
EQUIVALENCE AFTER EXTENSION AND SCHUR COUPLING

FOR FREDHOLM OPERATORS ON BANACH SPACES

SANNE TER HORST AND NIELS JAKOB LAUSTSEN

Abstract. Schur coupling (SC) and equivalence after extension (EAE) are

important relations for bounded operators on Banach spaces. It has been
known for 30 years that the former implies the latter, but only recently Ter

Horst, Messerschmidt, Ran and Roelands disproved the converse by construct-
ing a pair of Fredholm operators which are EAE, but not SC.

Motivated by this result, we investigate when EAE and SC coincide for

Fredholm operators. Fredholm operators which are EAE have the same Fred-
holm index. Surprisingly, we find that for each integer k and every pair of

Banach spaces (X ,Y), either no pair of Fredholm operators of index k acting

on X and Y, respectively, is SC, or every pair of this kind which is EAE is
also SC. Consequently, whether EAE and SC coincide for Fredholm operators

of index k depends only on the geometry of the underlying Banach spaces X
and Y, not on the properties of the operators themselves.

We quantify this finding by introducing two numerical indices which capture

the coincidence of EAE and SC and provide a number of examples illustrating

the possible values of these indices. Notably, this includes an example showing
that the above-mentioned result of Ter Horst et al, which is based on a pair

of essentially incomparable Banach spaces, does not extend to projectively
incomparable Banach spaces.

1. Introduction

Equivalence after extension (EAE), matricial coupling (MC) and Schur coupling
(SC) are three relations for bounded operators on Banach spaces that originate in
the study of Wiener–Hopf integral operators [5] and have found numerous applica-
tions since. A key feature in many of these applications is that the three relations
coincide. This observation led Bart and Tsekanovskĭı [9] to ask whether this is
always true. They already knew that EAE and MC are equivalent [5, 7] and that
SC implies EAE [8, 9], so their precise question was whether EAE implies SC.

Despite numerous results confirming this implication in special cases [8, 9, 6, 33,
54, 29, 32], recently Ter Horst, Messerschmidt, Ran and Roelands [31] showed that
EAE does not in general imply SC. Their counterexample uses bounded operators
defined on a pair of Banach spaces which is essentially incomparable, in which case
EAE (and hence SC) can occur only for Fredholm operators, while SC additionally
requires that the operators have index zero. By contrast, it is known that EAE
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and SC coincide for Fredholm operators acting on isomorphic Banach spaces [30,
Proposition 6.1(iv)].

These results motivated the present work, in which we study EAE and SC for
Fredholm operators without imposing any restrictions on the underlying Banach
spaces. Further justification for focussing on Fredholm operators comes from the
prominent role this class plays in many applications of the theory, as the following
studies from the last decade evidence: diffraction problems [15, 51]; Wiener–Hopf
factorization [49, 28] and invertibility of Wiener–Hopf plus Hankel operators [16];
truncated Toeplitz operators [14, 38]; Riemann–Hilbert problems [13]; Helmholtz
and Sylvester equations [48, 50] and [18], respectively; completeness theorems for
integral and differential operators [35]; and problems concerning electrical net-
works [10].

Before we state our main results, let us introduce some notation and terminology,
most of which is standard. We follow the convention that N = {1, 2, 3, . . .} and
N0 = {0, 1, 2, . . .}. Let X and Y be Banach spaces, either real or complex, with
K ∈ {R,C} denoting the scalar field. The term “operator” means a bounded
linear map between Banach spaces, and B(X ,Y) denotes the Banach space of all
operators from X to Y. As usual, B(X ,X ) is abbreviated B(X ). This convention
applies whenever we consider sets of operators: once a subset Σ(X ,Y) of B(X ,Y)
has been defined, we write Σ(X ) instead of Σ(X ,X ).

The identity operator on a Banach space X is denoted by IX , while the kernel
and the range of an operator T are denoted by kerT and ranT , respectively. Two
Banach spaces X and Y are isomorphic, written X ∼= Y, if B(X ,Y) contains a
bijection, called an isomorphism. The Banach Isomorphism Theorem ensures that
the inverse of an isomorphism is automatically bounded.

Definition 1.1. Let U ∈ B(X ) and V ∈ B(Y). We say that:

(i) U and V are equivalent after extension, abbreviated EAE, if there exist
Banach spaces X0 and Y0 and isomorphisms E ∈ B(Y ⊕ Y0,X ⊕ X0) and
F ∈ B(X ⊕ X0,Y ⊕ Y0) such that[

U 0
0 IX0

]
= E

[
V 0
0 IY0

]
F. (1.1)

(ii) U and V are Schur coupled, abbreviated SC, if there exist isomorphisms
A ∈ B(X ) and D ∈ B(Y) and operators B ∈ B(Y,X ) and C ∈ B(X ,Y)
such that

U = A−BD−1C and V = D − CA−1B. (1.2)

As noted above, whenever U and V are SC, they are also EAE. Motivated by
many applications in which the converse implication holds true, Bart and Tseka-
novskĭı asked the following question in [9].

Question 1.2. Under which conditions on the Banach spaces X and Y and/or
on the operators U and V is it true that whenever the operators U ∈ B(X ) and
V ∈ B(Y) are EAE, they are also SC?

We shall address this question in the case where U and V are Fredholm operators.
Before doing so, let us recall some basic facts about this class of operators. An
operator T ∈ B(X ,Y) is called a Fredholm operator if the quantities

α(T ) = dimkerT and β(T ) = dimY/ ranT
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are both finite. The latter condition implies that ranT is closed. As usual, we
write Φ(X ,Y) for the subset of B(X ,Y) consisting of Fredholm operators. The
index of a Fredholm operator T is defined by

i(T ) = α(T )− β(T ) ∈ Z,

and for k ∈ Z, Φk(X ,Y) denotes the set of T ∈ Φ(X ,Y) such that i(T ) = k.
In the 1990s, Bart and Tsekanovskĭı gave the following characterization of equiv-

alence after extension for Fredholm operators; see [8, Theorem 4], and also [6,
Theorem 6, page 211].

Theorem 1.3. Let U ∈ B(X ) and V ∈ B(Y) for some Banach spaces X and Y.

(i) Suppose that U and V are EAE. Then U is a Fredholm operator if and only
if V is a Fredholm operator.

(ii) Suppose that U and V are Fredholm operators. Then U and V are EAE if
and only if

α(U) = α(V ) and β(U) = β(V ).

In particular, Fredholm operators which are EAE have the same index.

As a consequence, the following sets, defined for every k ∈ Z and every pair of
Banach spaces (X ,Y), provide the natural setting in which to study Question 1.2
for Fredholm operators:

EAEk(X ,Y) = {(U, V ) ∈ Φk(X )× Φk(Y) : U and V are EAE},
SCk(X ,Y) = {(U, V ) ∈ Φk(X )× Φk(Y) : U and V are SC}.

(1.3)

In view of Theorem 1.3(ii), the former set can alternatively be written as

EAEk(X ,Y) = {(U, V ) ∈ Φk(X )× Φk(Y) : α(U) = α(V )}. (1.4)

These sets are useful in our investigation because they allow us to express the
statement that EAE and SC are equivalent for every pair of Fredholm operators of
index k on X and Y, respectively, in the concise form SCk(X ,Y) = EAEk(X ,Y),
where we note that the inclusion SCk(X ,Y) ⊆ EAEk(X ,Y) is always true because
SC implies EAE.

Using this notation, we can easily state two important results that motivated our
work. First, the answer to Question 1.2 is always affirmative for Fredholm operators
of index 0 (see [8, Theorem 3] and [6, Theorem 5]). In the above notation, this
simply means that

SC0(X ,Y) = EAE0(X ,Y) (1.5)

for every pair of Banach spaces (X ,Y).
Second, we can state the seminal result of Ter Horst, Messerschmidt, Ran and

Roelands [31] showing that there are pairs of Fredholm operators which are EAE,
but not SC. This requires the following piece of terminology.

Definition 1.4. A pair of Banach spaces (X ,Y) is essentially incomparable if
IX − ST ∈ Φ(X ) for every S ∈ B(Y,X ) and T ∈ B(X ,Y).

Theorem 1.5. (i) Let (X ,Y) be a pair of essentially incomparable Banach
spaces. Then U ∈ B(X ) and V ∈ B(Y) are SC if and only if (U, V ) ∈
EAE0(X ,Y).
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(ii) There exists a pair of essentially incomparable Banach spaces (X ,Y) such
that

EAEk(X ,Y) ̸= ∅ for every k ∈ Z.

Hence EAE and SC are not equivalent for Fredholm operators of non-zero
index on such Banach spaces.
An example is given by X = ℓp and Y = ℓq for 1 ⩽ p < q < ∞.

The significance of analyzing whether SC and EAE are equivalent for each value k
of the Fredholm index separately will become clear from the next result, which is
the first main outcome of our work. To state it concisely, we introduce a numerical
index eae(X ,Y) as follows: set IΦ(X ) = {k ∈ Z : Φk(X ) ̸= ∅} and then define

eae(X ,Y) =

{
0 if IΦ(X ) ∩ IΦ(Y) ∩ N = ∅,
min IΦ(X ) ∩ IΦ(Y) ∩ N otherwise.

(1.6)

Theorem 1.6. Let k ∈ Z, and let X and Y be Banach spaces.

(i) EAEk(X ,Y) ̸= ∅ if and only if k is a multiple of eae(X ,Y).
(ii) Suppose that k is a multiple of eae(X ,Y). Then SCk(X ,Y) = EAEk(X ,Y)

if and only if SCk(X ,Y) ̸= ∅.
(iii) Suppose that k is not a multiple of eae(X ,Y). Then Φk(X ) = ∅ or Φk(Y) =

∅, and consequently SCk(X ,Y) = EAEk(X ,Y) = ∅.

The most remarkable part of Theorem 1.6 is the implication⇐ in (ii) which, when
written out, states that as soon as one pair of operators (U, V ) ∈ Φk(X )× Φk(Y)
is SC, then EAE and SC are equivalent for all pairs (U, V ) ∈ Φk(X ) × Φk(Y).
In other words, equivalence of EAE and SC for Fredholm operators depends only
on the geometry of the underlying Banach spaces X and Y and on the Fredholm
index k, not on the Fredholm operators themselves.

In view of Theorem 1.6(ii), it would be of great interest to establish a counterpart
of Theorem 1.6(i) for SC. In analogy with (1.6), we introduce the set

ISC(X ,Y) = {k ∈ Z : SCk(X ,Y) ̸= ∅} (1.7)

and the associated index

sc(X ,Y) =

{
0 if ISC(X ,Y) ∩ N = ∅,
min ISC(X ,Y) ∩ N otherwise.

(1.8)

Combining Theorem 1.6(i) with the inclusion SCk(X ,Y) ⊆ EAEk(X ,Y), we see
that ISC(X ,Y) ⊆ eae(X ,Y)Z. By Theorem 1.6(ii)–(iii), our main question —
whether EAE and SC are equivalent for every pair of Fredholm operators on X
and Y, respectively — boils down to whether ISC(X ,Y) = eae(X ,Y)Z. We address
this question in the following proposition.

Proposition 1.7. Let X and Y be Banach spaces. Then SCk(X ,Y) = EAEk(X ,Y)
for every k ∈ Z if and only if sc(X ,Y) = eae(X ,Y).

In general, sc(X ,Y) = n eae(X ,Y) for some n ∈ N0, and the following chain of
inclusions holds:

sc(X ,Y)Z ⊆ ISC(X ,Y) = {k ∈ Z : SCk(X ,Y) = EAEk(X ,Y) ̸= ∅}
⊆ eae(X ,Y)Z = {k ∈ Z : EAEk(X ,Y) ̸= ∅} = IΦ(X ) ∩ IΦ(Y).

(1.9)
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Remark 1.8. The first part of Proposition 1.7 implies that the second inclusion
in (1.9) is an equality if and only if sc(X ,Y) = eae(X ,Y), in which case the first
inclusion is also an equality. In fact, we do not know any instances where the first
inclusion in (1.9) is proper, and we conjecture that it may always be an equality;
see Section 5 for a more detailed discussion of this question.

We conclude this overview of our main findings with some results that illus-
trate the values which the numerical indices eae(X ,Y) and sc(X ,Y) can take when
various incomparability conditions are imposed on the Banach spaces X and Y.
This work is motivated by, and closely related to, the seminal result of Ter Horst,
Messerschmidt, Ran and Roelands that we stated in Theorem 1.5. We begin with
a result whose first part is simply a restatement of Theorem 1.5(i), while its second
part contains Theorem 1.5(ii) as a special case, corresponding to k0 = 1.

Theorem 1.9. (i) Let (X ,Y) be a pair of essentially incomparable Banach
spaces. Then sc(X ,Y) = 0.

