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Abstract—The investigation of stateful service mobility across
networking infrastructures is becoming increasingly important as
applications require stateful services capable of migrating from
centralized cloud data centers to edge computing infrastructures.
State-of-the-art approaches propose either machine learning so-
lutions for stateless service placement or stateful service mobility
using static and inflexible state management strategies. We believe
these approaches fall short of addressing the full length of the
stateful service mobility problem. In this paper, we revisit an
emerging concept named self-distributing systems, where a local
executing application manages to detach some of its constituent
(often stateful) components and place them in remote machines
as a solution for stateful service mobility. In previous work, a
machine learning approach to support self-distributing systems
has not been thoroughly investigated. We model the distribution
of stateful components across networking infrastructures as a
multi-armed bandits problem and use the UCB1 algorithm to
solve it as a first attempt at a flexible solution for stateful
service mobility. We conclude the paper by discussing the main
challenges and opportunities in this area.

Index Terms—stateful service mobility, edge-cloud infrastruc-
tures, reinforcement learning, self-distributing systems

I. INTRODUCTION

Applications deployed over the edge-cloud continuum [1]
are often required to move their services across the infrastruc-
ture to exploit the trade-off between resource availability and
network latency. Therefore, in order to explore code mobil-
ity throughout networking infrastructures without adding the
complexity of properly managing services’ state consistency,
the development of stateless service architectures, such as
Function-as-a-service and microservices, became popular.

Designing a stateless service-based system is a convenient
way to explore the underlying adaptive platforms that currently
support modern applications. Cloud and edge-based infrastruc-
tures are supported by containers, container-orchestrators (e.g.,
Mesos1, Kubernetes2), and softwarized networks that allow

1https://mesos.apache.org/
2https://kubernetes.io/

adaptation of the underlying infrastructure and enable mobility
of stateless services wrapped inside containers.

However, avoiding state when developing services is not
always possible. Many applications require stateful services to
properly function. Nowadays, there is an increase in demand
for service mobility capable of migrating from cloud-based
platforms to edge computing infrastructures deployed in close
proximity to end-user devices. To tackle such issues, some
papers have looked into the concept of stateful Function-
as-a-service [2], [3], but these solutions often employ static
mechanisms to deal with state when moving services across
platforms and do not employ any machine learning solutions
for service mobility. Moreover, there are many papers in the
literature that apply machine learning for service mobility, but
they often target stateless services [4], [5].

Self-distributing systems concept [6], on the other hand,
enables the flexible distribution of stateful components execut-
ing on a local container to other containers executing across
infrastructures (e.g., edge to cloud and vice-versa), choosing
a state management strategy that better fits the demands of
the application. Previous work that employs such a concept,
however, either does not explore machine learning in the
process of distributing components (using a brute-force online
strategy instead), or only targets stateless components. Thus,
we currently lack a study of a machine learning approach
for the problem of distributing stateful components across
networking infrastructures.

In this context, this paper presents the following contri-
butions: i) defining the problem of autonomously learning
where to place stateful components over distributed platforms,
ii) showing preliminary results that support the potential of
applying a completely autonomous solution for autonomous
placement of stateful components, and iii) identifying chal-
lenges and opportunities in this research field.

The remainder of this paper is organized as follows: Sec. II
surveys the most relevant related work; Sec. III revisits the



Self-distributing Systems concept and how it can be used to
explore stateful service placement. Moreover, this section also
defines self-distribution of stateful components as a multi-
armed bandits problem; Sec. IV describes our preliminary
evaluation and results; Sec. V discusses challenges and op-
portunities; and finally, Sec. VI concludes the paper.

II. RELATED WORK

This section surveys related on three main topics: i) state-
ful service mobility, ii) machine learning for placement and
mobility of services over networking infrastructures, and iii)
previous work on self-distributing systems.

We first survey work on stateful service mobility. In this
topic, Function-as-a-Service (FaaS) presents itself as the state-
of-the-art solution for enabling the mobility of stateful services
over edge-cloud computing infrastructures [2], [3], [7], [8].

