CoSA with CRF [10]
postprocessing results, denoted as CoSA∗, same as other
SOTA models. Notably, CoSA dominates in 10 out of 21
classes. In particular, categories like boat (5.9% ↑), chair
(8.2% ↑), and sofa (17.2% ↑), demonstrate substantial lead
over the SOTA models. In the VOC test split (depicted
in Tab. 12), we still observe its superiority over other SOTA
methods, where CoSA dominates in 15 out of 21 classes.

Comparisons on COCO. We compare CoSA with re-
cent WSSS works for individual class performance on the
COCO val set. As illustrated in Tab. 13, CoSA outper-
forms its counterparts in 56 out of 81 classes. Particu-
larly, classes such as truck (10.6% ↑), tie (14.3% ↑), kite
(12.4% ↑), baseball glove (20.3% ↑), knife (14.5% ↑),
(10.6% ↑), carrot (13.0% ↑), donuts (10.0% ↑), couch
(13.9% ↑), oven (13.0% ↑), and toothbrush (10.0% ↑) ex-
hibit remarkable leading performance.

A.3. Further Qualitative Comparisons

More visualizations of our CoSA results are given in
Fig. 10 for VOC and Fig. 11, Fig. 12 for COCO. When
compared to other SOTA models, CoSA exhibits i) better



foreground-background separation (evidenced in R2–R3 in
Fig. 10 and R1–R10 in Fig. 11); ii) more robust to inter-class
variation and occlusion (affirmed in R4–R7 in Fig. 10 and
R1–R4 in Fig. 12). iii) less coexistence problem (demon-
strated in R9–R11 in Fig. 10 and R8– R10 in Fig. 12); Last
but not least, our CoSA can reveal certain limitations in
manual GT segmentation, as depicted in R8 in Fig. 10 and
R5–R7 in Fig. 12. We also show our CoSA results on VOC
test set in Fig. 13 and some failure cases in Fig. 14.

B. Further Analysis

Impact of CRF. The conditional random field (CRF) pro-
poses to optimize the segmentation by utilizing the low-
level information obtained from the local interactions of
pixels and edges [10]. Traditionally, a manually designed
CRF postprocessing step has been widely adopted for refin-
ing segmentation [15,50] or CAMs [51,65,70] in WSSS. As
our aim is to develop a fully end-to-end WSSS solution, in-
corporating CRF postprocessing contradicts this principal.
Through our experiments, we demonstrate that CoSA, un-
like other single-stage methods, does not heavily depend on
CRF. Our results indicate that incorporating CRF results in
marginal improvement of 0.2%, 0.1%, and 0.1% for VOC
val, VOC test, and COCO val, respectively, as pre-
sented in Tab. 2 of the main paper. Tab. 6(a) suggests that
in comparison to other SOTA models, our CoSA exhibits a
lesser dependency on the CRF postprocessing. On the con-
trary, eliminating the CRF step leads to a noteworthy en-
hancement of 165% in terms of inference speed, as demon-
strated in Tab. 6(b).

(a)
Method w/o CRF w/ CRF

AFA [52] 63.8 66.0 (+2.2)

VIT-PCM [51] 67.7 71.4 (+3.7)

ToCo [53] 69.2 71.1 (+0.9)

CoSA 76.2 76.4 (+0.2)

(b)
CoSA Speed

w/o CRF 4.11 imgs/s
w/ CRF 1.83 imgs/s

Table 6. CRF Impact. (a): Comparisons of CRF impact on SOTA
single-stage WSSS methods on VOC val. (b): Inference speed
with and without CRF. Speed tested using a single 3090 GPU.

Efficiency Study. Unlike multi-stage approaches, CoSA is
extremely efficient in training. It can be trained end-to-end
efficiently. When training a semantic segmentation model
with weak labels on the VOC dataset, our method requires
a mere 8.7 hours of training time and a total of 92M pa-
rameters. In contrast, MCT [65] would necessitate approxi-
mately 231% more time (20.1hrs ↑) and 173% more param-
eters (159M ↑) for the same task, and BECO [50] would
require around 240% more time (20.9hrs ↑) and 50% more
parameters (46M ↑). When compared to the single-stage

method, CoSA also demonstrate its advantage in speed-
accuracy trade-off. Further details regarding the efficiency
study can be found in Tab. 7.