(ii) For every k0 ∈ N0, there exists a pair of essentially incomparable Banach
spaces (X ,Y) such that eae(X ,Y) = k0.

Theorem 1.9(i) immediately raises the question: can we weaken the hypothesis
that the pair (X ,Y) is essentially incomparable without losing the conclusion that
sc(X ,Y) = 0? The most obvious, very modest weakening would be to assume
that X and Y are projectively incomparable in the following sense.

Definition 1.10. A pair of Banach spaces (X ,Y) is projectively incomparable if no
infinite-dimensional, complemented subspace of X is isomorphic to a complemented
subspace of Y.

However, it turns out that this hypothesis is too weak to imply that sc(X ,Y) = 0,
as our next result will show. It also contains some information about the possible
values of the indices eae(X ,Y) and sc(X ,Y).

Theorem 1.11. (i) For every k0 ∈ N, there exists a pair of projectively in-
comparable Banach spaces (X ,Y) such that sc(X ,Y) = eae(X ,Y) = k0.

(ii) For every k0 ∈ N, there exists a pair of projectively incomparable Banach
spaces (X ,Y) such that eae(X ,Y) = 1 and sc(X ,Y) = k0.

Theorem 1.11 is highly surprising because the difference between essential and
projective incomparability is very subtle, as evidenced by the fact that it took nearly
30 years to find an example which distinguishes them. Indeed, Tarafdar [52, 53]
asked in 1972 whether projective incomparability implies essential incomparability,
having noted that the converse is true, but it was not until 2000 that Aiena and Gon-
zález answered this question by giving a counterexample (see [2, Proposition 3.7]).
It relied on a sophisticated Banach space constructed by Gowers and Maurey [27].
To the best of our knowledge, no simpler examples have subsequently been found.
We shall discuss the relationship between essential and projective incomparability
in more detail in Section 2.

In view of Theorem 1.11, let us consider what may happen when X and Y are
not projectively incomparable. Then they contain isomorphic, infinite-dimensional
complemented subspaces; that is, X and Y admit decompositions of the form

X = X1 ⊕X2 and Y = Y1 ⊕ Y2 with X2
∼= Y2, (1.10)
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where X2 and Y2 are infinite-dimensional. Our next result answers the following
question. Suppose that the subspaces X1, X2 and Y1 in (1.10) are pairwise essen-
tially incomparable. When is eae(X ,Y) = sc(X ,Y)? The statement of this result
involves the greatest common divisor (gcd) of two quantities that could potentially
both be 0, in which case the gcd is not defined. We fix this issue by adopting the
convention that gcd(0, 0) = 0.

Proposition 1.12. Let X and Y be Banach spaces that decompose as in (1.10),
and suppose that each of the pairs (X1,X2) and (Y1,Y2) is essentially incomparable.
Then

eae(X ,Y) = gcd(eae(X1,Y1), eae(X2,Y2)). (1.11)

Suppose additionally that the pair (X1,Y1) is essentially incomparable. Then

sc(X ,Y) = sc(X2,Y2) = eae(X2,Y2). (1.12)

In particular, EAE and SC coincide for all pairs of Fredholm operators on X and Y,
i.e., eae(X ,Y) = sc(X ,Y), if and only if eae(X2,Y2) divides eae(X1,Y1).

Note that we do not demand that the isomorphic subspaces X2 and Y2 are
infinite-dimensional in Proposition 1.12. Therefore part (i) of Theorem 1.9 appears
as a special case of Proposition 1.12 corresponding to X2 = Y2 = {0}, while the
case where X and Y are isomorphic is obtained by taking X1 = Y1 = {0}.

In analogy with Theorem 1.11, it turns out that the second part of Proposi-
tion 1.12 is no longer true if we replace the hypothesis that the pair (X1,Y1) is
essentially incomparable with the weaker hypothesis that it is projectively incom-
parable.

Theorem 1.13. (i) For every k0 ∈ N, there exist infinite-dimensional Banach
spaces X1, Y1 and Z such that:
(1) The pair (X1,Y1) is projectively incomparable.
(2) The pairs (X1,Z) and (Y1,Z) are essentially incomparable.
(3) eae(Z,Z) = 0.
(4) The Banach spaces X = X1 ⊕Z and Y = Y1 ⊕Z satisfy

sc(X ,Y) = eae(X ,Y) = k0.

(ii) For every k0 ∈ N, there exist infinite-dimensional Banach spaces X1, Y1

and Z satisfying (1)–(3) above, and such that the Banach spaces X = X1⊕Z
and Y = Y1 ⊕Z satisfy eae(X ,Y) = 1 and sc(X ,Y) = k0.

Remark 1.14. Let us compare and contrast Theorem 1.13 with Proposition 1.12.
To align notation, note that X2 = Y2 = Z. Theorem 1.13(2) implies that (1.11)
holds true. However, (1.12) fails for the pair (X ,Y) in both parts (i) and (ii) of
Theorem 1.13 because they satisfy sc(X ,Y) = k0 ̸= 0 = eae(Z,Z). This difference
is due to the fact that (1.12) requires that the pair (X1,Y1) is essentially incompa-
rable, but we only know that it is projectively incomparable in Theorem 1.13.

Conclusion. Prior to this paper, at the level of general Banach spaces, the only
definite answers to the question of whether EAE and SC coincide for Fredholm
operators were that they do if the underlying spaces are isomorphic, and that
there exist examples where they do not if the underlying spaces are essentially
incomparable. We have shown that the result for essentially incomparable spaces
does not carry over to projectively incomparable spaces (see Theorem 1.11), despite
the fact that the difference between these two incomparability notions is very subtle.
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In the case where the Banach spaces X and Y admit decompositions of the
form (1.10) in which the subspaces X1, Y1 and X2 (∼= Y2) are pairwise essentially
incomparable, the question of whether EAE and SC coincide for Fredholm operators
is completely resolved in Proposition 1.12; the answer can be expressed in terms
of the values of the Fredholm index of operators on the subspaces X1, Y1 and X2.
Theorem 1.13 shows that, once again, this result does not carry over to projectively
incomparable spaces; see Remark 1.14 for details.

The question that remains is whether one can always find a decomposition of
the form (1.10) in which the subspaces X1, Y1 and X2 are pairwise essentially
incomparable. Unfortunately, this is not possible, even if we replace “essentially
incomparable” with “projectively incomparable”, as we shall see in Corollary 2.8
and Proposition 2.10.

The above results rely on the remarkable observation in Theorem 1.6 that, for Ba-
nach spaces X and Y and k ∈ Z, either no pair of operators (U, V ) ∈ Φk(X )× Φk(Y)
is SC, or a pair of this kind which is SC exists, in which case the set of all such pairs
that are SC is the same as the set of all such pairs that are EAE. This means that
the question of whether EAE and SC coincide for Fredholm operators on X and Y
reduces to determining the sets of indices for which pairs of Fredholm operators
on X and Y with these particular indices that are EAE or SC, respectively, exist.

Our analysis of these sets led us to define the numerical indices eae(X ,Y) and
sc(X ,Y) which satisfy that eae(X ,Y) = sc(X ,Y) if and only if EAE and SC coincide
for all Fredholm operators on X and Y. We have computed their values in various
cases; see Theorems 1.9, 1.11 and 1.13.

Remark 1.15. We are grateful to the referee for pointing out that the definitions
of EAE and SC stated in Definition 1.1 may be formulated for certain classes of
rings, using module actions instead of operators on Banach spaces. We consider this
an exciting new direction of research that we would like to explore in future work.
To the best of our knowledge, EAE and SC have not previously been investigated
beyond the context of operators on Banach spaces, although Cvetković-Ilić, Djor-
djević and Rakočević [17] have studied Schur complements based on generalized
inverses in C∗-algebras.

Organization. We conclude this introduction with a brief outline of how the re-
mainder of this paper is organized. It consists of six sections, including the present.

In Section 2 we elaborate on the incomparability notions for Banach spaces
introduced in Definitions 1.4 and 1.10, focussing on their connections with operator
theory. Section 3 contains a characterization of when the set EAEk(X ,Y) is non-
empty for Banach spaces X and Y and k ∈ Z, and also the proof of Equation (1.11).

It turns out to be much more complicated to obtain a similar characterization
for the non-emptiness of the set SCk(X ,Y), and only a partial analogue is obtained
in Section 5, where we also prove Proposition 1.7 and the remainder of Proposi-
tion 1.12. These results rely strongly on a novel characterization of the existence of
Schur-coupled Fredholm operators of a given index that we establish in Section 4.
This characterization may be viewed as the fundamental new insight of the paper.
Theorem 1.6 is also proved in Section 4.

Finally, in Section 6 we use some of the “exotic” Banach spaces constructed by
Gowers and Maurey, together with ideas from subsequent work of Aiena, González
and Ferenczi, to prove Theorems 1.9, 1.11 and 1.13.
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2. Incomparability notions for Banach spaces and their connection
to operator theory

The notions of essential and projective incomparability of a pair of Banach spaces
will play a key role in the final section of this paper, where Theorems 1.9, 1.11
and 1.13 are proved. However, there are certain related notions and results that we
shall require beforehand. For that reason, we survey the relevant material at this
point.

The formal definitions of essential and projective incomparability were already
given in Definitions 1.4 and 1.10, respectively. We refer to [1, Section 7.5] for a
much more comprehensive treatment of them than we can give here. Indeed, we
shall consider only the aspects that we require later, namely their relationship and
certain connections to operator theory. This will involve a third incomparability
notion, which is stronger, older and arguably more “natural” than the other two.
It is defined as follows.

Definition 2.1. A pair of Banach spaces (X ,Y) is totally incomparable if no closed,
infinite-dimensional subspace of X embeds isomorphically into Y.

Totally incomparable Banach spaces are clearly projectively incomparable, and
it is well known and not hard to see that the converse fails; for instance, ℓ2 embeds
into L1[0, 1], but not complementably, so L1[0, 1] and ℓ2 are projectively incompa-
rable without being totally incomparable.

However, more is true, namely that essential incomparability lies between these
two properties, in the sense that total incomparability implies essential incompara-
bility, which in turn implies projective incomparability. The easiest way to explain
this goes via the following operator-theoretic notion, which will also be useful else-
where in this work.

Definition 2.2. An operator T ∈ B(X ,Y) between Banach spaces X and Y is
inessential if IX − ST ∈ Φ(X ) for every operator S ∈ B(Y,X ).

We write E (X ,Y) for the collection of inessential operators from X to Y. It
generalizes the ideal K (X ,Y) of compact operators in several ways. The following
remark lists the main properties that we require.

Remark 2.3. (i) Every compact operator is inessential and, more generally,
every strictly singular operator is inessential (see for instance [1, Theo-
rems 7.36 and 7.44] or [46, §26.7.3]). We recall that by definition an operator
is strictly singular if no restriction of it to an infinite-dimensional subspace
of its domain is an isomorphic embedding.

(ii) The assignment E is a closed operator ideal in the sense of Pietsch (see for
instance [1, Theorem 7.5] or [46, Section 4.3]).

(iii) For every k ∈ Z, the class of Fredholm operators of index k is stable under
inessential perturbations in the sense that U + T ∈ Φk(X ,Y) whenever
U ∈ Φk(X ,Y) and T ∈ E (X ,Y) (see for instance [1, Theorem 7.23]).

Comparing Definitions 1.4 and 2.2, we see that a pair of Banach spaces (X ,Y)
is essentially incomparable if and only if every operator from X to Y is inessential.
Both definitions display an obvious lack of symmetry, which raises the question what
happens if we replace the condition that IX − ST ∈ Φ(X ) with IY − TS ∈ Φ(Y)
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in either of them? It turns out that it makes no difference because the follow-
ing well-known elementary lemma implies that IX − ST ∈ Φ(X ) if and only if
IY − TS ∈ Φ(Y).

Lemma 2.4. Let S ∈ B(Y,X ) and T ∈ B(X ,Y) for some Banach spaces X and Y.
Then ker(IX − ST ) ∼= ker(IY − TS). Moreover, if ran(IX − ST ) and ran(IY − TS)
are closed, then X/ ran(IX − ST ) ∼= Y/ ran(IY − TS).

Proof. The earliest mention of the first part of this result that we know of is [45,
Satz 1], while both parts can be found in [44, Sätze 2.4-A–2.5-A]. Alternatively,
the result follows from [6, page 211, properties 1 and 6], see also [7, Proposition 1],
because the operators IX −ST and IY −TS are Schur coupled via A = IX , B = S,
C = T and D = IY . □

Using Definition 2.2 and Remark 2.3(i), we can explain the relationship between
total, essential and projective incomparability of a pair of Banach spaces (X ,Y) as
follows.