As it is well-known, current FaaS programming models
provide mechanisms to replicate and move functions across
edge-cloud platforms. However, these platforms only provide
support for stateless functions, not offering any support for
stateful functions. On the other hand, recent papers in the liter-
ature [2], [3], [7], [8] present mechanisms to add a replicated
key-value (KV) store close to the executing function, along
with consistency strategies to avoid replicated inconsistent
data. By having a KV store and a consistency management
strategy close to functions, these approaches enable the use of
the FaaS abstractions to support stateful functions mobility.

Our approach differs from the stateful FaaS work in two ma-
jor aspects. First, current approaches for supporting replicated
data consistency in stateful FaaS are predefined and fixed, not
considering the details of how the function handles the data
nor the characteristics of the operating environment. Second,
the stateful FaaS do not leverage any machine learning solution
for autonomously deciding where to place each function.

Our approach, on the other hand, offers a set of state
consistency strategies that better fit with the way the state is
handled by the service or the characteristics of the executing
environment. For instance, if state is represented as a linked
list, we could either replicate such lists and provide a strict
consistency model when read operations (i.e., operations that
only read the list elements, but not change them) make up
the majority of the interaction between the service and the
state. Similarly, a different approach could be employed, such
as sharding a list (i.e., break the list into smaller fragments).
Sharding consists of placing each list fragment in different
replicas of the service. This can improve the system’s perfor-
mance when, for instance, the service’s state holds different
information depending on the geographical location of the
service. Furthermore, our approach employs a reinforcement
learning algorithm to decide which state management strategy
to use and where to place services.

The application of machine learning techniques for ser-
vice placement is not new. There is a set of works that
target the service placement problem using machine learning
techniques [4], [5], [9], [10]. These papers model service
placement as an optimization problem and provide a machine
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Fig. 1. Self-distributing systems architecture. The framework is depicted on
the left side of the figure, and the target application on the right side.

learning technique to solve such a problem considering net-
working metrics and goals. These papers are different from
our approach in some aspects and complementary in others.
The surveyed papers differ from ours in one key aspect: they
do not target stateful services. Handling state consistency in
replicated services is not easy and has interesting side effects
when learning the placement of such services at runtime. On
the other hand, these papers are similar because they aim to
autonomously solve the service placement problem and could
serve as complement to our solution in future work.

Finally, we present previous work that introduces and ex-
plores the concept of self-distributing systems [6], [11], [12].
The self-distributing system concept entails the development
of software from a collection of small software components,
and at runtime, relocate these components throughout a net-
working infrastructure. Component adaptation is performed
at runtime with the assistance of a component-based model
runtime [13], [14] (Dana3). Previous work has introduced the
concept of relocating stateful components at runtime with
different state consistency strategies. However, previous work
does not explore a machine learning algorithm for distributing
stateful components across a networking infrastructure. This
paper, on the other hand, investigates multi-armed bandits
algorithms [15] to solve the stateful service mobility.

III. SELF-DISTRIBUTING SYSTEMS

The concept of self-distributing systems has been previously
explored in the literature. Rodrigues-Filho et al. [12], and
Rodrigues-Filho and Porter [6] have introduced the concept
and explored it within the context of web-based services.

To realize the concept of self-distributing systems, we em-
ploy a framework consisting of four main modules: Learning,
Distributor, Perception, and Assembly, depicted on the left-
hand side of Fig. 1. This framework runs on a single process
at the OS-level, and it is responsible for assembling and
executing the actual application (hereafter referred to as target
application), depicted on the right-hand side of Fig. 1. In sum-
mary, this framework is responsible for assembling, executing,

3Dana Programming Language: https://www.projectdana.com/



monitoring, and deciding where to relocate or replicate the
components that make up the executing application.

