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Abstract

The issue of how best to patrol a border can be found in many settings. Important

examples include protecting important infrastructure such as airports, preventing the

smuggling of illicit items, or defending computers in a network. This thesis contributes

to the existing literature by developing two unique models for border patrol.

We begin by introducing a model where a group of smugglers play a game against

a single patroller. We investigate how communication and cooperation between the

smugglers affect the equilibria in the game. Smugglers are located at different locations

along a border and, for each smuggler, a decision is made about whether they will

attack. Simultaneously, the patroller chooses one of the locations to defend. Smugglers

obtain rewards for making successful attacks, but incur penalty costs if they are caught

by the patroller. The reward to an individual smuggler for making a successful attack

decreases with the total number of successful attacks made, so that the smugglers obtain

diminishing marginal returns as they smuggle larger quantities of items. We define

equilibria in three different cases: selfish smugglers without communication, selfish

smugglers with communication, and cooperative smugglers. We study the equilibria in

each case and establish properties of the associated smuggler and patroller strategies.

We show that communication and cooperation both tend to improve the smugglers’

expected returns, while (perhaps counter-intuitively) the smugglers attack less often

when they are cooperating than when they are communicating but acting selfishly.

Our second model considers a similar problem to the first, but we make some im-
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portant changes to the game. We simplify the payoff structure of the model, however,

we are then able to study a repeated game with inter-temporal dependence. The appli-

cation of the model is examining a group of cooperating smugglers who make regular

attempts to bring small amounts of illicit goods across a border. A single patroller

has the goal of preventing the smugglers from doing so, but must pay a cost to travel

from one location to another. We model the problem as a two-player stochastic game

and look to find the Nash equilibrium to gain insight to real world problems. Our

framework extends the literature by assuming that the smugglers choose a continuous

quantity of contraband, complicating the analysis of the game. We discuss a number

of properties of Nash equilibria, including the aggregation of smugglers, the discount

factors of the players, and the equivalence to a zero-sum game. Additionally, we present

algorithms to find Nash equilibria that are more computationally efficient than existing

methods. We also consider certain assumptions on the parameters of the model that

give interesting equilibrium strategies for the players.

Furthermore, we introduce a multiple patroller extension to the second model. The

addition of multiple patrollers increases the complexity of the game, and exactly finding

Nash equilibria becomes an even more complex task. We describe how we model the

multiple patroller extension, and detail why previous methods for the single patroller

game no longer apply. Three different techniques to study the game are then discussed.

Firstly, we look at a method using subgradient descent to try to find the exact Nash

equilibrium in the game. Secondly, we look at two different heuristics for the patroller’s

strategy. We first consider the myopic strategy for the patrollers, and then introduce a

method of partitioning the border into multiple segments each defended by one patroller.

The performance of the heuristics is numerically investigated and used to evaluate

the convergence of the subgradient method. Finally, we discuss how reinforcement

learning can be applied to our model. We consider two different reinforcement learning

approaches, fictitious play and Q-learning, and then provide a numerical analysis of the
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resulting player behaviours. We conclude with several directions of further work for the

multiple patroller problem.
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Chapter 1

Introduction

1.1 Motivation

There are a number of examples from around the world where a border needs to be

protected from an adversary. Deciding how to best utilize the constrained resources to

defend the border is a paramount issue that affects government organizations worldwide.

A selection of key issues which are covered by border patrolling include:

• Drug trafficking through Europe (Baniya, 2023)

• Oil smuggling (Savage and Bergman, 2023)

• Illicit trade of wildlife (Freedman, 2022)

• Drug trafficking across the U.S. - Mexico border (Gutierrez and Henkel, 2021)

• Illegal fishing in the continental shelf off South America (Goodman, 2021)

Designing an effective patrol pattern is a difficult challenge, which needs to take

into account many considerations. Firstly, due to constraints on resources, the patroller

cannot defend everywhere at once. Therefore, there needs to be an intelligent decision

maker choosing which areas of the border will be patrolled, and consequently, which
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will be left exposed. Secondly, it is intuitive that there should also be some source of

randomness within the decision. If the patroller repeatedly made the same deterministic

decisions, then the smugglers could observe and learn where to attack. Furthermore,

there is even the possibility for exploiting inside knowledge if the deterministic plans

were leaked. Having stochastic patrol patterns builds resilience against such factors by

making it harder for the smugglers to predict their actions.

There has been a wide range of border patrol problems tackled in the literature. Due

to specific problems having a unique set of challenges to consider, there are a number

of distinct models for particular applications. However, the majority of models use a

game theoretic framework with which to capture the decision-making process. Game

theory is the study of how multiple rational players make actions to best meet their

own individual objectives. In border patrol problems, there is at least a defending side

and an attacking side, with further possibilities for more complex dynamics.

In this thesis, we consider a scenario where patrollers attempt to stop a group of

smugglers taking items across a border. We think of a border as being represented

by a finite set of locations which could correspond to roads, border control posts or a

discretized section of air, land, or sea. The smugglers aim to send some illicit items

through these locations, whilst the patroller attempts to catch or deter them. It is

assumed that either side receives some known fixed rewards and penalties depending

on the quantities sent, captured, and smuggled. Given the described framework, we

study three questions about the behavior of the patroller and the smugglers within the

border patrol game.

The first question considers how communication and cooperation between smugglers

affects equilibria in the game. It is a common assumption that if there are multiple

adversaries, that they will be working together against the patroller. The assumption

has the benefit of being the worst-case scenario for the patroller. However, we show

that by ignoring other possibilities, we are excluding the analysis of interesting potential
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behavior from the smugglers. The thesis introduces a modelling framework for these

settings, and details the equilibria for each case. By considering this problem, the

contributions to the literature include:

• A new model is given for a border patrol problem, which considers how smugglers

receive diminishing returns for trafficking increasing amounts of illicit items.

• We consider three cases of smuggler behavior. Firstly, selfish smugglers that

work on their own to maximize their own reward. Secondly, selfish smugglers

with communication which, while still only maximizing their own reward, can

broadcast their actions. Finally, we look at cooperative smugglers that work

together to maximize the total reward across the whole group.

• It is shown that at equilibrium, across all cases of smuggler behavior, the smugglers

need to attempt to traffic items with equal probability. Additionally, in two of the

three cases, we prove that at equilibrium the patroller must defend every location

with equal probability.

• In two of the three cases of smuggler behavior, we prove analytically which strate-

gies are equilibria. Furthermore, we detail all possible equilibria in the remaining

case, subject to additional assumptions on the patroller’s behavior.

• We show that allowing the smugglers to cooperate has a perhaps unanticipated

consequence of decreasing the number of attacks made. Furthermore, we can also

sometimes see this behavior when the smugglers gain the ability to communicate.

• Finally, we discuss how the penalty given to caught smugglers affects the equilibria

of the game under different settings of smuggler behavior.

The second question considers what the optimal patrolling strategies are if there are

movement costs for the patroller, and the game takes place over multiple time steps.
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There is a trade-off required between protecting the border in the immediate decision

and planning for future actions. The thesis introduces a stochastic game framework for

this problem and proves how to compute the equilibria under certain conditions.

The contributions to the literature achieved by studying this problem include:

• Our model introduces a continuous set of actions available to the smugglers, whilst

similar models in the literature only allow for a finite set of possibilities. In reality,

smugglers have an extensive number of options available to them, and so our

continuous action space allows for a more realistic representation of the problem.

• We analytically prove properties about the Nash equilibria of the game. The

results provide insight into the behavior of how rational players act in our model,

and therefore how they might act in a real-life patrolling scenario.

• New algorithms are developed to overcome the computational challenges of finding

Nash equilibria in our model. We show that our algorithms find the optimal

solution, and furthermore, they do so in a shorter time than existing methods

where comparisons can be made.

Our third question is to examine what happens when we extend the framework of

the second question by allowing the patrolling side to have more than one patroller.

Multiple patrollers is a realistic assumption when government organizations will have

large teams to catch smugglers. This thesis considers methods to exactly find equilib-

ria, heuristics to approximate them and also reinforcement learning approaches to the

problem. The contributions presented include:

• We introduce a new stochastic game framework for patrolling a border, which

allows for multiple patrollers to cooperate in defending.

• Algorithms that find Nash equilibria are discussed, implemented and tested on

examples. However, we also show these methods become too computationally

expensive to use on larger problems.
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• We consider two intuitive heuristics, myopic patrollers and partitioning the bor-

der, and compare their performance against our exact methods where possible.

1.2 Thesis Outline

The remainder of the thesis consists of seven chapters. The opening two chapters

contain a literature review, the middle three chapters provide contributions to the

literature, and the final chapter concludes the thesis.

Chapter 2 provides a literature review for the area of game theory. Both normal-

form and stochastic games are discussed, including definitions for equilibria and how

to compute them. To conclude, an overview of reinforcement learning in games is

presented.

Chapter 3 considers the literature of border patrol problems that have previously

been studied. There are three main sections in the chapter, each looking at a different

model that has both had a significant impact in its area and is close to the problems

considered in this thesis. A wider overview of the literature is then presented, giving a

broader look at the range of problems previously examined.

Chapter 4 gives a study of cooperation and communication between smugglers in

our border patrol game. First, we define how concepts of equilibria look depending

on how the smugglers work together. Then, key insights are given showing how these

assumptions affect the behavior at equilibrium between the players in the game.

Chapter 5 considers a stochastic game framework for patrolling borders, the im-

portant modification being a movement cost penalty applied to the patroller. We first

define how the game will be played, give insights to the equilibria, and moreover, detail

how equilibria can be efficiently computed.

Chapter 6 looks to extend the work of Chapter 5 by adding in multiple patrollers

to the game. We look at how the equilibria can be exactly found, introduce heuristics
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to ease the computational effort, and furthermore, look at how learning dynamics can

converge to the equilibrium.

Finally, Chapter 7 concludes the thesis providing a brief summary of the contribu-

tions made, along with a number of directions for further work on the topic.



Chapter 2

Games

Game theory allows us to study interactions between multiple decision makers, or play-

ers, where their decisions impact the others. The objective of a player cannot simply

be to maximize their own payoff, since they must take into consideration the actions of

the other players. This chapter contains a review of both normal-form games and their

extension into stochastic games. Finally, an introduction to reinforcement learning in

games in presented.

2.1 Normal-form Games

Normal-form games represent a one-off decision-making problem, consisting of three

elements. Firstly, there is a set of n players involved in the game, denoted by player i

for i ∈ [n]. Secondly, each player has a set of actions they can choose between, denoted

by Ai for player i. Finally, each player has a payoff from the game which depends on the

actions chosen by every player. Given that the players choose actions a = (a1, . . . , an),

we denote player i’s payoff as ri(a).

The number of players in the game could be a finite integer or infinite, but it is

common to study two player games. Two player games are more easily analyzed, since

it reduces the number of opponents which need to be considered. In a two player

7
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normal-form game, we can represent the payoffs to the players as matrices M1 and M2,

where the (i, j)th entry is given by r1(ai, aj) and r2(ai, aj) respectively. The remainder

of this section will focus on the study of two player normal-form games, unless specified.

An important subset of two player normal-form games are those where the payoff

to one player is equal to the negative of the payoff to the other player. We therefore

have for every action ai ∈ A1 and aj ∈ A2 that r1(ai, aj) = −r2(ai, aj). These games

are called zero-sum games.

2.1.1 Nash Equilibria

v. Neumann (1928) first introduced the concepts of equilibria in games. It was later

that Nash (1950) generalized the notion of equilibria to all normal form games, now

called Nash equilibria. The notion of a Nash equilibrium is that given all the strategies

are known, no player has an incentive to deviate away from their strategy. A player

would only have incentive to deviate from their strategy if they can play a different

action which would strictly increase their expected reward.

We begin by defining what a strategy in a normal-form game is. A strategy for

a player i is a probability distribution over their action set Ai, denoted by πi. The

probability that a player i chooses an action ai ∈ Ai can then be given by πai
i . We now

define a Nash equilibrium in definition 2.1.1.

Definition 2.1.1 (Nash Equilibrium). Consider a finite n player normal-form game.

The strategies π1, . . . , πn are a Nash equilibrium if no player has incentive to deviate

from their strategy given the other players’ strategy is fixed. A player has incentive to

deviate if they can strictly increase their expected reward by changing strategy and so

for every player i,

∑
a1∈A1

πa1
1 · · ·

∑
ai∈Ai

πai
i · · ·

∑
an∈An

πan
n ri(a) ≥

∑
a1∈A1

πa1
1 · · ·

∑
ai∈Ai

π̃ai
i · · ·

∑
an∈An

πan
n ri(a)
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for all π̃i ∈ ∆(Ai).

Note that if the two players choose strategies π1 and π2 respectively, then the ex-

pected payoff to a player i can be written as (π1)
TMiπ2. We can therefore simplify the

definition of a Nash equilibrium in the two player setting.

Definition 2.1.2 (Nash Equilibrium). Consider a finite two player normal-form game

with payoff matrices M1 and M2. The strategies π1 and π2 are a Nash equilibrium if

no player has incentive to deviate from their strategy given the other player’s strategy

is fixed. A player has incentive to deviate if they can strictly increase their expected

reward by changing strategy, and so,

(π1)
TM1π2 ≥ (π̃1)

TM1π2 for all π̃1 ∈ ∆(A1)

(π1)
TM2π2 ≥ (π1)

TM2π̃2 for all π̃2 ∈ ∆(A2)

2.1.2 Calculating Nash Equilibria

Having defined Nash equilibria in normal-form games, we now look to how we can

compute them. In general, the analysis of Nash equilibria in a normal-form game is a

difficult challenge. There may not exist any Nash equilibria in the game, or there may

be an infinite number of them. However, in the case of two player zero-sum normal

form games, there always exists a Nash equilibrium due to the result of v. Neumann

(1928).

Theorem 2.1.3 (von Neumann Minimax Theorem). Every finite, two player, zero-sum

normal-form game has a Nash equilibrium. The strategies π1 and π2 that form a Nash

equilibrium are the solution to the following ‘minimax’ optimization problem,

max
π1

min
π2

(π1)
TM1π2 = min

π2

max
π1

(π1)
TM1π2

It was further proven that it is not necessary for player 2 to minimize over their
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space of strategies, but instead it is sufficient to minimize over their actions. The result

is shown in Lemma 2.1.4, and presented as found in Filar and Vrieze (2012).

Lemma 2.1.4. In a finite, two player, zero-sum normal form game if π1 and π2 we

have,

max
π1

min
π2

(π1)
TM1π2 = max

π1

min
j

(π1)
TAej (2.1.1)

where ej is a vector of zeroes with a one in the jth entry.

We denote the expected value of the game in a Nash equilibrium to the two players

as V1 and, V2 respectively. Note, since the game is zero-sum, we have that V1 = −V2.

We can formulate the minimax optimization problem found in (2.1.1) by using a linear

program, found in (2.1.2). Linear programs are optimization problems with a linear

objective function and linear constraints. There is a wide literature focussed on finding

efficient algorithms to solve linear programs, an overview of which can be found in

Chvátal (1983).

maximise V1

such that V1 ≤ (π1)
TAej ∀ j

πai
1 ∈ [0, 1]∑

ai∈A⟩

πai
1 = 1

(2.1.2)

The objective of the linear program is to pick a strategy for player 1 that maximizes

the value of the game to them. However, the first constraint ensures that for any action

aj picked by player 2 the value of the game does not exceed the expected payoff. The

second and third constraints ensure that player 1 picks a valid strategy.



CHAPTER 2. GAMES 11

2.1.3 Correlated Equilibria

Nash equilibria are not the only type of equilibrium that can be found in a normal-

form game. A different kind of equilibria are correlated equilibria, first introduced by

Aumann (1987). A correlated equilibrium consists of some publicly available stochastic

signal which is displayed to each player in the game. Every player then maps this public

signal to a private action, which they play in the game. A signal and a set of mappings

for each player form a correlated equilibrium if for any player, given all other mappings

remain fixed, they do not have any incentive to deviate from their mapping.

Every Nash equilibrium gives a correlated equilibrium. However, the converse is

not true and there can exist correlated equilibria which do not correspond to any Nash

equilibrium. To find a correlated equilibrium, given that there exists a Nash equilibrium,

we can construct a signal by taking the strategies of the Nash equilibrium, and give

each player the identity mapping from the public signal to their action. We have a

correlated equilibrium, since assuming a Nash equilibrium guarantees that no player

has any incentive to deviate away from their strategy.

2.2 Stochastic Games

Stochastic games are a generalization of normal-form games that allow for repeated

actions to be taken whilst a probabilistic transition alters the state of the game. In this

thesis, we consider discounted stochastic games which consist of six elements. Firstly,

a set of n players are involved in the game, denoted by player i for i ∈ [n]. Secondly,

a state space S which represents all possible states the game can be in. Thirdly, each

player has a set of actions they can choose, which possibly depends on the state of the

game s, denoted by Ai(s) for player i. Each player has a payoff from the game which

depends on the actions chosen by every player, and the state of the game s. Given

that the players choose actions a = (a1, . . . , an), we denote player i’s payoff as ri(s,a).



CHAPTER 2. GAMES 12

Furthermore, there is a probability distribution for every combination of state s and

actions a which determines the transition for the next step given by P . To determine

the initial starting state of the game, a probability distribution P0 is specified. Finally,

there is a common discount rate, γ ∈ [0, 1) which represents the trade-off for the players

between immediate and future rewards.

As in the normal-form game setting, whilst we could have any number of players in

the stochastic game, we will primarily restrict our focus to two player stochastic games.

Additionally, the zero-sum two player stochastic games where the payoff function of

one player is equal to the negative of the payoff function of the other player. Thus, in

two player zero-sum stochastic games we have r1(s, a1, a2) = −r2(s, a1, a2) for all states

s ∈ S and actions a1 ∈ A1, a2 ∈ A2.

2.2.1 Nash Equilibria

We now look to define Nash equilibria for stochastic games. Previously, in the normal-

form game setting, the players chose strategies which were probability distributions over

their actions. In the stochastic game setting, this notion is extended and strategies are

now a probability distribution over the players actions but depend on the current state

of the game. Thus, a strategy for a player i is denoted by Πi = (πi(s))s∈S .

Having defined the players’ strategies, we now need to define the expected reward to

each player. Recall, in the normal-form game it can be easily calculated by taking the

expectation of the payoff with respect to the player’s strategies. The same definition is

used in the stochastic game setting, but we take the expectation over the entire infinite

discounted horizon. We denote the steps of time in which players choose actions by

t = 1, 2, . . . . The expected reward to a player i given the two players take strategies

Π1 and Π2 is given by,

Ui(Π1,Π2) = EΠ1,Π2,P0,P

[
∞∑
t=0

γt
iri(st, a1, a2)

]
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The expectation is taken over the random strategies of both players, Π1 and Π2,

the probability distribution of the first state, P0, and the stochastic transitions between

states given by P .

We can now define a Nash equilibrium for a two player stochastic game.

Definition 2.2.1 (Nash Equilibrium). Consider a finite two player stochastic game.

The strategies Π1 and Π2 are a Nash equilibrium if no player has an incentive to deviate

from their strategy given the other player’s strategy is fixed. A player has incentive to

deviate if they can strictly increase their expected reward, and so,

U1(Π1,Π2) ≥ U1(Π̃1,Π2) ∀ Π̃1

U2(Π1,Π2) ≥ U2(Π1, Π̃2) ∀ Π̃2

Note that a Nash equilibrium as defined in Definition 2.2.1 is a Nash equilibrium

with respect to any initial distribution over the starting state of the game.

In general, it is a difficult problem to find Nash equilibria in two player stochastic

games. Therefore, we restrict our focus to two player, zero-sum stochastic games since

more can be analyzed in this setting.

Shapley (1953) proved that in finite, two player, zero-sum stochastic games, a Nash

equilibrium always exists. Given a Nash equilibrium with strategies Π1 and Π2, we

define the value of a state s to a player i as the expected reward given the game begins

in that state. We denote the value of the state s to a player i as Vi(s) where,

Vi(s) = Ui(Π1,Π2)
∣∣∣
s0=s

= EΠ1,Π2

[
∞∑
t=0

γt
iri(st, a1, a2)

∣∣∣∣∣ s0 = s

]
Since we are only considering two player, zero-sum stochastic games, we drop the

dependence on the player for ease of notation, since V1(s) = −V2(s). From this point,

unless specified otherwise, we will be referring to player one. Shapley proved in his

1953 paper that the value of a finite, two player, zero-sum stochastic game is the
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unique solution to the system of equations,

V (s) = val

[
r(s, a1, a2) + γ

∑
s′∈S

V (s′)P(s′ | s, a1, a2)

]

= max
π1

min
π2

 ∑
a1∈A1(s)

πa1
1

∑
a2∈A2(s)

πa2
2

[
r(s, a1, a2) + γ

∑
s′∈S

V (s′)P(s′ | s, a1, a2)

]
where val[A] is an operator denoting the value of the two player, zero-sum normal

form game with payoff matrix A. Note, this is similar to the Bellman equations for a

Markov decision process, but we take the minimax of both players’ actions rather than

maximizing over one player’s actions.

Shapley (1953) proved that we can calculate the value of each state by iteratively

solving the system of equations, given any choice of starting values. Starting from

arbitrary state values V 0(s), we define V i(s) to be

V i(s) = val

[
r(s, a1, a2) + γ

∑
s′∈S

V i−1(s′)P(s′ | s, a1, a2)

]
.

As the operator giving the value of the game is a contraction mapping, we have that as

i → ∞ we know V i(s) → V (s) for every state s. Since we previously saw the value of

a normal-form two player zero-sum game can be calculated with a linear program, we

can now compute the values of each state in a two player, zero-sum stochastic game.

We can repeatedly solve for the values of each state, until we meet some user chosen

convergence target. A common method to check for convergence is to pick a small

threshold ϵ > 0 stop when

max
s

∥V i(s)− V i−1(s)∥ < ϵ.
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2.2.2 Single Controller Stochastic Games

We now introduce a class of stochastic games called single controller stochastic games.

The single controller property is when only a single player can influence the state

transitions in the stochastic game. Therefore, in the two player case if

P(s′ | s, a1, a2) = P(s′ | s, a1, ã2)

for any s, s′ ∈ S, a1 ∈ A1(s) and a2, ã2 ∈ A2(s) we have that player one is the single

controller of the game.

There are algorithms in the literature which can exactly compute the Nash equilibria

in zero-sum, single controller stochastic games, an example being found in Raghavan

(2003). If the zero-sum stochastic game has player one as the single controller, there

exists a linear program to find the state values and player two’s strategy in a Nash

equilibrium.

maximise
∑
s∈S

V (s)

such that V (s) ≥
∑

a2∈A2(s)

r2(s, a1, a2)π
a2
2 (s) + γ

∑
s′∈S

P(s′ | s, a1)V (s′) ∀ s ∈ S, a1 ∈ A1(s)

πa2
2 (s) ∈ [0, 1] ∀ s ∈ S, a2 ∈ A2(s)∑

a2∈A∈

πa2
2 (s) = 1 ∀ s ∈ S

The objective of the linear program maximizes the value of the game to player two.

The first constraint ensures that whatever player one’s action is, they cannot do better

than the value of the game in the objective function. The final two constraints ensure

that player two’s strategy is properly defined.
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2.3 Reinforcement Learning

Reinforcement learning allows for an intelligent agent to learn from their environment

to take decisions. Typically, in reinforcement learning a single agent is considered,

with the environment being modelled as a Markov decision process. An overview of

reinforcement learning in Markov decision processes can be found in Sutton and Barto

(2018). However, we would like to instead consider the application of reinforcement

learning to games with multiple decision makers.

Figure 2.3.1: The agent-environment interaction Sutton and Barto (2018)

The classic framework of a reinforcement learning algorithm is displayed in Figure

2.3.1. Each agent first observes the state of its environment, and then chooses an action.

The actions are played, resulting in both a reward being given to each agent and the

environment changing state. Information is then given back to each agent, who can

then learn from their experience. Learning from experience in this context refers to the

updating of some parameters, using a set of rules given to the agents.

In this section, we will first discuss reinforcement learning in normal-form games,

before moving onto considering stochastic games.

2.3.1 Normal-form Games

An example of a reinforcement learning algorithm in a normal-form game is fictitious

play. Fictitious play was first introduced by Brown (1951) and is a learning rule that

assumes every opponent is playing their actions from some stationary strategy. There-



CHAPTER 2. GAMES 17

fore, as the actions of the opponents are observed, each player can update their belief

of the opponent’s fixed strategy. However, if multiple players are learning in such a

manner then the assumption of a stationary strategy is clearly unsatisfied, which can

cause issues of convergence.

Fictitious play has been proven to converge to a Nash equilibrium in two player

games under a number of assumptions including zero-sum finite games by Robinson

(1951), potential games by Monderer and Shapley (1996), and non-zero sum games

where one player has at most two actions Berger (2005). However, there are simple

examples (such as a generalized rock-paper-scissors-game by Shapley (1964)) that do

not converge to a Nash equilibrium, and instead the strategies have a cyclic behavior.

2.3.2 Stochastic Games

Our main interest in reinforcement learning is its application to two player zero-sum

stochastic games. In later sections of the thesis, we introduce stochastic games where

computing the Nash equilibrium exactly becomes too computationally intensive. How-

ever, we can instead put agents in the environment to learn Nash equilibrium with

reinforcement learning. We present two reinforcement learning algorithms that have

recently been published in the literature, the former being a fictitious play algorithm

and the latter based on Q-learning.

Firstly, we introduce the notion of a Q-function. Suppose that player i knows that

their opponent −i is playing a stationary strategy given by Π−i. Then the player i

would be able to calculate the value of an action a ∈ Ai, given the state of the system

is s ∈ S, by calculating Qi(s, a) found in (2.3.3).