Remark 2.5. (i) If X and Y are totally incomparable, then clearly every
operator between X and Y is strictly singular and therefore inessential,
so X and Y are essentially incomparable.

(ii) If X and Y are essentially incomparable, then they are also projectively
incomparable. Indeed, suppose contrapositively that X and Y contain iso-
morphic, complemented infinite-dimensional subspaces. Then it is easy to
construct operators S ∈ B(Y,X ) and T ∈ B(X ,Y) such that IX − ST is
a projection with infinite-dimensional kernel and therefore not a Fredholm
operator. Hence X and Y are not essentially incomparable. We refer to
[1, Theorem 7.69] and the paragraph following Definition 7.102 for further
details.

The fact that E is an operator ideal has the following important consequence,
which we shall use repeatedly without further reference. Suppose that we express
an operator T : X1 ⊕ X2 → Y1 ⊕ Y2 between two direct sums of Banach spaces as
an operator-valued matrix in the usual way, that is,

T =

[
T11 T12

T21 T22

]
, where Tij ∈ B(Xj ,Yi) for i, j ∈ {1, 2}.

Then T is inessential if and only if T11, T12, T21 and T22 are inessential.

We conclude this section by answering a natural question about a pair of Banach
spaces (X ,Y) which is not projectively incomparable. This material will not play
any role in the remainder of the paper; we have included it simply because the
question is very natural in our context.

Negating the definition of projective incomparability, we see that X and Y admit
decompositions of the form (1.10), where the isomorphic subspaces X2 and Y2 are
infinite-dimensional. If the subspaces X1 and Y1 fail to be projectively incompara-
ble, then they contain isomorphic, complemented, infinite-dimensional subspaces.
One may wonder whether all such subspaces can somehow be “transferred” to X2

and Y2, respectively, leading to the following question.

Question 2.6. Let X and Y be Banach spaces which are not projectively incom-
parable. Is it always possible to find decompositions of the form (1.10), where the
subspaces X1 and Y1 are projectively incomparable?
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The answer to this question is “no”. We shall present two short examples showing
this. In the first, we consider Banach spaces which are c0-direct sums of certain
sequences of finite-dimensional Banach spaces. The formal definition is as follows.
The c0-direct sum of a sequence (Xn)n∈N of Banach spaces is( ∞⊕

n=1

Xn

)
c0

=
{
(xn)n∈N : xn ∈ Xn (n ∈ N) and ∥xn∥ → 0 as n → ∞

}
,

endowed with the pointwise vector-space operations and with the norm given by
∥(xn)∥ = supn∈N∥xn∥.

Bourgain, Casazza, Lindenstrauss and Tzafriri [12, §8] classified the comple-
mented subspaces of

(⊕∞
n=1 Xn

)
c0

in certain cases, including the following result.

Theorem 2.7. Let Z =
(⊕∞

n=1 ℓ
n
1

)
c0

or Z =
(⊕∞

n=1 ℓ
n
2

)
c0
, and let W be a com-

plemented, infinite-dimensional subspace of Z. Then either W ∼= c0 or W ∼= Z.

Corollary 2.8. Suppose that X =
(⊕∞

n=1 ℓ
n
1

)
c0

and Y =
(⊕∞

n=1 ℓ
n
2

)
c0

are decom-

posed as in (1.10), with X2
∼= Y2 infinite-dimensional. Then X1

∼= X and Y1
∼= Y.

In particular X1 and Y1 both contain a complemented subspace isomorphic to c0,
so they are not projectively incomparable.

Proof. This follows immediately from Theorem 2.7 because X and Y are not iso-
morphic to each other or to c0, so we must have X2

∼= Y2
∼= c0. □

Our second example is similar, but uses only reflexive Banach spaces. It relies
on the following well-known, important properties of Lp[0, 1] for 1 < p < ∞.

Theorem 2.9. Let p ∈ (1,∞).

(i) The Banach space Lp[0, 1] is primary; that is, if it is decomposed into a
direct sum of two closed subspaces, then (at least) one of them is isomorphic
to Lp[0, 1].

(ii) Let q ∈ (1,∞). Then Lp[0, 1] contains a complemented subspace which is
isomorphic to Lq[0, 1] if and only if q = p or q = 2.

Proof. (i). This is shown in [4].
(ii). This follows easily from [3, Theorem 6.4.21]. □

Proposition 2.10. Let X = Lp[0, 1] and Y = Lq[0, 1] for distinct p, q ∈ (1, 2) ∪
(2,∞), and suppose that X and Y are decomposed as in (1.10), with X2

∼= Y2

infinite-dimensional. Then X1
∼= X and Y1

∼= Y. In particular X1 and Y1 both
contain a complemented subspace isomorphic to L2[0, 1], so they are not projectively
incomparable.

Proof. Since Lp[0, 1] is primary, either X1
∼= X or X2

∼= X . However, the latter is
impossible by Theorem 2.9(ii) because X2

∼= Y2, which is a complemented subspace
of Lq[0, 1], where q /∈ {2, p}. Therefore X1

∼= X . The proof that Y1
∼= Y is similar.

Another application of Theorem 2.9(ii) shows that Lp[0, 1] and Lq[0, 1] both
contain a complemented subspace which is isomorphic to L2[0, 1]. □

3. Non-emptiness of the set EAEk(X ,Y)

The main purpose of this section is to prove the following characterization of the
integers k for which the set EAEk(X ,Y) defined in (1.3) is non-empty. This is a
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natural starting point for our investigation because when EAEk(X ,Y) is empty, it
is obviously equal to its subset SCk(X ,Y).

Proposition 3.1. The following three conditions are equivalent for every pair of
Banach spaces (X ,Y) and every k ∈ Z :

(i) Φk(X ) ̸= ∅ and Φk(Y) ̸= ∅.
(ii) EAEk(X ,Y) ̸= ∅.
(iii) k ∈ eae(X ,Y)Z.

The proof of Proposition 3.1 is relatively simple, using only (1.4) and two lemmas
that follow from basic Fredholm theory. Both of these lemmas are almost certainly
known to specialists; we include their (short) proofs for completeness.

Lemma 3.2. Let T ∈ Φ(X ,Y) for some infinite-dimensional Banach spaces X
and Y. Then, for every m ∈ N0 ∩ [i(T ),∞), there exists a finite-rank operator
R ∈ B(X ,Y) such that α(T +R) = m.

Proof. We consider three cases:
Case 1. If α(T ) = m, then we can simply take R = 0.
Case 2. If α(T ) > m, set n = α(T )−m ∈ N, and note that β(T ) = α(T )− i(T ) ⩾ n,
so we can find an n-dimensional subspace Z of Y such that Z ∩ ranT = {0}. Take
an operator A ∈ B(kerT,Y) with range Z and a bounded linear projection P of X
onto kerT , and define R = AP ∈ B(X ,Y). Then ker(T + R) = kerA, which has
dimension α(T )− dim ranA = m.
Case 3. If α(T ) < m, choose an m-dimensional subspace W of X such that
kerT ⊆ W, and let P ∈ B(X ) be a projection onto W. Then kerT (IX − P ) = W,
so R = −TP has the required property. □

Remark 3.3. The condition that m ⩾ i(T ) is necessary in Lemma 3.2 because

α(T +R) ⩾ i(T +R) = i(T )

for every finite-rank operator R ∈ B(X ,Y).

Lemma 3.4. For every Banach space X , the set

IΦ(X ) = {k ∈ Z : Φk(X ) ̸= ∅}

is an ideal of Z.

Proof. The result is clear if X is finite-dimensional because IΦ(X ) = {0} in this
case. In general the set IΦ(X ) contains 0 because IX ∈ Φ0(X ). Moreover, it is
closed under addition and under multiplication by positive integers because the
Index Theorem implies that ST ∈ Φk+m(X ) and Tn ∈ Φmn(X ) for S ∈ Φk(X ) and
T ∈ Φm(X ) whenever k,m ∈ Z and n ∈ N.

It remains to show that −k ∈ IΦ(X ) whenever k ∈ IΦ(X ). Suppose that
Φk(X ) ̸= ∅ for some k ∈ Z. If k ⩾ 0, Lemma 3.2 implies that Φk(X ) contains
a surjection T . Since kerT is finite-dimensional, it follows that T has a right in-
verse, which must be a Fredholm operator of index −k. A similar argument works
for k ⩽ 0, except that we find that Φk(X ) contains an injection which has a left
inverse. □

Corollary 3.5. Let X and Y be Banach spaces. Then IΦ(X )∩IΦ(Y) = eae(X ,Y)Z.
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Proof. Lemma 3.4 implies that IΦ(X )∩ IΦ(Y) is an ideal of Z, which is a principal
ideal domain, so IΦ(X ) ∩ IΦ(Y) = nZ for some n ∈ N0. It is clear from the
definition (1.6) of eae(X ,Y) that n = eae(X ,Y). □

Remark 3.6. Elaborating on these ideas, we obtain an alternative formula for
eae(X ,Y), which will be useful later. Indeed, for every Banach space X , the
ideal IΦ(X ) has a unique non-negative generator, which we shall denote by γ(X );
in other words, γ(X ) ∈ N0 is the unique number such that IΦ(X ) = γ(X )Z.

It follows from elementary number theory that, for every pair of Banach spaces X
and Y, the ideal IΦ(X )∩IΦ(Y) = γ(X )Z∩γ(Y)Z is generated by the lowest common
multiple (lcm) of γ(X ) and γ(Y), provided that we set lcm(n, 0) = lcm(0, n) = 0
for every n ∈ Z. Combining this result with Corollary 3.5, we see that

eae(X ,Y) = lcm(γ(X ), γ(Y)). (3.1)

Proof of Proposition 3.1. Conditions (i) and (iii) are equivalent because(
Φk(X ) ̸= ∅ and Φk(Y) ̸= ∅

)
⇐⇒ k ∈ IΦ(X ) ∩ IΦ(Y) ⇐⇒ k ∈ eae(X ,Y)Z,

where the final bi-implication follows from Corollary 3.5.
We complete the proof by showing that conditions (i) and (ii) are also equivalent.

Here, the implication (ii)⇒(i) is obvious because EAEk(X ,Y) ⊆ Φk(X )×Φk(Y) by
definition. Conversely, suppose that Φk(X ) and Φk(Y) are both non-empty. If X
or Y is finite-dimensional, then necessarily k = 0, in which case EAEk(X ,Y) is
non-empty because it contains (IX , IY). Otherwise we may apply Lemma 3.2 to
find operators U ∈ Φk(X ) and V ∈ Φk(Y) such that α(U) = α(V ). This implies
that EAEk(X ,Y) is non-empty because it contains (U, V ) by (1.4). □

Remark 3.7. The index eae(X ,Y) ∈ N0 satisfies: eae(X ,Y) = 0 if and only if
Φk(X ) = ∅ for every k ∈ N or Φk(Y) = ∅ for every k ∈ N.

Indeed, the implication ⇐ is immediate from the definition of eae(X ,Y). Con-
versely, suppose that Φk(X ) ̸= ∅ and Φm(Y) ̸= ∅ for some k,m ∈ N. Then the
Index Theorem implies that Φn(X ) ̸= ∅ and Φn(Y) ̸= ∅ for every common mul-
tiple n ∈ N of k and m, so eae(X ,Y) ⩾ 1. (Alternatively, this follows from (3.1)
because lcm(γ(X ), γ(Y)) = 0 if and only if γ(X ) = 0 or γ(Y) = 0.)

Proposition 3.1 naturally raises the question: what are the possible values of the
index eae(X ,Y) ∈ N0? Obviously, eae(X ,Y) = 0 if X or Y is finite-dimensional.
Theorems 1.9(ii), 1.11(i) and 1.13(i) show that all non-negative integers can be real-
ized as eae(X ,Y) for infinite-dimensional Banach spaces X and Y satisfying various
additional conditions. At this stage, let us use the index γ(X ) from Remark 3.6 to
verify that all non-negative integers can be realized as eae(X ,X ). Although this
example may appear simpler than the three above-mentioned theorems, ultimately
they all rely on the same family of “exotic” Banach spaces constructed by Gowers
and Maurey in [27].

Example 3.8. We claim that, for every k0 ∈ N0, there exists an infinite-dimen-
sional Banach space Xk0

such that γ(Xk0
) = k0. Consequently eae(Xk0

,Xk0
) = k0

by (3.1), and Proposition 3.1 shows that EAEk(Xk0 ,Xk0) ̸= ∅ if and only if k ∈ k0Z.
To verify this claim for k0 = 0, we require an infinite-dimensional Banach space

on which all Fredholm operators have index 0. Gowers and Maurey constructed
such a Banach space in [26]. We shall encounter another space with this property
in Theorem 6.8.
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For k0 = 1, any Banach space which is isomorphic to its hyperplanes satisfies
the claim. Virtually every infinite-dimensional Banach space known prior to 1990
has this property.