C. Further Implementation Details

CoSA Implementation Details. For image preprocessing,
weak transformation Tw and strong transformation Ts are
employed in CoSA for the input of assignment network and
online network, respectively. Tw and Ts details are given
in Tab. 8 and Tab. 9. Following [53], we use the multi-
scale inference in assignment network to produce CPL and
SPL. For VOC training, CoSA is warmed up with 6K itera-
tions, where λc2s, λc2s, and λcsc are set to 0. In practice, we
train CoSA for 20K iterations on 2 GPUs, with 2 images
per GPU, or for 40K iterations on 1 GPU for some ablation
experiments. For COCO training, CoSA is warmed up with
10K iterations and is trained on 2 GPUs, handling 4 images
per GPU across 40K iterations.

CoSA-MS Implementation Details. Tab. 2 in the main
paper presents the segmentation results of the multi-stage
version of our approach, known as CoSA-MS. In those ex-
periments, we leverage the CAM pseudo-labels generated
by our CoSA to directly train standalone segmentation net-
works. It is important to note that we do not use PSA
[2], which is widely used in [15, 65], nor IRN [1], exten-
sively used in [12, 31, 50, 59], for CPL post-refinement. For
our R101 segmentation network, we use a ResNet101 ver-
sion of DeepLabV3+ model, same as BECO [50]. As for
the CoSA-MS with WR38 network, we utilize a encoder-
decoder framework, where encoder is WideResNet38 [61]
and decoder is LargeFoV [10], following the final step de-
scribed in MCT [65]. Regarding the SWIN implementation,
we use the SWIN-Base encoder [44] in conjunction with
UperNet decoder [62], following the description in [12,14].

Training Pseudo Code. we present the pseudo code for
training CoSA in Algorithm 1.



CAMs CAMs Seg.
Total mIoU

Generation Refinement Training

MCT [65] 2.2hrs (21M) 11.1hrs (106M) 15.5hrs (124M) 28.8hrs (251M) 71.6
BECO [50] 0.9hrs (23M) 6.5hrs (24M) 22.2hrs (91M) 29.6hrs (138M) 71.8
ToCo [53] 9.9hrs (98M) 9.9hrs (98M) 72.2

CAMs and Seg. Co-optimization

CoSA 8.7hrs (92M) 8.7hrs (92M) 75.1

Table 7. Training Speed and Parameters Comparisons. We report the detailed training time, parameters and final mIoU on VOC test
split for MCT, BECO, ToCo and our CoSA. All methods are tested using the same machine with a single 3090 GPU. The official MCT,
BECO and ToCo code repositories are utilized in this study.

Transformation Description Parameter Setting

RandomRescale Rescale the image by r times, r randomly sampled from r ∼ U(rmin, rmax). rmin = 0.5, rmax = 2
RandomFlip Randomly horizontally flip a image with probability of p. p = 0.5
RandomCrop Randomly crop a image by a hight h and a width w. w = 448, h = 448
GaussianBlur Randomly blur a image with probability of p. p = 0.5

Table 8. Weak data augmentation Tw for the input of assignment network.

Transformation Description Parameter Setting

RandomRescale Rescale the image by r times, r randomly sampled from r ∼ U(rmin, rmax). rmin = 0.5, rmax = 2
RandomFlip Randomly horizontally flip a image with probability of p. p = 0.5
RandomCrop Randomly crop a image by a hight h and a width w. w = 448, h = 448
GaussianBlur Randomly blur a image with probability of p. p = 0.5
OneOf Select one of the transformation in a transformation set T . T = TransAppearance

Table 9. Strong data augmentation Ts for the input of online network image.

Transformation Description Parameter Setting

Identity Returns the original image.
Autocontrast Maximizes the image contrast by setting the darkest (lightest) pixel to black (white).
Equalize Equalizes the image histogram.
RandSolarize Invert all pixels above a threshold value T . T ∈ U(0, 1)
RandColor Adjust the color balance. C = 0 returns a black&white image, C = 1 returns the original image. C ∈ U(0.05, 0.95)
RandContrast Adjust the contrast. C = 0 returns a solid grey image, C = 1 returns the original image. C ∈ U(0.05, 0.95)
RandBrightness Adjust the brightness. C = 0 returns a black image, C = 1 returns the original image. C ∈ U(0.05, 0.95)
RandSharpness Adjust the sharpness. C = 0 returns a blurred image, C = 1 returns the original image. C ∈ U(0.05, 0.95)
RandPolarize Reduce each pixel to C bits. C ∈ U(4, 8)

Table 10. Appearance transformations, called TransAppearance, used in strong data augmentation.



