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We briefly discuss cosmic inflation, which is the dominant paradigm for the generation of the
large scale structure in the Universe and also for arranging for the initial conditions of the hot Big
Bang. We then present quintessential inflation, which also accounts of the observed dark energy. We
discuss how quintessential inflation can be successfully modelled in modified gravity in the Palatini
formalism. Finally, we focus on the generation of primordial gravitational waves by inflation and
how their spectrum can be enhanced when the early Universe goes through periods of stiff equation
of state. This results in gravitational waves with a characteristic spectrum, which may well be
observed in the near future, providing insights for the background theory.
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1. COSMIC INFLATION

The history of the Universe requires special initial
conditions, which are arranged by cosmic inflation
[1, 2]. In a nutshell, cosmic inflation can be defined
as a period of accelerated expansion in the Early Uni-
verse [3, 4]. Inflation produces a Universe which is
large, uniform and spatially flat according to observa-
tions. Typically, inflation is realised via the inflation-
ary paradigm, which states that the Universe inflates
when dominated by the potential energy density of a
scalar field, called the inflaton field.

The Klein-Gordon equation of motion of a homoge-
neous scalar field φ is

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (1)

where H is the rate of the Universe expansion (Hubble
parameter), the dot denotes derivative with respect to
the cosmic time t and the prime denotes derivative
with respect to the field: ′ ≡ ∂/∂φ. The above is
of the same form as the equation of motion of a ball
sliding down a potential under friction determined by
H (see Fig. 1). Potential domination, therefore, sug-
gests that the kinetic energy density is subdominant
to the potential energy density V , and the field slowly
rolls (slowly varies in field space) down a potential
plateau, called the inflationary plateau. Inflation ends
at a characteristic value φend when the potential be-
comes steep and curved. After the end of inflation,
the inflaton field oscillates around its vacuum expecta-
tion value (VEV). These coherent oscillations amount
to inflaton particles, which decay into the primordial
plasma, through a process called reheating.

Inflation however, should not make the Universe per-
fectly uniform, because in order for galaxies to form,
initial perturbations in the density of the Universe are
needed. Indeed, inflation makes the Universe largely
uniform but also introduces minor deviations from uni-
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Figure 1. Sketch of the typical inflationary potential. Due
to the form of the equation of motion (1), we can envis-
age the system as a ball rolling down a flat region of the
potential, called the inflationary plateau. At some critical
value of the inflaton field φend, the potential becomes steep
and curved such that inflation is terminated. Afterwards,
the field oscillates around its vacuum expectation value
〈φ〉. The figure also depicts the possibility that the infla-
ton field slow-rolls down a steep potential under excessive
friction (and inflation ends when this friction is not enough
for inflation at φ′

end) but this possibility is not favoured by
the observations.

formity which give rise to the Primordial Density Per-
turbations (PDPs), which in turn become the seeds for
the formation of structures such as galaxies [4]. Infla-
tion does this through the particle productions process
which roughly operates as follows:

Accelerated expansion of space is superluminal.
This superluminal expansion during inflation amplifies
the quantum fluctuations of the inflaton field, which
become classical perturbations of the field through
quantum decoherence. Consequently, inflation contin-
ues a little bit more in some locations than in others.
Thus, at the end of inflation space expands in a differ-
ent way in neighbouring locations, which introduces
the PDPs (see Fig. 2).

The PDP reflects itself onto the Cosmic Microwave
Background radiation (CMB) through the Sachs-
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Figure 2. Sketch of the edge of the inflationary plateau,
where inflation is terminated at the critical value φend.
The spatial direction x is also depicted (assumed one-di-
mensional for illustrative purposes). Perturbations of the
inflaton field φ imply that, while it is rolling down its po-
tential, it reaches the critical value φend at different times
at different locations (values of x). This means that in-
flation continues a little bit more in some locations than
in others, which leads to the generation of the primordial
density perturbations.

Wolfe effect [5]. Indeed, precise CMB observations
have revealed the existence of the PDP at the level
of ∼ 10−5, with the characteristics suggested by infla-
tion (acoustic peaks). The agreement with the obser-
vations (see Fig. 3) is spectacular [6].
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Figure 3. CMB temperature perturbation spectrum. The
graph is a plot of Dℓ = ℓ(ℓ+ 1)Cℓ/2π, where Cℓ is the CMB
temperature anisotropy, as a function of the multipole mo-
ment ℓ of spherical harmonics. For ℓ < 30 the scaling of the
horizontal axis changes. The shaded area depicts the re-
gion under the influence of cosmic variance, which suggests
that deviations from the theoretical curve (depicted by the
solid line) within the shaded area are due to poor statistics
and do not have a physical meaning. The effect of cosmic
variance diminishes (virtually disappears) for large ℓ. For
ℓ ≥ 30 we have the clear depiction of seven acoustic peaks.
The line between the binned data points is not the line
which connects the dots; it is the theoretical line predicted
by inflation. The agreement with the data is impressive.
Figure taken from Ref. [6].