Finally, to see that the claim is true for every k0 ⩾ 2, we use a family of Ba-
nach spaces which Gowers and Maurey constructed in [27, §(4.3)]. These Banach
spaces will play a key role in Section 6, where Theorem 6.1 summarizes their main
properties; we refer to (iv) for the particular result required at this point.

We conclude this section with two easy observations. The first is that the in-
dex γ(X ), and therefore the associated quantity eae(X ,Y), is an isomorphic invari-
ant in the following precise sense.

Lemma 3.9. Let X1 and X2 be isomorphic Banach spaces. Then γ(X1) = γ(X2).
Consequently, if (Y1,Y2) is another pair of isomorphic Banach spaces, then

eae(X1,Y1) = eae(X2,Y2).

Proof. Let R ∈ B(X1,X2) be an isomorphism. For each k ∈ IΦ(X1), we can take
T ∈ Φk(X1). The Index Theorem implies that RTR−1 ∈ Φk(X2), so k ∈ IΦ(X2).
This proves that IΦ(X1) ⊆ IΦ(X2). The opposite inclusion follows by interchang-
ing X1 and X2. Hence the ideals IΦ(X1) and IΦ(X2) are equal, so they must have
the same non-negative generator; that is, γ(X1) = γ(X2).

The final clause is an immediate consequence of (3.1). □

Our second easy observation will be the key ingredient in the proof of the first
part of Proposition 1.12, as we shall show immediately after it.

Lemma 3.10. Let X = X1 ⊕X2 be a Banach space.

(i) γ(X ) divides gcd(γ(X1), γ(X2)).
(ii) Suppose that X1 and X2 are essentially incomparable. Then

γ(X ) = gcd(γ(X1), γ(X2)). (3.2)

Proof. (i). Suppose that kj ∈ IΦ(Xj) for j ∈ {1, 2}, and take Tj ∈ Φkj
(Xj). Then

we have [
T1 0
0 T2

]
∈ Φk1+k2

(X ),

so k1 + k2 ∈ IΦ(X ). This shows that

IΦ(X1) + IΦ(X2) ⊆ IΦ(X ). (3.3)

Recall that we have defined gcd(0, 0) = 0. This ensures that the formula mZ+nZ =
gcd(m,n)Z holds true for all values of m,n ∈ Z. Using it, we can rewrite the
identity (3.3) as gcd(γ(X1), γ(X2))Z ⊆ γ(X )Z, which proves (i).

(ii). Suppose that the subspaces X1 and X2 are essentially incomparable. For
each k ∈ IΦ(X ), we can take

T =

[
T11 T12

T21 T22

]
∈ Φk(X ).

By hypothesis, T12 and T21 are inessential, so Remark 2.3(iii) implies that

Φk(X ) ∋ T −
[
0 T12

T21 0

]
=

[
T11 0
0 T22

]
,

which in turn means that T11 ∈ Φ(X1) and T22 ∈ Φ(X2) with

k = i(T11) + i(T22) ∈ IΦ(X1) + IΦ(X2).
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Hence IΦ(X1) + IΦ(X2) = IΦ(X ), and (3.2) follows. □

Proof of Equation (1.11). Since the pairs (X1,X2) and (Y1,Y2) are essentially in-
comparable, Lemma 3.10(ii) implies that γ(X ) = gcd(γ(X1), γ(X2)) and γ(Y) =
gcd(γ(Y1), γ(Y2)), where we observe that γ(X2) = γ(Y2) = eae(X2,Y2) because
X2

∼= Y2. Therefore, applying (3.1) twice and using the standard identity

lcm(gcd(a, c), gcd(b, c)) = gcd(lcm(a, b), c) (a, b, c ∈ Z),
we obtain

eae(X ,Y) = lcm(gcd(γ(X1), γ(X2)), gcd(γ(Y1), γ(X2)))

= gcd(lcm(γ(X1), γ(Y1)), γ(X2)) = gcd(eae(X1,Y1), eae(X2,Y2)),

as required. □

4. The key technical theorem and the deduction of Theorem 1.6
from it

The main aim of this section is to prove the following theorem, which will be the key
tool in the remainder of our investigation, and is arguably the most important new
insight in the paper, despite the somewhat technical nature of conditions (i)–(ii).
Notably, Theorem 1.6 is an easy consequence of it (using also Proposition 3.1), as
we shall show at the end of this section.

Theorem 4.1. The following four conditions are equivalent for every pair of Ba-
nach spaces (X ,Y) and every k ∈ Z :

(i) There exist operators S ∈ B(Y,X ) and T ∈ B(X ,Y) such that IX − ST ∈
Φk(X ).

(ii) There exist operators S ∈ B(Y,X ) and T ∈ B(X ,Y) such that IY − TS ∈
Φk(Y).

(iii) EAEk(X ,Y) = SCk(X ,Y), and this set is non-empty.
(iv) SCk(X ,Y) ̸= ∅.

The proof of Theorem 4.1 involves two lemmas. The first of these reformulates
SC in a way that is much closer to condition (i) above.

Lemma 4.2. Let U ∈ B(X ) and V ∈ B(Y) for some Banach spaces X and Y.
Then U and V are SC if and only if there are isomorphisms M ∈ B(X ) and
N ∈ B(Y) and operators S ∈ B(Y,X ) and T ∈ B(X ,Y) such that

UM = IX − ST and V N = IY − TS. (4.1)

Proof. This is a straightforward verification. On the one hand, if the operators A,
B, C and D satisfy (1.2), then M = A−1, N = D−1, S = BD−1 and T = CA−1

satisfy (4.1), and on the other, if M , N , S and T satisfy (4.1), then A = M−1,
B = SN−1, C = TM−1 and D = N−1 satisfy (1.2). □

The second lemma can be viewed as a technical refinement of Lemma 3.2. Its
proof is an adaption of the proof of [30, Lemma 5.10].

Lemma 4.3. Let X and Y be Banach spaces, and suppose that IX −S1T1 ∈ Φk(X )
for some k ∈ Z \ {0} and some operators S1 ∈ B(Y,X ) and T1 ∈ B(X ,Y).
Then, for every m ∈ N0 ∩ [k,∞), there are operators S2 ∈ B(Y,X ) and T2 ∈
B(X ,Y) such that S1T1 − S2T2 is a finite-rank operator and IX − S2T2 ∈ Φk(X )
with α(IX − S2T2) = m.
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Proof. We begin by observing that X must be infinite-dimensional because it admits
a Fredholm operator of non-zero index. We can therefore apply Lemma 3.2 to find
a finite-rank operator R ∈ B(X ) such that

α(IX − S1T1 −R) = m. (4.2)

Take a finite-dimensional subspace W of X such that ranR ⊆ W and dimW = n|k|
for some n ∈ N, and let R0 ∈ B(X ,W) denote the operator R regarded as a map
into W. Furthermore, let J ∈ B(W,X ) be the inclusion map.

Lemma 2.4 shows that IY − T1S1 ∈ Φk(Y). This implies that Φn|k|(Y) is non-
empty by Lemma 3.4, and therefore Y ∼= Y ⊕W by [30, Proposition 4.2]. Take an
isomorphism L ∈ B(Y,Y ⊕W). Then the operators

S2 =
[
S1 J

]
L ∈ B(Y,X ) and T2 = L−1

[
T1

R0

]
∈ B(X ,Y)

satisfy S2T2 = S1T1 + R. It follows that S1T1 − S2T2 = −R is a finite-rank
operator, and IX − S2T2 ∈ Φk(X ) because finite-rank perturbations do not change
the Fredholm index. Finally, (4.2) shows that α(IX − S2T2) = m. □

Proof of Theorem 4.1. Lemma 2.4 shows that conditions (i) and (ii) are equivalent.
(i)⇒(iii). For k = 0, (1.5) shows that EAE0(X ,Y) = SC0(X ,Y), and this set is

non-empty because it contains (IX , IY).
Hence it suffices to consider the case k ̸= 0. Suppose that IX −S1T1 ∈ Φk(X ) for

some operators S1 ∈ B(Y,X ) and T1 ∈ B(X ,Y). Then obviously Φk(X ) is non-
empty, and Φk(Y) is also non-empty by Lemma 2.4, so EAEk(X ,Y) is non-empty
by Proposition 3.1.

Suppose that (U, V ) ∈ EAEk(X ,Y), so that α(U) = α(V ) by (1.4). Call this
number m, and note that m ⩾ k. Our strategy is to modify the operators S1

and T1 to obtain a pair for which we can construct isomorphisms M ∈ B(X )
and N ∈ B(Y) such that (4.1) is satisfied.

We begin by applying Lemma 4.3 to find operators S2 ∈ B(Y,X ) and T2 ∈
B(X ,Y) such that S1T1 − S2T2 has finite rank and IX − S2T2 ∈ Φk(X ) with
α(IX − S2T2) = m. Then β(IX − S2T2) = m − k = β(U), so ran(IX − S2T2) and
ranU are closed subspaces of the same finite codimension in X , and therefore we
can take an isomorphism A ∈ B(X ) such that

A[ran(IX − S2T2)] = ranU. (4.3)

Lemma 2.4 implies that β(IY − T2S2) = β(IX − S2T2) = m− k = β(V ), so we can
also find an isomorphism B ∈ B(Y) such that

B[ran(IY − T2S2)] = ranV. (4.4)

Set S3 = AS2B
−1 ∈ B(Y,X ) and T3 = BT2A

−1 ∈ B(X ,Y), and observe that
these operators satisfy

IX − S3T3 = A(IX − S2T2)A
−1. (4.5)

This implies that α(IX − S3T3) = α(IX − S2T2) = m = α(U), which is finite,
so we can take an isomorphism M1 ∈ B(ker(IX − S3T3), kerU). Choose closed
subspaces X1 and X2 of X such that X = ker(IX −S3T3)⊕X1 and X = kerU ⊕X2,
and let

R : x 7→ (IX − S3T3)x, X1 → ran(IX − S3T3), and U0 : x 7→ Ux, X2 → ranU,
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be the restrictions of IX − S3T3 and U , respectively. The choices of X1 and X2

imply that R and U0 are isomorphisms.
Using (4.5) and (4.3), we see that ran(IX − S3T3) = ranU , so we can define an

isomorphism M2 ∈ B(X1,X2) by M2 = U−1
0 R, and therefore

M =

[
M1 0
0 M2

]
: X = ker(IX − S3T3)⊕X1 → kerU ⊕X2 = X

is an isomorphism. For x ∈ ker(IX − S3T3), we have Mx ∈ kerU , so UMx = 0 =
(IX − S3T3)x; and for x ∈ X1, we have UMx = UU−1

0 Rx = (IX − S3T3)x. This
shows that UM = IX − S3T3 because X = ker(IX − T3S3) + X1.

Lemma 2.4 implies that α(IY − T3S3) = α(IX − S3T3) = m = α(V ), and com-
bining the identity

IY − T3S3 = B(IY − T2S2)B
−1

with (4.4), we deduce that ran(IY − T3S3) = ranV . Therefore we can repeat the
constructions from the previous paragraphs to obtain an isomorphism N ∈ B(Y)
such that V N = IY −T3S3. Now the conclusion that U and V are SC follows from
Lemma 4.2.

The implication (iii)⇒(iv) is clear.
(iv)⇒(i). Suppose that (U, V ) ∈ SCk(X ,Y). Then Lemma 4.2 implies that there

are operators S ∈ B(Y,X ) and T ∈ B(X ,Y) and an isomorphism M ∈ B(X ) such
that UM = IX − ST . We have UM ∈ Φk(X ) because U ∈ Φk(X ) and M is an
isomorphism, and consequently (i) is satisfied. □

Proof of Theorem 1.6. (i) is simply a restatement of the equivalence of conditions
(ii) and (iii) in Proposition 3.1.

(ii). Take k ∈ eae(X ,Y)Z. By (i), we have EAEk(X ,Y) ̸= ∅. In view of this, the
implication ⇒ is clear, while the converse follows from Theorem 4.1 (specifically,
the implication (iv)⇒(iii)).

(iii). Proposition 3.1 shows that Φk(X ) = ∅ or Φk(Y) = ∅ for k ∈ Z\eae(X ,Y)Z.
Since

SCk(X ,Y) ⊆ EAEk(X ,Y) ⊆ Φk(X )× Φk(Y),

we see that SCk(X ,Y) = EAEk(X ,Y) = ∅ in this case. □

We conclude this section by showing how Theorem 4.1 can be deduced from
results obtained in [30]. To this end, take (U, V ) ∈ EAEk(X ,Y). Translating the
conclusion of [30, Proposition 5.9] about what is called “the Banach space operator
problem” in [30] to the setting of EAE and SC, as explained in [30, Section 3], we
see that U and V are SC if and only if there exist operators B1 ∈ B(ranU, ranV )
and B2 ∈ B(ranV, ranU) such that

IranV −B1B2 ∈ Φk(ranV ). (4.6)

Alternative proof of Theorem 4.1. As before, Lemma 2.4 shows that conditions (i)
and (ii) are equivalent, and the implication (iii)⇒(iv) is trivial.