Qi(s, a) = ri(s, a) + γ
∑
s̃∈S

p(s̃ | s, a) max
ãi∈Ai

Eã−i∼Π−i

{
Qi(s̃, ã)

}
. (2.3.3)

The function Qi is known as player i’s Q-function.
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Fictitious Play

We present algorithms for fictitious play as found in Sayin et al. (2022). In fictitious

play, agents try to learn both their opponent’s strategy and the agent’s own Q-function.

Agents achieve this by smoothly updating their belief of the opponent’s strategy based

on a history of observed past plays. The agents then act greedily, in that they try only

to maximize their own reward, based on their notion of the opponent’s strategies.

We consider two different fictitious play algorithms for stochastic games: a model

free and a model based method. A model based algorithm assumes that the agents

know the reward functions and state transition functions within their environment.

However, in a model free algorithm, the agents must learn the reward function and

state transitions based off only their observations within the environment. Intuitively,

a model based algorithm achieves quicker convergence to Nash equilibria since there is

less to learn about the environment. However, in reality the parameters of the game

might not be available to the agents and therefore this motivates the creation of model

free algorithms.

Model Based Fictitious Play

Algorithm 1 shows the model based fictitious play algorithm as found in Sayin et al.

(2022). The algorithm contains two tuneable sequences of learning parameters, αc and

βc, the former controlling how quickly the beliefs of strategies change and the latter

determining the speed at which Q-functions are updated.
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Algorithm 1: Model Based Fictitious Play (Sayin et al., 2022)

Initialise: Q̂1
0(s, a

1, a2) = Q̂2
0(s, a

1, a2) = 0 for all s ∈ S, a1 ∈ A1, and a2 ∈ A2,

π̂1
0(s) and π̂2

0(s) uniform for all s ∈ S, #s = 0 for all s ∈ S, k = 1

1 Observe the current state sk

2 Take actions greedily,

a1k ∈ argmax
a1∈A1

Ea2∼π̂2
k−1(s)

{
Q1

k−1(sk, a
1, a2)

}
a2k ∈ argmax

a2∈A2

Ea1∼π̂1
k−1(s)

{
Q2

k−1(sk, a
1, a2)

}

3 Actions are observed by everybody.

4 Update belief of strategies for the state sk by,

π̂1
k(sk) = π̂1

k−1(sk) + α#s[a
1
k − π̂1

k−1(sk)]

π̂2
k(sk) = π̂2

k−1(sk) + α#s[a
2
k − π̂2

k−1(sk)].

5 Update Q-functions as follows,

Q1
k(sk, a

1, a2) = Q1
k−1(sk, a

1, a2)

+ β#sk

(
r1(sk, a

1, a2) + γ
∑
s̃

P(s̃ | sk, a1, a2)v̂1k−1(s̃)−Q1
k−1(sk, a

1, a2)

)

Q2
k(sk, a

1, a2) = Q2
k−1(sk, a

1, a2)

+ β#sk

(
r2(sk, a

1, a2) + γ
∑
s̃

P(s̃ | sk, a1, a2)v̂2k−1(s̃)−Q2
k−1(sk, a

1, a2)

)
6

for all a1, a2 where,

v̂1k(s) = max
a1∈A1

Ea2∼π̂2
k(s)

{
Q1

k−1(s, a
1, a2)

}
v̂2k(s) = max

a2∈A2
Ea1∼π̂1

k(s)

{
Q2

k−1(s, a
1, a2)

}
Q-functions for other states s ̸= sk remain constant.

7 k := k + 1.
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Under the assumptions:

• αc, βc ∈ (0, 1) are non-increasing sequences.

• The sequences both have infinite sums,
∑

c αc =
∑

c βc = ∞, and tend to zero

limc→∞ αc = limc→∞ βc = 0.

• The ratio of the sequences tends to zero limc→∞ βc/αc = 0.

Sayin et al. (2022) prove that the strategies for each agent converge to strategies

which form a Nash equilibrium (π̂1
k, π̂

2
k) → (π̂1

∗, π̂
2
∗), and the estimated Q-functions

converge to the true Q-function (Q̂1
k, Q̂

2
k) → (Q̂1

∗, Q̂
2
∗) with probability one.

Model Free Fictitious Play

Algorithm 2 shows the model free fictitious play algorithm as found in Sayin et al.

(2022). The algorithm contains two tuneable sequences of learning parameters, αc and

βc, as in the model based fictitious play algorithm. There is also a parameter ϵ which

controls the rate of exploration in the learning dynamics. With probability 1 − ϵ the

agents are greedy as in the model based algorithm, but with probability ϵ they now play

an action uniformly at random to learn about its reward and effect on state transitions.
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Algorithm 2: Model Free Fictitious Play (Sayin et al., 2022)

Initialise: Q̂1
0(s, a

1, a2) = Q̂2
0(s, a

1, a2) = 0 for all s ∈ S, a1 ∈ A1, and a2 ∈ A2,

π̂1
0(s) and π̂2

0(s) uniform for all s ∈ S, #s = 0 for all s ∈ S, k = 1

1 Observe the current state sk

2 Update Q-functions as follows,

Q1
k−1(sk−1, a

1
k−1, a

2
k−2) = Q1

k−1(sk−1, a
1
k−1, a

2
k−2)

+ β#sk

(
r1(sk−1, a

1
k−1, a

2
k−2) + γv̂1k−1(sk)−Q1

k−1(sk−1, a
1
k−1, a

2
k−2)

)
Q2

k(sk−1, a
1
k−1, a

2
k−2) = Q2

k−1(sk−1, a
1
k−1, a

2
k−2)

+ β#sk

(
r2(sk−1, a

1
k−1, a

2
k−2) + γv̂2k−1(sk)−Q2

k−1(sk−1, a
1
k−1, a

2
k−2)

)
3

for all a1, a2 where,

v̂1k(s) = max
a1∈A1

Ea2∼π̂2
k(s)

{
Q1

k−1(s, a
1, a2)

}
and v̂2k(s) = max

a2∈A2
Ea1∼π̂1

k(s)

{
Q2

k−1(s, a
1, a2)

}
Agents act greedily with probability 1− ϵ otherwise an action is drawn

uniformly at random from their action space,

a1k =


a1∗ ∈ argmax

a1∈A1

Ea2∼π̂2
k−1(s)

{
Q1

k−1(sk, a
1, a2)

}
w.p. (1− ϵ)

u1 ∼ U(A1) w.p. ϵ.

a2k =


a2∗ ∈ argmax

a1∈A2

Ea1∼π̂1
k−1(s)

{
Q2

k−1(sk, a
1, a2)

}
w.p. (1− ϵ)

u2 ∼ U(A2) w.p. ϵ.

4 Actions are observed by everybody.

5 Update belief of strategies for the state sk by,

π̂1
k(sk) = π̂1

k−1(sk)+α#s[a
1
k−π̂1

k−1(sk)] and π̂2
k(sk) = π̂2

k−1(sk)+α#s[a
2
k−π̂2

k−1(sk)].

Strategies for other states s ̸= sk remain constant.

6 k := k + 1.
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Under the assumptions:

• αc ∈ (0, 1) is a non-increasing sequence and β ∈ (0, 1) is a monotonically decreas-

ing sequence.

• The sequences both have infinite sums,
∑

c αc =
∑

c βc = ∞, but finite sum of

squares
∑

c α
2
c =

∑
c β

2
c < ∞, and tend to zero limc→∞ αc = limc→∞ βc = 0.

• The ratio of the sequences satisfies the condition that for any m ∈ (0, 1] we have

limc→∞ β⌊mc⌋/αc = 0.

Sayin et al. (2022) prove that beliefs on strategies and Q-function converge to a

near equilibrium and the equilibrium Q-functions with an approximation linear in the

exploration probability ϵ > 0, almost surely. Therefore, with probability one we have

lim sup
k→∞

|U i(πi, π−i
k )− U i(π̂i

k, π̂
−i
k )) ≤ 2ϵD

(1 + γ)2

γ(1− γ)3

and

lim sup
k→∞

|Q̂i
k(s, a)−Q∗

i (s, a)| ≤ ϵD
1 + γ

(1− γ)2

where

D =
1

1− γ

∑
i

max
(s,a)

|ri(s, a)|

Q-Learning

We present the algorithm for Q-Learning in stochastic games as published by Sayin

et al. (2021). In the fictitious play learning dynamics, it is assumed that the agents

both observe the action of the opponent and keep a history of those actions. However,

in certain applications this assumption may be unrealistic. For example, with the

problem of border patrol, the patroller would need to have a perfect observation of

the smugglers’ actions at every location. However, the patroller might only be able to
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observe the economic impact and therefore infer the effect of the smugglers’ action on

their reward.

In the Q-Learning algorithm, the agents do not have the knowledge that there is

an opponent in the game. Therefore, rather than looking to find the Q-functions of

the game, we instead look to define a function which depends only upon the action of

that player. In order to do this, we denote the Q-function as used previously by the

global Q-function of the game, whilst defining a local q-function for each player to only

depend on the state and their action. Thus, we can find of a local q-function for a

player i given a state s and action ai as,

qi(s, ai) = Ea−i∼π−i
[Qi(s, ai, a−i)]

where Qi is player i’s Q-function as defined in (2.3.3). If every player picked their best

response by maximizing their local q-function, then the learning dynamics could get

stuck playing suboptimal actions. Therefore, there is motivation to consider smoothed

best responses, where there is some probability assigned to each action according to how

it compares to the best response. Using smoothed best responses allows the learning

dynamics to converge to the Nash equilibrium, rather than potentially getting caught

in cyclic behavior.

We define the smoothed best response for the player i given their estimated local

q-function q̂, the current state sk, and β#sk the number of times the game has been in

state sk to be Br(q̂, τ#sk) ∈ ∆(A) where τ#sk is a temperature parameter. The authors

of Sayin et al. (2021) use the smoothed best response defined as,

Br(q̂, τ#sk) = argmax
µ∈∆(A)

{µ · q̂ + τ#skν(µ)}

where ν is a smooth and strictly concave function with unbounded gradient at the

boundary of the simplex ∆(A) which was first introduced by Fudenberg and Levine
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(1998). The temperature parameter τ > 0 determines how smoothed the best response

will be. The choice of choosing a smoothed best response in this fashion guarantees

that there will exist a unique smoothed best response π. Under the choice of ν to be,

ν(µ) = −
∑
a∈A

µ(a) log(µ(a))

results in the simplification of,

π(a) =
exp(q̂(a)/τ#sk)∑
ã exp(q̂(ã)/τ#sk)

> 0

Given the above choice for the smoothed best response, the algorithm for decentralized

Q-learning from Sayin et al. (2021) is found in Algorithm 3.

Under the assumptions:

• Given any pair of states (s, s0) and any infinite sequence of actions, s0 is reachable

from s with some positive probability within a finite number, n, of stages.

• The sequence {τc}c>0 is non-increasing and satisfies limc→∞(τc+1−τc)/αc = 0 and

limc→∞ τc = 0.

• The step size {αc}c>0 satisfies
∑∞

c=1 α
2−ρ
c < ∞ for some ρ ∈ (0, 1).

• There exists C,C ′ ∈ (0,∞) such that αρ
c exp(4D/τc) ≤ C ′ for all c > C.

Sayin et al. (2021) prove that the estimated value functions tend to the true value

function under Nash equilibrium,

lim
k→∞

|v̂is,k − viπ∗(s)| = 0.
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Algorithm 3: Decentralized Q-Learning

Initialise: q̂1s,0, q̂
2
s,0 = (0, . . . , 0), v̂1s,0, v̂

2
s,0 = 0, #s = 0 for all s ∈ S

1 Observe the current state sk
2 Update the local Q-function estimate for previous state sk−1 and previous local

action bk−1 and ak−1 respectively.

q̂1sk−1,k
[a1k−1] = q̂1sk−1,k−1[a

1
k−1] + α1

k−1

(
r1k−1 + γv̂1sk,k−1 − q̂1sk−1,k−1[a

1
k−1]

)
q̂2sk−1,k

[a2k−1] = q̂2sk−1,k−1[a
2
k−1] + α2

k−1

(
r2k−1 + γv̂2sk,k−1 − q̂2sk−1,k−1[a

2
k−1]

)
where,

α1
k−1 = min

{
1,

α#sk−1

π1
k−1[a

1
k−1]

}
α2
k−1 = min

{
1,

α#sk−1

π2
k−1[a

2
k−1]

}
3 Increment state counter: #sk := #sk + 1.
4 Take actions a1k ∼ π1

k and a2k ∼ π2
k where,

π1
k[a

1] =
exp

(
q̂1sk,k[a

1]/τ#sk

)∑
ã1∈A1 exp

(
q̂1sk,k[ã

1]/τ#sk

)
π2
k[a

2] =
exp

(
q̂2sk,k[a

2]/τ#sk

)∑
ã2∈A2 exp

(
q̂2sk,k[ã

2]/τ#sk

)
5 Collect the local rewards r1k and r2k and update value function estimates

according to,

v̂1sk,k+1 = v̂1sk,k + β#sk

[
π̄1
k · q̂1sk,k − v̂1sk,k

]
v̂2sk,k+1 = v̂2sk,k + β#sk

[
π̄2
k · q̂2sk,k − v̂2sk,k

]



Chapter 3

Border Patrol

There is a significant operations research literature on patrol problems that focuses on

modelling real-world situations. In this chapter, we present three different border patrol

problems in the literature in detail, before giving a brief but wider overview of the area

as a whole.

3.1 Patrolling the Los Angeles International Air-

port

Pita et al. (2008) introduced a model for patrolling the Los Angeles International Air-

port (LAX) which was successfully deployed. Given the size of the airport, with the

number of checkpoints and terminals which could potentially be monitored, it is a large

issue of how to generate schedules for security teams. The authors developed a model

for protecting the airport using a Bayesian Stackelberg game, and provided the fastest

known way to solve the game. Their model allowed the user to adjust the schedule if

extra constraints occurred, and also warned the user if these changes had sufficiently

degraded the schedule generated.

In a Stackelberg game, there are two players: a leader and a follower. The leader
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first commits to a strategy, which could be mixed, and then the follower observes the

strategy and chooses a strategy to optimize their reward. Bayesian Stackelberg games

extend the framework by allowing for a set of N agents, where agent n is one of a

given set of types θn. The Bayesian Stackelberg games considered by Pita et al. (2008)

consider two agents, the leader and follower, where the leader only has one type, but

there are multiple possible follower types. Each follower type corresponds to a different

adversary who might try to breach the security of the airport, with different objectives

and payoffs for their actions.

The model introduced by Pita et al. (2008) has the following framework, which can

be solved as a mixed-integer quadratic program. The leader’s policy is denoted by x,

which is a probability distribution over the pure strategies i ∈ X with xi being the

probability an action i is chosen. There is a set L of possible follower types, with pl

being the probability the follower is of type l ∈ L. A follower of type l has their policy

denoted as ql, which is a probability distribution over the pure strategies j ∈ Q with

qlj being the probability an action j is chosen. The payoff matrices to the leader and

follower, dependent on the follower being type l, are given by Rl and C l respectively.

The leader’s strategy can then be found by solving the following, where M is some large

positive integer.
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max
x,q,a

∑
i∈X

∑
l∈L

∑
j∈Q

plRl
ijxiq

l
j

s.t.
∑
i∈X

xi = 1

∑
j∈Q

qlj = 1

0 ≤

(
al −

∑
i∈X

C l
ijxi

)
≤
(
1− qlj

)
M

xi ∈ [0, 1]

qlj ∈ {0, 1}

a ∈ R

The authors linearize the quadratic programming problem by using a change of

variables, and show that the resulting mixed integer linear program can then be solved

with existing efficient integer programming computing packages.

There are a number of other models in the literature which use Stackelberg games

to model problems of border patrol.

A similar model is considered by Shieh et al. (2012), where the authors present a

game theoretic model of the protection of ports in the United States. In particular,

they develop a system which has been deployed by the United States Coast Guard for

the protection of the port of Boston. The authors use a Stackelberg game to model the

interaction between an attacker with the defender. A key feature of the model is they

do not assume perfect rationality of the attacker, since this may not be realistic, and

instead use a quantal response model of their behavior.

Yang et al. (2014) also develop a Stackelberg game model to tackle the issue of

illegal poaching. The authors develop the model in a joint effort with the Queen Eliza-

beth National Park in Uganda to help improve the wildlife ranger patrols. Using data
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collected from previous poaching, a behavioral model is trained to learn the poachers’

decision-making process.

Brown et al. (2006) look at how critical infrastructure can be made more resilient

against attacks from terrorists. The authors use a Stackelberg game to model the prob-

lem, and consider a number of real life examples including the US Strategic Petroleum

Reserve, the US Border Patrol at Yuma, Arizona, and an electrical transmission system.

3.2 Patrolling games model

Alpern et al. (2011) introduced a different framework to model the patrolling of a

border. The game formulated by the authors is a two player zero-sum game between

an attacker and a patroller. The attacker wins if they make a successful attack, and

loses otherwise. The patroller’s outcomes are the opposite, since the game is zero-

sum. There is a finite time horizon of length T denoted by T = {0, 1, . . . , T}, and

the game is played on a graph Q which consists of n nodes N joined by edges E . The

attacker can choose a node to attack, and then their attack lasts for some m time steps.

During the time when the attack is occurring, it is stopped by the patroller if they visit

that node of the graph. Attacks are always caught, and stopped instantaneously. The

attacker’s pure strategies consist of the pairs [i, I] where i ∈ N is the attack node and

I = {τ, τ + 1, . . . , τ +m− 1} is the attack interval. A pure strategy for the patroller is

a walk w : T → Q, which is called a patrol. There are two cases of the game: either

a one-off game or a periodic game. The one-off game is as described, and the attack

must be completed by time T for the attacker to win. In the periodic game, we restrict

the patroller’s pure actions to be cycles of length T in order to have the patrols join

up. Attacks are now not required to be completed by time T , and if an attack starts

at time τ , it finishes at the time point τ +m mod T .

The main contributions of Alpern et al. (2011) are discussing patrolling on special
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classes of graphs. There are three classes of note: Hamiltonian, bipartite and line

graphs.

A Hamiltonian graph is defined as a graph where there exists a cycle which visits

every node exactly once. Alpern et al. (2011) prove that for any Hamiltonian graph

with n nodes, if the attack lasts for m time steps then the value of the one-off game

is m/n and the value of the periodic game is bounded above by m/n. Furthermore, in

the periodic game the value is exactly m/n if T = kn for some k ∈ Z, or if T = kn+ σ

for some 0 < σ < n, as k → ∞ the value of the game tends to m/n.

A bipartite graph is a graph in which there exists no cycle of odd length. Therefore,

in bipartite graphs the nodes can be partitioned into two sets A and B such that every

edge is from a node in A = {α1, . . . , αa} to a node in B = {β1, . . . , βb}, where a ≤ b. If

every node in A is connected by an edge to every node in B, then the graph is called

the complete bipartite graph Ka,b. The authors prove that for any bipartite graph, with

nodes partitioned as mentioned, in both the one-off game and the period game the value

is bounded above by m/(2b). Moreover, the bound is tight if the graph is the complete

bipartite graph Ka,b in the one-off game, or if it is the complete bipartite graph Ka,b

and T = 2kb in the periodic game for some k ∈ Z. Additionally, if T = kn+σ for some

k, σ ∈ Z such that 0 < σ < n then as k → ∞ the value of the periodic game tends to

m/(2b).

The line graph Ln is a graph of n nodes such that there are only edges between

nodes k and k+ 1 for 1 ≤ k ≤ n− 1. Alpern et al. (2011) prove that for the line graph

Ln, the value of the one-off game is m/2(n − 1) and the value of the periodic game is

bounded above by m/2(n− 1). Furthermore, in the periodic game the value is exactly

m/2(n− 1) if T = kn for some k ∈ Z, or if T = kn + σ for some 0 < σ < n we get as

k → ∞ the value of the game tends to m/2(n− 1). Papadaki et al. (2016) and Alpern

et al. (2019) analyze the line graph case in further detail.

Alpern et al. (2022a) extend the model of Alpern et al. (2011) to both continuous
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space and time. The patroller now moves around a network at a unit speed, and wins

if they intercept the attack being carried out by the attacker. The arcs of the network

are not assumed to have equal length, and we define µ to be the sum of all arc lengths.

The girth g of the network Q is defined as the minimum length of a circuit in Q (or

g = ∞ if no circuit exists). The authors prove that for any network without leaf arcs,

if α ≤ g the value of the game is equal to α/µ. Furthermore, the authors can give

properties about the strategies played by either side. For the attacker, any uniform

attack strategy is optimal. For the patroller, a tour is defined which covers every arc

twice and no arc is traversed consecutively in opposite direction. The analysis is then

extended to general graphs, which can include leaf nodes. The generalized girth g∗ of

a network Q is defined to be the smaller between either the shortest circuit length of

Q and twice the length of the shortest leaf arc. The authors prove that for a network

with l ≥ 0 leaf nodes and generalized girth g∗, if α ≤ g∗ the value of the game is equal

to,

α

µ+ lα/2

Optimal strategies for the attacker and patroller are also once more defined by the

authors.

There are a number of other extensions to Alpern et al. (2011) considered in the

literature. Lin et al. (2013) consider how the problem changes if instead of attacks

taking a deterministic length of time to complete, the player’s only know a distribution

which it is drawn from. A further extension is made by Lin et al. (2014) by adding the

chance for the patroller to overlook an attack taking place. McGrath and Lin (2017)

look at what happens when the time taken to traverse an edge in the graph is non-zero.

In Alpern et al. (2022b), the authors consider an extension where the attacker can

observe the presence of the patroller, and based off the information choose to delay the

time of their attack.
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3.3 Travelling inspector model

The travelling inspector model was first introduced by Filar (1985), where a game

is played in which an inspector checks if regulations are being followed at different

plants. The plants are in different geographical locations, meaning the travel from one

to another is not trivial, and each controlled by some inspectee. The inspectee benefits

from not following the regulations, for example by increasing their plant’s performance,

but faces a fine if they get caught doing so. The inspector’s aim is to minimize a

combination of the costs inflicted by both the undetected violations and their travel.

Filar introduces the travelling inspector model as a single-controller stochastic game

with the following structure:

• There are S plants in different locations.

• There is one inspector who can perform only one inspection at a time.

• The inspector travels to a location, or remains still, and performs an inspection

there.

• The inspectees only know the last inspected site.

• The inspector minimizes a combination of the costs inflicted by both the unde-

tected violations and their travel.

• The number of inspection periods can either be finite or infinite, but is known to

all players.

Each inspectee has levels with which they can violate the regulations. Filar denotes

the set of possible actions for inspectee p by V (p) for p ∈ [n]. Each inspectee receives

a reward, depending on only their action vp ∈ V (p), the inspector’s action i, and the

state s, denoted by rp(vp, i, s). The inspector’s reward rI(v1, . . . , vp, i, s) depends on

their action, the actions of all smugglers and the state.
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Filar and Schultz (1986) prove results about smuggler aggregation and its conse-

quences. The travelling inspector game, as introduced above, is given as an S + 1

player game. However, if we assumed the S inspectees to be a single player, for ex-

ample if they were controlled by some central decision maker, it is of interest how the

equilibria would change. Filar showed that the sets of Nash equilibria between the

two games in fact coincide. The result is both interesting from a policy perspective,

but furthermore allows for easier computation of the equilibria from the wider range of

literature on two player games.

3.4 Search Games

A related problem to border patrolling is the area of search problems, in which a hidden

item needs to be found by a searcher. Applications include finding bombs, looking for

missing planes or ships, and an intruder of a protected area.

The classic search problem is one where there is a single decision maker, the searcher,

that tries to find the hidden item. Whilst the item may not necessarily be stationary,

it does not have any ability to control its movement. The problem is called a one-sided

search problem, and applications include trying to find a wrecked plane or ship. An

overview of one-sided search problems can be found in Stone (1976).

However, there are many applications where either the item may be moving in-

telligently, for example an intruder, or may have been planted adversarially, as with a

hidden bomb. There are now two decision makers, the searcher, and the hider, therefore

these are called two-sided search problems. An overview of two-sided search problems

can be found in Alpern and Gal (2006).
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3.5 Wider Literature

In addition to the selected areas already discussed, there is a breadth of wider research

in the area of border patrol style problems. Here we cover some of the different problems

which have been considered in the literature.

The papers of Baston and Bostock (1991) and Garnaev (1994) discuss a stochastic

game model for an inspection problem, applications of which include patrolling prob-

lems. Both papers consider a single smuggler, with a constraint on the number of times

the patroller can attempt to capture the smuggler. The models also include a limited

amount of time in which the smuggler can be caught.

Bier et al. (2007) consider a model where the defender must allocate resources to

a number of locations, whilst the attacker chooses a location to attack. The paper

considers which strategies for the two sides result in equilibrium.

Grant et al. (2020) examine a patrolling problem along a border where there are

many small attempts to smuggle items. The adversaries are assumed to act randomly,

rather than intelligently, with applications including photographing wildlife.

Lindelauf et al. (2009) consider the optimal communication structure of terrorist

organizations, looking at the tradeoff between secrecy and operational efficiency. The

authors model the problem as a game theoretic bargaining problem and find equilibria

under a number of different assumptions.

Richard (1972) studies the daily patrol patterns of a police officer in the United

States. A number of topics are considered including the models of police response time,

preventative patrol effectiveness, workload distribution, dispatch delays, intersector co-

operation, and a number of other performance measures.

Ruan et al. (2005) consider patrolling units that respond to calls for service. The lo-

cations have different levels of priority, and varying rates at which incidents occur. The

authors develop a Markov decision process framework with a novel learning algorithm

to find patrol routes.
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The papers of Ruckle (2001) and Kikuta and Ruckle (2002) look at an accumulation

game, where a hider distributes some material over a number of locations. A searcher

then can choose a subset of the locations to visit, confiscate any material found, and

confiscate it. There is a win-loss outcome to the game, depending on if the amount of

material remaining exceeds some threshold known before the game to both sides.