The PDPs are predominately adiabatic, Gaussian

and scale invariant [4]. Adiabaticity suggests that they
are the product of a single degree of freedom, such as
the inflaton field. Gaussianity reflects the randomness
of the original quantum fluctuations. Approximate
scale invariance suggests that inflation is of quasi-de
Sitter type, when the density ρ is roughly constant
during inflation. The barotropic (equation of state)
parameter of a homogeneous scalar field is

w ≡ p

ρ
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
, (2)

where p is the pressure. According to the inflationary
paradigm, the kinetic energy density ρkin is subdom-
inant to the potential during inflation, which means
ρkin ≡ 1

2 φ̇
2 ≪ V . As a result, during quasi-de Sitter

inflation we have w ≈ −1.
There is a lot of emphasis put on the PDP gener-

ated by inflation, because the perturbations generated
can discriminate between different inflation models. In
particular, two observables are of prime interest: the
scalar spectral index ns and the tensor-to-scalar ratio
r. For the scalar perturbations, the spectrum can be
written as Pζ(k) ∝ kns(k)−1, where k is the momen-
tum scale. A perfectly scale invariant spectrum would
correspond to ns = 1, in which case all k-dependence
of Pζ would disappear. Indeed, observations suggest
that, for negligible tensor perturbations, the spectral
index is very close to unity ns = 0.965± 0.004 [6]. Cru-
cially, the spectral index is not exactly equal to unity
because the end of inflation is near and the inflation-
ary plateau is not exactly flat. Therefore, a slightly red
spectrum is expected, exactly as observed. The tensor-
to-scalar ratio is r ≡ Pζ/Pt, where Pt is the spectrum
of the tensor perturbations (primordial gravitational
waves). Observations suggests that there is a stringent
upper limit r < 0.036 [7], which can be even tighter
under certain conditions. Precision observations of ns

and r have already resulted in the exclusion of many,
otherwise well motivated inflation models (see Fig. 4).

1.1. R
2 inflation

The seminal paper of Alexei A. Starobinsky, which
appeared in 1980, even before the name ‘cosmic in-
flation’ was coined, introduced the very first and the
most successful to date inflation model [2]. It is a mod-
ified gravity theory with a simple Lagrangian density

L =
1

2
m2

PR+ αR2 , (3)

where mP is the reduced Planck mass and R is the
scalar curvature (Ricci scalar). The first term in the
above corresponds to the standard Einstein-Hilbert ac-
tion. However, the second term, whose importance
is parametrised by the non-perturbative coefficient
α, corresponds to modified gravity. This quadratic
gravity term introduces an additional degree of free-
dom. The latter can be flushed out if we switch
from the modified gravity frame (called the Jordan
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Figure 4. Observations of BICEP/Keck Collaboration plot
the tensor to scalar ratio r with respect to the scalar spec-
tral index ns. The allowed parameter space is shown in
blue (contours depict the 95% c.l. [light] and 67% c.l.
[dark]). Observations exclude families of otherwise moti-
vated inflation models. For example, the clearly excluded
purple band and orange band correspond to natural and
chaotic monomial inflation models respectively. The figure
was taken from Ref. [7].

frame) to the frame of Einstein gravity (called the Ein-
stein frame) through a conformal transformation of the
spacetime metric, of the form gµν → Ω2gµν , where the
conformal factor for this theory is Ω2 = 1 + 4α

m2
P

R. In

the Einstein frame the Lagrangian density becomes

L =
1

2
m2

PR+
1

2
(∂φ)2 − V (φ) , (4)

where R is now calculated using the new metric and,
apart from the Einstein-Hilbert term, L features a
minimally coupled (to gravity), canonically normalised
scalar field φ, where (∂φ)2 ≡ −∂µφ∂µφ. This scalar
field corresponds to the new degree of freedom intro-
duced by the original quadratic gravity term, and it is

called the scalaron field with Ω2 = exp
(
√

2
3 φ/mP

)

.

For this theory, in the Einstein frame, the scalar
potential is

V (φ) =
m4

P

16α

(

1− e−
√

2
3
φ/mP

)2

. (5)

The form of the above potential is shown in Fig. 5.
The model predicts

ns = 1− 2

N
and r =

12

N2
, (6)

where N is the number of e-folds (exponential ex-
pansions) of remaining inflation when the cosmologi-
cal scales exit the horizon during inflation (they are

pushed out by the superluminal expansion). Typi-
cally, N = 50− 60 depending on the details of reheat-
ing (prompt reheating results in N = 60). The above
suggest that the Starobinsky inflation predictions are
in the sweet spot of the observations. For the ampli-
tude of the PDP to match the CMB observations we
require α = 5.5225× 108.
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Figure 5. Form of the Starobinsky potential, which applies
to both the cases of R2-inflation and Higgs inflation. The
plot clearly depicts the inflationary plateau at large values
of the inflaton field. At small values, the potential be-
comes steep and curved and the inflaton oscillates around
its VEV, which is zero in this case. Fiducial units are used.