(ii)⇒(iii). Suppose that (ii) is satisfied, so that IY − TS ∈ Φk(Y) for some
operators S ∈ B(Y,X ) and T ∈ B(X ,Y), and take (U, V ) ∈ EAEk(X ,Y). We
must show that (U, V ) ∈ SCk(X ,Y), which by the result from [30] stated above
amounts to finding operators B1 ∈ B(ranU, ranV ) and B2 ∈ B(ranV, ranU) which
satisfy (4.6).
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Take finite-dimensional subspaces X1 and Y1 of X and Y, respectively, such that

X = ranU ⊕X1 and Y = ranV ⊕ Y1, (4.7)

and decompose the operators S and T accordingly; that is,

S =

[
S11 S12

S21 S22

]
and T =

[
T11 T12

T21 T22

]
,

where S11 ∈ B(ranV, ranU), S12 ∈ B(Y1, ranU), S21 ∈ B(ranV,X1), S22 ∈
B(Y1,X1), T11 ∈ B(ranU, ranV ), T12 ∈ B(X1, ranV ), T21 ∈ B(ranU,Y1) and
T22 ∈ B(X1,Y1). Define

S1 =

[
S11 0
0 0

]
∈ B(Y,X ) and T1 =

[
T11 0
0 0

]
∈ B(X ,Y).

Since X1 and Y1 are finite-dimensional, the operators S2 = S−S1 and T2 = T −T1

have finite rank, and

Φk(Y) ∋ IY − TS = IY − T1S1 − (T1S2 + T2S1 + T2S2),

where T1S2 + T2S1 + T2S2 is a finite-rank operator. Hence

Φk(Y) ∋ IY − T1S1 =

[
IranV − T11S11 0

0 IY1

]
,

which in turn implies that IranV − T11S11 ∈ Φk(ranV ). Therefore the operators
B1 = T11 and B2 = S11 satisfy (4.6).

(iv)⇒(ii). Suppose that SCk(X ,Y) ̸= ∅, and take (U, V ) ∈ SCk(X ,Y). Then,
by the result from [30] stated above, we can find operators B1 ∈ B(ranU, ranV )
and B2 ∈ B(ranV, ranU) which satisfy (4.6). As before, take finite-dimensional
subspaces X1 and Y1 of X and Y, respectively, such that (4.7) is satisfied, and
define

S =

[
B2 0
0 0

]
: Y = ranV ⊕ Y1 → ranU ⊕X1 = X

and

T =

[
B1 0
0 0

]
: X = ranU ⊕X1 → ranV ⊕ Y1 = Y.

Then

IY − TS =

[
IranV −B1B2 0

0 IY1

]
∈ Φk(Y),

which shows that (ii) is satisfied. □

5. Non-emptiness of SCk(X ,Y) and the proofs of Propositions 1.7
and 1.12

The aim of this section is to investigate the set of integers k for which there exist
Schur-coupled operators U ∈ Φk(X ) and V ∈ Φk(Y); that is, SCk(X ,Y) ̸= ∅. We
follow a similar strategy to the one successfully employed in Section 3, beginning
with a partial analogue of Lemma 3.4 for the set ISC(X ,Y) = {k ∈ Z : SCk(X ,Y) ̸=
∅} defined in (1.7). As we shall see, the situation for SC is considerably more
complicated than for EAE, primarily due to the difficulty of analyzing the technical
conditions (i)–(ii) in Theorem 4.1. In particular, we have been unable to obtain an
exact counterpart of Lemma 3.4 for SC because we do not know if the set ISC(X ,Y)
is always closed under addition.
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Lemma 5.1. The set ISC(X ,Y) has the following properties for every pair of Ba-
nach spaces (X ,Y) :

(i) 0 ∈ ISC(X ,Y).
(ii) sc(X ,Y) ∈ ISC(X ,Y).
(iii) km ∈ ISC(X ,Y) for every k ∈ ISC(X ,Y) and m ∈ Z.
(iv) Suppose that sc(X ,Y) ∈ {0, eae(X ,Y)}. Then ISC(X ,Y) = sc(X ,Y)Z.

Proof. The first two properties are easy to verify. Indeed, (i) follows from the fact
that (IX , IY) ∈ SC0(X ,Y), while (ii) follows from (i) if sc(X ,Y) = 0, and otherwise
from the definition (1.8) of sc(X ,Y).

However, the proof of (iii) requires more work. Take k ∈ ISC(X ,Y) and m ∈ Z.
By (i), we may suppose that k ̸= 0 and m ̸= 0. Since SCk(X ,Y) ̸= ∅, Theorem 4.1
implies that we can find operators S1 ∈ B(Y,X ) and T1 ∈ B(X ,Y) such that
IX − S1T1 ∈ Φk(X ). We claim that there exist operators Sm ∈ B(Y,X ) and
Tm ∈ B(X ,Y) such that

IX − SmTm ∈ Φkm(X ). (5.1)

Once we have established this claim, the conclusion will follow from another appli-
cation of Theorem 4.1.

We prove the claim by considering three different cases: m ⩾ 2, m = −1 and
m ⩽ −2. (Note that the case m = 1 is already covered by the choice of S1 and T1.)

Case 1. For m ⩾ 2, we can apply the Binomial Theorem because IX and S1T1

commute. It shows that

(IX − S1T1)
m = IX +

m∑
j=1

(
m

j

)
(−S1T1)

j = IX − S1T1

m∑
j=1

(
m

j

)
(−S1T1)

j−1,

so the Index Theorem implies that the operators Sm = S1 ∈ B(Y,X ) and Tm =
T1

∑m
j=1

(
m
j

)
(−S1T1)

j−1 ∈ B(X ,Y) satisfy (5.1).

Case 2. For m = −1, we consider the cases k > 0 and k < 0 separately.
For k > 0, Lemma 4.3 implies that we can find operators U ∈ B(Y,X ) and V ∈
B(X ,Y) such that S1T1−UV is a finite-rank operator and IX −UV ∈ Φk(X ) with
α(IX − UV ) = k. Then β(IX − UV ) = 0, so IX − UV is a surjective Fredholm
operator, and therefore it has a right inverse R ∈ Φ−k(X ). Consequently

IX = (IX − UV )R = R− UV R,

which implies that S−1 = −U ∈ B(Y,X ) and T−1 = V R ∈ B(X ,Y) satisfy (5.1)
because IX − S−1T−1 = R ∈ Φ−k(X ).

The argument for k < 0 is very similar. In this case, we can apply Lemma 4.3 to
find U ∈ B(Y,X ) and V ∈ B(X ,Y) such that S1T1 −UV is a finite-rank operator
and IX − UV ∈ Φk(X ) with α(IX − UV ) = 0. Then, being an injective Fredholm
operator, IX −UV has a left inverse L ∈ Φ−k(X ), which implies that the operators
S−1 = −LU ∈ B(Y,X ) and T−1 = V ∈ B(X ,Y) satisfy

IX − S−1T−1 = L(IX − UV ) + (LU)V = L ∈ Φ−k(X ).

Case 3. Finally, for m ⩽ −2, we apply the argument from Case 1 to the
−mth power of the operator IX − S−1T−1, where S−1 and T−1 are the opera-
tors found in Case 2, to conclude that the operators Sm = S−1 ∈ B(Y,X ) and

Tm = T−1

∑−m
j=1

(−m
j

)
(−S−1T−1)

j−1 ∈ B(X ,Y) satisfy (5.1).

(iv). First, if sc(X ,Y) = 0, then the definition (1.8) of sc(X ,Y) implies that
ISC(X ,Y) ∩ N = ∅, and therefore ISC(X ,Y) = {0} = sc(X ,Y)Z by (i) and (iii).
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Second, suppose that eae(X ,Y) = sc(X ,Y), and call this number k0. Then,
by (ii), (iii) and Corollary 3.5, we have

k0Z ⊆ ISC(X ,Y) ⊆ IΦ(X ) ∩ IΦ(Y) = k0Z,

which shows that ISC(X ,Y) = k0Z, as required. □

Proof of Proposition 1.7. We begin by verifying the chain of inclusions (1.9), which
we restate here for ease of reference:

sc(X ,Y)Z ⊆ ISC(X ,Y) = {k ∈ Z : SCk(X ,Y) = EAEk(X ,Y) ̸= ∅}
⊆ eae(X ,Y)Z = {k ∈ Z : EAEk(X ,Y) ̸= ∅} = IΦ(X ) ∩ IΦ(Y).

The first inclusion is immediate from Lemma 5.1(ii)–(iii), while the equality of the
second and third set in the first line follows by combining the definition of ISC(X ,Y)
with the equivalence of conditions (iii) and (iv) in Theorem 4.1. Proposition 3.1
shows that the three sets in the second line are equal (the equality of the first and
last of these sets was also recorded in Corollary 3.5), and finally the inclusion at the
beginning of the second line follows because the final set in the first line is trivially
contained in the second set in the second line.

Next, to prove the first claim of Proposition 1.7, suppose that EAEk(X ,Y) =
SCk(X ,Y) for every k ∈ Z. Then

ISC(X ,Y) = {k ∈ Z : EAEk(X ,Y) ̸= ∅} = IΦ(X ) ∩ IΦ(Y),

where the final equality follows from (1.9). Hence the definitions (1.6) and (1.8)
show that eae(X ,Y) = sc(X ,Y).

Conversely, suppose that eae(X ,Y) = sc(X ,Y), and call this number k0. Then
the inclusions in (1.9) are in fact equalities, so EAEk(X ,Y) = SCk(X ,Y) (̸= ∅) for
every k ∈ ISC(X ,Y) = k0Z. On the other hand, Theorem 1.6(iii) shows that the
identity EAEk(X ,Y) = SCk(X ,Y) (= ∅) is also true for every k /∈ eae(X ,Y)Z =
k0Z.

Finally, we verify that sc(X ,Y) = n eae(X ,Y) for some n ∈ N0. Set k0 =
sc(X ,Y) ∈ N0. Then Lemma 5.1(ii) shows that ∅ ≠ SCk0

(X ,Y) ⊆ EAEk0
(X ,Y),

so k0 = n eae(X ,Y) for some n ∈ N0 by Proposition 3.1 and the fact that k0 and
eae(X ,Y) are both non-negative. □

Remark 5.2. To illustrate the applicability of our work thus far, let us explain how
it leads to an explicit algorithm for deciding whether EAE and SC are equivalent
for all pairs of Fredholm operators on a given pair of Banach spaces (X ,Y).

(i) Find, if possible, the least k ∈ N such that Φk(X ) ̸= ∅ and Φk(Y) ̸= ∅.
This is k0 = eae(X ,Y).

(ii) If no such k ∈ N exists, then eae(X ,Y) = 0 = sc(X ,Y), and EAE and SC
are equivalent for all pairs of Fredholm operators on X and Y by Proposi-
tion 1.7. More precisely, we have

SCk(X ,Y) = EAEk(X ,Y)

{
̸= ∅ for k = 0

= ∅ for k ∈ Z \ {0}.

(iii) Otherwise choose any pair of Fredholm operators (U, V ) ∈ Φk0(X )×Φk0(Y)
with α(U) = α(V ) (and hence β(U) = β(V )), and decide whether U and V
are SC.
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(1) If U and V are SC, then Proposition 1.7 implies that EAE and SC are
equivalent for all pairs of Fredholm operators on X and Y, and

SCk(X ,Y) = EAEk(X ,Y)

{
̸= ∅ for k ∈ k0Z
= ∅ for k ∈ Z \ k0Z.

(2) Otherwise EAE and SC are evidently not equivalent for all pairs of
Fredholm operators on X and Y, as (U, V ) is a concrete example of a
pair which is EAE, but not SC.

Our next lemma is the counterpart of Lemma 3.9 for SC, showing that the set
ISC(X ,Y), and hence the associated index sc(X ,Y), is an isomorphic invariant.

Lemma 5.3. Let X1, X2, Y1 and Y2 be Banach spaces satisfying X1
∼= X2 and

Y1
∼= Y2. Then ISC(X1,Y1) = ISC(X2,Y2), and therefore sc(X1,Y1) = sc(X2,Y2).