Algorithm 1 CoSA Training Pseudo Code

1: Require: D ▷ image-level classification dataset
2: Require: FΘ, FΘ′ ▷ online network parameterized by Θ and assignment network by Θ′

3: FΘ ← Init, FΘ′ ← Init ▷ initialize networks with pretrained backbone
4: do
5: x, Ygt ← Sample(D) ▷ sample a mini-batch of image and weak-label pairs
6: xs, xw ← Ts(x), Tw(x) ▷ apply strong and weak augumentations
7: {xs

w} ← multiscale(xw) ▷ generate a set of xw with different scales
8: {M′, M†′, S ′} ← FΘ′({xs

w}) ▷ forward a set of xw in assignment network
9: M′, M†′, S ′← Maxpool({M′}), Maxpool({M†′}), Avgpool({S ′}) ▷ ensemble multiscale outputs

10: M′, M†′, S ′← Filter(M′, M†′, S ′), ▷ filter CAMs and segmentation prediction with Ygt
11: Z, Z†, M, M†, S ← FΘ(xs) ▷ forward xs in online network
12: Lcls + LM†

cls ←Lcls(Z, Ygt) + Lcls(Z
†, Ygt) ▷ get classification losses forM andM† by eq. (1)

13: ξ⋆ ← solve eq. (6) withM′ ▷ get dynamic threshold
14: ŶCPL ← eq. (2) withM′, ξ⋆ ▷ obtain CPL
15: P ← eq. (4) withM′, ξ⋆ ▷ estimate perplexity score
16: Lc2s ← eq. (5) with ŶCPL,S, P ▷ get CAM2seg loss
17: LM†

c2s ← follow 14 – 17 but withM†′ ▷ get another CAM2seg loss
18: ŶSPL ← eq. (7) with S ′ ▷ obtain SPL
19: Ls2c ← eq. (8) with ŶSPL, M ▷ get Seg2CAM loss
20: R+, R−← eq. (9) with P, ŶCPL ▷ define positive and negative correlation matrix
21: Lcsc ← eq. (10) withM, R+, R− ▷ get contrastive seperation loss
22: LCoSA ←Lcls+ LM†

cls +λc2s
(
Lc2s+LM†

c2s

)
+λs2cLs2c +λcscLcsc. ▷ weighted sum as the overall training objective

23: ∆Θ←−∇LCoSAΘ ▷ backpropagate the overall loss
24: Θ← Θ+∆Θ ▷ undate online network with gradient
25: Θ′ ←mΘ′ + (1−m)Θ ▷ undate assignment network via EMA
26: until LCoSA converge
27: end



Method bkg plane bike bird boat bottle bus car cat chair cow

AdvCAM [34] CVPR21 90.0 79.8 34.1 82.6 63.3 70.5 89.4 76.0 87.3 31.4 81.3
MCT [65] CVPR22 91.9 78.3 39.5 89.9 55.9 76.7 81.8 79.0 90.7 32.6 87.1
ToCo [53] CVPR23 91.1 80.6 48.7 68.6 45.4 79.6 87.4 83.3 89.9 35.8 84.7
Xu et al. [66] CVPR23 92.4 84.7 42.2 85.5 64.1 77.4 86.6 82.2 88.7 32.7 83.8
BECO [50] CVPR23 91.1 81.8 33.6 87.0 63.2 76.1 92.3 87.9 90.9 39.0 90.2
CoSA* (Ours) 93.1 85.5 48.5 88.7 70.0 77.6 90.4 86.4 90.3 47.2 88.7

Method table dog horse mbike person plant sheep sofa train tv mIoU

AdvCAM [34] CVPR21 33.1 82.5 80.8 74.0 72.9 50.3 82.3 42.2 74.1 52.9 68.1
MCT [65] CVPR22 57.2 87.0 84.6 77.4 79.2 55.1 89.2 47.2 70.4 58.8 71.9
ToCo [53] CVPR23 60.5 83.7 83.7 76.8 83.0 56.6 87.9 43.5 60.5 63.1 71.1
Xu et al. [66] CVPR23 59.0 82.4 80.9 76.1 81.4 48.0 88.2 46.4 70.2 62.5 72.2
BECO [50] CVPR23 41.6 85.9 86.3 81.8 76.7 56.7 89.5 54.7 64.3 60.6 72.9
CoSA* (Ours) 54.1 87.3 87.1 79.6 85.6 53.2 89.9 71.9 65.1 63.4 76.4

Table 11. Per-class Segmentation on VOC val Split. Comparison of per-class segmentation results on VOC val. CoSA is compared
with AdvCAM, MCTformer, ToCo, Xu et al. and BECO. Best results are in bold.