1.2. Higgs inflation

Another seminal inflation model was put forward by
Fedor L.Bezrukov and Mikhail Shaposhnikov in 2008
[8]. The model considers the electroweak Higgs field
h (first observed in CERN in 2012) as the inflaton.
It is another modified gravity theory with Lagrangian
density

L =
1

2
m2

PR+
1

2
ξRh2 +

1

2
(∂h)2 − U(h) , (7)

where ξ parametrises the strength of the non-minimal
coupling to gravity of the Higgs field, which is nat-
urally introduced by quantum corrections in curved
spacetime. The potential is U(h) = 1

4λh(h
2 − v2)2,

where v = 246GeV is the Higgs VEV and λh is its
self-coupling, which at low energies is λh = 0.129.

We switch to Einstein gravity using the conformal

transformation Ω2 = 1 + ξh2

m2
P

. In the Einstein frame

the Lagrangian density is given by Eq. (4) with poten-
tial

V (φ) =
λhm

4
P

4ξ2

(

1− e−
√

2
3
φ/mP

)2

. (8)

The above is of exactly the same form as the potential
in Eq. (5) if we identify ξ2 = 4αλh. Thus, the inflation-
ary predictions are equally successful. In fact, because
the branching rations of the Higgs decays into the stan-
dard model particles are known, reheating is unam-
biguously defined and N ≃ 57. As a result, Eq. (6)
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suggests ns = 0.965 and r = 0.0037, which are in excel-
lent agreement with observations. To have the correct
amplitude of the PDP we require ξ ≃ 47000/

√
λh.

2. DARK ENERGY

Observations suggest that the late Universe is also
undergoing accelerated expansion. This is attributed
to an exotic substance called dark energy, which makes
up almost 70% of the Universe content at present [9].
Dark energy could correspond to a positive cosmolog-
ical constant Λ but this requires phenomenal fine-tun-
ing (of order 10−120) which has been called “the worse
fine-tuning in physics” (Lawrence Krauss). As a result,
other proposals have been put forward. A prominent
such suggestion is quintessence [10], which amounts
to the fifth element after baryonic (normal) matter,
dark matter, photons (mainly CMB) and neutrinos.
Quintessence is a scalar field like the inflaton, typi-
cally slow-rolling down a runaway potential; a feature
called the quintessential tail. Thus, the dark energy
observations suggest that the Universe is undergoing
a late inflation period, driven by quintessence. This
late inflation is also quasi-de Sitter, with barotropic
parameter −1 ≤ w ≤ −0.95 [6].

Being a dynamical degree of freedom, quintessence
introduces an additional requirement (compared with
just Λ), that of its initial conditions. Indeed, in thaw-
ing quintessence the field is initially frozen only to
unfreeze near the present time to become dominant.
But the initial (frozen) value of the field must be such
that the potential energy density of the field today is
comparable (∼ 70%) to the density of the Universe at
present. This is called the coincidence requirement [9].

3. QUINTESSENTIAL INFLATION

A promising way to overcome the coincidence re-
quirement is the idea of quintessential inflation, pro-
posed first by P. James E. Peebles and Alexander
Vilenkin in 1999 [11]. In a nutshell, quintessential in-
flation is the identification of quintessence with the
inflaton field.

Quintessential inflation is a natural idea, as
quintessence and the inflaton are both scalar fields.
It is also economic because one employs only a sin-
gle degree of freedom. Furthermore, it allows to treat
the physics of inflation in the early Universe and dark
energy in the late Universe in a common theoreti-
cal framework, valid over a vast range of energies.
Quintessential inflation has to satisfy the observations
both cosmic inflation and of dark energy, which is very
difficult but not impossible. Finally, the initial condi-
tions of quintessence (the coincidence requirement) are
fixed by the inflationary attractor.

The potential of quintessential inflation models typi-
cally features two flat regions, the inflationary plateau
and the quintessential tail [3] (see Fig. 6). In contrast
to the traditional inflationary paradigm, the inflaton

field does not decay after the end of inflation, because
it has to survive until the present time and become
quintessence. Consequently, reheating has to occur
without the decay of the inflaton field. Fortunately,
there are many motivated mechanisms that achieve
this.