Proof. Take isomorphisms R ∈ B(X1,X2) and S ∈ B(Y1,Y2). For each k ∈
ISC(X1,Y1), we can find U ∈ Φk(X1) and V ∈ Φk(Y1) which are SC, so that there
exist isomorphisms A ∈ B(X1) and D ∈ B(Y1) and operators B ∈ B(Y1,X1)
and C ∈ B(X1,Y1) such that (1.2) is satisfied. The Index Theorem implies that
RUR−1 ∈ Φk(X2) and SV S−1 ∈ Φk(Y2), and it is easy to check that they are
SC, using the operators RAR−1 ∈ B(X2), SDS−1 ∈ B(Y2), RBS−1 ∈ B(Y2,X2)
and SCR−1 ∈ B(X2,Y2) to verify (1.2). This implies that k ∈ ISC(X2,Y2), so
ISC(X1,Y1) ⊆ ISC(X2,Y2). The opposite inclusion follows by interchanging X1

and X2, and Y1 and Y2.
The final statement is immediate from the definition (1.8) of sc. □

As another consequence of Lemma 5.1, we obtain the following variant of Propo-
sition 3.1 for SC.

Corollary 5.4. Let X and Y be Banach spaces. Then the set ISC(X ,Y) is closed
under addition if and only if ISC(X ,Y) = sc(X ,Y)Z.

Proof. The implication ⇐ is obvious because the set sc(X ,Y)Z is closed under
addition. Conversely, suppose that ISC(X ,Y) is closed under addition. Then, in
view of Lemma 5.1(i) and (iii), it is an ideal of Z, so ISC(X ,Y) = mZ for some
m ∈ N0. Combining this identity with the definition (1.8) of sc(X ,Y), we conclude
that m = sc(X ,Y). □

Corollary 5.4 is not entirely satisfactory because we have been unable to answer
the following question.

Question 5.5. Is the set ISC(X ,Y) closed under addition for every pair of Banach
spaces (X ,Y)?

We know that the answer to this question is “yes” in certain cases because
Lemma 5.1(iv) shows that ISC(X ,Y) is closed under addition if sc(X ,Y) = 0 or
sc(X ,Y) = eae(X ,Y). We can also obtain a positive answer to it by imposing
suitable conditions on the Banach spaces X and Y. To state this result precisely,
we require the following additional notation and terminology.

Definition 5.6. Let X and Y be Banach spaces.

(i) Set GY(X ) = {ST : S ∈ B(Y,X ), T ∈ B(X ,Y)}.
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(ii) We say that a subset Σ of B(X ,Y) is essentially closed under addition if,
for every pair of operators U, V ∈ Σ, there exists an inessential operator
R ∈ E (X ,Y) such that U + V −R ∈ Σ.

Proposition 5.7. Let X and Y be Banach spaces, and suppose that at least one of
the sets GY(X ) and GX (Y) is essentially closed under addition. Then ISC(X ,Y) is
closed under addition.

Proof. Suppose that GY(X ) is essentially closed under addition, and take k1, k2 ∈
ISC(X ,Y). Then by Theorem 4.1, we can find operators Sj ∈ B(Y,X ) and Tj ∈
B(X ,Y) such that IX − SjTj ∈ Φkj

(X ) for j = 1, 2. The Index Theorem shows
that

Φk1+k2
(X ) ∋ (IX − S1T1)(IX − S2T2) = IX − [S1T1(IX − S2T2) + S2T2]. (5.2)

Both of the operators S1T1(IX − S2T2) and S2T2 belong to GY(X ), so by the
hypothesis, we can find operators S3 ∈ B(Y,X ), T3 ∈ B(X ,Y) and R ∈ E (X ) such
that S1T1(IX − S2T2) + S2T2 = S3T3 + R. Combining (5.2) with Remark 2.3(iii),
we deduce that

Φk1+k2(X ) ∋ IX − [S1T1(IX − S2T2) + S2T2] +R = IX − S3T3,

and therefore SCk1+k2
(X ,Y) ̸= ∅ by another application of Theorem 4.1. This

shows that k1 + k2 ∈ ISC(X ,Y), as required.
The case where GX (Y) is essentially closed under addition is similar, just using

condition (ii) in Theorem 4.1 instead of condition (i). □

Remark 5.8. The set GY(X ) is closed under addition (without the need for any
inessential perturbations) if the Banach space Y contains a complemented subspace
isomorphic to Y ⊕ Y. This result is “folklore”; it can for instance be found in [39,
the paragraph following Definition 3.6]. Most “classical” Banach spaces Y satisfy
the even stronger condition that Y ∼= Y ⊕Y. The two conditions are not equivalent
because Gowers and Maurey [27, §(4.4)] have constructed a Banach space Y which
is isomorphic to its cube Y ⊕Y ⊕Y, but not to its square Y ⊕Y. Hence Y contains
a complemented subspace isomorphic to Y ⊕ Y without being isomorphic to it.

There are infinite-dimensional Banach spaces Y which do not contain any com-
plemented subspaces isomorphic to Y ⊕ Y. James’ quasi-reflexive Banach space,
which will feature prominently in our next example, was the first space shown to
have this property.

Example 5.9. The purpose of this example is to show that the converse of Proposi-
tion 5.7 fails; that is, we shall construct Banach spaces X and Y such that ISC(X ,Y)
is closed under addition, but neither GY(X ) nor GX (Y) are essentially closed under
addition. This construction relies heavily on the quasi-reflexive James spaces Jp

for 1 < p < ∞. These Banach spaces originate in James’ paper [34], where only
the case p = 2 was considered. Subsequently, Edelstein and Mityagin [19] observed
that James’ methods and results carry over to arbitrary p ∈ (1,∞). We require the
following specific facts about this family of Banach spaces:

(i) Jp is isomorphic to its hyperplanes for every p ∈ (1,∞), so γ(Jp) = 1.
(ii) B(Jq,Jp) = K (Jq,Jp) for 1 < p < q < ∞ by [43, Theorem 4.5], and

therefore Jp and Jq are essentially incomparable whenever p, q ∈ (1,∞)
are distinct.
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(iii) K (Jp) = E (Jp) ⊆ W (Jp) for every p ∈ (1,∞) by [37, Proposition 4.9],
where W (Jp) denotes the ideal of weakly compact operators on Jp.

Berkson and Porta [11, page 18] for p = 2 and Edelstein and Mitya-
gin [19] for general p ∈ (1,∞) observed that W (Jp) has codimension 1
in B(Jp), so we have a unital algebra homomorphism φ : B(Jp) → K with
kerφ = W (Jp). We shall in fact require the amplification of this homo-
morphism to the 2× 2 matrices, that is, the unital algebra homomorphism
φ2 : M2(B(Jp)) → M2(K) given by

φ2

([
R11 R12

R21 R22

])
=

[
φ(R11) φ(R12)
φ(R21) φ(R22)

]
.

We are now ready to begin our construction: choose distinct numbers p, q ∈ (1,∞),
and set X = Jp ⊕ Jp ⊕ Jq and Y = Jp ⊕ Jq ⊕ Jq.

First, we observe that ISC(X ,Y) is closed under addition. This follows immedi-
ately from the fact that ISC(X ,Y) = Z. Indeed, for each k ∈ Z, (i) implies that we
can take R ∈ Φk(Jp). Then the operators

S =

IJp
−R 0 0
0 0 0
0 0 0

 ∈ B(Y,X ) and T =

IJp
0 0

0 0 0
0 0 0

 ∈ B(X ,Y)

satisfy

IX − ST =

R 0 0
0 IJp

0
0 0 IJq

 ∈ Φk(X ),

so SCk(X ,Y) ̸= ∅ by Theorem 4.1, and therefore k ∈ ISC(X ,Y), as desired.
Second, we shall show the set GY(X ) is not essentially closed under addition.

Assume the contrary, and consider the operators

U =

IJp
0 0

0 0 0
0 0 0

 =

IJp
0 0

0 0 0
0 0 0

IJp
0 0

0 0 0
0 0 0

 ∈ B(X )

and

V =

0 0 0
0 IJp

0
0 0 0

 =

 0 0 0
IJp

0 0
0 0 0

0 IJp 0
0 0 0
0 0 0

 ∈ B(X ).

They both belong to GY(X ) as the indicated factorizations show. Therefore, by
the hypothesis, we can find operators S ∈ B(Y,X ) and T ∈ B(X ,Y) such that
U + V − ST ∈ E (X ). By (ii), we can write S = S1 + S2 and T = T1 + T2, where

S1 =

S11 0 0
S21 0 0
0 S32 S33

 and T1 =

T11 T12 0
0 0 T23

0 0 T33

 ,
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and S2 ∈ E (Y,X ) and T2 ∈ E (X ,Y). Since E is an operator ideal, we deduce that

E (Jp ⊕ Jp) ∋
[
IJp 0 0
0 IJp

0

]
(U + V − S1T1)

IJp
0

0 IJp

0 0


=

[
IJp

0
0 IJp

]
−

[
S11T11 S11T12

S21T11 S21T12

]
.

Hence, applying the algebra homomorphism φ2 from (iii), we obtain[
1 0
0 1

]
= φ2

([
IJp

0
0 IJp

])
= φ2

([
S11T11 S11T12

S21T11 S21T12

])
=

[
φ(S11)φ(T11) φ(S11)φ(T12)
φ(S21)φ(T11) φ(S21)φ(T12)

]
.

However, this is impossible because the diagonal entries imply that φ(S11), φ(T11),
φ(S21) and φ(T12) are all non-zero, but then the off-diagonal entries φ(S11)φ(T12)
and φ(S21)φ(T11) are also non-zero. This contradiction proves that GX (Y) cannot
be essentially closed under addition.

Finally, a similar argument with X and Y interchanged shows that the set GX (Y)
is not essentially closed under addition.

Note. We are grateful to the referee for pointing out that the above construction
will also work if we replace the James spaces Jp and Jq with their “long” counter-
parts Jp(ω1) and Jq(ω1). The space J2(ω1) was originally defined by Edgar [21].
Kania and Kochanek [36, Section 3] studied Jp(ω1) for general p ∈ (1,∞), showing
in particular that B(Jp(ω1)) contains a unique maximal ideal of codimension 1.

Remark 5.10. The purpose of this remark is to summarize our knowledge about
the values of k ∈ Z for which the equation SCk(X ,Y) = EAEk(X ,Y) holds true
for a given pair of Banach spaces (X ,Y), and explain how this problem is related
to Question 5.5. Recall from (1.9) and Theorem 1.6(iii) that

SCk(X ,Y) = EAEk(X ,Y) ̸= ∅ for k ∈ ISC(X ,Y),

SCk(X ,Y) = EAEk(X ,Y) = ∅ for k ∈ Z \ eae(X ,Y)Z.
(5.3)

We now split in two cases, beginning with the case where the answer to Ques-
tion 5.5 is affirmative, so that the set ISC(X ,Y) is closed under addition. Then
Corollary 5.4 shows that ISC(X ,Y) = sc(X ,Y)Z and

∅ = SCk(X ,Y) ̸= EAEk(X ,Y) for k ∈ eae(X ,Y)Z \ ISC(X ,Y),

where we have applied Proposition 3.1 to conclude that EAEk(X ,Y) ̸= ∅. Together
with (5.3), this covers all possible values of k ∈ Z. It follows in particular that EAE
and SC coincides for all pairs of Fredholm operators (U, V ) ∈ Φ(X )× Φ(Y) if and
only if eae(X ,Y) = sc(X ,Y), as we have already seen in Proposition 1.7.

Otherwise, when the answer to Question 5.5 is negative, so that ISC(X ,Y) fails
to be closed under addition, Proposition 1.7 implies that sc(X ,Y) = n eae(X ,Y)
for some n ⩾ 2, and

∅ = SCk(X ,Y) ̸= EAEk(X ,Y)

for every k ∈ {±m eae(X ,Y) : 1 ⩽ m < n} because k = sc(X ,Y) is the smallest
positive number for which SCk(X ,Y) ̸= ∅, and ISC(X ,Y) is closed under sign
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changes. However, since ISC(X ,Y) fails to be closed under addition, there must be
some number k = m eae(X ,Y), where m ∈ N ∩ (n,∞) \ nN, for which

SCk(X ,Y) = EAEk(X ,Y) ̸= ∅.

We conclude this section with a couple of results about direct sums which will
be useful in the proof of Proposition 1.12, as well as in the next section.

Lemma 5.11. Let X and Y be Banach spaces, and suppose that Y is isomorphic
to a complemented subspace of X . Then

ISC(X ,Y) = IΦ(Y) ⊆ IΦ(X ), (5.4)

and consequently sc(X ,Y) = eae(X ,Y).

Proof. In view of Lemmas 3.9 and 5.3, we may suppose that X = Y ⊕ Z for some
Banach space Z.