Method bkg plane bike bird boat bottle bus car cat chair cow

AdvCAM [34] CVPR21 90.1 81.2 33.6 80.4 52.4 66.6 87.1 80.5 87.2 28.9 80.1
MCT [65] CVPR22 90.9 76.0 37.2 79.1 54.1 69.0 78.1 78.0 86.1 30.3 79.5
ToCo [53] CVPR23 91.5 88.4 49.5 69.0 41.6 72.5 87.0 80.7 88.6 32.2 85.0
CoSA* (Ours) 93.3 88.1 47.0 84.2 60.2 75.0 87.7 81.7 92.0 34.5 87.8

Method table dog horse mbike person plant sheep sofa train tv mIoU

AdvCAM [34] CVPR21 38.5 84.0 83.0 79.5 71.9 47.5 80.8 59.1 65.4 49.7 68.0
MCT [65] CVPR22 58.3 81.7 81.1 77.0 76.4 49.2 80.0 55.1 65.4 54.5 68.4
ToCo [53] CVPR23 68.4 81.4 85.6 83.2 83.4 68.2 88.9 55.0 49.3 65.0 72.2
CoSA* (Ours) 59.6 86.2 86.3 84.9 82.8 68.2 87.4 63.9 67.7 61.6 75.2

Table 12. Per-class Segmnetation on VOC test Split. Comparison of per-class segmentation results on VOC test. Results from
AdvCAM, MCT, and ToCo are used for this comparison. Best results are in bold.



Class MCT [65]
(CVPR22)

Xu et al. [66]
(CVPR23)

ToCo [53]
(CVPR23)

CoSA
(Ours) Class MCT [65]

(CVPR22)
Xu et al. [66]

(CVPR23)
ToCo [53]

(CVPR23)
CoSA

(Ours)

background 82.4 85.3 68.5 84.0 wine glass 27.0 33.8 20.6 42.1
person 62.6 72.9 28.1 70.3 cup 29.0 35.8 26.0 33.1
bicycle 47.4 49.8 39.7 52.4 fork 23.4 20.0 7.6 24.2
car 47.2 43.8 38.9 54.3 knife 12.0 12.6 18.4 32.9
motorcycle 63.7 66.2 55.1 71.9 spoon 6.6 6.7 3.0 9.0
airplane 64.7 69.2 62.1 74.0 bowl 22.4 23.7 19.8 22.8
bus 64.5 69.1 39.0 77.2 banana 63.2 64.4 71.5 69.3
train 64.5 63.7 48.7 60.0 apple 44.4 50.8 55.5 61.3
truck 44.8 43.4 37.3 55.4 sandwich 39.7 47.0 41.2 48.3
boat 42.3 42.3 49.1 52.1 orange 63.0 64.6 70.6 69.2
traffic light 49.9 49.3 47.3 55.1 broccoli 51.2 50.6 56.7 52.8
fire hydrant 73.2 74.9 69.6 78.8 carrot 40.0 38.6 46.4 59.4
stop sign 76.6 77.3 70.1 82.2 hot dog 53.0 54.0 60.1 59.9
parking meter 64.4 67.0 67.9 71.5 pizza 62.2 64.1 54.9 56.5
bench 32.8 34.1 43.9 50.2 donut 55.7 59.7 61.1 71.1
bird 62.6 63.1 58.6 65.4 cake 47.9 50.6 42.5 57.0
cat 78.2 76.2 74.0 79.8 chair 22.8 24.5 24.1 33.8
dog 68.2 70.6 64.0 72.8 couch 35.0 40.0 44.2 58.1
horse 65.8 67.1 66.1 71.4 potted plant 13.5 13.0 27.4 23.5
sheep 70.1 70.8 67.9 74.3 bed 48.6 53.7 54.0 61.5
cow 68.3 71.2 69.0 74.0 dining table 12.9 19.2 25.6 29.2
elephant 81.6 82.2 79.7 81.9 toilet 63.1 66.6 62.0 69.7
bear 80.1 79.6 76.8 85.3 tv 47.9 50.8 49.1 53.2
zebra 83.0 82.8 77.5 76.3 laptop 49.5 55.4 55.7 63.9
giraffe 76.9 76.7 66.1 68.5 mouse 13.4 14.4 8.6 16.4
backpack 14.6 17.5 20.3 28.6 remote 41.9 47.1 56.6 49.1
umbrella 61.7 66.9 70.9 73.4 keyboard 49.8 57.2 41.8 49.6
handbag 4.5 5.8 8.1 11.9 cellphone 54.1 54.9 58.5 66.2
tie 25.2 31.4 33.4 47.7 microwave 38.0 46.1 55.5 53.2
suitcase 46.8 51.4 55.3 63.8 oven 29.9 35.3 36.2 49.2
frisbee 43.8 54.1 39.6 63.1 toaster 0.0 2.0 0.0 0.0
skis 12.8 13.0 4.0 22.5 sink 28.0 36.1 19.0 41.9
snowboard 31.4 30.3 15.5 40.5 refrigerator 40.1 52.7 51.9 62.0
sports ball 9.2 36.1 11.0 33.1 book 32.2 34.8 31.5 37.8
kite 26.3 47.5 40.7 59.9 clock 43.2 51.5 32.9 55.2
baseball bat 0.9 7.0 1.8 3.8 vase 22.6 25.8 33.3 33.8
baseball glove 0.7 10.4 17.6 37.9 scissors 32.9 30.7 49.8 54.7
skateboard 7.8 15.2 13.3 12.5 teddy bear 61.9 61.4 67.5 69.3
surfboard 46.5 51.5 21.5 16.5 hair drier 0.0 1.3 10.0 0.3
tennis racket 1.4 26.4 6.8 7.2 toothbrush 12.2 19.0 29.3 39.3
bottle 31.1 37.1 25.7 35.1 mIoU 42.0 45.9 42.4 51.1

