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ABSTRACT
In this paper, we present On-line Estimators for Ad-hoc Task Execu-
tion (OEATE), a novel algorithm for teammates’ type and parameter
estimation in decentralised task execution. We show theoretically
that our algorithm can converge to perfect estimations, under some
assumptions, as the number of tasks increases. Empirically, we show
better performance against our baselines while estimating type and
parameters in several different settings. This is an extended abstract
of our JAAMAS paper available online [9].
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1 INTRODUCTION
Autonomous agents are often designed to follow a decentralised
execution of tasks, autonomously deciding which task to pursue
and how to form partnerships [6]. This strategy has shown great
improvement for multi-agent systems (MAS) in many relevant
domains and usually follows a task-based perspective, where agents
reason about their teammates’ targets and estimate their behaviour
in order to improve coordination [1, 2, 5].Wemodel and denominate
this situation as a Task-based Ad-hoc Teamwork problem.

As an extended abstract of our JAAMAS’s paper [9], we present
On-line Estimators for Ad-hoc Task Execution (OEATE), a novel and
lightweighted algorithm, performing teammates’ types and param-
eters estimations from scratch at each run, rather than relying on
pre-trained models. Under some assumptions, it shows convergence
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to a perfect estimation as the number of tasks increases. Our ex-
periments consider two collaborative domains – the level-based
foraging and the capture-the-prey domain – and demonstrated
lower errors for estimations compared to the state-of-the-art.

2 OUR MODEL AND TARGET CONCEPTS
•Task-based Ad-hoc TeamworkModel: this model is an extension
of ad-hoc teamwork models [3, 4, 10], where agents intend to coop-
erate with teammates and coordinate their actions to reach common
goals without relying on any prior communication or coordina-
tion protocols. From the ad-hoc agent perspective, the task-based
ad-hoc teamwork model considers that: (i) there is one learning
agent 𝜙 acting in the same environment as a set of non-learning
agents 𝜔 ∈ Ω, 𝜙 ∉ Ω; (ii) the team endeavour to accomplish a set
of tasks T autonomously and cooperatively, since a task 𝜏 ∈ T may
require multiple agents to be completed, and; (iii) 𝜙 can estimate
and understand the 𝜔’s models as time progresses (by observing
the scenario) to improve the team’s performance, since teammates’
features (types and parameters) are previously unknown.
•Estimation: Considering that agent 𝜙 does not have information
about each agent 𝜔’s true type \∗ and true parameters p∗, it must
reason about all possibilities for type and parameters from distri-
bution Δ. After each estimation iteration, we expect that agent 𝜙
will have a better estimation for type \ and parameter p in order
to improve its decision-making, hence, the team’s performance. In
further steps, as agent 𝜙 observes the behaviour of all 𝜔 ∈ Ω, it
can keep updating all the estimated parameter vectors p, and the
probability of each type P(\ )𝜔 , based on the current state. Finally,
the estimated models are used to improve 𝜙 ’s planning process.
•Planning: In this work, 𝜙 plans using the UCT-H algorithm [10].
As in previous works, we sample a type \ ∈ Θ for each non-learning
agent from the estimated type probabilities each time we re-visit
the root node during the tree search process. Then, we use the
newly estimated parameters p for a corresponding sampled type to
improve the quality of the search, hence, agents’ coordination and
planning, by a better decision-making process.

3 OEATE: FUNDAMENTALS AND ALGORITHM
•Sets of Estimators: In OEATE, there are sets of estimators E\𝜔
for each type \ and each agent 𝜔 that the agent 𝜙 reasons about.



Moreover, each set E\𝜔 has a fixed number of 𝑁 estimators 𝑒 ∈ E\𝜔 .
Therefore, the total number of sets of estimators for all agents are
|Ω| × |Θ|. An estimator 𝑒 of E\𝜔 is a tuple: {p𝑒 , 𝑐𝑒 , 𝑓𝑒 , 𝜏𝑒 }, where: (i)
p𝑒 is the vector of estimated parameters and each element is defined
in the corresponding element range. (ii) 𝑐𝑒 and 𝑓𝑒 hold, respectively,
the success and failure score of each estimator 𝑒 in predicting tasks.
(iii) 𝜏𝑒 is the task that 𝜔 would complete, assuming type \ and
parameters p𝑒 . Using the estimated parameters p𝑒 and type \ , we
assume it is easy to predict𝜔 ’s target task at any state. All estimators
are randomly initialised and evaluated whenever a task is done. The
estimators that are not able to make good predictions after some
trials are removed and replaced in a fashion inspired by Genetic
Algorithms [8]. Figure 1 illustrates how OEATE analyses the world
and defines the actions of a set of estimators for an agent.
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Figure 1: Example of 𝜙 (red agent) thinking about 𝜔 agents’
behaviour (blue agents), when performing foraging.