Washburn and Wood (1995) consider a two-sided problem of network interdiction. A

single evader attempts to traverse between two nodes in a network, whilst the patroller

sets up an inspection point along one of the arcs in the network. The evader attempts

to pick the shortest possible path without being caught, while the patroller tries to

pick the arc to maximize their probability of capture. The authors construct a linear

program to solve the game, and analyze the complexity of the problem. There are many

extensions to the problem, a number of which are detailed in the overview by Smith

and Song (2020).

Sack and Urrutia (1999) look at computational geometry, an application of which

is the protection of galleries containing expensive paintings.



Chapter 4

A model of cooperation and

communication

Chapter 4 considers a one-shot game between a patroller and a group of smugglers. The

contribution of the chapter to the literature is its novel consideration of how commu-

nication and cooperation can be modelled, and furthermore, how they affect strategies

at equilibria. This chapter is currently under review for publication in Operations

Research.

This chapter is currently under review at Operations Research.

4.1 Introduction

The question of how to patrol a border effectively is a fundamental problem facing

government organizations worldwide. A specific issue regarding borders is the illegal

trafficking of items across them, with smugglers attempting to evade being captured as

they pass through. Notable examples include drug trafficking through Europe (Baniya,

2023), oil smuggling (Savage and Bergman, 2023), and the illicit trade of wildlife (Freed-

man, 2022). Due to constraints on resources, it is usually infeasible to protect an entire

border at once. Therefore, it is necessary to study how borders can be best defended

36
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with limited resources.

Previous research has shown how the defensive strategies adopted by patrollers can

directly affect the behavior of smugglers. Chalmers et al. (2009) discuss how one of the

main aims of law enforcement targeting the trafficking of illicit drugs is the need for

smugglers to increase the market price in order to compensate for increasing the risks

they face. Rhodes et al. (2000) studied the impact of law enforcement policy on the

market price of illicit drugs such as cocaine, heroin, marijuana and methamphetamine

and concluded that without the interdiction of law enforcement, the market prices for

these drugs would likely be many times lower.

In this chapter we make the assumption that as the overall quantity of items suc-

cessfully smuggled increases, the smugglers receive diminishing marginal returns. This

assumption can be justified using examples from the economics literature. Becker (1968)

considers a general model of crime and punishment and assumes that offenders eventu-

ally receive diminishing marginal returns. In the context of smuggling, Sheikh (1974)

and Norton (1988) also include notions of diminishing marginal returns. Both papers

seek to build models for the smuggling of legal items through borders by companies in

order to avoid taxation of their goods.

The inclusion of diminishing marginal returns raises non-trivial questions about how

smugglers should collaborate with each other. Some previous studies have investigated

the effects of communication and cooperation between smugglers. Politi (1997) states

the importance of drug trafficking for organized crime, with two of the main incentives

being the economic resources generated and the transnational networks created and

sustained by the activity. Bichler et al. (2017) look into the structure of drug supply

networks created by organized crime, analyzing them using techniques from social net-

work analysis. In this chapter we use a game theoretical model to study the incentives

for smugglers to cooperate and/or communicate with each other and the benefits ob-

tained through collaboration, thereby demonstrating the importance of organizations
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for drug trafficking.

A number of previous works have analyzed patrolling problems from a game the-

oretic perspective. Alpern et al. (2011) introduced a patrol game where a patroller

attempts to thwart a single attack from a smuggler, with the attack taking a known

deterministic time to complete. The game is zero-sum, with the smuggler winning if the

attack is successful and losing if they are stopped by the patroller. Subsequent models

analyzed include those of Lin et al. (2013), which introduces a non-deterministic time

for attacks to be completed, Lin et al. (2014), which considers non-perfect detection of

the smuggler by the patroller, and Papadaki et al. (2016); Alpern et al. (2019) which

focus on applications to the more specific setting of border patrol.

The papers mentioned above all feature assumptions that make them incompatible

with the model studied in this chapter. The game theoretical model in our chapter

does not assume that a successful attack by a smuggler simply results in a loss for the

patroller. Instead, we incorporate a more detailed payoff structure which takes into

account the quantity of items trafficked, which is motivated from both the patroller’s

and the smugglers’ perspective. The patroller must accept that they cannot always

prevent all smuggling, and consequently, their payoff should be decreasing in the number

of illicit items smuggled. Furthermore, the smugglers should not simply win the game

if some illicit items are successfully smuggled. We present a payoff function for the

smugglers which takes into account both the individual rewards for smuggling items

but also depends on the total quantity of items smuggled, to take into account the

diminishing returns received.

Models related to ours are considered in Filar and Schultz (1986) and Darlington

et al. (2023). Both papers consider stochastic game models in which a patroller at-

tempts to prevent a group of smugglers from attacking the border, but these papers

also consider sequential problems with multiple time steps and the patroller must pay

a cost to change the location that they are defending. Whilst we are only considering
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a single time-step (or ‘one-shot’) problem, we introduce extra complexity through the

structures of the payoff functions. The smuggler payoffs in Filar and Schultz (1986) and

Darlington et al. (2023) have the property that one smuggler’s payoff is independent

of every other smuggler’s action. This property implies that the equilibria in games

with selfish and cooperative smugglers are equivalent, which leads to significant simpli-

fications when finding equilibrium strategies. When diminishing marginal returns are

included, it is no longer the case that one smuggler’s payoff is independent of other

smugglers’ actions, and we must therefore establish new methods to find equilibria.

Our model aims to yield useful insights that can assist a patroller to choose the

best strategy when defending a border against smugglers. Moreover, these insights

have potential design implications, as the patroller could potentially exert influence

over the values of the model parameters in realistic settings. For example, we assume

that the cost to a smuggler of being caught consists of both the amount of revenue

lost and also the penalty imposed upon them by the patroller. This penalty could

be chosen (possibly within constraints) by the patroller in order to either incentivize

or deter smugglers from attempting to attack. Kleiman and Kilmer (2009) present a

study of the effects of choosing different levels of deterrent in a simple model that does

not include dependence between the rewards to smugglers and the amount of crime

occurring.

The main contributions of our chapter are as follows:

• We introduce a new model for patrolling a border which takes into considera-

tion diminishing marginal returns for illicit items being trafficked by a group of

smugglers.

• We consider three different cases of smuggler behavior: selfish smugglers without

communication, selfish smugglers with communication and cooperative smugglers.
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• We prove analytically that in all cases of smuggler behavior, any equilibrium

strategy requires the smugglers to attack each location with the same probability.

Furthermore, in two of the three cases, we show that there can only exist an

equilibrium when the patroller defends each location with the same probability.

• We detail all possible equilibria that exist in two of the three cases of smuggler

behavior. Moreover, after placing an additional assumption on the patroller’s

behavior, we describe all possible equilibria in the remaining case.

• We prove the surprising result that cooperation, and sometimes communication,

between the smugglers results in fewer illicit activities. Moreover, both coopera-

tion and communication increase the value of the game to the smugglers.

• We consider how the penalty applied to smugglers who get caught affects both

their actions and their payoffs. Choosing the deterrent is an important societal

consideration to balance the consequences for the criminal with the impact of

crime on the population as a whole.

The rest of the chapter is organized as follows. In Section 4.2 we formulate the game

theoretical model for border patrol. In Section 4.3 we present the different definitions

of equilibria that we wish to consider for the players in the model. Section 4.4 discusses

the smugglers’ strategy and proves certain properties of equilibrium strategies that ap-

ply to all behavior cases. Section 4.5 considers each case independently, and provides

analytical proofs regarding the structures of the various equilibria. In Section 4.6 we

prove additional results based on comparisons between the equilibria in different cases.

Section 4.7 includes examples to demonstrate the impact of the model parameters on

the existence and nature of equilibrium strategies. Finally, Section 4.8 provides our

concluding remarks.
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4.2 Model Description

We consider a one-shot simultaneous game played between a patroller and n smugglers.

Each smuggler is fixed at a unique and discrete location, meaning that the border is

comprised in total of n locations labelled 1, 2, . . . , n. The patroller chooses to defend

one of the locations, whilst each smuggler can choose whether or not to attack their

respective location. We will use the notation [n] = {1, . . . , n} to denote the set of

locations. As a result, the patroller’s action space is denoted by Apat = [n] and smuggler

i’s action space is given by Asmug(i) = {0, 1} for i = 1, . . . , n. We denote the action

chosen by the patroller by b ∈ Apat and the action chosen by smuggler i by ai ∈ Asmug(i).

The vector a = (a1, . . . , an) represents the actions taken by all the smugglers.

We begin by describing how the smuggler rewards depend on the actions of all

players. When a smuggler attacks, they incur a fixed cost of C > 0 if the patroller

defends their location. If the smuggler attacks and their location is not defended by

the patroller, then the attack is successful. When a smuggler makes a successful attack,

they receive a positive reward, which depends on the total number of successful attacks.

The total number of successful attacks is the total number of attacks at locations other

than b, which for the smuggler actions a we denote by

αb(a) =
∑
j ̸=b

aj.

Given that αb(a) successful attacks occur, the reward to each smuggler who makes

a successful attack is given by f(αb(a)), where the function f is specified within the

model. We assume that f : [n] → R is a positive and strictly decreasing function.

Whilst in reality the reward could be negative (due to costs outweighing the benefits of

smuggling), this would lead to uninteresting solutions in our model. The assumption

that the reward for each successful attack is decreasing in the total number of attacks is

motivated by studies which consider the price elasticity of supply for illicit items, such
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as Rhodes et al. (2000).

Consequently, we define smuggler i’s reward function as follows;

rsmug(i)(b, a1, . . . , ai, . . . , an) =


−aiC, b = i,

aif(αb(a)), b ̸= i.

(4.2.1)

We place one additional assumption on the cost parameter C and the reward function

f . For any positive number x of successful attacks, we assume that the total reward

obtained from these attacks, xf(x), is strictly greater than the corresponding reward

when one of the attacks is instead defended against, (x− 1)f(x− 1)− C. That is:

xf(x) > (x− 1)f(x− 1)− C ∀ x > 0. (4.2.2)

This assumption is necessary in order to avoid degenerate cases where a group of smug-

glers would be better off making sure that one of their attacks is stopped, rather than

making all of their attacks successfully. Note that this assumption does not imply that

xf(x) > (x− 1)f(x− 1)

and therefore there can be cases where, for a group of smugglers, the total reward is

increased by reducing the number of successful attacks that are made.

Since each smuggler’s reward depends on the actions of the other smugglers, there is

an intuitive incentive for them to cooperate rather than acting selfishly. Furthermore,

even if the smugglers act selfishly, there could still be some centralizing agent outside

of the game who coordinates their attacks to increase profits. These considerations

provide motivation for studying the effects of cooperation and communication between

smugglers on equilibrium solutions.

We now present the patroller’s reward function. If a patroller defends a location

that is being attacked by a smuggler, they receive a fixed reward of c > 0. We do not
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assume that the game is zero-sum and therefore c and C have no relation. The patroller

also incurs a cost that depends on the total number of successful attacks that they are

unable to stop. We assume that there is a linear relationship between the number of

attacks x that are not defended against, and the cost g(x) to the patroller. It is further

assumed that the linear function g is both positive and increasing. Governments are

normally risk-neutral in their decision making (Stewart et al. (2011)), and therefore the

linear assumption of their utility is justified. A detailed discussion of the societal cost

of crime can be found in Wickramasekera et al. (2015). The patroller’s reward function

can be expressed as

rpat(b,a) = c · ab − g(αb(a)). (4.2.3)

As g is a linear function, we can also write g(x) = g1+g2x when needed. The constants

g1 and g2 can be respectively interpreted as the constant cost of patrolling and the cost

to the patroller for each individual attack that they fail to defend.

In this section we have detailed the actions available to the players in the game

and how the payoffs depend on the choices of action. The next section describes the

different cases for that we wish to consider for the smugglers’ behavior.

4.3 Defining settings of cooperation and communi-

cation

In this section we formally define each of the cases of smuggler behavior and specify

the conditions for equilibria in the game. The three different cases we consider are: (i)

selfish smugglers without communication (abbreviated as S-NC), (ii) selfish smugglers

with communication (abbreviated as S-C) and (iii) cooperative smugglers (abbreviated

as CP). When smugglers are acting selfishly they act to maximize their own expected

rewards. If they are not communicating, then they must choose actions independently
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of each other. On the other hand, the ability to communicate allows them to observe

the planned actions of other smugglers, and consequently their actions can depend on

each other. When the smugglers are cooperative they aim to maximize the sum of their

individual expected rewards, rather than maximizing individual rewards.

We define a strategy for a player to be a probability distribution over their action

space. We use ∆(A) to denote the set of probability distributions with set A as their

support. In all three of the cases introduced, the patroller chooses a strategy q ∈

∆(Apat) = ∆([n]). Given the strategy q, the probability that a location k is defended

is given by qk = P(b = k).

4.3.1 Selfish - No Communication (S-NC)

In the case of selfish smugglers without communication, we aim to find a Nash equilib-

rium (as first introduced by Nash (1951)) between the patroller and the n smugglers.

The patroller chooses a strategy over ∆([n]) as previously described, whilst each smug-

gler i chooses a strategy πi = (π0
i , π

1
i ) ∈ ∆(Asmug(i)) = ∆({0, 1}). The probabilities of

smuggler i taking the actions 0 and 1 are then represented by π0
i and π1

i respectively.

The expected rewards for all players, given a strategy for each player, can then be

found by taking the expectations of their reward functions over the actions drawn at

random from the respective strategies. The patroller’s expected reward is

Rpat(q,π1, . . . ,πn) = Eb∼q,a1∼π1,...,an∼πn [rpat(b, a1, . . . , an)]

and the expected reward for smuggler i is

Rsmug(i)(q,π1, . . . ,πn) = Eb∼q,a1∼π1,...,an∼πn

[
rsmug(i)(b, a1, . . . , an)

]
.

The strategies q,π1, . . . ,πn are a Nash equilibrium if and only if no player has an

incentive to deviate to another strategy. A player has an incentive to deviate to another
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strategy if they can receive a strictly greater expected reward by playing it, assuming

the strategies of all other players remain the same. Therefore, the patroller has no

incentive to deviate from q if

Rpat(q,π1, . . . ,πn) ≥ Rpat(q̃,π1, . . . ,πn) ∀ q̃ ∈ ∆(Apat)

and smuggler i has no incentive to deviate from πi if

Rsmug(i)(q,π1, . . . ,πi, . . . ,πn) ≥ Rsmug(i)(q,π1, . . . , π̃i, . . . ,πn) ∀ π̃i ∈ ∆(Asmug(i)).

4.3.2 Selfish - Communication (S-C)

We now consider the case where the smugglers are still selfish, but communicate among

themselves. We define a notion of equilibrium between the players in this case by using

the concept of a ‘correlated equilibrium’, discussed in Aumann (1987). The concept

developed by Aumann (1987) is that every player chooses a private action based on the

observation of a publicly available stochastic signal, and if none have an incentive to

deviate, then the signal is a correlated equilibrium. However, in our setting we do not

wish the patroller to be able to observe the public signal, and instead we assume that

they are only able to observe the distribution of it.

We define a signal as a random variable S which takes values in the joint action

space of the smugglers, Asmug = {0, 1}n. Before the game starts, a joint action a is

sampled from the signal S. Every smuggler observes the joint action a, and smuggler

i is directed (under action a) to play the action ai. Meanwhile, the patroller chooses a

strategy q as in the previous case (S-NC). The patroller knows the distribution of the

signal S, but does not observe the joint action a that has been sampled from it.

The patroller’s strategy q and the smugglers’ signal S form an equilibrium if and

only if the patroller has no incentive to deviate to another strategy and no smuggler
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has an incentive to deviate from the action suggested by the signal. For the patroller,

this implies that q must satisfy

Eb∼q,a∼S [rpat(b,a)] ≥ Eb∼q̃,a∼S [rpat(b,a)] ∀ q̃ ∈ ∆(Apat).

Smuggler i has no incentive to deviate if, for any joint action a shown by the signal

S with non-zero probability (P(S = a) > 0), there is no alternative action that would

strictly increase their expected reward. Since in our game smuggler i’s actions are only

0 or 1 we only need to consider whether

Eb∼q

[
rsmug(i)(b, a1, . . . , ai, . . . , an)

]
≥ Eb∼q

[
rsmug(i)(b, a1, . . . , 1− ai, . . . an)

]
Communication allows selfish smugglers to observe the actions that other smugglers

will take, whereas in the case of no communication (S-NC) they can only observe the

distribution over the actions. It seems natural to suppose that giving selfish smugglers

the ability to communicate leads to equilibrium strategies in which they obtain larger

expected rewards. We make this argument precise, and furthermore prove it in Section

4.6.

4.3.3 Cooperative (CP)

The final case we consider is that of cooperative smugglers. When the smugglers are

cooperative, we consider them as a group of smugglers represented by a single player

in the game. Therefore, the reward to the group of smugglers given that they play an

action a and the patroller plays an action b is given by the cumulative reward

rsmug(b, a1, . . . , an) =
n∑

k=1

rsmug(k)(b, a1, . . . , an) (4.3.4)
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We then assume that every smuggler receives an equal share of the total reward received.

An equilibrium in the cooperative setting is a Nash equilibrium in the two player game

between the group of smugglers and the patroller.

As in the previous cases (S-NC and S-C), the patroller’s strategy q is a probability

distribution over their actions Apat. The smugglers choose a strategy π over their joint

action space Asmug =×n

i=1
Asmug(i). The probability of the smugglers taking a joint

action k is given by πk = P(a = k). Therefore the patroller’s expected reward, given

that actions are chosen at random according to the strategies q and π, is given by

Rpat(q,π) = Eb∼q,a∼π [rpat(b,a)]

and the smugglers’ expected reward is given by,

Rsmug(q,π) = Eb∼q,a∼π [rsmug(b,a)] .

The strategies q and π are a Nash equilibrium if and only if neither player has

an incentive to deviate from their strategy. We defined the conditions for a Nash

equilibrium for selfish smugglers in Section 4.3.1, and we have similar conditions in the

case of cooperative smugglers. Formally, the patroller has no incentive to deviate from

q if

Rpat(q,π) ≥ Rpat(q̃,π) ∀ q̃ ∈ ∆(Apat)

and the smugglers have no incentive to deviate from π if

Rsmug(q,π) ≥ Rsmug(q, π̃) ∀ π̃ ∈ ∆(Asmug)

We have introduced the three different cases of smuggler behavior (S-NC, S-C and

C) in our model. In Sections 4.5 and 4.6 we investigate equilibrium strategies in the

respective cases.
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4.4 Smuggler Marginal Probability Of Attacking

In this section we prove an important result concerning smuggler equilibrium strategies

that holds in all of the cases of smuggler behavior that we consider. First, we introduce

the notion of the ‘marginal probability’ with which a location is attacked. Denote the

marginal probability of attack at location i by pi, and note that pi is the probability with

which location i is attacked according to the strategy or signal chosen. An important

feature of our model is that the patroller’s expected reward depends only on the set

of marginal probabilities, and not on the joint distribution of attacks across locations.

Indeed, since the cost to the patroller due to undefended attacks, g(x) = g1 + g2x, is a

linear function of the number of successful attacks we have

Ea∼π [rpat(b,a)] = Ea∼π [cab − g(αb(a))]

= cEa∼π [ab]−

(
g1 + g2

∑
i ̸=b

Ea∼π [ai]

)

= cpb −

(
g1 + g2

∑
i ̸=b

pi

)
.

(4.4.5)

We will use the vector p = (p1, . . . , pn) to represent the set of marginal attack

probabilities for locations 1, 2, . . . , n. We now prove that if two locations have different

marginal attack probabilities, then in an equilibrium the location with the smaller

attack probability must be protected with probability zero by the patroller.

Lemma 4.4.1. There exists no equilibrium, with patroller strategy q and smuggler

marginal attack probabilities p, such that pj > pi and qi > 0 for some i, j ∈ [n].

Proof. Suppose that location i is protected with a probability greater than zero, qi > 0.

In an equilibrium, any action taken by the patroller with non-zero probability must be
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in the set of best responses to the smugglers’ actions. Therefore, defending location i

must be a best response to the smugglers. However, we prove that the expected reward

to the patroller for defending location j is strictly greater than they receive by defending

location i. As in Eq.(4.4.5) we have,

Ea∼π[rpat(b,a)] = cpb −

(
g1 + g2

∑
k ̸=b

pk

)
.

We now compare the expected rewards to the patroller for protecting locations i and j.

Ea∼π [rpat(i,a)]− Ea∼π [rpat(j,a)] =

[
cpi −

(
g1 + g2

∑
k ̸=i

pk

)]
−

[
cpj −

(
g1 + g2

∑
k ̸=j

pk

)]

= (c+ g2)(pi − pj).

It is an assumption of the model that both c and g2 are positive, and an assumption

of the lemma that pi < pj. Therefore, we have Ea∼π [rpat(i,a)] − Ea∼π [rpat(j,a)] < 0

and so the patroller has an incentive to deviate from taking the action of defending

location i to defending location j. Thus, an equilibrium only exists if the patroller

defends location i with probability zero, qi = 0.

Following on from Lemma 4.4.1 we prove that, in any equilibrium, if the patroller

protects one location with probability strictly greater than another then the two loca-

tions must be attacked with equal marginal probability by the smugglers.

Lemma 4.4.2. There exists no equilibrium, with patroller strategy q and smuggler

marginal attack probabilities p, such that qj > qi and pi ̸= pj for some i, j ∈ [n].

Proof. First, suppose that pj < pi. By Lemma 4.4.1 if there exists an equilibrium we

must have that location j is defended with probability zero, qj = 0, contradicting the

fact that qj > qi. Hence, we only need to consider pj ≥ pi.

We now prove that we cannot have pj > pi by assuming there exists such an equi-

librium and finding a contradiction. Recall that since pj > pi, we must have by Lemma
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4.4.1 that qi = 0. We consider the different cases for smuggler behavior separately.

Firstly, we consider the case of selfish smugglers without communication (S-NC).

Given that pi < 1, the action of not attacking must be in the set of best responses

for smuggler i to the patroller’s strategy q. If smuggler i chooses not to attack, their

reward is zero. Thus, in order for ai = 0 to be a best response, the expected reward

for smuggler i attacking (ai = 1) must be no greater than zero. Since qi = 0 we can

calculate the expected reward for the smuggler i attacking as

Eb∼q,a1∼π1,...,an∼πn [rsmug(i)(b, a1, . . . , an)] =
n∑

k=1

P(αb(a) = k and ai = 1)f(k) ≤ 0,

(4.4.6)

where (4.4.6) follows from (4.2.1) as a consequence of location i not being defended,

implying that smuggler i will never be defended against. We reach a contradiction since

the reward to the smuggler if x ≥ 1 smugglers are successful, given by f(x), is always

strictly positive.

Secondly, we consider the case of selfish smugglers with communication (S-C). Since

pj > pi the signal S must suggest an action a such that aj = 1 and ai = 0 with non-zero

probability. Define x =
∑

k ak to be the total number of attacks suggested when the

signal displays the action a to the smugglers, and q =
∑

k qkak to be the probability

that one of them is defended against. Conditional on the signal showing the action a,

the expected reward to the smuggler i for attacking is

(1− q)f(x+ 1) + qf(x),

since with probability 1− q there will be x+ 1 successful attacks and with probability

q there will be x successful attacks. It was assumed that there is an equilibrium,

which implies that smuggler i cannot have incentive to deviate away from not attacking

(ai = 0) to attacking (ai = 1). Therefore, since the reward for not attacking is zero, we
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require that,

(1− q)f(x+ 1) + qf(x) ≤ 0.

We reach a contradiction since f(x) > 0 and f(x+ 1) > 0.

Finally, we consider the case of cooperative smugglers (CP). Due to the assumption

that pj > pi, there must exist an action a taken with non-zero probability by the

smugglers such that location j is attacked (aj = 1) while location i is not attacked

(ai = 0). We compare the expected reward from taking action a with the expected

reward from taking an alternative action ã, which we define to be identical to a except

that we swap the attack at location j to location i. That is:

ãk =


aj = 1 if k = i,

ai = 0 if k = j,

ak otherwise.

Since action a is taken with non-zero probability, in order to have an equilibrium

the action a must be a best response for the smugglers to the patroller’s strategy

q. Therefore, the expected reward for choosing ã cannot be strictly greater than the

expected reward for choosing a. It can be seen from (4.3.4) that when the patroller

defends a location other than i or j, the reward to the smugglers is equivalent under

actions a and ã. Therefore we can simplify the difference in expected rewards to the

smugglers for taking actions a and ã by conditioning on the action of the patroller, as

follows:

Eb∼q [rsmug(b,a)]− Eb∼q [rsmug(b, ã)] =
∑
k

qkrsmug(k,a)−
∑
k

qkrsmug(k, ã)

= [qirsmug(i,a) + qjrsmug(j,a)]− [qirsmug(i, ã) + qjrsmug(j, ã)]

= qj [rsmug(j,a)− rsmug(j, ã)] ,
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where the last line follows from the fact that qi = 0. If we denote the number of attacks

occurring at locations other than i and j by

x =
∑
k ̸=i,j

ak

then, using the definition of the smugglers’ reward function in (4.3.4), we have

Eb∼q [rsmug(b,a)]− Eb∼q [rsmug(b, ã)] = qj[(xf(x)− C)− (x+ 1)f(x+ 1)].

It is an assumption of the model that (x+1)f(x+1) > xf(x)−C. Therefore, we have

that Eb∼q [rsmug(b,a)]−Eb∼q [rsmug(b, ã)] < 0 and so the smugglers have an incentive to

deviate from action a to action ã. This contradicts the assumption of an equilibrium,

and therefore we cannot have pj > pi.

Before stating our next result, we introduce some terminology to be used in the rest

of the chapter. We say that the smugglers attack uniformly if every location is attacked

with the same marginal probability; that is, p1 = p2 = · · · = pn = p. In the S-NC

case, this implies that each smuggler attacks independently with probability p ∈ [0, 1],

whereas in the S-C and C cases, a certain number of smugglers x ∈ [n] are randomly

selected to attack (with each smuggler having the same probability of being selected).