The inclusion ISC(X ,Y) ⊆ IΦ(Y) is clear because SCk(X ,Y) ⊆ Φk(X )×Φk(Y).
Conversely, for k ∈ IΦ(Y), we can take R ∈ Φk(Y). Then the operators

S =

[
IY −R

0

]
: Y → Y ⊕Z = X and T =

[
IY 0

]
: X = Y ⊕ Z → Y

satisfy

IX − ST =

[
IY 0
0 IZ

]
−
[
IY −R 0

0 0

]
=

[
R 0
0 IZ

]
∈ Φk(X ), (5.5)

so k ∈ ISC(X ,Y) by Theorem 4.1. This shows that ISC(X ,Y) = IΦ(Y), while the
inclusion IΦ(Y) ⊆ IΦ(X ) is an immediate consequence of (5.5). (Alternatively, the
latter inclusion follows easily from Lemma 3.10(i).)

Finally, we have sc(X ,Y) = eae(X ,Y) because (5.4) shows that ISC(X ,Y) =
IΦ(X ) ∩ IΦ(Y). □

Lemma 5.12. Let X = X1 ⊕X2 and Y = Y1 ⊕ Y2 be Banach spaces. Then:

(i) ISC(X2,Y2) ⊆ ISC(X ,Y).
(ii) Suppose that each of the pairs (X1,Y1), (X1,Y2) and (Y1,X2) is essentially

incomparable. Then ISC(X ,Y) = ISC(X2,Y2).

Proof. (i). For each k ∈ ISC(X2,Y2), we can take Schur-coupled operators U ∈
Φk(X2) and V ∈ Φk(Y2). Choose isomorphisms A ∈ B(X2) and D ∈ B(Y2) and
operators B ∈ B(Y2,X2) and C ∈ B(X2,Y2) such that (1.2) is satisfied. Then it
is easy to see that the operators[

IX1
0

0 U

]
∈ Φk(X ) and

[
IY1

0
0 V

]
∈ Φk(Y)

are Schur-coupled via[
IX1

0
0 U

]
=

[
IX1

0
0 A

]
−
[
0 0
0 B

] [
IY1

0
0 D−1

] [
0 0
0 C

]
and [

IY1
0

0 V

]
=

[
IY1

0
0 D

]
−

[
0 0
0 C

] [
IX1

0
0 A−1

] [
0 0
0 B

]
,

so we conclude that k ∈ ISC(X ,Y).
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(ii). Suppose that k ∈ ISC(X ,Y). By Theorem 4.1, we can find operators

S =

[
S11 S12

S21 S22

]
∈ B(Y,X ) and T =

[
T11 T12

T21 T22

]
∈ B(X ,Y)

such that IX − ST ∈ Φk(X ). The hypothesis implies that S11, T11, S12, T12, S21

and T21 are inessential. Since E is an operator ideal, it follows that the operator

ST −
[
0 0
0 S22T22

]
is inessential, and therefore, using Remark 2.3(iii), we obtain

IX − ST ∈ Φk(X ) ⇐⇒
[
IX1

0
0 IX2 − S22T22

]
∈ Φk(X )

⇐⇒ IX2
− S22T22 ∈ Φk(X2),

so k ∈ ISC(X2,Y2) by another application of Theorem 4.1. □

We can now complete the proof of Proposition 1.12.

Proof of Proposition 1.12. We have already proved Equation (1.11) on page 14.
To prove (1.12), suppose that each of the pairs (X1,X2), (Y1,Y2) and (X1,Y1)

is essentially incomparable. Then the hypothesis of Lemma 5.12(ii) is satisfied
because X2

∼= Y2, so ISC(X ,Y) = ISC(X2,Y2), and therefore sc(X ,Y) = sc(X2,Y2).
Moreover, Lemma 5.11 implies that sc(X2,Y2) = eae(X2,Y2), which completes the
proof of (1.12).

Combining (1.11) and (1.12), we see that eae(X ,Y) = sc(X ,Y) if and only
if gcd(eae(X1,Y1), eae(X2,Y2)) = eae(X2,Y2), which is equivalent to saying that
eae(X2,Y2) divides eae(X1,Y1). □

6. The Gowers–Maurey–Aiena–González–Ferenczi cycle of ideas and
the proofs of Theorems 1.9, 1.11 and 1.13

The Banach space that Aiena and González used in [2] to show that projective in-
comparability does not imply essential incomparability is the so-called “shift space”
constructed by Gowers and Maurey in [27, §(4.2)]. Refining the approach of Aiena
and González, Ferenczi [22, Section 4] has more recently used this space to prove
that there is no largest proper operator ideal, thereby solving a famous open prob-
lem going back to Pietsch’s monograph [46].

The proofs of Theorems 1.11 and 1.13 are inspired by this body of work. However,
the shift space itself will not suffice for our purposes; we need to work with a larger
family of “higher-order shift spaces” which Gowers and Maurey also constructed
in [27]. We shall now give a brief introduction to this family.

Following the terminology introduced in [27, page 549], for two infinite subsets
A = {a1 < a2 < · · · } and B = {b1 < b2 < · · · } of N, we define the associated
spread SA,B to be the linear map on c00 determined by

SA,Bej =

{
ebk if j = ak for some k ∈ N,
0 otherwise,

where (en)n∈N denotes the standard unit vector (Hamel) basis for c00. Let k0 ∈ N0,
and set Mk0

= {[k0m + 1,∞) ∩ N : m ∈ N0}. Then Sk0
= {SA,B : A,B ∈ Mk0

}
is a “proper set of spreads” as defined in [27, page 549], but since we do not
need the precise definition of this term in the sequel, we omit the details. The
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important point is that, by [27, Theorem 5], Sk0
induces a Banach space, which

we shall call the k0-fold Gowers–Maurey shift space and denote by XGM(k0). (It is
denoted X(Sk0) in [27].)

As already mentioned, Gowers and Maurey defined and investigated this family
of Banach spaces in [27]. More precisely, they studied the space XGM(0) in [27,
§(4.1)], XGM(1) in [27, §(4.2)] and XGM(2) in [27, §(4.3)], before outlining the
general case of XGM(k0) for k0 ⩾ 3 in the final paragraph of [27, §(4.3)]. The
following theorem summarizes the results from [27] that we require, together with
the necessary notation and terminology.

Theorem 6.1 (Gowers and Maurey). Let k0 ∈ N0.

(i) The Banach space XGM(k0) has a normalized Schauder basis (en)n∈N which
admits an isometric k0-fold right shift operator Rk0 ∈ B(XGM(k0)) given
by Rk0en = en+k0 for every n ∈ N, with left inverse Lk0 ∈ B(XGM(k0))
given by Lk0

en = 0 for n ⩽ k0 and Lk0
en = en−k0

for n > k0.
(ii) The Banach space XGM(k0) satisfies a lower f -estimate for the function

f(t) = log2(t+ 1); that is,

log2(n+ 1)

∥∥∥∥ n∑
k=1

xk

∥∥∥∥ ⩾
n∑

k=1

∥xk∥

for every n ∈ N and vectors x1, . . . , xn ∈ XGM(k0) which are consecutive
in the sense that there are integers 0 ⩽ m0 < m1 < · · · < mn such that
xk ∈ span{ej : mk−1 < j ⩽ mk} for each 1 ⩽ k ⩽ n.

(iii) The Banach space XGM(k0) is indecomposable; that is, every complemented
subspace of XGM(k0) is either finite-dimensional or finite-codimensional.

(iv) The index γ introduced in Remark 3.6 is given by γ(XGM(k0)) = k0, and
XGM(k0) is not isomorphic to any of its subspaces of infinite codimension.
Therefore a closed subspace W of XGM(k0) is isomorphic to XGM(k0) if and
only if

dimXGM(k0)/W ∈ k0N0.

(v) The Banach space XGM(k0) contains no unconditional basic sequences.

Proof. Parts (i) and (ii) follow from [27, Theorem 5] and the definitions and con-
ventions that it relies on.

For k0 = 0, parts (iii)–(v) are all derived in [27, §(4.1)]. (Note in this context
that L0 = R0 = IXGM(0).) Hence it remains to consider k0 ∈ N.

(iii). This result is contained in the proof of [27, Theorem 13] for k0 = 1, with
[27, Remarks, page 559] explaining how to generalize that proof to arbitrary k0 ⩾ 2.

(iv). This result is a restatement of [27, Theorem 16] for k0 = 1. For k0 ⩾ 2, it
follows from [27, Theorem 19] and [27, Remarks, page 559].

(v). This result is proved in the final paragraph on [27, page 567]. □

Corollary 6.2. Let Y be a Banach space with an unconditional basis. Then, for
every k0 ∈ N0, XGM(k0) and Y are totally incomparable.

Proof. As explained in the comment after [42, Problem 1.d.5], every closed, infinite-
dimensional subspace of Y contains an unconditional basic sequence. Hence Theo-
rem 6.1(v) implies that no such subspace embeds isomorphically into XGM(k0). □

Using these results, we can easily prove Theorem 1.9.
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Proof of Theorem 1.9. (i). We must show that ISC(X ,Y) = {0}. This was already
proved in [31, Theorem 2.1(2)], but we would like to point out that it is also an al-
most immediate consequence of Theorem 4.1. Indeed, the essential incomparability
of X and Y means that IX −ST ∈ Φ(X ) for every S ∈ B(Y,X ) and T ∈ B(X ,Y),
and Remark 2.3(iii) shows that i(IX − ST ) = 0. Therefore condition (i) in Theo-
rem 4.1 is satisfied only for k = 0, so SCk(X ,Y) = ∅ for every k ∈ Z \ {0}.

(ii). Set X = XGM(k0), and let Y be a Banach space which has an uncondi-
tional basis and is isomorphic to its hyperplanes, so that γ(Y) = 1. (For instance,
Y = ℓ2 has these properties.) Corollary 6.2 shows that X and Y are totally incom-
parable and therefore essentially incomparable. Moreover, we have γ(X ) = k0 by
Theorem 6.1(iv), so eae(X ,Y) = lcm(k0, 1) = k0 by (3.1). □

While the above proof did not involve any ideas from [2] or [22], the proofs
of Theorems 1.11 and 1.13 will, namely in the shape of part (ii) of the following
lemma.

Lemma 6.3. Let k0 ∈ N.
(i) Suppose that X1 and Y1 are essentially incomparable Banach spaces with un-

conditional bases and that Y2 is a closed, infinite-dimensional and infinite-
codimensional subspace of XGM(k0). Then the Banach spaces X1⊕XGM(k0)
and Y1 ⊕ Y2 are projectively incomparable.

(ii) The Banach space XGM(k0) contains a closed, infinite-dimensional and in-
finite-codimensional subspace Y2 such that SCk0

(XGM(k0),Y2) ̸= ∅.

Remark 6.4. Lemma 6.3(i) is also true for X1 = {0} (even though it may be
debatable whether this space has an unconditional basis). This observation will be
important in the proofs of Theorems 1.11(i) and 1.13(i). The conscientious reader
can check that the proof which we are about to present remains valid for X1 = {0}.

Proof of Lemma 6.3(i). To unify notation, set X2 = XGM(k0). The proof is by con-
tradiction, so assume that X1⊕X2 contains an infinite-dimensional, complemented
subspace W which is isomorphic to a complemented subspace Z of Y1⊕Y2. Corol-
lary 6.2 shows that each of the pairs (X1,X2) and (Y1,Y2) is totally incomparable,
so a theorem of Edelstein and Wojtaszczyk (see [20, Theorem 3.5], or [42, The-
orem 2.c.13] for an exposition) implies that W ∼= W1 ⊕ W2 and Z ∼= Z1 ⊕ Z2,
where Wj and Zj are complemented subspaces of Xj and Yj , respectively, for
j ∈ {1, 2}. Take an isomorphism

U =

[
U11 U12

U21 U22

]
: W1 ⊕W2 → Z1 ⊕Z2.

The hypothesis that X1 and Y1 are essentially incomparable implies that the opera-
tor U11 is inessential because essential incomparability clearly passes to comple-
mented subspaces. Moreover, U12 and U21 are inessential by Corollary 6.2 and
Remark 2.5(i). Consequently[

0 0
0 U22

]
= U −

[
U11 U12

U21 0

]
is an inessential perturbation of the isomorphism U and hence a Fredholm ope-
rator. This implies that U22 is a Fredholm operator and that W1 is finite-di-
mensional, so W2 must be infinite-dimensional. Since it is complemented in X2,
Theorem 6.1(iii) shows that W2 has finite codimension in X2.
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Choose a closed subspace W3 of finite codimension in W2 such that

W3 ∩ kerU22 = {0} and dimX2/W3 ∈ k0N0.