-10 -5 5 10

0.5

1.0

1.5

2.0

V (φ)

φ

QUINTESSENTIAL TAIL

INFLATIONARY PLATEAU

Figure 6. The typical potential of quintessential inflation.
It depicts a runaway direction with VEV displaced at in-
finity. There are two flat regions, the inflationary plateau
and the quintessential tail, chosen (without loss of general-
ity) to be at small and large values of the scalar field.

3.1. Quintessential inflation in Palatini gravity

A promising framework for the construction of
quintessential inflation models is modified gravity on
the Palatini formalism [12]. The Palatini formalism
considers both the spacetime metric and the connec-
tion to be independent degrees of freedom, in contrast
to the metric formalism, where the connection is the
Levi-Civita. With the Einstein-Hilbert action, both
formalisms result in general relativity. However, mod-
ified gravity actions result in different theories when
assuming the metric or the Palatini formalism. Here
we will argue that the Palatini formalism gives rise
naturally to a potential suitable for quintessential in-
flation.

We consider the Lagrangian density in the Jordan
frame

L =
1

2
m2

PR+ αR2 +
1

2
(∂ϕ)2 − V (ϕ) , (9)

where we considered a quadratic gravity term, as in
Starobinsky inflation discussed in Sec. 3, and we have
explicitly introduced a canonically normalised scalar
field ϕ. We did this because, in the Palatini formalism,
the quadratic gravity term R2 does not introduce an
additional degree of freedom (there is no scalaron).

Using a suitable conformal transformation, we
switch to the Einstein frame, where the Lagrangian
density is

L =
1

2
m2

PR +
1
2 (∂ϕ)

2

1 + 16αV (ϕ)
m4

P

− V (ϕ)

1 + 16αV (ϕ)
m4

P

. (10)
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We see that in the Einstein frame the scalar field has
a non-canonical kinetic term. Notice however, that,
when V is very large, the unity in the denominator
is negligible and the potential density approaches the
constant value: m4

P /16α, This corresponds to the in-
flationary plateau, as the potential energy density does
not depend of the value of the inflaton field, i.e. it is
the same for a range of ϕ values.

In the opposite limit, when V is very small then
the denominator becomes unity and the field becomes
canonically normalised. Thus, we only need a suit-
able runaway potential to arrange for the quintessen-
tial tail, while the Palatini setup generates the infla-
tionary plateau by “flattening” the potential at high
energies.

We apply this finding in the following setup. Now
the Lagrangian density in the Jordan frame is [13]

L =
1

2
m2

PR+ αR2 +
1

2
ξRϕ2 +

1

2
(∂ϕ)2 − V (ϕ) , (11)

where we also consider a non-minimal coupling of ϕ to
gravity, which is expected naturally by quantum cor-
rections in curved spacetime, as we mention in Sec. 1.2.

After performing a conformal transformation we
bring the theory in the Einstein frame. We also rede-
fine a canonically normalised inflaton field φ by using
the relation

(

dφ

dϕ

)2

=
1 + ξϕ2/m2

P

(1 + ξϕ2/m2
P )

2 + 16α
m4

P

V (ϕ)
. (12)

Then, the Lagrangian density becomes

L =
1

2
m2

PR+
1

2
(∂φ)2 − U(φ) , (13)

where the potential is

U(φ) =
V (ϕ(φ))

[1 + ξϕ2(φ)/m2
P ]

2 + 16α
m4

P

V (ϕ(φ))
. (14)

We see that, again, if V is very large, we approach the
inflationary plateau with U ≃ m4

P /16α. We only need
a runaway potential. We choose a simple exponential
potential [13], which is amply motivated by fundamen-
tal theory:

V (ϕ) = V0 e
−κϕ/mP , (15)

where κ is the strength of the exponential. As we
approach the quintessential limit the potential of the
quintessential tail approaches the form [13]

U(φ) ≃ V0

exp
[

− κ√
ξ
sinh

(√
ξ φ
mP

)]

cosh4
(√

ξ φ
mP

) , (16)

where we used the fact that, at late times, the
quadratic gravity term is negligible, which means
that Eq. (12) can be solved exactly to give√
ξϕ = mP sinh

(√
ξφ/mP

)

. In the limit
√
ξϕ ≪ mP ,

we recover the classic exponential quintessential tail
U(φ) ≃ V0 e

−κφ/mP .

4. KINATION

The Universe history in quintessential inflation typ-
ically includes a period, just after inflation, where the
Universe is dominated by the kinetic energy density
of the rolling scalar field ρkin = 1

2 φ̇
2. This period is

called kination [14] and usually follows the end of in-
flation until reheating, when the radiation era of the
hot Big Bang begins.