Similarly, we say that the patroller defends uniformly if every location is defended with

the same probability; that is, q1 = q2 = · · · = qn = 1/n.

A consequence of Lemmas 4.4.1 and 4.4.2 is that if two locations are attacked with

different marginal probabilities, then there cannot exist any patroller strategy q that

results in an equilibrium. We state this as a theorem.

Theorem 4.4.3. Under an equilibrium strategy, the smuggler marginal attack proba-

bilities pk must all be equal.

Proof. Suppose, for a contradiction, that there exists an equilibrium in which the smug-
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gler marginal attack probabilities p are not all equal. Hence, there exist locations i and

j such that pi < pj. We denote the patroller’s strategy in the equilibrium by q. As a

consequence of Lemma 4.4.1, the patroller must defend location i with zero probability,

qi = 0. There are then two cases: location j is either defended with non-zero probability

(qj > 0) or with zero probability (qj = 0).

In the first case, if qj > 0 = qi then as a consequence of Lemma 4.4.2 we have

pj = pi, yielding an immediate contradiction.

In the second case, if qj = qi = 0 then there must exist another location k such that

qk > 0. Given that qk > qi, Lemma 4.4.2 implies that pk = pi. However, we then have

pk = pi < pj and qk > qj which contradicts the result of Lemma 4.4.2.

Theorem 4.4.3 allows us to restrict the space of smuggler strategies that we consider

to those with equal marginal attack probabilities when searching for equilibria.

4.5 Finding equilibria

In this section we consider the three different cases of smuggler behavior defined in

Section 4.3 and detail in each of them how we can find equilibria.

4.5.1 Selfish - No Communication (S-NC)

We begin with the S-NC case. Having already proven that the marginal probabilities

of attack at all locations must be equal in an equilibrium, we now focus on the pa-

troller’s strategy. We prove that the patroller must protect each location with the same

probability, unless the smugglers attack with probability zero or one.

Proposition 4.5.1. In the S-NC case, there exists no equilibrium such that the patroller

defends non-uniformly and the smugglers each attack independently with probability

p ∈ (0, 1).
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Proof. Suppose, for a contradiction, that there exists an equilibrium of the type de-

scribed in the proposition. Let i and j be two locations with qi ̸= qj. We wish to

compare the expected rewards that the smugglers at locations i and j obtain by attack-

ing.

Given that there is an equilibrium where smugglers attack with probability p ∈

(0, 1), the actions of attacking and not attacking must both be in each smuggler’s set of

best responses to every other player’s action. Consequently, since not attacking always

gives a reward of zero, the expected reward for a smuggler attacking must also be zero.

This implies that

Eb∼q,a1∼π1,...,an∼πn [rsmug(i)(b, a1, . . . , an)] = 0 = Eb∼q,a1∼π1,...,an∼πn [rsmug(j)(b, a1, . . . , an)]

(4.5.7)

We can give closed form expressions for both of the expectations in (4.5.7). Smuggler i

attacks with probability p ∈ (0, 1). Conditional on them attacking, the patroller then

defends smuggler i with probability qi resulting in a cost of C. However, if location i is

not defended, we know that one of the other locations must be defended. Therefore, if

smuggler i attacks and is not defended against, then the number of successful attacks

is given by the random variable Xn−2,p + 1. Thus,

Eb∼q,a1∼π1,...,an∼πn [rsmug(i)(b, a1, . . . , an)] = p
[
(1− qi)EXn−2,p [f(Xn−2,p + 1)]− qiC

]
.

Following the same reasoning, we have that for smuggler j

Eb∼q,a1∼π1,...,an∼πn [rsmug(j)(b, a1, . . . , an)] = p
[
(1− qj)EXn−2,p [f(Xn−2,p + 1)]− qjC

]
.



CHAPTER 4. A MODEL OF COOPERATION AND COMMUNICATION 55

Due to the equality in (4.5.7) we must have that

0 = Eb∼q,a1∼π1,...,an∼πn [rsmug(i)(b, a1, . . . , an)]− Eb∼q,a1∼π1,...,an∼πn [rsmug(j)(b, a1, . . . , an)]

= p
[
(1− qi)EXn−2,p [f(Xn−2,p + 1)]− qiC

]
− p

[
(1− qj)EXn−2,p [f(Xn−2,p + 1)]− qjC

]
= p(qj − qi)

[
EXn−2,p [f(Xn−2,p + 1)] + C

]
.

(4.5.8)

However, we have assumed p > 0 and qj − qi ̸= 0 in the statement of the proposition

and EXn−2,p [f(Xn−2,p + 1)] + C is positive due to the model assumptions. Therefore,

the equality in (4.5.8) cannot hold and we reach a contradiction.

In the S-NC case it will often be necessary to use binomially-distributed random

variables to represent the number of attacking smugglers. To simplify the notation, we

define Xn,p as the binomial random variable with n trials and success probability p on

each trial. From this point on, we consider only patroller strategies that defend uni-

formly. Whilst there exist other equilibria when the smugglers attack with probability

zero or one, these edge cases are of less interest. Moreover, in the edge cases there

also exist equilibria where the patroller defends uniformly, as we will later prove. We

now turn our focus to the smugglers’ strategies, and prove that there exists a unique

probability of attack p∗ that gives an equilibrium when the patroller defends uniformly.

We begin by calculating the expected reward to smuggler i for attacking with prob-

ability 1 when every other smuggler attacks with probability p. There are n− 1 smug-

glers attacking independently with probability p, so the total number of these attacks

is Xn−1,p. If x ∈ {0, . . . , n− 1} other smugglers attack, as well as smuggler i, then the

probability of no smuggler being caught is [n− (x+ 1)]/n, the probability of smuggler

i being caught is 1/n and the probability of one of the other smugglers being caught is

x/n. The payoffs to smuggler i in these cases are f(x + 1), −C and f(x) respectively.
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Therefore, the expected reward to smuggler i is

w(p) := EXn−1,p

[
n− (Xn−1,p + 1)

n
f(Xn−1,p + 1) +

Xn−1,p

n
f(Xn−1,p)−

C

n

]
(4.5.9)

In order to show that there exists a unique probability p∗ giving an equilibrium, we

begin by proving that (4.5.9) is strictly decreasing in p.

Lemma 4.5.2. The expected reward to smuggler i for attacking with probability 1 while

every other smuggler attacks with probability p, denoted by w(p), is strictly decreasing

with p.

Proof. It is proved in Sah (1991) (appendices) that, for any function h, we have

∂

∂p
EXn−1,p [h(Xn−1,p)] = (n− 1)

n−2∑
k=0

(
n− 2

k

)
pk(1− p)n−2−k[h(k + 1)− h(k)]. (4.5.10)

We define the function h to be

h(k) =
n− (k + 1)

n
f(k + 1) +

k

n
f(k)− C

n
.

Since f is a decreasing function, for any k ∈ {0, . . . , n− 2} we have

h(k + 1)− h(k)

=

(
n− (k + 2)

n
f(k + 2) +

k + 1

n
f(k + 1)− C

n

)
−
(
n− (k + 1)

n
f(k + 1) +

k

n
f(k)− C

n

)
=

n− (k + 2)

n
[f(k + 2)− f(k + 1)] +

k

n
[f(k + 1)− f(k)]

< 0.

Hence, using (4.5.9) and (4.5.10), we have

∂

∂p
w(p) = (n− 1)

n−2∑
k=0

(
n− 2

k

)
pk(1− p)n−2−k[h(k + 1)− h(k)] < 0
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which completes the proof.

Lemma 4.5.2 allows us to prove the existence and uniqueness of an equilibrium in

the S-NC case.

Theorem 4.5.3. In the S-NC case, an equilibrium exists only when each smuggler

attacks independently with probability p∗, where p∗ is uniquely specified in the interval

[0, 1].

Proof. For a particular smuggler, the expected reward for attacking with probability

1 when all other smugglers attack with probability p is the function w(p) defined in

(4.5.9). On the other hand, the reward for not attacking is zero. As a result of Lemma

4.5.2 we have three possible cases: (4.5.9) can either be strictly negative for all p ∈ [0, 1],

strictly positive for all p ∈ [0, 1] or strictly decreasing but equal to zero for some unique

p′ ∈ [0, 1].

In the first case, where (4.5.9) is negative for all p ∈ [0, 1], the best response of the

smuggler is not to attack. Therefore, the only equilibrium must have p = 0.

Similarly, in the second case where (4.5.9) is positive for all p ∈ [0, 1], the best

response of the smuggler is to attack, and an equilibrium must have p = 1.

Finally, in the third case where w(p′) = 0 for some p′ ∈ [0, 1]. If p ̸= p′ there is an

incentive to deviate, as the unique best response must be to either attack or not attack

(depending on the sign of w(p)). On the other hand, when p = p′ both actions give an

expected reward of zero, and hence there is no incentive to deviate.

We have now proven in each of the cases that the smugglers have no incentive to

deviate from their strategy. Now, we consider whether the patroller has an incentive to

deviate. If smugglers attack uniformly, then the patroller’s reward does not depend on

which location they defend. Thus, they will not deviate from defending uniformly.

Consequently, there is a unique attack probability p∗ such that the resultant strategy

is a Nash equilibrium. This is either zero, one or p′ ∈ [0, 1], depending on which of the

above cases applies.
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It follows from Theorem 4.5.3 that we have three possible types of equilibria in the

S-NC case. Either p∗ = 0, in which case no smuggler attacks, p∗ = 1, in which case

all smugglers attack and obtain positive expected rewards, or p∗ ∈ (0, 1), in which case

the expected reward to every smuggler is zero.

4.5.2 Selfish - Communication (S-C)

We now consider the case where the smugglers are selfish but can communicate among

themselves. Recall that in this case, smugglers observe a signal S that suggests an

action to each of them. If no smuggler has an incentive to deviate from the signal’s

suggestion, then S forms an equilibrium with the patroller’s strategy q.

In the S-C case, there exist equilibria where the patroller does not defend uniformly.

However, the analysis in this subsection proceeds under the assumption that the pa-

troller defends uniformly in an equilibrium. In the other cases of smuggler behavior,

if the smugglers play a mixed strategy in an equilibrium then the patroller must be

defending uniformly. Therefore, by assuming the same property in the S-C case, we

can provide comparisons between the different behavior cases (these can be found in

Section 4.6). Furthermore, making this assumption allows for a more intuitive analysis

of the smugglers’ strategies, since we can exploit the symmetry of the model.

Theorem 4.4.3 states that the marginal attack probabilities pi must all be equal in

an equilibrium. In this section, we show that there exists a set X ∗ ⊂ {0, . . . , n} such

that any stochastic signal that instructs x ∈ X ∗ smugglers to attack while resulting in

equal marginal attack probabilities gives an equilibrium. Moreover, we show that there

is no other signal that results in an equilibrium.

For some X ⊂ {0, . . . , n}, define S(X ) to be the set of signals that instruct x ∈ X
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smugglers to attack while also resulting in equal marginal attack probabilities. That is:

S(X ) =

S ∈ ∆({0, 1}n)

∣∣∣∣∣∣∣∣
pi = pj ∀ i, j ∈ [n],∑

i

ai ∈ X if P(S = a) > 0

 .

The two constraints above respectively enforce that each location is attacked with the

same marginal probability and that the number of smugglers attacking must be an

element of X .

Recall that we are assuming that the patroller defends uniformly. We denote the ex-

pected reward to a particular smuggler i for attacking, given that in total x ∈ {1, . . . , n}

smugglers are attacking, by u(x). If we have x smugglers attacking in total, then the

probability that no smuggler is caught is (n− x)/n, the probability that smuggler i is

caught is 1/n and the probability that another smuggler is caught is (x − 1)/n. The

payoffs to smuggler i in these cases are f(x), −C and f(x− 1) respectively. Thus, the

expected reward to smuggler i conditional on them attacking is given by,

u(x) =
n− x

n
f(x) +

x− 1

n
f(x− 1)− C

n
. (4.5.11)

We first show that u(x) is strictly decreasing with x.

Lemma 4.5.4. The expected reward to each attacking smuggler, u(x), is strictly de-

creasing with respect to the total number of attacking smugglers x.

Proof. Suppose that we have x ∈ {1, . . . , n − 1} smugglers attacking. If we were to

add another attacking smuggler, then the change in expected rewards for the attacking

smugglers would be

u(x+ 1)− u(x) =

[
n− x− 1

n
f(x+ 1) +

x

n
f(x)− C

n

]
−
[
n− x

n
f(x) +

x− 1

n
f(x− 1)− C

n

]
=

n− x− 1

n
[f(x+ 1)− f(x)] +

x− 1

n
[f(x)− f(x− 1)]
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It is an assumption of the model that f(x) is strictly decreasing. Furthermore, since

we assumed x ∈ {1, . . . , n− 1}, we have n− x− 1 ≥ 0 and x− 1 ≥ 0. It follows from

the above that

u(x+ 1)− u(x) < 0.

We now introduce the set X ∗, such that if x∗ ∈ X ∗ smugglers are attacking, then

none have any incentive to deviate. Formally, X ∗ is defined as follows:

X ∗ =


{0} if u(1) < 0,

{n} if u(n) > 0,

{x ∈ N | u(x+ 1) ≤ 0 ≤ u(x)} otherwise.

(4.5.12)

From Lemma 4.5.4 it follows that exactly one of the cases in the definition of X ∗ must

apply. We now prove that only the signals given by S ∈ S(x∗) result in equilibria in

the S-C case.

Theorem 4.5.5. Assume that the patroller defends uniformly. Then, in the S-C case,

the signal S gives an equilibrium if and only if it is in the set S(X ∗).

Proof. Suppose, for a contradiction, that there exists a signal S /∈ S(X ∗) that results

in an equilibrium. Recall that S(X ∗) consists of signals that satisfy the following

constraints:

∑
a∈{0,1}n

(ai − aj)P(S = a) = 0 ∀ i, j ∈ [n],

∑
i

ai = x ∈ X ∗ if P(S = a) > 0.

Hence, given that S /∈ S(X ∗), it must fail to satisfy at least one of these constraints. If

the first constraint is not satisfied, then the smugglers do not all attack their respective
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locations with equal marginal probabilities. However, this contradicts Theorem 4.4.3,

so we have an immediate contradiction.

If the second constraint is not satisfied, then with positive probability an action a

is taken such that
∑

i ai = x /∈ X ∗. By Lemma 4.5.4, the expected reward to attacking

smugglers u(x) is strictly decreasing in x. Hence, x is either smaller than every element

of X ∗ or larger than every element of X ∗.

In the former case, where x is smaller than every element of X ∗, we have u(x+1) > 0

due to the definition of X ∗. Therefore, a smuggler who is not signalled to attack has an

incentive to deviate from the signal and attack, so the signal cannot be an equilibrium.

Similarly, in the case where x is larger than every element of X , we have u(x) < 0 and

hence a smuggler signalled to attack has an incentive to deviate by not attacking. This

establishes that there cannot be a signal outside of S(X ∗) that gives an equilibrium.

We can also show that any signal S ∈ S(X ∗) must yield an equilibrium. The

patroller has no incentive to deviate since each location is attacked with equal marginal

probability, as a consequence of equation (4.4.5). Suppose the signal S prescribes the

action a to the smugglers, where
∑

i ai = x ∈ X ∗. An attacking smuggler, if there is

one, receives an expected reward of u(x) ≥ 0 and so has no incentive to deviate and stop

attacking. Similarly, any non-attacking smuggler would receive an expected reward of

u(x+ 1) ≤ 0 by attacking and therefore has no incentive to deviate.

4.5.3 Cooperation (CP)

Finally, we consider the case where the smugglers are cooperating. We aim to find the

joint strategy for the smugglers that attacks all locations with equal probability, whilst

offering no incentive to deviate.

As in previous cases, we begin by considering the patroller’s strategy in an equilib-

rium. We first prove that if the patroller defends non-uniformly, then the smugglers

must all take the same deterministic action (either ‘attack’ or ‘do not attack’). An
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important consequence of this result is that it is easy to characterize all equilibria

that exist with the patroller defending non-uniformly, and we can then focus on other

equilibria in which the smugglers have more interesting behavior.

Proposition 4.5.6. If the patroller’s strategy q does not defend uniformly, then the

only possible actions in best response by the smugglers are either to all attack or to all

not attack.

Proof. Suppose that the patroller defends non-uniformly. Let i be a location defended

with maximum probability, so qi = maxk{qk}. Choose a different location j such

that qi > qj, which must exist due to the assumption of uneven defending by the

patroller. Consider an action a taken by the smugglers with non-zero probability in

the equilibrium. We show that the action a cannot have ai = 1 > 0 = aj, otherwise

the smugglers would have an incentive to deviate. We consider an action ã that the

smugglers could deviate to, where the attack from i to j is swapped whilst keeping

every other attacking decision remains the same. That is:

ãk =


0 if k = i

1 if k = j

ak otherwise.

Switching from action a to ã results in the cooperative smugglers strictly increasing

their expected reward, since location i is defended with higher probability than location
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j. Indeed, if x =
∑

i ai denotes the total number of attacks then we have

Eb∼q [rsmug(b, ã)]− Eb∼q [rsmug(b,a)]

=
∑
k

qk[rsmug(k, ã− rsmug(k,a)]

= qi [xf(x)− ((x− 1)f(x− 1)− C)] + qj [(x− 1)f(x− 1)− C − xf(x)]

= (qi − qj) [xf(x)− ((x− 1)f(x− 1)− C)]

> 0

and hence there is an incentive to deviate. Therefore, if action a is chosen by the

smugglers with non-zero probability in an equilibrium, we must have ai ≤ aj. However,

it cannot be the case that ai < aj, since in order to achieve equal marginal probabilities

of attack (as required by Theorem 4.4.3) there would then need to be some action ã

taken with non-zero probability such that ãi > ãj. Therefore we must have ai = aj in

an equilibrium.

We have shown that ai = aj for specific locations i and j. We now look across all

the locations. The set of locations [n] can be divided into two disjoint subsets, defined

as

I := argmax{qk}

and

J := [n] \ I.

We can apply the previous argument to any i ∈ I and j ∈ J . Therefore, every action

a in the equilibrium must have ai = aj for each i ∈ I and j ∈ J . Consequently, the

only possible actions for the smugglers in an equilibrium are (0, . . . , 0) and (1, . . . , 1),

as required.

As a consequence of Proposition 4.5.6, we can describe all equilibria in the case
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of cooperating smugglers when the patroller does not defend uniformly. The patroller

could choose any strategy, provided that every location is defended with non-zero prob-

ability. The smugglers’ strategy must then be either to attack every location, attack

no locations, or use a mixed strategy between the two if there is not a unique best

response.

Having considered the case of the patroller defending non-uniformly, we now restrict

our attention to equilibria where the patroller defends uniformly and aim to find the

smugglers’ best response to such a strategy. Recall from Section 4.5.2 that we define

the set of random variables giving an equal marginal probability of attack, where only

x ∈ X smugglers attack simultaneously, as S(X ). We also define u(x) as the expected

reward to each attacking smuggler when x of them are attacking. It follows that the

expected total reward to the smugglers is xu(x). We now denote the set of values of x

maximizing xu(x) by X ∗. That is:

X ∗ = argmax
x

{xu(x)}

We can show that any strategy for the smugglers in S(X ∗) gives an equilibrium,

assuming that the patroller defends uniformly. Moreover, the strategies in S(X ∗) are

the only ones that can give an equilibrium, as any other strategy will give some player

an incentive to deviate.

Theorem 4.5.7. Assume that the patroller defends uniformly. Then a strategy π for

the smugglers is an equilibrium if and only if π ∈ S(X ∗).

Proof. The proof of Theorem 4.5.7 follows very similar logic to that of Theorem 4.5.5.

Suppose we have a strategy π that isn’t included in S(X ∗). Then π must violate at
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least one of the two constraints enforced by S(X ∗), which are:

∑
a∈{0,1}n

(ai − aj)P(S = a) = 0 ∀ i, j ∈ [n],

∑
i

ai = x ∈ X ∗ if P(S = a) > 0.

If the first constraint is not satisfied, then by Theorem 4.4.3 we cannot have an equi-

librium since the locations are not attacked with equal marginal probabilities.

If the second constraint is not satisfied, then with non-zero probability there is an

action a taken such that
∑

k ak /∈ X ∗. However, if the smugglers deviate from a to an

action ã such that
∑

k ãk ∈ X ∗, then their expected reward increases. Therefore, any

strategy for the smugglers that isn’t in the set S(X ∗) cannot be an equilibrium.

We now prove that every strategy π ∈ S(X ∗) gives an equilibrium under the as-

sumption of the patroller defending uniformly. The patroller has no incentive to deviate

due to Theorem 4.4.3 since S(X ∗) enforces that each location is attacked with the same

marginal probability. The smugglers have no incentive to deviate, since any number of

attackers in X ∗ already maximizes their expected reward by definition.

Our next result considers the special case where the total reward to the smugglers

for making x successful attacks is decreasing with x. In this case we are able to give

a more detailed result about the equilibria for cooperating smugglers. Specifically, we

can prove that the number of attacking smugglers in an equilibrium cannot be greater

than two.

Proposition 4.5.8. Suppose xf(x) is a decreasing function of x. Then the number of

attacking smugglers in an equilibrium cannot be greater than two.

Proof. Suppose the set X ∗ includes a value x > 2. We will prove that the smugglers

would receive a strictly greater expected reward by making x − 1 attacks, thereby

contradicting the definition of X ∗. When x smugglers attack the expected reward is
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given by

xu(x) = x

(
n− x

n
f(x) +

x− 1

n
f(x∗ − 1)− C

n

)
.

Comparing this with the expected reward when x− 1 smugglers attack, we find that

xu(x)− (x− 1)u(x− 1)

= x

(
n− x

n
f(x) +

x− 1

n
f(x− 1)− C

n

)
− (x− 1)

(
n− (x− 1)

n
f(x− 1) +

x− 2

n
f(x− 2)− C

n

)
= x

n− x

n
f(x) +

[
x
x− 1

n
− (x− 1)

n− (x− 1)

n

]
f(x− 1)− (x− 1)

x− 2

n
f(x− 2)− C

n

=
n− x

n
[xf(x)− (x− 1)f(x− 1)] +

x− 1

n
[(x− 1)f(x− 1)− (x− 2)f(x− 2)]− C

n
.

Given that xf(x) is assumed to be decreasing with x and C/n > 0, we have xu(x) −

(x− 1)u(x− 1) < 0. Therefore, the smugglers have an incentive to deviate by making

x− 1 attacks, contradicting the assumption that x ∈ X ∗.

In this section we have analyzed the properties of equilibrium solutions in the S-NC,

S-C and CP cases one-by-one,. The next section focuses on comparisons between the

different cases.

4.6 Comparing Cases

In this section we investigate the similarities and differences between the equilibria

found for the different cases of smuggler behavior in the previous section. Firstly, we

show that there exists a cost of capture C such that the smugglers do not ever attack

in an equilibrium.

Lemma 4.6.1. Assume that the patroller defends uniformly. Then, if C > (n−1)f(1),

there cannot exist an equilibrium in which any smuggler attacks.
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Proof. If no smuggler attacks then in the selfish cases (S-NC and S-C) each smuggler has

an expected reward of zero, and in the cooperative case (CP) the group of smugglers

has an expected reward of zero. Recall that the reward function for an individual

smuggler, given by (4.2.1), decreases with respect to the number of successful attacks

made. Therefore, by showing that the expected reward for a single smuggler attacking

is negative, we can show that there is no incentive to deviate.

Indeed, if the patroller defends uniformly, the expected reward for a single attacking

smuggler is,

n− 1

n
f(1)− C

n
< 0.

Secondly, we prove that increasing the cost of capture C or decreasing the rewards

for smuggling items f(x) results in fewer attacks when smugglers are selfish. In the

non-communication case (S-NC) the expected number of attacks decreases, and in the

communication case (S-C) the maximum number of attacks decreases.

Lemma 4.6.2. Suppose 0 < C1 < C2 and let f1 and f2 be decreasing functions with

f1(x) > f2(x) for all x. Then:

1. In the S-NC case, the expected number of attacks when the smuggler’s cost of

capture is C1 is greater than when the cost of capture is C2. In the S-C case, the

maximum number of attacks at equilibrium when the smuggler’s cost of capture is

C1 is greater than when the cost of capture is C2.

2. In the S-NC case, the expected number of attacks when the smuggler reward func-

tion is f1 is greater than when it is f2. In the S-C case, the maximum number

of attacks at equilibrium when the smuggler reward function is f1 is greater than

when it is f2.
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Proof. Both statements within the lemma follow the same proof. We give the proof

for the first statement (involving the cost of capture C) and note that the second

statement is obtained using an analogous argument, replacing C1 and C2 by f1 and f2

as appropriate. We have:

w(p) = EXn−1,p

[
n− (Xn−1,p + 1)

n
f(Xn−1,p + 1) +

Xn−1,p

n
f(Xn−1,p)−

C

n

]
,

u(x) =
n− x

n
f(x) +

x− 1

n
f(x− 1)− C

n
.

Denote the expected reward under C1 by w1(p) or u1(x) (depending on which behavior

case is being considered), and under C2 by w2(p) or u2(x). We then have both w1(p) >

w2(p) for all p ∈ [0, 1] and u1(x) > u2(x) for all x ∈ {1, . . . , n}.

In the S-NC case, suppose the smugglers attack with probability p∗1 in an equilibrium

when the expected reward to each smuggler is given by w1. We have that w2(p) < w1(p),

and in Lemma 4.5.2 it was shown that w2 is strictly decreasing in p. There are three

possibilities: either (i) there exists a p∗1 such that w1(p
∗
1) = 0, (ii) p∗1 = 1 with w1(1) > 0

or (iii) p∗1 = 0 with w1(0) < 0. In the first case, w2(p
∗
1) < 0 and w2(p) is strictly

decreasing in p, implying p∗2 ≤ p∗1. In the second case, it is impossible for the number

of attacks to increase. In the third case we have w2(p) < w1(p) < 0 for all p and so

p∗2 = 0 = p∗1.