•Bags of successful parameters: Given the vector of parameters
p𝑒 =< 𝑝1, 𝑝2, ..., 𝑝𝑛 >, if any estimator 𝑒 succeeds in task prediction,
we keep each element of the parameter vector p𝑒 in bags of suc-
cessful parameters to use them in the future during new parameter
vector creation. Accordingly, there is a bag of parameters B\

𝜔 for
each type \ ∈ Θ as there is a estimator set E\𝜔 for each type. These
bags are not erased between iterations.
•Choose Target State: Besides estimation of type and parameter
for each 𝜔 ∈ Ω, 𝜙 must be able to estimate the Choose Target State
(𝔰𝑒 ) of each 𝜔 . The Choose Target State of an 𝜔 agent represents the
state where a non-learning agent 𝜔 chooses the task to pursue.
•Estimation: The algorithm is divided into five steps, which is
executed for all agents in Ω at every iteration:
(i) Initialisation: responsible for initialising the estimator set and
the bags of successful estimators for each agent 𝜔 ∈ Ω.
(ii) Evaluation: OEATE increases the failure or the success score
of each estimator based on the correct prediction of the 𝜔 ’s target
task. If the estimator successfully predicts the task, it will be added
to its respective bag. Otherwise, it will be up for elimination.
(iii) Generation: step where our method replaces the estimators
removed in the evaluation process for new ones.
(iv) Estimation: process of calculating the types’ probabilities and
expected parameters’ value for each existing estimators set. The
calculation is based on the success rate of each set.

(v) Update: responsible for analysing the integrity of each estimator
𝑒 and its respective chosen target 𝜏𝑒 given the current world state.
If it finds some inconsistency, a new prediction is made.
•Algorithm Outline: Considering an existent and initialised esti-
mation set (by (i)), after performing an action 𝑎𝑟𝑒𝑎𝑙 and collecting
a real observation 𝑜𝑟𝑒𝑎𝑙 from the world, OEATE will follow the
cyclical algorithm for estimation: 𝑎𝑟𝑒𝑎𝑙 → 𝑜𝑟𝑒𝑎𝑙 → (𝑣)𝑈𝑝𝑑𝑎𝑡𝑒 →
(𝑖𝑖)𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 → (𝑖𝑖𝑖)𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 → (𝑖𝑣)𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 → 𝑎𝑟𝑒𝑎𝑙 ...

4 OEATE: THEORETICAL ANALYSIS
In this section, we provide an outline for our theoretical analysis,
which is fully available in our journal paper.
•Assumption 1: Any (p, \−), and any (p−, \∗) has a lower proba-
bility of making a correct task estimation than (p∗, \∗), which finds
the correct Choose Target State (𝔰𝑒 ).
•Assumption 2: Any (p, \−), and any (p−, \∗) will not succeed
infinitely often and is limited by a finite constant 𝑐 .
•Theorem 1: OEATE estimates the correct parameter ∀𝜔 ∈ Ω as
|T| → ∞. Hence, P(\∗) → 1, considering the above assumptions.

5 RESULTS
In this section, we summarise the results found in our experiments
and illustrate, in Figure 2, the expected decaying (considering the
estimation error) of OEATE against the state-of-art baselines. We
suggest our journal paper to the reader interested in a complete
analysis of our method in different benchmark settings [9].
•Overall Trend: OEATE shows an almost monotonic decreasing
trend in both types (𝜌 < 0.025) and parameter (𝜌 < 0.048) errors,
significantly outperforming the baselines in some scenarios.
•Increasing number of tasks: OEATE can significantly outperform
the baselines parameter and type estimation (both with 𝜌 < 0.002)
for scenarios where key observations (distributed tasks completion)
are more often available.
•Increasing number of types: This setting presents no clear impact
in OEATE’s parameter and type estimation. On the other hand,
OEATE is still outperforming the baselines for most cases (𝜌 < 0.11).
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Figure 2: Parameter and type estimation errors.

6 CONCLUSIONS
In this work, we have presented OEATE and studied it, theoretically
and experimentally, in order to verify the advantages of employ-
ing a task-based perspective for agents’ planning and estimation
of type and parameters for diverse settings in ad-hoc teamwork
domains. This work opens the path to diverse studies regarding the
improvement of ad-hoc teams by using an information-oriented
approach. Our source code is available at GitHub [7].

https://github.com/lsmcolab/adleap-mas/
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