Indeed, as the inflaton rolls off the inflationary
plateau, it plunges down the potential cliff (see Fig. 6)
and becomes kinetically dominated, i.e. V ≪ ρkin.
Because the inflaton continues to dominate the Uni-
verse, according to Eq. (2), the barotropic barotropic
parameter of the Universe is w ≈ 1. The Klein-
Gordon in Eq. (1) becomes oblivious of the po-

tential: φ̈+ 3Hφ̇ ≃ 0, whose solution suggests that
ρ = ρkin ∝ a−6, where a(t) is the scale factor of the
Universe. During kination the field rolls down to the
quintessential tail of its potential.

Because the energy density of radiation is diluted
less efficiently with the Universe expansion, ρr ∝ a−4,
if some mechanism generates some (initially subdomi-
nant) radiation at the end of inflation (or afterwards),
this radiation eventually catches up with the kinetic
energy density of the rolling scalar field and the Uni-
verse becomes radiation dominated. This is the mo-
ment of reheating ρrehkin = ρrehr , the onset of the hot Big
Bang.

After the radiation era begins, it can be shown that
the field’s roll is impeded and soon the field freezes in
some value φF (see Fig. 7). Because the roll of the
scalar field is oblivious of the potential during kina-
tion and afterwards until it freezes, it can be studied
in a model independent way. In particular, the total
excursion of the scalar field in field space from the end
of inflation and until it freezes is [15]

∆φF =

√

2

3

(

2− 3

2
lnΩend

r

)

mP , (17)

where Ωend
r = (ρr/ρ)end is the density parameter of ra-

diation at the end of inflation, sometimes called re-
heating efficiency.1 Thus, we see that the smaller the
reheating efficiency Ωend

r is the largest the roll of the
scalar field after inflation and until it freezes and the
longer the corresponding kination period is. The sig-
nificance of this is discussed next.

5. STIFF PERIOD AND GRAVITATIONAL

WAVES

In the inflationary paradigm, inflation generates an
almost scale invariant superhorizon spectrum of ten-
sor perturbations (gravitational waves) [16]. This is

1 Here, we assume that the mechanism which generates the ra-

diation bath operates at the end of inflation, as it is typically

the case.
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ρφ ∝ a−6

ρr ∝ a−4

ρm ∝ a−3

Figure 7. Schematic log-log plot of the density of the Uni-
verse and its individual components with respect to the
scale factor according to quintessential inflation. The thin
solid line depicts the density of the scalar field, which is
roughly constant during inflation (i.e. until inflation ends,
denoted by ‘end’) and after freezing (denoted by ‘F ’) but
scales as ρφ ∝ a−6 in between, regardless of whether it
is dominant or not. The dashed line depicts the density
of radiation (formed at the moment denoted by ‘⋆’, but
it is identified with ‘end’ in most cases), which scales as
ρr ∝ a−4. Radiation dominates at reheating (denoted by
‘reh’), which marks the onset of the hot Big Bang. The
dot-dashed line depicts the density of matter, which scales
as ρm ∝ a−3 and takes over from radiation at the time of
equality (denoted by ‘eq’). Today is the end of the hot Big
Bang, when the density of the scalar field takes over again
accounting for dark energy. The thick solid line depicts the
total density.

so only for the scales which re-enter the horizon dur-
ing the radiation era of the hot Big Bang, because the
density ratio ρGW/ρ is constant, as the energy den-
sity of the gravitational waves (GWs) scales as radi-
ation ρGW ∝ a−4 and ρ = ρr ∝ a−4 during the radia-
tion era. However, as we have seen, during kination
ρ = ρkin ∝ a−6, which means that the ratio ρGW/ρ is
not constant any more. In general, this would be true
for any scales which re-enter the horizon during a pe-
riod with stiff equation of state, such that 1

3 < w ≤ 1,

as ρ ∝ a−3(1+w).
The density parameter of GWs per logarithmic fre-

quency interval is ΩGW(f) ≡ dΩGW

d ln f . Then, it can be

shown that the GW spectrum is of the form [17]

ΩGW(f) ∝ f2( 3w−1

3w+1
), (18)

where w is the barotropic parameter at the time when
the scales in question re-enter the horizon. For the
scales, which do so during the radiation era where
w = 1

3 we obtain ΩGW(f) = constant, which results in
a scale invariant spectrum (independent of f). If there
is a period of kination with w = 1, then the above sug-
gests ΩGW ∝ f and we have a peak in the spectrum,
at the time when kination begins (usually, the end of
inflation; see Fig. 7). The longer kination is the larger

the peak in the GW spectrum. This peak cannot be ar-
bitrarily large however, because too much GWs can dis-
turb the process of Big Bang Nucleosynthesis (BBN),
as we explain below.