In the S-C case, assume that we have a set X ∗
1 that gives the set of all equilibria to

be S(X ∗
1 ), under capture cost C1. Define X ∗

2 similarly under C2. Recall that X ∗ was

defined as

X ∗ =


{0} if u(1) < 0,

{n} if u(n) > 0,

{x ∈ N | u(x+ 1) ≤ 0 ≤ u(x)} otherwise.

In the first case with X ∗
1 = {0}, we have u2(1) < u1(1) < 0 and thus X ∗

2 = {0}. In

the second case the number of attacks cannot increase. Consider the third case, and
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choose an arbitrary x∗
1 ∈ X ∗

1 . Suppose we have some x∗
2 ∈ X ∗

2 such that x∗
2 > x∗

1.

Then u1(x
∗
1 + 1) ≥ u1(x

∗
2) > u2(x

∗
2) ≥ 0, which is a contradiction since by definition

u1(x
∗
1 + 1) ≤ 0.

Lemmas 4.6.1 and 4.6.2 both apply to multiple cases for the smuggler behavior, but

still only consider one case at a time. The next result involves a comparison between

the different behavior cases. Let us denote the values of the game to the smugglers

as vS-NC, vS-C and vCP in the S-NC, S-C and CP cases respectively. Recall that in

the cooperative case (CP) it is assumed that rewards are divided equally among the

smugglers. Similarly, in the S-C and CP cases, we denote the numbers of attacking

smugglers in an equilibrium as X ∗
S-C and X ∗

CP respectively.

We first show that, for any choice of parameters, the value to a smuggler in the

S-NC case is less than the value in the S-C case, which in turn is less than the value in

the CP case.

Theorem 4.6.3. Given any set of parameters, the values vS-NC, vS-C and vCP satisfy

vS-NC ≤ vS-C ≤ vCP.

Proof. We begin with the first inequality. Recall from the S-NC case that, in an equi-

librium, the smugglers attack uniformly and each smuggler receives an expected reward

of zero unless they are attacking with probability one (the edge case), in which case

they may receive positive expected rewards.

In the first case, where the expected reward is zero, the inequality vS-NC ≤ vS-C

follows trivially from the fact that the expected reward to each smuggler in the S-C

case must be non-negative.

In the second case, we can show that if every smuggler is attacking with probability

one in the S-NC case then they must also all be attacking with probability one in
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the S-C case. Recall that the expected rewards to attacking smugglers in the S-NC

and S-C cases are given by the functions w and u in (4.5.9) and (4.5.11) respectively.

Given that smugglers have positive expected rewards in the S-NC case, it follows that

w(1) = u(n) ≥ 0. If we have equality then vS-NC and vS-C are both zero. If the inequality

w(1) > 0 is strict, then we must have X ∗ = {n}, implying that every smuggler attacks

deterministically in the S-C case. Therefore, vS-NC and vS-C are equal.

To prove the second inequality, vS-C ≤ vCP, we note that the cooperative strat-

egy maximizes the smugglers’ expected total reward by definition and therefore also

maximizes the expected reward for each smuggler, as profits are split equally.

Additionally, we are able to prove that the number of attacks made by the smugglers

is greater in the S-C case than in the CP case. We use X ∗
S-C and X ∗

CP to denote the sets

of possible numbers of attacks (defined in (4.5.12)) in the S-C and CP cases respectively.

Theorem 4.6.4. For any x∗
S-C ∈ X ∗

S-C and any x∗
CP ∈ X ∗

CP, we have

x∗
S-C ≥ x∗

CP.

Proof. Suppose for a contradiction that x∗
S-C < x∗

CP. Recall that X ∗
S-C and X ∗

CP are

defined as

X ∗
S-C =


{0} if u(1) < 0,

{n} if u(n) > 0,

{x ∈ N | u(x+ 1) ≤ 0 ≤ u(x)} otherwise

and

X ∗
CP = argmax

x
{xu(x)}

respectively. We consider the three cases in the definition of X ∗
S-C. First, if u(1) < 0,

we have x∗
S-C = 0 and u(1) < 0. However, u(1) < 0 implies that xu(x) < 0 for all x ≥ 1,
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since u(x) is strictly decreasing with x by Lemma 4.5.4. Therefore X ∗
CP = {0} and we

reach a contradiction.

Next, if u(n) > 0, we have x∗
S-C = n < x∗

CP. However, we cannot have more than n

smugglers attacking, so a contradiction is reached immediately.

Finally, in the remaining case we have u(x∗
S-C) ≥ 0 ≥ u(x∗

S-C + 1). Therefore, since

x∗
CP > x∗

S-C (by assumption) and u is a decreasing function, we must have u(x∗
CP) < 0.

This is not possible in an equilibrium since the group of smugglers could increase their

expected total reward by making zero attacks.

It is not possible to strengthen the result of Theorem 4.6.4 by including a statement

about the S-NC case. We demonstrate this using a counter-example in Section 4.7.

4.7 Examples

In this section we illustrate the results from earlier sections using a set of examples

featuring a range of model parameters. We consider a border with n = 5 locations.

The payoff to a single smuggler for being successful, given that a total of x smugglers

are successful, is given by f(x) = x−α where α > 0 is a parameter to be varied. We note

that when α > 1 the function xf(x) = x1−α is decreasing, meaning that the expected

total reward for all smugglers decreases with the numbers of items successfully sent,

meeting the assumptions of Proposition 4.5.8. However, if α < 1 then the converse is

true. We will also vary the cost of capture C from zero to n + 1 = 6 and show the

effects on the smugglers’ strategy in equilibria.

For the purposes of showing the strategies graphically, we adopt a convention that

if the set X ∗ (used in the S-C and CP cases) includes multiple values then we select

the smallest value.
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4.7.1 Smuggler Strategy

We begin by investigating how the smugglers attack in equilibria in each behavior case,

illustrating the results from Section 4.5. Results based on comparisons between the

different cases (based on Section 4.6) will be shown later. For the S-NC case, Figure

4.7.1 shows the probability of attack for each smuggler. Recall from Section 4.3.1 that

there are three possible cases: (i) smugglers never attack, (ii) smugglers attack with

probability p ∈ (0, 1) and (iii) smugglers always attack. These cases are depicted in

Figure 4.7.1(a) in brown, orange, and white respectively. Figure 4.7.1(b) plots the

probability of attack against the cost of capture C for various α values. Next, for

(a) (b)

Figure 4.7.1: Smuggler strategy in the case of selfish smugglers without communication

the S-C case, Figure 4.7.2 shows how the number of attacking smugglers x∗ varies

with C and α. In this case (unlike the S-NC case) the number of attacking smugglers

is a deterministic function of the model parameters, and therefore Figure 4.7.2 has

discrete regions, unlike Figure 4.7.1 which showed the probability of attack continuously

changing as the parameters were varied. Figure 4.7.2(a) shows the number of attacking

smugglers, defined using X ∗ in (4.5.12), and Figure 4.7.2(b) shows how x∗ depends on

C for various values of α. Finally, we consider the CP case. Like Figure 4.7.2 (for the

S-C case), Figure 4.7.3 shows the number of attacking smugglers x∗ as a deterministic

function of the model parameters. Figure 4.7.3(a) shows the x∗ values depend on C

and α (recall that these are found as solutions of the maximization problem described
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(a) (b)

Figure 4.7.2: Smuggler strategy in the case of selfish smugglers with communication

in Section 4.3.3). Figure 4.7.3(b) then shows how x∗ depends on C for various values

of α. Figure 4.7.3 also demonstrates that when α > 1, since xf(x) is decreasing, the

number of attacks never exceeds two, as proved by Proposition 4.5.8. Figures 4.7.1-4.7.3

(a) (b)

Figure 4.7.3: Smuggler strategy in the case of cooperative smugglers

show some similarities between the different behavior cases. When the cost of capture

C is at least (n − 1)f(1) = 4, the smugglers never attack as proved by Lemma 4.6.1,

which can be seen from the large regions in the lower parts of figures/ 4.7.1(a), 4.7.2(a)

and 4.7.3(a). Additionally, the expected number of attacks decreases as C increases,

or α increases (causing the function f to decrease), corroborating the result of Lemma

4.6.2. Looking at any horizontal or vertical slice in figures/ 1(a), 2(a) and 3(a) results

in a decreasing number of attacks, shown explicitly in figures/ 4.7.1(b), 4.7.2(b) and

4.7.3(b).
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Next, we compare the expected numbers of attacks across different behavior cases.

Figure 4.7.4 illustrates the differences in expected numbers of attacks between the S-NC

and S-C cases. Figure 4.7.4(a) shows that this number can either increase or decrease,

depending on the parameters of the model. This confirms that the result of Theorem

4.6.4 cannot be extended to include a comparison between the S-NC and S-C cases.

Figure 4.7.4(b) shows how the difference in the expected number of attacks varies with

C and α. Figure 4.7.5 shows a similar comparison between the S-C and CP cases.

(a) (b)

Figure 4.7.4: Differences in the expected number of attacks between the case of selfish
smugglers without communication and the case of selfish smugglers with communication

Figure 4.7.5(a) shows that the expected number of attacks is lower in the CP case,

corroborating the result of Theorem 4.6.4. Figure 4.7.5(b) shows how these differences

depend on C and α.

4.7.2 Value of the game

Next, we discuss the value of the game to the smugglers in each of the different behavior

cases. First we show how the value of the game depends on the model parameters, and

then we compare the results for the different cases.

Figure 4.7.6 shows the expected values to the smugglers in the S-NC case. Figure

4.7.6(a) illustrates how these values depend on the model parameters. The main (dark)

region of this figure shows that for many combinations of parameters, the expected
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(a) (b)

Figure 4.7.5: Differences in the expected number of attacks between the case of selfish
smugglers with communication and the case of cooperative smugglers

rewards to the smugglers are zero, as shown by the analysis in Section 4.3.1. The

value of the game increases as either the cost of capture C decreases or the discount

parameter α decreases. The top left part of Figure 4.7.6(a) shows the region in which

every smuggler should always attack, as this results in a positive expected reward.

Figure 4.7.6(b) shows how the value of the game depends on C for some fixed values

of α. Next, Figure 4.7.7 shows the corresponding set of results in the S-C case. Figure

(a) (b)

Figure 4.7.6: Value of the game to selfish smugglers when there is no communication

4.7.7(a) shows how the expected reward for each smuggler depends on both C and α,

and Figure 4.7.7(b) shows how the value depends on C for some fixed values of α.

Figure 4.7.7 may appear surprising at first, as (unlike in the S-NC and CP cases),

the value of the game to the smugglers is non-monotonic in the model parameters.
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However, the non-monotonicity was proved by the analyses in Section 4.3.2. Suppose

we have an equilibrium in which x∗ = x smugglers attack, for some x ≥ 1. If we

reduce the cost of capture C then the expected reward to each attacking smuggler u(x)

increases, and therefore so does the expected reward to each smuggler (unconditional

on whether they attack). However, eventually the cost C decreases to a point where

u(x+ 1) = 0, and the equilibrium is then for x∗ = x+ 1 smugglers to attack, resulting

in expected rewards of zero. This explains the non-monotonic pattern shown in the

figure. Finally, Figure 4.7.8 shows the expected values of the game in the CP case.

(a) (b)

Figure 4.7.7: Value of the game to selfish smugglers when there is no communication

Figure 4.7.8(a) shows how these values depend on both C and α. Figure 4.7.8(b) shows

how these values depend on C, for some fixed choices of α. We note that when only one

smuggler is attacking, the value of α does not affect the reward received. Consequently,

Figure 4.7.8(b) shows that the values for different choices of α become equal as C

increases. In the remaining part of this section we compare the values of the game

to the smugglers in the different behavior cases. Figure 4.7.9 shows the differences

between expected rewards in the S-NC and S-C cases. Figure 4.7.9(a) illustrates these

differences for various combinations of C and α, while Figure 4.7.9(b) shows how the

differences depend on C for various fixed values of α. We observe that allowing the

smugglers to communicate always improves the expected reward to each smuggler (as

proven in Section 4.6). Figure 4.7.10 shows a similar comparison between the S-C and
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(a) (b)

Figure 4.7.8: Values of the game to cooperative smugglers

(a) (b)

Figure 4.7.9: Difference in the value of the game between the case of selfish smugglers
without communication and selfish smugglers with communication

CP cases. Figure 4.7.10(a) shows the difference in values for various combinations of

C and α, while Figure 4.7.10(b) shows how the differences depend on C for some fixed

value of α. By definition, the value of the game to the smugglers must improve in the

CP case (as discussed in Section 4.6). Figure 4.7.10 indicates that this improvement is

largest when the discount for sending more items (controlled by α) is large, resulting

in a larger decrease in reward for sending multiple items. In the CP case, fewer attacks

are made and therefore every successful attack results in a larger reward compared to

the S-C case.
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(a) (b)

Figure 4.7.10: Difference in the value of the game between selfish smugglers with com-
munication and cooperative smugglers

4.8 Conclusion

In this chapter we have introduced a new model for patrolling a border against smug-

glers who receive diminishing marginal returns as more successful attacks are made.

We have investigated equilibrium strategies under three different cases for the smuggler

behavior: selfish smugglers without communication (S-NC), selfish smugglers with com-

munication (S-C) and cooperative smugglers (CP). In each case we have analytically

proven properties of the equilibrium strategies and also illustrated these using exam-

ples. We have found that the selfish smugglers benefit from being able to communicate

on how many attacks will take place. Additionally, we have seen that being able to

work together improves the smugglers’ expected returns. Where possible, we have also

proven results involving comparisons between the different cases.

Some interesting future directions would be to investigate how the results are af-

fected when there are multiple patrollers, or when different types of items (with different

associated rewards and penalties) are available for smuggling.



Chapter 5

A Stochastic Game for Border

Patrol

In this chapter, we consider a different model to the one introduced in the previous

chapter. There are similarities between the models, in both a single patroller defends

a set of discrete locations that have a smuggler located there. However, there are

many differences between the two models. Previously, we only considered a one-off

game, whereas in this chapter we consider a stochastic game where there are an infinite

number of decisions to be taken by either side. Furthermore, the payoffs in the game

are different. We remove the dependence of the value of items on the total number of

items smuggled in the previous chapter. However, we consider non-linear relationships

between the penalty for capture and the quantity of items smuggled by the smugglers.

Additionally, there is a movement cost for the patroller to relocate from one location

to another. This chapter has been published as Darlington et al. (2023).

5.1 Introduction

Ranging from drug trafficking across the U.S.-Mexico border (Gutierrez and Henkel,

2021), to oil smuggling out of Nigeria (Ojewale, 2021), and illegal fishing in the con-

79



CHAPTER 5. A STOCHASTIC GAME FOR BORDER PATROL 80

tinental shelf off South America (Goodman, 2021), the problem of how to patrol a

border is fundamental to government organisations worldwide. How to patrol well is a

challenging problem because it is infeasible to protect everywhere simultaneously due

to constraints on resources, and thus a carefully thought out strategy is required. The

associated trade-off is a complex one: if the patrols are too predictable the smugglers

may be able to easily figure out where and when they can get through undetected.

However, if the patrollers act too randomly they may not be adequately protecting

the most vulnerable sections. In this work we introduce a stochastic game model for

patrolling a border, detail how the strategies for both the patroller and smugglers can

be found, and then analyse the solutions obtained.

Specifically, we consider a scenario where a single patroller attempts to stop a group

of cooperating smugglers taking items across a border. The border here is thought of

as being a finite set of locations which could be roads, border control posts or even an

area of air, land or sea. The smugglers attempt to send some illicit items through these

locations, and it is the patroller’s goal to find an efficient strategy for stopping these

items from getting through. It is assumed that there are known and fixed rewards and

penalties that the smugglers receive or incur if they are respectively successful or not,

proportional to the quantity of items they attempt to smuggle. Similarly, the patroller

receives a reward or penalty depending on whether they stop the smugglers or not.

There is a single smuggler fixed at each location. However, the patroller must traverse

the geography of the border and pay a cost to do so. The patroller and smugglers make

these decisions through time, needing to account for both their immediate reward and

how their future rewards will be affected.

There is a significant operations research literature on patrol problems that focuses

on modelling real-world situations. Examples include Sack and Urrutia, 1999 looking at

the protection of galleries containing expensive paintings, or Richard, 1972 considering

the daily patrol patterns of a police officer in the United States. An example where
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developed methods have been implemented in practice concerns the protection of the

Los Angeles International Airport and is by Pita et al., 2008. Pita et al.’s work models

the problem as a Bayesian Stackelberg game to give the patrollers a randomised method

to protect the airport from threats. The authors reported “very positive feedback about

the deployment”.

We consider a game theoretic approach to the problem of patrolling a border where

the patroller and the smugglers take actions simultaneously. This was first considered

by Alpern et al., 2011 who look at protecting against a single attempt by a smuggler

that takes a fixed time to complete. An important assumption made in the chapter is

that the outcome of the attempt results in a win or loss for the patroller. Lin et al.,

2013 consider a similar model but introduce the possibility of the attempt taking a

non-deterministic length of time to complete. Lin et al., 2014 further advance this

work by considering the situation where the patroller has a chance to miss the attempt

taking place. Another extension of this model is by McGrath and Lin, 2017 who solve

a problem in which there is a non-trivial difference in both the time taken to travel

around the locations and to check if an attempt is in progress at each location. The

application of patrolling a border is considered by Papadaki et al., 2016 and Alpern

et al., 2019, but it is still based on the assumption that the adversary makes only one

attempt. Recent work in the patrolling literature includes Alpern et al., 2022b who

consider a problem in which the patroller chooses whether or not to wear a uniform

and Lin, 2022 who considers how to optimally patrol the perimeter of a location.

There are two key assumptions made by these papers that are not consistent with

the problem of patrolling a border we consider. Firstly, in our setting a single successful

smuggler is not catastrophic to the patroller. Instead, we have a small penalty incurred

by the patroller that depends on the amount of items that are trafficked. Secondly, the

normal-form game approaches discussed in previous papers can only consider trying to

stop one attempt without taking into consideration what happens next. This means
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that while we might catch the smugglers once, the patroller could be left exposed for

an upcoming series of attempts. This motivates us to develop a new stochastic game

model for patrolling a border. We will justify its benefits empirically with numerical

experiments.

There are other bodies of work in the literature which look at a similar problem

to ours. Grant et al., 2020 examine patrolling a border against opponents who make

many small attempts to smuggle items. However, the smugglers are assumed to be

acting at random whereas we make the stronger assumption that the smugglers pick

actions strategically. The papers of Baston and Bostock, 1991 and Garnaev, 1994

discuss a stochastic game model for an inspection problem, applications of which include

patrolling problems. However, their work differs from ours in that they consider a

single smuggler, with a constraint on the number of times the patroller can attempt to

capture the smuggler. Furthermore, the state in their stochastic game is the amount of

time remaining in the game, whereas in our work the state of the game indicates the

patroller’s location. The model closest to ours is discussed in Filar and Schultz, 1986 and

Filar, 1985, and is based on a different problem setting, involving a travelling inspector

who checks factories to detect the illegal dumping of materials. An assumption of Filar’s

model is that the inspector’s adversaries choose actions from a finite set. In contrast,

the model presented in this chapter extends the action space to be a continuous set. Our

model is able to more closely model situations in which items can be smuggled in vast or

infinitely divisible quantities, and additionally we give a rigorous analysis of particular

cases which would not be possible in the framework described by Filar. An infinite

action space complicates the problem of finding Nash equilibria in the game. However,

we detail how to overcome this challenge by using innovative solution algorithms.

The main contributions of the chapter are as follows:

• From the modelling perspective, we extend the smugglers’ action set to a contin-

uous interval. Having this larger set of alternatives gives a more realistic formula-
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tion, especially so in the case in drug and oil smuggling scenarios, where the vast

quantity of actions available to the smuggler intuitively forms a continuum.

• From the theoretical perspective, we provide an elucidation of the structure in the

Nash equilibria of the game, yielding insight into the behavior of rational players

in our model.

• From the methodological perspective, we develop new solution algorithms in order

to overcome the increased computational challenge of finding Nash equilibria in

our model. We prove that these algorithms find or converge to the optimal solution

and, moreover, that they are computationally faster than existing methods in

cases where a comparison is meaningful.

The rest of the chapter is organised as follows. In Section 5.2, we present our

stochastic game framework for patrolling a border. Section 5.3 gives an overview of

Nash equilibria that arise in the model, and establishes several of their properties.

Section 5.4 provides an analysis of the methods to find Nash equilibria in the border

patrol game. In Section 5.5, we make additional assumptions on the cost function

which leads to more detailed characterisations of equilibria. An empirical analysis of

the performance of our approach is given in Section 5.6, along with a discussion of the

solutions to specific instances of our model. Section 5.7 concludes our chapter with a

summary and suggestions for future work.

5.2 Model Description

We consider a border made up of n locations labelled from 1 to n inclusive. In the

chapter we will use the notation [n] to denote the set of all locations where [n] =

{1, . . . , n}. Time will be modelled in discrete steps t = 0, 1, . . . . Such time steps are

natural here, where decisions could be taken on an hourly or daily basis.
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We present the model in this section by taking the smugglers collectively to be

a single player. This will be the case throughout the chapter unless explicitly noted

otherwise. Thus we look to define a stochastic game between two players: a single

patroller and the smugglers. The patroller begins each time step t at some location

st, which we take to be the current state of the system. Hence, the state space of

the game is S = [n]. The patroller picks a location bt to defend, and the smugglers

pick a quantity of items from the interval [0, 1] to send to each location. We write the

smugglers’ action as at = (a1t , . . . a
n
t ), where ait is the quantity sent to the location i.

Note that the assumption of actions in the unit interval is without loss of generality,

since we can account for quantities from the interval [0, q] for some q > 0 by a scaling of

the actions. Hence, the action space of the patroller and smugglers respectively at each

epoch are Apat = [n] and Asmug = [0, 1]n. Both the patroller and the smugglers take an

action simultaneously, with no knowledge of the action chosen by the opponent. The

state of the system at the next time step is the previous action of the patroller, and so

P(st+1 = b | bt = b,at = a, st = s) = P(st+1 = b | bt = b) = 1 (5.2.1)

for all b ∈ Apat, a ∈ [0, 1]n and s ∈ S. As we will see, the players can choose their actions

according to some probability distribution which results in a random state transition

in the game.

The patroller catches all items sent by the smugglers to the location they have chosen

to defend. At every other location, the items are successfully smuggled. Smugglers

receive a fixed reward of ri > 0 for each unit of item smuggled through the location i.

However, if caught, the smugglers must pay a penalty related to the amount smuggled.

This is determined by the cost function C : [0, 1] → R+. We assume that C is an

increasing function with C(0) = 0. The patroller’s payoff is equal to the negative of the

smugglers’ payoff, but she must additionally pay a cost for moving from one location to

another. These movement costs are given by the parameters mi,j ≥ 0 i, j ∈ [n]. Thus,
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the reward functions of the patroller and the smugglers respectively are as follows:

Rpat(b,a, s) = −ms,b + C(ab)−
∑

i∈[n]\{b}

riai

Rsmug(b,a) =
∑

i∈[n]\{b}

riai − C(ab).

The game continues for an infinite number of time steps, with rewards discounted at

a rate of γ ∈ [0, 1) for the patroller. Although smugglers can each have an individual

discount rate of λi ∈ [0, 1), we prove in Section 3 that the assumption that smugglers

have a discount rate γ is without loss of generality.

A pure action is an action which a player is able to perform. In our case these are

the elements of the sets Apat and Asmug for the patroller and smugglers respectively.

Instead of picking a pure action deterministically, players can draw an action according

to a probability distribution over their pure actions, which may depend on the current

state of the system s. A stationary mixed strategy for either player is a n-tuple of

probability distributions over the pure actions of a player,

Π = (π1, . . . ,πn) ∈ (∆([n]))n

Ξ = (ξ1, . . . , ξn) ∈ (∆([0, 1])n)n

where ∆(S) denotes the set of probability distributions with set S as their support and

Sk is the k-ary Cartesian power of S for a natural number k. The results in subsequent

sections will establish that it is sufficient to consider only stationary strategies, rather

than strategies with a dependence on the current time step. The strategies for the

patroller and smugglers respectively given that the state of the system is i are πi and

ξi. Assuming the strategies are fixed over time, we write the expected discounted
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reward for both players over an infinite horizon as

Upat(Π,Ξ) = EΠ,Ξ,P0

[
∞∑
t=0

γtRpat(bt,at, st)

]
,

and,

Usmug(Π,Ξ) = EΠ,Ξ,P0

[
∞∑
t=0

γtRsmug(bt,at)

]
. (5.2.2)

In (5.2.2) where expectations are taken with respect to the strategies of both players

so that bt ∼ πst and at ∼ ξst , and also with respect to the probability distribution P0

over the initial state s0. Since the outcome of one player depends on the action of the

other, it is not possible to maximise the rewards of the players independently. We give

the definition of a Nash equilibrium as first given by Nash, 1950.

Definition 5.2.1. The strategies Π∗ and Ξ∗ for the patroller and smugglers respectively

form a Nash equilibrium for the game if and only if,

Upat(Π
∗,Ξ∗) ≥ Upat(Π,Ξ∗) ∀ Π ∈ (∆([n]))n

Usmug(Π
∗,Ξ∗) ≥ Usmug(Π

∗,Ξ) ∀ Ξ ∈ (∆([0, 1]n))n.

Nash equilibria give the most natural solution for our model, in that they provide

the best possible lower bound of the discounted expected reward to the patroller. This

could be operationally important if, for example, the smugglers were to discover the

strategy of the patroller and were able to optimise their strategy using this knowledge.