The distribution of components at runtime made by the
self-distributing system framework is done by leveraging the
component-based model we employ. When we create the target
application, we use the Dana 4 programming language to code
each individual component that makes up the application.
Note that some of these constituent components hold state.
These components are similar to objects in object-oriented
programming languages because they are small and encap-
sulate state (i.e., attributes) and methods. Furthermore, we
make available a set of proxy components that the Distributor
inserts in the application’s architecture to replace any con-
stituent component. These proxy components act as the regular
components, providing the same functionality but they execute
as a Remote Procedure Call (RPC) stub. Once a method is
invoked in the proxy, it forwards incoming method invocation
to an instance of the component that is now executing in a
remote machine. Each available proxy component implements
a different state management strategy, depending on the state
the original component holds. For more details, see [12].

The distribution of stateful components consists of creating
new instances of a certain stateful component that is part
of the original target application across different machines
and replacing the local component instance with a proxy
component responsible for forwarding requests to the newly
created remote replicas of the component while maintaining
the replicas state consistently.

A. Learning with Multi-armed Bandits

Given the ability of the self-distributing systems framework
to distribute stateful components across an infrastructure, we
end up with the problem of deciding where to place the stateful
components of a target application. For this, we model the
placement problem as the multi-armed bandits’ problem [15].

The multi-armed bandits’ problem is a classic problem in
statistics where an agent must select actions to maximize its
reward. Most algorithms can be defined as an agent that has K
possible actions and T rounds; in each round, the agent must
select one action that has an associated reward. Therefore, such
algorithms must be able to balance exploitation by choosing
the apparent best action for that scenario and exploration, by
choosing different actions.

In our context, actions become different ways to compose
the system (i.e., the different ways to distribute stateful com-
ponents across the infrastructure), whereas the rewards are the
calculated response time for the target application executing
in a specific composition. The Distibutor module of the self-
distributing framework receives a set of proxy components
and a set of machines available in the infrastructure, it then
generates a list of actions based on the resulting set of possible
ways in which to distribute the target application over a given
infrastructure. The Perception module, in turn, is responsible
for calculating the average response time for the chosen target

4https://projectdana.com

application composition. This response time is later used to
calculate the machine learning algorithm’s reward.

We employ the UCB1 [15] algorithm to solve the multi-
armed bandit problem we just defined. UCB1 utilizes the
Upper Confidence Bound to choose its action. After choosing
each action at least once, which is usually done when the
model is initialized, the choice of an action in round n can be
expressed as follows:

An = argmax

(
x̄j +

√
2ln(n)

nj

)
(1)

where x̄j represents the average reward of an action, nj
the number of times action j was chosen. Commonly, it is
expected that the average reward and the right-size term are
scaled to [0, 1]. By employing Equation 1, the algorithm
is able to balance exploration and exploitation phases and
converge towards a specific distributed composition for the
target application with no training nor human interference.

IV. EVALUATION

A. Methodology and scenarios

We evaluate the performance of UCB1 to learn the optimal
composition for a web-based stateful service in four distinct
scenarios. Each defined scenario was designed to observe how
UCB1 performs when the application state varies in size and
response time. In our experiments, optimal composition means
the composition of the target application that yields the lowest
measured response time over a series of requests.

In detail, we create a web service that handles incoming
HTTP requests to retrieve elements stored in a linked list
(reading operation) or add/remove elements to the list (writing
operations). Moreover, for each retrieval request, the service
executes a prime number calculation function to simulate a
CPU-bound operation that impacts the service’s response time,
depending on the number of elements the list contains. As the
number of elements in the list increases, the service response
time increases according to a cost function (see Equation 2).

Let N be the length of the list that represents the state, and
k a positive integer value, the cost of an operation with a state
of size N is:

T =

N∑
i=1

π(i ∗ k) (2)

where π(n) is a function that counts the prime numbers less
than or equal to n. Therefore, both reading and writing oper-
ations have O(N3k2) complexity, with k defined empirically.