5.1. Kination and GWs

Figure 8. Plot of the GW spectrum per logarithmic fre-
quency interval ΩGW with respect to frequency, up to the
largest possible frequency which corresponds to the infla-
tion energy scale (fend ∼ 1010 Hz) assumed at the scale of

grand unification ρ
1/4
end

∼ 1015−16 GeV, as is typically the
case. The solid purple line depicts the spectrum of pri-
mordial gravitational waves in the case of kination follow-
ing right after inflation, with barotropic parameter w = 1
and reheating temperature Treh ∼ 102 MeV. The peak
in the GW spectrum almost saturates the BBN bound
ΩGW < 10−6, depicted by the horizontal solid black line.
In the figure, the expected observational capability of Ad-
vanced LIGO [22] and LISA [21] are shown. It is evident
that this scenario produces unobservable (by LISA and Ad-
vanced LIGO) primordial GW. Observational bounds have
been taken from Ref. [18].

The GW energy density has to be at most 1% the
the time of BBN, i.e. ΩBBN

GW < 10−2 [19]. Now, as
we have said, the energy density of GWs and that of
radiation stay at a constant ratio. This means that
there is an upper bound on the GW energy density
today, which can be computed as

Ω0
GW =

ρ0GW

ρ0
=

ρGW

ρr

∣

∣

∣

∣

0

ρr
ρ

∣

∣

∣

∣

0

=
ρGW

ρr

∣

∣

∣

∣

BBN

Ω0
r = ΩBBN

GW Ω0
r < 10−6, (19)

where we used that Ω0
r = (ρr/ρ)0 ≃ 10−4 and that

ρGW/ρr = constant.
This bound means that kination cannot be arbi-

trary extended to late times (by considering a small
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reheating efficiency) because the peak in the GW spec-
trum would become too large and violate the bound
in Eq. (19). Consequently, kination can occur only at
very early times, which translates to high frequencies.
A peak in the GW spectrum cannot be extended to
lower frequencies and come in contact with future ob-
servations, e.g. of the LISA space interferometer. This
can be understood better in Fig. 8.

5.2. GWs from a stiff period with w ≃
1

2

One way to avoid violating the bound in Eq. (19)
and still extend the GW peak down to observable
frequencies is to consider that, the stiff period af-
ter inflation is not as stiff as kination proper with
w = 1. Indeed, in Ref. [20] it was shown that con-
tact with the LISA observations [21] can be achieved
if 0.46 . w . 0.56 with low reheating temperature in
the range 1 MeV< Treh . 150 MeV. A realisation of
this possibility was recently discussed in Ref. [23].

Figure 9. Qualitative form of the scalar potential in
Eq. (22) in terms of the canonical scalar fields σ (primor-
dial inflaton) and φ (waterfall). The axes are in fiducial
units. The system origitally finds itself gradually rolling
down V (σ) inside the steep valey at φ = 0 when σ is large.
When the inflaton is reduced below the critical value σc,
a phase transition sends the waterfall field away from the
origin. The minima along the canonical waterfall direction
are displaced at infinity. As a result, after the phase tran-
sition, there is an initial period of fast-roll hilltop inflation
along the waterfall direction, followed by a stiff period.
Figure taken by Ref. [23].

Consider two flat directions meeting at an enhanced
symmetry point (ESP). The scalar potential can be
written as

V (ϕ, σ) =
1

2
g2σ2ϕ2 +

1

4
λ(ϕ2 −M2)2 + V (σ) , (20)

where the strength of the interaction is parametrised
by the perturbative coupling constant g < 1 (we as-
sume that the ESP is at the origin), λ is the self-cou-
pling of the ϕ-field, whose VEV is M and V (σ) is the
potential along the σ-direction. As we discuss below,
M ∼ mP , so ϕ is a flat direction lifted by Planck-sup-
pressed operators. The above potential in Eq. (20)
is the standard perturbative potential in hybrid infla-

tion [24], where σ plays the role of the primordial in-
flaton field. As in standard hybrid inflation, during
primordial inflation the interaction term sends the wa-
terfall field ϕ to zero, while V (σ) provides a gentle
slope which allows the inflaton to slow-roll towards the
origin. Primordial inflation is terminated by a phase
transition, when σ = σc ≡

√
λM/g and the waterfall

field is released from the origin towards its VEV.