5.3 Properties of Nash Equilibria

We now seek to prove properties of the Nash equilibria in our model, which can help us

to understand the behaviour of the patroller and the smugglers. Firstly, we note that

the model described in the previous section falls into a class of stochastic games called



CHAPTER 5. A STOCHASTIC GAME FOR BORDER PATROL 87

single controller stochastic games.

Definition 5.3.1. Suppose we have an n-player stochastic game with players 1, . . . , n,

with player i taking the action ai from action set Ai. Then the game is a single controller

stochastic game with player j as the controller if and only if,

P(st+1 = s′ | st = s, a1t = a1, . . . , ant = an) = P(st+1 = s′ | st = s, ajt = aj)

for all s, s′ ∈ S and ai ∈ Ai for all players i. Filar and Vrieze, 2012

It follows from Equation (5.2.1) that our model is a single controller stochastic game

with the patroller as the controller. The single controller property leads to three results

about Nash equilibria in our game: Lemma 5.3.2 proving that the smugglers can be

assumed without loss of generality to be a single player, Proposition 5.3.3 showing

discount rates of all players can be assumed to be equal without loss of generality,

and Proposition 5.3.4 giving a zero-sum formulation of the game with equivalent Nash

equilibria.

5.3.1 Aggregation of Smugglers

We first show that, without loss of generality, we can assume that the smugglers act as

a single cooperating player. If the smugglers were acting independently of one another,

then we would have an n+ 1 player game where each smuggler has a reward function,

Ri
smug(b,a) =


riai, b ̸= i,

−C(ai), b = i,

for i ∈ [n]. The action space of smuggler i, Ai
smug, is equal to the unit interval and

his strategy, Ξi, is in ∆([0, 1]). Therefore, a set of strategies for every player in this

nonaggregated game is denoted (Π,Ξ1, . . . ,Ξn). The patroller’s reward function and

action space remain the same, as do the state transitions and discount factors.
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We can define a mapping from the reward function in the nonaggregated game to

the aggregated game by,

n∑
i=1

Ri
smug(b,a) → Rsmug(b,a)

and a mapping from strategies in the nonaggregated game to the aggregated game by,

(
Π,

n×
i=1

Ξi

)
→ (Π,Ξ).

Lemma 5.3.2. Nash equilibria in the aggregated game coincide with those in the nonag-

gregated game in that if we have a Nash equilibrium in one game and map the strategies

to the other, then it remains a Nash equilibrium.

We omit the proof since a similar statement can be found in Filar, 1985, where an

analytical proof is presented for their travelling inspector problem. The intuition behind

the proof is that since the individual smugglers have independent reward functions and

since their actions make no difference to the state transitions, neither combining nor

splitting the smugglers create an incentive to deviate. A consequence of Lemma 5.3.2

is that we can choose whether to analyse the strategy for a single smuggler or the

aggregated group, depending on which is more tractable in the context.

5.3.2 Discount Rates

We now move on to discuss the effect of players having different discount rates in our

game for patrolling a border. We prove that if every player has an individual discount

rate, then Nash equilibria are equivalent to those which occur when all players have the

same discount rate as the patroller.

Proposition 5.3.3. Suppose that (Π∗,Ξ∗
1, . . . ,Ξ

∗
n) is a Nash equilibrium for the nonag-

gregated game in which the patroller has a discount rate of γ, and smuggler j has a
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discount rate of λj ∈ [0, 1), 1 ≤ j ≤ n. Then (Π∗,Ξ∗
1, . . . ,Ξ

∗
n) is a Nash equilibrium in

every nonaggregated game in which the patroller has a discount rate of γ, and smuggler

j has a discount rate of λ̃j ∈ [0, 1), 1 ≤ j ≤ n.

Proof. Assume that (Π∗,Ξ∗
1, . . . ,Ξ

∗
n) is a Nash equilibrium for the nonaggregated game

in which the patroller has a discount rate of γ, and smuggler j has a discount rate of

λj ∈ [0, 1), 1 ≤ j ≤ n. We know that (Π∗,Ξ∗) is a Nash equilibrium. We first

show that after changing a single smuggler’s discount rate we have an unchanged Nash

equilibrium. Then, by induction we can apply this to every smuggler in turn to see that

with discount rates (γ, λ̃1, . . . , λ̃n) we still have that (Π∗,Ξ∗) is a Nash equilibrium.

Suppose that we alter smuggler j’s discount rate to λ̃j. First, we consider each

player other than smuggler j. Since their discount factor is still the same, their expected

reward is still the same, and thus they will not have any incentive to deviate from their

strategy. The only player who may have an incentive to change their strategy is the

smuggler j. However, since the patroller controls the state transitions in the game, the

smuggler j can only maximise his instantaneous reward (further details can be seen in

Corollary 1). A best response of smuggler j does not depend on their discount factor,

and therefore they also do not have an incentive to deviate.

The consequence of Proposition 5.3.3 is that we can assume without loss of generality

that all players can be assumed to have a discount rate γ.

5.3.3 Zero-sum formulation of model

A two-player zero-sum stochastic game is defined as follows.

Definition 5.3.4. A two-player stochastic game is zero-sum if the reward to one player

is always equal to the negative of the reward to the other player.

Whilst the model introduced in the previous section is not zero-sum, it only dif-

fers from one by the inclusion of the cost the patroller must pay to move around the
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locations. We show that if the game is modified such that the smugglers are assumed

to earn a reward equal to the cost of the movement of the patroller, then the Nash

equilibria of the game are unchanged. The version of the game where the smugglers get

this reward is clearly zero-sum.

Proposition 5.3.5. Consider a stochastic game identical to the one introduced in the

previous section, but where the reward function for the patroller and smugglers respec-

tively are

R̃pat(b,a, s) = Rpat(b,a, s),

R̃smug(b,a, s) = −R̃pat(b,a, s) = Rsmug(b,a) +ms,b =
∑

i∈[n]\{b}

riai +ms,b − C(ab).

The new game is a two player, zero-sum stochastic game. Furthermore, the Nash equi-

libria for the two games are identical.

Proof. Firstly, we consider whether the patroller has an incentive to deviate from their

strategy Π∗. The patroller’s reward is the same in both games under any strategy

taken by either player. Therefore, the patroller not having an incentive to deviate in

one game implies that they have no incentive to deviate in the other.

Secondly, we explore whether the smuggler has any incentive to deviate from their

strategy Ξ∗. The patroller is the single controller in the stochastic game, and thus the

smugglers can only try to maximize their instantaneous reward. The difference between

the reward functions for the smugglers in the two games does not depend on their action

a since,

Rsmug(b,a)− R̃smug(b,a, s) = ms,b.

Therefore, they have no incentive to deviate from their strategy Ξ∗ in one game if and

only if they have no incentive to deviate from Ξ∗ in the other.

Hence the Nash equilibria in the games coincide.
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Proposition 5.3.5 is similar to a result found in Hofbauer et al., 1998 for normal-form

games; however, we were unable to find any such result in a stochastic game.

Please note that we shall consider this altered form of the game with reward func-

tions R̃ for the remainder of the chapter. Proposition 5.3.5 is important since it allows

us to apply a number of algorithms to find Nash equilibria which require that the

game be zero-sum. Examples of these include algorithms for finite two-player zero-sum

stochastic games developed by Shapley, 1953 and those developed for single controller

games by Raghavan, 2003. A further consequence of Proposition 5.3.5 is that in our

model there must indeed be a Nash equilibrium with stationary strategies. This follows

from the result of Maitra and Parthasarathy, 1970, since in our game the reward to

either player is continuous in the actions of both players and the state transition is

deterministic.

In this section we have proven properties of the Nash equilibria in our stochastic

game. However, the assumption of finite action spaces, made by Shapley, 1953 and

Raghavan, 2003 does not hold in our model. The smugglers can take any action from

the n-dimensional unit cube. Determining Nash equilibria remains a major challenge.

This is the subject of Section 5.4.

5.4 Finding Nash Equilibria

There exist in the literature algorithms that can calculate Nash equilibria in two-player

zero-sum stochastic games such as the one by Shapley, 1953. However, their assumption

that the game is finite means that they are not directly applicable here. In this section,

we present a method for determining Nash equilibria in our game. We begin by defining

the value of a state s for the players.

Definition 5.4.1. The value V pat(s) of a state s to the patroller in the stochastic game

is the expected reward to the patroller in a Nash equilibrium (Π∗,Ξ∗), given that the
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system starts in the state s, namely

V pat(s) = EΠ∗,Ξ∗

[
∞∑
t=0

γtR̃pat(bt,at, st)

∣∣∣∣∣ s0 = s

]
.

The value of a state s for the smugglers, V smug(s), is defined similarly.

The value of each state is unique and can be seen to solve the system of equations,

V pat(s) = max
π∈∆([n])

min
a∈[0,1]n

[
n∑

b=1

πb

{
R̃pat(b,a, s) + γV pat(b)

}]
(5.4.3)

where πb is the probability the patroller takes action b. This follows from Shapley, 1953

and Maitra and Parthasarathy, 1970. By (5.2.1), the transitions of system state are

determined entirely by the patroller’s choice of action. This is why in (5.4.3) we can

deterministically know the system state resulting from any patroller action.

Shapley, 1953 proved that given any initial starting values {V 0
pat(s) | s ∈ S} the

sequence {V k
pat(s) | s ∈ S}∞k=1, determined by the recursion

V k
pat(s) = max

π∈∆([n])
min

a∈[0,1]n

[
n∑

b=1

πb

{
R̃pat(b,a, s) + γV k−1

pat (b)
}]

converges to {V pat(s) | s ∈ S} as k → ∞. When state and action spaces are finite,

state values may be obtained by using linear programming to solve the maximisation

problem within Shapley’s iteration. However, since we assume that the action space

of the smugglers is infinite, this approach is not available to us. Therefore, we look

elsewhere to solve (5.4.3).

We begin by establishing properties about the smugglers’ best response against any

patroller strategy. If the smugglers take a best response against patroller strategy

π = (π1, . . . , πn) when the system state is s, the patroller receives a payoff which we
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shall denote as G(π, s,V pat)

G(π, s,V pat) = min
a∈[0,1]n

{
n∑

b=1

πb[R̃pat(b,a, s) + γV pat(b)]

}
.

If V pat is the value function for the patroller, it will solve the following system of

equations by (5.4.3).

V pat(s) = max
π∈∆([n])

G(π, s,V pat) for all s ∈ [n].

Proposition 5.4.2. The expected reward to the patroller for using strategy π in state s

with value function V pat when the smugglers play a best response can be calculated as:

G(π, s,V pat) =
n∑

b=1

[
− max

ab∈[0,1]
{(1− πb)rbab − πbC(ab)}+ πb(γV pat(b)−ms,b)

]
(5.4.4)

Proof. The expected payoff to the patroller when the smugglers take a best response

against them can be written as,

min
a∈[0,1]n

{
n∑

b=1

πb[R̃pat(b,a, s) + γV pat(b)]

}
= min

a∈[0,1]n

{
n∑

b=1

πbR̃pat(b,a, s) + γ
n∑

b=1

πbV pat(b)

}
.

(5.4.5)

The first sum can be rewritten if we expand upon the equation for the smugglers’ reward

function as follows,

n∑
b=1

πbR̃pat(b,a, s) =
n∑

b=1

πb

C(ab)−
∑

i∈[n]\{b}

riai −ms,b


=

n∑
b=1

[πbC(ab) + (πb − 1)rbab − πbms,b].
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Thus, if we consider this in Equation (5.4.5) we derive,

min
a∈[0,1]n

{
n∑

b=1

πb[R̃pat(b,a, s) + γV pat(b)]

}

= min
a∈[0,1]n

{
n∑

b=1

[πbC(ab) + (πb − 1)rbab]− πbms,b + γπbV pat(b)

}

=
n∑

b=1

[
min

ab∈[0,1]
{πbC(ab) + (πb − 1)rbab} − πbms,b + γπbV pat(b)

]
=

n∑
b=1

[
− max

ab∈[0,1]
{(1− πb)rbab − πbC(ab)}+ πb(γV pat(b)−ms,b)

]

as required.

The set of best responses for the smugglers against patroller strategy when the

system state is s is given by,

a(π, s) = argmin
a∈[0,1]n

{
n∑

b=1

πb[R̃pat(b,a, s) + γV pat(b)]

}
.

which we can simplify as a consequence of Proposition 5.4.2.

Corollary 5.4.3. The set of best responses of the smugglers to the patroller’s action π

when the state of the game is s can be found as follows:

a(π, s) = argmin
a∈[0,1]n

{
n∑

b=1

πb[R̃pat(b,a, s) + γV pat(b)]

}
= (a1(π1, s), . . . , an(πn, s)) .

where

ai(πi, s) = argmax
a∈[0,1]

{(1− πi)ria− πiC(a)}

Proof. Follows from taking the argument of the minima in Proposition 5.4.2.

From Corollary 5.4.3 we see the smugglers’ best response to the patroller is a myopic

one, and does not depend on the value function of either player, the discount rate γ or

the system state s.
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The function G is additively separable with respect to π, and so we can write

G(π, s,V pat) =
n∑

b=1

gb(πb, s,V pat)

where

gb(πb, s,V pat) = − max
a∈[0,1]

{(1− πb)rba− πbC(a)}+ πb(γV pat(b)−ms,b)

We now develop properties of the functions gb, b ∈ [n],which can be interpreted as the

expected reward to the patroller for taking action b with probability πb. These will be

deployed to develop efficient approaches to the maximisation of G, and therefore the

computation of Nash equilibria.

Lemma 5.4.4. For every action available to the patroller b ∈ [n], the expected reward

to the patroller for taking that action gb(·, s,V pat) : R → R is concave and Lipschitz

continuous with respect to the probability πb ∈ [0, 1] that it is selected. Furthermore, the

Lipschitz constant is rb +C(1)− (γV pat(b)−ms,b) for a fixed system state s and value

function V pat.

Proof. We utilise Danskin, 1967 to establish the convexity of maxa∈[0,1] {(1− πb)rba− πbC(a)}.

The concavity of gb in πb, for a fixed s and V pat, is then immediate. Lipschitz continuity

then follows since [0, 1] is compact. We now prove the Lipschitz constant.

Let δ > 0, then the Lipschitz constant L can be taken as,

L ≤ max

{∣∣∣∣gb(1 + 2δ)− gb(1 + δ)

(1 + 2δ)− (1 + δ)

∣∣∣∣ , ∣∣∣∣gb(−2δ)− gb(−δ)

(−2δ)− (−δ)

∣∣∣∣} . (5.4.6)
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We can see that,

argmax
a∈[0,1]

{(1− πb)rba− πbC(a)} =


1, πb < 0,

0, πb > 1.

=⇒ max
a∈[0,1]

{(1− πb)rba− πbC(a)} =


(1− πb)rb − πbC(1), πb < 0

0, πb > 1

and so then we can evaluate (5.4.6) since,

∣∣∣∣gb(1 + 2δ)− gb(1 + δ)

(1 + 2δ)− (1 + δ)

∣∣∣∣ = 1

δ
|δ(γV pat(b)−ms,b)| = |γV pat(b)−ms,b|

and,

∣∣∣∣gb(−2δ)− gb(−δ)

(−2δ)− (−δ)

∣∣∣∣ = 1

δ
|−δC(1)− δrb − δ(γV pat(b)−ms,b)| = |rb + C(1) + γV pat(b)−ms,b| .

From the above calculations and (5.4.6) we conclude that,

L = max
{∣∣∣rb + C(1) + γV pat(b)−ms,b

∣∣∣, ∣∣∣γV pat(b)−ms,b

∣∣∣}
≤ rb + C(1)− (γV pat(b)−ms,b)

since rb and C(1) are positive but γV pat(b) and −ms,b are negative. This concludes the

proof.

There is an existing literature to solve maximisation problems with an additively

separable, concave objective function. Such problems are known as nonlinear knapsack

or resource allocation problems. To approximate the continuous problem (5.4.7) we

develop a scaled discrete problem (5.4.8). The scaling factor is denoted K ∈ Z.
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max
n∑

b=1

gb(πb, s,V pat)

s.t.
n∑

b=1

πb = 1 (5.4.7)

πb ∈ [0, 1]

max
n∑

b=1

gb(πb, s,V pat)

s.t.

n∑
b=1

πb = 1 (5.4.8)

πb ∈
{

0

K
,
1

K
, . . . ,

K

K

}
We denote by π∗ the optimal solution for the continuous problem (5.4.7) and by

π̃K the approximate solution obtained from the discrete scaled problem (5.4.8). Scaling

by K = n/δ for some small δ > 0 gives us the bound that ∥π∗ − π̃n/δ∥∞ ≤ δ by the

proximity result of Hochbaum, 1994. Therefore, since for all b the function gb is Lipschitz

continuous we have that,

|G(π∗, s,V pat)−G(π̃n/δ, s,V pat)| ≤
n∑

b=1

|gb(π∗
b , s,V pat)− gb(π̃n/δ,b, s,V pat)|

≤
n∑

b=1

[rb + C(1)− (γV pat(b)−ms,b)]|π∗
b − π̃n/δ,b|

≤δ
n∑

b=1

[rb + C(1)− (γV pat(b)−ms,b)].

We conclude that |G(π∗, s,V pat) − G(π̃n/δ, s,V pat)| = O(nδ). The discrete resource

allocation problem (5.4.8) can be solved greedily, as shown by Fox, 1966. This yields

in Algorithm 4 for its solution.

Algorithm 4: Greedy Procedure by Fox, 1966

Initialise: π̃K = (0, . . . , 0), k = 0
1 while k < 1 do
2 Let,

j ∈ argmax
b∈[n]

{
gb

(
π̃b +

1

K
, s,V pat

)
− gb(π̃b, s,V pat)

}
with ties decided by taking the lowest index.

3 π̃K,b := π̃K,b +
1
K

and k := k + 1
K

4 end
Output: π̃K
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While the complexity of Algorithm 4 is O(Kn) = O(n2/δ) there exist more com-

putationally efficient algorithms in the literature, such as Kaplan et al., 2019. This

has a computational complexity of O(n logK) = O(n log(n/δ)). In our examples, we

consider both the algorithm by Fox, 1966 and by Kaplan et al., 2019. We have found

that which is the quicker algorithm in practise can depend on the parameters of the

problem.

We now leverage our ability to find a δ-optimal solution to the problem (5.4.7) in

order to find the values of the states in the game via the iterative method of Shapley,

1953. This yields Algorithm 5.

Algorithm 5: Calculation of state values

Input: ϵ > 0 and δ > 0
Initialise: V 0

pat(s) = (0, . . . , 0) and k = 1

1 while maxs∈S
{∣∣V k−1

pat (s)− V k
pat(s)

∣∣} > ϵ do
2 for s = 1, . . . , n do
3 Find,

V k
pat(s) := max

π∈∆([n])
min

a∈[0,1]n

[
n∑

b=1

πb

{
R̃pat(b,a, s) + γV k−1

pat (b)
}]

= max
π∈∆([n])

G(π, s,V k−1
pat )

using Algorithm 4 with K = n/δ.
4 end
5 k := k + 1

6 end

Output: V k
pat

Once the state values have been calculated, the patroller’s strategy Π∗ can be iden-

tified as the value of π̃ found in Step 3 of Algorithm 5. However, finding the smugglers’

strategy Ξ∗ which forms a Nash equilibrium with Π∗ is a complex task without the

addition of further assumptions on the parameters. In Section 5.5 we explore the char-

acteristics of Nash equilibria under additional assumptions.
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5.5 Behaviour of the Smugglers’ Best Response

In this section, we focus on two different assumptions about the cost function C, which

quantifies the losses of the smuggler when caught by the patroller. When the cost

function is concave, we show that in a Nash equilibrium the smugglers only take actions

in {0, 1}. This yields a more computationally efficient algorithm than Algorithm 5 in

such cases, which is also guaranteed to find the optimal solution π∗. When C is a

strictly convex function, we show that the smugglers’ strategy in equilibria takes actions

deterministically.

5.5.1 Concave Cost Functions

We first examine the case in which the cost function C is a linear function, and then

proceed to the case in which it is strictly concave. Under linearity, we prove that at least

one of the actions zero or one lies within the set of best responses for each smuggler.

Recall that we can calculate the set of best responses to patroller strategy π for the

smuggler at a location b by

ab(πb, s) = argmax
a∈[0,1]

{(1− πb)rba− πbC(a)} .

Proposition 5.5.1. If the cost function C is concave, then either 0 or 1 must lie

within the set of best responses for the smuggler ab(πb, s) to the patroller’s strategy π at

location b. Furthermore, if there exists an action a ∈ (0, 1) which is a best response for

the smuggler to the patroller’s strategy π at location b, then C must be linear.

Proof. The function (1− πb)rba− πbC(a) is convex in a, since C is concave. A maxima

of a convex function on a convex set can always be found at an extreme points of that

set, establishing the first result. If a maxima exists in the interior of the set, then the

function must be constant on the set. In the case that (1−πb)rba−πbC(a) is constant,

C must be linear.



CHAPTER 5. A STOCHASTIC GAME FOR BORDER PATROL 100

Proposition 5.5.1 allows us to simplify the game by reducing the action space of the

smugglers.

Corollary 5.5.2. If the cost function C is concave and (Π∗,Ξ∗) is a Nash equilibrium in

the border patrol game, then there exists a strategy Ξ̃ ∈ (∆({0, 1}))n such that (Π∗, Ξ̃)

is a Nash equilibrium. We can therefore simplify the smugglers’ strategy space from

(∆([0, 1]))n to (∆({0, 1}))n.

Proof. Suppose that the strategy Ξ∗ takes an action a where ab ∈ (0, 1) for some b ∈ [n]

with positive probability. Since Ξ∗ must be a best response to Π∗, Proposition 5.5.1

implies that C must be linear. The patroller’s best response to Ξ∗ when the system

state is s gives a payoff of,

max
b∈[n]

{
E
[
R̃pat(b,a, s) + γVpat(b)

]}

where the expectation is taken over a ∼ ξs. However, when C is linear we have that

E
[
R̃pat(b,a, s) + γVpat(b)

]
= E

C(ab)−
∑

i∈[n]\{b}

riai −ms,b + γVpat(b)


= cE[ab]−

∑
i∈[n]\{b}

riE[ai]−ms,b + γVpat(b)

for some c > 0. Therefore, as if the smugglers instead take a strategy over the actions

zero and one such that the expected quantity remains constant, then both players re-

ceive the same expected payoff. Hence, neither the patroller nor smuggler has incentive

to deviate and so is a Nash equilbrium. This concludes the proof.

From Corollary 5.5.2 we infer that the smuggler action space can be reduced to

A = {0, 1}n without loss of generality. Having a finite action space for the smugglers

means that the stochastic game is now finite and so Nash equilibria can be found

using a linear programming formulation for single controller stochastic games. This
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is as in Raghavan, 2003. Alternatively, we can use linear programming to maximise

(6.3.3) in the iterative algorithm by Shapley, 1953. This is as in Filar and Vrieze, 2012.

Corollary 2 also means that we can replace a strictly concave cost function with a linear

cost function, provided that it takes the same values at the endpoints zero and one.

Corollary 5.5.3. If the cost function C is concave then the Nash equilibria are equiv-

alent to those in a game with identical parameters, but with cost function C̃ defined by

C̃(a) = C(1)a.

Proof. By Corollary 5.5.2, we have that the smuggler action space is {0, 1}n. Therefore,

the cost function C is evaluated only at the points a ∈ {0, 1}. Since C̃(0) = C(0) and

C̃(1) = C(1), any Nash equilibria in the game with the cost function C must also be

Nash equilibria in the game with the cost function C̃.

We now look to simplify the expected reward to the patroller for playing a strategy

π when the smugglers play a best response.

Lemma 5.5.4. Assuming that the cost function C is concave, we can write the expected

reward to the patroller for playing a strategy π when the smugglers play a best response

as

G(π, s,V pat) =
n∑

b=1

{
[πb(C(1) + rb)− rb]1

(
πb ≤

rb
C(1) + rb

)
+ πb(γV pat(b)−ms,b)

}
.

(5.5.9)

Proof. Proposition 5.5.1 implies that 0 ∈ ab(πb, s) or 1 ∈ ab(πb, s). If we evaluate the

smuggler’s payoff at the two we get,

a = 0 =⇒ (1− πb)rba− πbC(a) = 0

a = 1 =⇒ (1− πb)rba− πbC(a) = (1− πb)rb − πbC(1).
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This means that,

1

(
πs
b ≤

rb
C(1) + rb

)
∈ ab(πb, s)

and so,

max
a∈[0,1]

{(1− πb)rba− πbC(a)} = [(1− πb)rb − πbC(1)]1

(
πs
b ≤

rb
C(1) + rb

)

Substituting this into the expression for G in Equation (5.4.4) gives the result in the

statement of the lemma.

A consequence of Lemma 5.5.4 is that we can now provide a computationally efficient

method in Algorithm 6 to find the optimal value of G when the cost function C is

concave.

Algorithm 6: Concave Cost Greedy maximization of G

Initialise: π̂ = (0, . . . , 0)
1 while

∑n
b=1 πb < 1 do

2 Define for all b,

xb =


rb

C(1) + rb
, π̂b = 0,

1− rb
C(1) + rb

, otherwise.

3 Choose arbitrarily,

j ∈ argmax
b∈[n]

{
gb(π̂b + xb)− gb(π̂b)

xb

}
4 with ties decided by taking the lowest index.
5 if

∑n
b=1 π̂b + xj ≤ 1 then

6 Let π̂j := π̂j + xj .
7 else
8 Let π̂j := π̂j + (1−

∑n
b=1 π̂b) .

9 end

10 end
Output: π̂

Theorem 5.5.5. If the cost function C is linear, then the strategy π̂ given by Algorithm



CHAPTER 5. A STOCHASTIC GAME FOR BORDER PATROL 103

6 maximises the patroller’s expected reward G given that the smugglers play a best

response.