We also make available two distinct compositions for the
self-distributed systems framework to explore; the web service
can either execute in a single instance on a single machine
(local composition) or be distributed, having its list sharded
in half for two executing replicas of the service in two remote
machines (sharding composition). The self-distributing system
framework can seamlessly adapt the web service from one
composition to the other with no downtime.



B. Preliminary results

We used two machines for the evaluation setup: the first
machine managed the HTTP server, distribution, and processes
responsible for learning and coordinating distribution when in
use. Its specifications included an i7-8700 CPU 3.20 GHz
CPU, and 16 GB of DDR4 RAM. The second machine
hosted two instances of the application to which the state was
distributed, and its specifications are an i5-8265 1.6 GHz GPU
and an 8 GB DDR4 RAM. Both machines are connected to
the same local network.

The results depicted in this section were measured by
executing fully functioning services on a real-world setup on
a small scale testbed. We did not simulate any part of the
experiment.

Every graph presented in this section depicts three versions
of the web service. A fixed/static version of the web service
executing as a single instance on a single machine (Local
– blue line), a static version of the web service executing
in a distributed composition, where the list is sharded and
distributed between two replicas of the web service executing
on two remote machines (Sharding – orange line), and the
self-distributing system seamlessly adapting between the two
available compositions of the web service (local and sharding)
to decide which yields the best response time at runtime (green
line). The y-axis is the measured response time, and the x-axis
represents the requests handled by the services over time.

The first scenario consists of a state represented by a two-
element list, with a cost factor k = 2. In this scenario, the
list’s size remains constant, and the clients make consecutive
requests to retrieve the elements from the list. As seen in
Figure 2, the sharding composition has, on average, higher
response time and higher variance of values than the strictly
local composition, which might be explained by the network
latency to access the remote replicas of the service. It is
clear that the local composition is more advantageous in this
scenario, and the self-distributing system, shown in green,
clearly converges to this composition.

The second scenario consists of a state represented by a 12-
element list, with a cost factor k = 5. Similar to the previous
scenario, the list’s size remains constant, and the clients make
multiple requests to retrieve the elements from the list. As seen
in Figure 3, the sharding composition has an average response
time of 392 ms, while the strictly local composition has 640 ms
on average. As expected, after exploring both compositions,
the self-distributing system converges to the distributed setup
(sharding composition).

In the third scenario, the system is initialized with an empty
state, and one element is added to the list every 2.5 seconds.
The purpose of this experiment is to assess if UCB1 is capable
of converging when the size of the state increases. In this case,
UCB1 should prioritize keeping the state local for small lists
and shard the state as the size increases. As seen in Figure 4,
the remote composition becomes advantageous from around 10
elements in the list. The graph shows, however, that the system
is unable to converge to the composition with a lower response
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Fig. 2. The list’s size remains fixed with size 2, and the cost factor is defined
as k = 2. The local composition yields the best overall response time. The
self-distributing system converges to the local composition.
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Fig. 3. The list’s size remains fixed with size 12, and the cost factor is defined
as k = 5. The sharding composition yields the best overall response time.
The self-distributing system converges to the sharding composition.

time for large states. One reason why this behavior could
occur is, since the range of response time value is unknown a
priori, it is not possible to establish a function that restricts the
values obtained to the necessary interval [0, 1]: as the system
state increases in size, so does the processing time required
to add elements to the list. This makes UCB1 inefficient in
converging towards a composition within a reasonable time.

Furthermore, as the size of the list increases, the adaptation
cost becomes more significant and exceeds the response time
shown in both fixed compositions (local and sharding). In
many instances, when the self-distributing system adapts from
one composition to another, the size of the state has a negative
effect on its performance, as it demands more time to properly
handle the state to avoid creating inconsistencies during the
adaptation process.
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Fig. 4. The list’s size increases over time (factor k = 2). The sharding
composition yields the best overall response time after the list reaches a certain
size (after 0 on the x-axis). The self-distributing system does not converge.
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Fig. 5. The list’s size decreases over time (factor k = 2). The sharding
composition yields the best response time while the list maintains a certain
size (before 150 on the x-axis). The self-distributing system does not converge.