Then W3
∼= X2 by Theorem 6.1(iv), and the restriction of U22 to W3 is an isomor-

phic embedding into Z2 ⊆ Y2. However, another application of Theorem 6.1(iv)
shows that no such embedding exists because Y2 has infinite codimension in X2. □

In order to prove the second part of Lemma 6.3, we require two lemmas. The
statement of the first of these involves the following standard piece of terminology.
An operator T ∈ B(X ,Y) (where X and Y can be any Banach spaces) is bounded
below if there exists ε > 0 such that ∥Tx∥ ⩾ ε∥x∥ for every x ∈ X . This is
equivalent to saying that T is injective and has closed range, or in other words
that T is an isomorphic embedding.

Lemma 6.5. For every k0 ∈ N, the operator IXGM(k0) − Lk0
∈ B(XGM(k0)) is

injective, but not bounded below. Consequently its range is not closed in XGM(k0).

Proof. The proof is a simple variant of an argument given by Ferenczi in the text
preceding [22, Proposition 16]. First, to show that IXGM(k0) − Lk0

is injective,

suppose that x =
∑∞

j=1 ajej ∈ ker(IXGM(k0) − Lk0). Then we have

0 =

∞∑
j=1

ajej −
∞∑
j=1

aj+k0ej ,

so aj = aj+k0 for each j ∈ N. By induction, we deduce that aj = aj+mk0 for each
m ∈ N. Keeping j fixed and letting m → ∞, we have aj+mk0

→ 0, so aj = 0. Since
this is true for every j ∈ N, we conclude that x = 0.

Second, to verify that IXGM(k0) − Lk0
is not bounded below, we consider the

vector wn =
∑n

j=1 ej ∈ XGM(k0) for n > k0. Theorem 6.1(ii) implies that

log2(n+ 1) ∥wn∥ ⩾
n∑

j=1

∥ej∥ = n,

while

∥(IXGM(k0) − Lk0
)wn∥ =

∥∥∥∥ n∑
j=n−k0+1

ej

∥∥∥∥ ⩽ k0,

so
∥(IXGM(k0) − Lk0

)wn∥
∥wn∥

⩽
k0 log2(n+ 1)

n
→ 0 as n → ∞.

Consequently IXGM(k0) − Lk0
is not bounded below. □

The other lemma that we require originates in the work of Lebow and Schechter
[40, Theorem 5.4].

Lemma 6.6. Let X and Y be Banach spaces, and suppose that A ∈ B(X ,Y)
is an operator whose range is not closed. Then, for every ε > 0, there exists a
nuclear operator B ∈ B(X ,Y) such that ∥B∥ < ε and the closure of the range of
the operator A−B has infinite codimension in Y.

Proof. One can prove this lemma by following the steps of the proof of [40, The-
orem 5.4], starting in line 4 with the hypothesis that the range of the operator A
is not closed. The only modification required is that to ensure that the nuclear
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operator B =
∑∞

k=1(A
′y′k) ⊗ yk has norm less than ε, we must replace the third

inequality in [40, Equation (5.4)] with the estimate ∥A′y′k∥ < ε/2kak. □

Proof of Lemma 6.3(ii). Combining Lemmas 6.5 and 6.6, we can find a nuclear
operator B ∈ B(XGM(k0)) such that the closed subspace

Y2 = ran(IXGM(k0) − Lk0
−B)

has infinite codimension in XGM(k0).
To show that SCk0

(XGM(k0),Y2) ̸= ∅, let T ∈ B(XGM(k0),Y2) denote the oper-
ator IXGM(k0)−Lk0

−B regarded as a map into Y2, and let S ∈ B(Y2,XGM(k0)) be
the natural inclusion map. Then we have IXGM(k0)−ST = Lk0+B ∈ Φk0(XGM(k0))
because Lk0

∈ Φk0
(XGM(k0)) and B is compact. This shows that condition (i) in

Theorem 4.1 is satisfied, and the conclusion follows from condition (iv).
Finally, we observe that Y2 must be infinite-dimensional because otherwise T

would be a finite-rank operator, in which case i(IXGM(k0) − ST ) = 0 ̸= k0. □

Remark 6.7. Lemma 6.6 does not follow from the statement of [40, Theorem 5.4]
itself. In fact, Lebow and Schechter could have concluded their proof of [40, Theo-
rem 5.4] after its first four lines by invoking the well-known fact that if β(A) < ∞
for an operator A between Banach spaces, then A has closed range.

However, as we have seen, the remainder of their proof is very useful for our
purposes because it establishes the stronger conclusion stated in Lemma 6.6 that
we required to prove Lemma 6.3(ii). More precisely, what we needed was that we

can perturb the operator A by an inessential operator B to obtain that ran(A−B)
has infinite codimension in Y. We did not need that the perturbation B can be
chosen to be nuclear and have arbitrarily small norm; we chose to state those facts
simply because they follow automatically from the proof.

We remark that both Aiena–González and Ferenczi cite [40, Theorem 5.4] in their
work, but as far as we can see, that result does not suffice to give their conclusions.
Like us, they appear to rely on the stronger statement given in Lemma 6.6.

Proof of Theorem 1.11. (i). Set X = XGM(k0) and Y = Y1 ⊕ Y2, where Y1 is
a Banach space which is isomorphic to its hyperplanes and has an unconditional
basis (so for instance we can take Y1 = ℓ2 or Y1 = c0), and Y2 is the closed, infinite-
dimensional and infinite-codimensional subspace of X constructed in Lemma 6.3(ii).
Then X and Y are projectively incomparable, as observed in Remark 6.4. Moreover,
Theorem 6.1(iv) shows that γ(X ) = k0, while γ(Y) = 1 because Y1 being isomorphic
to its hyperplanes implies that the same is true for Y. Therefore eae(X ,Y) =
lcm(k0, 1) = k0 by (3.1).

In view of Proposition 1.7, this means that sc(X ,Y) is a multiple of k0. Hence,
to show that sc(X ,Y) = k0, it will suffice to show that SCk0(X ,Y) ̸= ∅, which
follows by combining Lemma 5.12(i) with the fact that SCk0(X ,Y2) ̸= ∅.

(ii). This proof is a slightly more elaborate variant of the proof of (i) that we have
just given. We begin by choosing two distinct spaces X1 and Y1 from the family
{ℓp : 1 ⩽ p < ∞} ∪ {c0}, so that X1 and Y1 are isomorphic to their hyperplanes,
have unconditional bases and are totally incomparable (as observed in [42, page 75],
for instance). Set X2 = XGM(k0), and let Y2 be the subspace of X2 constructed in
Lemma 6.3(ii), as in the first part of the proof. Then X = X1⊕X2 and Y = Y1⊕Y2

are projectively incomparable by Lemma 6.3(i), and γ(X ) = γ(Y) = 1 because X1

and Y1 are isomorphic to their hyperplanes, so eae(X ,Y) = 1 by (3.1).
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It remains to verify that sc(X ,Y) = k0. A previous observation and Corol-
lary 6.2 show that each of the pairs (X1,Y1), (X1,Y2) and (X2,Y1) is totally in-
comparable and therefore essentially incomparable, so ISC(X ,Y) = ISC(X2,Y2) by
Lemma 5.12(ii). On the one hand, k0 ∈ ISC(X2,Y2) because SCk0

(X2,Y2) ̸= ∅, so
Lemma 5.1(iii) implies that k0Z ⊆ ISC(X2,Y2). On the other, we have ISC(X2,Y2) ⊆
IΦ(X2) = k0Z, where the inclusion is obvious and the equality follows from Theo-
rem 6.1(iv). Hence ISC(X ,Y) = ISC(X2,Y2) = k0Z, and the conclusion follows. □

The proofs of the two parts of Theorem 1.13 are somewhat more complicated
variants of the proofs of the corresponding parts of Theorem 1.11 given above. They
involve one additional ingredient, namely Gowers’ solution to Banach’s hyperplane
problem, which was the first infinite-dimensional Banach space shown not to be
isomorphic to its hyperplanes (see [25], as well as [27, §(5.1)] for further results).
The following result summarizes the properties of this space that we require.

Theorem 6.8 (Gowers). There exists an infinite-dimensional, reflexive Banach
space XG with an unconditional basis such that XG fails to be isomorphic to any
proper subspace of itself.

Proof. The only part of this statement that Gowers did not prove explicitly in [25]
is that XG is reflexive. We believe that this fact is known to specialists, but as
we have been unable to locate a proof of it in the literature, we outline one here.
Since XG is not isomorphic to its hyperplanes, it cannot contain any complemented
subspace which is isomorphic to its hyperplanes, so in particular no complemented
subspace of XG is isomorphic to c0 or ℓ1. Hence, no subspace of XG is isomorphic
to c0 by Sobczyk’s Theorem (see, e.g., [42, Theorem 2.f.5]) or to ℓ1 by a much
more recent theorem of Finol and Wójtowicz [23]. (This result was previously
stated without proof in [41].) Therefore, a classical result of James (see [34], or [42,
Theorem 1.c.12(a)] for an exposition) shows that XG is reflexive. □

Proof of Theorem 1.13. (i). Following the same approach as in the proof of Theo-
rem 1.11(i), but using different notation, we define X1 = XGM(k0) and Y1 = c0⊕Y2,
where Y2 is the subspace of X1 constructed in Lemma 6.3(ii). Then, as shown in the
proof of Theorem 1.11(i), X1 and Y1 are projectively incomparable, so (1) holds,
and

eae(X1,Y1) = k0. (6.1)

Let Z = XG be the Banach space from Theorem 6.8. Then γ(Z) = 0, so
eae(Z,Z) = 0, which verifies (3). Moreover, Corollary 6.2 shows that Z is totally
incomparable with X1, and therefore also with Y2. Since every closed subspace of c0
contains an isomorphic copy of c0, while Z is reflexive, Z and c0 are also totally
incomparable, and therefore Z and Y1 are essentially incomparable. This shows
that (2) is satisfied.

It remains to verify (4). By (2), we can apply (1.11) to calculate eae(X ,Y) for
X = X1 ⊕Z and Y = Y1 ⊕Z. Using (6.1), we obtain

eae(X ,Y) = gcd(eae(X1,Y1), eae(Z,Z)) = gcd(k0, 0) = k0. (6.2)

Finally, we combine Lemma 5.12(i) with the fact that SCk0(X1,Y2) ̸= ∅ to
deduce that SCk0(X ,Y) ̸= ∅. In view of (6.2) and Proposition 1.7, this implies that
sc(X ,Y) = k0, as we already saw in the proof of Theorem 1.11(i).

(ii). As above, let Z = XG be the Banach space from Theorem 6.8 and set
Y1 = c0 ⊕ Y2, where Y2 is the subspace of XGM(k0) from Lemma 6.3(ii), but
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now define X1 = ℓ1 ⊕XGM(k0). Then X1 and Y1 are projectively incomparable by
Lemma 6.3(i). We showed in the first part of the proof that Y1 and Z are essentially
incomparable; a similar argument gives the same conclusion for X1 and Z. Hence
conditions (1)–(3) are satisfied.

Arguing as before, we see that the Banach spaces

X = X1 ⊕Z = ℓ1 ⊕XGM(k0)⊕Z and Y = Y1 ⊕Z = c0 ⊕ Y2 ⊕Z

satisfy γ(X ) = γ(Y) = 1, so that eae(X ,Y) = 1, and we also have SCk0
(X ,Y) ̸= ∅,

which implies that k0Z ⊆ ISC(X ,Y). To verify the opposite inclusion, we observe
that each of the pairs (ℓ1, c0), (ℓ1,Y2 ⊕ Z) and (c0,XGM(k0) ⊕ Z) is essentially
incomparable, so Lemma 5.12(ii) shows that

ISC(X ,Y) = ISC(XGM(k0)⊕Z,Y2 ⊕Z) ⊆ IΦ(XGM(k0)⊕Z) = k0Z,

where the final equality follows from Corollary 6.2 and Lemma 3.10(ii). Hence we
have ISC(X ,Y) = k0Z, and therefore sc(X ,Y) = k0. □

Acknowledgements. We are grateful to Tomasz Kania for having brought the
reference [23] to our attention.

This work is based on research supported in part by the National Research Foun-
dation of South Africa (NRF) and the DSI-NRF Centre of Excellence in Mathe-
matical and Statistical Sciences (CoE-MaSS). Any opinion, finding and conclusion
or recommendation expressed in this material is that of the authors and the NRF
and CoE-MaSS do not accept any liability in this regard.

References

[1] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Aca-

demic Publishers, Dordrecht, 2004.
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[8] H. Bart and V.È. Tsekanovskĭı, Schur complements and strong versions of matricial coupling
and equivalence after extension, Report Series Econometric Institute Erasmus University

Rotterdam, Report 9262/A (1992).
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