Proof. Recall that π∗ is the optimal solution, π̃ is found using Algorithm 4 and π̂ is

constructed using Algorithm 6. Denote the value of π̂ after iteration l of Algorithm 6

by π̂(l). We let,

Km = m

n∏
b=1

[C(1) + rb],

and denote the output of Algorithm 4 when using K = Km as π̃Km . Furthermore, we

respresent its value after a step of Algorithm 4 with value k by π̃Km(k). Since Kt is

divisible by every C(1) + rb, it follows that for every l there exists a k such that,

n∑
b=1

π̂b(l) =
n∑

b=1

π̃Km,b(k)

and we denote this k by kl.

We prove by induction that for every l we have π̂(l) = π̃Km(kl). This is clearly

true when l = 0 since π̂(0) = π̃Km(k0) = 0. Assume that for a given l we have

π̂(l) = π̃Km(kl). In Step 3 of Algorithm 6 we find,

j ∈ argmax
b∈[n]

{
gb(π̂b(l) + xb)− gb(π̂b(l))

xb

}
.

Since gb is linear on the interval πb ∈ [π̂b(l), π̂b(l) + xb − 1
K
], this implies that,

j ∈ argmax
b∈[n]

{
gb

(
πb +

1

K

)
− gb(πb)

}

for πb ∈ [π̂b(l), π̂b(l) + xb − 1
K
]. Thus, at every step between kl and kl+1 in Algorithm 4

we increase π̃j and so,

π̃Km,b(kl+1) = π̃Km,b(kl) + 1(b = j)xb = π̂b(kl) + 1(b = j)xb = π̂b(l + 1).
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Thus, we have π̃Km(kl+1) = π̂(l + 1), so by induction we deduce that π̃Km = π̂. For

each m ∈ N the proximity result by Hochbaum, 1994 implies that,

∥π∗ − π̃Km∥∞ ≤ n

Km

which therefore means that sinceKm → ∞ asm → ∞ we must have ∥π∗−π̃Km∥∞ → 0.

Since we know that ∥π∗ − π̃Km∥∞ = ∥π∗ − π̂∥∞ for all m ∈ N we must have that

π∗ = π̂.

The complexity of Algorithm 6 is only O(n), since the maximum number of itera-

tions needed to complete is n+ 1 and each iteration has complexity O(1). We can see

that it takes at most n+1 iterations, since once the probability of an action is increased

twice, the algorithm must terminate.

So far, the discussion has focused only on determining a strategyΠ∗ for the patroller.

We now consider how to find a strategy for the smugglers Ξ∗ such that (Π∗,Ξ∗) is a

Nash equilibrium in our model. Once we have found the value function V smug = −V pat,

finding the smugglers’ strategy can be found by taking:

ξs ∈ argmax
ξs∈∆({0,1}

min
b∈[n]

E
[
R̃smug(b,a, s) + γVsmug(b)

]

for each s ∈ [n]. A linear program can efficiently solve this as in Filar and Vrieze, 2012.

5.5.2 Strictly Convex Cost Function

We now proceed to the case in which the cost function C is strictly convex with respect

to the action taken by the smugglers. Algorithm 4 can give us an approximation for

Π∗, but as in the previous subsection, we still need to consider how we will calculate

the smugglers’ strategy Ξ∗. The following lemma shows that under an assumption of

strict convexity there can only be one choice, and additionally it is simple to find.
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Lemma 5.5.6. If the cost function C is strictly convex, then for any given patroller

strategy π, the smugglers have a single best response.

Proof of Lemma 5.5.6

Proof. Recall that when the system state is s, the set of best responses for the smuggler

at the location b to the patroller’s strategy π is given by,

ab(πb, s) = max
a∈[0,1]

{(1− πb)rba− C(a)} . (5.5.10)

If C is strictly convex, then the function to be maximised in (5.5.10) is strictly concave

in ab. A strictly concave function can only have a single maximum in the interval [0, 1],

and therefore there can only be a single unique best response for the smuggler at b for

any given patroller strategy. Applying this reasoning to each system state and every

location, we can see that there must be a single strategy for the smugglers which is

uniquely the best response to π.

From Lemma 5.5.6, we can quickly compute a best smuggler response Ξ to the

patroller’s strategy Π∗. Since there exists a best response to Π∗, and since there must

exist at least one Nash equilibrium, then (Π∗,Ξ) must indeed be a Nash equilibrium.

5.6 Examples

In this section, we introduce three different examples and discuss how the analysis from

previous sections helps to find Nash equilibria and how to understand them. We then

go on to justify the use of a stochastic game model in terms of its benefits for the border

patrol problem compared to the use of alternative models.



CHAPTER 5. A STOCHASTIC GAME FOR BORDER PATROL 106

5.6.1 Example 1: Linear Border With Linear Cost Function

We begin by considering an example with a linear cost function. We compare the time

taken to find Nash equilibria using the methods discussed in this chapter with existing

methods in the literature. We can apply the latter, since by Corollary 5.5.2 we know

that there exists a Nash equilibrium in which the smugglers’ actions are supported by

{0, 1}n.

We consider a cost function of C(a) = 4a. The reward to each smuggler for success

is just the amount of items they send, so that ri = 1 for every location i. We define the

movement cost for the patroller to be mi,j = |i − j|2. The number of locations in the

border shall be varied to display how the methods scale with the size of the problem.

Finally, we consider a fixed discount factor of γ = 0.9 for each player.

In Table 5.6.1, we present the time it takes for five different algorithms to find a

Nash equilibrium in the model. The first method is to solve a single linear program

using the formulation of Raghavan, 2003 for single-controller stochastic games. The

other methods use the iterative method of Shapley, 1953 in Algorithm 5 with different

methods to find the solution to the maximisation problem in Step 3. The first of these

deploys a linear program using a formulation by Filar and Vrieze, 2012. Subsequent

approaches solve it as a resource allocation problem using the algorithms of Fox, 1966

and Kaplan et al., 2019. The final method reported solves using our method assuming a

linear cost function in Algorithm 6. We set the tolerance ϵ in Algorithm 4 to 10−3, and

the scaling of the resource allocation to δ = 0.2. Note that since K = n/δ = 5n, it is

always divisible by rb +C(1) = 5. Therefore, by Theorem 5.5.5 the resource allocation

problem finds the optimal solution.
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Table 5.6.1: Time taken (secs.) to solve Example 1 with different numbers of locations
n

Algorithm Used n = 6 n = 9 n = 12 n = 15

Single Controller Linear Program 2.50× 10−1 2.297 2.5563× 101 7.665 78× 102

Shapley method with linear programming 2.00 4.7125× 101 3.381 88× 102 2.812 219× 103

Shapley with resource allocation (Fox 1966) 1.9016× 101 5.2353× 101 7.8516× 101 1.202 81× 102

Shapley with resource allocation (Kaplan et al. 2019) 1.9859× 101 5.0000× 101 1.030 94× 102 1.326 09× 102

Shapley with Algorithm 6 6.3× 10−2 1.25× 10−1 2.03× 10−1 2.81× 10−1

Table 5.6.1 shows that Algorithm 6 dramatically speeds up the calculation of a Nash

equilibrium in our game having a 400%, 1800%, 13000% and 43000% improvement in

each respective example over the next best method. We take the case with n = 6

locations and show the patroller’s strategy for a Nash equilibrium in Figure 5.6.1.

(a) (b)

Figure 5.6.1: A Nash equilibrium in Example 1. The vertical axis gives the current
state s of the system in both figures. In (a) the horizontal axis shows each location
the patroller could move to and the colour gives the probability with which they take
that action. In (b) the horizontal axis gives each smuggler and the colour gives the
probability with which they make an attempt to smuggle an item.

We see in Figure 5.6.1(a) an illustration of the result of Lemma 5.5.4 and Theorem

5.5.5, with the patroller choosing actions with probability in multiples of 0.2 = rb/(rb+

C(1)). Similarly in Figure 5.6.1(b) we see that the smuggler’s best response is to send

an item with probability one, with probability zero or an intermediate value if the

location is protected with respectively a probability less than, greater than or exactly
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0.2. Note that as a consequence of Corollary 5.5.3, the results in Example 1 continue

hold if we had a concave cost function C taking the values C(0) = 0 and C(1) = 4.

To illustrate how Nash equilibria in the game are dependent on the parameters of

the model, we introduce two modified versions of Example 1, referred to as Examples

1.1 and 1.2. All parameters of the model in these examples are identical to those in

Example 1 except that in Example 1.1 the cost function C is changed to C(a) = 8a,

and in Example 1.2 the discount factor γ is reduced to 0.5. The Nash equilibria for

Examples 1.1 and 1.2 can be found in Figures 5.6.2 and 5.6.3 respectively.

(a) (b)

Figure 5.6.2: A Nash equilibrium in Example 1.1. The vertical axis gives the current
state s of the system in both figures. In (a) the horizontal axis shows each location
the patroller could move to and the colour gives the probability with which they take
that action. In (b) the horizontal axis gives each smuggler and the colour gives the
probability with which they make an attempt to smuggle an item.
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(a) (b)

Figure 5.6.3: A Nash equilibrium in Example 1.2. The vertical axis gives the current
state s of the system in both figures. In (a) the horizontal axis shows each location
the patroller could move to and the colour gives the probability with which they take
that action. In (b) the horizontal axis gives each smuggler and the colour gives the
probability with which they make an attempt to smuggle an item.

Figure 5.6.2 shows how increasing the values of C(a) enables the patroller to prevent

more items from being successfully smuggled. The patroller now only needs to defend a

location with probability rb/(rb+C(1)) = 1/9 (as opposed to the value 1/5 in Example

1) in order to prevent the smuggler from obtaining a strictly positive expected reward

by sending an item.

By comparing Figure 5.6.3 with Figure 5.6.1 we may observe the effect of decreasing

the discount factor on the Nash equilibrium. For example, consider the actions taken by

the patroller when they are at location 1. In Example 1, the patroller moves to location

2 with probability 0.6. Indeed, state 2 has a higher value than state 1, which provides

an incentive for the patroller to pay the movement cost. However, in Example 1.2 the

patroller instead remains at location 1 with probability 0.6. Even though location 2 is

still of higher value, the decrease in the discount factor implies that future rewards are

less valuable.
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5.6.2 Example 2: Linear Border With Strictly Convex Cost

Function

We now give an example with a strictly convex cost function and show how this yields a

different solution from the previous example. The parameters of the model are identical

to those in Example 1 (ri = 1 for all i, mi,j = |i − j|2, γ = 0.9), except now we take

C(a) = 4a2. Note that we still have C(0) = 0 and C(1) = 4 as before, and so in our

results demonstrate that the simplifications afforded in Example 1 for the concave case

no longer apply.

The strategies obtained in this subsection are not necessarily Nash equilibria, since

by using the discretization of the resource allocation problem in (5.4.8) we derive only a

δ-optimal solution. We assess the closeness to equilibrium by examining the worst case

expected reward to the patroller under their strategy Π. We calculate the worst case

expected reward (WCER) by finding a strategy for the smugglers Ξ∗ that is the best

response to the patroller’s strategy Π. Assuming a uniform distribution over the inital

state of the system, P(s0 = s) = 1/n, we can calculate the WCER for the patroller as

follows.

WCER(Π) = min
Ξ∈(∆([0,1]n))n

{
1

n

n∑
s=1

EΠ,Ξ

[
∞∑
t=0

γtR̃pat(bt,at, st)

∣∣∣∣∣ s0 = s

]}

=
1

n

n∑
s=1

EΠ,Ξ∗

[
∞∑
t=0

γtR̃pat(bt,at, st)

∣∣∣∣∣ s0 = s

]
.

Note that,

WCER(Π∗) =
1

n

n∑
s=1

V pat(s) ≥ WCER(Π).

The two methods that we implement to solve this example are the resource allocation

algorithms of Fox, 1966 and Kaplan et al., 2019 within the iterative algorithm of Shap-

ley, 1953. The resource allocation problem now becomes more challenging to solve,

compared to the linear case, since the smugglers’ best response to the patroller is more
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complex. Therefore, there is no scaling of the continuous problem (5.4.7) that will give

us the optimal solution. Now, the smaller the choice of δ, the better the strategy Π

computed. In Table 5.6.2, we give the time taken and worst case reward for the two

algorithms under different choices of scaling. As in Table 5.6.1, a tolerance of ϵ = 10−3

was used for Algorithm 5.

Table 5.6.2: Worst case expected reward in Example 2

δ = 1 δ = 0.2 δ = 0.1 δ = 0.04

n = 6 -39.068 -38.338 -38.291 -38.282

n = 9 -67.740 -67.571 -67.551 -67.544

n = 12 -97.681 -97.239 -97.230 -97.227

n = 15 -127.200 -127.060 -127.052 -127.049

In Table 5.6.2, we can see that as δ gets smaller the worst case expected reward

improves for the patroller. Tables 5.6.3 and 5.6.4 give the time taken to compute the

strategies shown in Table 5.6.2.

Table 5.6.3: Time taken (s) to solve Example 2 (Fox 1966)

δ = 1 δ = 0.2 δ = 0.1 δ = 0.04

n = 6 6.688 16.125 29.453 82.875

n = 9 17.484 44.844 84.281 192.391

n = 12 31.359 91.844 159.641 337.500

n = 15 45.375 139.984 603.641 1407.313

Table 5.6.4: Time taken (s) to solve Example 2 (Kaplan et al. 2019)

δ = 1 δ = 0.2 δ = 0.1 δ = 0.04

n = 6 6.641 18.656 24.563 30.719

n = 9 19.672 50.469 69.016 83.156

n = 12 31.453 118.344 128.234 147.734

n = 15 49.844 143.313 498.938 591.016

In the cases with few locations and low fidelity of scaling, the algorithm by Fox,

1966 is quicker than that of Kaplan et al., 2019 but as the problem size grows this is
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no longer the case. Note how in the six location example changing the scaling factor

has a much bigger effect on the worst case expected reward of the strategy than in the

fifteen location problem. In Figure 5.6.4, we show the strategy calculated for δ = 0.04

and six locations.

(a) (b)

Figure 5.6.4: A Nash equilibrium in Example 2. The vertical axis gives the current
state s of the system in both figures. Figure 5.6.4(a) has the same interpretation as in
Figure 5.6.1(a). In (b) the horizontal axis denoted each smuggler and the colour now
gives the quantity of items they attempt to smuggle with probability one.

We can see that the strategy given in Figure 5.6.4(a) is quite different to that in

Figure 5.6.1. No longer are the probabilities multiples of rb/(rb+C(1)). The patroller is

now less likely to move away from one of the two edges of the border, a key impact that

changing the cost function has had on their decision making. In Figure 5.6.4(b), there

is also a large difference in the strategy displayed compared to Figure 5.6.1(b), having

a single action in [0, 1] taken with probability one by each smuggler. These differences

elucidate the importance we ascribe to the modelling of costs in our analysis.

5.6.3 Example 3: Perimeter Border With Linear Cost Func-

tion

We now turn our attention to an alternative border structure that is important opera-

tionally, namely a circular perimeter of an area. We now define the movement cost as
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the minimum of the length of the two paths the patroller could take between locations.

This yields mi,j = min{|i − j|, n − |i − j|} for i, j ∈ [n]. We also consider a setup

in which rewards for the smugglers are location dependent. In reality, there could be

various reasons for this including the difficulty in getting through the border and the

value of the items on the other side. Here, we set the rewards r equal to (3, 2, 1, 1, 2, 3).

The remaining parameters of the model those of the first example (C(a) = 4a, γ = 0.9).

Equilibria in this example are computed as for Example 1.

(a) (b)

Figure 5.6.5: A Nash equilibrium in Example 3. The figure has the same interpretation
as Figure 5.6.1.

Figure 5.6.5(a) shows how the locations protected most heavily are those with higher

smuggler reward, which in this example are locations one and six. Note that since the

locations form a circle, the patroller can travel from location one to location six at a cost

of one unit. This is one reason why Figure 5.6.5(a) looks different from the patroller

strategies in previous examples. We continue with the pattern of Figure 5.6.1(a), namely

that the patroller protects location b with probability rb/(rb +C(1)). The other values

in Figure 5.6.5(a) arise as a result of the probabilities needing to sum to one.



CHAPTER 5. A STOCHASTIC GAME FOR BORDER PATROL 114

5.6.4 Value Of Modelling as a Stochastic Game

In this subsection, we will evaluate the benefits of using our model over alternative

modelling approaches. We consider how the patroller’s worst case expected reward

would be affected if the game was considered to be normal-form, with no consideration

to the state of the system in the next time step. We achieve this by finding the patroller’s

strategy in a Nash equilibrium when we set the discount rate to γ to zero.

The first case we consider is one in which all movement costs are set to zero. This

means that the state of the system no longer has an effect on the rewards to either

player. We make this choice since the assumptions in the work of Pita et al., 2008 or

Alpern et al., 2011 are similar. However, the patroller will be accumulating costs to

travel without knowing of their existence. To make a fairer comparison, we consider

a second case where movement costs are considered by the patroller but she still acts

myopically. This is equivalent to solving a normal-form game for each state in which

the patroller could start.

(a) (b)

Figure 5.6.6: Patroller’s strategies in a Nash equilibrium for the two described models.
The figures gave the same interpretation as Figure 5.6.1(a).

In Figure 5.6.6, we show the strategies obtained under these two sets of assumptions

for the model given in Example 3. Figure 5.6.6(a) shows why it is important to consider

the geography underlying the model, with the patroller making large moves at a high
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cost. In Figure 5.6.6(b) we overcome this, but the patroller can still be seen making

suboptimal moves because she is not accounting for the value of the state to which she

moves. In Table 5.6.5, we take the six location version of the three examples introduced

previously in the section, find the strategies as detailed in the previous paragraph and

calculate the worst case expected reward for the patroller in each case.

Table 5.6.5: Worst Case Expected Rewards Under A Range of Models

Model Example 1 Example 2 Example 3

Normal-form Game (without movement cost) -68.333 -73.958 -64.238

Normal-form Game (with movement cost) -34.000 -38.743 -61.189

Stochastic Game -33.587 -38.282 -60.110

Having no consideration for the states in the game leads to a large decrease in the

reward to the patroller. In Example 1, for example, she incurs over twice the cost than

in the full model. Factoring in movement costs but still disregarding future rewards

improves the outcome to the patroller, but there is still a very significant benefit to

solving with the full stochastic game model.The computational challenge of developing

solutions may have been grounds for the earlier focus on over-simple models. Our

analysis removes many of these obstacles.

5.7 Conclusion

In this chapter, we have introduced a new model which can be used to consider the

interaction between smugglers and a patroller on a border. A number of properties of

Nash equilibria in the stochastic game are established, and new algorithms to find these

equilibria are developed. We provide examples to show empirically that our methods

solve the model quicker than existing methods and additionally that using a stochastic

game formulation achieves significant improvement for the patroller.

There are a number of ways that the model in this chapter could be extended,
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including the addition of more patrollers, the ability for patrollers to catch more than

a single smuggler and further constraints on quantities of items that may be smuggled.

These extensions represent possible avenues for future work.



Chapter 6

Multiple Patroller Extension

This chapter extends the results of Chapter 5 by incorporating multiple patrollers to

the model. The solution methods in Chapter 5 are not applicable to this new model,

and therefore new approaches must be considered.

6.1 Introduction

The stochastic game framework for patrolling a border introduced in the previous chap-

ter is restrictive in that the analysis only holds for one patroller. In this chapter we

extend the framework to multiple patrollers, explain why new methodology is required,

and consider three different approaches to the multiple patroller problem.

Firstly, we look to find methods which can exactly find the Nash equilibria in the

multiple patroller game. We use a subgradient descent method to find the strategies in

a Nash equilibria, and consequently, the state values of the game. We look at how such

an approach can be implemented, and then go on to show how it performs.

Secondly, we introduce two heuristics which we think are good approximations to

the Nash equilibria. Our first heuristic assumes that the patrollers are myopic and do

not value future rewards. Myopic policies are easy to compute, since we do not need to

take into consideration how the immediate actions will affect the value of future turns.

117
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Our second heuristic partitions the border into separate sections, each section being

defended by one patroller. The strategy used by a patroller on their section can then

be computed by the analysis in the previous section, which we have already shown to

be computationally efficient.

Finally, we apply existing reinforcement learning approaches to our model. The

reinforcement learning algorithms we try have been introduced in Chapter 2 of the

thesis, and consist of a fictitious play and a Q-learning approach. We provide a nu-

merical study of their performance on our problem, and discuss some challenges with

implementing them.

6.2 Model Description

In this section we extend the model of the previous chapter to allow for multiple pa-

trollers. We introduce the state of the game, the action spaces of the players and define

a Nash equilibrium in our model.

We consider a border made up of n locations labelled from 1 to n inclusive. We

will use the notation [n] to denote the set of all locations where [n] = {1, . . . , n}. Time

will be modelled in discrete steps t = 0, 1, . . . . Such time steps are natural here, where

decisions could be taken on an hourly or daily basis.

We present the model in this section by taking the smugglers collectively to be a

single player. The equilibria in the game where smugglers are aggregated as a single

player or are considered individually coincide. The result is identical to Lemma 5.3.2,

and we omit the proof as it follows from a similar statement found in Filar (1985).

Additionally, we also present the multiple patrollers as a single player, which we can

think of as having some central controller who instructs them where to move on the

border.

Thus, we look to define a stochastic game between two players: the k patrollers and
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the n smugglers. The patrollers begin each time step t at some locations s = (s1t , . . . , s
k
t ),

which we take to be the current state of the system. Hence, the state space of the game

is S = [n]k. The patrollers pick a vector of locations bt = (b1t , . . . , b
k
t ) to defend, and

the smugglers pick a quantity of items from the interval [0, 1] to send to each location.

We write the smugglers’ action as at = (a1t , . . . a
n
t ), where a

i
t is the quantity sent to the

location i. Note that the assumption of actions in the unit interval is without loss of

generality, since we can account for quantities from the interval [0, q] for some q > 0

by a scaling of the actions. Hence, the action space of the patrollers and smugglers

respectively at each epoch are Apat = [n]k and Asmug = [0, 1]n. Both the patrollers and

the smugglers take an action simultaneously, with no knowledge of the action chosen

by the opponent. The state of the system at the next time step is the previous action

of the patroller, and so

P(st+1 = b | bt = b,at = a, st = s) = P(st+1 = b | bt = b) = 1 (6.2.1)

for all b ∈ Apat, a ∈ Asmug and s ∈ S. As we will see, the players can choose their

actions according to some probability distribution which results in a random state

transition in the game.

The patrollers catch all items sent by the smugglers to the locations they have

chosen to defend. Therefore, there is no benefit for the patrollers having more than

one patroller at a single location. At every other location, the items are successfully

smuggled. We define U(b) to be the unique elements of the vector b, corresponding

to the set of locations which are under protection. Smugglers receive a fixed reward

of ri > 0 for each unit of item smuggled through the location i. However, if caught,

the smugglers must pay a penalty related to the amount smuggled. This is determined

by the cost function C : [0, 1] → R+. We assume that C is an increasing function

with C(0) = 0. The patrollers’ payoff is equal to the negative of the smugglers’ payoff,

but they must additionally pay a cost for each patroller moving from one location to
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another. These movement costs are given by the parameters mi,j ≥ 0 i, j ∈ [n]. Thus,

the reward functions of the patrollers and the smugglers respectively are as follows:

Rpat(b,a, s) =
∑

i∈U(b)

C(ai)−
∑

i∈[n]\U(b)

riai −
k∑

j=1

mj
s,b

Rsmug(b,a) =
∑

i∈[n]\U(b)

riai −
∑

i∈U(b)

C(ai).

The game continues for an infinite number of time steps, with rewards discounted at a

rate of γ ∈ [0, 1) for the players.

A pure action is an action which a player is able to perform. In our case these are

the elements of the sets Apat and Asmug for the patrollers and smugglers respectively.

Instead of picking a pure action deterministically, players can draw an action at random,

according to a probability distribution over their pure actions. A stationary mixed

strategy for either player is an n-tuple of probability distributions over the pure actions

of a player,

Π = (π1, . . . ,πn) ∈ (∆([n]k))n

Ξ = (ξ1, . . . , ξn) ∈ (∆([0, 1])n)n.

The strategies for the patrollers and smugglers respectively given that the state of the

system is i are πi and ξi. Assuming the strategies are fixed over time, we write the

expected discounted reward for both players over an infinite horizon as

Upat(Π,Ξ) = EΠ,Ξ,P0

[
∞∑
t=0

γtRpat(bt,at, st)

]
,

and,

Usmug(Π,Ξ) = EΠ,Ξ,P0

[
∞∑
t=0

γtRsmug(bt,at)

]
. (6.2.2)

In (6.2.2) expectations are taken with respect to the strategies of both players so that
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bt ∼ πst and at ∼ ξst , and also with respect to the probability distribution P0 over the

initial state s0. Since the outcome of one player depends on the action of the other,

it is not possible to maximize the rewards of the players independently. We give the

definition of a Nash equilibrium as first given by Nash (1950).

Definition 6.2.1. The strategies Π∗ and Ξ∗ for the patrollers and smugglers respec-

tively form a Nash equilibrium for the game if and only if,

Upat(Π
∗,Ξ∗) ≥ Upat(Π,Ξ∗) ∀ Π ∈ (∆([n]k))n

Usmug(Π
∗,Ξ∗) ≥ Usmug(Π

∗,Ξ) ∀ Ξ ∈ (∆([0, 1]n))n.

Nash equilibria give the most natural solution for our model, in that they provide

the best possible lower bound of the discounted expected reward to the patrollers. This

could be operationally important if, for example, the smugglers were to discover the

strategy of the patrollers and were able to optimize their strategy using this knowledge.

6.3 Finding Nash Equilibria

In the previous chapter, an algorithm is developed which can compute the Nash equilib-

ria efficiently in the one patroller version of the framework. In this section, we discuss

why the analysis made in the chapter does not hold in the framework with multiple

patrollers.