Figure 10. Plot of the GW spectrum per logarithmic fre-
quency interval ΩGW with respect to frequency, up to the
largest possible frequency which corresponds to the infla-
tion energy scale (fend ∼ 1010 Hz) assumed at the scale of

grand unification ρ
1/4
end

∼ 1015−16 GeV, as is typically the
case. The solid purple line depicts the spectrum of pri-
mordial GWs in the case of kination following right after
inflation, with barotropic parameter w = 1, while the solid
red line depicts the spectrum of primordial GWs in the
stiff barotropic parameter w = 1

2
scenario, with reheating

temperature Treh ∼ 102 MeV. The peak in the GW spec-
trum almost saturates the BBN bound ΩGW < 10−6, de-
picted by the horizontal solid black line. In the figure, the
expected observational capability of Advanced LIGO and
LISA are shown. It is evident that this scenario produces
marginally observable (by LISA and Advanced LIGO) pri-
mordial GWs. Observational bounds have been taken from
Ref. [18].

This is when things become different, because we
assume there is a kinetic pole at the VEV of the wa-
terfall field. Such a pole can be due to some non-triv-
ial Kähler geometry as with α-attractors [25]. The
Lagrangian density is

L =
1

2
(∂σ)2 +

1
2 (∂ϕ)

2

(1− ϕ2/M2)2
− V (ϕ, σ) . (21)

To assist our intuition we redefine the waterfall field
so that it also is characterised by a canonical kinetic
term. The redefinition is ϕ = M tanh(φ/M), and φ is
now canonically normalised. The scalar potential now
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becomes

V (φ, σ) =
1

2
g2M2σ2 tanh2(φ/M)+

1
4λM

4

cosh4(φ/M)
+V (σ) .

(22)
The form of the above potential is shown in Fig. 9.

After the phase transition which ends primordial in-
flation, σ quickly goes to zero and the system rolls
along the runaway waterfall direction, since the VEV
of φ is at infinity. Now, exactly because M is Planck-
ian, we have a further boot of fast-roll inflation [26]
as the waterfall field leaves the origin, which is now a
potential hill

V (φ ≪ M) ≃
1
4λM

4

[1 + 1
2 (φ/M)2]4

≃ 1

4
λM4

[

1− 2

(

φ

M

)2
]

.

(23)
Based on the value of M , this gives about 13.5 e-folds
of hilltop fast-roll inflation, following the primordial
inflation. Inflation ends when φend ≃ M/

√
2. After-

wards, the canonical waterfall rolls along the potential
tail with

V (φ ≫ M) ≃
1
4λM

4

[ 12 exp(φ/M)]4
≃ 4λMe−4φ/M . (24)

Since the potential tail is of exponential form, the
field soon follows the power-law inflation attractor [27]
which is characterised by the barotropic parameter

w = −1 + 16
3

(

mP

M

)2
. Requiring w ≈ 1

2 suggests that

M/mP ≈ 4
√
2

3 = 1.88. This is why we considered that
M ∼ mP in the first place.

As can be seen in Fig. 10, the peak in the GW spec-
trum is much more mild and it can come to contact
with the future LISA observations.

5.3. Hyperkination and GWs

Another possibility to boost the primordial GWs
generated during inflation at observable frequencies is
by considering the model of Sec. 3.1, which is charac-
terised by the Lagrangian density in Eq. (11). Switch-
ing to Einstein frame through a suitable conformal
transformation, the Lagrangian density becomes

L =
1

2
m2

PR+
1

2
(∂φ)2+α

h2 + 16αV

h2m4
P

(∂φ)4− Vm4
P

h2 + 16αV
,

(25)
where h2 ≡ m2

P + ξϕ2, with ϕ being the non-canonical
field, which appears in Eq. (11). Then, the Klein-Gor-
don equation of motion of the field is

[

1 + 12α

(

1 +
16αV

h2

)]

φ̈ +

[

1 + 4α

(

1 +
16αV

h2

)

φ̇2

m4
P

]

3Hφ̇ +

48α2 φ̇4

m4
P

d

dφ

(

V

h2

)

+
d

dφ

V m4
P

h2 + 16αV
= 0 . (26)

From the energy-momentum tensor, it is straightfor-
ward to obtain the energy density and the pressure of
the scalar field, which respectively read

ρφ =
1

2

[

1 + 6α

(

1 +
16αV

h2

)

φ̇2

m4
P

]

φ̇2 +
V m4

P

h2 + 16αV
,

(27)

pφ =
1

2

[

1 + 2α

(

1 +
16αV

h2

)

φ̇2

m4
P

]

φ̇2 − V m4
P

h2 + 16αV
.