Finally, the fourth scenario is the opposite of the previous
one: the list is initialized with 150 elements, while elements
are removed at every 2.5-second interval throughout the exper-
iment. Similar to the previous scenario, this experiment aims
to determine if UCB1 can converge when the size of the state
decreases; the system should adopt the sharding composition
for large lists and swap to the local composition when it
reaches a small size, as elements are removed.

Figure 5 illustrates the UCB1’s behavior in this final sce-
nario. While both static compositions behave as expected,
the self-distributing system clearly does not converge to any
composition: the chosen action changes constantly, and, as
in the previous scenario, the response time perceived by the
client is higher than any of the static compositions. As outlined
above, possible reasons for this behavior are the lack of a well-

defined cost function and the varying overhead caused to the
system during adaptation when the size of the state fluctuates.

V. CHALLENGES AND OPPORTUNITIES

This section describes the identified challenges in providing
a machine learning approach for handling stateful services
based on the preliminary results we reported. We also describe
opportunities for future work in this area.

As discussed in the evaluation section (see Sec. IV), our
preliminary results showed some limitations of applying an
off-the-shelf version of the UCB1 algorithm. First, we see that
the system’s runtime adaptation has a cost associated with the
system’s state size, which greatly impacts the system’s ability
to learn from its current context and correctly choose an action.

Due to the unpredictability of the response time, as a con-
sequence of the adaptation cost in relation to the state’s size,
the lack of a function that limits the cost to the [0, 1] interval
expected by UCB1 directly impacts its ability to converge.
Therefore, it is essential that the learning algorithm is modified
to consider fluctuations in the reward signal. One possible
alternative is to apply Contextual Bandits algorithms [16], in
which each choice made by the algorithm considers both the
action’s characteristics (features) and the reward, instead of
just considering the reward.

Furthermore, the UCB1 was unable to identify scenarios in
which the ideal service composition changed over time, as a
consequence of increasing or decreasing the state size. This
limitation is possibly exacerbated by the fact UCB1 considers
only one metric (response time, in our experiment) during the
learning process. Thus, the introduction of other metrics may
be necessary to better characterize contexts that would help
the convergence towards the ideal composition.

The discussed limitations were identified by applying a
popular multi-armed bandits algorithm with no modifications
to consider the unique aspects of the proposed learning prob-
lem. Therefore, we envision the exploration of this problem
following two paths: first by altering UCB1 algorithm to
consider new metrics and adjust its cost function, and second
by exploring new types of algorithms (e.g., Contextual Ban-
dits [16]) to see which approach enables proper convergence
of the self-distributing system. Moreover, we believe that the
investigation of different types of state and different stateful
services (e.g., virtual network functions, instead of web-based
service) are also interesting research opportunities.

Finally, the exploration of larger search spaces resulting
from the possible ways in which a stateful service can be
distributed is a crucial line of research. In our preliminary
experiments, our approach explored a search space composed
of two compositions (local and sharding) over a single ma-
chine or replicated across two machines. In real settings,
the infrastructure may have hundreds of nodes, which would
dramatically increase the possibilities of distributing the ser-
vice’s components. Approaches such as the one introduced by
Ontanón [17] are interesting candidates to explore.



VI. FINAL REMARKS

This paper explored the problem of autonomously learning
how to distribute stateful components across networking in-
frastructures. We implemented a self-distributing stateful web
service that can autonomously adapt and converge towards
specific compositions using the UCB1 algorithm, a Multi-
armed bandits algorithm.

By measuring the service’s response time, the system can
correctly converge to the best-performing composition when
the state’s size remains static. However, UCB1 was unable to
successfully converge in situations where the size of the state
changes. Regardless of the presented limitation, this paper
shows the potential of using multi-armed bandits algorithms
to solve the stateful service placement problem.

In future work, we expect to further investigate the appli-
cation of other algorithms, and explore different services with
varying state characteristics.
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