Table 13. Per-class Segmentation on COCO val Split. Comparison of per-class segmentation results on the COCO 2014 val set. CoSA
is compared with MCTformer, Xu et al. and ToCo. Best results are in bold.
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Figure 10. Qualitative Comparisons on VOC Dataset. CoSA exhibits 1) better foreground-background separation (R1–R3); 2) more
robust to inter-class variation and occlusion (R4–R7); 3) limitations in the ground troth annotations (R8); 4) less coexistence problem
(R9–R11). Different colors represent different categories: black: background; white: ignore areas; : chair; : plant; : cat; : person;

: bottle; : sofa; : dog; : cow. : bird; : boat; The activated classes in the demonstration from top to bottom are: chair, cat,
bottle, person, dog, person, cow, person, bird, boat, boat.
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Figure 11. Qualitative Comparisons on COCO Dataset. CoSA demonstrates superior quality in terms of foreground-background
separation (R1–R10). Categories involved – R1: person, tie; R2: person, umbrella; R3: person, skis; R4: person, tie; R5: person, train,
umbrella; R6: person, hot dog; R7: person, hot dog; R8: dog, frisbee; R9: bottle, toilet; R10: person, teddy bear; Categories in Bold
denotes the activated classes in CAMs.
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Figure 12. More Qualitative Comparisons on COCO Dataset. CoSA shows 1) more robust to inter-class variation and occlusion (R1–
R4); 2) limitations in the ground troth annotations (R5–R7); 3) less coexistence problem (R8–R10). Categories involved – R1: person,
donuts; R2: person, surfboard. R3: person, car, motorcycle, bus; R4: toilet; R5: person, kite; R6: person, kite; R7: person, cell phone;
R8: clock; R9: clock; R10: clock. Categories in Bold denotes the activated classes in CAMs.



Figure 13. Visualization on VOC test. Different colors represent different categories: black: background; : car; : person; : boat;
: plant; : dog; : cow. : dining-table. : bird; : sofa; : sheep; : house; : airplane; : cat.

Image CAM Seg GT Image CAM Seg GT

Figure 14. Illustrations of CoSA failure Cases. Different colors represent different categories: black: background; white: ignore areas;
: plant; : person; : sofa; : dog; : cat; : chair; : motorbike; : bicycle. The activated classes in the demonstration from left

to right and from top to bottom are: plant, sofa, dog, plant, person, cat, person, bicycle.
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