Figure 11. Plot of the GW spectrum per logarithmic fre-
quency interval ΩGW with respect to frequency, up to the
largest possible frequency which corresponds to the infla-
tion energy scale (fend ∼ 1010 Hz) assumed at the scale of

grand unification ρ
1/4
end

∼ 1015−16 GeV, as is typically the
case. The solid purple line depicts the spectrum of pri-
mordial GWs in the case of kination following right after
inflation, with barotropic parameter w = 1, while the solid
red line depicts the spectrum of primordial GWs in the stiff
barotropic parameter w = 1

2
scenario and the solid green

line depicts the spectrum of primordial GWs in the case
when inflation is followed first by a period of hyperkination
and then by a period of regular kination, with reheating
temperature Treh ∼ 102 MeV. This time, the spectrum of
the GWs is nowhere near the BBN bound ΩGW < 10−6,
depicted by the horizontal solid black line. In the figure,
the expected observational capability of Advanced LIGO
and LISA are shown. It is evident that this scenario pro-
duces a distinct, characteristic spectrum of observable (by
LISA and Advanced LIGO) primordial GWs. Observa-
tional bounds have been taken from Ref. [18].

The above complicated expressions are much sim-
plified if, after the end of inflation, the scalar field
becomes kinetically dominated. In this case, we can
set V → 0 so that Eqs. (26) and (27) are respectively
reduced to

(

1 + 12α
φ̇2

m4
P

)

φ̈+

(

1 + 4α
φ̇2

m4
P

)

3Hφ̇ ≃ 0 (28)
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and

ρφ ≃ 1

2

(

1 + 6α
φ̇2

m4
P

)

φ̇2,

(29)

pφ ≃ 1

2

(

1 + 2α
φ̇2

m4
P

)

φ̇2.

Now, if the standard quadratic kinetic term is dom-
inant in Eq. (25), then this is equivalent to set-
ting α → 0. In this case, Eq. (29) suggests that
wφ = pφ/ρφ = 1 and we have regular kination, which
results in ΩGW(f) ∝ f as we have discussed. If how-
ever, the quartic kinetic term is dominant in Eq. (25),
then this is equivalent to considering only the terms
proportional to α. In this case, Eq. (29) suggests
that wφ = pφ/ρφ = 1

3 , similarly to radiation, for which
ΩGW(f) = constant. We call this period hyperkina-
tion [28].

Because, after inflation, the quartic kinetic term
dominates before the quadratic one takes over (and
not the other way around), after inflation we have a
period of hyperkination followed by a period of reg-
ular kination until reheating. This results in a GW
spectrum, which features a truncated peak such that
boosting the primordial GWs can occur at lower ob-
servable frequencies without violating the BBN bound
in Eq. (19). The situation is depicted in Fig. 11. The
distinct GW spectrum, if observed, could provide in-
formation on the theoretical background, such as the
energy scale of inflation and the value of the α pa-
rameter, which characterises the contribution of the
quadratic gravity, as shown in Eq. (11).

6. CONCLUSIONS

Cosmic Inflation determines the initial conditions
of the Universe history and leads to a large and uni-
form Universe. Inflation also generates the primordial
density perturbations which seed galaxy formation
and are reflected on the CMB primordial anisotropy.
Agreement between the CMB observations and the
predictions of inflation is spectacular. In addition, the

Universe today engages into a late inflationary period,
which may be due to quintessence, a form of dark en-
ergy.

Quintessential inflation employs a common theoreti-
cal framework for the early and late Universe and leads
to a surge in primordial gravitational waves. Typically,
quintessential inflation is modelled considering a flat
direction with a runaway scalar potential, which has
minimum at infinity and features two flat regions: the
inflationary plateau and the quintessential tail. Pala-
tini gravity is a natural framework for model-building
quintessential inflation because it “flattens” a runaway
potential to generate the inflationary plateau.

Quintessential inflation is typically followed by a
stiff period called kination, which generated a peak
of primordial gravitational waves (GWs). However,
the kination GW peak corresponds to unobservable
frequencies. One way to overcome this is by consider-
ing that the peak is milder, which can be achieved in
the stiff period after inflation is not as stiff as kination
proper. A model realisation of this possibility con-
siders two flat directions intersecting at an enhanced
symmetry point in field space, giving rise to the hybrid
mechanism, with Planckian waterfall field VEV, which
is also a kinetic pole of the waterfall field, following the
α-attractors proposal.

Another interesting possibility to obtain a boost of
primordial GWs down at observable frequencies in by
considering higher order kinetic terms (as in k-essence
[29]). This is possible to realise in Palatini modified
gravity. Indeed, considering R + R2 gravity and a
non-minimally coupled scalar field gives rise to addi-
tional quartic kinetic terms. When these dominate,
this leads to hyperkination which is followed by reg-
ular kination when the field becomes canonical. the
resulting characteristic truncated GW peak can be ex-
tended to observable frequencies without disturbing
BBN.

Forthcoming observations of Advanced LIGO,
LISA, DesiGO or BBO may well detect the primor-
dial GWs generated by inflation. A distinct GW spec-
trum will provide insights to the background theory.
Finally, it should be pointed out that the detection
of primordial GWs will not only confirm another pre-
diction of cosmic inflation but also offer tantalising
evidence for the quantum nature of gravity itself.
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