There exist in the literature algorithms that can calculate Nash equilibria in two-

player zero-sum stochastic games, such as the one by Shapley (1953). However, their

assumption that the game is finite means that they are not directly applicable here.

In this section, we present a method for determining Nash equilibria in our game. We

begin by defining the value of a state s for the players.

Definition 6.3.1. The value V pat(s) of a state s to the patrollers in the stochastic
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game is the expected reward to the patrollers in a Nash equilibrium (Π∗,Ξ∗), given that

the system starts in the state s, namely

V pat(s) = EΠ∗,Ξ∗

[
∞∑
t=0

γtRpat(bt,at, st)

∣∣∣∣∣ s0 = s

]
.

The value of a state s for the smugglers, V smug(s), is defined similarly.

The value of each state is unique and can be seen to solve the system of equations,

V pat(s) = max
π∈∆([n]k)

min
a∈[0,1]n

∑
b∈[n]k

πb {Rpat(b,a, s) + γV pat(b)}

 (6.3.3)

where πb is the probability the patrollers take a joint action b. This follows from

Shapley (1953) and Maitra and Parthasarathy (1970). By (6.2.1), the transitions of

system state are determined entirely by the patrollers’ choice of action. This is why in

(6.3.3) we can deterministically know the system state resulting from any action taken

by the patrollers.

Shapley (1953) proved that given any initial starting values {V 0
pat(s) | s ∈ S} the

sequence {V k
pat(s) | s ∈ S}∞k=1, determined by the recursion

V k
pat(s) = max

π∈∆([n]k)
min

a∈[0,1]n

∑
b∈[n]k

πb

{
Rpat(b,a, s) + γV k−1

pat (b)
}

converges to {V pat(s) | s ∈ S} as k → ∞. When state and action spaces are finite,

state values may be obtained by using linear programming to solve the maximization

problem within Shapley’s iteration. However, since we assume that the action space

of the smugglers is infinite, this approach is not available to us. Therefore, we look

elsewhere to solve (6.3.3).

We begin by establishing properties of the smugglers’ best response against any

strategy taken by the patrollers. If the smugglers take a best response against the
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patrollers’ strategy π when the system state is s, the patrollers receive a payoff which

we shall denote as G(π, s,V pat), where

G(π, s,V pat) = min
a∈[0,1]n

∑
b∈[n]k

πb[Rpat(b,a, s) + γV pat(b)]

 .

If V pat is the value function for the patroller, it will solve the following system of

equations by (6.3.3).

V pat(s) = max
π∈∆([n])

G(π, s,V pat) for all s ∈ [n]k.

In the previous chapter, the analysis then continues from the observation that with

one patroller the function G is additively separable with respect to π, and so we can

write

G(π, s,V pat) =
∑
b∈[n]

gb(πb, s,V pat)

where

gb(πb, s,V pat) = − max
a∈[0,1]

{(1− πb)rba− πbC(a)}+ πb(γV pat(b)−ms,b)

However, with multiple patrollers we can no longer make this separation. As an exam-

ple, consider a smuggler at some location i. In the one patroller problem, smuggler i’s

best response only depends on the probability location i is defended given by πi and

therefore we can separate the function G. In the multiple patroller problem, smug-

gler i’s best response again depends just on the probability that location i is defended

against. However, the probability of location i being defended against now depends on

the probability of any joint action which includes patrolling location i. For example,

in a two location problem we have that the probability of location i being defended is

equal to,
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[π(i, 1) + . . . ,+π(i, n)] + [π(1, i) + . . . ,+π(n, i)]− π(i, i).

Therefore, we are unable to separate the function G into the actions of the patroller.

6.4 Subgradient Descent

In the previous section, we showed that we could not maximize the function G as in the

previous chapter. There are algorithms in the literature which we could apply to the

stochastic game to find Nash equilibria. For example, Raghavan (2003) introduces a

linear program which provides the solution to any two player single controller zero-sum

stochastic game. Alternatively, we could use a linear program to find the value of every

state at each iteration of the value iteration algorithm using the work of Shapley (1953)

and Vrieze and Tijs (1982). However, both these methods have a common problem

in that they do not scale computationally efficiently with the size of the problem.

Since the algorithms require solving a maxi-min optimization problem which considers

every possible action of both sides, it quickly becomes infeasible from a computational

perspective to construct the linear programs with either algorithm. For example, the

number of variables quickly increases as the total number of actions which could be

played is equal to nk2n. To overcome this problem, we introduce a subgradient descent

method to replace the linear program. We show numerically that using the method

finds a close approximation to a Nash equilibrium.

A subgradient is defined as follows.

Definition 6.4.1 (Subgradient). A subgradient of a convex function f : I → R, where

I is an open interval, at a point x0 ∈ I is a number c ∈ R such that,

f(x)− f(x0) ≥ c(x− x0) ∀ x0 ∈ I
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Note that if the function f is differentiable, we have that the subgradient and

derivative coincide. We can find subgradients of functions which are not differentiable.

For example, a piecewise linear function is not differentiable at one point, but there

exist a set of subgradients at that point.

We implement the adaptive Polyak step size method of gradient descent found in

Hazan and Kakade (2019) found in Algorithm 7. The algorithm has a set number K

of epochs, where each epoch has T steps. At each step, a step size αt is calculated

depending on how far the algorithm estimates the current best solution is to the op-

timum. The algorithm makes a step in the direction determined by the subgradients

with step size αt. The subgradients can be easily calculated since the function G is

piecewise linear. We need to constrain the solution to be a probability distribution

since we are trying to find a strategy which maximizes the function G. Therefore, we

project the solution from the subgradient descent method onto the probability simplex

with Algorithm 10 from Wang and Carreira-Perpinán (2013), which can be found in

the Appendix of this chapter. We denote the projection onto the probability simplex

as P . After each epoch, the estimated optimum of the maximization of the problem is

updated to be the average of the current best solution and current estimated optimum.
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Algorithm 7: Adaptive Polyak Algorithm (Hazan and Kakade, 2019)

Input: time horizon T , number of epochs K, starting value π0, estimate

G̃0 ≥ f(G∗)

1 for epoch k = 0, . . . , K − 1 do

2 for t = 0, . . . , T − 1 do

3

αt =
G(πt)− G̃k

2∥∇G(πt)∥22

πt+1 = P(πt − αt∇G(πt))

4

G̃k+1 =
G̃k +G(πT−1)

2

Output: πT−1

The adaptive Polyak algorithm allows us to maximize the function G efficiently.

The time horizon T and number of epochs K are hyperparameters of the algorithm

which are decided before it runs. Recall that maximizing the function G gives us the

value of the normal-form game given a fixed system state s and state values V pat. We

can therefore now use the value iteration algorithm of Shapley (1953) in order to iterate

through the state values as found in Algorithm 8, and find the Nash equilibrium of the

stochastic game.
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Algorithm 8: Calculation of state values

Input: ϵ > 0

Initialise: V 0
pat(s) = (0, . . . , 0) and k = 1

1 while maxs∈S
{∣∣V k−1

pat (s)− V k
pat(s)

∣∣} > ϵ do

2 for s = 1, . . . , n do

3 Find,

V k
pat(s) := max

π∈∆([n])
min

a∈[0,1]n

[
n∑

b=1

πb

{
R̃pat(b,a, s) + γV k−1

pat (b)
}]

= max
π∈∆([n])

G(π, s,V k−1
pat )

using the adaptive Polyak algorithm.

4 end

5 k := k + 1

6 end

Output: V k
pat

Note that the value iteration algorithm stores the value of each state, and addition-

ally, we can remember the policy πk which achieves this maximum. Therefore, with

each iteration of Algorithm 8 we know better starting values for the subgradient method

in Algorithm 7.

6.4.1 Numerical Example

In Figure 6.4.1 we observe the time of each iteration for a two patroller model, with

parameters ri = 1 and Ci = 4 for all i ∈ [n], mi,j = (i − j)2 and γ = 0.75, on borders

with n = 10, 15 and 20 locations.
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Figure 6.4.1: Time taken for iterations of the value iteration algorithm to be completed

We can see in Figure 6.4.1 that the iterations initially speed up, before eventually

converging to a constant amount of time. Since the starting point of the subgradient

method is given by the output of the last iteration, we conjecture that this is why

the iterations get progressively faster. However, the speed cannot forever increase and

so there reaches a constant amount of time needed to compute all the steps in the

subgradient method, since the number of epochs and time horizon is fixed. A future

direction for research on the problem could be to consider an algorithm which varies

the length of each epoch and the time horizon depending on the current accuracy of

the solution.

Given policy π, we can evaluate its performance by taking the smugglers’ best

response ξ and calculating the expected reward to the patroller. We denote the perfor-

mance for a policy π by Ṽ π. To study the convergence of the algorithm, we consider

the mean difference between the performance of policies in successive iterations given

by,

1

|S|
∑
s∈S

|V πk

(s)− V πk+1

(s)| (6.4.4)
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We use the metric of performance found in (6.4.4) to evaluate the convergence of

Algorithm 8 in Figure 6.4.2. We use the same model parameters as earlier in this

section. The problem instances with 10 and 15 locations were given 1500 seconds to

run, whilst the 20 location instance was given 3000.

Figure 6.4.2: Time taken against the difference in evaluated value function for problem
instances with differing numbers of locations

We can see in Figure 6.4.2 how on a logarithmic scale of time the convergence appears

to follow a similar pattern. In each of the problem instances, there is a period of quick

convergence with the initial slower iterations, before we reach faster iterations with

smaller improvements on the policy’s performance. Note that due to the logarithmic

scale on the y-axis, the oscillations seen in 6.4.2 are very small.

In this section, we have introduced an algorithm based on subgradient descent to

find Nash equilibria in the multiple patroller problem. However, as it is infeasible to

calculate exact solutions in these games, we need a way to evaluate the performance of

the algorithms. Therefore, we look to create heuristics which we think will give us a

close approximation to the Nash equilibria in our model.
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6.5 Heuristics

In this section, we discuss two intuitive heuristics which can provide strategies for

the patrollers in the multiple patroller border patrol game. We can use the heuristics

to evaluate the performance of the subgradient method when exact methods are too

computationally expensive. We conclude the section by providing a numerical analysis

of the heuristics’ behavior on the example that we discussed in the previous section.

The first heuristic which we will discuss is a myopic policy for the patrollers. If the

patrollers are acting myopically, they do not take into consideration the future value

of any rewards they will receive. We can ignore the value of future states and instead

just maximize their immediate reward function, simplifying computation. The heuristic

lacks the ability to leave the patrollers in favorable positions for the next time step, for

example, by placing them closer together than would be optimal.

The second heuristic considered is to partition the border into smaller sections,

which are each protected only by one fixed patroller. We can then treat each border

section as a one patroller problem, which we solved in the previous chapter. We will

mainly focus on line and circle borders where we conjecture splitting the border into

equal lengths is optimal, however, for more complex borders the decision of how to

best partition the border would be more complex. By introducing ‘fake edges’ into the

border which the patrollers cannot cross, the heuristic loses performance compared to

the optimal solution.

6.5.1 Myopic Patroller

The myopic policy for the patrollers can be found by solving the stochastic game, but

taking the discount factor γ to be zero. However, if we use other methods such as those

previously discussed (Shapley (1953), Raghavan (2003)) then the same computation

problems occur from there being nk2n possible actions, which quickly becomes infeasible
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to solve. Instead, we conjecture an algorithm to find myopic policies for the patrollers,

which follows a similar method to the solution method found in the previous chapter.

Suppose that the patrollers have a strategy π̃, allowing the strategy to have prob-

abilities which sum to less than one. For any action b which the patrollers could take,

we can calculate the incremental change in their expected reward if they increased the

probability of taking the action by some small δ > 0. We define this incremental change

in expected reward to be gb(s, δ). Starting from a strategy of π̃ = 0, we propose that

the patrollers greedily increase the probability of taking an action in the set,

argmax
b∈[n]k

{gb(s, δ)} .

We define the algorithm in full below.

Algorithm 9: Find myopic policy

Initialise: π̃ = 0, k = 0

1 while
∑

π̃ < 1 do

2 Let,

j ∈ argmax
b∈[n]

{gb (π̃, k))}

with ties decided by taking the lowest index.

3 π̃b := π̃b + k

4 end

Output: π̃K

Although we have no analytical proof the output of the algorithms is the optimal

myopic policy, when compared against a number of examples which can be exactly

solved it gave the correct solution. Proving that Algorithm 9 always finds the myopic

policy is an open question for future research.
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6.5.2 Partitioning the Border

The second heuristic for the multiple patroller border patrol problem is to partition the

border into multiple segments with one patroller each.

It is an open question of how best to partition the border. Intuitively, on a line

border if the parameters of the game are equal across the locations, then we would split

the border into equal lengths. However, if the border was a more complex shape or had

locations that are more valuable for the smugglers to attack, it becomes less clear how

the partition should be created. Another possibility would be to have the borders split

into segments which overlap, however, we have not yet looked into this possibility.

Once there has been a partition established, we can then use the methods found in

the previous chapter to find the patroller’s strategy in each segment. Then we can take

the joint distribution across each strategy to find the joint strategy of all patrollers.

Note that since the segments are partitioned into non-overlapping sections, it does not

matter how we take the joint distribution.

6.5.3 Numerical Example

We now compare the convergence of the subgradient method against the two heuristics

introduced in this section.

The parameters of the game we will consider are n = 10 and n = 20 locations, k = 2

patrollers, ri = 1 and Ci = 4 for all i ∈ [n], mi,j = (i− j)2 and γ = 0.75. The problem

instance with n = 10 locations will be given 60 seconds to solve, whilst the problem

instance with 20 locations will be given 7200 seconds.

The ten and twenty location problems were given 60 and 7200 seconds respectively

to run.

Our metric for the performance of an algorithm will be to take the patrollers’ policy,

calculate the smugglers best response to this, and then find the expected reward to them

given some initial starting state. We will look at the expected reward from two differing
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initial system states, either the patrollers begin at the edges of the border or from the

middle of the border.

Figure 6.5.3: Convergence of policy performance with ten locations when patrollers
begin at the middle of the border

Figure 6.5.4: Convergence of policy performance with twenty locations when patrollers
begin at the middle of the border

We can see in Figure 6.5.3 that with ten locations, the subgradient method quickly

outperforms the two heuristics we have implemented. However, in Figure 6.5.4 we can
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see on the twenty location problem, the first iteration of the subgradient method takes

a long time to complete. Note, we are initializing the subgradient method from an

arbitrary starting point with state values equal to zero and uniform strategies across

the patrollers’ actions.

Figure 6.5.5: Convergence of policy performance with ten locations when patrollers
begin at opposite ends of the border

Figure 6.5.6: Convergence of policy performance with twenty locations when patrollers
begin at opposite ends of the border
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In Figures 6.5.5 and 6.5.6 we see the partition heuristic is performing better than

in Figures 6.5.3 and 6.5.4 when starting in the middle. The behavior is expected since

when starting at the edges of the border, the impact of the patrollers potentially meeting

is small with a small discount factor (γ = 0.75). Again, the subgradient method quickly

outperforms the heuristics in the ten location problem. In Figure 6.5.6 we again see the

first iteration taking a long time to complete for the subgradient method. Eventually,

the subgradient method outperforms the border partitioning heuristic, however, it is

only by a small amount.

6.6 Reinforcement Learning

A different direction we could take to find Nash equilibria in the stochastic game with

multiple patrollers is to let agents learn the equilibria. In this section, we apply the

different reinforcement learning algorithms which have been introduced in Chapter 2

to the multiple patroller problem.

We want to study how the different reinforcement learning algorithms converge to

a Nash equilibrium. We consider two different metrics to measure the performance.

First, we look at the Euclidean distance of the estimated value function Ṽ from the

true value function V , given by

√∑
s∈S

|Ṽ (s)− V (s)|2.

Note, we calculate the true value function exactly on these small examples using a

linear program. As seen in Chapter 2, it is proven that the distance should converge to

zero for the algorithms if the parameters of the algorithm meet certain assumptions.

However, the Euclidean distance does not show how the behavior of the patrollers is

converging. For example, the patrollers could be playing a Nash equilibrium, but have

their belief of the value function be off by a constant. If we only considered the distance
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between the value functions, it would look like we had not converged to an equilibrium,

when the strategies themselves have already converged. Therefore, we will also consider

as our second metric the worst case expected reward that the patrollers can receive by

playing their current strategy. Given a strategy π for the patrollers, the analysis of the

previous chapter can be used to calculate the best response for the smugglers. If the

patrollers are playing a strategy π∗ which could form a Nash equilibrium, we have that

the worst case value function vWC is equal to the value function of the game vWC = v∗.

Otherwise, if the patrollers play a strategy which cannot be in a Nash equilibria, the

worst case value function must be strictly worse than the value function vWC < v∗.

We are using the same example of the border patrol model, which we will test

the different algorithms on. The parameters for each model being solved are k = 2

patrollers, n = 10 locations, ri = 1 and Ci = 4 for all i ∈ [n], mi,j = (i − j)2 and

γ = 0.75

For the tunable parameters of each algorithm, we have hand-picked ones which

seem to provide the best possible convergence. Firstly, in the model based fictitious

play algorithm we are using the parameters αc = c−0.6, β = c−0.8, and 106 iterations.

Secondly, in the model free fictitious play algorithm we use αc = c−0.5, β = c−0.55,

ϵ = 0.01 and 107 iterations. Finally, in the Q-learning algorithm we use the parameters

αc = c−0.9, β = c−1, τ = 5(1+0.5 log(c))−1 and 108 iterations. All the chosen parameters

meet the respective assumptions for their algorithms to reach convergence.

Model Based Fictitious Play

We first consider the model based fictitious play algorithm by Sayin et al. (2022) which

can be seen in Algorithm 1.
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Figure 6.6.7: Error of value functions with model free fictitious play

Figure 6.6.8: Worst case suboptimality of patroller’s policy with model free fictitious
play

We see fast and smooth convergence in the model based fictitious play setting,

compared to the next two algorithms. These observations are expected since the agents

now know fully the environment that they are in, and so have more information when

taking their actions.
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Model Free Fictitious Play

We next look at the model based fictitious play algorithm by Sayin et al. (2022) which

can be seen in Algorithm 2.

Figure 6.6.9: Error of value functions with model based fictitious play

Figure 6.6.10: Worst case suboptimality of patroller’s policy with model based fictitious
play

We can see in the model free fictitious play setting, the convergence of the algorithm

is erratic. There are large spikes where performance is lost under both metrics, it is an

open question as to why and when these occur in more detail. Eventually, the algorithm

does converge to an equilibrium, however, we will see that other algorithms do this with
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fewer iterations. The interest of a model free algorithm though is we can see with no

prior knowledge of the model, agents’ behavior will converge to a Nash equilibrium.

Q-Learning Results

Finally, we apply the Q-learning algorithm by Sayin et al. (2021) which can be seen in

Algorithm 3.

Figure 6.6.11: Error of value functions with Q-learning

Figure 6.6.12: Worst case suboptimality of patroller’s policy with Q-learning

We see that we get a slow rate of convergence with the Q-learning algorithm that

we implemented. The problem is likely caused by the tunable parameters picked for the
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algorithm. We were unable to find parameters which would give better performance,

however, we did not do an exhaustive search through possible combinations.

6.7 Conclusion

In this chapter, we have introduced a multiple patroller extension to the framework of

Chapter 5. We have considered three different approaches: exact methods, heuristics,

and reinforcement learning. We have detailed how we would approach the problem

using the method, and provided a numerical analysis of its performance.

There are multiple ways in which each of the approaches discussed in this chapter

could be extended with future work.

Firstly, we could look to improve the convergence of the subgradient method that

we have introduced. One way we could look at doing this would be to change the

algorithm for subgradient descent. We have only considered one algorithm for doing

so, and within the algorithm had limited time to optimize the hyperparameters of the

algorithm. It is likely that the algorithm could be tuned to work better on our problem,

or that a different algorithm exists within the literature to achieve better performance.

Related to this problem, one idea we did not look at implementing yet is varying the

length of the epochs within the subgradient method depending on the convergence of

the value iteration algorithm. We hypothesize that having smaller epochs when the

value iteration algorithm is far from convergence, and then increasing the size of the

epoch as the subgradient method converges would achieve better performance. There

are multiple ways which this could be implemented, and it would be an interesting

direction for future research on the problem.

We only consider two heuristics in this chapter, and there is the open problem of

finding other heuristics which would achieve a better performance in the model. Fur-

thermore, for the two heuristics we have introduced there could be possible extensions to
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improve them. Instead of considering a myopic policy for the patroller, maybe instead

it would be possible to consider a heuristic which also takes into account the rewards

obtained from the next time-step. Introducing an ability to look ahead would allow the

smugglers to plan for future movements, instead of only trying to stop the smugglers

in the immediate time-step. However, this would obviously increase the complexity of

finding their strategy and so this is a direction for future work. When discussing the

heuristic to partition the border, we only consider partitions which split the border into

segments of equal size. Whilst this seems to be the intuitive partition for borders, we

have no analytical proof that it is the best way to do so. An open question would be

for different shapes and sizes of borders what the optimal partition of the border is.

When applying reinforcement learning to our problem, we have considered only

two possible algorithms from the literature. There exist other reinforcement learning

algorithms for stochastic games, and it would be an interesting area for future work to

see if they perform better. Additionally, with the algorithms which we did implement,

we did not have time to fully optimize their performance on our problem. There is room

for improvement with further work on the problem to pick better hyperparameters to

achieve faster convergence to the Nash equilibrium.

A final open problem for the chapter would be to consider if particular classes of

problem instances would allow for easier analysis. For example, if only line or circle

borders were considered instead of a general border, we could perhaps prove additional

properties about the game. We would like to look at questions such as if the patrollers

would ever cross over, and how they space themselves apart. However, we cannot

analyse these questions within a general setting and so a simplification of the model

would be necessary.



CHAPTER 6. MULTIPLE PATROLLER EXTENSION 142

6.8 Appendix

Algorithm 10: Euclidean projection of a vector onto the probability simplex

(Wang and Carreira-Perpinán, 2013)

Input: y ∈ RN

1 Sort the vector y into a new vector u such that it is in descending order, i.e.

u1 ≥ u2 ≥ · · · ≥ uN

2 Find,

ρ = max

{
j ∈ [N ]

∣∣∣∣∣ uj +
1

j

(
1−

j∑
i=1

ui

)
> 0

}

3 Define,

λ =
1

ρ

(
1−

ρ∑
i=1

ui

)

Output: x such that xi = max{yi + λ, 0} ∀ i ∈ [N ]



Chapter 7

Conclusions

We conclude the thesis by summarizing the contributions made and giving directions

for future research on the topic.

7.1 Contributions

In Chapter 4 we presented a novel framework to consider the communication and coop-

eration between smugglers in a border patrol problem. We first detailed how equilibria

are defined under each setting, and then prove analytical results which hold across

them all. For each specific case, we then delved deeper and proved which strategies are

equilibria.

Chapter 5 examined a new stochastic game model for patrolling a border. We have

extended existing models in the literature by considering a continuous action space for

the smugglers, which complicates the analysis of the game. We proved a number of

properties of equilibria in the game, and presented algorithms to compute them.

Finally, Chapter 6 contributed interesting directions to consider the multiple pa-

troller extension of Chapter 5. We looked at methods to find the equilibria exactly,

heuristics, and reinforcement learning approaches to the problem.
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7.2 Further work

To extend the work of Chapter 4 there could be a number of interesting directions taken.

The model could be developed further by adding in multiple patrollers. Currently, the

analysis of the chapter is currently limited to only a single patroller defending against

multiple smugglers. However, it would be a more realistic assumption that we could

have a number of patrollers patrolling the border. The analysis would be complicated,

but it is an attractive direction for future research in the model. A different extension

which could be looked into is introducing multiple item types which are available to

smuggle. The model currently only accounts for a single type of contraband to be

trafficked by the smugglers, however, in a real-life scenario there could be many. An

example of particular interest could be for the smuggling of illicit drugs, the different

types of drugs and how the market for each of them depends differently on the supply.

Finally, we would like to consider the game over multiple time periods, as we have

for the models in Chapters 5 and 6. The most natural factor to incorporate would be

movement costs for the patroller, and to see how the communication and cooperation

between smugglers could affect this. However, the model quickly becomes too complex

to either computationally or analytically find solutions.

There are multiple extensions which could be looked at to extend the work of Chap-

ter 5. Firstly, multiple patrollers can be added, which we have looked into with Chapter

6. Secondly, we could consider the patroller having the ability to catch multiple smug-

glers in the game. A camera or drone could be able to surveil a larger area than one

smuggler could attack, and therefore, multiple smugglers might get caught at once.

Thirdly, we could consider further constraints on the quantities of items which the

smugglers can send to the border. An intuitive extension would be to allow smugglers

to stockpile the items which they do not send, and then in a future turn make a larger

attack. Such an extension would complicate the analysis of the game, for example we

would no longer have a single controller stochastic game, but might reveal interesting
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behavior.

One extension possible to Chapter 5 is the inclusion of multiple patrollers, which

we have looked at in more detail with Chapter 6. However, there are a number of

ways Chapter 6 could be developed with future research. Firstly, the subgradient

descent approach to finding equilibria in the model could be improved upon to speed

up the computational time. We could consider a more intelligent starting point for the

algorithm, for example, by using one of the heuristics discussed later in the Chapter.

Another interesting adaptation would be to look at having the number of epochs with

which the subgradient method runs for to depend on the accuracy of the value function.

If the state values are still inaccurate, it seems intuitive that less time should be spent

finding the exact solution to the subgradient method. Secondly, there could be more

heuristics developed for the game. We only discuss two possible heuristics in Chapter

6, and there could be a range of interesting and potentially more accurate heuristics

available, which we have not discussed in this thesis. Finally, further research could

be taken with reinforcement learning approaches to the multiple patroller problem.

A direction of particular interest would be to consider if the smuggler aggregation

property of the game could be utilized to improve the rate of convergence when learning

equilibria.
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